
THE WEIGHTED WEAK TYPE INEQUALITY FOR THE
STRONG MAXIMAL FUNCTION

THEMIS MITSIS

Abstract. We prove the natural Fefferman-Stein weak type inequality

for the strong maximal function in the plane, under the assumption that

the weight satisfies a strong Muckenhoupt condition. This complements

the corresponding strong type result due to Jawerth. It also extends the

weighted weak type inequality for strong A1 weights due to Bagby and

Kurtz.

Let f be a locally integrable function in R2. The strong maximal function

M is defined by

Mf(x) = sup
R

1
|R|

∫
R
|f |,

where |E| denotes the two-dimensional Lebesgue measure of a set E ⊂ R2,

and the supremum is taken over all rectangles R ⊂ R2 with sides parallel to

the coordinate axes, such that x ∈ R (from now on by the term “rectangle”

we will always mean a rectangle with sides parallel to the coordinate axes).

By a classical result of Jessen, Marcinkiewicz and Zygmund [7], M is

bounded from L(1 + log+ L) to weak L1, that is

(1) |{Mf > λ}| ≤ C

∫
|f |
λ

(
1 + log+ |f |

λ

)
, λ > 0,

which implies that M is bounded on every Lp, p > 1. The idea of their

proof was to dominate M by iterates of the usual one-dimensional Hardy-

Littlewood maximal function acting in different directions. A direct geo-

metric proof was given much later by Córdoba and R. Fefferman [2]. The

difficulty in a direct approach is that the Besicovitch covering lemma fails
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when applied to a family of rectangles having arbitrary eccentricities. The

main contribution of [2] was exactly the discovery of a suitable substitute

for the Besicovitch covering lemma.

As far as weighted inequalities are concerned, it is known that if w is a

strong Ap weight, p > 1, that is, if there exists a constant C > 0 such that

for all rectangles R we have(
1
|R|

∫
R

w

)(
1
|R|

∫
R

w−1/(p−1)

)p−1

≤ C,

then M is bounded on Lp(w), namely∫
(Mf)pw ≤ Cp

∫
|f |pw.

This, again, follows by an appeal to the one-dimensional theory. A different

proof of a more general result may be found in Jawerth [5]. The endpoint

case (p = 1) has been treated by Bagby and Kurtz [1]. They proved that if

w is a strong A1 weight, namely, if there exists a constant C > 0 such that

for all rectangles R we have

1
|R|

∫
R

w ≤ C · essinf
x∈R

w(x),

then

(2)
∫
{Mf>λ}

w ≤ C ′
∫

|f |
λ

(
1 + log+ |f |

λ

)
w, λ > 0.

The results above suggest an analogy between weighted inequalities for the

strong maximal function and weighted inequalities for the usual Hardy-

Littlewood maximal function. However, this analogy cannot be pushed too

far unless we put some restrictions on the weight. For example, if we consider

the “weighted” version of M , i.e.

Mwf(x) = sup
R rectangle

x∈R

1
w(R)

∫
R
|f |w, where w(R) =

∫
R

w,

then R. Fefferman [4], using the idea of [2], has shown that if w belongs to

a fixed strong Ar class, r > 1, then Mw is bounded on Lp(w) for all p > 1

(see Jawerth and Torchinsky [6] for the endpoint). Note that if M is the
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Hardy-Littlewood maximal function then Mw is bounded on every Lp(w),

p > 1, without any restriction on w. So, in this case, the analogy breaks

down.

Under the same assumption on the weight as in [4], Jawerth [5] proved,

by different methods, that M is bounded from Lp(Mw) to Lp(w), for all

p > 1, i.e.

(3)
∫

(Mf)pw ≤ Cp

∫
|f |pMw.

As before, if M is the usual Hardy-Littlewood maximal function then (3)

holds true for arbitrary w. This is due to C. Fefferman and Stein [3], and

actually, (3) may be thought of as the “prototype” weighted maximal in-

equality.

The purpose of this paper is to prove the endpoint case (p = 1) of (3)

which, as expected, turns out to be the weighted version of (1). Namely, we

shall show the following.

Theorem. Let w be a strong Ar weight for some fixed r > 1. Then

(4) w({Mf > λ}) ≤ C

∫
|f |
λ

(
1 + log+ |f |

λ

)
Mw, λ > 0.

Proof. As usual a . b means a ≤ Cb for some constant C > 0 not necessarily

the same each time it occurs.

Let Md be the dyadic strong maximal function

Mdf(x) = sup
R

1
|R|

∫
R
|f |,

where the supremum is taken over all dyadic rectangles R (cartesian prod-

ucts of dyadic intervals) with x ∈ R. First, we shall prove the corresponding

weak type estimate for Md:

(5) w({Mdf > λ}) .
∫

|f |
λ

(
1 + log+ |f |

λ

)
Mdw, λ > 0.

So, pick a point x in {Mdf > λ}. Then there exists a dyadic rectangle Rx

containing x such that ∫
Rx

|f | > λ|Rx|.
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Without loss of generality we may assume that {Rx}x is a finite family

{Ri}L
i=1. Now, fix a number 0 < ε0 < 1 to be determined later. By

the Córdoba - R. Fefferman covering lemma [2], there exists a subfamily

{R∗
i }M

i=1 ⊂ {Ri}L
i=1 such that

(6) |R∗
i ∩

⋃
j<i

R∗
j | ≤ ε0|R∗

i |, i = 1, . . . ,M,

and

(7)
L⋃

i=1

Ri ⊂ {MχSM
i=1 R∗

i
≥ ε0}.

Since w is a strong Ar weight, M is bounded from Lr(w) to Lr(w). So, (7)

implies that

w(
L⋃

i=1

Ri) . w(
M⋃
i=1

R∗
i ),

where the implicit constant depends on ε0, r and the Ar-constant of w. Now,

writing

R̃1 = R∗
M , R̃2 = R∗

M−1, . . . , R̃M = R∗
1

and applying the Córdoba - R. Fefferman covering lemma to {R̃i}M
i=1 we get

a subfamily {R∗∗
i }N

i=1 ⊂ {R∗
i }M

i=1 such that

(8) |R∗∗
i ∩

⋃
j 6=i

R∗∗
j | ≤ ε0|R∗∗

i |, i = 1, . . . , N,

and

(9)
M⋃
i=1

R∗
i ⊂ {MχSN

i=1 R∗∗
i
≥ ε0}.

As before, (9) implies that

w(
M⋃
i=1

R∗
i ) . w(

N⋃
i=1

R∗∗
i ).

Therefore

(10) w({Mdf > λ}) ≤ w(
L⋃

i=1

Ri) . w(
N⋃

i=1

R∗∗
i ).
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Now, let µ and µw be the multiplicity and the “weighted” multiplicity func-

tions, respectively, associated to the family {R∗∗
i }N

i=1, i.e.

µ(x) =
N∑

i=1

χR∗∗
i

(x), µw(x) =
N∑

i=1

w(R∗∗
i )

|R∗∗
i |

χR∗∗
i

(x),

and fix a number 0 < δ0 < 1 to be chosen after ε0. Then

w(
N⋃

i=1

R∗∗
i ) ≤

N∑
i=1

w(R∗∗
i ) ≤ δ0

N∑
i=1

w(R∗∗
i )

|R∗∗
i |

∫
R∗∗

i

|f |
δ0λ

= δ0

∫
µw(Mdw)−1 |f |

δ0λ
Mdw.

Using the elementary inequality

st ≤ es + t(1 + log+ t), s, t ≥ 0

we get

w(
N⋃

i=1

R∗∗
i ) ≤ δ0

∫
SN

i=1 R∗∗
i

exp(µw(Mdw)−1)Mdw

+
∫

|f |
λ

(
1 + log+ |f |

δ0λ

)
Mdw

≤ δ0

∫
SN

i=1 R∗∗
i

exp(µw(Mdw)−1)Mdw

+ (1− log δ0)
∫

|f |
λ

(
1 + log+ |f |

λ

)
Mdw.(11)

Now, let

Q =
∫

SN
i=1 R∗∗

i

exp(µw(Mdw)−1)Mdw.

We claim that if we choose ε0 small enough then

(12) Q . w(
N⋃

i=1

R∗∗
i ).

To see this, we expand the exponential in a Taylor series. Then

Q =
∞∑

k=0

1
k!

∫
µk

w(Mdw)1−k =
∞∑

k=0

1
k!

∫
µwµk−1

w (Mdw)1−k.

5



Since

w(R∗∗
i )

|R∗∗
i |

χR∗∗
i
≤ Mdw,

we have

Q ≤
∞∑

k=0

1
k!

∫
µw

(
N∑

i=1

χR∗∗
i

Mdw

)k−1

(Mdw)1−k

=
∞∑

k=0

1
k!

∫
µwµk−1 =

∞∑
k=0

1
k!

Qk.

To estimate Qk we introduce the following notation: For I ⊂ {1, . . . , N} we

put

AI =
⋂
i∈I

R∗∗
i \

⋃
i/∈I

R∗∗
i .

Then the family {AI : I ⊂ {1, . . . , N}} is disjoint and moreover, for all i, n

with 1 ≤ i, n ≤ N we have

(13) R∗∗
i ∩ {µ = n} =

⋃
I⊂{1,...,N}
|I|=n−1

i/∈I

A{i}∪I .

So

Qk =
N∑

n=1

∑
I⊂{1,...,N}

|I|=n

∫
AI

µwµk−1.

Note that if |I| = n, then on AI we have

µ = n and µw =
∑
i∈I

w(R∗∗
i )

|R∗∗
i |

.

Therefore

Qk =
N∑

n=1

nk−1
∑

I⊂{1,...,N}
|I|=n

∑
i∈I

w(R∗∗
i )

|R∗∗
i |

|AI |.
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Rearranging the terms and then using (13) we get

Qk =
N∑

n=1

nk−1
N∑

i=1

w(R∗∗
i )

|R∗∗
i |

∑
I⊂{1,...,N}
|I|=n−1

i/∈I

|A{i}∪I |

=
N∑

n=1

nk−1
N∑

i=1

w(R∗∗
i )

|R∗∗
i |

|R∗∗
i ∩ {µ = n}|.

Since the rectangles R∗∗
i satisfy (8), the argument in [2, p. 100] (this is the

only point where we use the fact that the rectangles are two-dimensional

and dyadic) shows that

|R∗∗
i ∩ {µ = n}| . εn

0 |R∗∗
i |,

where the implicit constant depends on ε0 (it is, actually, equal to (ε0(1 −

ε0))−1). Consequently

Qk .
N∑

n=1

nk−1εn
0

N∑
i=1

w(R∗∗
i ).

Now
N∑

i=1

w(R∗∗
i ) =

N∑
i=1

w(R∗∗
i ∩

⋃
j<i

R∗∗
j ) +

N∑
i=1

w(R∗∗
i \

⋃
j<i

R∗∗
j )

=
N∑

i=1

w(R∗∗
i ∩

⋃
j<i

R∗∗
j ) + w(

N⋃
i=1

R∗∗
i ).

Since w is a strong Ar weight, there exist constants c0 > 0, η0 > 0 such that

for every rectangle R and every E ⊂ R we have

w(E)
w(R)

≤ c0

(
|E|
|R|

)η0

.

In particular (6) implies

w(R∗∗
i ∩

⋃
j<i R

∗∗
j )

w(R∗∗
i )

≤ c0

( |R∗∗
i ∩

⋃
j<i R

∗∗
j |

|R∗∗
i |

)η0

≤ c0ε
η0
0 .

Therefore
N∑

i=1

w(R∗∗
i ) ≤ c0ε

η0
0

N∑
i=1

w(R∗∗
i ) + w(

N⋃
i=1

R∗∗
i ).
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So, if ε0 has been chosen small enough we have

N∑
i=1

w(R∗∗
i ) . w(

N⋃
i=1

R∗∗
i ).

This implies that

Q . w(
N⋃

i=1

R∗∗
i )

∞∑
n,k=0

εn
0nk

k!
. w(

N⋃
i=1

R∗∗
i ),

which proves the claim, for appropriately small ε0.

Combining (11) and (12) we obtain

(1− δ0Cε0)w(
N⋃

i=1

R∗∗
i ) ≤ (1− log δ0)

∫
|f |
λ

(
1 + log+ |f |

λ

)
Mdw.

Choosing δ0 small enough and then using (10) we get (5).

We now show that (5) holds with Md replaced with M . Indeed if x ∈

{Mf > λ} then there is a rectangle R containing x such that

λ <
1
|R|

∫
R
|f |.

Notice that there exist four dyadic rectangles R′
1, R

′
2, R

′
3, R

′
4 with measure

comparable to the measure of R so that R is contained in their union. Then

λ <

4∑
k=1

|R′
k|

|R|
1

|R′
k|

∫
R′

k

|f |,

which implies that for some k we have

λ .
1

|R′
k|

∫
R′

k

|f |.

Therefore

R′
k ⊂ {Mdf & λ}.

Hence

|R| . |R ∩ {Mdf & λ}|.

Consequently

Mχ{Mdf&λ}(x) & 1.
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We conclude that

{Mf > λ} ⊂ {Mχ{Mdf&λ}(x) & 1}.

Since M is bounded on Lr(w) we get that

w({Mf > λ}) . w({Mdf & λ}),

which completes the proof. �

Note that, by interpolation, (4) implies (3). Moreover, it implies (2) since

a strong A1 weight is a strong Ar weight, for every r > 1, and also satisfies

Mw ≤ w almost everywhere. So, our result extends the corresponding

results in [1] and [5].
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