EMBEDDING B_{∞} INTO MUCKENHOUPT CLASSES

THEMIS MITSIS

ABSTRACT. What is the smallest p for which a weight in the Reverse Hölder class B_{∞} also belongs to the Muckenhoupt class A_p ? We give an asymptotically sharp answer to this question.

1. INTRODUCTION

Let *w* be a weight, that is, a positive locally integrable function on \mathbb{R}^n . We say that *w* belongs to the B_{∞} class if there exists a constant C > 0 such that for all cubes *Q* (here and in the rest of the paper, by the term cube we will always mean a cube with sides parallel to the coordinate axes) we have

$$w(x) \le C \frac{1}{|Q|} \int_Q w$$
, for almost all $x \in Q$,

where $|\cdot|$ denotes Lebesgue measure. The smallest such *C* is called the B_{∞} constant of *w* and is denoted by $B_{\infty}(w)$. Clearly, $B_{\infty}(w) \ge 1$.

This class was first defined by Franchi [3], and then, extensively studied by Cruz-Uribe and Neugebauer [2]. Earlier the B_{∞} condition appeared in the papers by Andersen and Young [1] and Muckenhoupt [5].

Every B_{∞} weight satisfies a reverse Hölder inequality (of arbitrary exponent) and consequently belongs to a Muckenhoupt class A_p , for a certain $p, 1 . Recall that <math>A_p$ consists of those weights w for which there exists C > 0 such that for all cubes Q

$$\left(\frac{1}{|\mathcal{Q}|}\int_{\mathcal{Q}}w\right)\left(\frac{1}{|\mathcal{Q}|}\int_{\mathcal{Q}}w^{-\frac{1}{p-1}}\right)^{p-1}\leq C.$$

It is therefore of interest to try to determine the smallest possible p for which a B_{∞} weight belongs to A_p . "Smallest" should be understood in the asymptotic sense, that is, as the B_{∞} constant of w approaches 1.

The purpose of this paper is to prove the following asymptotically sharp result.

Theorem. There exist positive constants C_n , \widetilde{C}_n , with $\widetilde{C}_n > 1$, such that for every $w \in B_\infty$ with $B_\infty(w) \leq \widetilde{C}_n$ we have

$$w \in A_p$$
, for all $p > 1 + C_n \log B_{\infty}(w)$.

²⁰⁰⁰ Mathematics Subject Classification. 42B25.

THEMIS MITSIS

The conclusion of the Theorem conforms with our intuition. As $B_{\infty}(w)$ approaches 1, *w* tends to be a constant function, and therefore, one expects it to tend to belong to every A_p class.

To see why the Theorem is asymptotically sharp as well, consider the power weight

$$w_{\rho}(x_1,\ldots,x_n) = |x_1|^{\rho}, \ \rho > 0.$$

A calculation shows that

$$\log B_{\infty}(w_{\rho}) \sim \rho$$
, for $\rho \leq 1$.

Now, in order for w_{ρ} to belong to A_p we need $\rho , which means$

$$p > 1 + C \log B_{\infty}(w_{\rho}).$$

2. NOTATION, TERMINOLOGY AND PRELIMINARIES

Throughout the paper the capital letter *C* and its variants $C_1, C_2, ...$ denote various positive constants not necessarily the same at each of their occurrences. C_n denotes constants depending on the dimension *n*, again not necessarily the same each time they occur.

If dx is Lebesgue measure and w is a weight, then dw is the measure defined by dw = wdx. In that case, we write w(A) instead of dw(A) for any measurable set A.

We say that a weight w is doubling if there exists C > 0 such that for every pair of concentric cubes $Q \subset \widetilde{Q}$ with $|\widetilde{Q}| = 2^n |Q|$ we have

$$w(Q) \le Cw(Q).$$

The smallest such *C* is called the doubling constant of *w*, denoted by D_w . Every B_∞ weight is doubling.

Let *w* be a weight and *f* a *dw*-locally integrable function. *f* is said to be in the A_1^{dw} class if there exists C > 0 such that for all cubes Q

$$\frac{1}{w(Q)} \int_Q f dw \le C f(x), \text{ for } dw \text{-almost all } x \in Q.$$

As before, the smallest *C* for which the above inequality holds is denoted by $A_1^{dw}(f)$.

Finally, we say that f is in BMO(dw), if

$$||f||_{BMO(dw)} := \sup_{Q} \frac{1}{w(Q)} \int_{Q} |f - f_{Q}| dw < \infty,$$

where

$$f_Q = \frac{1}{w(Q)} \int_Q f dw$$

is the average of f on Q with respect to dw. The symbol dw in the notation introduced above will be suppressed if w = 1.

A quantitative form of the relation between BMO(dw) and A_1^{dw} is given by the following result (see [4]).

Theorem 2.1. Let w be a doubling weight, and $f \in A_1^{dw}$. Then $\log f \in BMO(dw)$ and

$$\|\log f\|_{BMO(dw)} \le 2\log A_1^{aw}(f).$$

3. Proof of the Theorem

Note to begin with, that since $w \in B_{\infty}$, it is clear that $w^{-1} \in A_1^{dw}$ with $B_{\infty}(w) = A_1^{dw}(w^{-1})$. Consequently, by Theorem 2.1 we have

(1)
$$\|\log w\|_{BMO(dw)} \le C \log A_1^{dw}(w^{-1}) = C \log B_{\infty}(w).$$

To estimate the unweighted *BMO* norm of log w, it is enough to choose, for every cube Q, a number c_Q and estimate the quantity

$$\sup_{Q} \frac{1}{|Q|} \int_{Q} |\log w - c_{Q}|.$$

So, let

$$c_Q = \frac{1}{w(Q)} \int_Q \log w dw,$$

and

(2)
$$I_Q = \frac{1}{|Q|} \int_Q |\log w - c_Q| = \frac{w(Q)}{|Q|} \left(\frac{1}{w(Q)} \int_Q |\log w - c_Q| w^{-1} dw \right).$$

Notice that the A_1^{dw} condition for w^{-1} implies that the Hardy-Littlewood maximal function

$$M^{Q}_{dw}w^{-1}(x) = \sup_{x \in Q' \subset Q} \frac{|Q'|}{w(Q')}$$

is in $L^1(Q; dw)$ and in fact

$$||M_{dw}^{Q}w^{-1}||_{L^{1}(Q;dw)} \le A_{1}^{dw}(w^{-1})|Q| = B_{\infty}(w)|Q|.$$

So, by a well known result of Stein [6] (in the context of doubling weights), w^{-1} is in the $L \log L(Q; dw)$ class, and moreover

(3)
$$||w^{-1}||_{L\log L(Q;dw)} \le CD_w^2 ||M_{dw}^Q w^{-1}||_{L^1(Q;dw)} \le CD_w^2 B_\infty(w)|Q|,$$

with C independent of Q.

On the other hand, since $\log w \in BMO(dw)$, the John-Nirenberg inequality (again, in the doubling context), implies that $\log w - c_Q$ is in the $\exp L(Q; dw/w(Q))$ class and

(4)
$$\|\log w - c_Q\|_{\exp L(Q;dw/w(Q))} \le CD_w^2 \|\log w\|_{BMO(dw)},$$

where C is independent of Q.

THEMIS MITSIS

Applying the generalized Hölder inequality to (2) and then using (3), (4) and (1) we obtain

$$I_{Q} \leq C \frac{w(Q)}{|Q|} \|\log w - c_{Q}\|_{\exp L(Q;dw/w(Q))} \left(\frac{1}{w(Q)} \|w^{-1}\|_{L\log L(Q;dw)}\right)$$

$$\leq C D_{w}^{4} B_{\infty}(w) \|\log w\|_{BMO(dw)}$$

$$\leq C D_{w}^{4} B_{\infty}(w) \log B_{\infty}(w).$$

Therefore

(5)
$$\|\log w\|_{BMO} \le CD_w^4 B_\infty(w) \log B_\infty(w).$$

Now, we have to estimate the doubling constant of *w* in terms of its B_{∞} constant. So, let $Q \subset \widetilde{Q}$ be a pair of concentric cubes with $|\widetilde{Q}| = 2^n |Q|$. Put

$$\lambda = \frac{2B_{\infty}(w)}{2B_{\infty}(w) - 1}$$

and let $\{Q_j\}_{j=0}^{N+1}$ be a finite sequence of cubes such that

$$Q = Q_0 \subset Q_1 \subset \cdots \subset Q_N \subset Q \subset Q_{N+1},$$

and

$$|Q_{j+1}| = \lambda |Q_j|, \ j = 0, 1, \dots, N.$$

Then

$$N \sim \frac{n \log 2}{\log \lambda}.$$

By the B_{∞} condition we have

$$w(x) \le B_{\infty}(w) \frac{w(Q_{j+1})}{|Q_{j+1}|}$$
, a.e. on Q_{j+1} .

Integrating over $Q_{j+1} \setminus Q_j$ we obtain

$$w(Q_{j+1} \setminus Q_j) \leq B_{\infty}(w)w(Q_{j+1})\frac{|Q_{j+1} \setminus Q_j|}{|Q_{j+1}|}.$$

Equivalently,

$$w(Q_j) \ge (1 - B_{\infty}(w)(1 - 1/\lambda))w(Q_{j+1}) = \frac{1}{2}w(Q_{j+1}).$$

Therefore

$$w(\widetilde{Q}) \le w(Q_{N+1}) \le 2^{N+1} w(Q) \le C_n^{B_{\infty}(w)} w(Q).$$

We conclude that

 $(6) D_w \le C_n^{B_\infty(w)}.$

Since
$$B_{\infty}(w) \leq \widetilde{C}_n$$
, (5) and (6) imply
(7) $\|\log w\|_{BMO} \leq C_n \log B_{\infty}(w)$.

4

To finish the proof of the theorem notice that by the John-Nirenberg inequality there exist C > 0, $C_n > 0$ such that if

$$0 < \lambda < \frac{C_n}{\|\log w\|_{BMO}}$$

then

(8)
$$\frac{1}{|Q|} \int_{Q} e^{\lambda |\log w - (\log w)_Q|} \le C,$$

for all cubes Q. Note that (7) implies

$$\frac{C_n}{\|\log w\|_{BMO}} > 1,$$

provided that \widetilde{C}_n has been chosen close enough to 1. Now, for any $p > 1 + C_n \log B_{\infty}(w)$, choose λ with

$$1 < \lambda < \frac{C_n}{\|\log w\|_{BMO}}, \text{ and } 1 + \frac{1}{\lambda} < p.$$

Then (8) implies

$$e^{\pm\lambda(\log w)_Q} \frac{1}{|Q|} \int_Q e^{\pm\lambda\log w} \leq C.$$

Multiplying the \pm estimates we get

$$\left(\frac{1}{|Q|}\int_{Q}w^{\lambda}\right)\left(\frac{1}{|Q|}\int_{Q}w^{-\lambda}\right)\leq C^{2},$$

and by Hölder's inequality

$$\left(\frac{1}{|\mathcal{Q}|}\int_{\mathcal{Q}}w\right)^{\lambda}\left(\frac{1}{|\mathcal{Q}|}\int_{\mathcal{Q}}w^{-\lambda}\right)\leq C^{2},$$

which means

$$\left(\frac{1}{|Q|}\int_{Q}w\right)\left(\frac{1}{|Q|}\int_{Q}w^{-\lambda}\right)^{\frac{1}{\lambda}} \leq C^{\frac{2}{\lambda}}.$$

This shows that $w \in A_{1+\frac{1}{2}}$, and hence $w \in A_p$.

References

- [1] K. F. Andersen, W. S. Young. On the reverse weak type inequality for the Hardy maximal function and the weighted classes $L(\log L)^k$. Pacific J. Math. 112 (1984), no. 2, 257-264.
- [2] D. Cruz-Uribe, C.J. Neugebauer. The structure of the reverse Hölder classes. Trans. Amer. Math. Soc. 347 (1995), no. 8, 2941-2960.
- [3] B. Franchi. Weighted Sobolev-Poincaré inequalities and pointwise estimates for a class of degenerate elliptic equations. Trans. Amer. Math. Soc. 327 (1991), no. 1, 125-158.

THEMIS MITSIS

- [4] J. García-Cuerva, J. L. Rubio de Francia. *Weighted norm inequalities and related topics*. North-Holland Math. Stud., vol. 116, North-Holland, Amsterdam, 1985.
- [5] B. Muckenhoupt. Weighted reverse weak type inequalities for the Hardy-Littlewood maximal function. Pacific J. Math. **117** (1985), no. 2, 371-377.
- [6] E. M. Stein. Note on the class L log L. Studia Math. 32 (1969), 305-310.

Department of Mathematics, University of Crete, Knossos Ave., 71409 Iraklio, Greece *E-mail address*: mitsis@fourier.math.uoc.gr

6