
NORM ESTIMATES FOR THE KAKEYA MAXIMAL FUNCTION
WITH RESPECT TO GENERAL MEASURES

THEMIS MITSIS

A. We generalize Bourgain’s theorem on the Kakeya maximal
function in the plane by proving norm estimates with respect to measures
satisfying certain conditions. We use this to extend the classical result of
Davies on the Hausdorff dimension of Kakeya sets in the plane.

1. I

Let S 1 be the unit circle in the plane. If 0 < δ � 1, e ∈ S 1, x ∈ R2,
then we define T δ

e (x) to be the rectangle of dimensions 1 × δ, centered at x
such that its side with length 1 is in the e-direction. The Kakeya maximal
function Kδ : S 1 → R is defined for all locally integrable functions f :
R2 → R by

Kδ f (e) = sup
x∈R2

1
|T δ

e (x)|

∫
T δ

e (x)
| f (y)|dy.

Kδ was introduced by Bourgain [1]. It is one of several similar maximal
functions which have been studied by several authors going back at least to
Córdoba [2]. Bourgain proved, using the Fourier transform, that Kδ defines
a bounded L2(R2)→ L2(dσ) operator, where dσ denotes arc length measure
on S 1. Namely, there exists a constant C > 0, independent of δ, such that

‖Kδ‖L2(dσ) ≤ C| log δ|1/2‖ f ‖L2(R2).

Interpolating with ‖Kδ‖∞ ≤ ‖ f ‖∞ we get

‖Kδ‖Lp(dσ) ≤ Cp| log δ|1/p‖ f ‖Lp(R2), p ≥ 2.

This estimate is sharp as can be seen, for example, by the Perron-tree con-
struction due to Schoenberg [4].

In this paper we consider the problem of obtaining non trivial Lp(R2) →
Lp(dµ) estimates for Kδ, where µ is a measure supported on S 1. In particu-
lar, we study the influence of the geometric properties of µ on the operator
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norm of Kδ. It is clear that little can be said if µ is completely arbitrary. So,
in order to get a meaningful problem, we have to impose certain restrictions
on µ. It turns out that if µ satisfies the growth condition µ(B(e, r)) ≤ ϕ(r),
e ∈ S 1, r > 0, for some positive function ϕ, then Kδ defines for p ≥ 2 an
Lp(R2) → Lp(dµ) operator whose norm is bounded by a concrete function
of δ. If we further assume that µ is Ahlfors regular, a notion to be defined in
the next section, then our estimates are sharp. Fianlly, we use our results to
give lower bounds on the generalized Hausdorffmeasure, also to be defined
in the next section, of a wide class of Kakeya-type subsets of the plane.

2. N & T

B(x, r) is the open disk of radius r centered at x.
| · | denotes Lebesgue measure and dim(·) Hausdorff dimension.
x . y means x ≤ Ay for some absolute constant A > 0 and similarly with

x ' y.
spt(µ) is the support of the measure µ.
A Borel measure µ is said to be s-dimensional Ahlfors regular if

µ(B(x, r)) ' rs,

for all x ∈ spt(µ), r ≤ 1.
A measure function is a non-decreasing positive function h(r), r > 0,

such that
lim
r→0

h(r) = 0.

The generalized Hausdorff outer measure Λh with respect to a measure
function h is defined for A ⊂ R2 by

Λh(A) = sup
δ>0

inf

∑
j

h(r j) : A ⊂
⋃

j

B(x j, r j), r j < δ

 .
When h(r) = rs, Λh is the usual Hausdorff outer measure.

3. M    

The main result of this paper is the following.

Theorem 3.1. Let µ be a positive Borel measure supported on S 1 such that

µ(B(x, r)) ≤ ϕ(r), x ∈ S 1, 0 < r < 1,

for some positive function ϕ. Then for all p ≥ 2 there exists a constant Ap

such that
‖Kδ f ‖Lp(dµ) ≤ ApC(δ)1/p‖ f ‖Lp(R2),

where

C(δ) = µ(S 1) +
∫ 1/δ

1
ϕ(1/r)dr.
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Proof. We will prove the L2(R2) → L2(dµ) estimate. The theorem then
follows by interpolation.

Without loss of generality we may assume that spt(µ) is contained in the
first quadrant. We cover spt(µ) with a family {A j} of disjoint arcs each of
length δ. Pick e j ∈ A ∩ spt(µ) and let a j = µ(A j). Note that if u, v ∈ A j then
for any x ∈ R2

T δ
u(x) ⊂ T̃ δ

v (x),

where T̃ δ
v (x) is the rectangle with dimensions 2×4δ and with the same center

and orientation as T δ
v (x). Therefore, for every e ∈ A j

Kδ f (e) . sup
x∈R2

1∣∣∣∣T̃ δ
e j

(x)
∣∣∣∣
∫

T̃e j (x)
| f (y)|dy .

1
δ

∫
T̃e j (x j)

| f (y)|dy,

for some x j ∈ R
2. We estimate ‖Kδ f ‖L2(dµ) by duality. Let g ∈ L2(dµ) such

that ‖g‖L2(dµ) = 1, and put

c j =

(∫
A j

|g(e)|2dµ(e)
)1/2

.

Then, letting

Qg =

∣∣∣∣∣∫ Kδ f (e)g(e)dµ(e)
∣∣∣∣∣ ,

we have

Qg =

∣∣∣∣∣∣∣∑j

∫
A j

Kδ f (e)g(e)dµ(e)

∣∣∣∣∣∣∣ . 1
δ

∑
j

∫
T̃e j (x j)

| f (y)|dy
∫

A j

|g(e)|dµ(e)

≤
1
δ

∫
| f (y)|

∑
j

a1/2
j c jχT̃e j (x j)(y)

 dy

≤
1
δ
‖ f ‖L2(R2)

∫
∑

j

a1/2
j c jχT̃e j (x j)(y)


2

dy


1/2

=
1
δ
‖ f ‖L2(R2)

∑
i, j

a1/2
i a1/2

j cic j

∣∣∣T̃ei(xi) ∩ T̃e j(x j)
∣∣∣

1/2

. ‖ f ‖L2(R2)

∑
i, j

a1/2
i a1/2

j cic j

δ + |ei − e j|


1/2

,

where the last inequality follows by geometry. Now, let

F(i, j) =
a1/2

i a1/2
j cic j

δ + |ei − e j|
,
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and note that for all j∑
i

a1/2
i F(i, j) = a1/2

j

∑
i

ai

δ + |ei − e j|
. a1/2

j

∑
i

∫
Ai

dµ(e)
δ + |ei − e j|

= a1/2
j

∫
dµ(e)

δ + |ei − e j|
≤ a1/2

j

∫ 1/δ

0
µ({e : |e − e j| < 1/r})dr

≤ a1/2
j

(
µ(S 1) +

∫ 1/δ

1
µ(B(e j, 1/r))dr

)
≤ a1/2

j C(δ).

By symmetry ∑
j

a1/2
j F(i, j) . a1/2

i C(δ),

for all i. Therefore

Qg . ‖ f ‖L2(R2)

∑
i

ci

∑
j

c jF(i, j)


1/2

≤ ‖ f ‖L2(R2)

∑
i

∑
j

c jF(i, j)


2

1/4

≤ ‖ f ‖L2(R2)

∑
i

∑
j

c2
ja
−1/2
j F(i, j)


∑

j

a1/2
j F(i, j)




1/4

. ‖ f ‖L2(R2)C(δ)1/4

∑
i, j

c2
ja
−1/2
j F(i, j)a1/2

i


1/4

= ‖ f ‖L2(R2)C(δ)1/4

∑
j

c2
ja
−1/2
j

∑
i

a1/2
i F(i, j)


1/4

. ‖ f ‖L2(R2)C(δ)1/2

∑
j

c2
j


1/4

= ‖ f ‖L2(R2)C(δ)1/2.

We conclude that

‖Kδ f ‖L2(dµ) = sup{Qg : ‖g‖L2(dµ) = 1} . C(δ)1/2‖ f ‖L2(R2).

�

Note that when ϕ(r) = r, that is, when µ is absolutely continuous with
L∞ density with respect to arc-length measure on S 1, we get C(δ) . | log δ|
and thus recover Bourgain’s result. Taking ϕ(r) = rs, 0 < s < 1, we obtain
the following estimate for measures of fractal dimension.

Corollary 3.1. Let µ be a positive Borel measure on S 1 such that

µ(B(x, r)) ≤ rs, x ∈ S 1, 0 < r < 1,
4



for some s ∈ (0, 1). Then, for p ≥ 2

‖Kδ f ‖Lp(dµ) ≤ Apδ
(s−1)/p‖ f ‖Lp(R2).

Now, we show that the above estimate is sharp if µ satisfies an extra
regularity condition.

Proposition 3.1. Let s ∈ (0, 1) and µ be an s-dimensional Ahlfors regular
measure on S 1. Then

‖Kδ‖ ' δ
(s−1)/p.

Proof. Let {e j}
N
j=1 be a maximal δ/2-separated set of points in spt(µ). For

each j let A j be an arc of length δ centered at e j. Then

1 ≤
N∑

j=1

χa j(e) ≤ 2, for all e ∈ spt(µ).

Hence

(1) µ(S 1) ≤
N∑

j=1

µ(A j) ≤ 2µ(S 1).

Note that Ahlfors regularity implies that µ(A j) ' δs. Therefore by (1) we
get that N ' δ−s. Now let

Eδ =

x ∈ R2 : 0 < |x| ≤ 4, x|x|−1 ∈
⋃

j

A j

 .
Then

1 . KδχEδ(e), for all e ∈ spt(µ).

Note that
|Eδ| . Nδ ' δ1−s.

Consequently

‖Kδ‖ ≥
‖KδχEδ‖Lp(dµ)

‖χEδ‖Lp(R2)
& |Eδ|

−1/p & δ(s−1)/p.

�

4. A   K- 

Let A be a subset of S 1. A set E ⊂ R2 is said to be an A-Kakeya set,
if it contains a unit line segment in the e-direction for every e ∈ A. Using
Theorem 3.1 and a suitable modification of the argument in [1], one can
obtain the following generalization of the classical result of Davies [3] on
the Hausdorff dimension of usual Kakeya sets in the plane.
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Theorem 4.1. Let A be a subset of S 1 such thatΛh(A) > 0 for some measure
function h. If E is an A-Kakeya set in the plane, then for every ε > 0 we
have

Λψε(E) > 0,
where ψε is given by

ψε(r) = r2−ε
∫ 2/r

1
h(1/u)du.

If we specialize to the case of the usual Hausdorff measure by taking
h(r) = rs, then we have the following.

Corollary 4.1. Let E be an A-Kakeya set in the plane. Then

dim(E) ≥ dim(A) + 1.

R

[1] J. B. Besicovitch type maximal operators and applications to Fourier analysis.
Geom. Funct. Anal. (2) 1 (1991), 147-187.

[2] A. C́. The Kakeya maximal function and spherical summation multipliers.
Amer. J. Math. 99 (1977), 1-22.

[3] R. O. D. Some remarks on the Kakeya problem. Proc. Cambridge Philos. Soc.
69 (1971), 417-421.

[4] I. J. S. On the Besicovitch-Perron solution of the Kakeya problem. Studies
in Mathematical Analysis-Essays in Honour of G. Pólya, 359-363, Stanford Univer-
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