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This set of notes was intended to supplement a graduate course in Harmonic Analysis
that was planned to be given during my stay at the university disky as a Marie Curie
fellow. For technical reasons, the course was never taught, so | am grateful to Pertti Mattila
for the opportunity to publish these notes.

Most of the material is based on my personal notes from a series of lectures given by
Tom Wolff at UW-Madison back in 1996. Anyone familiar with his mathematical prefer-
ences will recognize his style.

Wolff's expository article 23] and his own lecture note2%] from a Caltech course
(edited by Izabella Laba) are closely related to the subject matter of this work.
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Ba,R):
: The support of the function (or distributior)
. The Fourier transform of, f(¢) = fe*z”‘x'ff(x)dx

: The inverse Fourier transform éf fv(x) = fez’”x'ff(g-‘)def.
: The Fourier transform of the measurgii(¢) = [ e #™<du().

List of notation

The disc{xe R": |[x—a < R}.

By definition,i(¢) = [ €*¢du(x).
... Zf, wherea is a multi-index, i.e.a = (ai,...,an), with a; being

natural numbers.

: The length of the multi-index, |a| = Z?:l aj.

- (X)) = t"p(t71x), unless otherwise indicated.

. The Schwartz space.

: Lebesgue measure (in the ambient Euclidean space), or cardindlifylepend-

ing on the context.

: The lower Minkowski dimension dE.

. The gradient off, Vf = (g—xfl ,%).

. The oscillation off onD, oDscf = sUpep IF(X) — FY)I.
. The unit spheréx € R" : |x| = 1}.

. Surface measure.

. k-dimensional Lebesgue measure.
. Capital letters denote various constants whose values may change from line to

line.

: X g ymeans X < Cy, whereC is a constant”.
D X=ymeansXsy&ysX).

. The real and imaginary part afe C.

: The characteristic function &.

E: Expectation.






CHAPTER 1

Some applications of Khinchin’s inequality

In this chapter we will present, in the context of harmonic analysis, two typical appli-
cations of the following classical probabilistic inequality.

Proposrttion 1.1 (Khinchin’s inequality) Lete; be independent random variables tak-
ing the values 1 and1 with probability 1/2 each. Then for any € (0, c0) and complex
numbersa; }g\‘:l we have

with bounds independent bf.

The proof of Khinchin’s inequailty may be found in most books on elementary prob-
abilty. What is important is that the bounds are independeit, @nd that the right hand
side depends only offe;|} and does not involve any cancelations.

Ouir first application concerns the most basic inequality forlth&ourier transform,
namely the HausdérYoung theorem. Unlike the Plancherel theorem, Hau$eéung
is not reversible. This fact may be proved in many ways. Let us prove it using Khinchin’s
inequality.

ProposiTion 1.2 (1 < p < 2). For anye > O there is a functiorf € S with
Iflly < &l fllp.

Proor. Let ¢ be a fixed Schwartz function with compact support. pql}j'\‘:1 be a
sequence of points iR" such that the functions;(x) := ¢(x — x;) have disjoint supports.
Then it is obvious that for any choice ef € {+1} (j = 1,...N) we have

|| i Si¢i|‘z - i I6;llp = Nligllp,
j=1 j=1

and so,

| ], = e
ji=1

Moreover

E(Hjle;&jHZ:F | E(Igs@j@)\p’)dg: | E(Iffﬁ(f)lp’|jzzsjez”ix’”f'p/)df
~ N2 [P e
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CHAPTER 1. SOME APPLICATIONS OF KHINCHIN’S INEQUALITY

where the last line follows by Khinchin’s inequality withy = €#*i*. Therefore

| iaﬂf’in, < CoNY2{ly.
=1

for some choice ofg;}. Sincep < 2 we can choosBlp so that
CoNg lidlly < NPl

The result now follows on letting
No

f= ZSJ¢j.

=1

Our second application is the basic result in Littlewood-Paley theory.

Let ¢ be a smooth function such that= 0 on B(0, 1) and¢ = 1 outsideB(0, 2), and
letyj(x) = ¢(271X) — ¢(27171X). Theny; is supported in the annulys : 21~ < |x| < 211}
and

> wi(x) =1 forall x0.

j=—00
Forf e S, letS;f = (y; fA)V. Then, thelittlewood-Paley square functida defined by
sl 1/2
Sf= ( D |s,-f|2) .
j=—00
Proposrition 1.3 (Littlewood-Paley) For any f € Sand1 < p < o, one has
IS fllp = lIfllp.
For the proof, we need the following result (s€€][for a more sophisticated version).

Lemma 1.1 (Mikhlin multiplier theorem) Letm : R"\ {0} — C satisfyiD"m(¢)| < 1£]77,
for all ¢ # 0 and all multi-indices of lengthy| < n+ 2. Then

M) e < Il
foranyf e Sandl < p < co.

Proor. Note that (nf) =« f and that the decay condition emimplies that, away
from the origin, the distributiomagrees with a function. So, if we let

m;(&) = ¢;(E)M(&).

N
K= D, i,
=~

it is enough to show that the kernédy, are Caldebn-Zygmund uniformly inN. Namely,
they satisfy

and

(1) IKNGI < 147"
(i) [VKn(X)] < Xt
(i) [[Kn = fllz < N1Fll2
with bounds independent &f.
10



CHAPTER 1. SOME APPLICATIONS OF KHINCHIN’S INEQUALITY

To prove (i), note that _

ID"mll; < 2i(n=Iy))
and therefore .

||Xymj||m < 2i(n=h1)
It follows that A

I ()| < 21X forany O< k < n+2.
Using this withk = 0 andk = n + 2, we conclude that
KnOOL< D Il < > e+ > ()l
j 2i<|xt 2i>|x1
S D, 2 Y 2@y <
2i<|x-t 2i>|x-t

The proof of (ii) is similar and (iii) follows by Plancherel. O

To prove Proposition 1.3, let
N
UWGEIIG)
j=N
and note thaty satisfies the condition of Lemma 1.1 uniformlyNhand uniformly in the
realization of the random variables}. Therefore, by the continuous version of Khinchin’s
inequality,

f|(s f(X)Pdx < lim su E[fj EN: -(S-f)(x)|pdx] <P
s N%GF’ j=—N8] j S [1Tlp-

To prove the lower bound, we use duality. Note that, = 0 if |j —k| > 1, so by Parseval,
Cauchy-Schwarz andatder,

f fg= f Z SifSkg < IS filplSally < 1IS filpllglly
{i-kij-K<1}
for all g € S. Therefore||f[l, < [IS fll,.
Note that Proposition 1.3 holds for arbitrafrye LP (in which case we have to interpret
S;f asy; = f) by a standard limiting argument.
We will present other applications of Khinchin’s inequality in Chapter 5 and Chapter
6.

11






CHAPTER 2

Stationary phase

Consider the oscillatory integral

I(¢,a; ) = f B e¥Ma(x)dx,

whereg is a smooth function (thphasg, andais a smooth integrable function (tlaenpli-
tude. Our objective is to study the behavior lofor large values oft. In order to do that,
we have to calculate its asymptotic expansion.

If ¢(X) = —2rX, thenl is the Fourier transform d&f, and integration by parts gives
I(=2mx a9 ) _ L 11a¥lly

Ak Tk
for anyk, provided thata has integrable derivatives up to order This shows that is
rapidly decreasing ag — oo and therefore the question of determining its asymptotic
expansion is, in a sense, trivial.

If ¢ is nonlinear with nonvanishing first derivative then by a change of variables, we
get again a Fourier integral. So, the nontrivial case arises when the phase has critical points.
We will restrict ourselves to phases with nondegenerate critical points. First, we estimate
the so-calledrresnelintegral:

[I(—27x, & 2) = C

162, & 1) = f ¥ a(x)dx

ProrosiTion 2.1 Suppose is a smooth function with compact support. Then for any

k € N, we have
(2)] R
14, & 1) = \/ a ](O) ) (2/(1;2,

where the remainder satisfies the uniform estimate

IR()] < 11229l

Proor. Notice that
|(X2’a; P) :JLere(_HM)XZa(X)dX
Now write
f DR g(x)dx = f ¢ a(x)dx = f ea(0)dx + f & xb(x)d X

where
u=—-e+ia,
and

b(x) = M.

13



CHAPTER 2. STATIONARY PHASE

Integrating by parts the second term we get

f &% x(X)dx = 1 f ea; (x)dx

wherea; = b’. Passing to the limit as — 0 and repeatedly applying the above procedure,

we get
2 .
102,20 = || a0+ 2 4y 2D SR,

The first term is

where
a(ZJ)(o)

(0) = S5

The result follows since

110, a; )l < llalls < 11229y
O

Now, suppose that the phagéas finitely many critical pointg, in supp&). Choose
a smooth partition of unity
> ho=1

in supp@) such that for each, suppf,) contains exactly one critical point. Suppose that
Xp € suppl,). Then, by the Morse Lemma, we have

(¢, ha; ) = 1091 (2, bp; ),
whereb,, is a suitable smooth function with compact support, and

+ = sgm”’ (Xp).
Proposition 2.1 then implies

l(¢.a;2) = \[ Zei 09 (a(xp) + -+ AFR(A).

Next, we turn to the higher dimensional case. Namely, we want to study the asymptotic
behavior of the integral

I(¢,@;2) = f 1M a(x)dx
Rn
Assume first that the phase is a quadratic form, i.e.
iy = LN iy
() =B() = 3 ;ﬁ XX;.
Furthermore, suppose thats nonsingular, i.e. deg[i] # 0, and let
1 i
k D —
(D) 2 .Z,: 0X0X;
be the dual dterential operator, whergif] = [8%]-1. Then we have the following.
14




CHAPTER 2. STATIONARY PHASE

ProrosiTion 2.2. If B is a nonsingular quadratic form, aralis a smooth function with
compact support, then for arkye N, the following equation holds.
(ﬂ)i

1PN a(x)dx = L + R

Zﬁ(D)Ja(O)( )J
R \//l”|detHes Ak

whereo(B) is the signature g8, Hes® the Hessian matrix ¢f, and the remainder satisfies
the uniform estimate

IR(A)| < 11(3"(D))*alls.

Proor. Proposition 2.1 is the special case whern- 1. In the general case, take a
linear transformatiox = A(y) such that

B(X) = %(y%+~~-+y%—y’2)+l_..._yﬁ)

where 2 = o(8) + n. By Taylor's Theorem
2k-1

aw) =y 22Oy 1 5,0)

|la|=0

Then
2k-1

1(2nB(y) + eiy?; A) = Z D‘;L!(O) f e2rB0)-= )y gy

la|=0
" f e(z”iﬁ(y)‘syz)’lsk(y)dy (2.1)

By Fubini’s Theorem

n
f 2Bt -ey Iy 1_[ f e(iZiy]?—gyJ?)/ly(jtj dy,,
i1

therefore, Proposition 2.1 applies. We can put the sum in (2.1) in the B(B)4)(0),
where

mr(ﬂ])l . “(9/0V:
P(D) = ﬂ ) [Iﬁ’( / y’)] :
,//l|detHesSJ 1 K

with

Next, we calculate

1—[ exp(ﬂa(fj)i) = exp(mrff)i )

H AldetHesgj| = A"|detHesg|,
iB:(8/0y; i
1_[exp(wj(ﬁ/ yJ)) _ exp(lﬂ/(lD)).

|detHesgs| = |detA’/detHesgs| = |detAl?.
To conclude the proof, we estimate the remainder as in Proposition 2.1. O
15
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CHAPTER 2. STATIONARY PHASE

If Xo is a nondegenerate critical point ¢f we choose smooth local coordinates in a
neighborhood ofky such thatp is a quadratic form in that coordinate system. Then we
apply Proposition 2.2.

A good reference for the material in this chapterlig]|

16



CHAPTER 3

The uncertainty principle

In harmonic analysis, by the teramcertainty principle we refer to the (rather vague)
fact that a function and its Fourier transform cannot be both concentrated on small sets.

The simplest manifestation of this phenomenon is the fact that the Fourier transform
of a compactly supported function cannot have compact support, unless the function is
identically equal to zero.

Another way to understand the situation is the following.

Proposiion 3.1 (Bernstein’s inequality) Supposef € LP,1 < p < oo and that
suppf c B(0,R). Then
ID* fllp < R*|If]lp,
where the implicit constant depends only on the dimension
Proor. If p = 2 this follows from Plancherel’s Theorem.
ID*fllz = 1D ) ll2 = I(2xi&)* f ll2 < R ll2 = R ]2
In the general case, fix a functigne S with
#(¢) = 1V¢ € D(0,1).
Then
(Pra)"f = 1,
and therefore
¢R—1 % f = f
Now, supposén| = 1. Then

Df = D%g1 * f = R(D?¢)r1 * f.
So, by Minkowski’s inequality
ID*fllp < RI(D@)r1llullfllp = CRIfllp.
The general case follows by induction [ath O
CoroLLary 3.1 Suppose thatuppf ¢ B(0,R). Then
oscf < il
for all discsB of radiusR™%; here the implicit constant depends omnly.
Proor. By the Mean Value Theorem and Bernstein’s inequality we have
osch < RV Hllo < Rl = IIflle-

17



CHAPTER 3. THE UNCERTAINTY PRINCIPLE

So, if f is supported on a disc of radil® then f is “essentially constant” on scale
R
In higher dimensional harmonic analysis, it is often the case that the suppbiof
not contained in a disc, but in a set of high eccentricity. This case can be understood by
starting from a disc and studying the behavior of the Fourier transform under linear maps.
If {g;} is a basis foR" and{a;} are positive numbers, then tedipsoid with axes{e;}
and widths{a;} is the set

E=feer: Y (2 <q)
j

g
Its dual ellipsoid is the set

E* = {xe R": Z (a,-(x, aj>)2 < 1},

]
A basic fact from linear algebra is that there is always a linear transformatsuch that

T(B(0,1)) = E*,
(T)(B(0,1)) = E,
whereT* is the transpose oF. Therefore, iff is function with supg c E, then
supp(f o T)") = supp(f o (T")™*) € B(0, 1),
and sincef o T must be “essentially constant” on translate8@@, 1) we conclude that
is “essentially constant” on translatesksf. For example, by Corollary 3.1, we have
CoroLLARY 3.2 If suppf c E, then

oscf < |Iflle,

E*+a
forallae R".

This can also be applied whénis the “rectangle”

{£: 1K€, el < aj}
andE* is the “dual rectangle”
X x el < ajt),
since these rectangles are comparable to ellipsoids in the same way cubes are comparable
to balls.
There are many other, and much deeper, forms of the uncertainty principle. We refer
the reader to the monograph?] for an extensive account.

18



CHAPTER 4

The restriction problem

This chapter is concerned with the following fundamental question which is still largely

open.

When can one meaningfully restrict the Fourier transform of_Brfunction to the
surface of the unit sphere?

More quantitatively,

For what values ofj is there an estimate
I(fdo)llg < 11 flle
forall f € L~(S"1)?
To find the best possiblg, one can takef to be a constant function. Theffido)”

may be evaluated using the technique of stationary phaseZ@8e¢13]). The result is as
follows.

ProposiTion 4.1
(do) (%) = R (AR08 | for large X,
where
CHxD/2 < |A(X)| < CIx~ (D72,
IDYA(X)| < C, x|~ (=172l

In particular, flo)” € L9 precisely wherg > 2n/(n — 1). The restriction conjecture of
Stein is the statement that

(fdo) e L9, forall f e L(S™Y), q> nZT"‘l

To begin with, let’s try to estimate tHe? norm of (fdo) on large finite discs. To motivate
the calculation, note that

ll(do) llzgory = RY?,  for largeR,
by Proposition 4.1.
Proposition 4.2 If f € L=(S"1), then
I(fdo) lleamy s Rl

19



CHAPTER 4. THE RESTRICTION PROBLEM

Proor. We can assuma = 0; otherwise we replact by
fa(¢) = €741 (8),
which has the samie™ norm asf and satisfies
(fado) (x) = (fdo) (x + a).
Let ¢ be a Schwartz function with the following properties.
¢>10nB(0,1) and supp c B(0,1).

Let
") = p(X/R).
Then
I(fdo) lIeory < leR(Fdor)llz = 11(67) "+ (fdor)ll2.
Now

(7)) = R'$(Re),

and therefore
@3+ (fdo)(€)l = R f B¢ - R) F(n)der(n)| < RN Flleor(BLE, R™).

The latter quantity iss R||f|l. for any& and is 0 if dist¢, S™1) > 1/R. Accordingly,
I(¢%)"+ (fdo)ll2 < RIfllolié : disté, ™) < /R < RV f .

mi

V\éith a slightly more careful argument one can obtain the same estimate faniegust in

L4, i.e.,

I(fdo) llz@ary < RY2Ifllizsmy.
The Stein-Tomas theoreis a bound of the form
I(fdo)llq < CllfllL2(ao)

with an optimal value ofj (= 1(n + 1)/(n — 1)) which is larger thanr/(n — 1), reflecting

a difference betweeh? and L™ densitiesf. To understand this distinction, consider a
function which has small support, so that it norm will be much smaller than its®
norm. Indeed, consider the spherical cap

Cl={¢eS": |t—¢g<d)
The smallest convex set containidy is essentially a rectangle with widd? in the e
direction ands in the perpendicular directions. Therefof,do)”| should be essentially
constant on translates of the dual rectangle
1
75(a) = {xe R":|(x-a) € < 56’2, |Per (X — @) < 6’1},
where
PeL(X) = X — (X, e)e
is the projection ok on the line passing through the origin orthogona¢.to

Prorosrrion 4.3 (Knapp counterexamplefor anye € S™1, a € R", and small posi-
tive 5, there is a functiorf : S — C with

|l < 1, suppf c €S and|(fdo)| 2 6™ * onti(a).
20



CHAPTER 4. THE RESTRICTION PROBLEM

Proor. Let f(¢) = e2iéaijf ¢ e 62516 and zero otherwise; hef®, is a large positive
constant depending anonly. If Cy is large enough, then we have

1 Cy's 5
(-6 -(x—a) < 100 V&€ eCe® . X e To(a).

This is because
- -x-a)=(-€)-ex—-2a)-e+Pe(f—€): Pe(x-a),
with
Pes (¢ — €) < Cg'6, [Per(x—a) <674, I(¢ - ©) - & 5 (C5lo)%,
and
(x-2)-e <672
Accordingly, forx € (a)

|(fdo) ()| = ] fc - eZ”‘(X—a)'fda(g)' - ‘ fc o, A ()

> f o1, R(EED) do(g)

0
e

2r Cal5 o on-1
ZCOS(loo)U(Ce )—(5 .

With f as in Proposition 4.3, we have
Ifll2@ey s 67 and [|(fdo)llg 2 8™,
since the volume ofi(a) is approximatelyy~ (1), Therefore, a bound of the form
I(fdo) Mg < 11 llz(ae)
can only hold if

which means

ProposiTion 4.4 (Stein-Tomas theorem)f q > 2(n + 1)/(n — 1) then
I(fdo) g < 11 fllLz(de)-

SketcH oF THE ProoF. First show that the following three assertions are equivalent for
any givenp < 2, wherep’ = p/(p-1).

(1) I(fdo) lly < Clifllz@sy forall f e L?(do)
(@) It lliz@ey < Clifllp forall feS
() llo = flly <C?Ifll, forall feS

To prove (3) (hence (1)), let € S have compact support and satisfy
¢(X) = 1¥x e B(0,1).
Put
i) = ¢(271%) - p(27079x).
21



CHAPTER 4. THE RESTRICTION PROBLEM

Show that iff € S, then
oxf=(p5)«f+ Z(wj&) «f  uniformly.

ji>1
Now prove the estimates
. _in1
(&) * fllo s 2702 (]2,
and _
I(wic) = fll2 < 2'If]l2.
Use these and Riesz-Thorin to obtain (3) in the case
p’>2(n+1)/(n-1).
To prove the endpoint estimate, show that

| > 2% i) « £ < 1l
j

| 2520w « 1|, < i,
j

and then use complex interpolation. O

A different proof, based on estimates for Fourier integral operators, may be found in
[20].
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CHAPTER 5

Kakeya sets

A basic fact proved by Besicovitch in the 20’s is that for any 2 there is a compact
setE c R" with measure zero, which contains a unit line segment in every direction, i.e.,
VeeS"1JaeR": a+tec EVte[-1/2,1/2].

Such sets are calldgesicovitchor Kakeya sets
There are many variants of this construction. We will present one of them (due to T.
Wolff) and then discuss some further properties of Besicovitch sets.

Lemma 5.1 LetN be a large integer. Then there is a family of lifgg, wherea runs
over the set oNN numbers of the form

a= 2N a;€{0,...,N-1},
j=1
such that the slope of is a, and if we letl!, be the unique € R such that(t,y) € I,, then
(i) If a< bthenl} < IL.
(i) For eacht € [0, 1], the sefy e R : [y — I} < N~N for somea}
has measurg 4/N.

Proor. We defind, by letting itsy-intercept be
(j—1)a
- Z Ni+l ~°
and check that (i) and (ii) hold. We have

I;=— — 13, tZ zzw,

Nj+l Nj+l
j=1

Proof of (i). If a > b, then letk be the smallest |ndex with, # b. Thena, — b, > 1, and
aj—b; > —(N-1)forj>k. So

11 (n—kK+ 1) - by (N-j+1)(@@ - by)
la - lb - Nk+1 * Z ni+1
j>k
N-k+1 -j+1
>~ (N- 1)2; T
j>
N-k+1

\%

e - (N—k+ (N-1) > 0,
k
Nk < N1+1

by the formula for the sum of a geometric series.

23



CHAPTER 5. KAKEYA SETS

Proof of (ii). Givent € [0, 1], choose an integérsuch thatk — 1)/N <t < k/N. Suppose
thata; = b; for j <k - 1. Then

(Nt—j+1)(a - (k= jl + 1)iaj - b;
Il = 1ol = |Z N+ | Z N+ ’

=k
with the last inequality true sinddt— j+ 1€ [k— j,k— j + 1). So,

||t—||<zJ k+1 < 2N (if Nis large)
=k

There areNk! choices for the sequen«:&,—}'f;}, so the setll} is contained in the union of
N -1 intervals of length RI=%. Hencely : |y — 1] < N"N} is contained irN*! intervals of

length NN + 2N~ < 4Nk, so has measure 4/N. O

Now consider (for fixed) the set
SP ={(t.y): 0<t<1, dist(y,I}) <o),

wheres = 1/2N~N. It evidently contains a line segment connecting 0 to x = 1 with
slopem for everymwith m—al < NN, If 0 < m < 1, thenjm—a < NN for some

a= ZJ 1 ;- Now let
E={ s
a

We will use the notatiofe! = {y : (t,y) € E}. The following is now obvious.

CororLarY 5.1 There is a seEy with the following two properties.

(i) En contains a line segment connectirg= 0 to x = 1 with slopem, for every
me [0, 1].

(i) |EL| < 4/N for everyt € [0, 1] (in particular, |[En| < 4/N).

Remark. The preceding construction may be understood geometrically in terms of a vari-
ant on the Perron tree (ci]). Namely, start with a triangle. Cut it ilN pieces by
subdividing the vertical edge iN equal segments. Leave the top triangle alone and slide
the others upward until the = O intercepts coincide. Next, take each of the resulting
triangles and subdivide it i triangles as above. Thus, we hadNdamilies of N “small”
triangles. Within each family, leave the top triangle alone and slide the others upward until
the x = 1/N intercepts coincide. Subdivide each of tRé resulting triangles obtaining

N? families of N “smaller” triangles. Within each family, leave the top triangle alone and
slide the others upward until the= 2/N intercepts coincide. Now repeat the process at
abscissas/M, 4/N, . ...

ProposiTioN 5.1 Besicovitch sets exist iR", for anyn > 2.

Proor. To construct a Besicovitch seti?, it suffices to construct a compact set with
measure zero containing a line segment connectiad to x = 1 with slopem for every
m € [0, 1]. This is done by passing to the limit As— oo in Corollary 5.1. However, one
has to be careful about convergence.

Lemma 5.2 Supposd- is a compact set with property (i) of Corollary 5.1 and that
§ > 0, & > 0. Then there is another compact $ewith property (i), such thaE c {z
dist(z, F) < 6} and|F| < ¢.

24



CHAPTER 5. KAKEYA SETS

Proor. Note that the setgy in Corollary 5.1 are contained iQ def [0,1] x[-1,1]. If
| is a segment connecting= 0 to X = 1 with slopem andy-interceptb then the &ine map

A(x.y) = (X, 8y + b+ mY)
takesQ ontoS?, and maps segments with slopéo segments with slopa + du. Accord-
ingly, A’(En) is a subset o6 which contains segments with all slopes betweeand
m+ 6, and|A15(EN)| < 45/N. Now choose segmenttsc F with

slope(j) =j6, j=0,...,[1/4].
Let

[1/]

= _ 0

F = A E.
J:

whereN is suficiently large. TherF c {z: dist(z, F) < 6} andF contains segments with
all slopes between 0 and 1. Moreover

~ 45 4
IF| < [1/6]N < N<®
providedN has been chosen4/e. O

To finish the proof of the proposition when= 2, we recursively choose a sequence
of sets{Fj}‘j";l and numberg; — 0 such that

(i) Fj has property (i) of Corollary 5.3 j > 1.
(ii) {z: dist(z Fj) < 6} C {z: dist(z Fj_1) < 6j_1}, V] > 2.
(iii) l{z: distz Fj) <6}l <271, vj> 2.

Namely, we can tak&; to be Ey of Corollary 5.1 for any large enoughi, and any suf-
ficiently small number fo$;. If F; andd; have been chosen, then we cho&se; by

Lemma 5.2 withF = Fj, § = §; ande = 2-U*D. If we then choosé;, sufficiently small
we will have (i)-(iii) for j + 1. Now let

F= ﬂ{z: dist(z Fj) < §;}.
i

ThenF is compact with measure zero, and a simple compactness argument shows that
has property (i) of Corollary 5.1. This completes the proof of the proposition wheg.
Forn > 2, it sufices to consideE x D, whereE is a Besicovitch set ifR?, andD is a
closed disc of radius 1 iR"2. O

We now give another application of Lemma 5.1, which is needed for the disc multiplier
counterexample argument.

ProposiTion 5.2 Letd = 1/100N~N. Then there is a collection dff (1005) rectangles
Ta with dimensiond x §, so that

(i) | Ua Tal < 4/N.

(i) Let T4 be the rectangle obtained by translatiligalong its axis byCq unitsCq > 2.
Then the rectangles, are pairwise disjoint.

Proor. Letl, be one of the segments in Lemma 5.1. Form the rectanghe follows:
Ta has length 1, widtld, axis alond, and its furthest left vertex is on theaxis. One can
check thafl; is contained in the set
1
‘0<x<1 X< —=—NN
{(x,y) O<x<landy-Ij < 100 }
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and furthermord, is contained in

. 1 N
{(x,y) x> V2andy-I% < H)N }

Property (i) now follows from (ii) of Lemma 5.1. For (i), suppose toward a contradiction
thata> bandT,n Tp # 0. Fix (x,y) € Tan Tp. Thenx > V2 and

1 _
X=15 < MX=yl+ly- I}l < %N N,

On the other hand
=15 = (510 - (5~ 15) + (3~ 1p).
The last term is positive by (i) of Lemma 5.1, so
X—1X > NN(vV2-1).
This is a contradiction sinc&/2 - 1 > 1/50. O

There is a basic open question about Besicovitch sets, which can be stated vaguely
as “How small can they really be?”. In order to state a more precise question, we need a
notion of “size”, or fractal dimension. One can work with the Hauitidimension, but to
avoid technical complications, we use instead the “lower Minkowski dimension” {Sge [
for several diferent notions of dimension) defined as followsEIf- R" is compact then

dimE = supa : 3C, with |Es| > C;16" Vs < (0, 1]},

whereE; is by definition{z : dist@z, E) < 6}. Thus, dimE measures the rate at which
|[Es] — 0, as§ — 0. If E has positive measure then diin= n, if E is a point then
dimE = 0, if E is the Cantor set then difa = log 2/ log 3.

Kakeya problem. If E c R" is a Besicovitch set, then does it follow that the dimension of
Eisn?

If n = 2, then the answer is yes. This is due to R.O. Davies, Hgle For generah,
we refer the reader t@[], [3], [14] and [15)].

In order to discuss this further, we need some notation. Since there is no distinction
between segments pointing in teand—e direction, we let

P = 8™/,
i.e., S"1 with e and—eidentified, and define a distance BT by
(e, f) = cos}(le- f[) € [0,7/2],
thus,6(e, f) is the unoriented angle subtendedemnd f. Fore e P"1, ae R", we let

1
Ti(a) = {x eR":|(x-a)-¢ < 5 and|Pe. (x — a)| < 6}.
We will need the following purely geometrical fact, whose proof is left to the reader.

Lemma 5.3 Assume thag, f € P anda, b € R", then
0] |Tg(a) N T‘fs(b)l < Cs"/(0(e, f) + 9).
(i) diam(T3(a) N Té(b)) < Co/(8(e, ) + o).
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So,T3(@ N Tf(b) is contained in a rectangle of dimensions

Cs
o(e, )’

Note that the bounds are independenaaindb. We also define d-separated set iA"*

to be a sete;} such thati(ej, &) > 6 for all j # k. A maximal§-separated set is a set
which is §-separated and is not contained in any laigseparated subset. {I({éj}}"':l is a
maximal 6-separated subset, théh ~ 6~ ("1, This may be seen by volume counting,
since the discge € P"! : 4(e €)) < 6/2} are disjoint (bys-separateness), and the discs
{ee P"1: 6(e g)) < 6} coverP™! (by maximality).

We will now prove a partial result on the Kakeya problem.

Cox---xCox

ProposiTion 5.3, If E ¢ R" is a Besicovitch set, thedimE > (n + 1)/2.

Proor. The proof we give is due to Bourgain, seé.[It is not the shortest possible,
but it is the mostilluminating. Note to begin with, tHat must contain thé-neighborhood
of a unit line segment in thedirection for everye. Thus

vee P"!'JaeR": T!(a) c E;. (5.1)

Fix a maximalCys-separated subsmj}}\":l, M =~ 6D and letT; be the tubeTg"j (a)
given by (5.1). Her&y is a large constant. Léd be a large integer to be chosen later and
consider two possibilities.

(i) There is no poink € R" such thatx belongs to more thaN T;’s.
(i) There is at least one poitite R" which belongs to at lea$t T;'s.

In case (i) we have

1 1 . 1
|E6|Z'LJJTJ‘ZNEJ:|T]'|2N6 (n-1)gn 1:N'

In case (i), fix a point belonging toN T;’s. We can assume that these dxe. .., Tn.
Consider the “outer halves” of the tubes, i.e., the sets

5 1 .
T, :{xeR":|x—b|zZ}nTj, j=1....N.

It is clear that|'fj| = [Tj| = ™. On the other hand, the se‘f'$ are pairwise disjoint,
providedCy has been chosen large enough. This follows because, by Lemma 5.3, we have

. 1 .
diam(Tj N Ty) < < <=, (if Cyislarge)
Cy 4

andb e T; N Ty, [x—b| > 1/4 Vx e Tj U Ty. Therefore
Esl > | Ti| = D il = No™ .
j j
We conclude that 1
H n-1
|Esl 2 mln{ﬁ, No™}
in all cases. Takind\ = [6~("1/2], this means that
|Es| = 672 forall 5,
which is equivalent to dirk > (n+ 1)/2. O
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Note that Proposition 5.3 does not give the right bound wher2, since it is known
that then dinE = 2.

ProposiTion 5.4. If E c R? is a Besicovitch set, theimE = 2.

Proor. The idea of this proof is based on an argument dued@al@ba [], although
he did not state the result this way. Rix> 0, Iet{e,—}}"l1 be a maximab-separated set of

directions inP*, and letT; = ng (a;) be a 1x ¢ rectangle with axis in the; direction which
is contained irE;. Note that if6 < o < 71/2, then for eaclj, the setk : 6(gj, &) < o} has
cardinality< Co /6. Therefore

M M M 1/2
1= = e = | D2 = (Z Ul Tk|) |12
=1 =1 =1 K

1/2
< (M6 + > mn Tkl) IE,|/2. (5.2)
j#k
Fix j and considep i, |T; N Tyl. By Lemma 5.3,
IT; N Tl < C&%/6(e;, &)
Hence

62
Z IT;jNTl < Z card(k : 6(ej, &) € [62™, 2™} —
= 62m
kik#] 0<m<log(1/6)

52 1
<C Z 2" — :6Iogg.

0<m<log(1/6) 2m
(5.2) now implies that

1 1/2 1 1/2
1< (M6+ Mé log 5) IEsY? < (Iogg) |Es|Y/2.

Hence
|Es| = (Clog(1/6)) ™.
Since (log(¥6))~* goes to zero slower than any powespthis implies thatdinE = 2. o

Remark. The same proof works in any dimension, but gives the boundedin®2, which
is rather disappointing if > 2.

It is a remarkable fact that the restriction conjecture implies the Kakeya conjecture.
This is due to Bourgain, although a related construction was done earlid}. irBpth
constructions are variants on the argumentlit.[

ProrosiTion 5.5, If the restriction conjecture is true, then Besicovitch sets have dimen-
sionn.

Proor. Let E be a Besicovitch set. Fi& thenE; contains a tub&(ae) for every
e e P"1 Let {e,-}}\il be a maximalCy-separated subset 8f~*, and also regar@bj}}\il
as a set on the sphe®8"! by choosing (arbitrarily) one of the two possible directions.
Then, in the notation of Chapter 4, the spherical c@?are disjoint, provided, is large
enough. Also, let; be the tube obtained by dilatiﬁ@j (a;) by a factor ofs=2. Then, inthe
notation of Chapter 4;; = ng (6‘2aej). By the Knapp counterexample, there are functions
f; : S — C such that

suppfj c C2., lIfjlle < 1,
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and
(fido)"(x)| = C 6™, Vx e ;. (5.3)
NOw supposée; }}\il are+1’s. Then

M
H IZ:; Ej fj Loo(sm1) <1,
s0, by the restriction conjecture
M
|- ety < Ca va> nZTr‘l (5.4)
=1

On the other hand
M M
g 12; e (o)) = f £ ; ey(11d0) (| Jax

M /2
by Khinchi > fido) ()?] d
(by Khinchin) >f(JZ=;|(J o) (x)|) X

/2
(by (5.3)) z 60N f | > 09] "l
2 _ (n-1)g-2n a/2
(x = %) =5 | 2 xm o] aix
where we have sdt; = ng (@;). Combining this with (5.4) we conclude that
” ZXTi“ /2 < oMTH, va > nznl'
q _

On the other hand

1=~ ZM: ITjl = H Z){TJHl < H ZXTJ’Hq/2|E6|1_2/q < Cyo™a-20-D) g 1210,
i1

which means
|Es| = §2-20/(a-2)

or
dimE > 2q/(g-2)-n.
As g\ 2n/(n-1), the number@/(q— 2) — n — n, so this finishes the proof. O
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Problems
1. If you know what Hausddif dimension is, then show that

Hausdoff dimension ofE < dimE
for all compact set&, and that strict inequality can hold.

2. (a) Suppose @ A < 1, E c R" and the following holds: for ang € P, there is a tube
TS(a) such thalE N TS(a)l > AT$(a)l. By generalizing the argument in Proposition 5.3,
show that thenE| > C-16(-1/2(+1)/2,
(b) A further generalization is possible. Suppas& 1 < 1, E c R", Q c P"! and
for eache € Q there is a tuberi(a) such thatE N T(a)l > AT3(@). Then|E| >
C—1(6H—1|Q|)1/2/1(n+1)/2‘
3. Letf : R" - R. TheKakeya maximal functiofi; : P"* — R, is defined by

o def 1
l© Sgpng(aN Ti(@)
There is another formulation of the Kakeya problem in terms of this maximal function,
namely, that the estimate

Ve AC, : |If5llLe@n1y < Ceo™?|Ifllp,  wherep=n, (5.5)

If].

should hold.

(a) Show that this estimate, if true, would imply that Besicovitch sets have dimemsion
(b) Show that the estimate (5.5) cannot holdif< n (hint: let f be the characteristic
function of a disc of radius).

(c) Using the preceding problem, one can prove the following estimatg for

151lq < C~ P £,

if g =(n-1)p andp < (n+ 1)/2 (hint: interpolate between a restricted weak type
L(D/2 5 | %1 estimate and ah! — L* estimate).

(d) Using the proof of Proposition 5.4, it is possible to verify the conjecture (5.5) when
n=2.

4. Letf : R" — R. TheX-ray transformof f is defined by
Xfey) = | f(x+y)dL(x), ees™, yel,

le
wherels is the line through the origin in thedirection, andg is the orthogonal comple-
ment ofl.. Christ [5] and Drury B] proved the following estimate.

IXFllner < (1, (5.6)
where

gt = [ [ xfe s i,
st Jig
Show that (5.6) implies Proposition 5.3.
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Fefferman’s counterexample

An LP multiplier is a functionm such that
Imf )l <Clifll, Vfes,

and itsLP multiplier norm{imjjy,, is the smallest possible in the above inequality. When
p = 2, itis clear by the Plancherel theorem that any bounded functionli® anultiplier,
with [|mijy, < [Imll. (in fact, equality holds).
The characteristic function of the intervall, 1] is anLP multiplier. This follows from
the boundedness of the Hilbert transform. Therefore, it seems natural to conjecture that,
in any dimension, the characteristic function of the unit disc should He’ anultiplier as
well. Itis a striking fact that the conjecture turns out to be false. The counterexample is
due to C. F&erman [L1].

ProposiTion 6.1 If p # 2andn > 2, then the characteristic function of the unit disc is
not anLP multiplier.

This is based on the the existence of Besicovitch sets, more precisely on Proposition
5.2. One represents the operator as a convolution opex&tdr£ y = f, wherey = yg.1),
and then uses the “sliding” argument plus asymptoticgfae’, the following.

Lemma 6.1 When|x| is large,
X(¥) = 2cos(Z(X + (n+ 1)/8)x~ ™2 + B(x),
where|B(x)| < C|x|~("3)/2,
Proor. See [L3]. O
The Knapp counterexample is replaced by the following.
Lemma 6.2 Suppose (ilR?), T = 75(a) (notation as in Chapter 5) for song and let
7 =1%(a+ Coo %)

be the tube obtained by translatingalong its axis by distanc€y6-2 whereCy is a large
constant. Then there is a Schwartz functipnith

supm ¢ 7 and|/gllo < 1,

such that
¥ *g(¥)| = Ctforall xe 7.

Proor. We assume for simplicity that= (1, 0), a+Coé~2e = 0, and we fix a Schwartz
functiony supported irr'with the following properties.

e dy
1¢-3
Wil < 1, fwzc 5 and”—dxl

31
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CHAPTER 6. FEFFERMAN’S COUNTEREXAMPLE

Such a function may be obtained as follows: Start with any honnegative Schwartz function
¢ supported in the unit squarel/2,1/2] x [-1/2,1/2] and consider the functiop(x) =
#(6%X1, 6%). The estimates follow from the chain rule and change of variables formula.
Now let

gly) = 0By y).

We must check thaf = g| is bounded below on. We have
Frg = [ @Oy 92g()dy

+ f MY L/B)|  _ y=32g(y)dy + f B(x-y)g(y)dy (6.1)

We claim that the last two terms are small and the first term is large. In fack if and
y € 7 then|x—y| > 62, so|B(x-Y)| < 6°, hence the last term s 6°|7| ~ §°. Next, consider
the first term. It is

f bW _ y=32y)dly (6.2)
If xer,yeT, theny, > X; + (Co— 1)672, lyo] <671, [X| <671 So

/ (Y2 = X2)?
[X=yl = \/(Y1—X1)2+(Y2—X2)2=(Y1—X1) 1+ﬁ

=y1—-X +E,

where

El<3

1(y2 %) _ oy 1)L,
Y1 — X1

Accordingly,

Oy Sty 2 [ Ix- i u)dy,
providedC, is large enough, so that cos(- 1)™1) > 1/2. Since

f X— Y32y (y)dy 2 67 f yy)dy =1,

we conclude that the first term in (6.1)3sC~? in absolute value. The second term is

f 0| _ yi32y (y)dy. (6.3)
Note that
-X1
X—=V| + s
(I Yi+y1) = Iy X

wheny € 7, x € 7. Hence, |f we integrate by parts with respecytave obtain

1 - yi-x) " -
6.3) = e2m(l>< Yi+y1) (1+ ) X — V=32 (Wdwid
(63)= 5~ v y_x ) X7V Y(y)dyrdy,
0 yi-x) " -
= i (x=yl+y) _— (1+ ) X — y[~3/2 dvidve.
27 f dy1 y—X IX = Y™y (y) | dyady2

One can check that

< Cé°,

d i—-Xi N -3/2
1 _
= [( . Iy—XI) X—y32u(y)
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whenx e 7,y € 7. We conclude tha{6.3)| < Cs°7| < C62. Hence (6.1) is a sum of three
terms, one of which is constant, and the other two axeCs2. It follows that|y * g| is
bounded below by a constant epprovideds is small. O

ProoF oF ProposiTION 6.1 (0 > 2, n=2). Let§ = 1/100N-N, whereN is large. By
Proposition 5.2 and a dilation by a factor &%, we can find~ 1/ rectanglesr; with
dimensionss—2 x 671, so that{7} are disjoint and |J; 7j| < 6~*/N. Choose a funtiom);
corresponding taj by Lemma 6.2, and considgi €;9; where eaclz; is £1. Then, for
any choice otj’s, we have

H ZsjngZ = Z,l llgillp < %5*3 =54 (6.4)
On the other handy(f) = ¥ » f, and
E(H Z EjY * 91”2) = fE(’ Z EiX * gj(X)‘p)dX
i j

(by Khinchin) = ¥ = gj(¥)? p/zdx
[ (S-a0o)

2 [ o
j

By Holder’s inequality, we have

5= ;w = szl)(
IS

p/2’

U
i j

and therefore

Pz STANP/ZL
p/2
So, for some choice gk},
e Sl = e
j
Together with (6.4), this impliegyllv, > N*"%P, and sincep > 2, this can be made
arbitrarily large by choosindl appropriately. The proof is complete. O

Remark. The characteristic function of a regular polygon in the plane ikfamultiplier.
Its norm, however, tends to infinity (logarithmically) as the number of the sides of the
polygon goes to infinity. This was shown byfdoba B] using a Kakeya-type argument.
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CHAPTER 7

Some topics from combinatorial geometry

In this chapter we consider a discrete problem which should clearly be related to the
Kakeya problem.

Dermnition. A linel is said to be incident to a poirgif p lies onl.

Given points{ pj}‘j‘:1 and lines{l;}!' ;, how many pairsi( j) can there be such thhtis
incident top;?

Tueorem 7.1 (Szemedi-Trotter) In R?, the number of incidences betweepoints
andnlines is< C((kn)? + k + n).

We will give a proof from p]. First we discuss a certain partial result.

Lemma 7.1 Assuméda;;) is annxm (0, 1)-matrix and thai(a;) has no2 x 2 submatrix
consisting of 1's. The(a;;) contains at mosE(mn*/? + n) 1's altogether (The assumption
means that there do not existio, j1, j» such thata, j, = a;,j, = a;,j, = a,j, = 1).

Proor. Let

I =1{(i, J) : &; = 1})|, (total number of 1's)
and
m = |{j : &; = 1}I, (number of 1's in the-th row).
Let
J =1{(i,},K : j # kanda;j = ay = 1}.
We will countJ in two different ways:
1
= — > —
71 Z m(m - 1) > i% St

since for fixedi, there arem(m — 1) choices forj # k with &; = ax = 1. On the other

hand, if j andk have been chosen, there can be at most one choide dtnerwise we
would violate the assumption. Therefore

T < m(m-—1).
Hence
> nf<ant,
i:m>2
and then
1/2
| = Z m + Z m < n+n1/2(z mz] <n+(2n)?m.
im<1 im>2 im>2
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Remark. If instead of “no 2x 2 submatrix”, we assume “nex s submatrix”, then the
bound isl < Cs(mr?~YS + n) and is proved the same way, except that one now defines

Js=1{0,]j1,.--,]Js) : J1,..., Jsare distinct andyj, = --- = &, = 1},

and uses Hlder’s inequality instead of Cauchy-Schwarz at the last step. We will need the
cases = 3 later on.

CoroLLArY 7.1 The number of incidences betwdepoints andn lines in the plane
is < C(kn'? + n). In particular, If k = n this givesl < Cn*?2, whereas Szemerédi-Trotter
givesl < Cnf/3,

Proor. Two lines intersect in at most one point, so if we form a (0,1)-matrix via

a = 1, if Pj € l;
700, otherwise
then @) has no 2« 2-submatrix of 1's. Therefore, by Lemma 7.1, it ha&kn'/? + n 1's
altogether. O

In [6], this type of bound is called @anham thresholdLemma 7.1 is sharp (when
n > m; if n < mone does better by reversing the rolesxaindm). Here is an example
whenn = m (the same example works in general). To describe it, we need the following
number theoretic result.

Lemma 7.2 Letn = p?, wherepis an odd prime. Then there is a subset {0,...,n—
1} such that

(i) IA] = n/2,

(i) The numberst + u with A, u € A anda < u are all distinct.

Proor. Let [m], be the remainder on dividing by p. Defined, = kp+[k?]p, 0 < k <
p—1,andA = {/lk}E;é- Then property (i) is obvious. For (i) suppose that 1; = A+ 4.
Taking modp, we see that

iZ+j?=k2+12 modp,
hence + j =k+1. Then
i2-k2=12-j2 modp,
i—-k=1-j modp.
So, by dividing modp, we get

i+k=I1+j modp(unless = k).

Then
i—-k=1-j modp,
i+k=1+j modp,
o)
i=1 modp,
and thereforé = . m]
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Now, letn = p? andA = {4 be the set given by Lemma 7.2. Defifag )" _, via

ij=1
{1 ifi-jea
"o, ifi-jea

Then, &) has no X2 submatrix of 1's: suppose thiat- j; = A1,i1—jo = A2, i2— j2 = 43,
i — j2 = Ag, With iy # i andj1 # jo. Thendy + A4 = A2 + Az contradicting the distinct
sums property of\. On the other hand, suppose weffiwith i < p?. Thena;,, for any
A € A. So thei-th row of the matrix &;) hasp 1's and there are at leagt 1's altogether,
with p = n®/2,

One therefore needs afdirent type of argument to prove SzegdirTrotter. This will
be thecell decompositiotechnique from]. First, some terminology.

e A line arrangements a family of non vertical lines;, . . ., I, in R2.

¢ A vertexof the arrangement is a point where two or more lines intersect.

e A cellis a polygon inR? (possibly unbounded) with no more than four sides. We
take a cell to be an open set.

e A triangulation of a line arrangemens a decomposition of the components of
R?\ {l,...,l,} into cells together with their boundaries.

It is clear that, in general, it will require at leagtcells to triangulate an arrangementrof
lines, since the lines may spliR? into r? regions. For example, considgR lines parallel
to each of two given lines. Evidently, there ar¢ + 1)> complementary components.

Lemma 7.3. Itis possible to triangulate a line arrangement usigg? cells. This can
be done by an algorithm

{IJ.’ ceen |r} i A({Il, ceey Ir})
wherea({ly, ..., 1}) is the set of cells forming a triangulation. Furthermore, this algorithm
has the following property: each cell ef({l4,...,l;}) is also a cell ofa({l,,...,l;,}) for
some 4-element subgét,....1,} < {l1,.... It}

Proor. We let{px} be the set of vertices of the arrangement, and for &aale form
the maximal segmentsy andmy which extend vertically up and down fromx and do
not intersect any ling. These segments together with tiie subdivideR? into polygons.

Each polygon has 4 sides. We leave the proof to the reader, the idea is that each polygon
has a “top” and a “bottom”. Also, each polygon has at most two vertical sides, i.e., four
sides in all.

The last property in the statement of the Lemma is then clear, since in order to find
ljs,....lj, to produce a cel2 in the triangulation, we need only choose the lines from the
top and bottom of2 and two other lines whose intersection with the top and bottom yields
vertices whose corresponding segmengsform the vertical sides. We have to show that
A({l1, ..., l;}) containsg r? cells. However, there are at mastvertices, hence at most2
vertical segmentay;. Each can be part of the boundary of at most two cells, so there are
< 4r? cells which have a vertical boundary line. How many cells can there be which do
not have a vertical boundary line? One can see thatias no vertical boundary line, then
the boundary of2 is contained in at most two linds. Furthermore, for each pair of lines
l,, Ij, there are at most two cells whose boundary is containggin ;,, and therefore the
number of cells with no vertical boundary line is at most twice the number of pairs of lines
l;, i.e., 22. This finishes the proof. u]

If @ c R?is an open set anlds a line, then we say thaentersQ if | N Q # 0.
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Lemma 7.4. LetC = {l1,...,1,} be a set ofilines, and fix < n. Then it is possible to
subdivideR? into < r? cells in such a way that no more thanlogn)/r linesl; € C enter
each given cell. In fact, if we choose at randowf the lined; and apply Lemma 7.3, then
with probability > 3/4 (say) we obtain a cell decomposition with these properties.

Proor. First of all, there are clearly at moStt* open set€ c R? which can be a cell
in the decomposition obtained by choosing four of the lihesd applying the algorithm
of Lemma 7.3 (there ang* choices of the four lines, and for each such choice, there are a
bounded number of cells).

By the last statement of Lemma 7.3, there are at Boétopen sets which can be a
cell in the decomposition obtained by choosirgf the lines j and applying the algorithm.
For each such s&? let P(Q2) be the probability tha® is actually a cell when the lines are
chosen at random, and IefQ) be the cardinality of the set of lines & which enterQ.

Then we claim that )
n(Q
Py < (1- ")
and in fact this is clear, since in order f@rto be a cell, it is necessary that none of the
n(Q) lines which entef2 belongs to the random sample. Therefore, i a fixed number,

then
Prob(() > v, for someQ € a({l1.....I)) < > P@Q)

Qn(Q)zv
r r
< ) (1— @) an“(l— 3) :
n n
Q:n(Q)>v
which is small ifv = A(nlogn)/r with A large. O

ProoF OF THE SzEMEREDI- TROTTER THEOREM. We will assumek = n and will prove only
a slightly weaker statement: Lebe the number of incidences betweelines{l;}' ;, and
n points{pj}’j‘:l. Then

| < Cn*3(logn)Y3, (instead ofl < Cn*3).

The assumptiokk = n is easily removed using the same argument. However, to avoid
losing a logarithmic factor, one needs a refinement of Lemma 7.4.

Letr = n*3(logn)Y/® and apply Lemma 7.4. We may assume that none of the ppjnts
lies on the vertical cell boundaries-otherwise we change the definition of “vertical” slightly.
Let {QiJR ; be the resulting cell decompositioR,< Cr?, and put

[(Q«) = cardinality((li, p;) : p; € i, andp; € Qx}).

Also, letl ,li, be the lines in the random sample, and

igsee-

[(li,) = cardinality{(l;, p;) : p; € i, andp; € I;,}).

R r
| < ; () + 2; 1(1;,)-

k=
Now by the “Canham threshold”, i.e., Corollary 7.1, we have

Then it is clear that

1(C) s n?mg + g,

where
my = # of pointsp; which belong ta,
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ng = # of linesl; which enterQ,.
Sinceny < A(nlogn)/r, we conclude that

R R 1/2

I I
I(Qk)sz:(nogn) karnognR
k=1 ey T r

S(nlogn
r

1/2
) n+ nrlogn.

Also, for eachk we have

() <n+(n-1)
since, of coursd;, is incident to< n points p;, and any other ling is incident to at most
one point onl;,. Therefore

Z 1(i,) < (2n— 1)r.
k
We conclude that
| < (nlogn
r
by choice ofr. O

1/2
) n+nrlogn+nr < n*3(logn)/3,

The following example of Erdis shows that the theorem is sharp. Fiand consider
then? linesl connecting a point (&), 1 < ko < nto a point (1k;), 1 < k; < n, herek, and
k; are integers. The equations of the linesyare xky + (1 — X)k;, hence ifx is a rational
with denominatoig, then so isy. It follows that there arec ng possibilities fory. Now
fix a numberB. There argy integers betweeB and B and for each of these, there are
~ B rationals with denominatay. Accordingly, there ard? rationals with denominator
betweenB and 2B. Consider the set of B3n points of the form p/q,y) and incident to
at least one liné. Each line is incident te: B2 such points, since the line must contain a
point with any givenx coordinate. Hence there ateB?n? incidences between the links
and the poinp. SinceB?n? = (B3nr?))?3, we get the result.

Remarks. (1) In the situation of the Kakeya problem, the idea of the preceding construc-
tion can be used to show the following: For any @ < 1, there is a compact SEtc R?
with dim E < 1/2(1+ 3a) such that for everg € S"1, there is lind in thee direction with
dim(E N 1) > a. Itis an interesting question whether the numbgt(1 + 3e) is sharp, and
if not, what is the sharp number to replace it. Various partial results can be proved without
much dfficulty, for example, dinit > 1/2 and dimE > 2a.
(2) There is a famous question called the “unit distance problem” which can be stated in
the following (equivalent) ways.

(*) How many incidences can there be betwegpoints in the plane and circles of
radius 1?

(**) Given n points p; in the plane, how many pairgi( p;) can there be such that
Ipi — pjl = 1?

The proofs of the Szemedi-Trotter theorem also apply to this problem and give the
boundCn/3, However, this bound is not known to be sharp. In fact,d&rdonjectured
C8n1+8.
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CHAPTER 8

Besicovitch-Rado-Kinney sets

A BRK (Besicovitch-Rado-Kinney) set is a compact set in the plane with measure
zero, containing a circle of every radius between 1 and 2. Such sets can be constructed , as
was done by Besicovitch-Rado and by Kinney, by modifying the construction of Besicov-
itch sets, and it is also possible to prove they exist by using the existence of Besicovitch
sets, seell0] and [L7]. The latter possibility may be understood in terms of the fact that
lines are just circles passing through a fixed point if one works on the sphere.

One can ask the same dimension question in this context. We will discuss the follow-
ing result from p2].

ProposiTion 8.1 Any BRK set has dimension 2.

This also has a maximal function formulation. Here we want to average &ver
neighborhoods of circles, and the role played by the direction of a line in the case of the
Kakeya problem is now played by the radius of the circle. Thereforg, iR> — R and
6 > 0, then we defind/sf : [1,2] - R by

Msf(r) = sup————
ot Xp|C5(x,r)| C(xr)

whereCs(x,r) ={y:r—6/2<|x-yl <r+4/2}.
The existence of BRK sets shows that there can be no estimate of the form

(IMs Flleqe2p < Clifllp

unlessp = «. Therefore, we look for an estimate

£,

Ve dC, 1 |IMsfllLoqray < Ceo°lIfllp, (*)p

and (x), for any p < co will suffice to prove Proposition 8.1. To find the right value fpr
considerf = yg,, whereR; is a rectangle with dimensiosd/? x 6. It is easy to see that for
anyr € [1, 2] there is a poink such thaCs(x, r) contains a fixed portion d®s, i.e.,

IC5(%,1) N Rs| > CTHRYl.

Therefore
IRsl 512

Mt ()2 iesoen) =0

and if (x), holds, then
"% = IMsfllp < Coo¥IRs[MP = Co57o+%P),
i.e.,p=3.
ProposiTiON 8.2 (x)3 holds.
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CHAPTER 8. BESICOVITCH-RADO-KINNEY SETS

The idea of the proof is as follows. There is a related discrete problem which can be
understood using the techniques 6f flescribed in Chapter 7. Then, one passes to the
continuous problem by replacing circles with annuli and keeping track of various error
terms. We will mainly discuss the discrete problem, since the actual proof of Proposition
8.2 is quite technical.

Let us say that two circle€(x,p) = {y : [x =Yy = p} andC(X,p) areinternally
tangent(written C(x, p) || C(X, p)) if they are tangent and one is contained in the bounded
component of the complement of the other. Analytically, this meangxhag = |o — ol.

One can ask the following question: Given a sendiirclesC = {C(x;,pi)}iL,, how
many pairsC(x;, pi) andC(x;, pj) can there be so th&(xi, pi) || C(Xj, 0;) ?

This question has the obvious answéy since one can consider the “shell” configu-
ration, where any two circles are tangent. In order to get a meaningful question, one has to
add an assumption which rules out this type of configuration.

Tangency counting problem.With C = {C(x;, pi)}i.,, assume that no three circleéx;, p;)
are tangent at a point. Then how many pa&;, i) and C(x;,p;) can there be with
C(xi, pi) Il C(xj,05) ?

We do not know the answer but will prove the following which is what is needed for
Proposition 8.2.

ProposiTion 8.3. For anye > 0, there is a bound of the for/@,n*2*¢ in the tangency
counting problem.

The proof is closely related t6]. Observe to begin with, that one can think of a circle

C(x, pi) in any of three ways:

e As acircle!

e As apoint &, pi) € RS.

e Asalight cond(x.,pi) = {(X.p) : [X—X| = [0 — pil} C R3.
Note that

C(xi,00) Il C(xj, 05) © (X, pi) is incident tol'(xj, pj).

Therefore, our problem is an incidence problem between points and surfatsind we

need the 3-dimensional version of the techniques]nhich is in the same paper.
First, the Canham type bound, whichn¥?2 in this case.

Lemma 8.1 Suppose thaiC(x;, pi)}L, and{C(y;, s,-)}'j‘:l are collections of circles and

that no threeC(x;, pi)’s are tangent at a point. Then there agekn?’® + n pairs (i, j) such
thatC(x, pi) Il C(y;, Sj)-

Proor. The “Circles of Appolonius” says that @(x1, p1), C(Xe, p2) andC(xs, p3) are
not tangent at a point, then there are at most two circles which are internally tangent to all
three. In other words, the (0,1)-matrix

L i C06 ) 1LY 8)
J 0, otherwise

has no 3x 3 submatrix of 1's. Now use Lemma 7.1. O

Next, the cell decomposition. éone arrangemens a family ofr light coned™(x;, pi) C
R3. A cellis an open se® c R3 whose bounadry is contained in the union<o surfaces
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which are algebraic of degree2. We want to triangulate the cone arrangement, i.e., sub-
divide the components @&\ | J; T'(x;, pi) into cells, using as few cells as possible. At least
r cells are needed, sind& \ |J; I'(x;, pi) may have~ r components.

Lemma 8.2 It is possible to triangulate a cone arrangement using®logr cells.
In fact, there is an algorithm for doing this, and{if(x;, pi)}i_, is a family of light cones,
r < n, and this algorithm is applied to a random sampler a¥f theT'(x;, pi)’s, then with
probability at least3/4, at mostA(nlogn)/r T'(X, pi)’s enter any given cell.

Proor. This is similar to the proof of Lemma 7.4, ses.[ O

Proor oF Proposiion 8.3. Letr = n¥/4 and{I'(x;,, pj,)}i_, be a suitable random sam-
ple. As with the Szemédi-Trotter theorem, we may assume that each painp;j lies
either on one of the cones in the random sample, or else in one of the cells from Lemma
8.2. We let
C" ={(%.pi) : (%, pi) € T (X, pj), for somek},
Ck = {(%i, pi) * (%, i) € Q-
Claim. With probability at least B4, |C*| < Corn?/2.

PrOOF OF THE cLAIM.

E(C) < Z Prob( € {ja, ..., [ DHC(%, pi) : C(xi, o) 1| (X, o)}
j

= %Z {C(x, i) : C(%, 1) | C(Xj, o)}l
i

r
< -3,

n
by Lemma 8.1 O

Now, let us denote
1(C,C) = I{(i, j) : C(%i, 0i) | C(xj, 0},
and
1(C",C") = (i, }) - (%, 00), (X}, pj) € C* @andC(x;, pi) || C(Xj, pj)}.
We claim that

I(C,C) < Cin*?log?n + I(C*,CY). (8.1)
Namely, let
ng = # of I'(x;, pi) which enterQ),
my = |Cxl,
I = {(i, }) : (%, pi) € Ck @andC(x;, pi) Il C(X;, o)}
Then

R
1C.C) < D I+ 1(C,CY)
k=1

< Z ma® + ne + 1(C*,CY)

R+1(C",C")

K
R
nlogn 2/3 nlogn
S|l—— mg +
k=1 r
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< n*?log?n+ 1(C*, CY),

by choice orr. This proves (8.1). Because of the claim above, we can use induction to
finish the proof. We will show thalt(C,C) < An®2log? n for a suitable constark. If A

is large, then this is obvious for small valuesmfSuppose it has been proved fok ng.

We will prove it forn < (no/Co)*%*!, whereC is the constant in the claim (note that this
number is> ny + 1 if ng is large, so this completes the induction). Sifgg < Con'¥*?,

the inductive hypothesis implies

1(C*,C") < AIC*I?’/Z I092 IC*| < A(Con11/12)3/2|092(C0n11/12) <n32,
if ng is large. So, inequality (8.1) implies
1(C,C) < Cin*?log?n+ n®2,
and now we are done, providéddhas been chosen2C;. O

Now, a brief, heuristic sketch of the proof of Proposition 8.1. Roughly speaking, two
annuliCs(x, p) andCs(X, p) can intersect either tangentially, in which case

|C5(X»p) n Cé(xﬁ)l = 63/25
or transversely, where we have
|C5(X’p) N C(S(i?ﬁ)' = 62?

the former case being “worse” sing&? > §2.
Now suppose thaE is a BRK set. Lef pj}}\il, M ~ 1/6, be a maximab-separated
subset of [12], and for eactj, choose an annuluSs(x;, pj) C Es. Let

m(x) = > xc,0009();
i

and defing: (“multiplicity”) to be the smallest integer such that fof2M choices ofj, we
have

1
ICs(Xj, p5) N {x:M(X) > p}| < §|C5(Xj,pj)|~
Lemma 8.3, In order to prove Proposition 8.1, it gices to prove that
YedC,:u<Cuo°.

Proor. Let
Es = {xeEs: m(X)S,u}
Then
IEsl 2 1Bsl 2 172 )" ICa(x. 1) N Bl 2 M6 = 7Y,
j
and the lemma follows. O

Now, we have
puoms Y [ mgdx= )]G N Cols
i Cs(Xj.0j) i

Pretend that two circles must be either tangent, icantly transverse, and that th&?
ands? numbers for the measure of the intersection can be justified. Then

D ICs06,01) N Cs(x5, 01l < 1(C, C)6%2 + M262,

i.j
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whereC = {C(x,—,p,—)}}\il. If we further pretend that satisfies the “no three circles tangent
at a point” condition, then we can apply Proposition 8.3 to obtain

Z IC5(Xi» pi) N Cs(Xj, pj)l < 6~ C29)6%2 1 57252 < 572,

i
and the “proof” is complete.
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CHAPTER 9

Averages over circles

Let o be linear Lebesgue measure on the unit circle in the plane. There is a standard
sharp estimate for the corresponding averaging operator. Namely

llo = flls < 11flls/2-
Equivalently, ifos is normalized planar measure on the ann@g®, 1), then
llos = flls < 11fll3/2,

where the implicit constant is independen®of

This estimate may be proved using the Fourier transform and complex interpolation
(see RQ)). We will show that counting arguments in the spirit of Chapter 7 can be used to
obtain the corresponding restricted weak-type inequality.

ProposiTion 9.1 LetE be a subset dD, 1] x [0, 1]. For A > 0 define
F={x:(xe*0os)(X) > A}

Then
IF| < 273E.

Proor. The argument we present is frorh9]. Divide [0, 1] x [0, 1] into a family of
square®); of sidelengths and for each integdclet

Jo=1{j: 2752 < |QnE| < 27%12),
Ex = U Qi NE, Ek = U Qj’ Fr = {x: (Xék * 0r35)(X) > C‘12kk‘2/1},

jedk jek
Fel R
K

Then, for suitablé&C, we have
Now, for fixedk, let {xi}i’\i1 and{ylo}g‘:1 be maximals-separated sets iR, and Ex respec-
tively, and put

A = 262
We can clearly assume that > 6. Also notice that
|E] = N&2.
Moreover, eaclx; satisfies
[Cas(xi, 1) N E| 2 A, (9.1)

since
Frc{x: (vg, * oas)(X) 2 Al
Now consider the following set of indices.
Q = {(i, pr. P2) 1% — Ypal = 1 < 6, 1% — Y2l = 1] < 6, [Yp1 — Ypal > C A — 6.
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We will count Q in two different ways. For givemp,, py, there are at mosl;l annuli
Cs(xi, 1) passing through the poingg; andyp,. Therefore
1Ql < N°A L
On the other hand, for eveny; and everyp, there is at least one choice bf So, (9.1)
implies
Q2 M(Akd™H>.
Consequently
M < 4, 36%N?,
or, equivalently
IFil < A3IEP.
Summing ovek we obtain

FI< D IRk ) A21ER < D A7327 %622 ER < 9B
k k k
This completes the proof. O

One can consider the corresponding maximal operator as well. Namely, define

Msf i R? > R
by
Msf(X) = sup f(y)dy.
1<r<2 JCs(x,r)
Then for allp > 2 we have
IMs Ellp < 11 fllp. 9.2)

This estimate was originally proved by Bourgall.[ Schlag [L8] used techniques in the
spirit of Chapter 8 to obtain a purely combinatorial proof.

Notice that (9.2) has the following geometric consequence, which was proved, inde-
pendently, by MarstrandLp]: Suppose thaB c R? is a union of circles of arbitrary radii,
and letA be the set of their centers. Then

|Al>0= |B|>0.
This can be shown by reducing to the case wBda compact and the radii of the circles
are in the interval [12], and then lettingf = yg, in (9.2). The best possible result was
proved in R4:
dim(A) > 1= |B| > 0.
This is sharp by a construction due to Talagrand, &&k [
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