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This set of notes was intended to supplement a graduate course in Harmonic Analysis
that was planned to be given during my stay at the university of Jyväskyl̈a as a Marie Curie
fellow. For technical reasons, the course was never taught, so I am grateful to Pertti Mattila
for the opportunity to publish these notes.

Most of the material is based on my personal notes from a series of lectures given by
Tom Wolff at UW-Madison back in 1996. Anyone familiar with his mathematical prefer-
ences will recognize his style.

Wolff’s expository article [23] and his own lecture notes [25] from a Caltech course
(edited by Izabella Laba) are closely related to the subject matter of this work.

3





Contents

List of notation 7

Chapter 1. Some applications of Khinchin’s inequality 9

Chapter 2. Stationary phase 13

Chapter 3. The uncertainty principle 17

Chapter 4. The restriction problem 19

Chapter 5. Kakeya sets 23

Chapter 6. Fefferman’s counterexample 31

Chapter 7. Some topics from combinatorial geometry 35

Chapter 8. Besicovitch-Rado-Kinney sets 41

Chapter 9. Averages over circles 47

Bibliography 49

5





List of notation

B(a,R) : The disc{x ∈ Rn : |x− a| < R}.
suppf : The support of the function (or distribution)f .

f̂ : The Fourier transform off , f̂ (ξ) =
∫

e−2πix·ξ f (x)dx.
f̌ : The inverse Fourier transform off , f̌ (x) =

∫
e2πix·ξ f (ξ)dξ.

µ̂ : The Fourier transform of the measureµ, µ̂(ξ) =
∫

e−2πix·ξdµ(x).
µ̌ : By definition,µ̌(ξ) =

∫
e2πix·ξdµ(x).

Dα f : ∂α1

∂x
α1
1

· · · ∂αn

∂xαn
n

f , whereα is a multi-index, i.e.,α = (α1, . . . , αn), with α j being

natural numbers.
|α| : The length of the multi-indexα, |α| = ∑n

j=1α j .
φt : φt(x) = t−nφ(t−1x), unless otherwise indicated.
S : The Schwartz space.
|E| : Lebesgue measure (in the ambient Euclidean space), or cardinality ofE, depend-

ing on the context.
dim E : The lower Minkowski dimension ofE.
∇ f : The gradient off , ∇ f = ( ∂ f

∂x1
, · · · , ∂ f

∂xn
).

osc
D

f : The oscillation off on D, osc
D

f = supx,y∈D | f (x) − f (y)|.
Sn−1 : The unit sphere{x ∈ Rn : |x| = 1}.

dσ : Surface measure.
dLk : k-dimensional Lebesgue measure.

C,C1, . . . : Capital letters denote various constants whose values may change from line to
line.

. : x . y means “x ≤ Cy, whereC is a constant”.
' : x ' y means (x . y & y . x).

<(z), =(z) : The real and imaginary part ofz ∈ C.
χE : The characteristic function ofE.
E : Expectation.
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CHAPTER 1

Some applications of Khinchin’s inequality

In this chapter we will present, in the context of harmonic analysis, two typical appli-
cations of the following classical probabilistic inequality.

P 1.1 (Khinchin’s inequality). Letε j be independent random variables tak-
ing the values 1 and−1 with probability1/2 each. Then for anyp ∈ (0,∞) and complex
numbers{a j}Nj=1 we have

E
(∣∣∣∣

N∑

j=1

ε ja j

∣∣∣∣
p) '

( N∑

j=1

|a j |2
)p/2

,

with bounds independent ofN.

The proof of Khinchin’s inequailty may be found in most books on elementary prob-
abilty. What is important is that the bounds are independent ofN, and that the right hand
side depends only on{|a j |} and does not involve any cancelations.

Our first application concerns the most basic inequality for theLp Fourier transform,
namely the Hausdorff-Young theorem. Unlike the Plancherel theorem, Hausdorff-Young
is not reversible. This fact may be proved in many ways. Let us prove it using Khinchin’s
inequality.

P 1.2. (1 ≤ p < 2). For anyε > 0 there is a functionf ∈ S with

‖ f̂ ‖p′ < ε‖ f ‖p.
P. Let φ be a fixed Schwartz function with compact support. Let{x j}Nj=1 be a

sequence of points inRn such that the functionsφ j(x) := φ(x− x j) have disjoint supports.
Then it is obvious that for any choice ofε j ∈ {±1} ( j = 1, . . .N) we have

∥∥∥∥
N∑

j=1

ε jφ j

∥∥∥∥
p

p
=

N∑

j=1

‖φ j‖pp = N‖φ‖pp,

and so,
∥∥∥∥

N∑

j=1

ε jφ j

∥∥∥∥
p

= N1/p‖φ‖p.

Moreover

E
(∥∥∥∥

N∑

j=1

ε j φ̂ j

∥∥∥∥
p′

p′

)
=

∫
E
(∣∣∣∣

N∑

j=1

ε j φ̂ j(ξ)
∣∣∣∣
p′)

dξ =

∫
E
(
|φ̂(ξ)|p′

∣∣∣∣
N∑

j=1

ε je
2πix j ·ξ

∣∣∣∣
p′)

dξ

' Np′/2
∫
|φ̂(ξ)|p′dξ,
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CHAPTER 1. SOME APPLICATIONS OF KHINCHIN’S INEQUALITY

where the last line follows by Khinchin’s inequality witha j = e2πix j ·ξ. Therefore

∥∥∥∥
N∑

j=1

ε j φ̂ j

∥∥∥∥
p′
≤ C0N1/2‖φ̂‖p′ ,

for some choice of{ε j}. Sincep < 2 we can chooseN0 so that

C0N1/2
0 ‖φ̂‖p′ < εN1/p

0 ‖φ‖p.
The result now follows on letting

f =

N0∑

j=1

ε jφ j .

�

Our second application is the basic result in Littlewood-Paley theory.
Let φ be a smooth function such thatφ = 0 on B(0,1) andφ = 1 outsideB(0,2), and

let ψ j(x) = φ(2− j x) − φ(2− j+1x). Thenψ j is supported in the annulus{x : 2 j−1 ≤ |x| ≤ 2 j+1}
and ∞∑

j=−∞
ψ j(x) = 1, for all x , 0.

For f ∈ S, let S j f = (ψ j f̂ )ˇ. Then, theLittlewood-Paley square functionis defined by

S f =

( ∞∑

j=−∞
|S j f |2

)1/2

.

P 1.3 (Littlewood-Paley). For any f ∈ S and1 < p < ∞, one has

‖S f‖p ' ‖ f ‖p.
For the proof, we need the following result (see [20] for a more sophisticated version).

L 1.1 (Mikhlin multiplier theorem). Letm : Rn\{0} → C satisfy|Dγm(ξ)| . |ξ|−γ,
for all ξ , 0 and all multi-indices of length|γ| ≤ n + 2. Then

‖(mf̂ )ˇ‖p . ‖ f ‖p
for any f ∈ S and1 < p < ∞.

P. Note that (mf̂ )ˇ= m̌∗ f and that the decay condition onm implies that, away
from the origin, the distribution ˇmagrees with a function. So, if we let

mj(ξ) = ψ j(ξ)m(ξ),

and

KN =

N∑

j=−N

m̌j ,

it is enough to show that the kernelsKN are Caldeŕon-Zygmund uniformly inN. Namely,
they satisfy

(i) |KN(x)| . |x|−n

(ii) |∇KN(x)| . |x|−n−1

(iii) ‖KN ∗ f ‖2 . ‖ f ‖2

with bounds independent ofN.
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CHAPTER 1. SOME APPLICATIONS OF KHINCHIN’S INEQUALITY

To prove (i), note that
‖Dγmj‖1 . 2 j(n−|γ|)

and therefore
‖xγm̌j‖∞ . 2 j(n−|γ|).

It follows that
|m̌j(x)| . 2 j(n−k)|x|−k for any 0≤ k ≤ n + 2.

Using this withk = 0 andk = n + 2, we conclude that

|KN(x)| ≤
∑

j

|m̌j(x)| ≤
∑

2 j≤|x|−1

|m̌j(x)| +
∑

2 j>|x|−1

|m̌j(x)|

.
∑

2 j≤|x|−1

2 jn +
∑

2 j>|x|−1

2 jn(2 j |x|)−(n+2) . |x|−n.

The proof of (ii) is similar and (iii) follows by Plancherel. �

To prove Proposition 1.3, let

mN(ξ) =

N∑

j=−N

ε jψ j(ξ)

and note thatmN satisfies the condition of Lemma 1.1 uniformly inN and uniformly in the
realization of the random variables{ε j}. Therefore, by the continuous version of Khinchin’s
inequality,

∫
|(S f)(x)|pdx. lim sup

N→∞
E
[ ∫ ∣∣∣∣

N∑

j=−N

ε j(S j f )(x)
∣∣∣∣
p
dx

]
. ‖ f ‖pp.

To prove the lower bound, we use duality. Note thatψ jψk = 0 if | j − k| > 1, so by Parseval,
Cauchy-Schwarz and Ḧolder,∫

f ḡ =

∫ ∑

{ j,k:| j−k|≤1}
S j f Skḡ . ‖S f‖p‖Sḡ‖p′ . ‖S f‖p‖g‖p′

for all g ∈ S. Therefore,‖ f ‖p . ‖S f‖p.
Note that Proposition 1.3 holds for arbitraryf ∈ Lp (in which case we have to interpret

S j f asψ̌ j ∗ f ) by a standard limiting argument.
We will present other applications of Khinchin’s inequality in Chapter 5 and Chapter

6.

11





CHAPTER 2

Stationary phase

Consider the oscillatory integral

I (φ, a; λ) =

∫ ∞

−∞
eiλφ(x)a(x)dx,

whereφ is a smooth function (thephase), anda is a smooth integrable function (theampli-
tude). Our objective is to study the behavior ofI for large values ofλ. In order to do that,
we have to calculate its asymptotic expansion.

If φ(x) = −2πx, thenI is the Fourier transform ofa, and integration by parts gives

|I (−2πx,a; λ)| = C
|I (−2πx,a(k); λ)|

|λ|k ≤ C
‖a(k)‖1
|λ|k ,

for any k, provided thata has integrable derivatives up to orderk. This shows thatI is
rapidly decreasing asλ → ∞ and therefore the question of determining its asymptotic
expansion is, in a sense, trivial.

If φ is nonlinear with nonvanishing first derivative then by a change of variables, we
get again a Fourier integral. So, the nontrivial case arises when the phase has critical points.
We will restrict ourselves to phases with nondegenerate critical points. First, we estimate
the so-calledFresnelintegral:

I (x2,a; λ) =

∫
eiλx2

a(x)dx.

P 2.1. Supposea is a smooth function with compact support. Then for any
k ∈ N, we have

I (x2,a; λ) =

√
πi
λ

k−1∑

j=0

a(2 j)(0)
j!

( i
4λ

) j

+
Rk(λ)
(2λ)k

,

where the remainder satisfies the uniform estimate

|Rk(λ)| ≤ ‖a(2k)‖1.
P. Notice that

I (x2,a; λ) = lim
ε→0+

∫
e(−ε+iλ)x2

a(x)dx.

Now write∫
e(−ε+iλ)x2

a(x)dx =

∫
eµx2

a(x)dx =

∫
eµx2

a(0)dx+

∫
eµx2

xb(x)dx,

where
µ = −ε + iλ,

and

b(x) =
a(x) − a(0)

x
.
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CHAPTER 2. STATIONARY PHASE

The first term is ∫
eµx2

dx =

√
π

ε − iλ
.

Integrating by parts the second term we get
∫

eµx2
xb(x)dx = − 1

2µ

∫
eµx2

a1(x)dx,

wherea1 = b′. Passing to the limit asε→ 0 and repeatedly applying the above procedure,
we get

I (x2,a; λ) =

√
πi
λ

(
a(0) +

a1(0)
−2iλ

+ · · · + ak−1(0)
(−2iλ)k−1

)
+

I (x2,ak; λ)
(−2iλ)k

,

where

a j(0) =
a(2 j)(0)

2 j j!
.

The result follows since

|I (x2,ak; λ)| ≤ ‖ak‖1 ≤ ‖a(2k)‖1.
�

Now, suppose that the phaseφ has finitely many critical pointsxp in supp(a). Choose
a smooth partition of unity ∑

hα = 1

in supp(a) such that for eachα, supp(hα) contains exactly one critical point. Suppose that
xp ∈ supp(hα). Then, by the Morse Lemma, we have

I (φ, hα; λ) = eiλφ(xp)I (±x2,bp; λ),

wherebp is a suitable smooth function with compact support, and

± = sgnφ′′(xp).

Proposition 2.1 then implies

I (φ,a; λ) =

√
π

λ

∑

p

e±
πi
4 +iλφ(xp)(a(xp) + · · · + λ−kRk(λ)).

Next, we turn to the higher dimensional case. Namely, we want to study the asymptotic
behavior of the integral

I (φ, a; λ) =

∫

Rn
e2πiλφ(x)a(x)dx.

Assume first that the phase is a quadratic form, i.e.

φ(x) = β(x) =
1
2

∑

i j

βi j xi x j .

Furthermore, suppose thatβ is nonsingular, i.e. det[βi j ] , 0, and let

β∗(D) =
1
2

∑

i j

∂2

∂xi∂x j

be the dual differential operator, where [βi j ] = [β jk]−1. Then we have the following.

14



CHAPTER 2. STATIONARY PHASE

P 2.2. If β is a nonsingular quadratic form, anda is a smooth function with
compact support, then for anyk ∈ N, the following equation holds.

∫

Rn
e2πiλβ(x)a(x)dx =

e
πσ(β)i

4√
λn|detHessβ|

k−1∑

j=0

β∗(D) ja(0)
j!

( i
λ

) j

+
Rk(λ)
λk

,

whereσ(β) is the signature ofβ, Hessβ the Hessian matrix ofβ, and the remainder satisfies
the uniform estimate

|Rk(λ)| ≤ ‖(β∗(D))ka‖1.
P. Proposition 2.1 is the special case whenn = 1. In the general case, take a

linear transformationx = A(y) such that

β(x) =
1
2

(y2
1 + · · · + y2

p − y2
p+1 − · · · − y2

n)

where 2p = σ(β) + n. By Taylor’s Theorem

a(y) =

2k−1∑

|α|=0

Dαa(0)
α!

yα + Sk(y).

Then

I (2πβ(y) + εiy2; λ) =

2k−1∑

|α|=0

Dαa(0)
α!

∫
e(2πiβ(y)−εy2)λyαdy

+

∫
e(2πiβ(y)−εy2)λSk(y)dy. (2.1)

By Fubini’s Theorem
∫

e(2πiβ(y)−εy2)λyαdy =

n∏

j=1

∫
e(±2iy2

j−εy2
j )λy

α j

j dyj ,

therefore, Proposition 2.1 applies. We can put the sum in (2.1) in the form (P(D)a)(0),
where

P(D) =

n∏

j=1

exp(πσ(β j )i
4 )√

λ|detHessβ j |
exp


iβ∗j (∂/∂y j)

λ


k

,

with

β j = ±1
2

y2
j .

Next, we calculate
∏

exp

(
πσ(β j)i

4

)
= exp

(
πσ(β)i

4

)
,

∏
λ|detHessβ j | = λn|detHessβ|,

∏
exp


iβ∗j (∂/∂y j)

λ

 = exp

(
iβ∗(D)
λ

)
.

Finally,
|detHessyβ| = |detA|2|detHessxβ| = |detA|2.

To conclude the proof, we estimate the remainder as in Proposition 2.1. �
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CHAPTER 2. STATIONARY PHASE

If x0 is a nondegenerate critical point ofφ, we choose smooth local coordinates in a
neighborhood ofx0 such thatφ is a quadratic form in that coordinate system. Then we
apply Proposition 2.2.

A good reference for the material in this chapter is [13].
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CHAPTER 3

The uncertainty principle

In harmonic analysis, by the termuncertainty principle, we refer to the (rather vague)
fact that a function and its Fourier transform cannot be both concentrated on small sets.

The simplest manifestation of this phenomenon is the fact that the Fourier transform
of a compactly supported function cannot have compact support, unless the function is
identically equal to zero.

Another way to understand the situation is the following.

P 3.1 (Bernstein’s inequality). Supposef ∈ Lp ,1 ≤ p ≤ ∞ and that
suppf̂ ⊂ B(0,R). Then

|Dα f ‖p . R|α|‖ f ‖p,
where the implicit constant depends only on the dimensionn.

P. If p = 2 this follows from Plancherel’s Theorem.

‖Dα f ‖2 = ‖(Dα f )ˆ‖2 = ‖(2πiξ)α f̂ ‖2 . R|α|‖ f̂ ‖2 = R|α|‖ f ‖2.
In the general case, fix a functionφ ∈ S with

φ̂(ξ) = 1 ∀ξ ∈ D(0,1).

Then
(φR−1)ˆ f̂ = f̂ ,

and therefore
φR−1 ∗ f = f .

Now, suppose|α| = 1. Then

Dα f = DαφR−1 ∗ f = R(Dαφ)R−1 ∗ f .

So, by Minkowski’s inequality

‖Dα f ‖p ≤ R‖(Dαφ)R−1‖1‖ f ‖p = CR‖ f ‖p.
The general case follows by induction on|α|. �

C 3.1. Suppose thatsuppf̂ ⊂ B(0,R). Then

osc
B

f . ‖ f ‖∞
for all discsB of radiusR−1; here the implicit constant depends onn only.

P. By the Mean Value Theorem and Bernstein’s inequality we have

osc
B

f . R−1‖∇ f ‖∞ . R−1R‖ f ‖∞ = ‖ f ‖∞.
�
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CHAPTER 3. THE UNCERTAINTY PRINCIPLE

So, if f̂ is supported on a disc of radiusR, then f is “essentially constant” on scale
R−1.

In higher dimensional harmonic analysis, it is often the case that the support off̂ is
not contained in a disc, but in a set of high eccentricity. This case can be understood by
starting from a disc and studying the behavior of the Fourier transform under linear maps.

If {ej} is a basis forRn and{a j} are positive numbers, then theellipsoidwith axes{ej}
and widths{a j} is the set

E =
{
ξ ∈ Rn :

∑

j

( 〈ξ, ej〉
a j

)2 ≤ 1
}
.

Its dualellipsoid is the set

E∗ =
{
x ∈ Rn :

∑

j

(
a j〈x,a j〉

)2 ≤ 1
}
,

A basic fact from linear algebra is that there is always a linear transformationT such that

T(B(0,1)) = E∗,

(T∗)−1(B(0,1)) = E,

whereT∗ is the transpose ofT. Therefore, iff is function with supp̂f ⊂ E, then

supp((f ◦ T)ˆ) = supp(f̂ ◦ (T∗)−1) ⊂ B(0,1),

and sincef ◦ T must be “essentially constant” on translates ofB(0,1) we conclude thatf
is “essentially constant” on translates ofE∗. For example, by Corollary 3.1, we have

C 3.2. If suppf̂ ⊂ E, then

osc
E∗+a

f . ‖ f ‖∞,
for all a ∈ Rn.

This can also be applied whenE is the “rectangle”

{ξ : |〈ξ, ej〉| ≤ a j}
andE∗ is the “dual rectangle”

{x : |〈x,ej〉| ≤ a−1
j },

since these rectangles are comparable to ellipsoids in the same way cubes are comparable
to balls.

There are many other, and much deeper, forms of the uncertainty principle. We refer
the reader to the monograph [12] for an extensive account.
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CHAPTER 4

The restriction problem

This chapter is concerned with the following fundamental question which is still largely
open.

When can one meaningfully restrict the Fourier transform of anLp function to the
surface of the unit sphere?

More quantitatively,

For what values ofq is there an estimate

‖( f dσ)ˇ‖q . ‖ f ‖∞
for all f ∈ L∞(Sn−1)?

To find the best possibleq, one can takef to be a constant function. Then (f dσ)ˇ
may be evaluated using the technique of stationary phase (see [20], [13]). The result is as
follows.

P 4.1.

(dσ)ˇ(x) = <
(
A(x)e2πi(|x|−(n−1)/8)

)
, for large |x|,

where

C−1|x|−(n−1)/2 ≤ |A(x)| ≤ C|x|−(n−1)/2,

|DαA(x)| ≤ Cα|x|−(n−1)/2−|α|.

In particular, (dσ)ˇ∈ Lq precisely whenq > 2n/(n− 1). The restriction conjecture of
Stein is the statement that

( f dσ)ˇ ∈ Lq, for all f ∈ L∞(Sn−1), q >
2n

n− 1
.

To begin with, let’s try to estimate theL2 norm of (f dσ)ˇon large finite discs. To motivate
the calculation, note that

‖(dσ)ˇ‖L2(B(0,R)) ' R1/2, for largeR,

by Proposition 4.1.

P 4.2. If f ∈ L∞(Sn−1), then

‖( f dσ)ˇ‖L2(B(a,R)) . R1/2‖ f ‖∞.
19



CHAPTER 4. THE RESTRICTION PROBLEM

P. We can assumea = 0; otherwise we replacef by

fa(ξ) = e2πia·ξ f (ξ),

which has the sameL∞ norm asf and satisfies

( fadσ)ˇ(x) = ( f dσ)ˇ(x + a).

Let φ be a Schwartz function with the following properties.

φ ≥ 1 onB(0,1) and supp̂φ ⊂ B(0,1).

Let
φR(x) = φ(x/R).

Then
‖( f dσ)ˇ‖L2(B(0,R)) ≤ ‖φR( f dσ)ˇ‖2 = ‖(φR)ˆ∗ ( f dσ)‖2.

Now
(φR)ˆ(ξ) = Rnφ̂(Rξ),

and therefore

|(φR)ˆ ∗ ( f dσ)(ξ)| = Rn
∣∣∣∣
∫

φ̂(ξ − Rη) f (η)dσ(η)
∣∣∣∣ . Rn‖ f ‖∞σ(B(ξ,R−1)).

The latter quantity is. R‖ f ‖∞ for anyξ and is 0 if dist(ξ,Sn−1) > 1/R. Accordingly,

‖(φR)ˆ∗ ( f dσ)‖2 . R‖ f ‖∞|{ξ : dist(ξ,Sn−1) < 1/R}|1/2 . R1/2‖ f ‖∞.
�

With a slightly more careful argument one can obtain the same estimate whenf is just in
L2, i.e.,

‖( f dσ)ˇ‖L2(B(a,R)) . R1/2‖ f ‖L2(Sn−1).

TheStein-Tomas theoremis a bound of the form

‖( f dσ)ˇ‖q ≤ C‖ f ‖L2(dσ)

with an optimal value ofq (= 1(n + 1)/(n− 1)) which is larger than 2n/(n− 1), reflecting
a difference betweenL2 and L∞ densitiesf . To understand this distinction, consider a
function which has small support, so that itsL2 norm will be much smaller than itsL∞

norm. Indeed, consider the spherical cap

Cδe = {ξ ∈ Sn−1 : |ξ − e| < δ}.
The smallest convex set containingCδe is essentially a rectangle with widthδ2 in the e
direction andδ in the perpendicular directions. Therefore,|( f dσ)ˇ| should be essentially
constant on translates of the dual rectangle

τδe(a) =
{
x ∈ Rn : |(x− a) · e| < 1

2
δ−2, |Pe⊥(x− a)| < δ−1

}
,

where
Pe⊥(x) = x− 〈x,e〉e

is the projection ofx on the line passing through the origin orthogonal toe.

P 4.3 (Knapp counterexample). For anye ∈ Sn−1, a ∈ Rn, and small posi-
tiveδ, there is a functionf : Sn−1→ C with

‖ f ‖∞ ≤ 1, suppf ⊂ Cδe and |( f dσ)ˇ| & δn−1 onτδe(a).
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P. Let f (ξ) = e−2πiξ·a if ξ ∈ CC−1
0 δ

e and zero otherwise; hereC0 is a large positive
constant depending onn only. If C0 is large enough, then we have

|(ξ − e) · (x− a)| < 1
100

∀ξ ∈ CC−1
0 δ

e , x ∈ τδe(a).

This is because

(ξ − e) · (x− a) = (ξ − e) · e(x− a) · e+ Pe⊥(ξ − e) · Pe⊥(x− a),

with
|Pe⊥(ξ − e)| < C−1

0 δ, |Pe⊥(x− a)| < δ−1, |(ξ − e) · e| . (C−1
0 δ)2,

and
|(x− a) · e| . δ−2.

Accordingly, forx ∈ τδe(a)

|( f dσ)ˇ(x)| =
∣∣∣∣
∫

CC−1
0 δ

e

e2πi(x−a)·ξdσ(ξ)
∣∣∣∣ =

∣∣∣∣
∫

CC−1
0 δ

e

e2πi(x−a)·(ξ−e)dσ(ξ)
∣∣∣∣

≥
∫

CC−1
0 δ

e

<
(
e2πi(x−a)·(ξ−e)

)
dσ(ξ)

≥ cos

(
2π
100

)
σ

(
CC−1

0 δ
e

)
' δn−1.

�

With f as in Proposition 4.3, we have

‖ f ‖L2(dσ) . δ
n−1

2 and ‖( f dσ)ˇ‖q & δn−1− n+1
q ,

since the volume ofτδe(a) is approximatelyδ−(n+1). Therefore, a bound of the form

‖( f dσ)ˇ‖q . ‖ f ‖L2(dσ)

can only hold if
n− 1

2
≤ n− 1− n + 1

q
,

which means

q ≥ 2
n + 1
n− 1

.

P 4.4 (Stein-Tomas theorem). If q ≥ 2(n + 1)/(n− 1) then

‖( f dσ)ˇ‖q . ‖ f ‖L2(dσ).

S   P. First show that the following three assertions are equivalent for
any givenp < 2, wherep′ = p/(p− 1).

(1) ‖( f dσ)ˇ‖p′ ≤ C‖ f ‖L2(dσ) for all f ∈ L2(dσ)
(2) ‖ f̂ ‖L2(dσ) ≤ C‖ f ‖p for all f ∈ S
(3) ‖σ̌ ∗ f ‖p′ ≤ C2‖ f ‖p for all f ∈ S

To prove (3) (hence (1)), letφ ∈ S have compact support and satisfy

φ(x) = 1 ∀x ∈ B(0,1).

Put
ψ j(x) = φ(2− j x) − φ(2−( j−1)x).
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Show that if f ∈ S, then

σ ∗ f = (φσ̌) ∗ f +
∑

j≥1

(ψ jσ̌) ∗ f uniformly.

Now prove the estimates
‖(ψ jσ̌) ∗ f ‖∞ . 2− j n−1

2 ‖ f ‖1,
and

‖(ψ jσ̌) ∗ f ‖2 ≤ 2 j‖ f ‖2.
Use these and Riesz-Thorin to obtain (3) in the case

p′ > 2(n + 1)/(n− 1).

To prove the endpoint estimate, show that∥∥∥∥
∑

j

2( n−1
2 +it) j(ψ jσ̌) ∗ f

∥∥∥∥∞ . ‖ f ‖1,
∥∥∥∥
∑

j

2(−1+it) j(ψ jσ̌) ∗ f
∥∥∥∥

2
. ‖ f ‖2,

and then use complex interpolation. �

A different proof, based on estimates for Fourier integral operators, may be found in
[20].
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Kakeya sets

A basic fact proved by Besicovitch in the 20’s is that for anyn ≥ 2 there is a compact
setE ⊂ Rn with measure zero, which contains a unit line segment in every direction, i.e.,

∀e ∈ Sn−1 ∃a ∈ Rn : a + te ∈ E ∀t ∈ [−1/2,1/2].

Such sets are calledBesicovitchor Kakeya sets.
There are many variants of this construction. We will present one of them (due to T.

Wolff) and then discuss some further properties of Besicovitch sets.

L 5.1. Let N be a large integer. Then there is a family of lines{la}, wherea runs
over the set ofNN numbers of the form

a =

N∑

j=1

a j

N j
, a j ∈ {0, . . . ,N − 1},

such that the slope ofla is a, and if we letlta be the uniquey ∈ R such that(t, y) ∈ la, then
(i) If a < b thenl1a < l1b.
(ii) For eacht ∈ [0,1], the set{y ∈ R : |y− lta| ≤ N−N for somea}

has measure≤ 4/N.

P. We definela by letting itsy-intercept be

−
N∑

j=1

( j − 1)a j

N j+1
,

and check that (i) and (ii) hold. We have

lta = −
N∑

j=1

( j − 1)a j

N j+1
+ t

N∑

j=1

a j

N j
=

N∑

j=1

(Nt− j + 1)a j

N j+1
.

Proof of (i). If a > b, then letk be the smallest index withak , bk. Thenak − bk ≥ 1, and
a j − b j ≥ −(N − 1) for j > k. So

l1a − l1b =
(n− k + 1)(ak − bk)

Nk+1
+

∑

j>k

(N − j + 1)(a j − b j)

n j+1

≥ N − k + 1
Nk+1

− (N − 1)
∑

j>k

N − j + 1
N j+1

≥ N − k + 1
Nk+1

− (N − k + 1)(N − 1)
∑

j>k

1
N j+1

> 0,

by the formula for the sum of a geometric series.
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Proof of (ii). Givent ∈ [0,1], choose an integerk such that (k− 1)/N ≤ t < k/N. Suppose
thata j = b j for j ≤ k− 1. Then

|lta − ltb| =
∣∣∣∣
∑

j≥k

(Nt− j + 1)(a j − b j)

N j+1

∣∣∣∣ ≤
∑

j≥k

(|k− j| + 1)|a j − b j |
N j+1

,

with the last inequality true sinceNt− j + 1 ∈ [k− j, k− j + 1). So,

|lta − ltb| ≤
∑

j≥k

j − k + 1
N j

≤ 2N−k (if N is large).

There areNk−1 choices for the sequence{a j}k−1
j=1, so the set{lta} is contained in the union of

Nk−1 intervals of length 2N−k. Hence{y : |y− lta| ≤ N−N} is contained inNk−1 intervals of
length 2N−N + 2N−k ≤ 4N−k, so has measure≤ 4/N. �

Now consider (for fixeda) the set

Sδ
la

= {(t, y) : 0 ≤ t ≤ 1, dist(y, lta) ≤ δ},
whereδ = 1/2N−N. It evidently contains a line segment connectingx = 0 to x = 1 with
slopem, for everym with |m− a| ≤ N−N. If 0 ≤ m ≤ 1, then|m− a| ≤ N−N for some
a =

∑N
j=1

a j

N j . Now let

E =
⋃

a

Sδ
la
.

We will use the notationEt = {y : (t, y) ∈ E}. The following is now obvious.

C 5.1. There is a setEN with the following two properties.
(i) EN contains a line segment connectingx = 0 to x = 1 with slopem, for every

m ∈ [0,1].
(ii) |Et

N| ≤ 4/N for everyt ∈ [0,1] (in particular, |EN| ≤ 4/N).

Remark. The preceding construction may be understood geometrically in terms of a vari-
ant on the Perron tree (cf [10]). Namely, start with a triangle. Cut it inN pieces by
subdividing the vertical edge inN equal segments. Leave the top triangle alone and slide
the others upward until thex = 0 intercepts coincide. Next, take each of the resulting
triangles and subdivide it inN triangles as above. Thus, we haveN families ofN “small”
triangles. Within each family, leave the top triangle alone and slide the others upward until
the x = 1/N intercepts coincide. Subdivide each of theN2 resulting triangles obtaining
N2 families ofN “smaller” triangles. Within each family, leave the top triangle alone and
slide the others upward until thex = 2/N intercepts coincide. Now repeat the process at
abscissas 3/N,4/N, . . . .

P 5.1. Besicovitch sets exist inRn, for anyn ≥ 2.

P. To construct a Besicovitch set inR2, it suffices to construct a compact set with
measure zero containing a line segment connectingx = 0 to x = 1 with slopem for every
m ∈ [0,1]. This is done by passing to the limit asN → ∞ in Corollary 5.1. However, one
has to be careful about convergence.

L 5.2. SupposeF is a compact set with property (i) of Corollary 5.1 and that
δ > 0, ε > 0. Then there is another compact setF̃ with property (i), such that̃F ⊂ {z :
dist(z, F) < δ} and |F̃| < ε.
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P. Note that the setsEN in Corollary 5.1 are contained inQ
def
= [0,1] × [−1,1]. If

l is a segment connectingx = 0 to x = 1 with slopemandy-interceptb then the affine map

Aδ
l (x, y) = (x, δy + b + mx)

takesQ ontoSδ
l , and maps segments with slopeµ to segments with slopem+ δµ. Accord-

ingly, Aδ
l (EN) is a subset ofSδ

l which contains segments with all slopes betweenm and
m+ δ, and|Aδ

l (EN)| ≤ 4δ/N. Now choose segmentsl j ⊂ F with

slope(l j) = jδ, j = 0, . . . , [1/δ].

Let

F̃ =

[1/δ]⋃

j=0

Aδ
l j
(EN),

whereN is sufficiently large. ThenF̃ ⊂ {z : dist(z, F) < δ} andF̃ contains segments with
all slopes between 0 and 1. Moreover

|F̃| ≤ [1/δ]
4δ
N
≤ 4

N
< ε,

providedN has been chosen> 4/ε. �

To finish the proof of the proposition whenn = 2, we recursively choose a sequence
of sets{F j}∞j=1 and numbersδ j → 0 such that

(i) F j has property (i) of Corollary 5.1,∀ j ≥ 1.
(ii) {z : dist(z, F j) ≤ δ j} ⊂ {z : dist(z, F j−1) ≤ δ j−1}, ∀ j ≥ 2.
(iii) |{z : dist(z, F j) ≤ δ j}| < 2− j , ∀ j ≥ 2.

Namely, we can takeF1 to beEN of Corollary 5.1 for any large enoughN, and any suf-
ficiently small number forδ1. If F j andδ j have been chosen, then we chooseF j+1 by
Lemma 5.2 withF = F j , δ = δ j andε = 2−( j+1). If we then chooseδ j+1 sufficiently small
we will have (i)-(iii) for j + 1. Now let

F =
⋂

j

{z : dist(z, F j) ≤ δ j}.

ThenF is compact with measure zero, and a simple compactness argument shows thatF
has property (i) of Corollary 5.1. This completes the proof of the proposition whenn = 2.
For n > 2, it suffices to considerE × D, whereE is a Besicovitch set inR2, andD is a
closed disc of radius 1 inRn−2. �

We now give another application of Lemma 5.1, which is needed for the disc multiplier
counterexample argument.

P 5.2. Letδ = 1/100N−N. Then there is a collection of1/(100δ) rectangles
Ta with dimensions1× δ, so that

(i) |⋃a Ta| ≤ 4/N.
(ii) Let T̃a be the rectangle obtained by translatingTa along its axis byC0 unitsC0 ≥ 2.

Then the rectangles̃Ta are pairwise disjoint.

P. Let la be one of the segments in Lemma 5.1. Form the rectangleTa as follows:
Ta has length 1, widthδ, axis alongla and its furthest left vertex is on they-axis. One can
check thatTa is contained in the set

{
(x, y) : 0 ≤ x ≤ 1 and|y− lx

a| <
1

100
N−N

}
,
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and furthermorẽTa is contained in
{
(x, y) : x ≥

√
2 and|y− lx

a| <
1

100
N−N

}
.

Property (i) now follows from (ii) of Lemma 5.1. For (ii), suppose toward a contradiction
thata > b andT̃a ∩ T̃b , ∅. Fix (x, y) ∈ T̃a ∩ T̃b. Thenx >

√
2 and

|lx
a − lx

b| ≤ |lx
a − y| + |y− lx

b| <
1
50

N−N.

On the other hand

lx
a − lx

b = (lx
a − l1a) − (lx

b − l1b) + (l1a − l1b).

The last term is positive by (i) of Lemma 5.1, so

lx
a − lx

b ≥ N−N(
√

2− 1).

This is a contradiction since
√

2− 1 > 1/50. �

There is a basic open question about Besicovitch sets, which can be stated vaguely
as “How small can they really be?”. In order to state a more precise question, we need a
notion of “size”, or fractal dimension. One can work with the Hausdorff dimension, but to
avoid technical complications, we use instead the “lower Minkowski dimension” (see [17]
for several different notions of dimension) defined as follows: IfE ⊂ Rn is compact then

dimE = sup{α : ∃Ca with |Eδ| ≥ C−1
α δ

n−α ∀δ ∈ (0,1]},
whereEδ is by definition{z : dist(z,E) < δ}. Thus, dimE measures the rate at which
|Eδ| → 0, asδ → 0. If E has positive measure then dimE = n, if E is a point then
dimE = 0, if E is the Cantor set then dimE = log 2/ log 3.

Kakeya problem. If E ⊂ Rn is a Besicovitch set, then does it follow that the dimension of
E is n?

If n = 2, then the answer is yes. This is due to R.O. Davies, see [10]. For generaln,
we refer the reader to [21], [3], [14] and [15].

In order to discuss this further, we need some notation. Since there is no distinction
between segments pointing in theeand−edirection, we let

Pn−1 = Sn−1/{±1},
i.e.,Sn−1 with eand−e identified, and define a distance onPn−1 by

θ(e, f ) = cos−1(|e− f |) ∈ [0, π/2],

thus,θ(e, f ) is the unoriented angle subtended byeand f . Fore ∈ Pn−1, a ∈ Rn, we let

Tδ
e(a) =

{
x ∈ Rn : |(x− a) · e| < 1

2
and|Pe⊥(x− a)| < δ

}
.

We will need the following purely geometrical fact, whose proof is left to the reader.

L 5.3. Assume thate, f ∈ Pn−1 anda,b ∈ Rn, then
(i) |Tδ

e(a) ∩ Tδ
f (b)| ≤ Cδn/(θ(e, f ) + δ).

(ii) diam(Tδ
e(a) ∩ Tδ

f (b)) ≤ Cδ/(θ(e, f ) + δ).
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So,Tδ
e(a) ∩ Tδ

f (b) is contained in a rectangle of dimensions

Cδ × · · · ×Cδ × Cδ
θ(e, f )

.

Note that the bounds are independent ofa andb. We also define aδ-separated set inPn−1

to be a set{ej} such thatθ(ej ,ek) ≥ δ for all j , k. A maximalδ-separated set is a set
which is δ-separated and is not contained in any largerδ-separated subset. If{ej}Mj=1 is a

maximalδ-separated subset, thenM ' δ−(n−1). This may be seen by volume counting,
since the discs{e ∈ Pn−1 : θ(e,ej) < δ/2} are disjoint (byδ-separateness), and the discs
{e ∈ Pn−1 : θ(e,ej) < δ} coverPn−1 (by maximality).

We will now prove a partial result on the Kakeya problem.

P 5.3. If E ⊂ Rn is a Besicovitch set, thendimE ≥ (n + 1)/2.

P. The proof we give is due to Bourgain, see [2]. It is not the shortest possible,
but it is the most illuminating. Note to begin with, thatEδ must contain theδ-neighborhood
of a unit line segment in theedirection for everye. Thus

∀e ∈ Pn−1 ∃a ∈ Rn : Tδ
e(a) ⊂ Eδ. (5.1)

Fix a maximalC0δ-separated subset{ej}Mj=1, M ' δ−(n−1) and letT j be the tubeTδ
ej

(a j)
given by (5.1). HereC0 is a large constant. LetN be a large integer to be chosen later and
consider two possibilities.

(i) There is no pointx ∈ Rn such thatx belongs to more thanN Tj ’s.
(ii) There is at least one pointb ∈ Rn which belongs to at leastN Tj ’s.

In case (i) we have

|Eδ| ≥
∣∣∣∣
⋃

j

T j

∣∣∣∣ ≥ 1
N

∑

j

|T j | ' 1
N
δ−(n−1)δn−1 =

1
N
.

In case (ii), fix a pointb belonging toN Tj ’s. We can assume that these areT1, . . . ,TN.
Consider the “outer halves” of the tubes, i.e., the sets

T̃ j =
{
x ∈ Rn : |x− b| ≥ 1

4

}
∩ T j , j = 1, . . . ,N.

It is clear that|T̃ j | ' |T j | ' δn−1. On the other hand, the setsT̃ j are pairwise disjoint,
providedC0 has been chosen large enough. This follows because, by Lemma 5.3, we have

diam(T j ∩ Tk) ≤ C
C0

<
1
4
, (if C0 is large)

andb ∈ T j ∩ Tk, |x− b| ≥ 1/4 ∀x ∈ T̃ j ∪ T̃k. Therefore

|Eδ| ≥
∣∣∣∣
⋃

j

T̃ j

∣∣∣∣ =
∑

j

|T̃ j | ' Nδn−1.

We conclude that

|Eδ| & min
{ 1
N
,Nδn−1

}

in all cases. TakingN = [δ−(n−1)/2], this means that

|Eδ| & δ(n−1)/2, for all δ,

which is equivalent to dimE ≥ (n + 1)/2. �
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Note that Proposition 5.3 does not give the right bound whenn = 2, since it is known
that then dimE = 2.

P 5.4. If E ⊂ R2 is a Besicovitch set, thendimE = 2.

P. The idea of this proof is based on an argument due to Córdoba [7], although
he did not state the result this way. Fixδ > 0, let {ej}Mj=1 be a maximalδ-separated set of

directions inP1, and letT j = Tδ
ej

(a j) be a 1×δ rectangle with axis in theej direction which
is contained inEδ. Note that ifδ < σ < π/2, then for eachj, the set{k : θ(ej ,ek) ≤ σ} has
cardinality≤ Cσ/δ. Therefore

1 '
M∑

j=1

|T j | =
∥∥∥∥

M∑

j=1

χT j

∥∥∥∥
1
≤

∥∥∥∥
M∑

j=1

χT j

∥∥∥∥
2
|Eδ|1/2 =

(∑

j,k

|T j ∩ Tk|
)1/2

|Eδ|1/2

.
(
Mδ +

∑

j,k

|T j ∩ Tk|
)1/2

|Eδ|1/2. (5.2)

Fix j and consider
∑

k:k, j |T j ∩ Tk|. By Lemma 5.3,

|T j ∩ Tk| ≤ Cδ2/θ(ej ,ek).

Hence
∑

k:k, j

|T j ∩ Tk| ≤
∑

0≤m≤log(1/δ)

card({k : θ(ej ,ek) ∈ [δ2m, δ2m+1]}) δ
2

δ2m

≤ C
∑

0≤m≤log(1/δ)

2m δ2

δ2m
' δ log

1
δ
.

(5.2) now implies that

1 .
(
Mδ + Mδ log

1
δ

)1/2

|Eδ|1/2 .
(
log

1
δ

)1/2

|Eδ|1/2.

Hence
|Eδ| ≥ (C log(1/δ))−1.

Since (log(1/δ))−1 goes to zero slower than any power ofδ, this implies that dimE = 2. �

Remark. The same proof works in any dimension, but gives the bound dimE ≥ 2, which
is rather disappointing ifn > 2.

It is a remarkable fact that the restriction conjecture implies the Kakeya conjecture.
This is due to Bourgain, although a related construction was done earlier in [4]. Both
constructions are variants on the argument in [11].

P 5.5. If the restriction conjecture is true, then Besicovitch sets have dimen-
sionn.

P. Let E be a Besicovitch set. Fixδ; then Eδ contains a tubeTδ
e(ae) for every

e ∈ Pn−1. Let {ej}Mj=1 be a maximalC0-separated subset ofPn−1, and also regard{ej}Mj=1

as a set on the sphereSn−1 by choosing (arbitrarily) one of the two possible directions.
Then, in the notation of Chapter 4, the spherical capsCδej

are disjoint, providedC0 is large
enough. Also, letτ j be the tube obtained by dilatingTδ

ej
(aej ) by a factor ofδ−2. Then, in the

notation of Chapter 4,τ j = τδej
(δ−2aej ). By the Knapp counterexample, there are functions

f j : Sn−1→ C such that
suppf j ⊂ Cδej

, ‖ f j‖∞ ≤ 1,
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and
|( f jdσ)ˇ(x)| ≥ C−1δn−1, ∀x ∈ τ j . (5.3)

Now suppose{ε j}Mj=1 are±1’s. Then

∥∥∥∥
M∑

j=1

ε j f j

∥∥∥∥
L∞(Sn−1)

≤ 1,

so, by the restriction conjecture

∥∥∥∥
M∑

j=1

ε j( f jdσ)ˇ
∥∥∥∥

q
≤ Cq, ∀q > 2n

n− 1
. (5.4)

On the other hand

E
(∥∥∥∥

M∑

j=1

ε j( f jdσ)ˇ
∥∥∥∥

q

q

)
=

∫
E
(∣∣∣∣

M∑

j=1

ε j( f jdσ)ˇ(x)
∣∣∣∣
q)

dx

(by Khinchin) &
∫ ( M∑

j=1

|( f jdσ) (̌x)|2
)q/2

dx

(by (5.3)) & δ(n−1)q
∫ ∣∣∣∣

∑
χτ j (x)

∣∣∣∣
q/2

dx

(x 7→ δ2x) = δ(n−1)q−2n
∫ ∣∣∣∣

∑
χT j (x)

∣∣∣∣
q/2

dx,

where we have setT j = Tδ
ej

(aej ). Combining this with (5.4) we conclude that
∥∥∥∥
∑

χT j

∥∥∥∥
q/2
≤ δ4n/q−2(n−1), ∀q > 2n

n− 1
.

On the other hand

1 '
M∑

j=1

|T j | =
∥∥∥∥
∑

χT j

∥∥∥∥
1
≤

∥∥∥∥
∑

χT j

∥∥∥∥
q/2
|Eδ|1−2/q ≤ Cqδ

4n/q−2(n−1)|Eδ|1−2/q,

which means
|Eδ| & δ2n−2q/(q−2)

or
dimE ≥ 2q/(q− 2)− n.

As q↘ 2n/(n− 1), the number 2q/(q− 2)− n→ n, so this finishes the proof. �

29



CHAPTER 5. KAKEYA SETS

Problems
1. If you know what Hausdorff dimension is, then show that

Hausdorff dimension ofE ≤ dimE

for all compact setsE, and that strict inequality can hold.

2. (a) Suppose 0< λ ≤ 1, E ⊂ Rn and the following holds: for anye ∈ Pn−1, there is a tube
Tδ

e(a) such that|E ∩ Tδ
e(a)| ≥ λ|Tδ

e(a)|. By generalizing the argument in Proposition 5.3,
show that then|E| ≥ C−1δ(n−1)/2λ(n+1)/2.
(b) A further generalization is possible. Supposeo < λ ≤ 1, E ⊂ Rn, Ω ⊂ Pn−1 and
for eache ∈ Ω there is a tubeTδ

e(a) such that|E ∩ Tδ
e(a)| ≥ λ|Tδ

e(a)|. Then |E| ≥
C−1(δn−1|Ω|)1/2λ(n+1)/2.

3. Let f : Rn→ R. TheKakeya maximal functionf ∗δ : Pn−1→ R, is defined by

f ∗δ (e)
def
= sup

a

1

|Tδ
e(a)|

∫

Tδ
e(a)
| f |.

There is another formulation of the Kakeya problem in terms of this maximal function,
namely, that the estimate

∀ε ∃Cε : ‖ f ∗δ ‖Lp(Pn−1) ≤ Cεδ
−ε‖ f ‖p, wherep = n, (5.5)

should hold.
(a) Show that this estimate, if true, would imply that Besicovitch sets have dimensionn.
(b) Show that the estimate (5.5) cannot hold ifp < n (hint: let f be the characteristic
function of a disc of radiusδ).
(c) Using the preceding problem, one can prove the following estimate forf ∗δ .

‖ f ∗δ ‖q ≤ Cδ−(n/p−1)‖ f ‖p,
if q = (n − 1)p′ and p < (n + 1)/2 (hint: interpolate between a restricted weak type
L(n+1)/2→ Ln+1 estimate and anL1→ L∞ estimate).
(d) Using the proof of Proposition 5.4, it is possible to verify the conjecture (5.5) when
n = 2.

4. Let f : Rn→ R. TheX-ray transformof f is defined by

X f(e, y) =

∫

le

f (x + y)dL1(x), e ∈ Sn−1, y ∈ l⊥e ,

wherele is the line through the origin in thee direction, andl⊥e is the orthogonal comple-
ment ofle. Christ [5] and Drury [9] proved the following estimate.

‖X f‖Ln+1 . ‖ f ‖ n+1
2
, (5.6)

where

‖X f‖n+1
Ln+1 =

∫

Sn−1

∫

l⊥e
|X f(e, y)|n+1dLn−1(y)dσ(e).

Show that (5.6) implies Proposition 5.3.
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CHAPTER 6

Fefferman’s counterexample

An Lp multiplier is a functionmsuch that

‖(mf̂ )ˇ‖p ≤ C‖ f ‖p ∀ f ∈ S,
and itsLp multiplier norm‖m‖Mp is the smallest possibleC in the above inequality. When
p = 2, it is clear by the Plancherel theorem that any bounded function is anLp multiplier,
with ‖m‖Mp ≤ ‖m‖∞ (in fact, equality holds).

The characteristic function of the interval [−1,1] is anLp multiplier. This follows from
the boundedness of the Hilbert transform. Therefore, it seems natural to conjecture that,
in any dimension, the characteristic function of the unit disc should be anLp multiplier as
well. It is a striking fact that the conjecture turns out to be false. The counterexample is
due to C. Fefferman [11].

P 6.1. If p , 2 andn ≥ 2, then the characteristic function of the unit disc is
not anLp multiplier.

This is based on the the existence of Besicovitch sets, more precisely on Proposition
5.2. One represents the operator as a convolution operator (χ f̂ )ˇ= χ̌ ∗ f , whereχ = χB(0,1),
and then uses the “sliding” argument plus asymptotics for ˇχ, i.e., the following.

L 6.1. When|x| is large,

χ̌(x) = 2 cos(2π(|x| + (n + 1)/8))|x|−(n+1)/2 + B(x),

where|B(x)| ≤ C|x|−(n+3)/2.

P. See [13]. �

The Knapp counterexample is replaced by the following.

L 6.2. Suppose (inR2), τ = τδe(a) (notation as in Chapter 5) for somea, and let

τ̃ = τδe(a + C0δ
−2e)

be the tube obtained by translatingτ along its axis by distanceC0δ
−2 whereC0 is a large

constant. Then there is a Schwartz functiong with

suppg ⊂ τ̃ and‖g‖∞ ≤ 1,

such that
|χ̌ ∗ g(x)| ≥ C−1 for all x ∈ τ.

P. We assume for simplicity thate = (1,0),a+C0δ
−2e = 0, and we fix a Schwartz

functionψ supported in ˜τ with the following properties.

‖ψ‖∞ ≤ 1,
∫

ψ ≥ C−1δ−3 and
∥∥∥∥∥

dψ
dx1

∥∥∥∥∥∞
≤ Cδ2.
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CHAPTER 6. FEFFERMAN’S COUNTEREXAMPLE

Such a function may be obtained as follows: Start with any nonnegative Schwartz function
φ supported in the unit square [−1/2,1/2] × [−1/2,1/2] and consider the functionψ(x) =

φ(δ2x1, δx2). The estimates follow from the chain rule and change of variables formula.
Now let

g(y) = e2πi(y1+(n+1)/8)ψ(y).

We must check that|χ̌ ∗ g| is bounded below onτ. We have

χ̌ ∗ g(x) =

∫

τ̃

e−2πi(|x−y|+(n+1)/8)|x− y|−3/2g(y)dy

+

∫

τ̃

e2πi(|x−y|+(n+1)/8)|x− y|−3/2g(y)dy+

∫

τ̃

B(x− y)g(y)dy (6.1)

We claim that the last two terms are small and the first term is large. In fact, ifx ∈ τ and
y ∈ τ̃ then|x− y| ≥ δ2, so|B(x− y)| . δ5, hence the last term is. δ5|τ̃| ' δ2. Next, consider
the first term. It is ∫

τ̃

e2πi(y1−|x−y|)|x− y|−3/2ψ(y)dy (6.2)

If x ∈ τ, y ∈ τ̃, theny1 > x1 + (C0 − 1)δ−2, |y2| < δ−1, |x2| < δ−1. So

|x− y| =
√

(y1 − x1)2 + (y2 − x2)2 = (y1 − x1)

√
1 +

(y2 − x2)2

(y1 − x1)2

= y1 − x1 + E,

where

|E| ≤ 1
2

(y2 − x2)2

y1 − x1
< 2(C0 − 1)−1.

Accordingly, ∣∣∣∣∣
∫

τ̃

e2πi(x1−E)|x− y|−3/2ψ(y)dy
∣∣∣∣∣ &

∫

τ̃

|x− y|−3/2ψ(y)dy,

providedC0 is large enough, so that cos(2(C0 − 1)−1) ≥ 1/2. Since∫

τ̃

|x− y|−3/2ψ(y)dy& δ−3
∫

ψ(y)dy' 1,

we conclude that the first term in (6.1) is≥ C−1 in absolute value. The second term is∫

τ̃

e2πi(y1+|x−y|)|x− y|−3/2ψ(y)dy. (6.3)

Note that
∂

∂y1
(|x− y| + y1) =

y1 − x1

|y− x| + 1 ≥ 1,

wheny ∈ τ̃, x ∈ τ. Hence, if we integrate by parts with respect toy1 we obtain

(6.3) =
1

2πi

∫

τ̃

∂

∂y1
e2πi(|x−y|+y1)

(
1 +

y1 − x1

|y− x|
)−1

|x− y|−3/2ψ(y)dy1dy2

= − 1
2πi

∫

τ̃

e2πi(|x−y|+y1) ∂

∂y1


(
1 +

y1 − x1

|y− x|
)−1

|x− y|−3/2ψ(y)

 dy1dy2.

One can check that ∣∣∣∣∣∣∣
d

dy1


(
1 +

y1 − x1

|y− x|
)−1

|x− y|−3/2ψ(y)


∣∣∣∣∣∣∣ ≤ Cδ5,
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CHAPTER 6. FEFFERMAN’S COUNTEREXAMPLE

whenx ∈ τ, y ∈ τ̃. We conclude that|(6.3)| ≤ Cδ5|τ̃| ≤ Cδ2. Hence (6.1) is a sum of three
terms, one of which is≥ constant, and the other two are≤ Cδ2. It follows that |χ̌ ∗ g| is
bounded below by a constant onτ, providedδ is small. �

P  P 6.1 (p > 2, n = 2). Let δ = 1/100N−N, whereN is large. By
Proposition 5.2 and a dilation by a factor ofδ−2, we can find' 1/δ rectanglesτ j with
dimensionsδ−2 × δ−1, so that{τ̃} are disjoint and|⋃ j τ j | . δ−4/N. Choose a funtiong j

corresponding toτ j by Lemma 6.2, and consider
∑
ε jg j where eachε j is ±1. Then, for

any choice ofε j ’s, we have
∥∥∥∥
∑

j

ε jg j

∥∥∥∥
p

p
=

∑

j

‖g j‖pp ≤
1
δ
δ−3 = δ−4. (6.4)

On the other hand, (χ f̂ )ˇ= χ̌ ∗ f , and

E
(∥∥∥∥

∑

j

ε j χ̌ ∗ g j

∥∥∥∥
p

p

)
=

∫
E
(∣∣∣∣

∑

j

ε j χ̌ ∗ g j(x)
∣∣∣∣
p)

dx

(by Khinchin) '
∫ (∑

j

|χ̌ ∗ g j(x)|2
)p/2

dx

&
∫ ∣∣∣∣

∑

j

χτ j (x)
∣∣∣∣
p/2

dx.

By Hölder’s inequality, we have

δ−4 '
∑

j

|τ j | =
∥∥∥∥
∑

j

χτ j

∥∥∥∥
1
≤

∣∣∣∣
⋃

j

τ j

∣∣∣∣
1−2/p∥∥∥∥

∑

j

χτ j

∥∥∥∥
p/2
,

and therefore ∥∥∥∥
∑

j

χτ j

∥∥∥∥
p/2

p/2
≥ δ−4Np/2−1.

So, for some choice of{ε j}, ∥∥∥∥χ̌ ∗
∑

j

ε jg j

∥∥∥∥
p

p
& δ−4Np/2−1.

Together with (6.4), this implies‖χ‖Mp & N1−2/p, and sincep > 2, this can be made
arbitrarily large by choosingN appropriately. The proof is complete. �

Remark. The characteristic function of a regular polygon in the plane is anLp multiplier.
Its norm, however, tends to infinity (logarithmically) as the number of the sides of the
polygon goes to infinity. This was shown by Córdoba [8] using a Kakeya-type argument.
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CHAPTER 7

Some topics from combinatorial geometry

In this chapter we consider a discrete problem which should clearly be related to the
Kakeya problem.

D. A line l is said to be incident to a pointp if p lies onl.

Given points{p j}kj=1 and lines{l i}ni=1, how many pairs (i, j) can there be such thatl i is
incident top j?

T 7.1 (Szemeŕedi-Trotter). In R2, the number of incidences betweenk points
andn lines is≤ C((kn)2/3 + k + n).

We will give a proof from [6]. First we discuss a certain partial result.

L 7.1. Assume(ai j ) is ann×m (0,1)-matrix and that(ai j ) has no2×2 submatrix
consisting of 1’s. Then(ai j ) contains at mostC(mn1/2 + n) 1’s altogether (The assumption
means that there do not existi1, i2, j1, j2 such thatai1 j1 = ai2 j1 = ai1 j2 = ai2 j2 = 1).

P. Let
I = |{(i, j) : ai j = 1}|, (total number of 1’s),

and
mi = |{ j : ai j = 1}|, (number of 1’s in thei-th row).

Let
J = {(i, j, k) : j , k andai j = aik = 1}.

We will countJ in two different ways:

|J| =
∑

i

mi(mi − 1) ≥
∑

i:mi≥2

1
2

m2
i ,

since for fixedi, there aremi(mi − 1) choices forj , k with ai j = aik = 1. On the other
hand, if j andk have been chosen, there can be at most one choice fori, otherwise we
would violate the assumption. Therefore

|J| ≤ m(m− 1).

Hence ∑

i:mi≥2

m2
i ≤ 2m2,

and then

I =
∑

i:mi≤1

mi +
∑

i:mi≥2

mi ≤ n + n1/2


∑

i:mi≥2

m2
i


1/2

≤ n + (2n)1/2m.

�
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Remark. If instead of “no 2× 2 submatrix”, we assume “nos× s submatrix”, then the
bound isI ≤ Cs(mn2−1/s + n) and is proved the same way, except that one now defines

Js = {(i, j1, . . . , js) : j1, . . . , js are distinct andai j1 = · · · = ai j s = 1},
and uses Ḧolder’s inequality instead of Cauchy-Schwarz at the last step. We will need the
cases = 3 later on.

C 7.1. The number of incidences betweenk points andn lines in the plane
is ≤ C(kn1/2 + n). In particular, If k = n this givesI ≤ Cn3/2, whereas Szemerédi-Trotter
givesI ≤ Cn4/3.

P. Two lines intersect in at most one point, so if we form a (0,1)-matrix via

ai j =


1, if p j ∈ l i
0, otherwise

then (ai j ) has no 2× 2-submatrix of 1’s. Therefore, by Lemma 7.1, it has. kn1/2 + n 1’s
altogether. �

In [6], this type of bound is called aCanham threshold. Lemma 7.1 is sharp (when
n ≥ m; if n ≤ m one does better by reversing the roles ofn andm). Here is an example
whenn = m (the same example works in general). To describe it, we need the following
number theoretic result.

L 7.2. Letn = p2, wherep is an odd prime. Then there is a subsetΛ ⊂ {0, . . . , n−
1} such that

(i) |Λ| = n1/2.
(ii) The numbersλ + µ with λ, µ ∈ Λ andλ ≤ µ are all distinct.

P. Let [m]p be the remainder on dividingmby p. Defineλk = kp+ [k2]p, 0 ≤ k ≤
p−1, andΛ = {λk}p−1

k=0 . Then property (i) is obvious. For (ii) suppose thatλi +λ j = λk +λl .
Taking modp, we see that

i2 + j2 = k2 + l2 mod p,

hencei + j = k + l. Then

i2 − k2 = l2 − j2 mod p,

i − k = l − j mod p.

So, by dividing modp, we get

i + k = l + j mod p (unlessi = k).

Then

i − k = l − j mod p,

i + k = l + j mod p,

so

i = l mod p,

and thereforei = l. �
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Now, letn = p2 andΛ = {λk}p−1
k=0 be the set given by Lemma 7.2. Define{ai j }ni, j=1 via

ai j =


1, if i − j ∈ Λ

0, if i − j < Λ

Then, (ai j ) has no 2×2 submatrix of 1’s: suppose thati1− j1 = λ1, i1− j2 = λ2, i2− j2 = λ3,
i2 − j2 = λ4, with i1 , i2 and j1 , j2. Thenλ1 + λ4 = λ2 + λ3 contradicting the distinct
sums property ofΛ. On the other hand, suppose we fixi with i ≤ p2. Thenaii+λ for any
λ ∈ Λ. So thei-th row of the matrix (ai j ) hasp 1’s and there are at leastp3 1’s altogether,
with p3 = n3/2.

One therefore needs a different type of argument to prove Szemerédi-Trotter. This will
be thecell decompositiontechnique from [6]. First, some terminology.

• A line arrangementis a family of non vertical linesl1, . . . , lr in R2.
• A vertexof the arrangement is a point where two or more lines intersect.
• A cell is a polygon inR2 (possibly unbounded) with no more than four sides. We

take a cell to be an open set.
• A triangulation of a line arrangementis a decomposition of the components of
R2 \ {l1, . . . , lr } into cells together with their boundaries.

It is clear that, in general, it will require at leastr2 cells to triangulate an arrangement ofr
lines, since ther lines may splitR2 into r2 regions. For example, considerr/2 lines parallel
to each of two given lines. Evidently, there are (r/2 + 1)2 complementary components.

L 7.3. It is possible to triangulate a line arrangement using. r2 cells. This can
be done by an algorithm

{l1, . . . , lr } −→ 4({l1, . . . , lr })
where4({l1, . . . , lr }) is the set of cells forming a triangulation. Furthermore, this algorithm
has the following property: each cell of4({l1, . . . , lr }) is also a cell of4({l j1, . . . , l j4}) for
some 4-element subset{l j1, . . . , l j4} ⊂ {l1, . . . , lr }.

P. We let {pk} be the set of vertices of the arrangement, and for eachk, we form
the maximal segmentsm+

k andm−k which extend vertically up and down frompk and do
not intersect any linel j . These segments together with thel j ’s subdivideR2 into polygons.
Each polygon has≤ 4 sides. We leave the proof to the reader, the idea is that each polygon
has a “top” and a “bottom”. Also, each polygon has at most two vertical sides, i.e., four
sides in all.

The last property in the statement of the Lemma is then clear, since in order to find
l j1, . . . , l j4 to produce a cellΩ in the triangulation, we need only choose the lines from the
top and bottom ofΩ and two other lines whose intersection with the top and bottom yields
vertices whose corresponding segmentsm±k form the vertical sides. We have to show that
4({l1, . . . , lr }) contains. r2 cells. However, there are at mostr2 vertices, hence at most 2r2

vertical segmentsm±k . Each can be part of the boundary of at most two cells, so there are
. 4r2 cells which have a vertical boundary line. How many cells can there be which do
not have a vertical boundary line? One can see that ifΩ has no vertical boundary line, then
the boundary ofΩ is contained in at most two linesl j . Furthermore, for each pair of lines
l j1, l j2 there are at most two cells whose boundary is contained inl j1 ∪ l j2, and therefore the
number of cells with no vertical boundary line is at most twice the number of pairs of lines
l j , i.e., 2r2. This finishes the proof. �

If Ω ⊂ R2 is an open set andl is a line, then we say thatl entersΩ if l ∩Ω , ∅.
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L 7.4. LetC = {l1, . . . , ln} be a set ofn lines, and fixr < n. Then it is possible to
subdivideR2 into. r2 cells in such a way that no more thanA(n logn)/r linesl j ∈ C enter
each given cell. In fact, if we choose at randomr of the linesl j and apply Lemma 7.3, then
with probability≥ 3/4 (say) we obtain a cell decomposition with these properties.

P. First of all, there are clearly at mostCn4 open setsΩ ⊂ R2 which can be a cell
in the decomposition obtained by choosing four of the linesl j and applying the algorithm
of Lemma 7.3 (there aren4 choices of the four lines, and for each such choice, there are a
bounded number of cells).

By the last statement of Lemma 7.3, there are at mostCn4 open sets which can be a
cell in the decomposition obtained by choosingr of the linesl j and applying the algorithm.
For each such setΩ let P(Ω) be the probability thatΩ is actually a cell when the lines are
chosen at random, and letn(Ω) be the cardinality of the set of lines inC which enterΩ.
Then we claim that

P(Ω) ≤
(
1− n(Ω)

n

)r

,

and in fact this is clear, since in order forΩ to be a cell, it is necessary that none of the
n(Ω) lines which enterΩ belongs to the random sample. Therefore, ifν is a fixed number,
then

Prob(n(Ω) ≥ ν, for someΩ ∈ 4({l1, . . . , lr })) ≤
∑

Ω:n(Ω)≥ν
P(Ω)

≤
∑

Ω:n(Ω)≥ν

(
1− n(Ω)

n

)r

≤ Cn4
(
1− ν

n

)r
,

which is small ifν = A(n logn)/r with A large. �

P   S́-T . We will assumek = n and will prove only
a slightly weaker statement: LetI be the number of incidences betweenn lines {l i}ni=1 and
n points{p j}nj=1. Then

I ≤ Cn4/3(logn)1/3, (instead ofI ≤ Cn4/3).

The assumptionk = n is easily removed using the same argument. However, to avoid
losing a logarithmic factor, one needs a refinement of Lemma 7.4.

Let r = n1/3(logn)1/3 and apply Lemma 7.4. We may assume that none of the pointsp j

lies on the vertical cell boundaries-otherwise we change the definition of “vertical” slightly.
Let {Ωk}Rk=1 be the resulting cell decomposition,R≤ Cr2, and put

I (Ωk) = cardinality({(l i , p j) : p j ∈ l i , andp j ∈ Ωk}).
Also, let l i1, . . . , l ir be the lines in the random sample, and

I (l ik) = cardinality({(l i , p j) : p j ∈ l i , andp j ∈ l ik}).
Then it is clear that

I ≤
R∑

k=1

I (Ωk) +

r∑

k=1

I (l ik).

Now by the “Canham threshold”, i.e., Corollary 7.1, we have

I (Ωk) . n1/2
k mk + nk,

where
mk = # of pointsp j which belong toΩk,
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nk = # of linesl i which enterΩk.

Sincenk ≤ A(n logn)/r, we conclude that
R∑

k=1

I (Ωk) .
R∑

k=1

(
n logn

r

)1/2

mk +
n logn

r
R

.
(
n logn

r

)1/2

n + nr logn.

Also, for eachk we have
I (l ik) ≤ n + (n− 1)

since, of course,l ik is incident to≤ n pointsp j , and any other linel i is incident to at most
one point onl ik. Therefore ∑

k

I (l ik) ≤ (2n− 1)r.

We conclude that

I .
(
n logn

r

)1/2

n + nr logn + nr . n4/3(logn)1/3,

by choice ofr. �

The following example of Erd̈os shows that the theorem is sharp. Fixn and consider
then2 linesl connecting a point (0, k0), 1 ≤ k0 ≤ n to a point (1, k1), 1 ≤ k1 ≤ n, herek0 and
k1 are integers. The equations of the lines arey = xk0 + (1− x)k1, hence ifx is a rational
with denominatorq, then so isy. It follows that there are≤ nq possibilities fory. Now
fix a numberB. There areq integers betweenB and 2B and for each of these, there are
' B rationals with denominatorq. Accordingly, there areB2 rationals with denominator
betweenB and 2B. Consider the set of' B3n points of the form (p/q, y) and incident to
at least one linel. Each line is incident to' B2 such points, since the line must contain a
point with any givenx coordinate. Hence there are' B2n2 incidences between the linesl
and the pointp. SinceB2n2 = (B3nn2))2/3, we get the result.

Remarks. (1) In the situation of the Kakeya problem, the idea of the preceding construc-
tion can be used to show the following: For any 0< α < 1, there is a compact setE ⊂ R2

with dimE ≤ 1/2(1+ 3α) such that for everye ∈ Sn−1, there is linel in theedirection with
dim(E ∩ l) ≥ α. It is an interesting question whether the number 1/2(1+ 3α) is sharp, and
if not, what is the sharp number to replace it. Various partial results can be proved without
much difficulty, for example, dimE ≥ 1/2 and dimE ≥ 2α.
(2) There is a famous question called the “unit distance problem” which can be stated in
the following (equivalent) ways.

(*) How many incidences can there be betweenn points in the plane andn circles of
radius 1?

(**) Given n points pi in the plane, how many pairs (pi , p j) can there be such that
|pi − p j | = 1?

The proofs of the Szemerédi-Trotter theorem also apply to this problem and give the
boundCn4/3. However, this bound is not known to be sharp. In fact, Erdös conjectured
Cεn1+ε.
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Besicovitch-Rado-Kinney sets

A BRK (Besicovitch-Rado-Kinney) set is a compact set in the plane with measure
zero, containing a circle of every radius between 1 and 2. Such sets can be constructed , as
was done by Besicovitch-Rado and by Kinney, by modifying the construction of Besicov-
itch sets, and it is also possible to prove they exist by using the existence of Besicovitch
sets, see [10] and [17]. The latter possibility may be understood in terms of the fact that
lines are just circles passing through a fixed point if one works on the sphere.

One can ask the same dimension question in this context. We will discuss the follow-
ing result from [22].

P 8.1. Any BRK set has dimension 2.

This also has a maximal function formulation. Here we want to average overδ-
neighborhoods of circles, and the role played by the direction of a line in the case of the
Kakeya problem is now played by the radius of the circle. Therefore, iff : R2 → R and
δ > 0, then we defineMδ f : [1,2]→ R by

Mδ f (r) = sup
x

1
|Cδ(x, r)|

∫

Cδ(x,r)
| f |,

whereCδ(x, r) = {y : r − δ/2 < |x− y| < r + δ/2}.
The existence of BRK sets shows that there can be no estimate of the form

‖Mδ f ‖Lp([1,2]) ≤ C‖ f ‖p
unlessp = ∞. Therefore, we look for an estimate

∀ε ∃Cε : ‖Mδ f ‖Lp([1,2]) ≤ Cεδ
−ε‖ f ‖p, (?)p

and (?)p for any p < ∞ will suffice to prove Proposition 8.1. To find the right value forp,
considerf = χRδ , whereRδ is a rectangle with dimensionsδ1/2× δ. It is easy to see that for
anyr ∈ [1,2] there is a pointx such thatCδ(x, r) contains a fixed portion ofRδ, i.e.,

|Cδ(x, r) ∩ Rδ| ≥ C−1|Rδ|.
Therefore

Mδ f (r) &
|Rδ|

|Cδ(x, r)| ' δ
1/2,

and if (?)p holds, then

δ1/2 ' ‖Mδ f ‖p ≤ Cεδ
−ε|Rδ|1/p = Cεδ

−ε+3/(2p),

i.e., p ≥ 3.

P 8.2. (?)3 holds.
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The idea of the proof is as follows. There is a related discrete problem which can be
understood using the techniques of [6] described in Chapter 7. Then, one passes to the
continuous problem by replacing circles with annuli and keeping track of various error
terms. We will mainly discuss the discrete problem, since the actual proof of Proposition
8.2 is quite technical.

Let us say that two circlesC(x, ρ) = {y : |x − y| = ρ} and C(x̃, ρ̃) are internally
tangent(writtenC(x, ρ) ‖ C(x̃, ρ̃)) if they are tangent and one is contained in the bounded
component of the complement of the other. Analytically, this means that|x− x̃| = |ρ − ρ̃|.

One can ask the following question: Given a set ofn circlesC = {C(xi , ρi)}ni=1, how
many pairsC(xi , ρi) andC(x j , ρ j) can there be so thatC(xi , ρi) ‖ C(x j , ρ j) ?

This question has the obvious answern2, since one can consider the “shell” configu-
ration, where any two circles are tangent. In order to get a meaningful question, one has to
add an assumption which rules out this type of configuration.

Tangency counting problem.WithC = {C(xi , ρi)}ni=1, assume that no three circlesC(xi , ρi)
are tangent at a point. Then how many pairsC(xi , ρi) and C(x j , ρ j) can there be with
C(xi , ρi) ‖ C(x j , ρ j) ?

We do not know the answer but will prove the following which is what is needed for
Proposition 8.2.

P 8.3. For anyε > 0, there is a bound of the formCεn3/2+ε in the tangency
counting problem.

The proof is closely related to [6]. Observe to begin with, that one can think of a circle
C(xi , ρi) in any of three ways:

• As a circle!
• As a point (xi , ρi) ∈ R3.
• As a light coneΓ(xi , ρi) = {(x, ρ) : |x− xi | = |ρ − ρi |} ⊂ R3.

Note that

C(xi , ρi) ‖ C(x j , ρ j)⇔ (xi , ρi) is incident toΓ(x j , ρ j).

Therefore, our problem is an incidence problem between points and surfaces inR3, and we
need the 3-dimensional version of the technique in [6], which is in the same paper.

First, the Canham type bound, which isn5/3 in this case.

L 8.1. Suppose that{C(xi , ρi)}ni=1 and{C(y j , sj)}kj=1 are collections of circles and

that no threeC(xi , ρi)’s are tangent at a point. Then there are. kn2/3 + n pairs (i, j) such
thatC(xi , ρi) ‖ C(y j , sj).

P. The “Circles of Appolonius” says that ifC(x1, ρ1), C(x2, ρ2) andC(x3, ρ3) are
not tangent at a point, then there are at most two circles which are internally tangent to all
three. In other words, the (0,1)-matrix

ai j =


1, if C(xi , ρi) ‖ C(y j , sj)

0, otherwise

has no 3× 3 submatrix of 1’s. Now use Lemma 7.1. �

Next, the cell decomposition. Acone arrangementis a family ofr light conesΓ(xi , ρi) ⊂
R3. A cell is an open setΩ ⊂ R3 whose bounadry is contained in the union of≤ 6 surfaces
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which are algebraic of degree≤ 2. We want to triangulate the cone arrangement, i.e., sub-
divide the components ofR3 \⋃i Γ(xi , ρi) into cells, using as few cells as possible. At least
r3 cells are needed, sinceR3 \⋃i Γ(xi , ρi) may have' r3 components.

L 8.2. It is possible to triangulate a cone arrangement using. r3 log r cells.
In fact, there is an algorithm for doing this, and if{Γ(xi , ρi)}ni=1 is a family of light cones,
r < n, and this algorithm is applied to a random sample ofr of theΓ(xi , ρi)’s, then with
probability at least3/4, at mostA(n logn)/r Γ(xi , ρi)’s enter any given cell.

P. This is similar to the proof of Lemma 7.4, see [6]. �

P  P 8.3. Let r = n1/4 and{Γ(x jk , ρ jk)}rk=1 be a suitable random sam-
ple. As with the Szemerédi-Trotter theorem, we may assume that each point (xi , ρi) lies
either on one of the cones in the random sample, or else in one of the cells from Lemma
8.2. We let

C∗ = {(xi , ρi) : (xi , ρi) ∈ Γ(x jk , ρ jk), for somek},
Ck = {(xi , ρi) : (xi , ρi) ∈ Ωk}.

Claim. With probability at least 3/4, |C∗| ≤ C0rn2/3.

P   .

E(|C∗|) ≤
∑

j

Prob(j ∈ { j1, . . . , jr })|{C(xi , ρi) : C(xi , ρi) ‖ C(x j , ρ j)}|

=
r
n

∑

j

|{C(xi , ρi) : C(xi , ρi) ‖ C(x j , ρ j)}|

.
r
n

n5/3,

by Lemma 8.1 �

Now, let us denote

I (C,C) = |{(i, j) : C(xi , ρi) ‖ C(x j , ρ j}|,
and

I (C∗,C∗) = |{(i, j) : (xi , ρi), (x j , ρ j) ∈ C∗ andC(xi , ρi) ‖ C(x j , ρ j)}|.
We claim that

I (C,C) ≤ C1n3/2 log2 n + I (C∗,C∗). (8.1)

Namely, let
nk = # of Γ(xi , ρi) which enterΩk,

mk = |Ck|,
Ik = |{(i, j) : (xi , ρi) ∈ Ck andC(xi , ρi) ‖ C(x j , ρ j)}|.

Then

I (C,C) ≤
R∑

k=1

Ik + I (C∗,C∗)

.
R∑

k=1

mkn
2/3
k + nk + I (C∗,C∗)

.
(
n logn

r

)2/3 R∑

k=1

mk +
n logn

r
R+ I (C∗,C∗)
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. n3/2 log2 n + I (C∗,C∗),
by choice orr. This proves (8.1). Because of the claim above, we can use induction to
finish the proof. We will show thatI (C,C) ≤ An3/2 log2 n for a suitable constantA. If A
is large, then this is obvious for small values ofn. Suppose it has been proved forn ≤ n0.
We will prove it for n ≤ (n0/C0)12/11, whereC0 is the constant in the claim (note that this
number is> n0 + 1 if n0 is large, so this completes the induction). Since|C∗| ≤ C0n11/12,
the inductive hypothesis implies

I (C∗,C∗) ≤ A|C∗|3/2 log2 |C∗| ≤ A(C0n11/12)3/2 log2(C0n11/12) ≤ n3/2,

if n0 is large. So, inequality (8.1) implies

I (C,C) ≤ C1n3/2 log2 n + n3/2,

and now we are done, providedA has been chosen≥ 2C1. �

Now, a brief, heuristic sketch of the proof of Proposition 8.1. Roughly speaking, two
annuliCδ(x, ρ) andCδ(x̃, ρ̃) can intersect either tangentially, in which case

|Cδ(x, ρ) ∩Cδ(x̃, ρ̃)| ' δ3/2,

or transversely, where we have

|Cδ(x, ρ) ∩Cδ(x̃, ρ̃)| ' δ2,

the former case being “worse” sinceδ3/2 > δ2.
Now suppose thatE is a BRK set. Let{p j}Mj=1, M ' 1/δ, be a maximalδ-separated

subset of [1,2], and for eachj, choose an annulusCδ(x j , ρ j) ⊂ Eδ. Let

m(x) =
∑

j

χCδ(x j ,ρ j )(x),

and defineµ (“multiplicity”) to be the smallest integer such that for 1/2M choices ofj, we
have

|Cδ(x j , ρ j) ∩ {x : m(x) ≥ µ}| ≤ 1
2
|Cδ(x j , ρ j)|.

L 8.3. In order to prove Proposition 8.1, it suffices to prove that

∀ε ∃Cε : µ ≤ Cεδ
−ε.

P. Let
Ẽδ = {x ∈ Eδ : m(x) ≤ µ}.

Then
|Eδ| ≥ |Ẽδ| ≥ µ−1

∑

j

|Cδ(x j , ρ j) ∩ Ẽδ| & µ−1Mδ ' µ−1,

and the lemma follows. �

Now, we have

µ ' µδM .
∑

j

∫

Cδ(x j ,ρ j )
m(x)dx =

∑

i, j

|Cδ(xi , ρi) ∩Cδ(x j , ρ j)|.

Pretend that two circles must be either tangent, or sufficiently transverse, and that theδ3/2

andδ2 numbers for the measure of the intersection can be justified. Then∑

i, j

|Cδ(xi , ρi) ∩Cδ(x j , ρ j)| . I (C,C)δ3/2 + M2δ2,
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whereC = {C(x j , ρ j)}Mj=1. If we further pretend thatC satisfies the “no three circles tangent
at a point” condition, then we can apply Proposition 8.3 to obtain∑

i, j

|Cδ(xi , ρi) ∩Cδ(x j , ρ j)| . δ−(3/2+ε)δ3/2 + δ−2δ2 . δ−ε,

and the “proof” is complete.
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Averages over circles

Let σ be linear Lebesgue measure on the unit circle in the plane. There is a standard
sharp estimate for the corresponding averaging operator. Namely

‖σ ∗ f ‖3 . ‖ f ‖3/2.
Equivalently, ifσδ is normalized planar measure on the annulusCδ(0,1), then

‖σδ ∗ f ‖3 . ‖ f ‖3/2,
where the implicit constant is independent ofδ.

This estimate may be proved using the Fourier transform and complex interpolation
(see [20]). We will show that counting arguments in the spirit of Chapter 7 can be used to
obtain the corresponding restricted weak-type inequality.

P 9.1. Let E be a subset of[0,1] × [0,1]. For λ > 0 define

F = {x : (χE ∗ σδ)(x) > λ}.
Then

|F| . λ−3|E|2.
P. The argument we present is from [19]. Divide [0,1] × [0,1] into a family of

squaresQ j of sidelengthδ and for each integerk let

Jk = { j : 2−kδ2 < |Q j ∩ E| ≤ 2−k+1δ2},
Ek =

⋃

j∈Jk

Q j ∩ E, Ẽk =
⋃

j∈Jk

Q j , Fk = {x : (χẼk
∗ σ3δ)(x) ≥ C−12kk−2λ}.

Then, for suitableC, we have
F ⊂

⋃

k

Fk.

Now, for fixedk, let {xi}Mi=1 and{yp}Np=1 be maximalδ-separated sets inFk andẼk respec-
tively, and put

λk = 2kk−2λ.

We can clearly assume thatλk & δ. Also notice that

|Ẽk| ' Nδ2.

Moreover, eachxi satisfies
|C4δ(xi ,1)∩ E| & λkδ, (9.1)

since
Fk ⊂ {x : (χẼk

∗ σ4δ)(x) & λk}.
Now consider the following set of indices.

Q = {(i, p1, p2) : ||xi − yp1| − 1| < δ, ||xi − yp2| − 1| < δ, |yp1 − yp2| > C−1λk − δ}.
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We will count Q in two different ways. For givenp1, p2, there are at mostλ−1
k annuli

Cδ(xi ,1) passing through the pointsyp1 andyp2. Therefore

|Q| . N2λ−1
k .

On the other hand, for everyp1 and everyp2 there is at least one choice ofi. So, (9.1)
implies

|Q| & M(λkδ
−1)2.

Consequently
M . λ−3

k δ2N2,

or, equivalently
|Fk| . λ−3

k |Ẽk|2.
Summing overk we obtain

|F| ≤
∑

k

|Fk| .
∑

k

λ−3
k |Ẽk|2 .

∑

k

λ−32−3kk622k|E|2 . λ−3|E|2.

This completes the proof. �

One can consider the corresponding maximal operator as well. Namely, define

Mδ f : R2→ R

by

Mδ f (x) = sup
1≤r≤2

∫

Cδ(x,r)
f (y)dy.

Then for allp > 2 we have
‖Mδ f ‖p . ‖ f ‖p. (9.2)

This estimate was originally proved by Bourgain [1]. Schlag [18] used techniques in the
spirit of Chapter 8 to obtain a purely combinatorial proof.

Notice that (9.2) has the following geometric consequence, which was proved, inde-
pendently, by Marstrand [16]: Suppose thatB ⊂ R2 is a union of circles of arbitrary radii,
and letA be the set of their centers. Then

|A| > 0⇒ |B| > 0.

This can be shown by reducing to the case whenB is compact and the radii of the circles
are in the interval [1,2], and then lettingf = χBδ in (9.2). The best possible result was
proved in [24]:

dim(A) > 1⇒ |B| > 0.

This is sharp by a construction due to Talagrand, see [17].
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