
THE BOUNDARY OF A SMOOTH SET HAS FULL HAUSDORFF
DIMENSION

THEMIS MITSIS

A. We prove that if the restriction of the Lebesgue measure to a
set A ⊂ [0, 1] with 0 < |A| < 1 is a smooth measure, then the boundary
of A must have full Hausdorff dimension.

1. I

A continuous function f : [0, 1] → R is called smooth in the sense of
Zygmund (see [4]), if

lim
δ→0+

sup
x∈[0,1]
0<h<δ

| f (x + h) + f (x − h) − 2 f (x)|
h

= 0.

The set of all such functions is denoted by λ∗. Similarly, a positive, finite
Borel measure µ on [0, 1] is called smooth in the sense of Zygmund, if its
distribution function H(x) := µ([0, x]) is in λ∗.

It is a standard fact that one can construct smooth measures which are
singular with respect to the Lebesgue measure (see, for example, [1], [2],
[3]).

On the other hand, it is rather surprising that even an absolutely contin-
uous smooth measure may be quite paradoxical. Indeed, a straightforward
modification of the construction in [2] gives the following unexpected re-
sult.

Theorem 1 (Kahane). There exists a set A ⊂ [0, 1] with 0 < |A| < 1, such
that the restriction of the Lebesgue measure to A, that is, the measure µ
defined by µ(E) = |A ∩ E|, is a smooth measure.

Any set with the properties stated in Theorem 1, is called a Z-set (or a
smooth set).

It is reasonable to expect that Z-sets must have a rather complicated geo-
metric structure. Indeed, the purpose of this paper is to show the following.

Theorem 2. Let A ⊂ [0, 1] be a Z-set. Then the Hausdorff dimension of the
boundary of A equals 1.
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2. N

A◦, A and ∂A are, respectively, the interior, the closure and boundary of
the set A.
dim A is the Hausdorff dimension of A.
By the term “interval” we will always mean “open subinterval of [0, 1]”.
If I = (a, b), then we put

Il = (a, (a + b)/2), Ir = ((a + b)/2, b).

Note that A ⊂ [0, 1] is a Z-set if and only if

lim
δ→0+

sup
I⊂[0,1]
|I|<δ

2
|I|
||A ∩ Il| − |A ∩ Ir|| = 0.

Given small positive ε and δ, we say that A ⊂ [0, 1] is a Zε,δ-set if
(1) A is open.
(2) |∂A| = 0.

(3) For each interval I with |I| < δ, we have
2
|I|
||A ∩ Il| − |A ∩ Ir|| < ε.

3. P  T 2

We will need the following auxiliary result. Roughly speaking, it states
that if a Zε,δ-set cuts an interval into two equal pieces (in the measure-
theoretic sense), then inside that interval, we can always find a disjoint
family of smaller intervals which nearly cover the initial interval and so
that the Zε,δ-set still cuts them into two equal pieces.

Lemma 1. Let A ⊂ [0, 1] be a Zε,δ-set. Suppose that I is an interval with
|I| < δ such that |A ∩ I| = 1

2 |I|. Then there exists a disjoint family DI of
subintervals of I so that:

(1) ∀J ∈ DI , |A ∩ J| = 1
2 |J|.

(2) ∀J ∈ DI , |J| ≤ 1
2 |I|.

(3)
∑
J∈DI

|J| ≥ (1 − ε)|I|.

Proof. If |A∩Il| =
1
2 |Il| then we put DI = {Il, Ir} and we are done. So we may

assume, without loss of generality, that |A ∩ Il| <
1
2 |Il|. We will inductively

construct a, possibly finite, sequence {Bi}i of families of intervals in Il with
the following properties:

•
⋃

i Bi is disjoint.
• A ∩ Il ⊂

⋃
i
⋃

B∈Bi
B.

• For each B ∈
⋃

i Bi, we have |A ∩ B| = 1
2 |B|.
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Since A is a Zε,δ-set and |A ∩ I| = 1
2 |I|, we have

(1)
1 − ε

2
|Il| < |A ∩ Il| <

1
2
|Il|.

In particular, 0 < |A ∩ Il| < |Il|, therefore there exists an interval B0 ⊂ Il of
maximum length, such that |A∩B0| =

1
2 |B0|. Notice that if we put (a, b) = B0,

then a, b < A ∩ Il. Otherwise we would be able to find an interval B′0 such
that B0 $ B′0 ⊂ Il and |A ∩ B′0| >

1
2 |B
′
0|. But then, since |A ∩ Il| <

1
2 |Il|,

there would be an interval B′′0 with B′0 $ B′′0 ⊂ Il such that |A ∩ B′′0 | =
1
2 |B
′′
0 |,

contradicting the maximality of the length of B0.
Now let

B0 = {B0},

and

C0 = {K◦ : K is a connected component of Il \ B0 with K◦ ∩ A , ∅}.

If C0 = ∅, then B0 is a cover of A ∩ Il with the required properties and the
process terminates. If C0 , ∅, then for each C ∈ C0 we have |A ∩ C| <
1
2 |C|. Indeed, if this were not the case, we would have |A ∩ (C ∪ B0)◦| ≥
1
2 |(C ∪ B0)◦|, contradicting the maximality of the length of B0 as before.
Therefore, inside each C ∈ C0 we can find an interval BC of maximum
length such that |A ∩ BC | =

1
2 |BC |. We let

B1 = {BC : C ∈ C0},

and

C1 = {K◦ : K is a connected component of Il \
⋃
j≤1

⋃
B∈B j

B with K◦ ∩ A , ∅}.

As before, for each (a, b) ∈ B1, we have a, b < A ∩ Il. Now, if C1 = ∅ then
we terminate the process, if not then we notice that |A ∩ C| < 1

2 |C| for each
C ∈ C1 and continue as above.

Suppose now that Bi and Ci have been defined. By construction, |A∩C| <
1
2 |C| for each C ∈ Ci, so there exists an interval BC ⊂ C of maximum length
such that |A ∩ BC | =

1
2 |BC |. Put

Bi+1 = {BC : C ∈ Ci},

and

Ci+1 = {K◦ : K is a connected component of Il\
⋃
j≤i+1

⋃
B∈B j

B with K◦∩A , ∅}.

This completes the inductive construction.
Clearly,

⋃
i Bi is disjoint, and ∀B ∈

⋃
i Bi, |A ∩ B| = 1

2 |B|. So, the only
thing we have to check is that

⋃
i Bi covers A ∩ Il. If Ci0 = ∅ for some i0,

then, by the definition of Ci0 ,
⋃

i≤i0 Bi covers A ∩ Il. So, assume that Ci , ∅
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for each i. Furthermore, suppose toward a contradiction, that there is an
x ∈ A ∩ Il such that x <

⋃
i
⋃

B∈Bi
B. Let M be the connected component of

A ∩ Il containing x. Since for each (a, b) ∈
⋃

i Bi we have a, b < A ∩ Il, it
follows that M ∩

⋃
i
⋃

B∈Bi
B = ∅. Therefore, there is a strictly decreasing

sequence of intervals Ci ∈ Ci such that M ⊂ Ci. The corresponding intervals
BCi ∈ Bi+1 are disjoint, hence there exists an i0 such that |BCi0

| < |M|. Notice
that |A ∩ M| = |M| and |A ∩ Ci0 | <

1
2 |Ci0 |. Consequently, we can find an

interval M′ with M ⊂ M′ ⊂ Ci0 such that |A ∩ M′| = 1
2 |M

′|. But this
contradicts the maximality of the length of BCi0

.
We conclude that if we let LI =

⋃
i Bi, then∑

J∈LI

|J| = 2
∑
J∈LI

|A ∩ J| ≥ 2|A ∩ Il| > (1 − ε)|Il|,

where the last inequality follows from (1).
Now notice that (A{)◦ is a Zε,δ-set with |(A{)◦∩ I| = 1

2 |I| and |(A{)◦∩ Ir| <
1
2 |Ir|. So, the same procedure yields a disjoint family RI of intervals in Ir

such that |(A{)◦ ∩ J| = 1
2 |J| (hence |A ∩ J| = 1

2 |J|) for each J ∈ RI , and∑
J∈RI

|J| > (1 − ε)|Ir|.

We let DI = LI ∪ RI , and the proof of the Lemma is complete. �

Now, we can proceed with the proof of Theorem 2.
Let A ⊂ [0, 1] be a Z-set. If |∂A| > 0 then dim ∂A = 1 and we are done.

So we may assume that |∂A| = 0. In that case, |A◦| = |A| = |A|, so we may
further assume that A is open.

Fix 0 < ε < 1
2 . Then there exists δ > 0 such that A is a Zε,δ-set. Since

0 < |A| < 1, we can find an interval I0 such that |I0| < δ and |A ∩ I0| =
1
2 |I0|.

Let
F0 = {I0}.

By Lemma 1, we can inductively define

Fi+1 =
⋃
I∈Fi

DI .

Note that ∀I ∈ Fi, we have |I| ≤ 1/2i. Moreover, for each I ∈ Fi+1 there is a
unique PI ∈ Fi (the “parent” of I) such that I ⊂ PI .

Now, let Fi =
⋃

I∈Fi
I and F =

⋂
i Fi, and notice that F ⊂ ∂A. We will

show that
dim F ≥ 1 + log2(1 − ε).

This will be accomplished by recursively constructing a suitable sequence
of measures µi, so that each of them is supported in Fi. This sequence will
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give rise to a “limit” measure µ supported in F with the property

(2) µ(I) < 6|I|1+log2(1−ε)

for all intervals I. The Hausdorff dimension bound then follows by standard
arguments.

The construction is as follows.
µ0 is Lebesgue measure restricted to I0.
Suppose that µi has been defined. Then for all I ∈ Fi+1 define

µi+1(I) =
µi(PI)∑

J∈DPI

|J|
|I|,

and for any subset E ⊂ [0, 1],

µi+1(E) =
∑

I∈Fi+1

µi+1(I)
|E ∩ I|
|I|
.

It is clear that µi is supported in Fi. An easy induction shows that for each
I ∈ Fi we have

µi(I) <
1

(1 − ε)i |I|,

and µ j(I) = µi(I) ∀ j ≥ i. In particular µi(Fi) = |I0|.
Now, let Hi(x) = µi([0, x]) be the distribution function of µi. If x < Fi

then Hi(x) = Hi+1(x). On the other hand, if x ∈ Fi, let Ii
x be the unique

interval in Fi such that x ∈ Ii
x. Then

|Hi(x) − Hi+1(x)| ≤ µi(Ii
x) <

1
(1 − ε)i |I

i
x| ≤

1
(2(1 − ε))i .

Since ε < 1/2, Hi converges uniformly to a continuous increasing function
H. Let µ be the Borel measure whose distribution function is H. Then
for every interval I, we have µ(I) = lim µi(I). Therefore, for each I ∈ Fi,
µ(I) = µi(I). Consequently, µ is supported in F and µ(F) = |I0|. It remains
to verify (2). So, let I be an interval, and i0 an integer such that

1
2i0+1 < |I| ≤

1
2i0
.

Then

µ(I) ≤ µ
( ⋃

J∈Fi0+1
J∩I,∅

J
)
= µi0+1

( ⋃
J∈Fi0+1
J∩I,∅

J
)
=
∑

J∈Fi0+1
J∩I,∅

µi0+1(J)

<
1

(1 − ε)i0+1

∑
J∈Fi0+1
J∩I,∅

|J| <
2

(1 − ε)i0

∑
J∈Fi0+1
J∩I,∅

|J|.
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Note that each J ∈ Fi0+1 satisfies |J| ≤ 1/2i0+1 < |I|. Therefore∑
J∈Fi0+1
J∩I,∅

|J| ≤ 3|I|.

Consequently

µ(I) <
6

(1 − ε)i0
|I|.

But |I| ≤ 1/2i0 implies 1/(1 − ε)i0 ≤ |I|log2(1−ε) and we are done.
We conclude that dim ∂A ≥ dim F ≥ 1 + log2(1 − ε). Letting ε → 0 we

obtain dim ∂A = 1.
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