THE BOUNDARY OF A SMOOTH SET HAS FULL HAUSDORFF
DIMENSION

THEMIS MITSIS

ABSTRACT. We prove that if the restriction of the Lebesgue measure to a
set A C [0, 1] with 0 < |A| < 1 is a smooth measure, then the boundary
of A must have full Hausdorff dimension.

1. INTRODUCTION

A continuous function f : [0,1] — R is called smooth in the sense of
Zygmund (see [4]), if
h —h)-2
lim sup SO S =) = 2001 _

=0 xe[0,1] h
0<h<é

0.

The set of all such functions is denoted by A,.. Similarly, a positive, finite
Borel measure u on [0, 1] is called smooth in the sense of Zygmund, if its
distribution function H(x) := u([0, x]) is in A..

It is a standard fact that one can construct smooth measures which are
singular with respect to the Lebesgue measure (see, for example, [1], [2],
[3D.

On the other hand, it is rather surprising that even an absolutely contin-
uous smooth measure may be quite paradoxical. Indeed, a straightforward
modification of the construction in [2] gives the following unexpected re-
sult.

Theorem 1 (Kahane). There exists a set A C [0,1] with 0 < |A| < 1, such
that the restriction of the Lebesgue measure to A, that is, the measure u
defined by u(E) = |A N E|, is a smooth measure.

Any set with the properties stated in Theorem 1, is called a Z-set (or a
smooth set).

It is reasonable to expect that Z-sets must have a rather complicated geo-
metric structure. Indeed, the purpose of this paper is to show the following.

Theorem 2. Let A C [0, 1] be a Z-set. Then the Hausdor{f dimension of the
boundary of A equals 1.
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2. NOTATION

A°, A and 0A are, respectively, the interior, the closure and boundary of
the set A.
dim A is the Hausdorff dimension of A.
By the term “interval” we will always mean “open subinterval of [0, 1]”.
If I = (a, b), then we put

I} =(a,(a+D)/2), I, = ((a+b)/2,b).
Note that A C [0, 1] is a Z-set if and only if

. 2
lim sup —|lA NIl —|AN L] = 0.
6=0% 110417 |

|I|<6

Given small positive € and ¢, we say that A C [0, 1] is a Z, s-set if
(1) A is open.
(2) |0A] = 0.

2
(3) For each interval I with |I| < 6, we have mllA NhH—-1ANT| <e.

3. PrOOF oF THEOREM 2

We will need the following auxiliary result. Roughly speaking, it states
that if a Z.s-set cuts an interval into two equal pieces (in the measure-
theoretic sense), then inside that interval, we can always find a disjoint
family of smaller intervals which nearly cover the initial interval and so
that the Z, s-set still cuts them into two equal pieces.

Lemma 1. Let A C [0, 1] be a Z.s-set. Suppose that I is an interval with
|I| < 6 such that |ANI| = %l]l. Then there exists a disjoint family D; of
subintervals of I so that:

(1) VJeD;, AN = %l]l.

(2) YJ € Dy, || < 411,

3) D W= -9l

JGD]

Proof. If|ANI)| = %l];l then we put D; = {I;, I} and we are done. So we may
assume, without loss of generality, that |[A N [} < %|I,|. We will inductively
construct a, possibly finite, sequence {B,}; of families of intervals in I, with
the following properties:

e | J; B; is disjoint.

e AN C U;Uges B

e For each B € | J; B;, we have |A N B| = 1|B.
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Since A is a Z,s-set and |A N 1| = 1|I|, we have
l1-¢
(D >
In particular, 0 < |A N [j| < |[)|, therefore there exists an interval By C [; of
maximum length, such that |ANBy| = %|B0|. Notice that if we put (a, b) = B,
then a,b ¢ A N I;. Otherwise we would be able to find an interval B such
that By & B, C I, and |A N B;| > %|B£)|- But then, since |[A N [}| < %ll,l,
there would be an interval B with B; & B C I, such that |A N B{j| = %|B6’|,
contradicting the maximality of the length of Bj.
Now let

1
L < AN < §|11|-

By = {Bo},
and
Cp = {K° : K is a connected component of /; \ By with K° N A # 0}.

If Gy = 0, then By is a cover of A N I; with the required properties and the
process terminates. If Gy # 0, then for each C € C; we have |A N C| <
%lC |. Indeed, if this were not the case, we would have |[A N (C U By)°| >
%l(C U By)°|, contradicting the maximality of the length of B, as before.
Therefore, inside each C € €y we can find an interval B of maximum
length such that |A N B¢| = %lBCI. We let

By ={Bc: C € Cy},
and

C; = {K° : K is a connected component of [, \ U U B with K° N A # 0}.
jSl BE%_/

As before, for each (a,b) € By, we have a,b ¢ A N I;. Now, if C; = @ then
we terminate the process, if not then we notice that |A N C| < %ICI for each
C € C; and continue as above.

Suppose now that B; and C; have been defined. By construction, [ANC| <
%lC | for each C € C;, so there exists an interval B¢ C C of maximum length
such that |[A N B¢| = %chl. Put

Biri ={Bc: C €€},
and

Ciy1 = {K° : K is a connected component of /;\ U U B with K°NA # 0}.
J<i+1 BeB;
This completes the inductive construction.
Clearly, | J; B, is disjoint, and VB € | J; B;, |A N B| = %IBl. So, the only
thing we have to check is that | J; B; covers A N I,. If C;; = 0 for some iy,
then, by the definition of C;, | J,;, B; covers A N ;. So, assume that C; # (
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for each i. Furthermore, suppose toward a contradiction, that there is an
x € AN such that x ¢ | J; Ugep, B. Let M be the connected component of
A N [, containing x. Since for each (a,b) € | J; B; we have a,b ¢ AN I, it
follows that M N | J; Upes, B = 0. Therefore, there is a strictly decreasing
sequence of intervals C; € C; such that M c C;. The corresponding intervals
B¢, € B, are disjoint, hence there exists an i, such that |BC,.0| < |M]|. Notice
that |[A N M| = |[M| and |A N C;)| < %ICiOI. Consequently, we can find an
interval M" with M ¢ M’ c C;, such that [A N M'| = %IM’l. But this
contradicts the maximality of the length of Bc, .
We conclude that if we let £, = [ J; B, then

D=2 A0 =240 1> (1= o),
Jel, JeL;
where the last inequality follows from (1).
Now notice that (AC)o is a Z, s-set with |(AC)° NIl = %lll and |(AC)° VAR
%II,I. So, the same procedure yields a disjoint family R; of intervals in I,
such that |(AC)° N J| = 11J1 (hence |A N J| = 11J]) for each J € R, and

PNLERCEAR

JG:R[

We let D; = L; U R;, and the proof of the Lemma is complete. O

Now, we can proceed with the proof of Theorem 2.

Let A c [0,1] be a Z-set. If |0A| > O then dimdA = 1 and we are done.
So we may assume that [0A| = 0. In that case, |A°| = |A| = IA|, so we may
further assume that A is open.

Fix0 < e < % Then there exists 6 > 0 such that A is a Z s-set. Since
0 < |A| < 1, we can find an interval I, such that || < é and |[A N Iy| = %|Io|-

Let
Fo = {lo}.
By Lemma 1, we can inductively define

i}di+1 = Ugl

1€F;
Note that VI € F;, we have |I| < 1/2'. Moreover, for each I € T, there is a
unique P; € JF; (the “parent” of 1) such that I C P;.

Now, let F; = Jjeq. I and F' = (); F;, and notice that F C 0A. We will
show that

dimF > 1 + log,(1 — &).

This will be accomplished by recursively constructing a suitable sequence
of measures y;, so that each of them is supported in F;. This sequence will
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give rise to a “limit” measure u supported in F with the property
) () < 61|+

for all intervals /. The Hausdorff dimension bound then follows by standard
arguments.

The construction is as follows.

Uo 1s Lebesgue measure restricted to .

Suppose that u; has been defined. Then for all / € &, define

wi(Pp)

>

JE'DPI

Miv1 (D) = |11,

and for any subset E C [0, 1],

|[E N
pia(E) = > pria(D——=.
1€Fip |I|
It is clear that y; is supported in F;. An easy induction shows that for each
I € F; we have

1
) < T

and u;(I) = u;(I) ¥ j > i. In particular p;(F;) = |I|.

Now, let H;(x) = w;([0, x]) be the distribution function of y;. If x ¢ F;
then H;(x) = H;;1(x). On the other hand, if x € F;, let I’ be the unique
interval in F; such that x € I‘. Then

|Hi(x) = Hin ()] < (1) < I

- < -,
(1-ey 21 -9)
Since € < 1/2, H; converges uniformly to a continuous increasing function
H. Let u be the Borel measure whose distribution function is H. Then
for every interval I, we have u(I) = limw;(I). Therefore, for each I € JF;,
u(l) = p;(I). Consequently, u is supported in F and u(F) = |Iy|. It remains
to verify (2). So, let I be an interval, and i an integer such that

io+] < |I| < ﬁ
Then
w<p( | ) =mn( U )= D) sam@

JGS:iQH JGS::'UH JGS:iQH
JNI#0 JNI#0 JNI£0

1 2

< — |J] < ; |J].
— ip+1 _ i

(1 8) 0+ Je;ioﬂ (1 8) 0 Je;,-oﬂ

JNI#0 JNI#£0
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Note that each J € J;,, satisfies [J| < 1 /201 < |]|. Therefore

Z 1] < 3|11.

JE:}}OH
JNI+0

Consequently
6
I < ———|I.
uh < =il
But |/] < 1/2% implies 1/(1 — &) < |I]'°2(1~® and we are done.
We conclude that dimdA > dim F > 1 + log,(1 — ). Letting € — 0 we
obtain dim0A = 1.
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