
NORM ESTIMATES FOR A KAKEYA-TYPE MAXIMAL
OPERATOR

THEMIS MITSIS

A. We proveLp→ Lq estimates for the 2-dimensional analog of
the Kakeya maximal function.

1. I

Let Gn,2 be the Grassmannian manifold of all 2-dimensional linear sub-
spaces ofRn equipped with the unique probability measureϕn,2 which is
invariant under the action of the orthogonal group (see, for example, [2]).
For any locally integrable functionf and 0< δ � 1 we define

Mδ f : Gn,2→ R

by

Mδ f (Π) = sup
a∈Rn

1
|Πδ(a)|

∫

Πδ(a)
| f (y)|dy,

whereΠδ(a) theδ/2-neighborhood of the intersection of the planeΠ+a with
the ball of radius 1/2 centered ata, and|Πδ(a)| is the volume ofΠδ(a). Thus,
Mδ f (Π) is, essentially, the maximal average off over the neighborhoods
of all 2-dimensional discs of unit diameter which are parallel to the plane
Π. This operator is a natural variant of the Kakeya maximal function intro-
duced by Bourgain [1]. In that context, one averages over neighborhoods of
line segments of unit length. The mapping properties of the Kakeya maxi-
mal function have been the subject of a great deal of research. We refer the
reader to the expository articles [4] and [5] for extensive accounts.

In this paper we are interested in provingLp → Lq(Gn,2, ϕn,2) estimates
forMδ. To find the optimal range forp andq we argue as follows.

If f is the characteristic function of a ball of radiusδ, then‖ f ‖p is compa-
rable toδn/p, and‖Mδ f ‖Lq(Gn,2,ϕn,2) is comparable toδ2. Therefore, it seems
reasonable to expect a bound of the form

‖Mδ f ‖Lq(Gn,2,ϕn,2) ≤ Cn,p,qδ
2−n/p‖ f ‖p, p ≤ n/2, q ≥ 1.

On the other hand, iff is the characteristic function of a rectangle of di-
mensions 1× 1 × δ × · · · × δ, then‖ f ‖p = δ(n−2)/p and‖Mδ f ‖Lq(Gn,2,ϕn,2) is,

2000Mathematics Subject Classification.42B25.
1



2 THEMIS MITSIS

up to a multiplicative constant, greater thanδ2(n−2)/q. It follows that if the
above estimate is true, we must have

δ2(n−2)/q ≤ Cn,p,qδ
2−n/pδ(n−2)/p,

which impliesq ≤ (n− 2)p′, wherep′ is the conjugate exponent ofp.
These examples would reasonably lead to the following.

Conjecture. For everyε > 0 there exists a constantCε,n,p,q > 0 such that

‖Mδ f ‖Lq(Gn,2,ϕn,2) ≤ Cε,n,p,qδ
2−n/p−ε‖ f ‖p,

where
1 ≤ p ≤ n

2
, q ≤ (n− 2)p′.

The purpose of this paper is to verify the conjecture when the range ofp
is a smaller interval. Namely, we use geometric-combinatorial ideas in the
spirit of [1], to prove the following.

Theorem. For everyε > 0 there exists a constantCε,n,p,q > 0 such that

‖Mδ f ‖Lq(Gn,2,ϕn,2) ≤ Cε,n,p,qδ
2−n/p−ε‖ f ‖p,

where

1 ≤ p <
n + 1

3
, q ≤ (n− 2)p′.

2. P

For the rest of the paper, the capital letterC will denote various positive
constants whose values may change from line to line. SimilarlyCε will
denote constants depending onε. x . y meansx ≤ Cy, andx ' y means
(x . y & y . x) . Also, we will use the notationΠδ for any setΠδ(a),
since the basepointa is irrelevant in all our arguments. Further notational
conventions follow below.

Sn−1 is the (n− 1)-dimensional unit sphere.
B(a, r) is the ball of radiusr centered ata.
A(a, r) is the annulusB(a,2r) \ B(a, r).
Le(a) is the line in the directione ∈ Sn−1 passing through the pointa, i.e.

Le(a) = {a + te : t ∈ R}.
T(r)(β)

e (a) is the tube of lengthr, cross-section radiusβ, centered ata, and
with axis in the directione ∈ Sn−1, i.e.

T(r)(β)
e (a) = {x ∈ Rn : dist(x, Le(a)) ≤ β and|projLe(a)(x) − a| ≤ r/2},

where projLe(a)(x) is the orthogonal projection ofx ontoLe(a).
χE is the characteristic function of the setE.
| · | denotes Lebesgue measure or cardinality, depending on the context.
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If Π1,Π2 ∈ Gn,2, then their distanceθ is defined by

θ(Π1,Π2) = ‖projΠ1
− projΠ2

‖,
where‖·‖ is the operator norm.ϕn,2 is a 2(n−2)-dimensional Ahlfors-regular
measure with respect to this distance (see [2]), in the sense that

ϕn,2({Π ∈ Gn,2 : θ(Π,Π0) ≤ r}) ' r2(n−2), ∀Π0 ∈ Gn,2, r < 1.

A finite subset ofGn,2 is calledδ-separated if the distance between any
two of its elements is at leastδ. So, ifB is a maximalδ-separated subset of
A ⊂ Gn,2, then

ϕn,2(A) . |B|δ2(n−2).

Moreover, ifA ⊂ Gn,2 is δ-separated, andB is a maximalη-separated subset
ofA with η ≥ δ, then

|B| & |A|(δ/η)2(n−2).

For technical reasons, we introduce the following subset ofGn,2.

An,2 := {Π ∈ Gn,2 : θ(Π, x1x2-plane)≤ 1/4},
Notice that by invariance, it is enough to prove the Theorem forMδ re-

stricted toAn,2.
We close this section with two lemmas that will allow us to control the

intersection properties and the cardinality of a family of setsΠδ containing
a fixed line segment. They can be proved by fairly elementary arguments,
so we omit the proofs.

Lemma 2.1. Let Π1,Π2 ∈ Gn,2 be such thatθ(Π1,Π2) ≤ 1/2. Fix a,b ∈ Rn,
ρ > 0 with ρ ≤ |a − b| ≤ 2ρ. Then for anyΠδ

1,Π
δ
2 with a,b ∈ Πδ

1 ∩ Πδ
2 we

have

Πδ
1 ∩ Πδ

2 ∩ B(a,2ρ) ⊂ T(4ρ)(β)
e (a),

wheree = (a− b)/|a− b| andβ = Cδ/θ(Π1,Π2).

Lemma 2.2. Let {Π j}Mj=1 be aδ-separated set inAn,2. Fix a,b ∈ Rn, ρ ≥ 4δ
with |a − b| ≥ ρ. Suppose that for eachj there existsΠδ

j with a,b ∈ Πδ
j .

Then, for any maximalζ-separated subsetB ⊂ {Π j}Mj=1 with ζ ≥ Cδ/ρ, we
have

|B| & M(ρδ/ζ)n−2.

3. P   T

Let E ⊂ Rn, 0 < λ ≤ 1, ε > 0, and

Aλ = {Π ∈ An,2 :MδχE(Π) ≥ λ}.
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By the standard interpolation theorems (see [3]), it is enough to prove the
following restricted weak-type estimate at the endpoint.

(3.1) ϕn,2(Aλ) ≤ Cε

(
1
δ

)ε ( |E|
λ(n+1)/3δ(n−2)/3

)3

.

Now, let {Π j}Mj=1 be a maximalδ-separated subset ofAλ. Then proving (3.1)
amounts to proving

(3.2) |E| ≥ Cεδ
ελ(n+1)/3M1/3δn−2.

SinceΠ j ∈ Aλ, there existsΠδ
j such that

(3.3) |Πδ
j ∩ E| ≥ 3

4
λ|Πδ

j |.

Putγ = λ1/2(log(1/δ))−1/2 and note that (3.2) is trivial if 4δ ≥ γ. Indeed,
(3.3) implies

|E| & λδn−2 = λ(n+1)/3λ−(n−2)/3δn−2

& λ(n+1)/3(δ2 log(1/δ))−(n−2)/3δn−2

= (log(1/δ))−(n−2)/3λ(n+1)/3((1/δ)2(n−2))1/3δn−2

≥ Cεδ
ελ(n+1)/3M1/3δn−2.

We may therefore assume that 4δ ≤ γ.
Now, let δ0 be a small constant to be determined later. Then forδ ≥ δ0,

we haveM . 1, and so (3.3) trivially implies (3.2) as before. Hence we can
also assume thatδ ≤ δ0.

After these preliminary reductions, we can proceed with the proof of
(3.2). First, we find a large number of setsΠδ

j so that the measure of their
intersection withE is concentrated in annuli of fixed dimensions. More
precisely, we claim that there exist a numberρ ≥ γ and a setC ⊂ {Πδ

j }Mj=1
with

(3.4) |C| & (log(C/γ))−2M,

so that for eachΠδ
j ∈ C there is a setPj ⊂ Πδ

j of measure

(3.5) |Pj | & (log(C/γ))−2λ|Πδ
j |

such that for eachz ∈ Pj

(3.6) |Πδ
j ∩ E ∩ B(z,2ρ) ∩ (T(4r)(γ2/r)

e (z)){| & λ|Πδ
j | ∀e ∈ Sn−1, r ∈ [γ, 1],

and

(3.7) |Πδ
j ∩ E ∩ A(z, ρ)| & (log(C/γ))−1λ|Πδ

j |.
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To see this, note that for allz ∈ Rn, e ∈ Sn−1 andr ∈ [γ, 1] we have

|Πδ
j ∩ E ∩ (T(4r)(γ2/r)

e (z)){| = |Πδ
j ∩ E| − |Πδ

j ∩ E ∩ T(4r)(γ2/r)
e (z)|

≥ 3
4

(
λ|Πδ

j | −Cr
γ2

r
|Πδ

j |
)

=
3
4
λ(1−C(log(1/δ))−1)|Πδ

j | ≥
λ

2
|Πδ

j |,(3.8)

for δ0 small enough.
Now, for each 1≤ j ≤ M, z ∈ Πδ

j ∩ E, i ∈ N, consider the quantity

Q( j, z, i) = inf
r∈[γ,1]
e∈Sn−1

|Πδ
j ∩ E ∩ B(z, γ2i) ∩ (T(4r)(γ2/r)

e (z)){|.

Then

Q( j, z,0) ≤ Cγ2δn−2 = Cλ(log(1/δ))−1δn−2 ≤ λ

10
|Πδ

j |,
provided thatδ0 has been chosen small enough. On the other hand

Q( j, z, log(C/γ)) ≥ λ

2
|Πδ

j |.
Therefore, there existsi j,z with 1 ≤ i j,z ≤ log(C/γ), such that

Q( j, z, i j,z) ≥ λ

4
|Πδ

j |, and Q( j, z, i j,z− 1) <
λ

4
|Πδ

j |.
Now, we use the pigeonhole principle: Since there are at most log(C/γ)
possiblei j,z, there is ani j and a setP′j ⊂ Πδ

j ∩ E of measure

|P′j | & (log(C/γ))−1λ|Πδ
j |

such that for eachz ∈ P′j

Q( j, z, i j) ≥ λ

4
|Πδ

j |, and Q( j, z, i j − 1) <
λ

4
|Πδ

j |.
By the pigeonhole principle again, since there areM setsΠδ

j and at most
log(C/γ) possiblei j, there is ani0 and a subsetC′ ⊂ {Πδ

j }Mj=1 such that

|C′| & (log(C/γ))−1M,

and for eachΠδ
j ∈ C′ and eachz ∈ P′j

|Πδ
j ∩ E ∩ B(z, γ2i0) ∩ (T(4r)(γ2/r)

e (z)){| ≥ λ

4
|Πδ

j | ∀e ∈ Sn−1, r ∈ [γ, 1],

and

(3.9) |Πδ
j ∩ E ∩ B(z, γ2i0−1) ∩ (T(4r j,z)(γ2/r j,z)

ej,z (z)){| < λ

4
|Πδ

j |,
for someej,z ∈ Sn−1, r j,z ∈ [γ, 1].



6 THEMIS MITSIS

Now, (3.8) and (3.9) imply that

λ

4
|Πδ

j | ≤ |Πδ
j ∩ E ∩ (T(4r j,z)(γ2/r j,z)

ej,z (z)){|

− |Πδ
j ∩ E ∩ B(z, γ2i0−1) ∩ (T(4r j,z)(γ2/r j,z)

ej,z (z)){|
= |Πδ

j ∩ E ∩ (B(z, γ2i0−1)){ ∩ (T(4r j,z)(γ2/r j,z)
ej,z (z)){|

≤ |Πδ
j ∩ E ∩ (B(z, γ2i0−1)){|

=

log(C/γ)∑

k=0

|Πδ
j ∩ E ∩ A(z, γ2i0+k−1)|.

Therefore, there is akj,z such that

|Πδ
j ∩ E ∩ A(z, γ2i0+k j,z−1)| & (log(C/γ))−1λ|Πδ

j |.
Repeatedly using the pigeonhole principle as before, we conclude that there
exist an integerk0 and a setC ⊂ C′ with

|C| & (log(C/γ))−2M,

so that for eachΠδ
j ∈ C, there is a subsetPj ⊂ P′j of measure

|Pj | & (log(C/γ))−2λ|Πδ
j |

such that for eachz ∈ Pj

|Πδ
j ∩ E ∩ B(z, γ2i0) ∩ (T(4r)(γ2/r)

e (z)){| & λ|Πδ
j | ∀e ∈ Sn−1, r ∈ [γ, 1],

and
|Πδ

j ∩ E ∩ A(z, γ2i0+k0−1)| & (log(C/γ))−1λ|Πδ
j |.

This proves the claim withρ := γ2i0+k0−1.
Now we are in a position to carry out a “high-low multiplicity segment”

argument (see [1]), as follows.
We fix a numberN and consider two cases.

CASE I. For everya ∈ Rn we have|{ j : a ∈ Pj}| ≤ N.
CASE II. There existsa ∈ Rn such that|{ j : a ∈ Pj}| ≥ N.

In case I we have

|E| ≥
∣∣∣∣

⋃

j:Πδ
j∈C

Pj

∣∣∣∣ ≥ 1
N

∑

j:Πδ
j∈C
|Pj |

&
1
N
|C| (log(C/γ)

)−2 λδn−2 &
M
N

(
log(C/γ)

)−4 λδn−2,(3.10)

where the last two inequalities follow from (3.4) and (3.5).



NORM ESTIMATES FOR A KAKEYA-TYPE MAXIMAL OPERATOR 7

In case II, we fix a numberµ and consider two subcases.

(II)1. For everyb ∈ A(a, ρ) we have|{ j : a ∈ Pj ,b ∈ Πδ
j }| ≤ µ.

(II)2. There existsb ∈ A(a, ρ) such that|{ j : a ∈ Pj ,b ∈ Πδ
j }| ≥ µ.

In subcase (II)1 we have

|E| ≥
∣∣∣∣
⋃

j:a∈P j

Πδ
j ∩ E ∩ A(a, ρ)

∣∣∣∣ ≥ 1
µ

∑

j:a∈P j

|Πδ
j ∩ E ∩ A(a, ρ)|

&
N
µ

(
log(C/γ)

)−1 λδn−2,(3.11)

where the last inequality follows from (3.7).

In subcase (II)2 letB be a maximalCρδ/γ2-separated subset of{Π j : a ∈
Pj ,b ∈ Πδ

j }. Then forC large enough, Lemma 2.2 implies

(3.12) |B| & µγ2(n−2).

Note that ifΠ j ,Πk ∈ B then by Lemma 2.1

Πδ
j ∩ Πδ

k ∩ B(a,2ρ) ⊂ T(4ρ)(γ2/ρ)
e (a),

wheree = (a − b)/|a − b|, provided thatC has been chosen large enough.
Therefore the family{

Πδ
j ∩ E ∩ B(a,2ρ) ∩ (T(4ρ)(γ2/ρ)

e (a)){ : Π j ∈ B
}

is disjoint. Consequently

|E| ≥
∣∣∣∣

⋃

j:Π j∈B
Πδ

j ∩ E ∩ B(a,2ρ) ∩ (T(4ρ)(γ2/ρ)
e (a)){

∣∣∣∣

=
∑

j:Π j∈B
|Πδ

j ∩ E ∩ B(a,2ρ) ∩ (T(4ρ)(γ2/ρ)
e (a)){|

& |B|λδn−2 & γ2(n−2)µλδn−2,(3.13)

where the last two inequalities follow from (3.6) and (3.12). So, in case II
we see that choosing

µ = N1/2 (
log(C/γ)

)−1/2 γ−(n−2),

(3.11) and (3.13) imply that

(3.14) |E| & (
log(C/γ)

)−1/2 γn−2λN1/2δn−2.

In conclusion, we see that in case I, (3.10) holds, whereas in case II, (3.14)
holds. So choosing

N = M2/3 (
log(C/γ)

)−7/3 γ−2(n−2)/3,
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the right hand sides of (3.10) and (3.14) become equal. So, in both cases
we have

|E| & (
log(C/γ)

)−5/3 γ2(n−2)/3λM1/3δn−2

=
(
log(C/γ)

)−5/3 (λ1/2(log(1/δ))−1/2)2(n−2)/3λM1/3δn−2

≥ (
log(C/δ)

)−5/3 (λ1/2(log(1/δ))−1/2)2(n−2)/3λM1/3δn−2

≥ Cεδ
ελ(n+1)/3M1/3δn−2,

where the inequality before the last one is true because 4δ ≤ γ. The proof
is complete.
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