NORM ESTIMATES FOR A KAKEYA-TYPE MAXIMAL
OPERATOR

THEMIS MITSIS

AsstrAcT. We provelP — L9 estimates for the 2-dimensional analog of
the Kakeya maximal function.

1. INTRODUCTION

Let G2 be the Grassmannian manifold of all 2-dimensional linear sub-
spaces oRR" equipped with the unique probability measysg which is
invariant under the action of the orthogonal group (see, for example, [2]).
For any locally integrable functioh and O< § <« 1 we define

M&f . gniz — R
by

MeH(IT) = suprres) Hﬁ(a)lf(y)ldy,

wherell’(a) thes/2-neighborhood of the intersection of the pldhea with
the ball of radius 12 centered a4, and|I1°(a)| is the volume of1°(a). Thus,
M;f(I0) is, essentially, the maximal average fobver the neighborhoods
of all 2-dimensional discs of unit diameter which are parallel to the plane
I1. This operator is a natural variant of the Kakeya maximal function intro-
duced by Bourgain [1]. In that context, one averages over neighborhoods of
line segments of unit length. The mapping properties of the Kakeya maxi-
mal function have been the subject of a great deal of research. We refer the
reader to the expository articles [4] and [5] for extensive accounts.

In this paper we are interested in provib§ — L9(Gn 2, ¢n2) €Stimates
for M;. To find the optimal range fop andq we argue as follows.

If fisthe characteristic function of a ball of radiéighen|| ||, is compa-
rable to6"P, and||M; fllLagn.en0) IS COMparable t@°. Therefore, it seems
reasonable to expect a bound of the form

||M5f||Lq(gn,2,<pn,2) < Cn,p,qdz_n/p”f”pa p < n/25 q 2 1

On the other hand, if is the characteristic function of a rectangle of di-
mensions & 1x § X --- x 4, then||f|l, = 6™ 2/P and||MsfllLaGnens) IS:
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up to a multiplicative constant, greater th&d{-2/9, It follows that if the
above estimate is true, we must have

5200-2)/a <C, pqéz—n/p(;(n—Z)/p,

which impliesq < (n - 2)p’, wherep' is the conjugate exponent pf
These examples would reasonably lead to the following.

Conjecture. For everye > 0 there exists a consta@., ,q > 0 such that
”Mdf”Lq(gn,z,gan,z) < Ce,n,p,qdz_n/p_éllfnp,
where n
1<pc< > q<(n-2)p'.

The purpose of this paper is to verify the conjecture when the range of
is a smaller interval. Namely, we use geometric-combinatorial ideas in the
spirit of [1], to prove the following.

Theorem. For everye > 0 there exists a constafl,, ,q > 0 such that
IMs fllLaGnzgna) < Cenpad® " P Il llp,
where

1<p< ”;1, a<(n-2)p.

2. PRELIMINARIES

For the rest of the paper, the capital let@ewill denote various positive
constants whose values may change from line to line. Simil&glyvill
denote constants depending @nx < y meansx < Cy, andx ~ y means
(X <y&Yy < X). Also, we will use the notatioll® for any setll’(a),
since the basepoirtis irrelevant in all our arguments. Further notational
conventions follow below.

S"1is the fi — 1)-dimensional unit sphere.

B(a,r) is the ball of radiug centered a&.

A(a,r) is the annulu(a, 2r) \ B(a,r).

Lc(a) is the line in the directioe € S"* passing through the poiat i.e.

Le(a) ={a+te:te R}
TI®(a) is the tube of length, cross-section radiyg centered a#, and
with axis in the directiore € S"1, i.e.
TOP(a) = {x € R" : dist(x, Le(a)) < 8 and|proj_(X) —al < r/2},

wherg Proj ) (x) is thg qrthogonal projection ofonto L¢(a).
xe is the characteristic function of the d&t
| - | denotes Lebesgue measure or cardinality, depending on the context.
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If I1, 1, € Gn2, then their distanceé is defined by
6(Iy, IT2) = ||projy, — Projp,ll,
where||-|| is the operator normp,; is a 2(1—2)-dimensional Ahlfors-regular
measure with respect to this distance (see [2]), in the sense that
on2({TT € Gz : (I, ) < r}) = 122 Vg € Gpot < 1.

A finite subset oiG,» is calleds-separated if the distance between any
two of its elements is at least So, if B is a maximab-separated subset of
A C Gno, then

on2(A) < 1B16°2.
Moreover, ifA c Gy, is 5-separated, an@ is a maximak-separated subset
of A with n > 6, then
18| 2 |A(S/n)*" 2.
For technical reasons, we introduce the following subséiof
Anz = {Il € Gn2 @ O(I1, Xy Xo-plane)< 1/4},

Notice that by invariance, it is enough to prove the TheoremM@rre-
stricted taA,, ».

We close this section with two lemmas that will allow us to control the
intersection properties and the cardinality of a family of $&t€ontaining
a fixed line segment. They can be proved by fairly elementary arguments,
SO0 we omit the proofs.

Lemma 2.1. LetII,, I, € Gn» be such thad(I1,;, I1,) < 1/2. Fixa,b € R",
p > 0withp < |a—b| < 2p. Then for anyI{, IT with a,b € IT§ N IT we
have

15 N I3 N B(a, 20)  T{E)(a),
wheree = (a— b)/|a— bl andg = C§/6(I14, I1,).
Lemma 2.2. Let {H,-}}‘il be ad-separated set itA,». Fixa,beR", p > 45
with |a — bl > p. Suppose that for eachthere existd1; with a,b € TIS.

Then, for any maximaj-separated subse® c {Hj};.\’:'1 with ¢ > Cé6/p, we
have

1B 2 M(p8/0)"2.

3. ProOF OF THE THEOREM

LetEcCcR", 0<A1<1,e>0,and
Ay ={IT € Anz : Msye(I) > 1)
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By the standard interpolation theorems (see [3]), it is enough to prove the
following restricted weak-type estimate at the endpoint.

1\ |EI ’
(3.1) ¢n2(Ar) < Ce 5] \qeoEgmai)

Now, Iet{Hj}j“’il be a maximab-separated subset 8§. Then proving (3.1)
amounts to proving

(3.2) IE| > C.5AMDBML3sM-2

Sincell; € Ay, there existeﬂ‘f such that

3
(3.3) 5 VBl > Z AT,
Puty = A%%(log(1/6))Y/? and note that (3.2) is trivial if& > y. Indeed,
(3.3) implies
|E| > A6"2 = A D/3 ~(-2)/35n-2
> /1(n+1)/3(62 Iog(l/é))‘(”‘z)/35”—2
= (|og(]_/5))—(n—2)/3/l(n+1)/3((1/5)2(n_2))1/35n_2
> C.5AMDB\MB5M-2,

We may therefore assume that4 y.

Now, letdy be a small constant to be determined later. Ther fard,
we haveM < 1, and so (3.3) trivially implies (3.2) as before. Hence we can
also assume that< 6.

After these preliminary reductions, we can proceed with the proof of
(3.2). First, we find a large number of sé&i$ so that the measure of their
intersection withE is concentrated in annuli of fixed dimensions. More
precisely, we claim that there exist a numper v and a seC c {1‘[?}1.’\’:'1
with

(34) ICl 2 (Iog(C/)*M,

so that for eacliil; € C there is a seP; c T13 of measure

(35) IPjl 2 (log(C/y)) *AlIT;)

such that for each € P;

(3.6) I NENB(z20) N (T M)t 2 A vee S™r e[y, 1],
and

(3.7) 1§ N E N Az p)l 2 (Iog(C/y)) *AlITS].
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To see this, note that for atle R", e e S andr € [y, 1] we have
I3 N E 0 (TEN ()0 = 1115 0 E| =11 0 E n TE0 ()
3 ¥?
2 (/lll'[‘jsl - CrT|H(J?|)

(3.8) = 2 A1~ Clog(1/0) i > F,

for 6o small enough.
Now, for each 1< j < M, ze 1Y N E, i € N, consider the quantity

QJ.zi) = inf, N5 N EN Bz y2)n (TEN @)
refy,
eeSy”‘1
Then

Q(j, 2 0) < Cy?6"% = CA(log(1/6)) "2 < 10|r16|
provided thaty has been chosen small enough On the other hand

Q(j.zlog(C/y)) = |H‘5
Therefore, there existjs.Z with1<ij, < Iog(C/y), such that
. A
Q(j,zij,) = |1'[‘s and Q(j,zij,-1)< Z|H‘j5|.

Now, we use the pigeonhole principle: Since there are at mostlog(
possibleij,, there is ari; and a seP; ¢ I1 N E of measure

Pl 2 (log(C/y))~*AIITS|
such that for each e P’.
Q(j,zij) > H‘SI and Q(j,zij-1)< |n5

By the pigeonhole prlnC|pIe again, since there MsetsH‘j and at most
log(C/y) possibleij, there is ang and a subset” c {IT J}J , such that

IC’| 2 (log(C/y)) ™M,
and for eaclﬂf e C’ and eaclz e P
I} N E N B(zy2°) n (TIO0(2)C 2 %m;ﬂ vee S™hr e[y 1]
and
B9) I AENBEy2" Y 0 (TSR < S,

for someej; € S™, rj, € [y, 1].
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Now, (3.8) and (3.9) imply that

A AR/t

I < N En (T2 @)
- IM N E N Bz y2 Y n (TE9@)0
=I5 N E N (B(z 72 ))C n (TE027 " )0
<5 N E N (B(z y2° )"

log(C/y)

- Z I N E N Az y2°H ).
k=0

Therefore, there is lg;, such that
I N E N A(z y2°H957)| 2 (log(C/y)) AT,

Repeatedly using the pigeonhole principle as before, we conclude that there
exist an integeky and a seC c C’ with

ICl 2 (log(C/)*M.
so that for eaclil; € C, there is a subsé; c P} of measure
IPil 2 (log(C/y))~AlITj)
such that for each e P;
I N E N B(z,y2°) n (T M(2)0) 2 AlS| vee S™Lr e [y,1],

and
1% N E N A(z y2°" )| 2 (log(C/y)) AIIT]).

This proves the claim witjp := y2/otko=1,

Now we are in a position to carry out a “high-low multiplicity segment”
argument (see [1]), as follows.

We fix a numbeiN and consider two cases.

CASE I. For everya € R" we have{j : a€ Pj}| < N.
CASE Il. There exista € R" such that{j : a € P;}| > N.

In case | we have

E=| Pj‘zﬁz Py

j:nj?ec j:nj?ec
1 M
(3.10) 2 11 (10g(C/7)) ™ 48" 2 5 (log(C/y))* 46",

where the last two inequalities follow from (3.4) and (3.5).
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In case Il, we fix a number and consider two subcases.

(I1) 1. For everyb € A(a, p) we havel{j : a€ Pj,b e IS} < .
(I)2. There existd € A(a, p) such that{j : a€ Pj,b e TI3}| > p.

In subcase (1) we have

|E|2| | H?mEmA(a,p)‘z% > NEnA@p)l

j-aeP;j j:aeP;j
N

(3.11) > — (log(C/y)) ™" A6™2,
i

where the last inequality follows from (3.7).

In subcase (1) let B be a maximaCpd/y>-separated subset (fl; : a €
Pj,be H‘J?}. Then forC large enough, Lemma 2.2 implies

(3.12) 1B 2 uy?2.
Note that ifIl;, IT, € 8 then by Lemma 2.1
1} N Ty N B(a, 20) € T a),

wheree = (a— b)/la - b|, provided thatC has been chosen large enough.
Therefore the family

(I8 n E N B(a, 20) N (TE0"7 (@) - T € B
is disjoint. Consequently
E1=| | 11§ nEnBa.20) n (T (@]

jIjeB
= > I NENB(a 20) N (T (@)°)
jIjeB
(3.13) > |BIA6"? 2 y2 Dy asm2,

where the last two inequalities follow from (3.6) and (3.12). So, in case I
we see that choosing

u=N"2(log(C/y)) **y 2,
(3.11) and (3.13) imply that
(3.14) |E| 2 (Iog(C/y)) 2 y"2ANY26"2,

In conclusion, we see that in case I, (3.10) holds, whereas in case I, (3.14)
holds. So choosing

N = M3 (log(C/y)) "y 223,
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the right hand sides of (3.10) and (3.14) become equal. So, in both cases
we have

|El 2 (|Og(C/y))‘5/3 »)/2(”—2)/3/1M 1/35n—2
= (log(C/y)) 3 (AM2(log(1/6)) Y/2)20-23 )\ 362
> (log(C/5))"%' (A¥2(log(1/5))~1/2)20-2/3 M L/35m-2
> C .5 A VM52,

where the inequality before the last one is true becatise 4. The proof
is complete.
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