NORM ESTIMATES FOR A KAKEYA-TYPE MAXIMAL OPERATOR

THEMIS MITSIS

Abstract. We prove $L^{p} \rightarrow L^{q}$ estimates for the 2-dimensional analog of the Kakeya maximal function.

1. Introduction

Let $\mathcal{G}_{n, 2}$ be the Grassmannian manifold of all 2-dimensional linear subspaces of \mathbb{R}^{n} equipped with the unique probability measure $\varphi_{n, 2}$ which is invariant under the action of the orthogonal group (see, for example, [2]). For any locally integrable function f and $0<\delta \ll 1$ we define

$$
\mathcal{M}_{\delta} f: \mathcal{G}_{n, 2} \rightarrow \mathbb{R}
$$

by

$$
\mathcal{M}_{\delta} f(\Pi)=\sup _{a \in \mathbb{R}^{n}} \frac{1}{\Pi^{\delta}(a) \mid} \int_{\Pi^{\delta}(a)}|f(y)| d y,
$$

where $\Pi^{\delta}(a)$ the $\delta / 2$-neighborhood of the intersection of the plane $\Pi+a$ with the ball of radius $1 / 2$ centered at a, and $\left|\Pi^{\delta}(a)\right|$ is the volume of $\Pi^{\delta}(a)$. Thus, $\mathcal{M}_{\delta} f(\Pi)$ is, essentially, the maximal average of f over the neighborhoods of all 2-dimensional discs of unit diameter which are parallel to the plane Π. This operator is a natural variant of the Kakeya maximal function introduced by Bourgain [1]. In that context, one averages over neighborhoods of line segments of unit length. The mapping properties of the Kakeya maximal function have been the subject of a great deal of research. We refer the reader to the expository articles [4] and [5] for extensive accounts.

In this paper we are interested in proving $L^{p} \rightarrow L^{q}\left(\mathcal{G}_{n, 2}, \varphi_{n, 2}\right)$ estimates for \mathcal{M}_{δ}. To find the optimal range for p and q we argue as follows.

If f is the characteristic function of a ball of radius δ, then $\|f\|_{p}$ is comparable to $\delta^{n / p}$, and $\left\|\mathcal{M}_{\delta} f\right\|_{L^{q}\left(\mathcal{G}_{n, 2}, \varphi_{n, 2}\right)}$ is comparable to δ^{2}. Therefore, it seems reasonable to expect a bound of the form

$$
\left\|\mathcal{M}_{\delta} f\right\|_{L^{q}\left(\mathcal{G}_{n, 2}, \varphi_{n, 2}\right)} \leq C_{n, p, q} \delta^{2-n / p}\|f\|_{p}, p \leq n / 2, q \geq 1
$$

On the other hand, if f is the characteristic function of a rectangle of dimensions $1 \times 1 \times \delta \times \cdots \times \delta$, then $\|f\|_{p}=\delta^{(n-2) / p}$ and $\left\|\mathcal{M}_{\delta} f\right\|_{L^{q}\left(\mathcal{G}_{n, 2}, \varphi_{n, 2}\right)}$ is,

[^0]up to a multiplicative constant, greater than $\delta^{2(n-2) / q}$. It follows that if the above estimate is true, we must have
$$
\delta^{2(n-2) / q} \leq C_{n, p, q} \delta^{2-n / p} \delta^{(n-2) / p}
$$
which implies $q \leq(n-2) p^{\prime}$, where p^{\prime} is the conjugate exponent of p.
These examples would reasonably lead to the following.
Conjecture. For every $\epsilon>0$ there exists a constant $C_{\epsilon, n, p, q}>0$ such that
$$
\left\|\mathcal{M}_{\delta} f\right\|_{L^{q}\left(\mathcal{G}_{n, 2}, \varphi_{n, 2}\right)} \leq C_{\epsilon, n, p, q} \delta^{2-n / p-\epsilon}\|f\|_{p}
$$
where
$$
1 \leq p \leq \frac{n}{2}, \quad q \leq(n-2) p^{\prime}
$$

The purpose of this paper is to verify the conjecture when the range of p is a smaller interval. Namely, we use geometric-combinatorial ideas in the spirit of [1], to prove the following.

Theorem. For every $\epsilon>0$ there exists a constant $C_{\epsilon, n, p, q}>0$ such that

$$
\left\|\mathcal{M}_{\delta} f\right\|_{L^{q}\left(\mathcal{G}_{n, 2}, \varphi_{n, 2}\right)} \leq C_{\epsilon, n, p, q} \delta^{2-n / p-\epsilon}\|f\|_{p}
$$

where

$$
1 \leq p<\frac{n+1}{3}, \quad q \leq(n-2) p^{\prime}
$$

2. Preliminaries

For the rest of the paper, the capital letter C will denote various positive constants whose values may change from line to line. Similarly C_{ϵ} will denote constants depending on $\epsilon . x \lesssim y$ means $x \leq C y$, and $x \simeq y$ means $(x \lesssim y \& y \lesssim x)$. Also, we will use the notation Π^{δ} for any set $\Pi^{\delta}(a)$, since the basepoint a is irrelevant in all our arguments. Further notational conventions follow below.
S^{n-1} is the ($n-1$)-dimensional unit sphere.
$B(a, r)$ is the ball of radius r centered at a.
$A(a, r)$ is the annulus $B(a, 2 r) \backslash B(a, r)$.
$L_{e}(a)$ is the line in the direction $e \in S^{n-1}$ passing through the point a, i.e.

$$
L_{e}(a)=\{a+t e: t \in \mathbb{R}\} .
$$

$T_{e}^{(r)(\beta)}(a)$ is the tube of length r, cross-section radius β, centered at a, and with axis in the direction $e \in S^{n-1}$, i.e.

$$
T_{e}^{(r)(\beta)}(a)=\left\{x \in \mathbb{R}^{n}: \operatorname{dist}\left(x, L_{e}(a)\right) \leq \beta \text { and }\left|\operatorname{proj}_{L_{e}(a)}(x)-a\right| \leq r / 2\right\}
$$

where $\operatorname{proj}_{L_{e}(a)}(x)$ is the orthogonal projection of x onto $L_{e}(a)$.
χ_{E} is the characteristic function of the set E.
$|\cdot|$ denotes Lebesgue measure or cardinality, depending on the context.

If $\Pi_{1}, \Pi_{2} \in \mathcal{G}_{n, 2}$, then their distance θ is defined by

$$
\theta\left(\Pi_{1}, \Pi_{2}\right)=\left\|\operatorname{proj}_{\Pi_{1}}-\operatorname{proj}_{\Pi_{2}}\right\|,
$$

where $\|\cdot\|$ is the operator norm. $\varphi_{n, 2}$ is a $2(n-2)$-dimensional Ahlfors-regular measure with respect to this distance (see [2]), in the sense that

$$
\varphi_{n, 2}\left(\left\{\Pi \in \mathcal{G}_{n, 2}: \theta\left(\Pi, \Pi_{0}\right) \leq r\right\}\right) \simeq r^{2(n-2)}, \forall \Pi_{0} \in \mathcal{G}_{n, 2}, r<1 .
$$

A finite subset of $\mathcal{G}_{n, 2}$ is called δ-separated if the distance between any two of its elements is at least δ. So, if \mathcal{B} is a maximal δ-separated subset of $\mathcal{A} \subset \mathcal{G}_{n, 2}$, then

$$
\varphi_{n, 2}(\mathcal{A}) \lesssim|\mathcal{B}| \delta^{2(n-2)} .
$$

Moreover, if $\mathcal{A} \subset \mathcal{G}_{n, 2}$ is δ-separated, and \mathcal{B} is a maximal η-separated subset of \mathcal{A} with $\eta \geq \delta$, then

$$
|\mathcal{B}| \gtrsim|\mathcal{A}|(\delta / \eta)^{2(n-2)} .
$$

For technical reasons, we introduce the following subset of $\mathcal{G}_{n, 2}$.

$$
\mathcal{A}_{n, 2}:=\left\{\Pi \in \mathcal{G}_{n, 2}: \theta\left(\Pi, x_{1} x_{2} \text {-plane }\right) \leq 1 / 4\right\}
$$

Notice that by invariance, it is enough to prove the Theorem for \mathcal{M}_{δ} restricted to $\mathcal{A}_{n, 2}$.

We close this section with two lemmas that will allow us to control the intersection properties and the cardinality of a family of sets Π^{δ} containing a fixed line segment. They can be proved by fairly elementary arguments, so we omit the proofs.

Lemma 2.1. Let $\Pi_{1}, \Pi_{2} \in \mathcal{G}_{n, 2}$ be such that $\theta\left(\Pi_{1}, \Pi_{2}\right) \leq 1 / 2$. Fix $a, b \in \mathbb{R}^{n}$, $\rho>0$ with $\rho \leq|a-b| \leq 2 \rho$. Then for any $\Pi_{1}^{\delta}, \Pi_{2}^{\delta}$ with $a, b \in \Pi_{1}^{\delta} \cap \Pi_{2}^{\delta}$ we have

$$
\Pi_{1}^{\delta} \cap \Pi_{2}^{\delta} \cap B(a, 2 \rho) \subset T_{e}^{(4 \rho)(\beta)}(a),
$$

where $e=(a-b) /|a-b|$ and $\beta=C \delta / \theta\left(\Pi_{1}, \Pi_{2}\right)$.
Lemma 2.2. Let $\left\{\Pi_{j}\right\}_{j=1}^{M}$ be a δ-separated set in $\mathcal{A}_{n, 2}$. Fix $a, b \in \mathbb{R}^{n}, \rho \geq 4 \delta$ with $|a-b| \geq \rho$. Suppose that for each j there exists Π_{j}^{δ} with $a, b \in \Pi_{j}^{\delta}$. Then, for any maximal ζ-separated subset $\mathcal{B} \subset\left\{\Pi_{j}\right\}_{j=1}^{M}$ with $\zeta \geq C \delta / \rho$, we have

$$
|\mathcal{B}| \gtrsim M(\rho \delta / \zeta)^{n-2} .
$$

3. Proof of the Theorem

Let $E \subset \mathbb{R}^{n}, 0<\lambda \leq 1, \epsilon>0$, and

$$
A_{\lambda}=\left\{\Pi \in \mathcal{A}_{n, 2}: \mathcal{M}_{\delta \chi_{E}}(\Pi) \geq \lambda\right\} .
$$

By the standard interpolation theorems (see [3]), it is enough to prove the following restricted weak-type estimate at the endpoint.

$$
\begin{equation*}
\varphi_{n, 2}\left(A_{\lambda}\right) \leq C_{\epsilon}\left(\frac{1}{\delta}\right)^{\epsilon}\left(\frac{|E|}{\lambda^{(n+1) / 3} \delta^{(n-2) / 3}}\right)^{3} . \tag{3.1}
\end{equation*}
$$

Now, let $\left\{\Pi_{j}\right\}_{j=1}^{M}$ be a maximal δ-separated subset of A_{λ}. Then proving (3.1) amounts to proving

$$
\begin{equation*}
|E| \geq C_{\epsilon} \delta^{\epsilon} \lambda^{(n+1) / 3} M^{1 / 3} \delta^{n-2} \tag{3.2}
\end{equation*}
$$

Since $\Pi_{j} \in A_{\lambda}$, there exists Π_{j}^{δ} such that

$$
\begin{equation*}
\left|\Pi_{j}^{\delta} \cap E\right| \geq \frac{3}{4} \lambda\left|\Pi_{j}^{\delta}\right| . \tag{3.3}
\end{equation*}
$$

Put $\gamma=\lambda^{1 / 2}(\log (1 / \delta))^{-1 / 2}$ and note that (3.2) is trivial if $4 \delta \geq \gamma$. Indeed, (3.3) implies

$$
\begin{aligned}
|E| & \gtrsim \lambda \delta^{n-2}=\lambda^{(n+1) / 3} \lambda^{-(n-2) / 3} \delta^{n-2} \\
& \gtrsim \lambda^{(n+1) / 3}\left(\delta^{2} \log (1 / \delta)\right)^{-(n-2) / 3} \delta^{n-2} \\
& =(\log (1 / \delta))^{-(n-2) / 3} \lambda^{(n+1) / 3}\left((1 / \delta)^{2(n-2)}\right)^{1 / 3} \delta^{n-2} \\
& \geq C_{\epsilon} \delta^{\epsilon} \lambda^{(n+1) / 3} M^{1 / 3} \delta^{n-2} .
\end{aligned}
$$

We may therefore assume that $4 \delta \leq \gamma$.
Now, let δ_{0} be a small constant to be determined later. Then for $\delta \geq \delta_{0}$, we have $M \lesssim 1$, and so (3.3) trivially implies (3.2) as before. Hence we can also assume that $\delta \leq \delta_{0}$.

After these preliminary reductions, we can proceed with the proof of (3.2). First, we find a large number of sets Π_{j}^{δ} so that the measure of their intersection with E is concentrated in annuli of fixed dimensions. More precisely, we claim that there exist a number $\rho \geq \gamma$ and a set $C \subset\left\{\Pi_{j}^{\delta}\right\}_{j=1}^{M}$ with

$$
\begin{equation*}
|C| \gtrsim(\log (C / \gamma))^{-2} M, \tag{3.4}
\end{equation*}
$$

so that for each $\Pi_{j}^{\delta} \in \mathcal{C}$ there is a set $P_{j} \subset \Pi_{j}^{\delta}$ of measure

$$
\begin{equation*}
\left|P_{j}\right| \gtrsim(\log (C / \gamma))^{-2} \lambda\left|\Pi_{j}^{\delta}\right| \tag{3.5}
\end{equation*}
$$

such that for each $z \in P_{j}$

$$
\begin{equation*}
\left|\Pi_{j}^{\delta} \cap E \cap B(z, 2 \rho) \cap\left(T_{e}^{(4 r)\left(\gamma^{2} / r\right)}(z)\right)^{C}\right| \gtrsim \lambda\left|\Pi_{j}^{\delta}\right| \quad \forall e \in S^{n-1}, r \in[\gamma, 1], \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\Pi_{j}^{\delta} \cap E \cap A(z, \rho)\right| \gtrsim(\log (C / \gamma))^{-1} \lambda\left|\Pi_{j}^{\delta}\right| . \tag{3.7}
\end{equation*}
$$

To see this, note that for all $z \in \mathbb{R}^{n}, e \in S^{n-1}$ and $r \in[\gamma, 1]$ we have

$$
\begin{align*}
\left|\Pi_{j}^{\delta} \cap E \cap\left(T_{e}^{(4 r)\left(\gamma^{2} / r\right)}(z)\right)^{C}\right| & =\left|\Pi_{j}^{\delta} \cap E\right|-\left|\Pi_{j}^{\delta} \cap E \cap T_{e}^{(4 r)\left(\gamma^{2} / r\right)}(z)\right| \\
& \geq \frac{3}{4}\left(\lambda\left|\Pi_{j}^{\delta}\right|-C r \frac{\gamma^{2}}{r}\left|\Pi_{j}^{\delta}\right|\right) \\
& =\frac{3}{4} \lambda\left(1-C(\log (1 / \delta))^{-1}\right)\left|\Pi_{j}^{\delta}\right| \geq \frac{\lambda}{2}\left|\Pi_{j}^{\delta}\right|, \tag{3.8}
\end{align*}
$$

for δ_{0} small enough.
Now, for each $1 \leq j \leq M, z \in \Pi_{j}^{\delta} \cap E, i \in \mathbb{N}$, consider the quantity

$$
Q(j, z, i)=\inf _{\substack{r \in \gamma, 1] \\ e \in S^{n-1}}}\left|\Pi_{j}^{\delta} \cap E \cap B\left(z, \gamma 2^{i}\right) \cap\left(T_{e}^{(4 r)\left(\gamma^{2} / r\right)}(z)\right)^{C}\right| .
$$

Then

$$
Q(j, z, 0) \leq C \gamma^{2} \delta^{n-2}=C \lambda(\log (1 / \delta))^{-1} \delta^{n-2} \leq \frac{\lambda}{10}\left|\Pi_{j}^{\delta}\right|,
$$

provided that δ_{0} has been chosen small enough. On the other hand

$$
Q(j, z, \log (C / \gamma)) \geq \frac{\lambda}{2}\left|\Pi_{j}^{\delta}\right| .
$$

Therefore, there exists $i_{j, z}$ with $1 \leq i_{j, z} \leq \log (C / \gamma)$, such that

$$
Q\left(j, z, i_{j, z}\right) \geq \frac{\lambda}{4}\left|\Pi_{j}^{\delta}\right|, \quad \text { and } \quad Q\left(j, z, i_{j, z}-1\right)<\frac{\lambda}{4}\left|\Pi_{j}^{\delta}\right| .
$$

Now, we use the pigeonhole principle: Since there are at most $\log (C / \gamma)$ possible $i_{j, z}$, there is an i_{j} and a set $P_{j}^{\prime} \subset \Pi_{j}^{\delta} \cap E$ of measure

$$
\left|P_{j}^{\prime}\right| \gtrsim(\log (C / \gamma))^{-1} \lambda\left|\Pi_{j}^{\delta}\right|
$$

such that for each $z \in P_{j}^{\prime}$

$$
Q\left(j, z, i_{j}\right) \geq \frac{\lambda}{4}\left|\Pi_{j}^{\delta}\right|, \quad \text { and } \quad Q\left(j, z, i_{j}-1\right)<\frac{\lambda}{4}\left|\Pi_{j}^{\delta}\right| .
$$

By the pigeonhole principle again, since there are M sets Π_{j}^{δ} and at most $\log (C / \gamma)$ possible i_{j}, there is an i_{0} and a subset $C^{\prime} \subset\left\{\Pi_{j}^{\delta}\right\}_{j=1}^{M}$ such that

$$
\left|C^{\prime}\right| \gtrsim(\log (C / \gamma))^{-1} M,
$$

and for each $\Pi_{j}^{\delta} \in C^{\prime}$ and each $z \in P_{j}^{\prime}$

$$
\left|\Pi_{j}^{\delta} \cap E \cap B\left(z, \gamma 2^{i_{0}}\right) \cap\left(T_{e}^{(4 r)\left(\gamma^{2} / r\right)}(z)\right)^{\complement}\right| \geq \frac{\lambda}{4}\left|\Pi_{j}^{\delta}\right| \quad \forall e \in S^{n-1}, r \in[\gamma, 1]
$$

and

$$
\begin{equation*}
\left|\Pi_{j}^{\delta} \cap E \cap B\left(z, \gamma 2^{i_{0}-1}\right) \cap\left(T_{e_{j ; z}}^{\left(4 r_{j, z}\right)\left(\gamma^{2} / r_{j, z}\right)}(z)\right)^{C}\right|<\frac{\lambda}{4}\left|\Pi_{j}^{\delta}\right|, \tag{3.9}
\end{equation*}
$$

for some $e_{j, z} \in S^{n-1}, r_{j, z} \in[\gamma, 1]$.

Now, (3.8) and (3.9) imply that

$$
\begin{aligned}
\frac{\lambda}{4}\left|\Pi_{j}^{\delta}\right| & \leq\left|\Pi_{j}^{\delta} \cap E \cap\left(T_{e_{j, z}}^{\left(4 r_{j, z}\right)\left(\gamma^{2} / r_{j, z}\right)}(z)\right)^{\complement}\right| \\
& -\left|\Pi_{j}^{\delta} \cap E \cap B\left(z, \gamma 2^{i_{0}-1}\right) \cap\left(T_{e_{j ; z}}^{\left(4 r_{j, z}\left(\gamma^{2} / r_{j ; z}\right)\right.}(z)\right)^{\complement}\right| \\
& =\left|\Pi_{j}^{\delta} \cap E \cap\left(B\left(z, \gamma 2^{i_{0}-1}\right)\right)^{\complement} \cap\left(T_{e_{j, z}}^{\left(4 r_{j, z}\right)\left(\gamma^{2} / r_{j, z}\right)}(z)\right)^{\complement}\right| \\
& \leq\left|\Pi_{j}^{\delta} \cap E \cap\left(B\left(z, \gamma 2^{i_{0}-1}\right)\right)^{\complement}\right| \\
& =\sum_{k=0}^{\log (C / \gamma)}\left|\Pi_{j}^{\delta} \cap E \cap A\left(z, \gamma 2^{i_{0}+k-1}\right)\right| .
\end{aligned}
$$

Therefore, there is a $k_{j, z}$ such that

$$
\left|\Pi_{j}^{\delta} \cap E \cap A\left(z, \gamma 2^{i_{0}+k_{j z}-1}\right)\right| \gtrsim(\log (C / \gamma))^{-1} \lambda\left|\Pi_{j}^{\delta}\right| .
$$

Repeatedly using the pigeonhole principle as before, we conclude that there exist an integer k_{0} and a set $C \subset C^{\prime}$ with

$$
|C| \gtrsim(\log (C / \gamma))^{-2} M,
$$

so that for each $\Pi_{j}^{\delta} \in C$, there is a subset $P_{j} \subset P_{j}^{\prime}$ of measure

$$
\left|P_{j}\right| \gtrsim(\log (C / \gamma))^{-2} \lambda\left|\Pi_{j}^{\delta}\right|
$$

such that for each $z \in P_{j}$

$$
\left|\Pi_{j}^{\delta} \cap E \cap B\left(z, \gamma 2^{i_{0}}\right) \cap\left(T_{e}^{(4 r)\left(\gamma^{2} / r\right)}(z)\right)^{\complement}\right| \gtrsim \lambda\left|\Pi_{j}^{\delta}\right| \quad \forall e \in S^{n-1}, r \in[\gamma, 1],
$$

and

$$
\left|\Pi_{j}^{\delta} \cap E \cap A\left(z, \gamma 2^{i_{0}+k_{0}-1}\right)\right| \gtrsim(\log (C / \gamma))^{-1} \lambda\left|\Pi_{j}^{\delta}\right| .
$$

This proves the claim with $\rho:=\gamma 2^{i_{0}+k_{0}-1}$.
Now we are in a position to carry out a "high-low multiplicity segment" argument (see [1]), as follows.

We fix a number N and consider two cases.
CASE I. For every $a \in \mathbb{R}^{n}$ we have $\left|\left\{j: a \in P_{j}\right\}\right| \leq N$.
CASE II. There exists $a \in \mathbb{R}^{n}$ such that $\left|\left\{j: a \in P_{j}\right\}\right| \geq N$.
In case I we have

$$
\begin{align*}
|E| & \geq\left|\bigcup_{j: \Pi_{j}^{\delta} \in C} P_{j}\right| \geq \frac{1}{N} \sum_{j: \Pi \Gamma_{j}^{\delta} \in C}\left|P_{j}\right| \\
& \gtrsim \frac{1}{N}|C|(\log (C / \gamma))^{-2} \lambda \delta^{n-2} \gtrsim \frac{M}{N}(\log (C / \gamma))^{-4} \lambda \delta^{n-2}, \tag{3.10}
\end{align*}
$$

where the last two inequalities follow from (3.4) and (3.5).

In case II, we fix a number μ and consider two subcases.
(II) ${ }_{1}$. For every $b \in A(a, \rho)$ we have $\left|\left\{j: a \in P_{j}, b \in \Pi_{j}^{\delta}\right\}\right| \leq \mu$.
(II) 2_{2}. There exists $b \in A(a, \rho)$ such that $\left|\left\{j: a \in P_{j}, b \in \Pi_{j}^{\delta}\right\}\right| \geq \mu$.

In subcase (II) ${ }_{1}$ we have

$$
\begin{align*}
|E| & \geq\left|\bigcup_{j: a \in P_{j}} \Pi_{j}^{\delta} \cap E \cap A(a, \rho)\right| \geq \frac{1}{\mu} \sum_{j: a \in P_{j}}\left|\Pi_{j}^{\delta} \cap E \cap A(a, \rho)\right| \\
& \gtrsim \frac{N}{\mu}(\log (C / \gamma))^{-1} \lambda \delta^{n-2}, \tag{3.11}
\end{align*}
$$

where the last inequality follows from (3.7).
In subcase $(\mathrm{II})_{2}$ let \mathcal{B} be a maximal $C \rho \delta / \gamma^{2}$-separated subset of $\left\{\Pi_{j}: a \in\right.$ $P_{j}, b \in \Pi_{j}^{\delta}$ \}. Then for C large enough, Lemma 2.2 implies

$$
\begin{equation*}
|\mathcal{B}| \gtrsim \mu \gamma^{2(n-2)} . \tag{3.12}
\end{equation*}
$$

Note that if $\Pi_{j}, \Pi_{k} \in \mathcal{B}$ then by Lemma 2.1

$$
\Pi_{j}^{\delta} \cap \Pi_{k}^{\delta} \cap B(a, 2 \rho) \subset T_{e}^{(4 \rho)\left(\gamma^{2} / \rho\right)}(a),
$$

where $e=(a-b) /|a-b|$, provided that C has been chosen large enough. Therefore the family

$$
\left\{\Pi_{j}^{\delta} \cap E \cap B(a, 2 \rho) \cap\left(T_{e}^{(4 \rho)\left(\gamma^{2} / \rho\right)}(a)\right)^{C}: \Pi_{j} \in \mathcal{B}\right\}
$$

is disjoint. Consequently

$$
\begin{align*}
|E| & \geq\left|\bigcup_{j: \Pi_{j} \in \mathcal{B}} \Pi_{j}^{\delta} \cap E \cap B(a, 2 \rho) \cap\left(T_{e}^{(4 \rho)\left(\gamma^{2} / \rho\right)}(a)\right)^{\complement}\right| \\
& =\sum_{j: \Pi_{j} \in \mathcal{B}}\left|\Pi_{j}^{\delta} \cap E \cap B(a, 2 \rho) \cap\left(T_{e}^{(4 \rho)\left(\gamma^{2} / \rho\right)}(a)\right)^{\complement}\right| \\
& \gtrsim|\mathcal{B}| \lambda \delta^{n-2} \gtrsim \gamma^{2(n-2)} \mu \lambda \delta^{n-2}, \tag{3.13}
\end{align*}
$$

where the last two inequalities follow from (3.6) and (3.12). So, in case II we see that choosing

$$
\mu=N^{1 / 2}(\log (C / \gamma))^{-1 / 2} \gamma^{-(n-2)},
$$

(3.11) and (3.13) imply that

$$
\begin{equation*}
|E| \gtrsim(\log (C / \gamma))^{-1 / 2} \gamma^{n-2} \lambda N^{1 / 2} \delta^{n-2} \tag{3.14}
\end{equation*}
$$

In conclusion, we see that in case I, (3.10) holds, whereas in case II, (3.14) holds. So choosing

$$
N=M^{2 / 3}(\log (C / \gamma))^{-7 / 3} \gamma^{-2(n-2) / 3},
$$

the right hand sides of (3.10) and (3.14) become equal. So, in both cases we have

$$
\begin{aligned}
|E| & \gtrsim(\log (C / \gamma))^{-5 / 3} \gamma^{2(n-2) / 3} \lambda M^{1 / 3} \delta^{n-2} \\
& =(\log (C / \gamma))^{-5 / 3}\left(\lambda^{1 / 2}(\log (1 / \delta))^{-1 / 2}\right)^{2(n-2) / 3} \lambda M^{1 / 3} \delta^{n-2} \\
& \geq(\log (C / \delta))^{-5 / 3}\left(\lambda^{1 / 2}(\log (1 / \delta))^{-1 / 2}\right)^{2(n-2) / 3} \lambda M^{1 / 3} \delta^{n-2} \\
& \geq C_{\epsilon} \delta^{\epsilon} \lambda^{(n+1) / 3} M^{1 / 3} \delta^{n-2},
\end{aligned}
$$

where the inequality before the last one is true because $4 \delta \leq \gamma$. The proof is complete.

References

[1] J. Bourgain. Besicovitch type maximal operators and applications to Fourier analysis. Geom. Funct. Anal. (2) 1 (1991), 147-187.
[2] P. Mattila. Geometry of sets and measures in Euclidean spaces. Cambridge University Press, 1995.
[3] E. M. Stein, G. Weiss. Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, 1971.
[4] T. Tao. From Rotating Needles to Stability of Waves. Emerging Connections between Combinatorics, Analysis and PDE. Notices Amer. Math. Soc. 48 (2001), no. 3, 294303.
[5] T. Wolff. Recent work connected with the Kakeya problem. Prospects in Mathematics (Princeton, NJ, 1996), 129-162, Amer. Math. Soc., Providence, RI, 1999.

Department of Mathematics, University of Crete, Knossos Ave., 71409 Iraklio, Greece

E-mail address: mitsis@fourier.math.uoc.gr

[^0]: 2000 Mathematics Subject Classification. 42B25.

