A GENERALIZATION OF A RESULT DUE TO HAVIN AND MAZYA

THEMIS MITSIS

ABSTRACT. We generalize the classical result of Havin and Mazya which relates Bessel capacity and Hausdorff dimension.

Let

$$L^{p}_{\alpha}(\mathbb{R}^{d}) = \{ f : f = G_{\alpha} * g, g \in L^{p}(\mathbb{R}^{d}) \}, \alpha > 0, p > 1,$$

be the space of Bessel potentials, with norm

$$||f||_{\alpha,p} = ||g||_p.$$

Here G_{α} is the Bessel kernel, i.e., the inverse Fourier transform of the function

$$\widehat{G}_{\alpha}(\xi) = (1+|\xi|^2)^{-\alpha/2}$$

The Bessel capacity of a set $E \subset \mathbb{R}^d$ is defined as

$$B_{\alpha,p}(E) = \inf\{\|f\|_{\alpha,p}^p : f \ge 1 \text{ on } E\}.$$

The relation between capacity and Hausdorff measure is given by the following result due to Havin and Mazya [2].

Theorem 1. Let $E \subset \mathbb{R}^d$ be a Borel set. If p > 1, $\alpha p \leq d$, then

$$B_{\alpha,p}(E) = 0 \Rightarrow \mathcal{H}^{d-\alpha p+\varepsilon}(E) = 0, \text{ for every } \varepsilon > 0.$$

This implies that the Hausdorff dimension of *E* is less than $d - \alpha p$. The original proof of Theorem 1 involved the Hardy-Littlewood maximal function and was rather indirect. A different proof based on Wolff's inequality may be found in [1]. The purpose of this short note is to give an easy direct proof of a more general result in the context of "mixed-norm" capacities, defined as follows. Let

$$L^{p_1,p_2}(\mathbb{R}^{d_1} \times \mathbb{R}^{d_2}), p_1 > 1, p_2 > 1,$$

be the space of all functions with finite $\|\cdot\|_{p_1,p_2}$ norm, where

$$||g||_{p_1,p_2} = \left(\int_{\mathbb{R}^{d_2}} \left(\int_{\mathbb{R}^{d_1}} |g(x_1,x_2)|^{p_1} dx_1\right)^{p_2/p_1} dx_2\right)^{1/p_2}.$$

For
$$\alpha > 0$$
, define the potential space

$$L^{p_1,p_2}_{\alpha}(\mathbb{R}^{d_1} \times \mathbb{R}^{d_2}) = \{ f : f = G_{\alpha} * g, \ g \in L^{p_1,p_2}(\mathbb{R}^{d_1} \times \mathbb{R}^{d_2}) \},\$$

with norm

$$||f||_{\alpha,p_1,p_2} = ||g||_{p_1,p_2}$$

Then the mixed-norm capacity of $E \subset \mathbb{R}^d = \mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$ is defined as

$$B_{\alpha,p_1,p_2}(E) = \inf\{\|f\|_{\alpha,p_1,p_2}^{p_2} : f \ge 1 \text{ on } E\}.$$

Now, we can state our result.

Theorem 2. Let $E \subset \mathbb{R}^d = \mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$ be a Borel set. If $p_1 \leq p_2$ and $d_2 + d_1 \frac{p_2}{p_1} - p_2 \alpha \geq 0$ then

$$B_{\alpha,p_1,p_2}(E) = 0 \Rightarrow \mathcal{H}^{d_2 + d_1 \frac{p_2}{p_1} - p_2 \alpha + \varepsilon}(E) = 0, \text{ for every } \varepsilon > 0.$$

If $p_2 \le p_1$ and $d_1 + d_2 \frac{p_1}{p_2} - p_1 \alpha \ge 0$ then $B_{\alpha, p_1, p_2}(E) = 0 \Rightarrow \mathcal{H}^{d_1 + d_2 \frac{p_1}{p_2} - p_1 \alpha + \varepsilon}(E) = 0, \text{ for every } \varepsilon > 0.$

Proof. Without loss of generality we may assume that $E \subset [0, 1]^d$. Let μ be a finite measure supported on *E*, and let *u* be a non-negative C_c^{∞} function such that $u \ge 1$ on *E*. Then

$$\mu(E) \leq \int u(x)d\mu(x) = \int G_{\alpha} * D^{\alpha}u(x)d\mu(x)$$
$$= \int D^{\alpha}u(y) \int G_{\alpha}(x-y)d\mu(x)dy$$
$$\leq ||u||_{\alpha,p_{1},p_{2}}||G_{\alpha} * \mu||_{q_{1},q_{2}},$$

where q_1, q_2 are the conjugate exponents of p_1, p_2 respectively, and $D^{\alpha}u$ is the fractional derivative operator acting on u, defined as the inverse Fourier transform of the function

$$(1+|\xi|^2)^{\alpha/2}\widehat{u}(\xi).$$

For each $n \ge 0$ we subdivide \mathbb{R}^d into disjoint dyadic cubes of sidelength 2^{-n} , so that each cube of sidelength 2^{-k} is split into 2^d cubes of sidelength $2^{-(k+1)}$. If Q is such a dyadic cube then l(Q) denotes its sidelength and \tilde{Q} the cube with the same center as Q and sidelength 3l(Q). Now, let

$$\widetilde{I}_{\alpha}(x) = \begin{cases} |x|^{\alpha-d}, & \text{if } 0 < |x| \le 1\\ 0, & \text{if } |x| > 1 \end{cases}$$

It follows from the properties of the Bessel kernel (see, e.g., [1], [3]) that there exist constants *a* and *A* such that

$$G_{\alpha}(x) \le AI_{\alpha}(x), \ 0 < |x| \le 1,$$

and

$$G_{\alpha}(x) \le Ae^{-a|x|}, |x| > 1.$$

2

Therefore,

$$\begin{split} \|G_{\alpha} * \mu\|_{q_{1},q_{2}} \lesssim \left(\int_{\mathbb{R}^{d_{2}}} \left(\int_{\mathbb{R}^{d_{1}}} (\widetilde{I}_{\alpha} * \mu(x_{1}, x_{2}))^{q_{1}} dx_{1} \right)^{\frac{q_{2}}{q_{1}}} dx_{2} \right)^{\frac{1}{q_{2}}} \\ + \left(\int_{\mathbb{R}^{d_{2}}} \left(\int_{\mathbb{R}^{d_{1}}} \left(\int_{|(x_{1}, x_{2}) - y| > 1} e^{-a|(x_{1}, x_{2}) - y|} d\mu(y) \right)^{q_{1}} dx_{1} \right)^{\frac{q_{2}}{q_{1}}} dx_{2} \right)^{\frac{1}{q_{2}}} \\ = B + B'. \end{split}$$

B' is easy to estimate. By Minkowski's inequality for integrals, we have

$$B' \leq \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^{d_2}} \left(\int_{\mathbb{R}^{d_1}} e^{-aq_1|(x_1, x_2) - y|} dx_1 \right)^{q_2/q_1} dx_2 \right)^{1/q_2} d\mu(y)$$

$$\leq \mu(E) \left(\int_{\mathbb{R}^{d_2}} e^{-\frac{1}{\sqrt{2}}aq_2|x_2|} dx_2 \left(\int_{\mathbb{R}^{d_1}} e^{-\frac{1}{\sqrt{2}}aq_1|x_1|} dx_1 \right)^{q_2/q_1} \right)^{1/q_2} < \infty.$$

On the other hand

$$\begin{split} \widetilde{I}_{\alpha} * \mu(x) &= \int_{|x-y| \le 1} \frac{d\mu(y)}{|x-y|^{d-\alpha}} = \sum_{n=0}^{\infty} \int_{2^{-(n+1)} < |x-y| \le 2^{-n}} \frac{d\mu(y)}{|x-y|^{d-\alpha}} \\ &\leq \sum_{n=0}^{\infty} 2^{(n+1)(d-\alpha)} \mu(B(x, 2^{-n})) \lesssim \sum_{l(Q) \le 1} \frac{\mu(\widetilde{Q})}{l(Q)^{d-\alpha}} \chi_Q(x) \\ &\lesssim \left(\sum_{n=0}^{\infty} 2^{-\delta p_1(n+1)}\right)^{1/p_1} \left(\sum_{l(Q) \le 1} \frac{\mu(\widetilde{Q})^{q_1}}{l(Q)^{q_1(d-\alpha+\delta)}} \chi_Q(x)\right)^{1/q_1}, \end{split}$$

where δ is a positive number. Now let

$$\pi_2: \mathbb{R}^{d_1} \times \mathbb{R}^{d_2} \to \mathbb{R}^{d_2}$$

be the usual projection

$$\pi_2(x_1, x_2) = x_2.$$

Also, let

$$s = d_2 + d_1 \frac{p_2}{p_1} - p_2 \alpha,$$

and

$$t = d_1 + d_2 \frac{p_1}{p_2} - p_1 \alpha.$$

Suppose that $p_1 \leq p_2$ and that $\mathcal{H}^{s+\varepsilon}(E) > 0$ for some $\varepsilon > 0$. Then there exists a nontrivial finite measure μ supported on E such that

$$\mu(B(x,r)) \le r^{s+\varepsilon}$$

for all $x \in \mathbb{R}^d$, r > 0. It follows that

$$\begin{split} B^{q_2} &= \int_{\mathbb{R}^{d_2}} \left(\int_{\mathbb{R}^{d_1}} (\widetilde{I}_{\alpha} * \mu(x_1, x_2))^{q_1} dx_1 \right)^{q_2/q_1} dx_2 \\ &\lesssim \int_{\mathbb{R}^{d_2}} \left(\sum_{l(\mathcal{Q}) \leq 1} \frac{\mu(\widetilde{\mathcal{Q}})^{q_1}}{l(\mathcal{Q})^{q_1(d-\alpha+\delta)}} l(\mathcal{Q})^{d_1} \chi_{\pi_2(\mathcal{Q})}(x_2) \right)^{q_2/q_1} dx_2 \\ &\lesssim \sum_{l(\mathcal{Q}) \leq 1} \frac{\mu(\widetilde{\mathcal{Q}})^{q_2}}{l(\mathcal{Q})^{q_2(d-\alpha+\delta)-d_1\frac{q_2}{q_1}-d_2}} \\ &= \sum_{n=0}^{\infty} 2^{n(q_2(d-\alpha+\delta)-d_1\frac{q_2}{q_1}-d_2)} \sum_{l(\mathcal{Q})=2^{-n}} \mu(\widetilde{\mathcal{Q}}) \mu(\widetilde{\mathcal{Q}})^{q_2-1} \\ &\lesssim \mu(E) \sum_{n=0}^{\infty} \frac{2^{n(q_2(d-\alpha+\delta)-d_1\frac{q_2}{q_1}-d_2)}}{2^{n(q_2-1)(s+\varepsilon)}} < \infty, \end{split}$$

provided that δ has been chosen so that $p_2\delta < \varepsilon$.

Now suppose that $p_2 \leq p_1$ and that $\mathcal{H}^{t+\varepsilon}(E) > 0$ for some $\varepsilon > 0$. Then, as before, there exists a nontrivial finite measure supported on *E* such that

$$\mu(B(x,r)) \le r^{t+\varepsilon},$$

for all $x \in \mathbb{R}^d$, r > 0. It follows that

$$\begin{split} B^{q_1} &\lesssim \left(\int_{\mathbb{R}^{d_2}} \left(\sum_{l(Q) \leq 1} \frac{\mu(\widetilde{Q})^{q_1}}{l(Q)^{q_1(d-\alpha+\delta)}} l(Q)^{d_1} \chi_{\pi_2(Q)}(x_2) \right)^{q_2/q_1} dx_2 \right)^{q_1/q_2} \\ &\lesssim \sum_{l(Q) \leq 1} \frac{\mu(\widetilde{Q})^{q_1}}{l(Q)^{q_1(d-\alpha+\delta)-d_2\frac{q_1}{q_2}-d_1}} \\ &= \sum_{n=0}^{\infty} 2^{n(q_1(d-\alpha+\delta)-d_2\frac{q_1}{q_2}-d_1)} \sum_{l(Q)=2^{-n}} \mu(\widetilde{Q}) \mu(\widetilde{Q})^{q_1-1} \\ &\lesssim \mu(E) \sum_{n=0}^{\infty} \frac{2^{n(q_1(d-\alpha+\delta)-d_2\frac{q_1}{q_2}-d_1)}}{2^{n(q_1-1)(t+\varepsilon)}} < \infty, \end{split}$$

provided that $p_1 \delta < \varepsilon$.

It follows that $\mu(E) \leq ||u||_{\alpha,p_1,p_2}$. By assumption, $B_{\alpha,p_1,p_2}(E) = 0$. Therefore $\mu(E) = 0$ which is a contradiction.

Of course, Theorem 2 implies Theorem 1, if we take $p_1 = p_2 = p$.

References

[1] D. R. Adams, L. I. Hedberg, *Function Spaces and Potential Theory*, Springer-Verlag, 1996.

- [2] V. Havin, V. Mazya, Nonlinear potential theory, Russian Math. Surveys, 27 (1972), 71-148.
- [3] E. M. Stein, *Singular Integrals and Differentiability Properties of Functions*, Princeton University Press, 1970.

Department of Mathematics, California Institute of Technology, Pasadena, CA 91125, USA

E-mail address: themis@cco.caltech.edu