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A. We generalize the classical result of Havin and Mazya which
relates Bessel capacity and Hausdorff dimension.

Let

Lp
α(R

d) = { f : f = Gα ∗ g, g ∈ Lp(Rd)}, α > 0, p > 1,

be the space of Bessel potentials, with norm

‖ f ‖α,p = ‖g‖p.
HereGα is the Bessel kernel, i.e., the inverse Fourier transform of the func-
tion

Ĝα(ξ) = (1 + |ξ|2)−α/2.
The Bessel capacity of a setE ⊂ Rd is defined as

Bα,p(E) = inf {‖ f ‖pα,p : f ≥ 1 onE}.
The relation between capacity and Hausdorff measure is given by the fol-
lowing result due to Havin and Mazya [2].

Theorem 1. Let E ⊂ Rd be a Borel set. Ifp > 1, αp ≤ d, then

Bα,p(E) = 0⇒ Hd−αp+ε(E) = 0, for everyε > 0.

This implies that the Hausdorff dimension ofE is less thand − αp. The
original proof of Theorem 1 involved the Hardy-Littlewood maximal func-
tion and was rather indirect. A different proof based on Wolff’s inequality
may be found in [1]. The purpose of this short note is to give an easy direct
proof of a more general result in the context of “mixed-norm” capacities,
defined as follows. Let

Lp1,p2(Rd1 × Rd2), p1 > 1, p2 > 1,

be the space of all functions with finite‖ · ‖p1,p2 norm, where

‖g‖p1,p2 =


∫

Rd2

(∫

Rd1

|g(x1, x2)|p1dx1

)p2/p1

dx2


1/p2

.

Forα > 0, define the potential space

Lp1,p2
α (Rd1 × Rd2) = { f : f = Gα ∗ g, g ∈ Lp1,p2(Rd1 × Rd2)},
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with norm
‖ f ‖α,p1,p2 = ‖g‖p1,p2.

Then the mixed-norm capacity ofE ⊂ Rd = Rd1 × Rd2 is defined as

Bα,p1,p2(E) = inf {‖ f ‖p2
α,p1,p2

: f ≥ 1 onE}.
Now, we can state our result.

Theorem 2. Let E ⊂ Rd = Rd1 × Rd2 be a Borel set.
If p1 ≤ p2 andd2 + d1

p2

p1
− p2α ≥ 0 then

Bα,p1,p2(E) = 0⇒ Hd2+d1
p2
p1
−p2α+ε(E) = 0, for everyε > 0.

If p2 ≤ p1 andd1 + d2
p1

p2
− p1α ≥ 0 then

Bα,p1,p2(E) = 0⇒ Hd1+d2
p1
p2
−p1α+ε(E) = 0, for everyε > 0.

Proof. Without loss of generality we may assume thatE ⊂ [0,1]d. Letµ be
a finite measure supported onE, and letu be a non-negativeC∞c function
such thatu ≥ 1 onE. Then

µ(E) ≤
∫

u(x)dµ(x) =

∫
Gα ∗ Dαu(x)dµ(x)

=

∫
Dαu(y)

∫
Gα(x− y)dµ(x)dy

≤ ‖u‖α,p1,p2‖Gα ∗ µ‖q1,q2,

whereq1,q2 are the conjugate exponents ofp1, p2 respectively, andDαu is
the fractional derivative operator acting onu, defined as the inverse Fourier
transform of the function

(1 + |ξ|2)α/2û(ξ).

For eachn ≥ 0 we subdivideRd into disjoint dyadic cubes of sidelength
2−n, so that each cube of sidelength 2−k is split into 2d cubes of sidelength
2−(k+1). If Q is such a dyadic cube thenl(Q) denotes its sidelength and̃Q the
cube with the same center asQ and sidelength 3l(Q). Now, let

Ĩα(x) =


|x|α−d, if 0 < |x| ≤ 1

0, if |x| > 1
.

It follows from the properties of the Bessel kernel (see, e.g., [1], [3]) that
there exist constantsa andA such that

Gα(x) ≤ AĨα(x), 0 < |x| ≤ 1,

and
Gα(x) ≤ Ae−a|x|, |x| > 1.
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Therefore,

‖Gα ∗ µ‖q1,q2 .


∫

Rd2

(∫

Rd1

(Ĩα ∗ µ(x1, x2))
q1dx1

) q2
q1

dx2



1
q2

+


∫

Rd2

(∫

Rd1

(∫

|(x1,x2)−y|>1
e−a|(x1,x2)−y|dµ(y)

)q1

dx1

) q2
q1

dx2



1
q2

= B + B′.

B′ is easy to estimate. By Minkowski’s inequality for integrals, we have

B′ ≤
∫

Rd


∫

Rd2

(∫

Rd1

e−aq1|(x1,x2)−y|dx1

)q2/q1

dx2


1/q2

dµ(y)

≤ µ(E)


∫

Rd2

e−
1√
2
aq2|x2|dx2

(∫

Rd1

e−
1√
2
aq1|x1|dx1

)q2/q1


1/q2

< ∞.

On the other hand

Ĩα ∗ µ(x) =

∫

|x−y|≤1

dµ(y)
|x− y|d−α =

∞∑

n=0

∫

2−(n+1)<|x−y|≤2−n

dµ(y)
|x− y|d−α

≤
∞∑

n=0

2(n+1)(d−α)µ(B(x,2−n)) .
∑

l(Q)≤1

µ(Q̃)
l(Q)d−αχQ(x)

.


∞∑

n=0

2−δp1(n+1)


1/p1


∑

l(Q)≤1

µ(Q̃)q1

l(Q)q1(d−α+δ)
χQ(x)


1/q1

,

whereδ is a positive number. Now let

π2 : Rd1 × Rd2 → Rd2

be the usual projection
π2(x1, x2) = x2.

Also, let

s = d2 + d1
p2

p1
− p2α,

and

t = d1 + d2
p1

p2
− p1α.

Suppose thatp1 ≤ p2 and thatH s+ε(E) > 0 for someε > 0. Then there
exists a nontrivial finite measureµ supported onE such that

µ(B(x, r)) ≤ r s+ε
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for all x ∈ Rd, r > 0. It follows that

Bq2 =

∫

Rd2

(∫

Rd1

(Ĩα ∗ µ(x1, x2))
q1dx1

)q2/q1

dx2

.
∫

Rd2


∑

l(Q)≤1

µ(Q̃)q1

l(Q)q1(d−α+δ)
l(Q)d1χπ2(Q)(x2)


q2/q1

dx2

.
∑

l(Q)≤1

µ(Q̃)q2

l(Q)q2(d−α+δ)−d1
q2
q1
−d2

=

∞∑

n=0

2n(q2(d−α+δ)−d1
q2
q1
−d2)

∑

l(Q)=2−n

µ(Q̃)µ(Q̃)q2−1

. µ(E)
∞∑

n=0

2n(q2(d−α+δ)−d1
q2
q1
−d2)

2n(q2−1)(s+ε)
< ∞,

provided thatδ has been chosen so thatp2δ < ε.
Now suppose thatp2 ≤ p1 and thatH t+ε(E) > 0 for someε > 0. Then,

as before, there exists a nontrivial finite measure supported onE such that

µ(B(x, r)) ≤ r t+ε,

for all x ∈ Rd, r > 0. It follows that

Bq1 .


∫

Rd2


∑

l(Q)≤1

µ(Q̃)q1

l(Q)q1(d−α+δ)
l(Q)d1χπ2(Q)(x2)


q2/q1

dx2



q1/q2

.
∑

l(Q)≤1

µ(Q̃)q1

l(Q)q1(d−α+δ)−d2
q1
q2
−d1

=

∞∑

n=0

2n(q1(d−α+δ)−d2
q1
q2
−d1)

∑

l(Q)=2−n

µ(Q̃)µ(Q̃)q1−1

. µ(E)
∞∑

n=0

2n(q1(d−α+δ)−d2
q1
q2
−d1)

2n(q1−1)(t+ε)
< ∞,

provided thatp1δ < ε.
It follows thatµ(E) . ‖u‖α,p1,p2. By assumption,Bα,p1,p2(E) = 0. There-

foreµ(E) = 0 which is a contradiction. �

Of course, Theorem 2 implies Theorem 1, if we takep1 = p2 = p.
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