A GENERALIZATION OF A RESULT DUE TO HAVIN AND
MAZYA

THEMIS MITSIS

AsstracT. We generalize the classical result of Havin and Mazya which
relates Bessel capacity and Haugtidimension.

Let
LPRY) = (f: f =G, %9, ge LPRY)}, >0, p>1,
be the space of Bessel potentials, with norm

1 fllop = 119llp-

HereG, is the Bessel kernel, i.e., the inverse Fourier transform of the func-
tion _
Ga(é) = (1 + ) "2,
The Bessel capacity of a sétc RY is defined as

Bu.o(E) = inf{lIflP,: f=>1o0nE}.

The relation between capacity and Haustloreasure is given by the fol-
lowing result due to Havin and Mazya [2].
Theorem 1. LetE c RY be a Borel set. Ip > 1, ap < d, then

B, p(E) = 0 = H*“P*(E) = 0, for everys > 0.

This implies that the Hausddrdimension ofE is less thard — ap. The
original proof of Theorem 1 involved the Hardy-Littlewood maximal func-
tion and was rather indirect. Aflierent proof based on Wbk inequality
may be found in [1]. The purpose of this short note is to give an easy direct

proof of a more general result in the context of “mixed-norm” capacities,
defined as follows. Let

LPoP2(RE x R%), py > 1, po> 1,
be the space of all functions with finife ||, ,, Nnorm, where

P2/ pP1 1/p2
9oy, = (f (f l0(Xa, X2)|p1dX1) dXz) .
R%2 \JR%

Fora > 0, define the potential space
LPP (R x R®) = {f : f =G, g, g€ LPP(R" x RP)},
1
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with norm

||f||a,p1,p2 = ||g||p1,p2-
Then the mixed-norm capacity & c R% = R% x R® is defined as

Bo.po.po(E) = inf{l[ f[152, o, : f > 1 0ONE}.

Now, we can state our result.

Theorem 2. LetE c RY = R% x R% be a Borel set.
If pp < ppandd, + dl% — poa > Othen

Ba.py.py(E) = 0 = HE 5 P0(E) = 0, for everye > 0.

If p, < ppandd; + dz% — p1@ > Othen

Ba.py.py(E) = 0 = H %% P1(E) = 0, for everye > 0.

Proof. Without loss of generality we may assume tBat [0, 1]9. Letu be
a finite measure supported &) and letu be a non-negativ€y’ function
such thau > 1 onE. Then

masjhmwm:fbmemwm
- [ Dru) [ Gux- ety

< IUlla,py.polIGa * pllgy,zs

whereq,, g, are the conjugate exponentsm@f p, respectively, and®u is
the fractional derivative operator acting opdefined as the inverse Fourier
transform of the function

(1 + €P)*"2TU(é).

For eachn > 0 we subdivideR into disjoint dyadic cubes of sidelength
27", so that each cube of sidelength & split into 2' cubes of sidelength
2-(+1)_|f Qis such a dyadic cube théfQ) denotes its sidelength af@ithe
cube with the same center @and sidelengthl8Q). Now, let

—~ X9, ifo<|x <1
,(X) = .
9 {O, if x| >1

It follows from the properties of the Bessel kernel (see, e.g., [1], [3]) that
there exist constantsandA such that

Go(¥) < Aly(X), 0< X < 1,

and
G.(X) < Ae ¥ x| > 1.
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Therefore,

2\
— a1
||Ga, */l||Q1,Q2 S [f (f (la */’t(xla XZ))qldxl) dXZJ
Rdz Rdl

L7}

a1 a %
L] o o
R%2 \JRY \J|(x1,%2)-y>1

=B+ B.

B’ is easy to estimate. By Minkowski’s inequality for integrals, we have

O2/01 /a2
B Sf (f (f e—afhl(xl,Xz)—ydxl) dXz) du(y)
Rd \JR%2 \JR%

o2/ 1/ %
- L ag|x| —Lag|x|
< u(E) | e v dx | e v dx, < 00,
R9% RY91

On the other hand

_ duly) f du(y)
I+ u(X) = Y Y
" IU( ) jl;—ylsl |X - yld_a nZO 2-(MtD)<|x—y|<2-N |X - yld—w

|(ﬂ(§)?20)(o(x)

IA

2(n+1)(d—a)M(B(X, 2—n)) < Z
n=0 1(Q)<1

o0 1/p1 ,U(G o lm
n=0

Q=1
wheres is a positive number. Now let

my RE x R% 5 R%

be the usual projection
m2(X1, X2) = Xo.
Also, let

S= dz + d]_& - P,
P1

and
t= d1 + dzﬁ - pra.
P2

Suppose thap; < p, and thatH***(E) > O for somes > 0. Then there
exists a nontrivial finite measugesupported orkE such that

u(B(x.r) <r*e
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forall x e RY, r > 0. It follows that

O2/a1
8% = [ [ [, @rnta)tdn)  de
R% \JR%

%) G2/t
H(Q)™ d
— = | 1
: fRdz (I(%;l |(Q)Q1(d—a+6) (Q) X”Z(Q)(XZ)) dX2

< HQ®

~ — gy _
(021 |(Q)C|2(d cx+6) dlql dy

= d-a-+6)—d1 2 —d ®) Q)%"
_ Z on(Ga(d-a-+6)—d 57 ~dp) Z u(Qu(Q)* .
n=0

I(Q=2"
© - oN(A(d-a-+0)~ch 2 ~)
S H(E) P R
n=0

provided that has been chosen so thab < e.
Now suppose thap, < p; and that/'**(E) > 0 for somes > 0. Then,

as before, there exists a nontrivial finite measure supportéfisarch that
u(B(xr)) < rte,
for all x e RY, r > 0. It follows that

®) O2/01
d H(Q* )
o UR [| élm)qlm'@)dxnz@)(xg)] dx

HQ*

I (Q)ql(d—am)—dzg—; -0y

Oi/%

<
I(Q=1

(o] q — —

= ) e ie® N (Qu@
n=0 I(Q=2"
0 2n(q1(d—a+6)—d2%—d1)

S H(E) T

n=0

provided thatp,6 < &.
It follows thatu(E) < llUlle,p,,p,- BY assumptionB, p, ,(E) = 0. There-

fore u(E) = 0 which is a contradiction. O
Of course, Theorem 2 implies Theorem 1, if we tgke= p, = p.
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