
THE ESSENTIAL NORM OF A COMPOSITION OPERATOR ON THE
MINIMAL MÖBIUS INVARIANT SPACE

THEMIS MITSIS AND MICHAEL PAPADIMITRAKIS

A. We derive a formula for the essential norm of a composition operator on the
minimal Möbius invariant space of analytic functions. As an application, we show that
the essential norm of a non-compact composition operator is at least 1. We also obtain
lower bounds depending on the behavior of the symbol near the boundary, and calculate
the order of magnitude of the essential norm of composition operators induced by finite
Blaschke products.

Let D ⊂ C be the open unit disk. For α ∈ D, we put

ϕα(z) =
α − z
1 − αz

, z ∈ D.
The minimal space M (or analytic Besov-1 space) is defined to be the set of all analytic
functions f on D for which there exist a sequence of points αn ∈ D, and a sequence of
complex numbers λ = (λ(n))∞n=1 ∈ `1 such that

f (z) =

∞∑

n=1

λ(n)ϕan (z).

So, a function in M has an “atomic” decomposition as a sum of Möbius transformations.
We norm M by

‖ f ‖M = inf

‖λ‖`1 : f =

∞∑

n=1

λ(n)ϕαn , for some λ ∈ `1, αn ∈ D
 .

The minimal space was introduced and extensively studied in [1], where it was shown
that if one defines appropriately the notion of a “Möbius invariant space”, then M is the
smallest one. In fact, its norm is stronger than the norm of any other such space. Note that
functions in M extend continuously to the boundary, so M is a “boundary regular” space.
Moreover, as shown in [1], M coincides with the set of all analytic functions on D with
integrable second derivative. More specifically, there exists a constant C > 0 such that for
every f ∈M

C−1 ‖ f ′′‖1 ≤ ‖ f − f (0) − f ′(0) z‖M ≤ C ‖ f ′′‖1,
where

‖ f ′′‖1 =

"

D

| f ′′(z)| dA(z),

and dA is normalized area measure. Every f ∈ M can be recovered from its second
derivative by means of the formula

f (z) = f (0) + f ′(0) z −
"

D

ϕα(z)
α

f ′′(α) dA(α).
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In what follows, for positive x, y, the symbols x ' y and x . y mean C−1x ≤ y ≤ C x and
x ≤ C y respectively, where C > 0 is an absolute numerical constant, not necessarily the
same each time it occurs.

Now let ψ be an analytic map of D into itself. It is clear that the composition operator

Cψ : M →M , Cψ f = f ◦ ψ,
is bounded if and only if

(1) sup
|α|<1
‖(ϕα ◦ ψ)′′‖1 < ∞.

Of course, this is equivalent to

sup
|α|<1

"

D

∣∣∣∣∣∣
1 − |α|2

(1 − αψ)2ψ
′′ + 2α

1 − |α|2
(1 − αψ)3 (ψ′)2

∣∣∣∣∣∣ dA < +∞.

In [1] the authors prove that this is equivalent to

sup
|α|<1

"

D

1 − |α|2
|1 − αψ|2 |ψ

′′| dA < +∞

together with

sup
|α|<1

"

D

1 − |α|2
|1 − αψ|3 |ψ

′|2 dA < +∞.

One direction of this equivalence is, of course, trivial and the other direction is done in [1]
by proving, via interpolation with the Dirichlet space, that, if Cψ is bounded on M , then
the second of the last two relations holds and hence also the first. Here is an alternative
proof. If Cψ is bounded on M , then, since

| f (0)| +
"

D

| f ′|2 dA . ‖ f ‖M ,

we get that

sup
|α|<1

"

D

(1 − |α|2)2

|1 − αψ|4 |ψ
′|2 dA < +∞.

This is equivalent to

sup
|α|<1

"

D

(1 − |α|2)2

|1 − αz|4 nψ(z) dA(z) < +∞,

where nψ(z) is the cardinality of the inverse image of z under ψ. Now, it is standard to show
that this is equivalent to

sup
I

1
|I|2

"

S (I)

nψ(z) dA(z) < +∞,

where I ranges over all arcs on the unit circle T, |I| is the length of I, and S (I) is the usual
Carleson square over I. Finally, it is also standard to show that this is equivalent to

sup
|α|<1

"

D

1 − |α|2
|1 − αz|3 nψ(z) dA(z) < +∞,
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which is equivalent to the original

sup
|α|<1

"

D

1 − |α|2
|1 − αψ|3 |ψ

′|2 dA < +∞.

A sufficient condition for the boundedness of Cψ, involving the integral means of ψ′′,
has been obtained by Blasco in [2], extending a series of partial results in [1]. As far as
compactness is concerned, the minimal space satisfies the conditions of theorem 2.1 in [4],
therefore Cψ is compact if and only if ‖ψ‖∞ < 1. Moreover, Wulan and Xiong proved in
[7] that Cψ is compact if and only if the “little Oh” version of (1) holds, namely

lim
|α|→1
‖(ϕα ◦ ψ)′′‖1 = 0.

Here we are interested in estimating the essential norm of Cψ which is defined to be the
distance of Cψ to the subspace of compact operators, that is

‖Cψ‖e = inf{‖Cψ − K‖ : K compact}.
We will prove the following asymptotic estimate. The result in [7] is, of course, a special
case.

Theorem 1. Let Cψ : M →M be a bounded composition operator. Then

‖Cψ‖e ' lim sup
|α|→1

‖(ϕα ◦ ψ)′′‖1 := lim
s→1

sup
|α|>s
‖(ϕα ◦ ψ)′′‖1.

In the proof we will make use of a simple observation: A bounded sequence fn ∈ M
converges to zero in the weak-* topology if and only if it converges to zero uniformly on
compact sets. To see this, note that by [1], the pre-dual of M may be identified with the
little Bloch space. More specifically, every element Λ of the dual of the little Bloch space
can be represented as

Λ(b) = Λ f (b) := 〈b, f 〉 + b(0) f (0),

for some f ∈M . Here

〈b, f 〉 =

"

D

b′ f ′ dA,

is the invariant pairing. Now for a, z ∈ D let

ba(z) = log
1

1 − az
.

Then ba is a little Bloch function. So, assuming that fn is weak-* null, we have that
Λ fn (ba + 1)→ 0 for all a. However

Λ fn (ba + 1) = 〈ba, fn〉 + fn(0),

and a calculation shows that 〈ba, fn〉 = fn(a) − fn(0). Consequently, fn → 0 pointwise.
Since fn is bounded, an application of Cauchy’s theorem shows that we actually have
uniform convergence on compact sets. To prove the converse, it is enough to show that
Λ fn (zk) → 0 for k = 0, 1, 2, . . . , because polynomials are dense in the little Bloch space.
However,

Λ fn (1) = fn(0), Λ fn (zk) = 〈zk, fn〉 =
f (k)
n (0)

(k − 1)!
.
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Proof of theorem 1. For R ∈ (0, 1) we will use the notation

LR = {z ∈ D : |ψ(z)| < R}, UR = {z ∈ D : |ψ(z)| ≥ R}.
To prove the lower bound

(2) ‖Cψ‖e & lim sup
|α|→1

‖(ϕα ◦ ψ)′′‖1,

choose a sequence αn ∈ D with |αn| → 1, such that

lim sup
|α|→1

‖(ϕα ◦ ψ)′′‖1 = lim
n
‖(ϕαn ◦ ψ)′′‖1,

and let K : M → M be a compact operator. Without loss of generality, we may assume
that ‖Kϕαn − f ‖M → 0, for some f ∈M . Then

(3) ‖Cψ − K‖ ≥ ‖Cψϕαn − Kϕαn‖M & ‖(ϕαn ◦ ψ)′′ − f ′′‖1 − ‖Kϕαn − f ‖M .

We may further assume that f ′′ is not identically zero, otherwise (2) follows from (3) upon
taking the limit as n→ ∞. Now let ε > 0, and fix R ∈ (0, 1) such that"

UR

| f ′′| dA < ε.

On the other hand"

LR

|(ϕαn ◦ ψ)′′| dA =

"

LR

∣∣∣∣∣∣
1 − |αn|2

(1 − anψ)2ψ
′′ + 2an

1 − |αn|2
(1 − anψ)3 (ψ′)2

∣∣∣∣∣∣ dA

.
1 − |αn|2
(1 − R)3

(
‖ψ′′‖1 + ‖ψ′‖22

)
.

Therefore, for n large enough"

LR

|(ϕαn ◦ ψ)′′| dA <
1
2

"

LR

| f ′′| dA.

Consequently

‖(ϕαn ◦ ψ)′′ − f ′′‖1 =

"

LR

|(ϕαn ◦ ψ)′′ − f ′′| dA +

"

UR

|(ϕαn ◦ ψ)′′ − f ′′| dA

≥
"

LR

| f ′′| dA −
"

LR

|(ϕαn ◦ ψ)′′| dA +

"

UR

|(ϕαn ◦ ψ)′′| dA − ε

> ‖(ϕαn ◦ ψ)′′‖1 − ε.
It follows that

‖Cψ − K‖ & lim sup
|α|→1

‖(ϕα ◦ ψ)′′‖1 − ε.
The idea of the preceding argument is that for α close to the boundary, (ϕα ◦ ψ)′′ and f ′′,
have, loosely speaking of course, “disjoint supports”.

To prove the upper bound

‖Cψ‖e . lim sup
|α|→1

‖(ϕα ◦ ψ)′′‖1,

let ε, s,R,R′ ∈ (0, 1) with R < R′, and for f (z) =
∑∞

k=0 akzk ∈M let

Tn f (z) =

n∑

k=0

(
1 − k

n + 1

)
akzk, P f (z) = a0 + a1z.
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Then Tn f → f in M and ‖Tn f ‖M ≤ ‖ f ‖M by [1]. Since Tn and P are compact operators,
we have that

‖Cψ‖e ≤ ‖Cψ −CψTn − P(Cψ −CψTn)‖.
Now choose fn ∈M with ‖ fn‖M ≤ 1 such that

‖Cψ −CψTn − P(Cψ −CψTn)‖ ≤ ‖(Cψ −CψTn) fn − P(Cψ −CψTn) fn‖M + ε.

By Alaoglou’s theorem and the observation preceding the proof of theorem 1, we may
assume that there exists f ∈M such that fn → f uniformly on compact sets. Now

‖Cψ‖e ≤ ‖(Cψ −CψTn) fn − P(Cψ −CψTn) fn‖M + ε . ‖(Cψ fn −CψTn fn)′′‖1 + ε(4)

=

"

UR

|( fn ◦ ψ − Tn fn ◦ ψ)′′| dA +

"

LR

|( fn ◦ ψ − Tn fn ◦ ψ)′′| dA + ε

= I1 + I2 + ε.

To estimate I1, we use the reproducing formula

( fn ◦ ψ − Tn fn ◦ ψ)′′(z) = −
"

D

1
α

(ϕα ◦ ψ)′′(z)( fn − Tn fn)′′(α) dA(α).

Then

I1 ≤
sup
|α|≤s

"

UR

|(ϕα ◦ ψ)′′| dA + sup
|α|>s
‖(ϕα ◦ ψ)′′‖1

 ·
"

D

1
|α| |( fn − Tn fn)′′(α)| dA(α).

For |α| ≤ s we have
"

UR

|(ϕα ◦ ψ)′′| dA =

"

UR

∣∣∣∣∣∣
1 − |α|2

(1 − αψ)2ψ
′′ + 2a

1 − |α|2
(1 − αψ)3 (ψ′)2

∣∣∣∣∣∣ dA

.
1

(1 − s)3

"

UR

(
|ψ′′| + |ψ′|2

)
dA.

Moreover"

D

1
|α| |( fn − Tn fn)′′(α)| dA(α) . ‖( fn − Tn fn)′′‖1 . ‖ fn − Tn fn‖M ≤ 2.

Therefore

I1 .
1

(1 − s)3

"

UR

(
|ψ′′| + |ψ′|2

)
dA + sup

|α|>s
‖(ϕα ◦ ψ)′′‖1.

To estimate I2, note that

I2 ≤
"

LR

(
| f ′n ◦ ψ − (Tn fn)′ ◦ ψ| · |ψ′′| + | f ′′n ◦ ψ − (Tn fn)′′ ◦ ψ| · |ψ′|2

)
dA

≤ CR,R′

(
sup
|z|≤R′
| fn(z) − f (z)| + ‖Tn f − f ‖M

) (
‖ψ′′‖1 + ‖ψ′‖22

)
.

So, taking the limits as n→ ∞, R→ 1, s→ 1, ε→ 0 (in the indicated order), (4) gives

‖Cψ‖e . lim sup
|α|→1

‖(ϕα ◦ ψ)′′‖1.

�
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We remark that the “standard” way to prove lower bounds for the essential norm is to
choose an appropriate normalized sequence fn which converges weakly to zero. Then

‖Cψ‖e ≥ lim sup
n
‖Cψ fn‖.

In our case such a sequence does not exist because the minimal space has the Schur prop-
erty, that is, weak convergence is equivalent to convergence in the norm. Indeed, M is
isomorphic to the Bergman space A1 (see, for instance, [9]). But A1 is isomorphic to `1,
[6], and the latter space is known to have the Schur property. It might nevertheless be
instructive to give a more direct proof of the fact that M and `1 are isomorphic. Using
standard decomposition arguments one shows that there exist a sequence of points αn ∈ D,
and a sequence of functionals Λn ∈M ∗ such that the operator

T : `1 →M , Tλ =
∑

n

λ(n)ϕαn ,

is onto, and the operator

S : M → `1, S f = (Λn( f ))∞n=1,

is an isomorphic embedding. This implies that

`1 = ker(T ) ⊕ S (M ).

Thus, S (M ) is complemented, therefore, by a theorem of Pelczynski [3], it is isomorphic
to `1. Actually, we don’t even need to know that M and `1 are isomorphic in order to
establish the Schur property. Here is a completely independent proof. Suppose toward a
contradiction that fn is a sequence such that fn

w−→ 0 and ‖ f ′′n ‖1 = 1. Weak convergence
implies uniform convergence on compact sets, therefore we can find a subsequence fkn and
an increasing sequence Rn ∈ (0, 1) such that"

|z|<Rn−1

| f ′′kn
(z)| dA(z) <

1
10
,

"

Rn−1<|z|<Rn

| f ′′kn
(z)| dA(z) >

9
10
.

Now choose real functions θn so that

| f ′′kn
(z)| = f ′′kn

(z) eiθn(z), Rn−1 < |z| < Rn,

and put
h =

∑

n

eiθnχ{z:Rn−1<|z|<Rn}.

Then h ∈ L∞(D), hence

Λh( f ) =

"

D

f ′′h dA,

is an element of M ∗. However∣∣∣∣∣∣∣∣

"

D

f ′′kn
h dA

∣∣∣∣∣∣∣∣
≥

∣∣∣∣∣∣∣∣∣

"

Rn−1<|z|<Rn

f ′′kn
(z) eiθn(z) dA(z)

∣∣∣∣∣∣∣∣∣

−
"

|z|<Rn−1

| f ′′kn
(z)| dA(z) −

"

|z|>Rn

| f ′′kn
(z)| dA(z)

>
9

10
− 1

10
− 1

10
,

contradicting Λh( fkn )→ 0.
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We further remark that one may use the argument in the proof of the lower bound in
theorem 1 to show that if ψ induces a bounded composition operator on the Bergman space
A1 then

‖Cψ‖e ≥ lim sup
|α|→1

‖uα ◦ ψ‖1,

where

uα(z) =
1 − |α|2

(1 − αz)3 , α, z ∈ D.
Combining this with the growth estimate

| f (z)| ≤ ‖ f ‖1
(1 − |z|2)2

for f in A1, we obtain

‖Cψ‖e ≥ lim sup
|α|→1

(
1 − |α|2

1 − |ψ(α)|2
)2

.

This complements a result due to Vukotić [5], who proved that in the case of the reflexive
Bergman spaces Ap, p > 1, we have

‖Cψ‖e ≥ lim sup
|α|→1

(
1 − |α|2

1 − |ψ(α)|2
)2/p

.

Moreover, using the techniques in the proof of the upper bound in theorem 1 and the
decomposition

f =

∞∑

n=1

λ(n)uαn , λ ∈ `1, αn ∈ D,

for functions in A1, we can prove the corresponding upper bound for composition operators
on A1, namely

‖Cψ‖e . lim sup
|α|→1

‖uα ◦ ψ‖1.

We omit the details.
Returning to the minimal space, we have already mentioned that the result in [4] implies

that if ‖ψ‖∞ = 1 then Cψ is not compact. We will now show that something much stronger
holds. Namely, the essential norm of Cψ is at least 1. We will need the following.

Lemma 1. Let f ∈ M be such that f (0) = f ′(0) = 0 and f (1) = 1. Then for every
0 < r ≤ 1/2 we have that "

Ωr

| f ′′| dA & r,

where
Ωr = {z : |z| ≤ r} ∪

⋃

|z|≤r

[z, 1].

Proof. An integration by parts yields

| f (1 − ε)| − ε | f ′(1 − ε)| ≤
∫ 1−ε

0
(1 − u) | f ′′(u)| du,

for small ε > 0. Letting ε→ 0 and using the fact that f is in the little Bloch space, we get

1 ≤
∫ 1

0
(1 − u) | f ′′(u)| du.
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Therefore

1 ≤ 1
πr2

∫ 1

0

1
(1 − u)

"

|z−u|≤(1−u)r

| f ′′(z)| dA(z) du

≤ 1
πr2

"

Ωr

| f ′′(z)|
∫ |z−1|/(1−r)

|z−1|/(1+r)

dt
t

dA(z) .
1
r

"

Ωr

| f ′′(z)| dA(z),

and we are done. �

Corollary 1. Let Cψ be bounded. If ‖ψ‖∞ = 1 then ‖Cψ‖e ≥ 1.

Proof. By automorphism invariance, we may assume that ψ(0) = 0 and ψ(1) = 1. Let
βn = 1 − 1/n and consider the functions

fn(z) =
gn((1 − βn)z + βn) − (1 − βn)g′n(βn)z

1 − (1 − βn)g′n(βn)
, |z| < 1,

where

gn =
1 − ψ(βn)
ψ(βn) − 1

ϕψ(βn) ◦ ψ.

Then fn(0) = f ′n(0) = 0 and fn(1) = 1. So, using lemma 1 with, say, r = 1/2, we get

1 .
"

D

| f ′′n (z)| dA(z) =
(1 − βn)2

|1 − (1 − βn)g′n(βn)|
"

D

|g′′n ((1 − βn)z + βn)| dA(z)

≤ 1
|1 − (1 − βn)g′n(βn)|

"

D

|(ϕψ(βn) ◦ ψ)′′(z)| dA(z).

By the Schwarz-Pick lemma

|g′n(βn)| = |ψ′(βn)|
1 − |ψ(βn)|2 ≤

1
1 − β2

n
.

Therefore

1 − 1 − βn

1 − β2
n
.

"

D

|(ϕψ(βn) ◦ ψ)′′(z)| dA(z).

Letting n→ +∞ we obtain

‖Cψ‖e & 1.

Note that ‖Cψn‖e ≤ ‖Cψ‖ne , where ψn is the n-fold self-composition ψn = ψ ◦ · · · ◦ψ. So, we
actually have

‖Cψ‖e ≥ 1.

�

This is reminiscent of the situation in H∞, where the essential norm of a non-compact
composition operator is exactly 1, see [8]. In our case, however, ‖Cψ‖e may take on arbi-
trarily large values.

Theorem 2. If B is a Blaschke product of degree n then ‖CB‖e ' ‖CB‖ ' n.
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Proof. To prove the essential norm estimate, we may assume that B(0) = 0 because

lim sup
|α|→1

‖(ϕα ◦ B)′′‖1 = lim sup
|α|→1

‖(ϕα ◦ ϕβ ◦ B)′′‖1

for any fixed β ∈ D, and moreover ϕβ ◦ B is a Blaschke product of degree n. Then

‖(ϕα ◦ B)′′‖1 =

"

D

∣∣∣∣∣∣ 2α (1 − |α|2)
B′(z)2

(1 − αB(z))3 + (1 − |α|2)
B′′(z)

(1 − αB(z))2

∣∣∣∣∣∣ dA(z).

Using the change of variable formula for n-valent functions and subordination, we estimate

(1 − |α|2)
"

D

|B′(z)|2
|1 − αB(z)|3 dA(z) = n (1 − |α|2)

"

D

dA(z)
|1 − αz|3 ' n,

(1 − |α|2)
"

D

|B′′(z)|
|1 − αB(z)|2 dA(z) ≤ (1 − |α|2) ‖B′′‖∞

"

D

dA(z)
|1 − αz|2

' ‖B′′‖∞(1 − |α|2) log
e

1 − |α|2 .
Therefore

lim sup
|α|→1

‖(ϕα ◦ B)′′‖1 ' n.

To prove the norm estimate, we write

B =

n∏

j=1

ψ j,

where ψ j is a Möbius function ϕα j times a unimodular constant, and introduce the notation

B j =
∏

k, j

ψk.

Then

B′′ =
(B′)2

B
+

∑

j

B j ψ
′′
j −

∑

j

B j

(ψ′j)
2

ψ j
.

Hence

|B′′| ≤ |B
′|2
|B| +

∑

j

|ϕ′′α j
| +

∑

j

|ϕ′α j
|2

|ϕα j |
.

Consequently

‖B‖M '
"

D

|B′′| dA + |B(0)| + |B′(0)| . n.

Therefore
sup

B
‖CB‖ = sup

B
sup
|α|<1
‖ϕα ◦ B‖M = sup

B
‖B‖M . n.

Since ‖CB‖e ≤ ‖CB‖, we see that ‖CB‖ is in fact comparable to n. �

Note that the argument in the proof of theorem 2 shows that if ‖ψ′′‖∞ < ∞ then

‖Cψ‖e . lim sup
|z|→1

nψ(z).

This leads to the conjecture that, at least for “nice” symbols, we have

‖Cψ‖e ' lim sup
|z|→1

nψ(z).
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We do not know how to prove (or disprove) this. We will, nevertheless, show that the lower
bound in corollary 1 can be improved under certain assumptions on the valency of ψ near
the boundary. First, we need some preparation. Let ψ ∈M and

Ω(β; w; s) = {z : |z − β| ≤ s} ∪
⋃

|z−β|≤s

[z,w],

where {z : |z − β| ≤ s} ⊆ D, w ∈ D and s ≤ 1
2 |w − β|. We also let α = ψ(β) and we apply

lemma 1, after a trivial normalization, to get
"

Ω(β;w;s)

∣∣∣(φα ◦ ψ)′′(z)
∣∣∣ dA(z) ≥ c0s

∣∣∣∣∣
α − ψ(w)

(w − β)(1 − αψ(w))
− ψ′(β)
|α|2 − 1

∣∣∣∣∣ ,

Where c0 is an absolute constant. In particular, if |w − β| ≥ 1 − |β|, then
"

Ω(β;w; 1−|β|
2 )

∣∣∣(φα ◦ ψ)′′(z)
∣∣∣ dA(z) ≥ c0

2
(1 − |β|)

∣∣∣∣∣
α − ψ(w)

(w − β)(1 − αψ(w))
− ψ′(β)
|α|2 − 1

∣∣∣∣∣ .

Lemma 2. Let ζ ∈ T and suppose that ψ(ζ) ∈ T. Then, for every sequence βn converging
to ζ, if we put αn = ψ(βn) we have that either

lim sup
|ζ − βn|
1 − |βn|

"

Ω(βn;ζ; 1−|βn |
2 )

∣∣∣(φαn ◦ ψ)′′(z)
∣∣∣ dA(z) ≥ c0

4

or

lim sup
|ζ − βn|
1 − |βn|

"

Ω(βn;w; 1−|βn |
2 )

∣∣∣(φαn ◦ ψ)′′(z)
∣∣∣ dA(z) ≥ c0

4

for all w ∈ D.

Proof. To get a contradiction we assume that

lim sup
|ζ − βn|
1 − |βn|

"

Ω(βn;ζ; 1−|βn |
2 )

∣∣∣(φαn ◦ ψ)′′(z)
∣∣∣ dA(z) <

c0

4

and

lim sup
|ζ − βn|
1 − |βn|

"

Ω(βn;w; 1−|βn |
2 )

∣∣∣(φαn ◦ ψ)′′(z)
∣∣∣ dA(z) <

c0

4

for at least one w ∈ D. These imply

1
2
> lim sup |ζ − βn|

∣∣∣∣∣
αn − ψ(ζ)

(ζ − βn)(1 − αnψ(ζ))
− ψ′(βn)
|αn|2 − 1

∣∣∣∣∣
and

1
2
> lim sup |ζ − βn|

∣∣∣∣∣
αn − ψ(w)

(w − βn)(1 − αnψ(w))
− ψ′(βn)
|αn|2 − 1

∣∣∣∣∣ .
Adding, we get

1 > lim sup
∣∣∣∣∣
αn − ψ(ζ)

1 − αnψ(ζ)
− (ζ − βn)(αn − ψ(w))

(w − βn)(1 − αnψ(w))

∣∣∣∣∣
and, hence,

1 > 1.

�
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Now, let 0 < t ≤ 1 and n ∈ N. A point ξ ∈ T is called an (n; t) value of ψ if there are
ζ1, . . . , ζn ∈ T and a sequence of points αm converging to ξ, such that for each αm there
exist βm,1, . . . , βm,n so that

ψ(βm,1) = · · · = ψ(βm,n) = αm

and
1 − |βm, j|
|ζ j − βm, j| ≥ t (1 ≤ j ≤ n).

In such a case, it is obvious that βm, j → ζ j (1 ≤ j ≤ n) and that

ψ(ζ1) = · · · = ψ(ζn) = ξ.

So, geometrically, ξ can be approximated by points whose preimages lie within a fixed
number of Stoltz domains.

Theorem 3. If there is at least one (n; t) value of ψ, then ‖Cψ‖e ≥ c0
4 nt.

Proof. It is obvious by lemma 2, that for each j = 1, . . . , n we can choose a fixed w j so that
either w j ∈ D or w j = ζ j and so that, for some subsequence αmk (and the corresponding
subsequences βmk , j (1 ≤ j ≤ n)), all regions Ω(βmk , j; w j;

1−|βmk , j |
2 ) (1 ≤ j ≤ n) are mutually

disjoint and so that

lim sup
k

"

Ω(βmk , j;w j;
1−|βmk , j

|
2 )

∣∣∣(φαmk
◦ ψ)′′(z)

∣∣∣ dA(z) ≥ c0

4
t.

Adding in j, we see that

‖Cψ‖e ≥ lim sup
k

"

D

∣∣∣(φαmk
◦ ψ)′′(z)

∣∣∣ dA(z) ≥ c0

4
nt.

�
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