ON NIKODYM-TYPE SETS IN HIGH DIMENSIONS

THEMIS MITSIS

ABSTRACT. We prove that the complement of a higher dimensional Nikodym set must have full Hausdorff dimension.

1. Introduction

In [4] Nikodym constructed a subset F of the unit square in \mathbb{R}^2 such that F has planar measure 1, and for every point $x \in F$ there exists a line passing through x intersecting F in that single point. Such paradoxical sets are called Nikodym sets.

Falconer [3] extended Nikodym's result to higher dimensions. He proved that for every n > 2 there exists a set $F \subset \mathbb{R}^n$ such that the complement of F has Lebesgue measure zero, and for every $x \in F$ there is a hyperplane H so that $x \in H$ and $F \cap H = \{x\}$. We call such a set an n-Nikodym set.

The purpose of this paper is to show that the complement of an n-Nikodym set, even though is small in terms of Lebesgue measure, must be large in terms of Hausdorff dimension. Namely, we use ideas from [1] and [2] to prove the following.

Theorem. The Hausdorff dimension of the complement of an n-Nikodym set is equal to n.

A few remarks about our notation. $\mathcal{L}^k(\cdot)$ denotes k-dimensional Lebesgue measure and $\operatorname{card}(\cdot)$ cardinality. B(x,r) is the ball with center x and radius r. χ_A is the characteristic function of the set A. Finally, $x \leq y$ means $x \leq Cy$, where C is some positive constant not necessarily the same at each of its occurrences.

2. Proof of the Theorem

Let *E* be the complement of an *n*-Nikodym set in \mathbb{R}^n . Without loss of generality we may assume that there is a subset *A* of the unit cube with $\mathcal{L}^n(A) > 0$ such that for every $x \in A$ there exists a set H_x with the following properties:

2000 *Mathematics Subject Classification*. Primary: 28A75. Secondary: 28A78. Keywords and phrases: Nikodym set, Hausdorff dimension.

- (P1) H_x is a rotated translation of $\underbrace{[0,1] \times \cdots \times [0,1]}_{n-1} \times \{0\}$.
- (P2) The center of H_x is the point x.
- (P3) The normal vector to H_x makes an angle less than $\pi/100$ with the unit vector $e_n = (0, \dots, 0, 1)$.
- (P4) $H_x \cap E = H_x \setminus \{x\}$, so in particular $\mathcal{L}^{n-1}(E \cap H_x) = 1$.

We will show that for every $\varepsilon > 0$ the $(n - \varepsilon)$ -dimensional Hausdorff measure of E is not zero. Therefore, the Hausdorff dimension of E must equal n. To this end, fix a countable covering $\{B(x_j, r_j)\}$ of E, and for every integer k let

$$\begin{split} J_k &= \left\{j: 2^{-k} \leq r_j \leq 2^{-(k-1)}\right\}, \\ E_k &= E \cap \bigcup_{j \in J_k} B(x_j, r_j), \quad \widetilde{E}_k = \bigcup_{j \in J_k} B(x_j, 2r_j). \end{split}$$

We will bound $\sum_j r_j^{n-\varepsilon}$ from below by a constant depending only on ε . Notice that for every $x \in A$ there exists an integer k_x such that

$$\mathcal{L}^{n-1}(E_{k_x}\cap H_x)\geq \frac{1}{4k_x^2}.$$

Indeed, if this were not the case for some $x \in A$, we would have

$$1 = \mathcal{L}^{n-1}(E \cap H_x) \le \sum_{k} \mathcal{L}^{n-1}(E_k \cap H_x) \le \sum_{k} \frac{1}{4k^2} < \frac{1}{2}.$$

Now let

(1)
$$A_k = \left\{ x \in A : \mathcal{L}^{n-1}(E_k \cap H_x) \ge \frac{1}{4k^2} \right\}.$$

Then

$$A=\bigcup_{k}A_{k}.$$

Therefore, there must be an integer N such that

$$\mathcal{L}^n(A_N) \geq \frac{\mathcal{L}^n(A)}{2N^2},$$

because otherwise we would have

$$\mathcal{L}^n(A) \le \sum_k \mathcal{L}^n(A_k) \le \sum_k \frac{\mathcal{L}^n(A)}{2k^2} < \mathcal{L}^n(A).$$

Next, we decompose the unit cube into a grid of small cubes, each of side 2^{-N} .

$$[0,1]^n = \bigcup_{i_1,\dots,i_n=1}^{2^N} \prod_{k=1}^n \left[(i_k-1)2^{-N}, i_k 2^{-N} \right] = \bigcup_{i_1,\dots,i_n=1}^{2^N} Q_{i_1\cdots i_n}.$$

Let

$$I = \{(i_1, \ldots, i_n) : Q_{i_1 \cdots i_n} \cap A_N \neq \emptyset\}.$$

Notice that for each $(i_1, ..., i_n) \in I$, property (P2) and (1) imply that there exists a rectangle $R_{i_1 \cdots i_n}$ such that

- $R_{i_1\cdots i_n}$ has dimensions $\underbrace{1\times\cdots\times 1}_{n-1}\times 2^{-N}$.
- $R_{i_1\cdots i_n}$ is parallel to H_x for some $x \in Q_{i_1\cdots i_n}$.
- $R_{i_1\cdots i_n}\cap Q_{i_1\cdots i_n}\neq\emptyset$.
- $\mathcal{L}^n(\widetilde{E}_N \cap R_{i_1\cdots i_n}) \gtrsim N^{-2}2^{-N}$.

Now let

$$R'_{i_1\cdots i_n} = \begin{cases} R_{i_1\cdots i_n} & \text{if } (i_1,\ldots,i_n) \in I \\ \emptyset & \text{otherwise} \end{cases}.$$

Then

$$\begin{split} N^{-2}\mathcal{L}^{n}(A) &\lesssim \mathcal{L}^{n}(A_{N}) \leq \sum_{(i_{1},\dots,i_{n})\in I} 2^{-nN} = 2^{-(n-1)N}N^{2} \sum_{(i_{1},\dots,i_{n})\in I} N^{-2}2^{-N} \\ &\lesssim 2^{-(n-1)N}N^{2} \sum_{i_{1},\dots,i_{n-1}=1}^{2^{N}} \mathcal{L}^{n}(\widetilde{E}_{N} \cap R'_{i_{1}\cdots i_{n}}) \\ &= 2^{-(n-1)N}N^{2} \sum_{i_{1},\dots,i_{n-1}=1}^{2^{N}} \left(\int_{\widetilde{E}_{N}} \sum_{i_{n}=1}^{2^{N}} \chi_{R'_{i_{1}\cdots i_{n}}}\right) \\ &\leq 2^{-(n-1)N}N^{2}\mathcal{L}^{n}(\widetilde{E}_{N})^{1/2} \sum_{i_{1},\dots,i_{n-1}=1}^{2^{N}} \left(\int_{i_{n}=1}^{2^{N}} \chi_{R'_{i_{1}\cdots i_{n-1}}} \chi_{R'_{i_{1}\cdots i_{n-1}}}\right)^{2})^{1/2} \\ &= 2^{-(n-1)N}N^{2}\mathcal{L}^{n}(\widetilde{E}_{N})^{1/2} \sum_{i_{1},\dots,i_{n-1}=1}^{2^{N}} \left(\sum_{l,m=1}^{2^{N}} \int_{i_{1}\cdots i_{n-1}} \chi_{R'_{i_{1}\cdots i_{n-1}m}}\right)^{1/2} \\ &= 2^{-(n-1)N}N^{2}\mathcal{L}^{n}(\widetilde{E}_{N})^{1/2} \sum_{i_{1},\dots,i_{n-1}=1}^{2^{N}} \left(\sum_{l,m=1}^{2^{N}} \mathcal{L}^{n}(R'_{i_{1}\cdots i_{n-1}l} \cap R'_{i_{1}\cdots i_{n-1}m})\right)^{1/2}. \end{split}$$

Now using property (P3), it is easy to show that for fixed i_1, \ldots, i_{n-1} we have

$$\mathcal{L}^{n}(R'_{i_{1}\cdots i_{n-1}l}\cap R'_{i_{1}\cdots i_{n-1}m})\lesssim \frac{2^{-N}}{1+|m-l|}.$$

Consequently

$$\sum_{l,m=1}^{2^N} \mathcal{L}^n(R'_{i_1\cdots i_{n-1}l}\cap R'_{i_1\cdots i_{n-1}m}) \lesssim \log 2^N = N\log 2.$$

Therefore

$$N^{-2}\mathcal{L}^{n}(A) \lesssim 2^{-(n-1)N} N^{2} \mathcal{L}^{n}(\widetilde{E}_{N})^{1/2} 2^{(n-1)N} N^{1/2}$$

$$\Rightarrow \mathcal{L}^{n}(\widetilde{E}_{N}) \gtrsim N^{-9} \mathcal{L}^{n}(A)^{2}.$$

On the other hand, by the definition of \widetilde{E}_N we have

$$\mathcal{L}^n(\widetilde{E}_N) \lesssim \operatorname{card}(J_N) 2^{-nN}$$
.

Hence

$$\operatorname{card}(J_N) \gtrsim 2^{nN} N^{-9} \mathcal{L}^n(A)^2$$

We conclude that

$$\sum_{j} r_{j}^{n-\varepsilon} \gtrsim \operatorname{card}(J_{N})(2^{-N})^{n-\varepsilon} \gtrsim 2^{N\varepsilon} N^{-9} \mathcal{L}^{n}(A)^{2} \gtrsim C_{\varepsilon}.$$

The proof is complete.

REFERENCES

- [1] J. Bourgain. Besicovitch type maximal operators and applications to Fourier analysis. *Geom. Funct. Anal.* (2) **1** (1991), 147-187.
- [2] A. CORDOBA. The Kakeya maximal function and spherical summation multipliers. *Amer. J. Math.* **99** (1977), 1-22.
- [3] K. J. FALCONER. Sets with prescribed projections and Nikodym sets. *Proc. London Math. Soc.* (3) **53** (1986), no. 1, 48-64.
- [4] O. Nikodym. Sur la mesure des ensembles plan dont tous les points sont rectalineairément accessibles. *Fund. Math.* **10** (1927), 116-168.

Department of Mathematics, University of Crete, Knossos Ave., 71409 Iraklio, Greece *E-mail address*: mitsis@fourier.math.uoc.gr