ON A PROBLEM RELATED TO SPHERE AND CIRCLE PACKING

THEMIS MITSIS

Asstract. We prove that a set which contains spheres centered at all points of a
set of Hausddf dimension greater than 1 must have positive Lebesgue measure.
We show by a counterexample that this is sharp. We also prove the corresponding
result for circles provided that the set of centers has Hatisdionension greater

than 32.

1. INTRODUCTION

The following geometric result is a consequence of the work of Stein on the
spherical means maximal operator.

Theorem 1.1. Let F c RY, d > 3, be a set of positive Lebesgue measure. If
E c RYis a set which contains spheres centered at all pointg ofhenE has
positive Lebesgue measure.

Bourgain [1], and, independently, Marstrand [7], proved the two - dimensional
analogue, given as follows.

Theorem 1.2. LetF c R? be a set of positive Lebesgue measur& ¢f R? is a set
that contains circles centered at all pointsfofthenE has positive plane measure.

This should be contrasted with the following construction due to Talagrand [12].

Theorem 1.3. There is a set of plane measure zero containing for eacm a
given straight line, a circle centered at

It is, therefore, natural to ask whether one can weaken the condition that the set
F in the above theorems should be of postive measure. The main results in this
paper are the following.

Theorem 1.4. LetF c RY, d > 3, be a Borel set of Hausdgdimensions, s > 1.
If E c RYis a Borel set that contains spheres centered at each poiRt tifenE
has positive Lebesgue measure.

Theorem 1.5. Let F ¢ R? be a Borel set of Hausdgrdimensions, s > 3/2. If
E c R?is a Borel set that contains circles centered at each poift,ahenE has
positive Lebesgue measure.

The paper is organized as follows. In Section 2 we state some geometric lemmas
needed later on, in Section 3 we prove Theorem 1.4 and construct a counterexam-
ple related to it, in Section 4 we prove Theorem 1.5, and finally, in Section 5,
we discuss the possibility of weakening the condit®ox 3/2 in Theorem 1.5.
Throughout this papea < b meansa < Ab for some absolute constaAs and
similarly with a > b anda ~ b. We will denote Lebesgue measure|by.
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2. BACKGROUND

We start with some notation.
B(x,r) is the open disk (or ball) with centerand radius.
C(x,r) is the circle (or sphere) with centgrand radiug.
C9(x,r) is thes-neighborhood of the circle (or sphe@jx,r), i.e., the set

{yeRI:r—S<|x—yl<r+0)
If C(x,r) andC(y, s) are circles, then we define

d((xy), (r,9) = [X=yl+1Ir — 9,
A((X9 y)’ (r’ S)) = ”X_ Y| - |r - S”

Note thatA = 0 if and only if the circles are internally tangent, that is, they are
tangent and one is contained in the bounded component of the complement of the
other. In what follows, we assume that the centers of all circles (or spheres) in
guestion are contained in the diBKO, 1/4) and that their radii are in the interval
[1/2,2].

The following lemma gives estimates on the size of the intersection of two an-
nuli in terms of their relative position and their degree of tangency. The reader is
referred to Walt [14] for a proof.

Lemma 2.1. Suppose that(x,r), C(y, s) are circles withr # s. Then for0 < § <
1 there exists an absolute constaatsuch that

(1) Co(x,r) N C?(y, s) is contained in &-neighborhood of arc length less than

A+06
al\rEvrrs

centered at the point—r - sgnf — s)ﬁ.
(2) The area of intersection satisfies
52
VE+A)E +d)
The next result is essentially Marstrand’s three circle lemma [7]. It is a quanti-
tative version of the following fact known as the circles of Apollonius: given three

circles which are not internally tangent at a single point, there are at most two other
circles that are internally tangent to the given ones.

IC°(x, 1) NC(y, 9| < Ag

Lemma 2.2. There exists a constaAs such thatifs, t, 1 € (0, 1) satisfyd > Ay \/%
then for three fixed circle€(x;, ri),i = 1,2, 3 and for¢ < ¢ the set
(% 1) e RZ X R 1 A((X, 1), (%, 7)) < & Vi,
d((x.r), (%, ri)) > t Vi,
Co(x,r) N Co(x;, ri) # O Vi,
distC°(x,r) N C°(x;, 1i), C°(x, 1) N C°(x;, r})) > A
Vi, jii# |}

is contained in the union of two ellipsoidsi? each of diameteg 5
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A proof of the preceding result can be found in \W§14].

We conclude this section with some facts from geometric measure theory. We
refer the reader to Falconer [4] for definitions, proofs and details. In what follows,
H* denotess-dimensional Hausd@rmeasure.

Theorem 2.1. Let E be a Borel set irR? and lets > 0. Assume tha#{3(E) > 0.
Then there exists a nontrivial finite measursupported ot such thag(B(x, 1)) <
rsfor x e R"andr > 0.

If Eis ans-set, i.e., 0< HS(E) < oo, then a poinix € E is called regular if the
upper and the lower densitiesyaire equal to one; otherwiseis called irregular.
An s-setE is said to be irregular it{S-almost all of its points are irregular. Irregular
1-sets are characterized by the following:

Theorem 2.2. A 1-set inR? is irregular if and only if it has projections of linear
Lebesgue measure zero in two distinct directions.

In fact, one can say much more.

Theorem 2.3.Let E be an irregulart-set inR?. Then proj(E) has linear Lebesgue
measure zero for almost all € [0, 7), where proj denotes orthogonal projection
fromR? onto the line through the origin making anglevith some fixed axis.

3. THE HIGHER DIMENSIONAL CASE
In this section we assume that> 3.
For f : RY - R, § > 0 small, we defineM; : B(0,1/4) — R by

Msf(X) = sup [T (y)ldy.

1/2<r<2 |CO(X, NI Jes(xr)

Theorem 1.4 will be a consequence of the followirfg— L2 maximal inequal-
ity.
Proposition 3.1. Let F ¢ B(0,1/4) be a compact set it such that there exist
s > 1 and a finite measurg supported orF with u(B(x,r)) < rfor x € R and

r > 0. Then there exists a constafstthat depends only on the measureFo&nd
on ssuch that

1/2
( [ (Méf(X))zd/l(X)) < Alfll
for small§s > 0and all f.

The proof generally follows the lines of the proof of Theorehinl[6]. Even
though the necessary modifications are not immediately obvious, we choose not to
include the proof. A similar argument will appear in a forthcoming paper on the
Kakeya maximal function.

Proof of Theorem 1.4We may assume th& c B(O, %1). Suppose thdE|=0 and
choosé so that 1< t < s. Then there exist a compact €&t ¢ E, a compact set
F1 ¢ F with H'(F1) > 0, and a positive numbet, such that, for eacl € Fy,
there is a sphere centeredxawith radiusr(x) € (r, 2r) which intersects€; in set

of surface measure at least’(x). Without loss of generality we may assume that
r = 1. It follows that for allx € F;

Msx E‘f(x) 21,



4 THEMIS MITSIS

whereE] is thes-neighborhood of the sé; .
By Theorem 2.1, there exists a nontrivial finite meaguseipported o1 such
thatu(B(x,r)) < rt, for xe RY, r > 0. Therefore, by Proposition 3.1, we have

HED < [ (Mores(0F 9 < 3L

The right-hand side of the above inequality tends to zeré as 0, so we get a
contradiction. O

We will show that we cannot drop the conditisn- 1 in Theorem 1.4.

Proposition 3.2. There exists a set of d-dimensional Lebesgue measure zero con-
taining for eachx € [0, 1] x {0} x - - - x {0}, a sphere centered at
~—————

d-1

Proof. The idea, which goes back to Davies [3], is to parametrize the set of radii
using a suitable irregular 1-set.

Divide the unit square [A] x [0, 1] c R? into 16 disjoint squares of sidg4l
LetS(j) 1 <i,] < 4 be those squares (indexed from bottom to top, left to right),
and put

E1 = Sq2) US4 U S@1) U Sua).

Apply the same procedure to eachSf 5y, S(1.4), S.1), S(4.3), and letE, be the
union of the new squares. Continuing in the same manner we obtain a decreasing
sequence of compact s¢fs,}. LetE = (N, ; En. ThenE is a 1-set such that

prOjO(E) = [O’ 1]’ |pr0j7r/2(E)| =0, |pr0j7r/4(E)| =0

where| - | is linear Lebesgue measure, and grgyroj, ,, proj, , denote, respec-
tively, orthogonal projection onto theaxis, they-axis, and the line through the
origin making angler/4 with the x-axis. It follows from Theorem 2.2 thd is
irregular. Let

A= U {(Xl""’xd):(Xl_a)2+x§+“'+X§:a2+b}
(ab)eE

= U {(Xl""’xd):XS:23X1+b—X%—---_X§_l}'
(ab)eE

Since prgj(E) = [0, 1], Acontains a sphere centered at each poiftD, ..., 0) :
a € [0,1]}. Now fix sq,...,S4-1. Then
AN{(Xe,....Xd) i X1 = S1, X2 = S,..., Xg-1 = Sg-1}
={s1} X {sp} X - X {sg-1} X B.
where
B={xg:X;=2ag +b-& -~ -5, (&b)eE}.

B has measure zero if and only{las; + b : (a,b) € E} has measure zero. But
LY({2as; + b : (a,b) € E}) = 0 for almost alls; € R by Theorem 2.3. Therefore,
by Fubini, A hasd-dimensional measure zero. O
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4. THE TWO-DIMENSIONAL CASE

Before we proceed with the proof of Theorem 1.5, it might be instructive to dis-
cuss briefly the underlying ideas. It turns out that the two-dimensional problem can
be reduced to estimating the measure of a family of thin annuli. By Lemma 2.1, the
measure of the intersection of two annuli is large when the corresponding circles
are internally tangent. It is, therefore, essential that we be able to control the total
number of such tangencies. To this end, we employ Marstrand’s three circle lemma
together with a suitable counting argument. This approach was first used in Kolasa
and Woft [6], and, subsequently, in Schlag [8], [9]. We should, however, mention
that, in contrast with thefforementioned authors, we do not make any cardinality
estimates since these are not particularly useful in the case of general Hausdor
measures.

The motivation for the combinatorial part of the proof is the following observa-
tion (see [5] for more details).

Proposition 4.1. Let {C; }5\‘ be a family of distinct circles such that no three are
tangent at a single point. Then

card((i, j) : Ci || Cj)) < N°3,
whereC; || C; means thaC; andC; are internally tangent.

Proof. LetQ = {(i, j1, j2, J3) : Ci | Cj,, k= 1,2,3} and fix jy, j2, j3. Then, by the
circles of Apollonius, there are at most two choicesiforherefore,

card@Q) < 2N(N — 1)(N — 2) < 2N3.
On the other hand, if we let(i) = card{j : C; || Cj}), then

N
Q= J (it x (i, iz Ja) : G Cj k= 1,2,3)).

i=1

Hence

N N
cardQ) > Z n@i)(n@i) — 1)(n(i) — 2) > Z(n(i) - 2)3.
i=1 i=1
It follows that

card((i, j) : Ci 1 Cj)) = )" n(i) = > (n(i) - 2) + 2N

N N
i=1 i=1

IA

1/3
[ (n(|) 2)3] N%/3 + 2N
< (card@))Y3N?? + 2N
( 3)1/3N2/3+ 2N < N5/3
o

The proof of Theorem 1.5 will be a quantitative version of Proposition 4.1, with
Lemma 2.2 playing the role of the restriction imposed by the circles of Apollonius.
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Proof of Theorem 1.5We may assume th&t c B(0, %1). Suppose thdE| = 0 and
chooses; so that 32 < 51 < s. Then there exist a compact $&t c E, a compact
setF; c F with H*(F;) > 0 and a positive number such that, for eack € F1,
there is a circle centered awith radiusr(x) € (r, 2r) which intersect€; in a set
of angle measure at least Without loss of generality we may assume that 1.

By Theorem 2.1, there exists a nontrivial finite meagusaipported o, such
thatu(B(x,r)) < r%, for xe R?,r > 0.

Let {X}ic; be a maximab-separated set of points Fy, and letg; = u(B(x;, 9)).
Chooser > 0 such that

1
IC%(x, ri) N ES| > §|Cé(xi, rl, (6)

WhereE‘ls is thes-neighborhood oE;.
Let x be the infimum of thosg > 0 such that there existbc | satisfying

1
Z aj > EIJ(Fl),

jed
and forallj € J

1
|{x e CO(xj,r)) NEY: Z aixco(x.r (¥ < /1}| > Z|Cé(xj, ol
i€l
ChooseN large enough so that
3 N 7+25 -1
5732 N
and
N2 - N - 251+ 1
N2-N-2 3
LetC, > 1 be a large constant to be determined later on and define

B:[6,1]x[6,1] » R

by
lis-1/2) 3 N_ + N
Ste) - tz(jl_/:/z) C, 2%, if 5= < Cg’\:zs
4 - 2s51+1 N
s if t5 > CoN e
Then, for smalb, 8 has the following properties:
& /N
Bt &) > Cy T = Bt e) = N’ (7)
1(s1-1/2
Bt e) < Coy[© = plte) = e D ()
b 2 t b 81/4 2 9
D B2,62) < M, (9)
§2¢<1
62'<1

whereM is a constant that depends only Nrand ons; .
Now for alli, j € | andt, ¢ € [4, 1], we define

Aij = maxo, [1x — Xj| = [ri = rjll},

Ste(j) = {i € 1:Co(x, 1) NCOXj, 1)) # 0, t <X — Xj| < 2t, & < Ajj < 2},



ON A PROBLEM RELATED TO SPHERE AND CIRCLE PACKING

. 1
As(]) = {x e C(xj.rj) - iesz(j)am(xi,m(x) > —A(t.8)5)

Claim 4.1. There exist, ¢ € [6, 1] and a set of indiced such that

. 1 R
(i)l = 7 &)IC(xj, ri)l, VjeJ,
and 1
285 = 5Bt eu(Fy).
jed
Proof. Let

Jo= {j el: |{xe C(xj,rj) N ES : ZaiXCa(Xi,ri)(X) < g}| > 3—'1|C5(xj,rj)|}.

i€l

> < SuF).

i€do
Therefore, ifd’ is the complement ady, then

>y = Ju(Fy) (10

jey

By the minimality ofx, we have

and forallj e J
|{ca(xj, r)nE: : ZZ aixci(r)(¥) < §}| < %ﬂcé(xj, ()l
ic
Hence, using (6) we obtain
|{ca(xj, r)nE: : Z| Axcipny(X) > §}| > %K;é(xj, ). (11)
ic
For eachj € J’ let
Bj = {x e C2(x;, 1) N EY: %" Ao (X) > g}. (12)
Thenforallj e J

Bj c ) Asesz (i)-
k|

Indeed, suppose there existed J’, x € B such that for alk, | with 62%,62' < 1
we hadx ¢ Agx 52 (). Then, by (9)

1 K K | K
DAcxn® =) D Acwn® < 15 ) B02.62) < 3,
iel kil I€S52k’62|(j) kil
contradicting (12). It follows that for alj € J’ there exisk, | such that
. 1
Aszes ()1 = Z38(62",62)IC°(x;, ). (13)

In fact, if this were not the case, we would have that for sgrae)’

IBjl < ‘Uk’l Aazk,(sz'(j)’ < > A2 (i)l
K



8 THEMIS MITSIS
1 rory o K coly _ Limory. v
< Gl ) B24.62) < ZIC°(x;. 1))l
kI
which contradicts (11). Finally, let

, , 1
1) =4 € < 1Az (i)l 2 73762, 62)IC° (x5, T
Then, by (13)
= k.
kil

We claim that there exigt= 62% ¢ = 62! such that

> ayz ot )

jedkl)
If not, then we would have

. 1 K soly o L
2.3 < ), D, aj < pou(Fr) ) p62.62) < Su(Fy),
jer kI jedkl) k|
contradicting (10). O

So, fixt, & € [6, 1] as above. Then there are two cases.

Case 1:8(t,&) = C» \/%

It follows from the definition ok that there exists a set of indicdsc | such that
1

Z aj 2 E’u(Fl)’
jed

and 1

’{x e CO(xj,r)) NEY: ; aixcixr)(¥ < 2/<}’ > Z|C5(xj, ol
for all j € J. Now let
Q={(,j1j2j3) ] €d i1 iz iz€d j1 2 i3 € Ste())

B(t. &)
CiM

distC’(xj, rj) N C°(Xj,. 1), CO(Xj, 1j) N CO(X;» 7)) =
vk, Ik # 1}

whereC; > 1 is a constant to be determined bef@e
Further, define the following sets of indices:

Q1 ={(j1, J2, j3) : dj such that |, j1, j2, j3) € Q},
Q2 ={j1: dj2, jasuchthat (s, j2, j3) € Q1}.
Forj; € Q let
Q(ja) = {j2 : Ajzsuch that [y, j2, j3) € Qu}
= {ja : djz such that {1, j2, j3) € Qu}.
Now consider the quantity

R= Z aja;,aj,a;.
(J,J1,J2,i3)eQ



ON A PROBLEM RELATED TO SPHERE AND CIRCLE PACKING 9

Note that ifC; is large enough, then

MZ&\/EZAl\/E,
CiM CMYVt t

whereA; is the constant in Lemma 2.2. It follows that ifi(jo, j3) € Q1 then the
set{xj : (J, j1. ]2, ]3a) € Q} is contained in the union of two ellipsoids of diameter

<2 Hence
T BA(te)
(sl 2
Rs|—=—— aj,aj,a;,.
~\ @2 J19)29%3
pAte) (J1.]2,]3)eQ1
Furthermore, ifj1 € Q2 andj2 € Q(j1) then there existg such thatjy, j2 € St.(]).
Therefore,
IXjy = Xj,| < Xj, = Xjl + |Xj = Xj,| < 4t.
It follows that for fixedj, € Qo the set{xj, : j2 € Q(j1)} is contained in a disk with
centerx;, and radius & Hence

aj, < tS,
j2€Q(j1)
Therefore,

2
Rg(ﬁz(i(?)) 2 ajlajzaj’fs(ﬁZ(f,g)) 2 ah[ 2 aiz]

(j1,J2,3)eQ1 j1€Q2 j2€Q(j1)

& S 2
<o) 7 .

Now fix j € J.
Claim 4.2. There are three subsei, D,, D3 of A -(j) such that

28t &)

k Ik =l
ClM 7v’ i?

dist(Dk, Dy) >
and
IDl 2 9B(t, &), Yk,
provided thatC, is large enough.
Proof. We use complex notation. If8 61 < 6, < 2r let
Gopa, = Ars(j) N {xj + 1€ € CO(xj, 1) : 01 < 6 < 6).
Then there exist & 61 < --- < 67 = 27 such that

1ALe())l
|Gek,9k+1| = 6(1) s k= 1, cees 6.

Let
Dk = Gayy 100 K=1,2,3.

Note that for alll
B(t, &)

24M |C6(Xj’ rJ)l < |G0|,9|+1| < diam@ﬂﬂl-ﬂ)é'

Therefore,
diam(Ggl,ng) 2z B(t’ 3)-
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It follows that if we choosé€, large enough, then we have

dist(D, D) > 28, 8), and|Dy| = S(t, €)6.
CiM
O
For eaclk let
Sk = {i € St(j) : Dk N C(x;, 1i) # O}
Then
W< [ B %ax< 3 apan e
D« M 2 ieSk

3 a0, 1) 1Sl < D a
< ) &lC(xj, r) nC (%, ri)l £ ) a—,
ieSk ieSk \/E

where the last inequality follows from Lemma 2.1. Therefore,
1
Z a > =kB2(t, £) Vie.
: 0
ieDyg
By Lemma 2.1, ifi € S;.(j) then

diam(C°(x;,rj) N C°(x;, i) < A\/E < M
t Cy

Thereforej; € Sy, i2 € S, k # | implies that
dist(C’(%,. i) N C°(Xj. 1)), C*(%y» i) N C(Xj, 1))
L 2Be)  2A8Le) _ BL2)
- CiM C, — Cwm’

provided thaiC, is suficiently large. It follows that ifjx € Sk, k = 1,2, 3, then
(J» j1. j2 j3) € Q. Hence

3
1
R> Yo Y g, 2 plte)5u87(e) Vs -
jed €St
12€S2
j3€Ss

If we compare the above equation with (14), and then use (7), we obtain
3851—3/2t231—3/2

3 3

K< 6 W < 6°.
&

Case 2:8(t,e) < C, \/;

Fix j € J. Then we have

W) < L () = L . Pl gy
el

M M
PR IR Py y
< alC% (%, 1)) N C(Xj, Il £ —= aj,
i€St(]) \/E i€St.())

where we have used Lemma 2.1 and the definitioA:Q(]).
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Note that the st : i € Si.(j)} is contained in a disk of radiug.ZTherefore,
Z a <t
iESt,a(j)

It follows that
tsl—l/z

eY2B2(t, &)
Using (8), we obtain < 6. We conclude that, in either case
K<SO. (15)

kK<SOo

To complete the proof, notice that
1 1
EIJ(Fl) < Z aj = 5 Z a0
jed jed
1
< 5 Z aj|{x S C(s(Xj, I’j) N Eg . Z a;)(c(s(xi,ri)(x) < 2K}|

jed iel

(D aixciper()dx

jed

1
< =

0 ﬁeri:ZjeJ aj)(ca(xj,,j)(x)ﬁz"}

1
< 5K|Ei| 3= (16)

where the last inequality follows from (15).
If we let 6 — 0 then the right-hand side of (16) tends to zero, which is a contra-
diction. O

5. POSSIBLE IMPROVEMENTS

As we discussed at the beginning of Section 4, the proof of Theorem 1.5 was mo-
tivated by a result of combinatorial nature, namely Proposition 4.1, which asserts
that if one is given a family oN circles such that no three of them are internally
tangent at a point, then there is a bound of the f@NP/3 on the total number of
tangencies.

This, however, is far from being sharp. Clarkson, Edelsbrunner, Guibas, Sharir
and Welzl [2] developed a technique which leads to a bound of the form

C.N¥2*¢ ye > 0,

suggesting that it might be possible to weaken the cond#icn 3/2 in Theo-
rem 1.5. Indeed, W@l [13] proved the following_3 — L3 maximal inequality.

Theorem 5.1. For X1 € R, let

Msf(X) = sup ———
s10a) re[1/2r,)2] ICo(x, 1)l Co(x,r)
X2€R

|f1,

wherex = (X1, X2). Then
Ve > 03A: & IMsfllsr) < Ao °lIflls.
Using this, he proved, in the same paper, the following.

Theorem 5.2.1f @ < 1andifE is a set in the plane which contains circles centered
at all points of a set with Hausdgrdimension at least, thenE has Hausdoff
dimension at least + a.
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The preceding result suggests that aEBets in the statement of Theorem 1.5
has to be fairly large. In view of this and the analogy between Proposition 3.1 and
the spherical means maximal theorem, it seems reasonable to make the following
conjecture which would imply that Theorem 1.5 is true forsaH 1.

Conjecture 5.1. For § > 0 small, f : R? — R, defineM; : B(0,1/4) — R, by

Msf(X) = sup

—— If(y)d
1/2<r<2 [CO(X 1) Jes(xry )iy

Let F c B(0,1/4) be a compact set iiR? such that there exist > 1 and a finite
measureu supported orF with u(B(x, 1)) < rS, for x € R? andr > 0. Then there
exists a constam that depends only on the measurd=céind ons, such that

1/p(s)
) <A| f ||p(s)- (15)

( fF (Mo ()P du(x)

Note that in order for the above inequality to hold, it is necessaryfat>
4 — s. To see that, let = [-1/8,1/8], and letE c | be a Cantor set of Hausdbr
dimensions — 1. ThenHS(E n B(0,6)) ~ 65L. Define

Fs = | x (En B(0,5Y?)),
and
Rs = [1 - 6,1+ 6] x [-26%2,256%2].
Notice that
x € Fs = Msyr,(X) 2 6Y2.
Therefore, using (15)

1/p(s)
SY2(HE(E )P < ( fF (Mm)p@(x)dmx))

< lrillpgg = 637972,
On the other hand
H(F5) ~ HSYE N B(O,5Y?)) ~ 6 V/2,

Hence

52550 < 570,
which is possible only ifp(s) > 4 - s.
We conclude by mentioning an observation made by Schlag: if the local smooth-
ing conjecture due to Sogge [10] is correct, then Theorem 1.5 is true for-all.
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