
ON A PROBLEM RELATED TO SPHERE AND CIRCLE PACKING

THEMIS MITSIS

A. We prove that a set which contains spheres centered at all points of a
set of Hausdorff dimension greater than 1 must have positive Lebesgue measure.
We show by a counterexample that this is sharp. We also prove the corresponding
result for circles provided that the set of centers has Hausdorff dimension greater
than 3/2.

1. I

The following geometric result is a consequence of the work of Stein on the
spherical means maximal operator.

Theorem 1.1. Let F ⊂ Rd, d ≥ 3, be a set of positive Lebesgue measure. If
E ⊂ Rd is a set which contains spheres centered at all points ofF, thenE has
positive Lebesgue measure.

Bourgain [1], and, independently, Marstrand [7], proved the two - dimensional
analogue, given as follows.

Theorem 1.2.LetF ⊂ R2 be a set of positive Lebesgue measure. IfE ⊂ R2 is a set
that contains circles centered at all points ofF, thenE has positive plane measure.

This should be contrasted with the following construction due to Talagrand [12].

Theorem 1.3. There is a set of plane measure zero containing for eachx on a
given straight line, a circle centered atx.

It is, therefore, natural to ask whether one can weaken the condition that the set
F in the above theorems should be of postive measure. The main results in this
paper are the following.

Theorem 1.4. Let F ⊂ Rd, d ≥ 3, be a Borel set of Hausdorff dimensions, s > 1.
If E ⊂ Rd is a Borel set that contains spheres centered at each point ofF, thenE
has positive Lebesgue measure.

Theorem 1.5. Let F ⊂ R2 be a Borel set of Hausdorff dimensions, s > 3/2. If
E ⊂ R2 is a Borel set that contains circles centered at each point ofF, thenE has
positive Lebesgue measure.

The paper is organized as follows. In Section 2 we state some geometric lemmas
needed later on, in Section 3 we prove Theorem 1.4 and construct a counterexam-
ple related to it, in Section 4 we prove Theorem 1.5, and finally, in Section 5,
we discuss the possibility of weakening the conditions > 3/2 in Theorem 1.5.
Throughout this paper,a . b meansa ≤ Ab for some absolute constantA, and
similarly with a & b anda ∼ b. We will denote Lebesgue measure by| · |.

1



2 THEMIS MITSIS

2. B

We start with some notation.
B(x, r) is the open disk (or ball) with centerx and radiusr.
C(x, r) is the circle (or sphere) with centerx and radiusr.
Cδ(x, r) is theδ-neighborhood of the circle (or sphere)C(x, r), i.e., the set

{y ∈ Rd : r − δ < |x− y| < r + δ}.
If C(x, r) andC(y, s) are circles, then we define

d((x, y), (r, s)) = |x− y| + |r − s|,
∆((x, y), (r, s)) = ||x− y| − |r − s||.

Note that∆ = 0 if and only if the circles are internally tangent, that is, they are
tangent and one is contained in the bounded component of the complement of the
other. In what follows, we assume that the centers of all circles (or spheres) in
question are contained in the diskB(0,1/4) and that their radii are in the interval
[1/2, 2].

The following lemma gives estimates on the size of the intersection of two an-
nuli in terms of their relative position and their degree of tangency. The reader is
referred to Wolff [14] for a proof.
Lemma 2.1. Suppose thatC(x, r), C(y, s) are circles withr , s. Then for0 < δ <
1 there exists an absolute constantA0 such that

(1) Cδ(x, r)∩Cδ(y, s) is contained in aδ-neighborhood of arc length less than

A0

√
∆ + δ

|x− y| + δ
,

centered at the pointx− r · sgn(r − s) x−y
|x−y| .

(2) The area of intersection satisfies

|Cδ(x, r) ∩Cδ(y, s)| ≤ A0
δ2

√
(δ + ∆)(δ + d)

.

The next result is essentially Marstrand’s three circle lemma [7]. It is a quanti-
tative version of the following fact known as the circles of Apollonius: given three
circles which are not internally tangent at a single point, there are at most two other
circles that are internally tangent to the given ones.

Lemma 2.2. There exists a constantA1 such that ifε, t, λ ∈ (0, 1) satisfyλ ≥ A1

√
ε
t

then for three fixed circlesC(xi , r i), i = 1, 2,3 and forδ ≤ ε the set

{(x, r) ∈ R2 × R : ∆((x, r), (xi , r i)) < ε ∀i,
d((x, r), (xi , r i)) > t ∀i,
Cδ(x, r) ∩Cδ(xi , r i) , ∅ ∀i,
dist(Cδ(x, r) ∩Cδ(xi , r i),C

δ(x, r) ∩Cδ(x j , r j)) ≥ λ
∀i, j : i , j}

is contained in the union of two ellipsoids inR3 each of diameter. ε
λ2 .
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A proof of the preceding result can be found in Wolff [14].
We conclude this section with some facts from geometric measure theory. We

refer the reader to Falconer [4] for definitions, proofs and details. In what follows,
H s denotess-dimensional Hausdorff measure.

Theorem 2.1. Let E be a Borel set inRd and lets > 0. Assume thatH s(E) > 0.
Then there exists a nontrivial finite measureµ supported onE such thatµ(B(x, r)) ≤
r s for x ∈ Rn andr > 0.

If E is ans-set, i.e., 0< H s(E) < ∞, then a pointx ∈ E is called regular if the
upper and the lower densities atx are equal to one; otherwisex is called irregular.
An s-setE is said to be irregular ifH s-almost all of its points are irregular. Irregular
1-sets are characterized by the following:

Theorem 2.2. A 1-set inR2 is irregular if and only if it has projections of linear
Lebesgue measure zero in two distinct directions.

In fact, one can say much more.

Theorem 2.3.Let E be an irregular1-set inR2. Then projθ(E) has linear Lebesgue
measure zero for almost allθ ∈ [0, π), where projθ denotes orthogonal projection
fromR2 onto the line through the origin making angleθ with some fixed axis.

3. T   

In this section we assume thatd ≥ 3.
For f : Rd → R, δ > 0 small, we defineMδ : B(0, 1/4)→ R by

Mδ f (x) = sup
1/2≤r≤2

1
|Cδ(x, r)|

∫

Cδ(x,r)
| f (y)|dy.

Theorem 1.4 will be a consequence of the followingL2→ L2 maximal inequal-
ity.

Proposition 3.1. Let F ⊂ B(0, 1/4) be a compact set inRd such that there exist
s > 1 and a finite measureµ supported onF with µ(B(x, r)) ≤ r s for x ∈ Rd and
r > 0. Then there exists a constantA that depends only on the measure ofF and
on ssuch that (∫

F
(Mδ f (x))2 dµ(x)

)1/2

≤ A‖ f ‖2
for smallδ > 0 and all f .

The proof generally follows the lines of the proof of Theorem 1′ in [6]. Even
though the necessary modifications are not immediately obvious, we choose not to
include the proof. A similar argument will appear in a forthcoming paper on the
Kakeya maximal function.

Proof of Theorem 1.4.We may assume thatF ⊂ B(0, 1
4). Suppose that|E|=0 and

chooset so that 1< t < s. Then there exist a compact setE1 ⊂ E, a compact set
F1 ⊂ F with H t(F1) > 0, and a positive numberr, such that, for eachx ∈ F1,
there is a sphere centered atx with radiusr(x) ∈ (r, 2r) which intersectsE1 in set
of surface measure at leastrd−1(x). Without loss of generality we may assume that
r = 1. It follows that for allx ∈ F1

MδχEδ
1
(x) & 1,
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whereEδ
1 is theδ-neighborhood of the setE1.

By Theorem 2.1, there exists a nontrivial finite measureµ supported onF1 such
thatµ(B(x, r)) ≤ r t, for x ∈ Rd, r > 0. Therefore, by Proposition 3.1, we have

µ(F1) .
∫

F1

(MδχEδ
1
(x))2dµ(x) . |Eδ

1|.

The right-hand side of the above inequality tends to zero asδ → 0, so we get a
contradiction. �

We will show that we cannot drop the conditions> 1 in Theorem 1.4.

Proposition 3.2. There exists a set of d-dimensional Lebesgue measure zero con-
taining for eachx ∈ [0,1] × {0} × · · · × {0}︸           ︷︷           ︸

d−1

, a sphere centered atx.

Proof. The idea, which goes back to Davies [3], is to parametrize the set of radii
using a suitable irregular 1-set.

Divide the unit square [0, 1] × [0, 1] ⊂ R2 into 16 disjoint squares of side 1/4.
Let S(i, j) 1 ≤ i, j ≤ 4 be those squares (indexed from bottom to top, left to right),
and put

E1 = S(1,2) ∪ S(1,4) ∪ S(4,1) ∪ S(4,3).

Apply the same procedure to each ofS(1,2), S(1,4), S(4,1), S(4,3), and letE2 be the
union of the new squares. Continuing in the same manner we obtain a decreasing
sequence of compact sets{En}. Let E =

⋂∞
n=1 En. ThenE is a 1-set such that

proj0(E) = [0, 1], |projπ/2(E)| = 0, |projπ/4(E)| = 0

where| · | is linear Lebesgue measure, and proj0, projπ/2, projπ/4 denote, respec-
tively, orthogonal projection onto thex-axis, they-axis, and the line through the
origin making angleπ/4 with the x-axis. It follows from Theorem 2.2 thatE is
irregular. Let

A =
⋃

(a,b)∈E
{(x1, . . . , xd) : (x1 − a)2 + x2

2 + · · · + x2
d = a2 + b}

=
⋃

(a,b)∈E
{(x1, . . . , xd) : x2

d = 2ax1 + b− x2
1 − · · · − x2

d−1}.

Since proj0(E) = [0, 1], A contains a sphere centered at each point of{(a,0, . . . ,0) :
a ∈ [0,1]}. Now fix s1, . . . , sd−1. Then

A∩ {(x1, . . . , xd) : x1 = s1, x2 = s2, . . . , xd−1 = sd−1}
= {s1} × {s2} × · · · × {sd−1} × B.

where

B = {xd : x2
d = 2as1 + b− s2

1 − s2
2 − · · · − s2

d−1, (a, b) ∈ E}.
B has measure zero if and only if{2as1 + b : (a, b) ∈ E} has measure zero. But
L1({2as1 + b : (a,b) ∈ E}) = 0 for almost alls1 ∈ R by Theorem 2.3. Therefore,
by Fubini,A hasd-dimensional measure zero. �
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4. T - 

Before we proceed with the proof of Theorem 1.5, it might be instructive to dis-
cuss briefly the underlying ideas. It turns out that the two-dimensional problem can
be reduced to estimating the measure of a family of thin annuli. By Lemma 2.1, the
measure of the intersection of two annuli is large when the corresponding circles
are internally tangent. It is, therefore, essential that we be able to control the total
number of such tangencies. To this end, we employ Marstrand’s three circle lemma
together with a suitable counting argument. This approach was first used in Kolasa
and Wolff [6], and, subsequently, in Schlag [8], [9]. We should, however, mention
that, in contrast with the afforementioned authors, we do not make any cardinality
estimates since these are not particularly useful in the case of general Hausdorff

measures.
The motivation for the combinatorial part of the proof is the following observa-

tion (see [5] for more details).

Proposition 4.1. Let {C j}Nj=1 be a family of distinct circles such that no three are
tangent at a single point. Then

card({(i, j) : Ci ‖ C j}) . N5/3,

whereCi ‖ C j means thatCi andC j are internally tangent.

Proof. Let Q = {(i, j1, j2, j3) : Ci ‖ C jk, k = 1,2,3} and fix j1, j2, j3. Then, by the
circles of Apollonius, there are at most two choices fori. Therefore,

card(Q) ≤ 2N(N − 1)(N − 2) < 2N3.

On the other hand, if we letn(i) = card({ j : Ci ‖ C j}), then

Q =

N⋃

i=1

(
{i} × {( j1, j2, j3) : Ci ‖ C jk, k = 1,2,3}

)
.

Hence

card(Q) ≥
N∑

i=1

n(i)(n(i) − 1)(n(i) − 2) ≥
N∑

i=1

(n(i) − 2)3.

It follows that

card({(i, j) : Ci ‖ C j}) =

N∑

i=1

n(i) =

N∑

i=1

(n(i) − 2) + 2N

≤


N∑

i=1

(n(i) − 2)3

1/3

N2/3 + 2N

≤ (card(Q))1/3N2/3 + 2N

≤ (2N3)1/3N2/3 + 2N . N5/3.

�

The proof of Theorem 1.5 will be a quantitative version of Proposition 4.1, with
Lemma 2.2 playing the role of the restriction imposed by the circles of Apollonius.
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Proof of Theorem 1.5.We may assume thatF ⊂ B(0, 1
4). Suppose that|E| = 0 and

chooses1 so that 3/2 < s1 < s. Then there exist a compact setE1 ⊂ E, a compact
setF1 ⊂ F with H s1(F1) > 0 and a positive numberr, such that, for eachx ∈ F1,
there is a circle centered atx with radiusr(x) ∈ (r,2r) which intersectsE1 in a set
of angle measure at leastπ. Without loss of generality we may assume thatr = 1.

By Theorem 2.1, there exists a nontrivial finite measureµ supported onF1 such
thatµ(B(x, r)) ≤ r s1, for x ∈ R2, r > 0.

Let {xi}i∈I be a maximalδ-separated set of points inF1, and letai = µ(B(xi , δ)).
Chooser i > 0 such that

|Cδ(xi , r i) ∩ Eδ
1| ≥

1
2
|Cδ(xi , r i)|, (6)

whereEδ
1 is theδ-neighborhood ofE1.

Let κ be the infimum of thoseλ > 0 such that there existsJ ⊂ I satisfying
∑

j∈J
a j ≥ 1

2
µ(F1),

and for all j ∈ J
∣∣∣∣
{
x ∈ Cδ(x j , r j) ∩ Eδ

1 :
∑

i∈I
aiχCδ(xi ,r i )(x) ≤ λ

}∣∣∣∣ ≥ 1
4
|Cδ(x j , r j)|.

ChooseN large enough so that

s1 − 3
2
>

7 + 2s1 − 1
N

and
N2 − N

N2 − N − 2
<

2s1 + 1
3

.

Let C2 > 1 be a large constant to be determined later on and define

β : [δ,1] × [δ,1]→ R

by

β(t, ε) =


t

1
2 (s1−1/2)

ε1/4 C
− 3

2
N

N−2
2 , if t

2s1+1
3 < C

2 N
N−2

2 ε

ε1/N

t1/(N+1) , if t
2s1+1

3 ≥ C
2 N

N−2
2 ε

.

Then, for smallδ, β has the following properties:

β(t, ε) ≥ C2

√
ε

t
⇒ β(t, ε) =

ε1/N

t1/(N+1)
, (7)

β(t, ε) < C2

√
ε

t
⇒ β(t, ε) =

t
1
2 (s1−1/2)

ε1/4
C
− 3

2
N

N−2
2 , (8)

∑

δ2k≤1
δ2l≤1

β(δ2k, δ2l) < M, (9)

whereM is a constant that depends only onN and ons1.
Now for all i, j ∈ I andt, ε ∈ [δ,1], we define

∆i j = max{δ, ||xi − x j | − |r i − r j ||},

St,ε( j) = {i ∈ I : Cδ(xi , r i) ∩Cδ(x j , r j) , ∅, t ≤ |xi − x j | ≤ 2t, ε ≤ ∆i j ≤ 2ε},



ON A PROBLEM RELATED TO SPHERE AND CIRCLE PACKING 7

At,ε( j) =
{
x ∈ Cδ(x j , r j) :

∑

i∈St,ε( j)

aiχCδ(xi ,r i )(x) ≥ 1
M
β(t, ε)

κ

2

}
.

Claim 4.1. There existt, ε ∈ [δ,1] and a set of indices̄J such that

|At,ε( j)| ≥ 1
4M

β(t, ε)|Cδ(x j , r j)|, ∀ j ∈ J̄,

and ∑

j∈J̄
a j ≥ 1

2M
β(t, ε)µ(F1).

Proof. Let

J0 =
{
j ∈ I :

∣∣∣∣
{
x ∈ Cδ(x j , r j) ∩ Eδ

1 :
∑

i∈I
aiχCδ(xi ,r i )(x) ≤ κ

2

}∣∣∣∣ ≥ 1
4
|Cδ(x j , r j)|

}
.

By the minimality ofκ, we have
∑

j∈J0

<
1
2
µ(F1).

Therefore, ifJ′ is the complement ofJ0, then
∑

j∈J′
a j ≥ 1

2
µ(F1) (10)

and for all j ∈ J′
∣∣∣∣
{
Cδ(x j , r j) ∩ Eδ

1 :
∑

i∈I
aiχCδ(xi ,r i )(x) ≤ κ

2

}∣∣∣∣ < 1
4
|Cδ(x j , r j)|.

Hence, using (6) we obtain
∣∣∣∣
{
Cδ(x j , r j) ∩ Eδ

1 :
∑

i∈I
aiχCδ(xi ,r i )(x) >

κ

2

}∣∣∣∣ ≥ 1
4
|Cδ(x j , r j)|. (11)

For eachj ∈ J′ let

Bj =
{
x ∈ Cδ(x j , r j) ∩ Eδ

1 :
∑

i∈I
aiχCδ(xi ,r i )(x) >

κ

2

}
. (12)

Then for all j ∈ J′

Bj ⊂
⋃

k,l

Aδ2k,δ2l ( j).

Indeed, suppose there existedj ∈ J′, x ∈ Bj such that for allk, l with δ2k, δ2l ≤ 1
we hadx < Aδ2k,δ2l ( j). Then, by (9)

∑

i∈I
aiχCδ(xi ,r i )(x) =

∑

k,l

∑

i∈S
δ2k,δ2l ( j)

aiχCδ(xi ,r i )(x) ≤ 1
M
κ

2

∑

k,l

β(δ2k, δ2l) <
κ

2
,

contradicting (12). It follows that for allj ∈ J′ there existk, l such that

|Aδ2k,δ2l ( j)| ≥ 1
4M

β(δ2k, δ2l)|Cδ(x j , r j)|. (13)

In fact, if this were not the case, we would have that for somej ∈ J′

|Bj | ≤
∣∣∣∣
⋃

k,l
Aδ2k,δ2l ( j)

∣∣∣∣ ≤
∑

k,l

|Aδ2k,δ2l ( j)|
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≤ 1
4M
|Cδ(x j , r j)|

∑

k,l

β(δ2k, δ2l) <
1
4
|Cδ(x j , r j)|,

which contradicts (11). Finally, let

J(k, l) = { j ∈ J′ : |Aδ2k,δ2l ( j)| ≥ 1
4M

β(δ2k, δ2l)|Cδ(x j , r j)|}.
Then, by (13)

J′ =
⋃

k,l

J(k, l).

We claim that there existt = δ2k,ε = δ2l such that
∑

j∈J(k,l)

a j ≥ 1
2M

β(t, ε)µ(F1).

If not, then we would have
∑

j∈J′
a j ≤

∑

k,l

∑

j∈J(k,l)

a j <
1

2M
µ(F1)

∑

k,l

β(δ2k, δ2l) <
1
2
µ(F1),

contradicting (10). �

So, fix t, ε ∈ [δ,1] as above. Then there are two cases.

Case 1:β(t, ε) ≥ C2

√
ε

t
.

It follows from the definition ofκ that there exists a set of indicesJ ⊂ I such that
∑

j∈J
a j ≥ 1

2
µ(F1),

and ∣∣∣∣
{
x ∈ Cδ(x j , r j) ∩ Eδ

1 :
∑

i∈I
aiχCδ(xi ,r i )(x) ≤ 2κ

}∣∣∣∣ ≥ 1
4
|Cδ(x j , r j)|,

for all j ∈ J. Now let

Q = {( j, j1, j2, j3) : j ∈ J̄, j1, j2, j3 ∈ J, j1, j2, j3 ∈ St,ε( j)

dist(Cδ(x j , r j) ∩Cδ(x jk, r jk),C
δ(x j , r j) ∩Cδ(x j l , r j l )) ≥

β(t, ε)
C1M

∀k, l k , l}
whereC1 > 1 is a constant to be determined beforeC2.

Further, define the following sets of indices:

Q1 = {( j1, j2, j3) : ∃ j such that (j, j1, j2, j3) ∈ Q},
Q2 = { j1 : ∃ j2, j3 such that (j1, j2, j3) ∈ Q1}.

For j1 ∈ Q2 let

Q( j1) = { j2 : ∃ j3 such that (j1, j2, j3) ∈ Q1}
= { j3 : ∃ j2 such that (j1, j2, j3) ∈ Q1}.

Now consider the quantity

R =
∑

( j, j1, j2, j3)∈Q
a ja j1a j2a j3.
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Note that ifC2 is large enough, then

β(t, ε)
C1M

≥ C2

C1M

√
ε

t
≥ A1

√
ε

t
,

whereA1 is the constant in Lemma 2.2. It follows that if (j1, j2, j3) ∈ Q1 then the
set{x j : ( j, j1, j2, j3) ∈ Q} is contained in the union of two ellipsoids of diameter

.
ε

β2(t, ε)
. Hence

R.
(

ε

β2(t, ε)

)s1 ∑

( j1, j2, j3)∈Q1

a j1a j2a j3.

Furthermore, ifj1 ∈ Q2 and j2 ∈ Q( j1) then there existsj such thatj1, j2 ∈ St,ε( j).
Therefore,

|x j1 − x j2| ≤ |x j1 − x j | + |x j − x j2| ≤ 4t.

It follows that for fixed j1 ∈ Q2 the set{x j2 : j2 ∈ Q( j1)} is contained in a disk with
centerx j1 and radius 4t. Hence

∑

j2∈Q( j1)

a j2 . ts1.

Therefore,

R.
(

ε

β2(t, ε)

)s1 ∑

( j1, j2, j3)∈Q1

a j1a j2a j3 ≤
(

ε

β2(t, ε)

)s1 ∑

j1∈Q2

a j1


∑

j2∈Q( j1)

a j2


2

. µ(F1)

(
ε

β2(t, ε)

)s1 (
ts1

)2 . (14)

Now fix j ∈ J̄.

Claim 4.2. There are three subsetsD1,D2,D3 of At,ε( j) such that

dist(Dk,Dl) ≥ 2β(t, ε)
C1M

, ∀k, l k , l,

and
|Dk| & δβ(t, ε), ∀k,

provided thatC1 is large enough.

Proof. We use complex notation. If 0≤ θ1 ≤ θ2 ≤ 2π let

Gθ1,θ2 = At,ε( j) ∩ {x j + reiθ ∈ Cδ(x j , r j) : θ1 ≤ θ ≤ θ2}.
Then there exist 0= θ1 < · · · < θ7 = 2π such that

|Gθk,θk+1 | =
|At,ε( j)|

6
, k = 1, ..., 6.

Let
Dk = Gθ2k−1,θ2k, k = 1,2,3.

Note that for alll
β(t, ε)
24M

|Cδ(x j , r j)| ≤ |Gθl ,θl+1| . diam(Gθl ,θl+1)δ.

Therefore,
diam(Gθl ,θl+1) & β(t, ε).
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It follows that if we chooseC1 large enough, then we have

dist(Dk,Dl) ≥ 2β(t, ε)
C1M

, and|Dk| & β(t, ε)δ.

�

For eachk let
Sk = {i ∈ St,ε( j) : Dk ∩Cδ(xi , r i) , ∅}.

Then

κβ2(t, ε)δ .
∫

Dk

β(t, ε)
M

κ

2
dx≤

∑

i∈Sk

ai |Dk ∩Cδ(xi , r i)|

≤
∑

i∈Sk

ai |Cδ(x j , r j) ∩Cδ(xi , r i)| .
∑

i∈Sk

ai
δ2

√
tε
,

where the last inequality follows from Lemma 2.1. Therefore,
∑

i∈Dk

ai &
1
δ
κβ2(t, ε)

√
tε.

By Lemma 2.1, ifi ∈ St,ε( j) then

diam(Cδ(x j , r j) ∩Cδ(xi , r i)) ≤ A

√
ε

t
≤ Aβ(t, ε)

C2
.

Therefore,i1 ∈ Sk, i2 ∈ Sl , k , l implies that

dist(Cδ(xi1, r i1) ∩Cδ(x j , r j),C
δ(xi2, r i2) ∩Cδ(x j , r j))

≥ 2β(t, ε)
C1M

− 2Aβ(t, ε)
C2

≥ β(t, ε)
C1M

,

provided thatC2 is sufficiently large. It follows that ifjk ∈ Sk, k = 1,2,3, then
( j, j1, j2, j3) ∈ Q. Hence

R≥
∑

j∈J̄
a j

∑

j1∈S1
j2∈S2
j3∈S3

a j1a j2a j3 & β(t, ε)

(
1
δ
κβ2(t, ε)

√
tε

)3

.

If we compare the above equation with (14), and then use (7), we obtain

κ3 . δ3ε
s1−3/2t2s1−3/2

β2s1+7(t, ε)
. δ3.

Case 2:β(t, ε) ≤ C2

√
ε

t
.

Fix j ∈ J̄. Then we have

κδβ2(t, ε) . κ
β(t, ε)

M
|At,ε( j)| =

∫

At,ε( j)
κ
β(t, ε)

M
dx

.
∑

i∈St,ε( j)

ai |Cδ(xi , r i) ∩Cδ(x j , r j)| . δ2

√
tε

∑

i∈St,ε( j)

ai ,

where we have used Lemma 2.1 and the definition ofAt,ε( j).
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Note that the set{xi : i ∈ St,ε( j)} is contained in a disk of radius 2t. Therefore,∑

i∈St,ε( j)

ai . ts1.

It follows that

κ . δ
ts1−1/2

ε1/2β2(t, ε)
.

Using (8), we obtainκ . δ. We conclude that, in either case

κ . δ. (15)

To complete the proof, notice that

1
2
µ(F1) ≤

∑

j∈J
a j =

1
δ

∑

j∈J
a jδ

.
1
δ

∑

j∈J
a j

∣∣∣∣
{
x ∈ Cδ(x j , r j) ∩ Eδ

1 :
∑

i∈I
aiχCδ(xi ,r i )(x) ≤ 2κ

}∣∣∣∣

≤ 1
δ

∫
{
x∈Eδ

1:
∑

j∈J a jχCδ(xj ,r j )
(x)≤2κ

}
(∑

j∈J
a jχCδ(x j ,r j )(x)

)
dx

.
1
δ
κ|Eδ

1| . |Eδ
1|, (16)

where the last inequality follows from (15).
If we let δ→ 0 then the right-hand side of (16) tends to zero, which is a contra-

diction. �

5. P 

As we discussed at the beginning of Section 4, the proof of Theorem 1.5 was mo-
tivated by a result of combinatorial nature, namely Proposition 4.1, which asserts
that if one is given a family ofN circles such that no three of them are internally
tangent at a point, then there is a bound of the formCN5/3 on the total number of
tangencies.

This, however, is far from being sharp. Clarkson, Edelsbrunner, Guibas, Sharir
and Welzl [2] developed a technique which leads to a bound of the form

CεN
3/2+ε ∀ε > 0,

suggesting that it might be possible to weaken the conditions > 3/2 in Theo-
rem 1.5. Indeed, Wolff [13] proved the followingL3→ L3 maximal inequality.

Theorem 5.1. For x1 ∈ R, let

Mδ f (x1) = sup
r∈[1/2,2]

x2∈R

1
|Cδ(x, r)|

∫

Cδ(x,r)
| f |,

wherex = (x1, x2). Then

∀ε > 0 ∃Aε : ‖Mδ f ‖L3(R) ≤ Aεδ
−ε‖ f ‖3.

Using this, he proved, in the same paper, the following.

Theorem 5.2. If α ≤ 1 and ifE is a set in the plane which contains circles centered
at all points of a set with Hausdorff dimension at leastα, thenE has Hausdorff
dimension at least1 + α.



12 THEMIS MITSIS

The preceding result suggests that a setE as in the statement of Theorem 1.5
has to be fairly large. In view of this and the analogy between Proposition 3.1 and
the spherical means maximal theorem, it seems reasonable to make the following
conjecture which would imply that Theorem 1.5 is true for alls> 1.

Conjecture 5.1. For δ > 0 small, f : R2→ R, defineMδ : B(0,1/4)→ R, by

Mδ f (x) = sup
1/2≤r≤2

1
|Cδ(x, r)|

∫

Cδ(x,r)
| f (y)|dy

Let F ⊂ B(0, 1/4) be a compact set inR2 such that there exists > 1 and a finite
measureµ supported onF with µ(B(x, r)) ≤ r s, for x ∈ R2 andr > 0. Then there
exists a constantA that depends only on the measure ofF and ons, such that

(∫

F
(Mδ f (x))p(s)dµ(x)

)1/p(s)

≤ A‖ f ‖p(s). (15)

Note that in order for the above inequality to hold, it is necessary thatp(s) ≥
4− s. To see that, letI = [−1/8,1/8], and letE ⊂ I be a Cantor set of Hausdorff

dimensions− 1. ThenH s−1(E ∩ B(0, δ)) ∼ δs−1. Define

Fδ = I × (E ∩ B(0, δ1/2)),

and

Rδ = [1 − δ,1 + δ] × [−2δ1/2, 2δ1/2].

Notice that

x ∈ Fδ ⇒MδχRδ(x) & δ1/2.

Therefore, using (15)

δ1/2(H s(Fδ))
1/p(s) .

(∫

Fδ
(MδχRδ)

p(s)(x)dH s(x)

)1/p(s)

. ‖χRδ‖p(s) = δ3p(s)/2.

On the other hand

H s(Fδ) ∼ H s−1(E ∩ B(0, δ1/2)) ∼ δ(s−1)/2.

Hence

δ
1
2δ

(s−1)
2p(s) . δ

3
2p(s) ,

which is possible only ifp(s) ≥ 4− s.
We conclude by mentioning an observation made by Schlag: if the local smooth-

ing conjecture due to Sogge [10] is correct, then Theorem 1.5 is true for alls> 1.

A

I thank Tom Wolff for his interest in this work, for his encouragement, and for
repeated proof-reading.
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