(n,2)-SETS HAVE FULL HAUSDORFF DIMENSION
THEMIS MITSIS

AsstracT. We prove that a set containing translates of every 2-plane
must have full Hausddidimension.

1. INTRODUCTION

This is a continuation of [4] where a partial result on thelgbeon under
investigation was obtained. Since that paper is unpuldistark, we will
reproduce certain parts of it for the sake of completeness.

An (n,2)-set inR" is a subseE c R" containing a translate of every
2-dimensional plane.

The natural question that arises is whetlBenust have positive Lebesgue
measure. This turns out to be true in low dimensions. Mandtf8] proved
that (3 2)-sets have positive measure. Bourgain [1] showed the same f
(4, 2)-sets and made a connection with the Kakeya conjecturdigtmer
dimensions the question is open. However, it has been knomsofme time
that if n > 4 then diny(E) > (2n + 2)/3, where diny denotes Hausdér
dimension. This follows from the estimates for the 2-plara@sform due
to Christ [2]. In the present paper we modify the argument Jnyidhich in
turn is based on geometric-combinatorial ideas very mudhenspirit of
Wolff [6], to obtain full dimension. Namely we prove the following

Theorem 1.1. Suppose n> 4 and let E c R" be an(n,2)-set. Then
dimy(E) = n.

2. TERMINOLOGY AND NOTATION

S™! c R"is the f— 1)-dimensional unit sphere.

B(a, r) is the closed ball of radiuscentered at the poirt

For X c R", X* denotes its orthogonal complement.

If ec S"™1, ae R"thenlLe(a) = {a+te:t e R}is the line in thes-direction
passing through the poiat
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If ec S™1 aeR", B> 0thenT(a) = {x € R": dist(x, Ls(a)) < B} is the
infinite tube with axid_¢(a) and cross-section radigs

L*¥ denotesk-dimensional Lebesgue measure afficounting measure.
When the context is clear we will use the notatjerfor all these measures.

Let G, be the Grassmannian manifold of all 2-dimensional linedr su
spaces oRR" equipped with the unique probability measytg which is
invariant under the action of the orthogonal group. The el ofG, will
be refered to adirection planes

If P1, P, € G, then their distance is defined by

d(Py, P2) = [[projp, — Projp,|

where proj : R" — P is the orthogonal projection ont
A set of points or direction planes is callpeseparatedf the distance
between any two of its elements is at least

If Pe Gy 1 <1 <4 6> 0thenP% is a rectangle of dimensions
I xIx¢§x---xd, that is, the image of [0] x [0,]] X [0,6] x --- x [0, 4]
2
n_
under a rotation and a translation, such that its faces viitiexsiond x |
are parallel toP. Such a set will be refered to asigplate or simply as a

plate Whenl = 1 the superscrigtwill be supressed.

If P'l"s N P'Z:‘s # 0 andd(P1, P2) = r we will say that the platesitersect at
anglearcsinr.

The letterC will denote various positive constants whose values may
change from line to line. Similarh¢, will denote constants depending on
e. If we need to keep track of the value of a constant througHaulzion
we will use subscripted lettelS,, C,, ... or the notatiorC. X < y means
X< Cxandx=~ymeansX<y&y s X).

Finally, note that
Yn2({P € Gn : d(P, Po) < 6}) = 6°™? forall Py € Gn, 6 < 1.
So if A c G, andB is a maximab-separated subset gt then
Yn2(A) < 1816702,

Further, ifA c G, is 6-separated an# is a maximaby-separated subset of
A with n > 6§ then

18| 2 |AI(6/17)2"2).
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3. AuxiLiARY LEMMAS

The following technical lemma allows us to control the iststion of
two plates.

Lemma 3.1. Let P,", P’ be two plates such that(B, P;) < 1/2. Then
there exists a tubeZ[a) with 8 = Cy/d(P, P,) such that
P, N Py’ c TE(a). (1)

In particular
Porap g 1
L2 T dA(PLP)

The proof of Theorem 1.1 will be, essentially, a reductioth®3-dimensional
case via the Radon transform. We give the definitions.

For a functionf : R® — R satisfying the appropriate integrability condi-
tions, the Radon transform

Rf :S2xR—>R
is defined by
Rf(et) = f f(X)dL3(X).
(ex)=t

It is proved in Oberlin and Stein [5] that for any measuraleteEsc R3 one
has the following estimate.

IRYEllze0 < IlXEll3)2

where

13
IRxElls 00 = f(SlthR)(E(e’ t))3d0'(e)]

S2

anddo is surface measure.
We can discretize this result as follows.

Lemma3.2. Suppose E is aseti&?, 4 < 1and let{P}}, be as-separated
set inGs such that for each k there is platg® satisfying

IP.° N E| 2 46.

Then
E| 2 2%2M*26,
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Proof. For eacte € S? let Q(€) be the plane with normal passing through
the origin. Then there is@&separated s¢g}}', on S? such thaPy = Q(e).
Note that since k | < 4, for eache € B(g, §/2) N S? we have

W< IPENE| < f L2((Q(e) + x) N E)dLY(x)
le

wherel, is an interval onQ(e)* with £(l¢) < 6. Therefore there exists
Xe € lg such that

A< L2(Qe) + o) N E).
Hence
A < supRye(e t).

We conclude that

236°M

N

Y, [ supRree )o@
K t

B(ex.6/2)NS2

f (suPRye(e.D)’dr(@
SZ

IA

3 3 2
IRxEllz00 S Ilxells, = IEI
O

This, in turn, gives rise to the following higher dimensibaaalogue.

Lemma 3.3. Suppose E isasetiR", 1 < 1, IT c R"is a 3-plane and
{ Pk}l'l/': , is ad-separated set iy, such that for each k the plate Batisfies

P’ c 1% and [P N E| > AP
wherell® = {x € R": dist(x, IT) < C5} is theCs-neighborhood of1. Then
|E N H66| > /lSMl/Zé‘n—Z.

Proof. Whithout loss of generality we may asssume tHas the x;X;Xs-
plane. Sincé® c I1°° there is a direction plan® c IT such that(Py, Q) <
6. Therefore we can find a pla@ "’ with P} c Q>“*. It follows that

QR NENT®| 2 A5™2.

Let 8 be a maximaC,s-separated subset tﬁ’k}&i andputB’ = {Qy: Pc €
B}. Then forQ;, Qx € B, j # k, we have

d(Qj, Q) = d(Pj, Px) — d(Pj, Qj) — d(Pk, Qx) = (C2 - C)é > 6
for C, suficiently large.
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Now for eachQy € 8’ let

Ly = {x € B(0,Co) NTI* : LY(QLYNEN(IT+X) < ?}
3

Hy = {x € B(0,Co) NI+ : LYQZ° NEN (I + X)) > g}
3

Note that
LY NEN(IT+x) < 6, for all x e B(0,Cs) N TT-.
Hence

Q7 NE NI

f LY(Q% N E N (I + X)L 3(X)

B(0,C5)NITL

) f LA nEN ([+x)dL"3(4)
Lk

/l(sn—Z

A

- f L NEN (IT+ X))dL"3(x)
H

< @05”-3 + CoLM3(HY).
Cs
Therefore,£"3(H,) > 16" for C; sufficiently large.

Next, notice thatB’| ~ M and define

L:{xe B(0,C8) NIT* : |{k : x € Hl < AC_M}
4

H:{xe B(0,CS) NII* : |{k : x € Hk}|z)‘C—M}.
4

Then
A" 3M

N

;f)(Hk=Hf;)(Hk+lek:)(Hk

MLn_S(H) + MLn—B(L)
Cq

ML"3(H) + Mc(s”—?
Cs

IA

IA

Therefore£"3(H) > 16" for C, sufficiently large.
Note that for eaclx € H there are at leastM/C, plates inIl + X, that
is, plates in a copy oR3, with 5-separated direction planes and such that



6 THEMIS MITSIS

the 3-dimensional measure of their intersection vidth (IT + x) is at least
C146. Hence, by Lemma 3.2

L3E N (I1+ X)) 2 232(am)Y/3s.
We conclude that

IE N 11|

\%

f L3(E n (IT+ x))dL"3(x)
H

/lén_S/lS/z(/lM)l/zd
BMY2s-2.

4%

4. THE MAIN ARGUMENT

By a modification of the argument in [1], Theorem 1.1 will be ase-
guence of the following.

Proposition 4.1. Suppose E isaseti’, 1 < 1and{Pj}JVL1 is as-separated
set inG, with diam({Pj}}"':l) < 1/2, such that for each j there is plate‘jsP
satisfying
IPS N E| = AP,
Then
|E| > Ceée/l(n+2)/2M1/26n—2

Proof. We say that a point € E has multiplicityu if it belongs to exactly:

pIatesP‘J?. We claim that there exists a sié]io N E such that the measure of

the set of its points with multiplicity at leagMA5"2/|E| is at Ieas%lP‘J?m E|,
because otherwise we would have

2El w1
0
|E|>|UP‘50E| MMHZJZ:—leﬁElzlEL
So letting
1M n-2
2
Ho=Sig; , (2)

we see that there is a pla®é := P} such that

p|
lixe PPNE:|{k:x€e P} > poll = 55”*2.

Note that for eact € P° N E with [{k : x € P} > o we have

log(C/s)
tk:xeP)= | J (k:xePiands2! < d(P, P) < 62}.

i=1
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Therefore, by the pigeonhole principle, there is an inte@drwith 1 <
i(X) < log(C/6) such that

Itk : x € P{ ands2®1 < d(Py, P) < 62} > (log(C/6)) uo.
And so,

(xe PNE:|tk:xe P}l > uo)

log(C/é)
C U (xe PPNE:|k: xe Plands2* < d(Py, P) < 62}
i-1

> (log(C/6)) o}

Applying the pigeonhole principle again, we see that therst® a number
p =621 and a seA c P’ n E of measure

Al 2 |log sl tas™ 3)
such that for everx e A
ltkk : x e P2 andp < d(Px, P) < 2p}| 2 |logd™ uo. (4)

Heuristically, (3) and (4) tell us that a large number of géaintersecP’ at
approximately the same angle. We are going to estimate timgoar using
the bound for the measure of their pairwise intersectiongddrthis, define

D ={P): PN P’ £ 0andp < d(Px, P) < 20}.
Then, by Lemma 3.1, we have
P
DIz ) IPLN Pl

PleD

_ P
T gl j;ﬁ Z)(Pi
PéeD

0
= o1 ), ZXP‘i
PoeD

|Alllog 6 1o

> 1Y%
~ 5n—1

220 M o
> |logé ™21 6|E|5 . (5)
Where the last inequality follows from (2) and (3) and the oe®ole last
from (4).
We are now in a position to carry out a geometric construgtiorthe
spirit of [6], which will allow us to use Lemma 3.3. In order bhelp the
reader understand our strategy, we first give an informadrgeson.
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Ficure 1. In this picture, the planes represent the 3-planes
IT; and the line represents the 2-plane P.

We know that the Radon transform estimate due to Oberlin agich &
sharp inR3. So, we would like to slice our set with a number of thin neigh-
borhoods ofR? and then apply the higher dimensional discretized version
of that estimate (as given by Lemma 3.3) to each of these hergbods.
To this end, we pasp(6)"2 3-dimensional planes (these are the $kt®
be defined below) through the 2-dimensional plane which rialjg to the
direction planeP and passes through the centef the plateP’. We do that
in a “radial”, so to speak, fashion (see Figure 1). That isheéaplandT; is
the translate of a 3-dimensional subspace spannéddng a certain vector
in the orthogonal complement & This ensures that every plate» be-
longs to som&1~’, wherelI’ is theCs-neighborhood ofl;. Our goal is to

use Lemma 3.3 to estimate the measurBgfn E, and then sum up these
individual estimates to get a lower bound on the measure 1o$@il How-
ever, in order to do thistgciently, we have to take into account the overlap
of the setdI™. If there are “too manyTI=’'s, that is, ifp/6 > 17*|log |
(thisis case | below), we observe that their overlap in@sas we approach
the planec + P. So we choose a suitable neighborhdbdf c+ P in such a
way that:

e The overlap of the seﬁi@s n XC is smaller.



(n,2)-SETS HAVE FULL HAUSDORFF DIMENSION 9

e The measure of the intersection of every plat®iwith the reduced
setE N XC is still large.

Then, we work with this reduced sét XC. On the other hand, if there are
not “too many”TI=?'s, that is, ifp/6 < A7*|logd] (this is case Il below), we
just estimate their overlap with their numbgy§)"2.

We now proceed with the formal argument.

Let{e}; be a maximad/p-separated set of points on the-@)-dimensional
unit spheres™! n P+ and let

I, =c+ HI’

wherec is the center of’ andIT is the 3-dimensional space spanned by
g andP. Then for eachP} € D there exists an such thatP} c I,
wherell® is theCs-neighborhood ofl;. To see this, ley € P2, and pick
w e P> n P°. Thenly — w| is bounded by the diameter & and belongs
to a Cs-neighborhood of the direction plari&. So, there exists a point

z € Py (just takez to be the projection of — w onto Py) with |z < 1 and
ly —w -2 < . Now write

Z=71+2 <€ Pao P,
C—-W=wW; +W, € Po P+

Sinced(P, Py) = p, we have|z| < p, and sincec — w belongs to &Co-

neighborhood of the direction plafewe getjw,| < 6. Now z,/|z| belongs
to the unit sphere dP+, so we can find ae such thatz/|z| — e| < §/p.

Therefore,

o
1o — |zl6] < —|2o] < 6.
P
Finally, notice that
y=[(y-w-2+(z-zle) - W] +[z2 — W1 + |2,]&] +C,

where the vector in the first square bracket has length at @wsind the
vector in the second square bracket belongHtoWe conclude thay e

I~
0
Therefore, if we let

then

Now lety = 1|logds|~t and consider two cases.

CASE 1.6 < yp.
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CASE I1.5 > yp.

In case | let
X ={xeR":dist(x,c+ P) < yp}.
First, we show that ead, € D has large intersection witen XC. Indeed,
notice that
PPnXcPnX.
Hence, by (1) in Lemma S.Eiyp NX is contained in a tube of cross-section
radiusCy. Now, the intersection of a tube of cross-section radiyswith
the plateP] is contained in the intersection of two rectangles of dinmrs
0o XCyxCy.---xCyand 1x 1x 4§ x --- x ¢, and therefore has volume

at mostCy¢"2 (recall thats < yp < y). We conclude that the volume of
P2 N X is at mostCA| log§|~6"2. Consequently

P NENXY = PPNE-PPNENKX]
> |P2NE|- PN X|

> 16"2 - CAllog 6|62

A

> _5n—2
-2

for 6 suficiently small.

Next, we show that the seﬂﬁg‘s N XC have small overlap. Namely, we
claim that if dist§ c + P) > yp, thenx belongs to at mosty "3 sets
1%, To see this, we can clearly assume tbat 0. Now suppose that

X € Hi55 and writex = u+w € P& P+. Thenjw - (w, e)e| < §. Therefore,
by simple algebra, eithéw — |wje| < 6, or |w + |wjg| < 6. On the other
hand, distk, P) > yp implies thatiw] > yp. Consequently we have either
le —w/Iw|| < 6/(yp), orle + w/|wl|| < 6/(yp). It follows that

& - x € TIE} < B(w/Iwl, C5/(yp)) U B(~w/Iwi, C5/(yp))-

Since theg’s areds/p-separated points on an{3)-dimensional unit sphere,
we conclude that

o/ (YP))n_S = (-3,

d{e : xe 1) <
card(e : x € I })<( 5o

Hence
2 1| JEnxt)nn®|
i

2y > IENXO) NI
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> yn—3/136n—2 Z 1D, |1/2
i

where the last inequality follows from Lemma 3.3 applied,dachi, to the
setE N XC, the plates i, and the 3-plané;.

In case Il, sincg{Ili}i| < (0/0)"3, we have
El > JENT®
i

2 (6/p)2 ) [EnTIE
i
>y ENTIE
i
> ,yn—3 2135™2 Z 1D |1/2
i

with the last inequality true by Lemma 3.3 applied, for eadb the seE,
the plates inD; and the 3-planél;.
We conclude that in either case

IE| > y”_3/136”_2 Z 1D, |1/2. (6)
i

To estimate the sum above, note tﬁkﬁ?, being theCs-neighborhood of a
copy of R3, can contain at most(p/s)? plates whose direction planes are
o-separated and at distance approximagefisom P. Therefore

D<) 1015 £ DI, (7
Combining (5), (6) and (7) we obtain

|E| > C662€/1n+2M62(n—2)
|E|
where the logarithmic factors have been absorbeddpsé. Consequently
|E| > Cgéf/l(m—z)/z M 1/25n72

proving the proposition. ]
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