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A Stein{Tomas restriction theorem for general measuresBy THEMIS MITSIS (Jyv�askyl�a)Abstract. We prove a general Stein{Tomas type restriction theorem for measuresof given dimension and Fourier exponent.1. IntroductionLet d� be normalized surface measure on the (n � 1)-dimensionalsphere Sn�1. For an integrable function f : Sn�1 ! C , consider theFourier transform dfd�(�) = ZSn�1 f(x)e�2�ix��d�(x):The classical Stein{Tomas restriction theorem is the following statement.Theorem 1.1. For every p � 2(n+1)=(n� 1) there exists a constantCp;n > 0 such that kdfd�kp � Cp;nkfkL2(d�)for all f 2 L2(d�). Moreover, the above range of exponents is best possible.This result has been extended to various more general situations wherethe sphere is replaced by smooth manifolds satisfying certain curvaturehypotheses. For proofs and more details the reader may consult Stein [2]and the references contained there.Mathematics Subject Classi�cation: 42B99.Key words and phrases: Fourier transforms of measures, restriction theorems.Supported by a Marie Curie Fellowship of the European Community under No. HPMFCT-2000-00442.



90 Themis MitsisThe purpose of this paper is to prove an analogous restriction theoremfor general measures. By the term measure we will always mean a positive,�nite, compactly supported Borel measure in Rn . For such a measure �,we denote by spt(�) its support. The Fourier transform of � is de�ned byb�(�) = Z e�2�ix��d�(x):Similarly, if f : Rn ! C is a �-integrable function, we de�nedfd�(�) = Z f(x)e�2�ix��d�(x):Letting B(x; r) be the closed ball of radius r centered at the point x, wecan state our main result as follows.Theorem 1.2. Let � be a measure in Rn such that�(B(x; r)) � r�; 8x 2 Rn ; r > 0and jb�(�)j � 1j�j�=2for some 0 < �, � < n. Then for every p > 2(2n� 2�+ �)=�, there existsa constant Cp;n;�;� > 0 such thatkdfd�kp � Cp;n;�;�kfkL2(d�)for all f 2 L2(d�).The example of a bounded 
at hypersurface, in which case restrictionfails, makes it clear that the decay condition on b� is, in a certain sense,indispensable and that no general restriction theorem can be based onlyon dimensionality or even smoothness considerations. We will address thisissue again in Section 3.Throughout this paper, x . y means x � Cy, where C is a positiveconstant depending on the context and whose value is irrelevant. Similarly,x ' y means (x . y & y . x). If A is a subset of Rn then �A isthe indicator function. Finally, we will denote �-dimensional Hausdor�measure by H�.



A Stein{Tomas restriction theorem for general measures 912. The main resultTheorem 1.2 will be a consequence of the followingProposition 2.1. Let � be a measure in Rn such that(1) �(B(x; r)) � r�; 8x 2 Rn ; r > 0and(2) jb�(�)j � 1j�j�=2for some 0 < �, � < n. Then for every p > 2(2n� 2�+ �)=�kb� � fkp . kfkp0for all f in the Schwartz space S. Here p0 is the conjugate exponentp0 = p=(p� 1).Proof. Let ��(x) = b�(�x) and ~f(x) = f(�x). Thenb� � f(x) = �� � ~f(�x):Therefore, it is enough to show that k�� � fkp . kfkp0 .Let  be a C1 function which is equal to 1 when jxj � 1 and to 0when jxj � 1=2, and let �(x) =  (2x) �  (x). Thensupp(�) � fx : 1=4 � jxj � 1gand 1Xj=0 �(2�jx) = 1; if jxj � 1:We now decompose �� as follows.�� = K�1 + 1Xj=0Kjwhere Kj(x) = �(2�jx)��(x);K�1(x) = �1� 1Xj=0 �(2�jx)���(x):



92 Themis MitsisWe are going to estimate kKj � fk1 and kKj � fk2.Using (2) and the support property of � we get(3) kKj � fk1 � kKjk1kfk1 . 2�j �2 kfk1:To estimate kKj � fk2, let �j(x) = �(2�jx) and choose N > �. Then,using the property of distribution functions and the fact that b� is rapidlydecreasing, we getj bKj(�)j = jc�j � �(�)j = ����Z c�j(� � y)d�(y)����� CN2jn Z d�(y)(1 + j2j(� � y)j)N= CN2jn Z 10 � (y : 1(1 + j2j(� � y)j)N � r)! dr= CN2jn Z 10 ���y : 1 + 2j j� � yj � 1r1=N �� dr= CN2jn Z 10 ���y : 1 + 2j j� � yj � 1r1=N �� dr� CN2jn Z 10 ���y : j� � yj � 12jr1=N �� dr= CN2jn Z 10 ��B��; 12jr1=N �� drby (1) � CN2jn2�j� Z 10 drr�=N. 2j(n��):It follows that k bKjk1 . 2j(n��). Therefore(4) kKj � fk2 = k bKj bfk2 � k bKjk1k bfk2 . 2j(n��)kfk2:Now, (3) and (4) allow us to think of convolution with the kernel Kj as anoperator from L1 to L1 and from L2 to L2. Therefore, we can interpolate



A Stein{Tomas restriction theorem for general measures 93between (3) and (4) using the Riesz{Thorin theorem. This giveskKj � fkp(�) . A(�)kfkq(�); 0 � � � 1;where p(�) = 2=�; q(�) = 2=(2 � �); A(�) = 2j(n��)��j �2 (1��):Equivalently kKj � fkp . 2jc(n;�;�;p)kfkp0 ; p � 2;where c(n; �; �; p) = 2(n� �)p � �2 �1� 2p� :Further, note that since K�1 is a C1 function with compact support wehave kK�1 � fkp . kfkp0 ; p � 2by Young's inequality.To complete the proof, notice that the sumK�1 � f +Xj Kj � fconverges pointwise to �� � f since f is a Schwartz function. Moreover,the exponent c(n; �; �; p) is negative provided that p > 2(2n� 2�+ �)=�.Therefore k�� � fkp � kK�1 � fkp + 1Xj=0 kKj � fkp. 1Xj=0 2jc(n;�;�;p)kfkp0 . kfkp0 : �To prove Theorem 1.2, let f 2 L2(d�) and g 2 S. ThenZ dfd�(�)g(�)d� = Z bg(y)f(y)d�(y) � kbgkL2(d�)kfkL2(d�)= kfkL2(d�)�Z bg(y)bg(y)d�(y)�1=2



94 Themis Mitsis= kfkL2(d�)�Z b� � g(x)g(x)dx�1=2� kfkL2(d�) (kb� � gkpkgkp0 )1=2 . kfkL2(d�)kgkp0where the last inequality follows from Proposition 2.1. Since S is dense inLp0 , we conclude that kdfd�kp . kfkL2(d�):3. Remarks1. It is a standard fact that the condition jb�(�)j � j�j��=2 impliesthat the Hausdor� dimension of the support of � is at least �. This canbe shown using the formulasI�(�) = C(n; �)Z jb�(�)j2j�jn�� d�and dimH(A) = supf� : 9�; such that spt(�) � A; I�(�) <1g;for all Borel sets A � Rn . HereI�(�) = ZZ d�(x)d�(y)jx� yj�is the �-energy of � and dimH denotes Hausdor� dimension (see Matti-la [1]).Another natural notion of dimension is the so-called Fourier dimen-sion, denoted by dimF . It is de�ned as the unique number in [0; n] suchthat for any 0 < s < dimF A, there exists a non-zero measure � withspt(�) � A and b�(�) � j�j�s=2, and that for dimF A < s < n, no suchmeasure exists. By the remarks above, we have that for any Borel setA � Rn , dimF A � dimH A. Sets A for which dimF A = dimH A arecalled Salem sets.We further note that jb�(�)j � j�j��=2 implies that �(B(x; r)) . r�=2.To see this, choose � 2 S such that � � 0, � & 1 on B(0; 1) and b� = 0outside B(0; Æ) for some Æ > 0. Let�x;r(y) = ��x� yr � :



A Stein{Tomas restriction theorem for general measures 95Then �(B(x; r)) . Z �x;r(y)d�(y) = Z b�x;r(�)b�(��)d�� rn Zjr�j�Æ jb�(r�)j 1j�j�=2 d�= r�=2 Zj�j�Æ jb�(�)j 1j�j�=2 d� . r�=2:Thus, we obtain the following version of Theorem 1.2 if we only know therate of decay of b�.Corollary 3.1. Let � be a measure in Rn such thatjb�(�)j � 1j�j�=2for some 0 < � < n. Then for every p > 4n=�, there exists a constantCp;n;� > 0 such that kdfd�kp � Cp;n;�kfkL2(d�)for all f 2 L2(d�).2. The argument for the L2 estimate in the proof of Proposition 2.1was based only on dimensionality considerations. This suggests that thereshould be an L2 bound for dfd� valid under very general conditions. Thiswas �rst observed by Strichartz [3] in a di�erent context. He showedthat if � satis�es �(B(x; r)) � r� thensupx02Rn; r>0 1rn�� ZB(x0;r) jdfd�(�)j2d� . kfk2L2(d�):His approach involved the fractional Hardy{Littlewood maximal function.Here we will give a simple, direct proof of a more general result.Theorem 3.1. Let � be a measure in Rn satisfying �(B(x; r)) � h(r),for some non-negative function h. Then there exists a constant C > 0 suchthat ZB(x0;r) jdfd�(�)j2d� . rnh(C=r)kfk2L2(d�)



96 Themis Mitsisfor all x0 2 Rn , r > 0, f 2 L2(d�).Proof. We will prove the theorem in the case where B(x0; r) is cen-tered at the origin. The general case then follows by multiplying f by acharacter.Let � be a radial Schwartz function such that � � 1 on B(0; 1), b� = 0outside B(0; C), for some C > 0 and let �r(x) = �(x=r). ThenZB(0;r) jdfd�(�)j2d� � Z j�r(�)dfd�(��)j2d� = Z jb�r � (fd�)(x)j2dx= Z ����Z b�r(x� y)f(y)d�(y)����2 dx� ZZ jb�r(x� y)jd�(y)Z jb�r(x� y)j jf(y)j2d�(y)dx:For a �xed x we haveZ jb�r(x� y)jd�(y) = rn ZB(x;C=r) jb�(r(x� y))jd�(y)� rnkb�k1�(B(x;C=r)) . rnh(C=r):ThereforeZB(0;r) jdfd�(�)j2d� . rnh(C=r)Z jf(y)j2 Z rnjb�(r(x� y))jdxd�(y)= rnh(C=r)kb�k1 Z jf(y)j2d�(y) . rnh(C=r)kfk2L2(d�): �3. For expository reasons it will be convenient to make the followingde�nition. If 0 < �; � < n then the restriction exponent p(n; �; �) isde�ned byp(n; �; �) = inffq : (8� with �(B(x; r)) � r� and jb�(�)j2 � 1=j�j�)(8f 2 L2(d�))(kdfd�kq . kfkL2(d�))g:For general values of �, � it is unknown whether Theorem 1.2 is optimal,that is, whether p(n; �; �) = 2(2n� 2�+ �)=�. We do, however, have thefollowing lower bound.



A Stein{Tomas restriction theorem for general measures 97Proposition 3.1. If 0 < �, � < n thenp(n; �; �) � 2n� :Proof. Let A = spt(�) and notice that �(B(x; r)) � r� implies that� is absolutely continuous with respect to H� j A with bounded density.Therefore � = hH� j A for some h 2 L1(H� j A). Let � > 0 be such that0 < H�(fx 2 A : h(x) � �g) <1 and put C = fx 2 A : h(x) � �g. Thenfor H�-almost all x 2 C (see Mattila [1]) we havelim supr H�(C \B(x; r))r� � 2�:It follows that there exists x0 2 spt(�) such thatlim supr �(B(x0; r))r� � �2�:Choose a sequence rk such that rk & 0, �(B(x0; rk)) ' r�k and putfk = �B(x0;rk):Now let � be a Schwartz function which equals 1 on B(0; 1) and de�ne�r(x) = ��x� x0r � :Suppose we have restriction for some exponent q. Thenr�k ' Z fk(x)d�(x) = Z �rk(x)fk(x)d�(x) = Z b�rk(�)[fkd�(��)d�= rnk Z e�2�i��x0 b�(rk�)[fkd�(��)d�� r nqk kb�kq0k[fkd�kq . r nqk kfkkL2(d�) ' r nq +�2k :Since rk & 0 we conclude that q � 2n� : �



98 Themis MitsisNote that the optimality of the range of exponents in the originalStein{Tomas theorem is intimately related to the fact that d� has twospecial regularity properties: It is a recti�able (n � 1)-dimensional mea-sure and its Fourier transform has the best possible decay rate. Here, bythe term recti�able measure, we mean a measure whose support can becovered by a countable union S1i=0 fi(Rn�1) of graphs of Lipschitz mapsfi : Rn�1 ! Rn , plus a set of zero (n � 1)-dimensional Hausdor� mea-sure (the reader is refered to Mattila [1] for a complete discussion of thenotion of recti�ability). It might, therefore, be of some interest to try todetermine the values of � < n for which there exists a measure � in Rnsuch that(5) �(B(x; r)) ' r�; x 2 spt(�); 0 � r � 1and(6) jb�(�)j � 1j�j�=2 :Clearly, the support of a measure satisfying the above conditions must bea Salem set. It is, however, unknown whether any such measure exists fornon-integral values of �. On the other hand, we remark that if there existsa measure � satisfying (5) and (6) with � < 2n=3 then the support of �fails to be translation invariant in the sense that�� �(f(y; z) : x� y � z 2 spt(�)g) = 0; 8x 2 spt(�):To see this, suppose that for some x0 2 spt(�) we have�� ��f(y; z) : x0 � y � z 2 spt(�)g� > 0and let �x0;r be as in the discussion preceding Corollary 3.1. Thenr� . ZZ �(B(x0 � y � z; r))d�(y)d�(z) = � � � � �(B(x0; r)). Z �x0;r(y)d(� � � � �)(y) � rn Zjr�j�Æ jb�(r�)j jb�(��)j3d�� r3�=2 Zj�j�Æ jb�(�)j 1j�j3�=2 d� . r3�=2



A Stein{Tomas restriction theorem for general measures 99for all r � 1, which is a contradiction.No information on the nature of the geometric restrictions that (5)and (6) impose on �, other than the above-essentially trivial-remark, iscurrently available. References[1] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, CambridgeUniversity Press, 1995.[2] E. M. Stein, Harmonic Analysis, Princeton University Press, 1993.[3] R. S. Strichartz, Fourier asymptotics of fractal measures, J. Funct. Anal. 89(1990), 154{187.THEMIS MITSISDEPARTMENT OF MATHEMATICS AND STATISTICSUNIVERSITY OF JYV�ASKYL�AP.O. BOX 35FIN{40351 JYV�ASKYL�AFINLANDE-mail: mitsis@math.jyu.�(Received January 19, 2001; revised August 31, 2001)


