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CHAPTER 1

Numbers

E 1.1. Let a,b, c,d be rational numbers andx an irrational number such that
cx+ d , 0. Prove that(ax+ b)/(cx+ d) is irrational if and only ifad , bc.

S. Suppose that (ax + b)/(cx + d) = p/q, where p,q ∈ Z. Then
(aq− cp)x = dp− bq, and so we must havedp− bq = aq− cp = 0, sincex is irrational. It
follows thatad = bc. Conversely, ifad = bc then (ax+ b)/(cx+ d) = b/d ∈ Q. �

E 1.2. Let a1 ≤ a2 ≤ · · · ≤ an andb1 ≤ b2 ≤ · · · ≤ bn be real numbers. Prove
that 

n∑

i=1

ai




n∑

j=1

b j

 ≤ n
n∑

k=1

akbk

and that equality obtains if and only if eithera1 = an or b1 = bn.

S. Since{ai}ni=1 and{bi}ni=1 are both increasing, we have

0 ≤
∑

1≤i, j≤n

(ai − a j)(bi − b j) = 2n
n∑

k=1

akbk − 2


n∑

i=1

ai




n∑

j=1

b j

 .

If we have equality then the above implies (ai − a j)(bi − b j) = 0 for all i, j. In particular
(a1 − an)(b1 − bn) = 0, and so eithera1 = an or b1 = bn. �

E 1.3. (a) If a1,a2, . . . , an are all positive, then


n∑

i=1

ai




n∑

i=1

1
ai

 ≥ n2

and equality obtains if and only ifa1 = a2 = · · · = an.
(b) If a,b, c are positive anda + b + c = 1, then

(1/a− 1)(1/b− 1)(1/c− 1) ≥ 8

and equality obtains if and only ifa = b = c = 1/3.

S. (a) By the Cauchy-Schwarz inequality we have

n =

n∑

i=1

a1/2
i

(
1
ai

)1/2

≤


n∑

i=1

ai


1/2 

n∑

i=1

1
ai


1/2

.

(b) Sincea + b + c = 1, (a) implies 1/a + 1/b + 1/c ≥ 9 and therefore

(1/a− 1)(1/b− 1)(1/c− 1) = 1/a + 1/b + 1/c− 1 ≥ 8.

�
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CHAPTER 1. NUMBERS

E 1.4. Prove that for alln ∈ N we have

1
2
· 3

4
· 5

6
· · · 2n− 1

2n
≤ 1√

3n + 1

end equality obtains if and only ifn = 1.

S. Note that
2k− 1

2k
≤
√

3k− 2√
3k + 1

and therefore the product telescopes. �

E 1.5. (a) For all n ∈ N we have

√
n + 1− √n <

1√
n
<
√

n−
√

n− 1.

(b) If n ∈ N adn > 1 then

2
√

n + 1− 2 <
n∑

k=1

1√
k
< 2
√

n− 1.

S. (a) We have

√
n + 1− √n =

1√
n + 1 +

√
n
<

1

2
√

n
,

√
n−
√

n− 1 =
1√

n +
√

n− 1
>

1

2
√

n
.

(b) Sum inequalities (a) fork = 2,3, . . . , n. �

E 1.6. Letn ∈ N andx ∈ R. Then
(a) −1 < x < 0 implies(1 + x)n ≤ 1 + nx+ (n(n− 1)/2)x2.
(b) x > 0 implies(1 + x)n ≥ 1 + nx+ (n(n− 1)/2)x2.

S. Induction onn. �

E 1.7. If n ∈ N, thenn! ≤ ((n + 1)/2)n.

S. In the Geometric-Arithmetic Means Inequality, takeak = k. �

E 1.8. If b1,b2, . . . , bn are positive real numbers, then

n
1
b1

+ 1
b2

+ · · · 1
bn

≤ (b1b2 · · · bn)1/n.

S. In the Geometric-Arithmetic Means Inequality, takeak = 1/bk. �

E 1.9. If x, y ∈ R andn ∈ N, then
(a) [x + y] ≥ [x] + [y],
(b) [[ x]/n] = [x/n],

(c)
n−1∑
k=0

[x + k/n] = [nx].

6



CHAPTER 1. NUMBERS

S. (a) [x] + [y] is an integer and satisfies [x] + [y] ≤ x+ y, therefore [x] + [y] ≤
[x + y].

(b) We claim that [x/n] ≤ [x]/n. Indeed, if this were not the case we would have
[x]/n < [x/n] ≤ ([x] + ε)/n, for some 0≤ ε < 1. Therefore [x] < n[x/n] ≤ [x] + ε,
a contradiction sincen[x/n] is an integer. It follows that [x/n] ≤ [[ x]/n]. The converse
inequality is obvious.

(c) Let

f (x) =

n−1∑

k=0

[x + k/n] − [nx].

Then f is periodic with period 1/n and vanishes on the interval [0,1/n]. So, f = 0 identi-
cally. �

E 1.10. (a) If a,b, c are positive real numbers then
(
1
2

a +
1
3

b +
1
6

c

)2

≤ 1
2

a2 +
1
3

b2 +
1
6

c2

with equality if and only ifa = b = c.

(b) If a1, . . . , an andw1, . . . ,wn are positive real numbers with
n∑

i=1
wi = 1 then


n∑

i=1

aiwi


2

≤
n∑

i=1

a2
i wi

with equality if and only ifa1 = a2 = · · · = an.

S. (a),(b) Cauchy-Schwarz inequality. �

E 1.11. If n ∈ N, then

(a)
n∑

k=1

(
n
k

)2
=

(
2n
n

)
.

(b)
2n∑

k=1
(−1)k

(
2n
k

)2
= (−1)n

(
2n
n

)
.

S. (a) By the Binomial Theorem we have

(1 + x)2n =

2n∑

k=0

(
2n
k

)
xk.

But

(1 + x)2n = (1 + x)n(1 + x)n =


n∑

i=0

(
n
i

)
xi




n∑

j=0

(
n
j

)
x j



=
∑

i, j

(
n
i

)(
n
j

)
xi+ j =

2n∑

k=0

xk
∑

i+ j=k

(
n
i

)(
n
j

)
.

Equating the coefficients ofxn we get
(
2n
n

)
=

∑

i+ j=n

(
n
i

)(
n
j

)
=

n∑

i=0

(
n
i

)(
n

n− i

)
=

n∑

i=0

(
n
i

)2

.

7



CHAPTER 1. NUMBERS

(b) As in (a) we have

(1− x2)2n =

2n∑

k=0

(
2n
k

)
(−1)kx2k

and

(1− x2)2n = (1− x)2n(1 + x)2n =


2n∑

i=0

(
2n
i

)
(−1)i xi




2n∑

j=0

(
2n
j

)
x j



=
∑

i, j

(
2n
i

)(
2n
j

)
(−1)i xi+ j =

4n∑

k=0

xk
∑

i+ j=k

(−1)i
(
2n
i

)(
2n
j

)
.

Equating the coefficients ofx2n we get

(−1)n
(
2n
n

)
=

∑

i+ j=2n

(−1)i
(
2n
i

)(
2n
j

)
=

2n∑

i=0

(−1)i
(
2n
i

)2

.

�

E 1.12. If m,n ∈ N, then1 +
m∑

k=1

(
n+k

k

)
=

(
n+m+1

m

)
.

S.

1 +

m∑

k=1

(
n + k

k

)
= 1 +

m∑

k=1

((
n + k + 1

k

)
−

(
n + k
k− 1

))
=

(
n + m+ 1

m

)
.

�

E 1.13. Prove Lagrange’s inequality for real numbers


n∑

k=1

akbk


2

=


n∑

k=1

a2
k




n∑

k=1

b2
k

 −
∑

1≤k< j≤n

(akb j − a jbk)
2.

S. We have∑

1≤k< j≤n

(akb j − a jbk)
2 =

∑

1≤k< j≤n

(a2
kb2

j + a2
j b

2
k − 2akb ja jbk).

But ∑

1≤k< j≤n

a2
kb2

j +
∑

1≤k< j≤n

a2
j b

2
k =


n∑

k=1

a2
k




n∑

k=1

b2
k

 −
n∑

k=1

a2
kb2

k

and
∑

1≤k< j≤n

2akb ja jbk =


n∑

k=1

akbk


2

−
n∑

k=1

a2
kb2

k.

The result follows. �

E 1.14. Given a realx and an integerN > 1, prove that there exist integersp
andq with 0 < q ≤ N such that|qx− p| < 1/N.

S. For k = 0,1, . . . ,N let ak = kx− [kx]. Then{ak}Nk=0 ⊂ [0,1), and therefore
there exist 0≤ k1, k2 ≤ N such that|ak1 − ak2 | < 1/N. �

E 1.15. If x is irrational prove that there are infinitely many rational numbers
p/q with q > 0 and such that|x− p/q| < 1/q2.

8



CHAPTER 1. NUMBERS

S. Assume there are finitely many, say,p1/q1, . . . , pn/qn. Then, by the pre-
ceding exercise, there existsp/q such that|x − p/q| < 1/(qN) with q ≤ N and 1/N <
min{|x− pi/q1| : 1 ≤ i ≤ n}. (The minimum is positive becausex is irrational.) �

9





CHAPTER 2

Sequences, Series and Limits

E 2.1. Evaluatelim
n→∞

n∏
k=0

(1 + a2k
) wherea ∈ C.

S. If a , 1, then for alln ∈ N we have
n∏

k=0

(1 + a2k
) =

1− a2n+1

1− a
.

Therefore the sequence converges to 1/(1− a) for |a| < 1. It diverges for|a| > 1 or a = 1.
The limit does not exist if|a| = 1 anda , 1. �

E 2.2. Evaluatelim
n→∞

n∑
k=1

1√
n2+k

.

S. Note that
n√

n2 + n
≤

n∑

k=1

1√
n2 + k

≤ 1.

Therefore the sum converges to 1. �

E 2.3. Let x = 2 +
√

2 andy = 2− √2. Thenn ∈ N implies
(a) xn + yn ∈ N andxn + yn = [xn] + 1.
(b) lim

n→∞
(xn − [xn]) = 1.

S. (a) By the Binomial Theorem, we have

xn + yn =

n∑

k=0

(
n
k

)
2k+ n−k

2 (1 + (−1)n−k) =
∑

0≤k≤n
n−k even

(
n
k

)
2k+1+ n−k

2 ∈ N.

Sincexn + yn − 1 < xn < xn + yn, we conclude that [xn] = xn + yn − 1.
(b) By (a),xn − [xn] = 1− yn→ 0 asn→ ∞. �

E 2.4. If {xn}∞n=1 ⊂ R, {yn}∞n=1 ⊂ (0,∞) and {xn/yn}∞n=1 is monotone, then the
sequence{zn}∞n=1 defined by

zn =
x1 + · · · + xn

y1 + · · · + yn

is also monotone.

S. Assume that{xn/yn}∞n=1 is increasing and prove inductively thatzn ≤ zn+1 ≤
xn+1/yn+1 using the fact

a
b
≤ c

d
⇒ a

b
≤ a + c

b + d
≤ c

d
.

�
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CHAPTER 2. SEQUENCES, SERIES AND LIMITS

E 2.5. Let0 < a < b < ∞. Define

x1 = a, x2 = b, x2n+1 =
√

x2nx2n−1, x2n+2 =
x2n + x2n−1

2
.

Then the sequence{xn}∞n=1 converges.

S. Note that [x2n+1, x2n+2] ⊂ [x2n−1, x2n] and

x2n+2 − x2n+1 ≤ x2n − x2n−1

2
≤ · · · ≤ x2 − x1

2n−1
→ 0.

Therefore the sequence converges and

lim
n→∞

xn =

∞⋂

n=1

[x2n−1, x2n].

�

E 2.6. Let0 < a < b < ∞. Define

x1 = a, x2 = b, xn+2 =
xn + xn+1

2
.

Prove that the sequence{xn}∞n=1 converges and determine its limit.

S. Note thatxn+1 − xn = (−1/2)n−1(x2 − x1). Therefore

xn = x1 + (x2 − x1)
n−2∑

k=0

(−1
2

)k → a + (b− a)
2
3

=
a + 2b

3
.

�

E 2.7. Let {xn}∞n=1 ⊂ R satisfy0 < xn < 1 and4xn+1(1− xn) ≥ 1 for all n ∈ N.
Show thatlim

n→∞
xn = 1/2.

S. Note that

xn+1 ≥ 1
4(1− xn)

≥ xn.

Therefore the sequence is increasing. Since it is bounded, it converges to a limitl which
must satisfy 4l(1− l) ≥ 1. We conclude thatl = 1/2. �

E 2.8. Let 1 < a < ∞, x = 1, and xn+1 = a(1 + xn)/(a + xn). Show that
xn→

√
a.

S. Prove inductively that the sequence is decreasing and bounded from below
by
√

a. �

E 2.9. Definex0 = 0, x1 = 1, and

xn+1 =
1

n + 1
xn−1 +

n
n + 1

xn.

Prove that{xn}∞n=1 converges and determine its limit.

S. Note thatxn+1 − xn = (−1)n/(n + 1)!, and so

xn =

n−1∑

k=0

(−1)k

(k + 1)!
→ 1

e
.

�

E 2.10. Let a ∈ R, a < {0,1,2} and definex1 = a, xn+1 = 2− 2/xn for n ∈ N.
Find the limit points of the sequence{xn}∞n=1.

12



CHAPTER 2. SEQUENCES, SERIES AND LIMITS

S. Note thatxn+4 = xn for all n ∈ N. Therefore the sequence takes on the
values{x1, x2, x3, x4} only. �

E 2.11. For n ∈ N, write n = 2 j−1(2k− 1) where j, k ∈ N and write

Sn =
1
j

+
1
k
.

Find all limit points of the sequence{Sn}∞n=1. Evaluatelim Sn and lim Sn.

S. Let A be the set of limit points of{Sn}∞n=1. We claim thatA = {0} ∪ {1/n :
n ∈ N}. Indeed, letnk = 2k−1(2k− 1) andmp,k = 2p−1(2k− 1).Then

Snk =
2
k
→ 0, Smp,k =

1
p

+
1
k
→ 1

p
ask→ ∞.

HenceA ⊃ {0} ∪ {1/n : n ∈ N}. Now takel ∈ A, l , 0. Then there exists a subsequence
{Snm}∞m=1 such thatSnm → l. Write nm = 2 jm−1(2km − 1). Note that at least one of the
sets{ jm : m ∈ N}, {km : m ∈ N} is unbounded, and so we may assume, without loss of
generality, that there exists{ jmi }∞i=1 with jmi → ∞. Then, sinceSnmi

→ l, we havekmi →
1/l. Therefore{kmi }∞i=1 is eventually constant andl ∈ {1/kmi : i ∈ N}. lim Sn = inf A = 0,

lim Sn = supA = 1. �

E 2.12. Prove that(n/e)n < n! for all n ∈ N.

S. Induction onn. It is clearly true forn = 1. Assuming (n/e)n < n! we have
(
n + 1

e

)n+1

=
n + 1

e

(
1 +

1
n

)n (n
e

)n
<

n + 1
e

e n! = (n + 1)!.

�

E 2.13. Evaluate
(a) lim

n→∞
((2n)!/(n!)2)1/n,

(b) lim
n→∞

(1/n)[(n + 1)(n + 2) · · · (n + n)]1/n,

(c) lim
n→∞

[(2/1)(3/2)2(4/3)3 · · · ((n + 1)/n)n]1/n.

S. Let

an =
(2n)!
(n!)2

, bn =
(n + 1)(n + 2) · · · (n + n)

nn
,

cn =

(
2
1

) (
3
2

)2 (
4
3

)3

· · ·
(
n + 1

n

)n

.

Then
an+1

an
=

(2n + 1)(2n + 2)
(n + 1)2

→ 4,
bn+1

bn
=

( n
n + 1

)n (2n + 1)(2n + 2)
(n + 1)2

→ 4
e
,

cn+1

cn
=

(
1 +

1
n + 1

)n+1

→ e.

Therefore
n
√

an→ 4, n
√

bn→ 4
e
, n
√

cn→ e.

�

E 2.14. Evaluatelim n→ ∞( n
√

n− 1)n.

13



CHAPTER 2. SEQUENCES, SERIES AND LIMITS

S. Since n
√

n → 1, there existsn0 ∈ N such that 0< n
√

n − 1 < 1/2 for all
n ≥ n0, and so 0< ( n

√
n− 1)n < (1/2)n. Therefore 0≤ lim( n

√
n− 1)n ≤ lim( n

√
n)n ≤ 0. We

conclude that lim
n→∞

( n
√

n− 1)n = 0. �

E 2.15. If {xn}∞n=1 ⊂ (0,∞) andxn→ x, then(x1 · · · xn)1/n→ x.

S. By the Harmonic-Geometric-Arithmetic Means Inequality we have
n

1
x1

+ · · · + 1
xn

≤ (x1 · · · xn)1/n ≤ x1 + · · · + xn

n
.

Therefore (x1 · · · xn)1/n→ x. �

E 2.16. (a) LetSn =
n∑

k=1
1/k for n ∈ N. Then lim

n→∞
|Sn+p−Sn| = 0 for all p ∈ N,

but {Sn}∞n=1 diverges to∞.
(b) Find a divergent sequence{xn}∞n=1 in R such thatlim

n→∞
|xn2 − xn| = 0.

S. (a) |Sn+p − Sn| = 1/(n + 1) + · · · + 1/(n + p) ≤ p/(n + 1)→ 0
(b) For n ≥ 4 let k(n) be the unique integer such that 22k(n) ≤ n < 22k(n)+1

and define

xn =
k(n)∑
j=1

1/ j. Note thatk(n)→ ∞ andk(n2) = k(n) + 1. Thereforexn→ ∞ and|xn2 − xn| =
1/(k(n) + 1)→ 0. �

E 2.17. There exist two divergent series
∑

an and
∑

bn of positive terms with
a1 ≥ a2 ≥ · · · andb1 ≥ b2 ≥ · · · such that ifcn = min{an,bn}, then

∑
cn converges.

S. Let

ak = 1/2k, bk = 1/2n if 2n ≤ k < 2n+1, n even

and
ak = 1/2n, bk = 1/2k if 2n ≤ k < 2n+1, n odd.

�

E 2.18. Evaluate the sums

(a)
∞∑

n=1
1/(n(n + 1)(n + 2)),

(b)
∞∑

n=1
(n− 1)!/(n + p)!, wherep ∈ N is fixed.

S. (a) Note that

1
n(n + 1)(n + 2)

=
1
2

[
1

n(n + 1)
− 1

(n + 1)(n + 2)

]
.

Consequently
n∑

k=1

1
k(k + 1)(k + 2)

=
1
2

[
1
2
− 1

(n + 1)(n + 2)

]
→ 1

4
.

(b) We have

(n− 1)!
(n + p)!

=
1

n · · · (n + p)
=

1
p

[
1

n · · · (n + p− 1)
− 1

(n + 1) · · · (n + p)

]
.

Therefore
n∑

k=1

(k− 1)!
(k + p)!

=
1
p

[
1
p!
− 1

(n + 1) · · · (n + p)

]
→ 1

p p!
.

14
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�

E 2.19. Let
∑

an be a convergent series of nonnegative terms. Then
(a) lim nan = 0,
(b) possiblylim nan > 0,
(c) if an ≥ an+1 for all n > n0, thenlim nan = 0.

S. (a) Suppose that limnan > c > 0 for somec. Then there existsn0 ∈ N such
thatnan > c for n ≥ n0. Consequently,

N∑

n=n0

an > c
N∑

n=n0

1
n
→ ∞ as n→ ∞,

a contradiction.
(b) Letak = 1/2k if k , 2n andak = 1/2n if k = 2n. Then

N∑

k=1

ak =
∑

k,2n

ak +
∑

k=2n

ak ≤
N∑

k=1

1
2k

+
∑

n:2n≤N

1
2n
≤ 2

∞∑

k=1

1
2k

< ∞

and lim
n→∞

2na2n = 1.

(c) Note that

na2n ≤
2n∑

k=n+1

ak → 0 and na2n+1 ≤
2n+1∑

k=n+2

ak → 0.

Therefore lim
n→∞

2na2n = lim
n→∞

(2n + 1)a2n+1 = 0. We conclude that limnan = 0. �

E 2.20. If {cm}∞m=1 ⊂ [0,∞] and

bn =
1

n(n + 1)

n∑

m=1

mcm,

then ∞∑

n=1

bn =

∞∑

m=1

cm.

S. Define

am,n =


mcm

n(n+1) if 1 ≤ m≤ n,

0 if m> n.

Then ∞∑

n=1

∞∑

m=1

am,n =

∞∑

n=1

1
n(n + 1)

n∑

m=1

mcm =

∞∑

n=1

bn.

On the other hand
∞∑

m=1

∞∑

n=1

am,n =

∞∑

m=1

mcm

∞∑

n=m

1
n(n + 1)

=

∞∑

m=1

cm.

�

E 2.21. (a) Prove that
∞∑

n=1
1/n2 < 2.

(b) Prove that
∞∑

m=1


∞∑

n=1

1
(m+ n)2

 = ∞.

15



CHAPTER 2. SEQUENCES, SERIES AND LIMITS

S. (a) We have
∞∑

n=1

1
n2

= 1 +

∞∑

n=2

1
n2

< 1 +

∞∑

n=2

1
n(n− 1)

= 1 +

∞∑

n=2

(
1

n− 1
− 1

n

)
= 2.

(b) We have
∞∑

m=1

∞∑

n=1

1
(m+ n)2

=

∞∑

m=1

∞∑

n=m+1

1
n2
≥
∞∑

m=1

∞∑

n=m+1

(
1
n
− 1

n + 1

)

=

∞∑

m=1

1
m+ 1

= ∞.

�

E 2.22. Let b be an integer> 1 and letd be a digit(0 ≤ d < b). Let A denote
the set of allk ∈ N such that theb-adic expansion ofk fails to contain the digitd.

(a) If ak = 1/k for k ∈ A andak = 0 otherwise, then
∞∑

k=1
ak < ∞.

(b) For n ∈ N let A(n) denote the number of elements ofA that are≤ n. Then
lim
n→∞

(A(n)/n) = 0.

S. Let

An = {k : k is ann-digit number and does not contain the digitd}
= {k : bn−1 ≤ k < bn} ∩ A.

Note that|An| = (b− 2)(b− 1)n−1.
(a) We have

∞∑

k=1

ak =

∞∑

n=1

∑

k∈An

ak ≤
∞∑

n=1

|An|
bn−1

= (b− 2)
∞∑

n=1

(
b− 1

b

)n−1

< ∞.

(b) If b , 2 then

A(n) ≤
∑

k:bk−1≤n

|Ak| = (b− 2)
∑

k:bk≤n

(b− 1)k ≤ n1/ logb−1 b − 1.

If b = 2 thenA(n) = |{k : 2k ≤ n}| ≤ log2 n. Therefore lim
n→∞

(A(n)/n) = 0. �

E 2.23. Let0 < x < 1. Thenx has a terminating decimal expansion if and only
if there exist nonnegative integersmandn such that2m5nx is an integer.

S. If x has a terminating decimal expansion, thenx = p/10k = p/(2k5k).
Conversely, if 2m5nx = N ∈ N for some, say,m≤ n, thenx = 2n−mN/10n. �

E 2.24. Evaluatelim
n→∞

(n!e− [n!e]).

S. Let Sn =
n∑

k=0
1/k!. Then, using the error estimate for the “tail”, we have

0 < n!e− n!Sn < 1/n. We conclude that [n!e] = n!Sn and thereforen!e− [n!e] → 0. �

E 2.25. Show thatlim
n→∞

nsin(2πen!) = 2π.

16
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S. Since lim
n→∞

(en! − [en!]) = 0 we have

lim
n→∞

sin(2πen! − 2π[en!])
2πen! − 2π[en!]

= 1⇒ lim
n→∞

sin(2πen!)
en! − [en!]

= 2π.

Note that the error estimate for the Maclaurin series expansion ofe implies
1/(n + 1) < en! − [en!] < 1/n, and so lim

n→∞
n(en! − [en!]) = 1. It follows that

nsin(2πen!) = n(en! − [en!])
sin(2πen!)
en! − [en!]

→ 2π.

�

E 2.26. Find the sum of the series
∞∑

n=1

1

(n + 1)
√

n + n
√

n + 1
.

S.
∞∑

n=1

1

(n + 1)
√

n + n
√

n + 1
=

∞∑

n=1


√

n
n
−
√

n + 1
n + 1

 = 1.

�

E 2.27. Letan > 0 for eachn ∈ N. Then

(a)
∞∑

n=1
an < ∞ implies

∞∑
n=1

√
anan+1 < ∞,

(b) the converse of (a) is false,

(c)
∞∑

n=1
an < ∞ implies

∞∑
n=1

(a−1
n + a−1

n+1)−1 < ∞,

(d) the converse of (c) is false.

S. By the Harmonic-Geometric-Arithmetic Means Inequality, we have

2(a−1
n + a−1

n+1)−1 ≤ √anan+1 ≤ 1
2

(an + an+1),

proving (a) and (c). For (b) and (d), letan = 1/n if n is even andan = 1/n3 if n is odd. �

E 2.28. Suppose thatdn > 0 for all n ∈ N and
∞∑

n=1
= ∞. What can be said of

the following series?

(a)
∞∑

n=1
dn/(1 + dn),

(b)
∞∑

n=1
dn/(1 + ndn),

(c)
∞∑

n=1
dn/(1 + d2

n).

S. (a) If {dn}∞n=1 is bounded then 1/(1 + dn) is bounded from below, therefore
∞∑

n=1

dn

1 + dn
≥ C

∞∑

n=1

dn = ∞.

If {dn}∞n=1 is unbounded then there exists a subsequence{dkn}∞n=1 with dkn → ∞. Therefore

there existsn0 such thatdkn/(1+dkn) > 1/2 for all n ≥ n0. Consequently
∞∑

n=1
dn/(1+dn) = ∞.

17
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(b) Letdn = 1 for all n ∈ N. Then
∞∑

n=1

dn =

∞∑

n=1

dn

1 + ndn
= ∞.

Let dk = 1/2k if k , 2n anddk = 2n if k = 2n. Then
∞∑

n=1
dn = ∞ and

dk

1 + kdk
=


1

k+2k if k , 2n,
2n

1+4n if k = 2n.

Therefore
∞∑

n=1
dn/(1 + ndn) < ∞.

(c) Letdn = 1 for all n. Then
∞∑

n=1
dn/(1+ d2

n) = ∞. Let dn = n2. Then
∞∑

n=1
dn/(1+ d2

n) <

∞. �

E 2.29. Let 0 < a < b < ∞ and definex1 = a, x2 = b, andxn+2 =
√

xnxn+1 for
n ∈ N. Find lim

n→∞
xn.

S. Let yn = log xn and use Exercise 2.6. �

E 2.30. Let 0 < a < b < ∞ and definex1 = a, y1 = b, xn+1 = 2(x−1
n + y−1

n )−1,
andyn+1 =

√
xnyn. Then{xn}∞n=1 and{yn}∞n=1 both converge and have the same limit.

S. Prove inductively, using the Harmonic-Geometric Means Inequality, that

a < xn ≤ xn+1 ≤ yn+1 ≤ yn < b and yn+1 − xn+1 ≤ 1
2

(yn − xn).

�

E 2.31. Show that if
∞∑

k=1
ak = 1 and0 < an ≤

∞∑
k=n+1

, n = 1,2, . . . , then for every

x ∈ (0,1) there is a subseries
∞∑

k=1
ank whose sum isx.

S. Note that, since the sum of the series is 1 andx ∈ (0,1), there existsn1 ∈ N
such that ∞∑

k=n1

ak > x and
∞∑

k=n1+1

ak ≤ x

implying
∞∑

k=n1+1

ak > x− an1 and an1 ≤ x.

Therefore there existsn2 > n1 such that
∞∑

k=n2

ak > x− an1 and
∑

k=n2+1

≤ x− an1.

Continuing this way, we can find a sequence of integersn1 < n2 < · · · such that

0 ≤ x−
m∑

k=1

ank <

∞∑

k=nm+1

ak.

Lettingm→ ∞, we conclude that
∞∑

k=1
ank = x. �
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E 2.32. Show that ifan,bn ∈ R, (an+bn)bn , 0, n = 1,2, . . . , and both
∞∑

n=1
an/bn

and
∞∑

n=1
(an/bn)2 converge, then

∞∑
n=1

an/(an + bn) converges.

S. Choosek0 ∈ N such that|1 + ak/bk| ≥ 1/2 for all k ≥ k0. Then
1

|akbk + b2
k|
≤ 2
|bk|2 .

Note that
n∑

k=k0

ak

ak + bk
=

n∑

k=k0

ak

bk
−

n∑

k=k0

a2
k

akbk + b2
k

and
n∑

k=k0

∣∣∣∣∣∣
a2

k

akbk + b2
k

∣∣∣∣∣∣ ≤ 2
n∑

k=k0

∣∣∣∣∣
ak

bk

∣∣∣∣∣
2

.

We conclude that
∞∑

n=1
an/(an + bn) converges. �

E 2.33. Show that ifbn↘ 0 and
∞∑

n=1
bn = ∞, then there is a sequence{an}∞n=1 ⊂

R such thatan/bn→ 1 asn→ ∞ and
∞∑

n=1
(−1)nan diverges.

S. Let

Sn =

n∑

k=1

bk, an = bn + (−1)n
bn

Sn
.

Note thatan > 0 for largen and
m∑

n=1

(−1)nan =

m∑

n=1

(−1)nbn +

m∑

n=1

bn

Sn
.

The first series in the above sum converges, being alternating, while the second diverges by

Abel’s Theorem. Therefore
∞∑

n=1
an diverges. On the other hand,an/bn = 1 + (−1)n/Sn → 1

asn→ ∞. �

E 2.34. Show that ifn ≥ 2, then
∞∑

k=1
(1− (1− 2−k)n) ' logn.

S. Note that

1
m+ 1

=

∫ 1

0
xmdx =

∞∑

k=0

∫ 1−1/2k+1

1−1/2k
xmdx≤

∞∑

k=1

1
2k

(
1− 1

2k

)m

and similarly
∞∑

k=1

1
2k

(
1− 1

2k

)m

≤ 2
m+ 1

.

Therefore
∞∑

k=1

(
1−

(
1− 1

2k

)n)
=

∞∑

k=1

n−1∑

m=0

1
2k

(
1− 1

2k

)m

=

n−1∑

m=0

∞∑

k=1

1
2k

(
1− 1

2k

)m

'
n∑

m=1

1
m
' logn.
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�

E 2.35. Show that ifrn ∈ R, then lim
n→∞

∫ ∞
0

e−x(sin(x + rn))ndx = 0.

S. ∫ ∞

0
|e−x(sin(x + rn))n|dx =

∫ ∞

0
e−x| sin(x + rnmod 2π)|ndx

= ernmod 2π
∫ ∞

rnmod 2π
e−x| sin(x)|ndx

≤ e2π
∫ ∞

0
e−x| sin(x)|ndx.

Note that| sin(x)|n → 0 almost everywhere, and so, by the Dominated Convergence Theo-
rem,

∫ ∞
0

e−x| sin(x)|ndx→ 0. �

E 2.36. Let f : [0,1]→ R be defined by

f (x) =



x log x
x−1 if 0 < x < 1,

0 if x = 0,

1 if x = 1.

Show that ∫ 1

0
f (x)dx = 1−

∞∑

n=2

1
n2(n− 1)

.

S. Note that
x log x
x− 1

=

∞∑

n=0

x(1− x)n

n + 1

and the convergence is uniform on [0,1] by Weierstrass M-test. Therefore
∫ 1

0
f (x)dx =

∞∑

n=0

1
n + 1

∫ 1

0
x(1− x)ndx =

∞∑

n=0

1
(n + 1)2(n + 2)

= 1−
∞∑

n=2

1
n2(n− 1)

.

�

E 2.37. Show that

lim
n→∞

kn∑

j=n

1
j

= logk.

Conclude that ∞∑

j=1

(−1) j+1

j
= log 2.

S. Note that ∫ j+1

j

dx
x
≤ 1

j
≤

∫ j+1

j

dx
x− 1

.

Therefore ∫ kn+1

n

dx
x
≤

kn∑

j=n

1
j
≤

∫ kn+1

n

dx
x− 1

,
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and consequently

log

(
k +

1
n

)
≤

kn∑

j=n

1
j
≤ log

(
k +

k
n− 1

)
.

Taking the limit asn → ∞, we obtain the first assertion. To prove the second assertion,
note that

2n∑

j=1

(−1) j+1

j
=

2n∑

j=1

1
j
− 2

n∑

j=1

1
2 j

=

2n∑

j=n+1

1
j

=

2n∑

j=n

1
j
− 1

n
→ log 2, asn→ ∞.

Since
∑∞

j=1
(−1) j+1

j converges by Leibniz, we conclude that
∑∞

j=1
(−1) j+1

j = log 2. �

E 2.38. Show thatex2/2
∫ ∞

x
e−t2/2dt is a decreasing function ofx on [0,∞) and

that its limit asx→ ∞ is 0.

S. By L’Hospital’s Rule we have

lim
x→∞

∫ ∞
x

e−t2/2dt

e−x2/2
= lim

x→∞
−e−x2

−xe−x2/2
= lim

x→∞
1
x

= 0.

Now let

g(x) = ex2/2
∫ ∞

x
e−t2/2dt and h(x) =

e−x2/2

x
−

∫ ∞

x
e−t2/2dt.

Then

g′(x) = xex2/2
∫ ∞

x
e−t2/2dt− 1 and h′(x) = −e−x2/2

x2
< 0.

Henceh is strictly decreasing. Note that lim
x→∞

h(x) = 0. thereforeh(x) > 0 and consequently

g′(x) < 0. �
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CHAPTER 3

Topology

E 3.1. Let X be a 2nd countable space. Show that if{Gi}i∈I is an arbitrary
family of open sets inX then there exists a countable subsetJ ⊂ I such that

⋃
i∈I Gi =⋃

i∈J Gi .

S. Suppose{Uk}k∈N is a basis for the topology of X. Let

K = {k ∈ N : ∃ i(k) ∈ I such thatUk ⊂ Gi(k)}
and putJ = {i(k) : k ∈ K}. �

E 3.2. Let X be a 2nd countable space, and letA ⊂ X be an uncountable set.
Prove thatA has at least one condensation point.

S. Suppose that for eachx ∈ A there is an open setUx ⊂ X with x ∈ Ux and
|A ∩ Ux| ≤ ℵ0. SinceX is 2nd countable there exists{xn}∞n=1 ⊂ A such that

⋃
x∈A Ux =⋃∞

n=1 Uxn. HenceA =
⋃∞

n=1(Uxn ∩A) and thereforeUxn0
∩A must be uncountable for some

n0, a contradiction. �

E 3.3. If X is a 2nd countable space andA is a closed subset ofX, then there
exist a perfect setP and a countable setN, such thatA = P∪N. Conclude that any subset
of a 2nd countable space can have only countably many isolated points.

S. Let P = {x ∈ X : for each nbdUx of x, Ux ∩ A is uncountable}. Using the
preceding exercise,P is perfect andA \ P is countable. �

E 3.4. Prove the following assertions.

(a) If A is nonempty perfect subset of a complete metric space thenA is uncountable.
(b) Any countable closed subset of a complete metric space has infinitely many iso-

lated points.
(c) There exists a countable closed subset ofR having infinitely many limit.points.

S. SupposeX is a complete metric space.
(a) Note that sinceA is a closed subset ofX, it is complete as a metric space. IfA is

countable then by the Baire category theorem, at least one of its points must be isolated.
(b) Assume that there exists a countable closed subset ofX with finitely many isolated

points. Removing these points results in a countable perfect set, contradicting (a).
(c) Take infinite copies of a convergent sequence together with its limit. �

E 3.5. It is impossible to express[0,1] as a union of disjoint closed nondegen-
erate intervals of length< 1.

S. Suppose [0,1] =
⋃

i∈I [xi , yi ], where{[xi , yi ]}i∈I is disjoint. Note thatI must
be countable. Then the set of endpoints ({xi : i ∈ I } ∪ {yi : i ∈ I }) \ {0,1} is a countable
perfect set, a contradiction by the preceding exercise. �
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E 3.6. It is impossible to express[0,1] as a countable union of disjoint closed
sets.

S. Suppose [0,1] =
⋃∞

n=1 Fn with theFn’s closed and pairwise disjoint. Since
F1∩F2 = ∅, we can find a closed intervalI1 such thatI1∩F1 = ∅, I1∩F2 , ∅, I1 \F2 , ∅.
We repeat the same procedure insideI1 with I1 ∩ F2 playing the role ofF1 and I1 ∩ Fk

playing the role ofF2, whereFk is the first set in the sequence{Fn}∞n=3 intersectingI1. We
thereby construct a decreasing sequence of closed intervals{In}∞n=1 such thatIn ∩ Fn = ∅, a
contradiction. �

E 3.7. Let A be a bounded subset ofR which is not closed. Construct explicitly
an open cover ofA that has no finite subcover.

S. Let x ∈ R \ A be a point such that (x− ε, x + ε) ∩ A , ∅ for all ε > 0. For
eachn choosexn ∈ (x− 1/n, x + 1/n) ∩ A. Without loss of generality we may assume that
{xn}∞n=1 is monotone. Ifx1 < · · · < xn < · · · x, consider the cover{(−∞, xn)}∞n=1 ∪ {(x,∞)}.
If x1 > · · · > xn > · · · x, then take the covering{(xn,∞)}∞n=1 ∪ {(−∞, x)}. �

E 3.8. Let (X, ρ) be a metric space andA, B ⊂ X disjoint closed sets. Show
that there exists a continuous functionf : X→ R such thatf | A = 0 and f | B = 1.

S. Let

f (x) =
ρ(x,A)

ρ(x,A) + ρ(x, B)
.

Then f is well-defined and has the required properties. �

E 3.9. If X is a connected metric space with at least two points, thenX is
uncountable.

S. Let x, y ∈ X be two distinct points. By the preceding exercise, there exists
a continuous functionf : X → R with f (x) = 0 and f (y) = 1. SinceX is connected,
f has the intermediate value property. Therefore [0,1] ⊂ f (X). We conclude thatX is
uncountable. �

E 3.10. Let S be a nonempty closed subset ofR and let f : S → R be contin-
uous. Then there exists a continuousg : R → R such thatf (x) = g(x) for all x ∈ S and
supx∈R |g(x)| = supx∈S | f (x)|. This is false for every nonclosedS ⊂ R.

S. WriteR \S =
⋃∞

n=1 In, where theIn’s are disjoint open intervals and extend
f on eachIn linearly (if (−∞,a) or (a,∞) appear among theIn’s take f to be constant
on these intervals). IfS is not closed we can find a pointx < S and, say, an increasing
sequencex1 < · · · < xn < · · · < x of points inS such that limn xn = x. Any continuous
function f onR \ {x}, and therefore onS, with f (xn) = n cannot be extended to the whole
line. �

E 3.11. LetX be a topological space,Y a metric space,f : X→ Y an arbitrary
function and defineAf = {x ∈ X : f is continuous atx}.

(a) Prove thatAf is aGδ set.
(b) Assume that there exists a setD ⊂ X such thatD and X \ D are both dense in

X. Prove that for anyGδ setG ⊂ X there exists a functionf : X → R such that
Af = G.

(c) Show that there is no functionf : R → R which is continuous at each rational
and discontinuous at each irrational.
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(d) Construct explicitly a functionf : R→ R which is continuous at each irrational
and discontinuous at each rational.

P. For any pointx ∈ X define the oscilation off at x by

wf (x) = inf {diam(f (U)) : U is a nbd ofx}.
(a) Note thatx ∈ Af if and only if wf (x) = 0. Therefore

Af =

∞⋂

n=1

{x ∈ X : wf (x) < 1/n}.

The sets in the intersection are open, henceAf is Gδ.
(b) Write G =

⋂∞
n=1 Gn where eachGn is open andX = G1 ⊃ G2 ⊃ · · · . Define

f : X→ R by

f (x) =



0 if x ∈ G,

1/n if x ∈ D ∩ (Gn \Gn+1),

−1/n if x ∈ (X \ D) ∩ (Gn \Gn+1)

.

(c) If such a function existed,Q would beGδ by (a).
(d)

f (x) =


1/n if x = m/n, (m,n) = 1,

0 if x is irrational
.

�

E 3.12. Construct a strictly increasing function that is continuous at each ir-
rational and discontinuous at each rational.

S. Let {rn : n ∈ N} be an enumeration of the rationals and definef : R → R
by f (x) =

∑
rn<x 1/2n. Note thatf (rn−) = f (rn) = f (rn+)−1/2n and f (x−) = f (x) = f (x+)

for all x + inR \ Q. �

E 3.13. Let X be a topological space and(Y, ρ) a metric space. Suppose that
{ fn}∞n=1 is a sequence of continuous functions fromX into Y and that f : X → Y is some
function such thatlimn fn(x) = f (x) for all x ∈ X.

(a) Show that there exists a setE ⊂ X that is of 1st category inX such that f is
continuous at each point ofX \ E. In particular, if X is a complete metric space,
then f is continuous at every point of a dense subset ofX.

(b) f −1(V) is anFσ set inX for every openV ⊂ Y.
(c) There is no sequence{ fn}∞n=1 of continuous real functions onR such thatfn(x)→

1 for x ∈ Q and fn(x)→ 0 for x ∈ R \ Q.
(d) Show thatχQ, the characteristic function ofQ, is the pointwise limit of a se-

quence of functions, so that each of them is the pointwise limit of a sequence of
continuous functions.

S. (a) LetAk,m = {x ∈ X : ρ( fm(x), fn(x)) ≤ 1/k for all n ≥ m}. Then eachAk,m

is closed, and soAk,m \ A◦k,m is nowhere dense. Now let

G =

∞⋂

k=1

∞⋃

m=1

A◦k,m, E =

∞⋃

k=1

∞⋃

m=1

(Ak,m \ A◦k,m).

ThenE is of 1st category,X \G ⊂ E (sinceX =
⋃∞

m=1 Ak,m for all k), and eachx ∈ G is a
point of continuity of f .

(b) f −1(V) =
⋃∞

k=1
⋃∞

m=1{x ∈ X : ρ( fn(x),Y \ V) ≥ 1/k for all n ≥ m}.
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(c) If such a sequence existed then the characteristic function ofQwould be continuous
at some point by (a).

(d) Letφ : R→ R be defined byφ(x) = |2x− 2k− 1| for x ∈ [k, k + 1], k ∈ Z. Then

lim
m→∞

[
lim
n→∞

φ(m!x)n
]

= χQ(x) for all x ∈ R.
�

E 3.14. Every compact metric spaceX is the continuous image of the Cantor
space{0,1}N.

S. Construct inductively a family of nonempty closed sets{Bs}s∈{0,1}<ω such
that

lim
k→∞

diam(Bα�k) = 0 for all α ∈ {0,1}N,
⋃

|s|=n

Bs = X for all n ∈ N, Bs = Bsa0 ∪ Bsa1 for all s ∈ {0,1}<ω.

We give the first step. Using compactness, we can find a numberN and a covering
{F1, . . . , F2N } of X by closed sets such that diam(Fi) ≤ 1/2diam(X) for all i. From these
sets construct allBt’s with |t| ≤ N. Repeat the same procedure inside each compact space
Bs with |s| = N. Now definef : {0,1}N → X by

f (α) =

∞⋂

n=1

Bα�n.

�

E 3.15. Construct an example of a two-to-one functionf : [0,1] → R. Prove
that no suchf can be continuous on[0,1].

S. Let {rn : n ∈ N} be an enumeration of the rationals in [0,1] and define
f : [0,1]→ R by

f (x) =



|2x− 1| if x is irrational,

r2k−1 if x = r2k−1,

r2k−1 if x = r2k.

Suppose now thatf is a continuous two-to-one function. We can then assume that its, say,
minimum is attained at the pointsx1 < x2, and x2 is not an endpoint. Choose disjoint
closed intervals [a1,b1], [a2,b2] with x1 ∈ [a1,b1], x1 , b1 and x2 ∈ (a2,b2). Then the
intermediate value theorem implies that a valuer with min{ f (b1), f (a2), f (b2)} > r > min f
is taken on at least three times. �

E 3.16. Suppose thatf : [a,b] → R satisfiesf −1({y}) is closed for ally ∈ R
and f ([c,d]) is connected for all[c,d] ⊂ [a,b]. Prove thatf is continuous.

S. Let x ∈ [a,b] and take{xn}∞n=1 ⊂ [a,b] such thatxn ↑ x. Then I =⋂∞
n=1 f ([xn, x]) is an interval containingf (x). We claim thatI = { f (x)} and therefore

f (xn) → f (x). Indeed, takef (y) ∈ I . Then there existtn ∈ [xn, x] such that f (tn) =

f (y). Hencetn → x and tn ∈ f −1({ f (y)}). Since f −1({ f (y)}) is closed, it follows that
x ∈ f −1({ f (y)}), and sof (x) = f (y). �

E 3.17. Let (X, ρ) be a metric space. Then there exists a continuousf : X→ R
that is not uniformly continuous onX if and only if there exist two nonempty disjoint closed
setsA andB such thatdist(A, B) = 0.
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S. Suppose thatA andB are disjoint closed sets with dist(A, B) = 0. Define
f : X→ R by

f (x) =
ρ(x,A)

ρ(x,A) + ρ(x, B)
.

Then f is continuous but not uniformly continuous. Now iff is a real continuous function
on X which is not uniformly continuous, then we can inductively choose pointsxn, yn ∈ X
such thatρ(xn, yn) < 1/n, | f (xn) − f (yn)| ≥ ε0, for a certainε0, and{xn}∞n=1 ∩ {yn}∞n=1 = ∅.
The sets{xn : n ∈ N} and{yn : n ∈ N} have the required properties. �

E 3.18. Let f : R→ R be continuous and satisfy| f (x) − f (y)| ≥ c|x− y| for all
x, y ∈ R, wherec does not depend onx andy. Thenf (R) = R.

S. Note thatf is one-to-one and that

| lim
x→∞

f (x)| = | lim
x→−∞

f (x)| = ∞.
�

E 3.19. Let f : R → R be arbitrary. Show that the setE of x ∈ R such thatf
has a simple discontinuity atx is at most countable.

S. Suppose thatE is uncountable. Then at least one of the setsA = {x :
f (x+) , f (x−)} and B = {x : f (x+) = f (x−), f (x) , f (x+)} must be uncountable.
Without loss of generality, we may assume thatA is uncountable, and so there exists a
numberε0 such that the set{x : | f (x+) − f (x−)| > ε0} is uncountable and therefore has
a point of accumulationa. Then we can find two sequences{xn}∞n=1 and{yn}∞n=1 such that
xn ↑ a, yn ↑ a and| f (xn) − f (yn)| ≥ ε0/2, contradicting the fact that limx↑a f (x) exists. �

E 3.20. If f : R → R has a local maximum at eachx ∈ R, then f (R) is
countable.

S. For everya ∈ f (R) choosexa ∈ R with f (xa) = a and an open intervalIa

with rational endpoints such thatxa ∈ Ia and for eachx ∈ Ia, f (x) ≥ f (xa) = a. Then the
function

f (R) 3 a 7→ Ia ∈ {(p,q) : p,q ∈ Q}
is one-to-one. �

E 3.21. Letα ∈ R \ Q. Then the setA = {mα + n : m,n ∈ Z} is dense inR.

S. Note that all the elements ofA are distinct sinceα is irrational. So, the
set {mα − [mα] : m ∈ N} is an infinite subset of [0,1] and therefore has a limit point.
Consequently, there exists{rn} ⊂ A with 0 < rn ↓ 0. Now letx > 0, ε > 0. Choosen ∈ N
with rn < ε and letmbe the smallest integer such thatmrn > x. Then (m− 1)rn ≤ x and so,
0 < mrn − x ≤ rn < ε. �
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Measure and Integration

E 4.1. Let {φn}∞n=1 be an approximate identity inL1(R) (that is,φn ≥ 0,
∫
φn =

1, limn→∞
∫
|t|≥δ φn(t)dt = 0 for all δ > 0). Show thatlimn→∞ ‖φn‖p = ∞ for all p > 1.

S. Let M > 0. Then there existsn0 ∈ N such that for alln ≥ n0

3/4 ≤
∫

|t|≤1/(8M)

φn(t)dt ≤
∫

{t:|t|≤1/(8M)}∩[φn≤M]

φn(t)dt +

∫

[φn≥M]

φn(t)dt

≤ 1/4 +

∫

[φn≥M]

φn(t)dt.

It follows that
∫

[φn≥M]

φn(t)dt ≥ 1/2

and therefore

∫
φ

p
n(t)dt ≥

∫

[φn≥M]

φ
p−1
n (t)φn(t)dt ≥ Mp−1

∫

[φn≥M]

φn(t)dt ≥ 1/2Mp−1.

We conclude that‖φn‖p→ ∞. �

E 4.2. Let A ⊂ R be a measurable set with|A| > 0. Then for anyn ∈ N, A
contains arithmetic progressions of lengthn.

S. Let x0 be a point of density ofA. Chooseε0 > 0 such thatnε0 < 1/8. Then
there existsl > 0 such that|(x0− l′, x0 + l′)∩A| ≥ 2(1− ε0)l′ for all 0 < l′ ≤ l. Now choose
ε > 0 such thatn2ε < 1/8l. Then fork = 0,1, . . . ,n− 1 we have

|(x0 − l, x0 + l) ∩ εk + A| = |εk + (x0 − l − εk, x0 + l − εk) ∩ A|
≥ |εk + (x0 − l + εn, x0 + l − εn) ∩ A|
= |(x0 − l + εn, x0 + l − εn) ∩ A|
≥ 2(1− ε0)(l − εn).
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Hence ∣∣∣∣∣∣∣(x0 − l, x0 + l) \
n−1⋂

k=0

εk + A

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
n−1⋃

k=0

(x0 − l, x0 + l) \ εk + A

∣∣∣∣∣∣∣

≤
n−1∑

k=0

|(x0 − l, x0 + l) \ εk + A|

=

n−1∑

k=0

(2l − |(x0 − l, x0 + l) ∩ εk + A|)

≤
n−1∑

k=0

(2l − 2(1− ε0)(l − εn))

< 2εn2 + 2nε0l < l/4 + l/4 = l/2.

Therefore|⋂n−1
k=0 εk + A| > 0. In particular, there existsx ∈ ⋂n−1

k=0 εk + A, and so,x, x −
ε, . . . , x− (n− 1)ε ∈ A. �

E 4.3. Let A be a measurable set of reals with arbitrarily small periods (there
exist positive numberspn with pn → 0 so thatpn + A = A for all n). Then eitherA or its
complement has measure zero.

S. Suppose that|A| > 0 and|A{| > 0. Let x1 be a point of density ofA andx2

a point of density ofA{ with x1 < x2. Then there existsδ > 0 such that

|(x1 − δ, x1 + δ) ∩ A| ≥ 3δ/2, |(x2 − δ, x2 + δ) ∩ A{| > 3δ/2.

It follows that

|(x2 − δ, x2 + δ) ∩ x2 − x1 + A| = |(x2 − x1) + (x1 − δ, x1 + δ) ∩ A|
= |(x1 − δ, x1 + δ) ∩ A| ≥ 3δ/2.

Consider the functionφ : [0,∞)→ R defined by

φ(x) = |(x2 − δ, x2 + δ) ∩ x + A|.
Thenφ is continuous and therefore constant, since it is constant on the dense set{mpn :
m,n ∈ N}. Therefore

|(x2 − δ, x2 + δ) ∩ A| = |(x2 − δ, x2 + δ) ∩ x2 − x1 + A| ≥ 3δ/2.

But this is impossible since|(x2 − δ, x2 + δ) ∩ A{| ≥ 3δ/2. �

E 4.4. Let f : R → R be a measurable function with periodss and t whose
quotient is irrational. Prove thatf is constant a.e.

S. Note that sinces/t is irrational, the set{ns+ mt : m,n ∈ Z} is dense inR.
Therefore the setf −1([a,b]) has arbitralily small periods and hence has either full or zero
measure for alla < b. If it has zero measure for alla < b then f = +∞ or f = −∞ almost
everywhere. Suppose thatf −1(I1) has full measure for some intervalI1. Divide I1 into two
subintervals of equal length. Then the inverse image of one of these subintervals must have
full measure. Call this intervalI2. Continuing this way we obtain a decreasing sequence
I1 ⊃ I2 ⊃ · · · of closed intervals whose length tends to zero. Let{r} =

⋂∞
n=1 In. Then the

set f −1({r}) =
⋂∞

n=1 f −1(In) has full measure and thereforef = r almost everywhere. �
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E 4.5. Let A, B ⊂ R be measurable sets of positive measure. Show thatA− B
contains an interval.

S. Let x1 be a point of density ofA andx2 a point of density ofB. Then there
existsδ > 0 such that

|(x1 − δ, x1 + δ) ∩ A| ≥ 3δ/2, |(x2 − δ, x2 + δ) ∩ B| ≥ 3δ/2.

It follows that

|(x2 − δ, x2 + δ) ∩ x2 − x1 + A| = |(x2 − x1) + (x1 − δ, x1 + δ) ∩ A|
= |(x1 − δ, x1 + δ) ∩ A| ≥ 3δ/2.

Therefore|(x2 − δ, x2 + δ) ∩ (x2 − x1 + A) ∩ B| > 0. Now consider the function

φ(x) = |(x2 − δ, x2 + δ) ∩ (x + A) ∩ B|.
Thenφ is continuous andφ(x2 − x1) > 0. Hence there is an intervalI such thatφ(x) > 0
for all x ∈ I . It follows that (x + A) ∩ B , ∅ for all x ∈ I and so,I ⊂ B− A. �

E 4.6. Suppose(X, µ) is a σ-finite measure space and letf : X → C be a
measurable function such that|

∫
f g| < ∞ for all g ∈ Lp(X). Show thatf ∈ Lq(X) whereq

is the exponent conjugate top.

S. Write X =
⋃∞

k=1 Ak with Ak disjoint andµ(Ak) < ∞. Suppose thatf ≥ 0,∫
f q = ∞ and letBn = [2n ≤ f < 2n+1], n ∈ Z. Then

∞ =

∫
f q =

∞∑

n=−∞

∫

Bn

f q =

∞∑

n=−∞

∞∑

k=1

∫

Bn∩Ak

f q

.
∞∑

n=−∞

∞∑

k=1

2qnµ(Bn ∩ Ak) =

∞∑

i=1

2qN(i)µ(BN(i) ∩ AM(i)).

Let

Sn =

n∑

k=1

2qN(k)µ(BN(k) ∩ AM(k))

and

g =

∞∑

i=1

2qN(i)/p

SN(i)
χBN(i)∩AM(i) .

Then ∫
gp =

∞∑

i=1

2qN(i)

Sp
N(i)

µ(BN(i) ∩ AM(i)) < ∞

by Abel’s Theorem. On the other hand
∫

f g =

∞∑

i=1

2qN(i)/p

SN(i)

∫

BN(i)∩AM(i)

f ≥
∞∑

i=1

2qN(i)/p2N(i)

SN(i)
µ(BN(i) ∩ AM(i))

=

∞∑

i=1

2qN(i)

SN(i)
µ(BN(i) ∩ AM(i)) = ∞

By Abel’s Theorem again. �
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