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CHAPTER 1

Numbers

Exercise 1.1 Leta, b, ¢, d be rational numbers and an irrational number such that
cx+ d # 0. Prove that(ax+ b)/(cx+ d) is irrational if and only ifad # bc.

Sorution. Suppose thatax + b)/(cx + d) = p/q, where p,g € Z. Then
(aq- cp)x = dp- bg, and so we must hawp— bg= aq- cp = 0, sincex s irrational. It
follows thatad = bc. Conversely, ifad = bcthen @x+ b)/(cx+ d) = b/d € Q. O

Exercise 1.2 Leta; < ap, <--- <a,andb; < by, <--- < b, be real numbers. Prove

$30)[330) 50

i=1 =1

that

and that equality obtains if and only if eithaf = a, or b; = b,
Sorution. Sincef{a;}! ; and{b;}! ; are both increasing, we have
n n n
0< > (@-a)bi-b)=2n> aby- 2[2 a)[z bj].
1<i,j<n k=1 i=1 j=1
If we have equality then the above implies € a;)(b — b;) = O for all i, j. In particular

(a1 — ay)(by — by) = 0, and so eithea; = a, orby = by,. O
Exercise 1.3, (a) If &y, &, . . ., ay are all positive, then
n n
1

and equality obtainsifand only & = a, = --- = a;.
(b) If &, b, c are positive andi+ b + ¢ = 1, then

(1/a-1)(1/b-1)(1/c-1)>8
and equality obtains if and only&#=b=c = 1/3.
Sorution. (&) By the Cauchy-Schwarz inequality we have
n 1 1/2 n 12/ n 1 12
n= Zaﬁ”z(g) < {Za') [Z g) .
i=1 i=1 i=1
(b) Sincea+ b+ c =1, (a) implies Ya+ 1/b+ 1/c > 9 and therefore

(1/a-1)(I/b-1)(Y/c-1)=1/a+1/b+1/c—1>8.



CHAPTER 1. NUMBERS
Exercise 1.4. Prove that for alln € N we have
135 2n-1 < 1
2 46 2n T \En+1
end equality obtains if and onlyiif= 1.
Sorution. Note that
2k-1 < 3k-2
K 7 V3k+1
and therefore the product telescopes. O
Exercise 1.5. (a) For all n € N we have
1
Vn+1l- Vn< — < vn- vn-1.
Vn
(b) IfneNadn> 1then
51
2Vn+1-2< > — <24n-1
iz ),
Sorution. (a) We have
1 1
Vn+1-+vn= < ,
Vvh+1++yn 24N
1 1
Vn-vn-1= > .
v+ Vn-1 2+vn
(b) Sum inequalities (a) fdt=2,3,...,n. O
Exercise 1.6. Letn e N andx € R. Then
(@) -1 < x< 0implies(1+ X)" < 1+ nx+ (n(n — 1)/2)x2.
(b) x> 0implies(1 + X)" > 1+ nx+ (n(n — 1)/2)x?.
Sorution. Induction onn. O
Exercise 1.7. If n € N, thenn! < ((n+ 1)/2)".
Sorution. In the Geometric-Arithmetic Means Inequality, tede= k. O

Exercise 1.8, If by, by, ..., b, are positive real numbers, then

1 < (biby--- bn)l/n.
[ by b

Sorution. In the Geometric-Arithmetic Means Inequality, tadke= 1/by.

Exercise 1.9. If X,y € Randn € N, then
(@) [x+yl =[x + [y,
(b) [[X1/n] = [x/n],

© X [x+ k/n = [N,
k=0



CHAPTER 1. NUMBERS

Sorution. (a) [X] +[y] is an integer and satisfieg][+ [y] < x+ Y, therefore K] +[y] <
[x+Y].

(b) We claim that k/n] < [X]/n. Indeed, if this were not the case we would have
[XI/n < [x/n] < ([X] + €)/n, for some 0< e < 1. Therefore ¥] < n[x/n] < [X] + e,
a contradiction since[x/n] is an integer. It follows that){/n] < [[X]/n]. The converse
inequality is obvious.

(c) Let
n-1
f(x) = Z[x +k/n] = [nA.
k=0
Thenf is periodic with period 1In and vanishes on the interval,fyn]. So, f = 0 identi-
cally. O

Exercise 1.1Q (a) If a, b, c are positive real numbers then
2
11 1 1, 1, 1
— — — < — — —
(2a+3b+6) < 5a+3b +602
with equality if and only ii=b = c.
n
(b) Ifay,...,an andwy, ..., w, are positive real numbers with, w; = 1 then

i=1
n 2 n
(Z avw] <) aw,
i=1 i=1
with equality ifand only iy = a, = --- = a,.
Sorution. (a),(b) Cauchy-Schwarz inequality. O
Exercise 1.11 If n € N, then
no\2
@ 2 () = ()
2n 2
® 2 ) = ()
Sorution. (a) By the Binomial Theorem we have

2n
(1+ %)%= Z (an)xk.

But i
o= (S 0[S0

i=0 =0

200 -&+ 200

k=0  i+j=k

HNNEPIHE

Equating the caicients ofx" we get

[w)= 206+

n
=0
7



CHAPTER 1.

NUMBERS

(b) As in (a) we have
2n

- = 3 (e

k=0
and

(1— 2% = (1— 0P(L+ )2 = [2 (Zin)(_l)i Xi] [i (Zjn)xj]

=0
o (20\(20) S Oy [20)(20
-2 (I pe= 22 Z e (TN
1. k=0 i+j=k
Equating the caicients ofx>” we get

o) B} S

i+j=2n

Exexcise 112 If mn e I, thend + 3 (" = ().

SOLUTION.

1+k:(n::k):1+Z((n+t+1)_(:ili)):(n+2+1).

Exercise 1.13 Prove Lagrange’s inequality for real numbers
n 2 n n
k=1 k=1 k=1 1<k<j<n

Sorution. We have
Z (ab; — ajby)? = Z (agb? + alb? — 2abjajby).

1<k<j<n 1<k<j<n
But
n n n
> e Y a =[S 2t
1<k<j<n 1<k<j<n k=1 k=1 k=1
and
n 2 n
Z Zmbjajbkz(Zakbk) - aﬁbﬁ
1<k<j<n k=1 k=1

The result follows.

O

Exercise 1.14 Given a realx and an integeN > 1, prove that there exist integes

andqwith 0 < g < N such thatgx— p| < 1/N.

Sorution. Fork =0,1,...,N letax = kx— [kX]. Then{ak}kN:O c [0,1), and therefore

there exist (< ki, ko < N such thata,, — a,| < 1/N.

]

Exercise 1.15 If xis irrational prove that there are infinitely many rational numbers

p/qwith g > 0 and such thatx — p/q| < 1/¢?.
8



CHAPTER 1. NUMBERS

Sorution. Assume there are finitely many, sgy,/di, ..., pn/0n. Then, by the pre-
ceding exercise, there exispgq such thatx — p/ql < 1/(gN) with g < N and YN <
min{|x — pi/q1| : 1 <i < n}. (The minimum is positive becausas irrational.) O






CHAPTER 2

Sequences, Series and Limits

n
Exercise 2.1 Evaluatelim [7(1+ a?) wherea € C.

Sorution. If a # 1, then for alln € N we have

k 2n+1
1_[(1+ = 1 .

Therefore the sequence convergestt a) for |a) < 1. It diverges foia) > 1 ora = 1.
The limit does not exist ifa] = 1 anda # 1. O

EXERcISE 2.2 Evaluaterll_r:r(]o kzl m

Sorution. Note that

Y
mm

Therefore the sum converges to 1. O

Exercisi 2.3. Letx =2+ V2andy = 2— V2. Thenn € N implies
@x"+y'eNandx" +y" = [x"] + 1.
(b) lim (" ~ [¥7]) = 1.

Sorution. (@) By the Binomial Theorem, we have

k=0

0<k<n

n-k even
Sincex" + y" — 1 < X" < X" + y", we conclude that{"] = x" + y" - 1.
(b) By (@),x" - [xX"] =1-y"—> 0 ash — . O
Exercise 2.4 If {3}, C R, {Yaly; € (0,00) and {X,/yn};> , is monotone, then the
sequencéz, ), defined by
COXp e+ Xy
Yi+- 4+ V¥n

is also monotone.

SorutioN. Assume thatx,/yn},, is increasing and prove inductively that< z,,; <
Xn+1/Yn+1 USING the fact

QD
+
o

IA
O
+
o
olo

olo

U
ol
IA
IA

ol



CHAPTER 2. SEQUENCES, SERIES AND LIMITS

Exercise 2.5. Let0 < a < b < «. Define
Xon + Xon-1
X1=a, X=Db, o= V¥nXon-1, Xone2 = n—zn
Then the sequend#,}> , converges.

Sorution. Note that koni1, Xoni2] € [Xon-1, Xon] @and
Xon — Xon-1 X2 — X1
Xon+2 — Xont1 < — 5 <---< on 1

Therefore the sequence converges and

- 0.

[o6]
lim %, = (| DXen-1, Xen].
n=1

n—oo

i
Exercise 2.6. Let0 < a < b < 0. Define
X1=a X =Db, Xn+2=%-
Prove that the sequeng¢g,}’ ; converges and determine its limit.
Sorution. Note thatx, 1 — X, = (=1/2)"(x — x1). Therefore
Xo = X9 + (42 - xl):Z_z(—%)k Sarb-as= 22
i mi

Exercise 2.7. Let{xy};., C R satisfy0 < x, < 1and4xn;1(1 - X,) > 1forall ne N.
Show tha’ﬂim X =1/2.
Sorution. Note that 1
Xpi] = ———— > X
n+l < 4(1—Xn) Z An
Therefore the sequence is increasing. Since it is bounded, it converges to lawinich
must satisfy 1 — 1) > 1. We conclude thdt= 1/2. O

Exercise 2.8 Letl < a < oo, X = 1, and x,;1 = a(l + Xy)/(@ + X,). Show that
X — Va.

Sorution. Prove inductively that the sequence is decreasing and bounded from below
by va. m]

Exercise 2.9. Definexg =0, x; = 1, and

= — X1+ —— X
Xl = et

Prove that{x,};”, converges and determine its limit.

Sorution. Note thatxn,1 — X, = (-1)"/(n+ 1)!, and so
~ n-1 (—l)k 1

= — -,
Zik+1)! e

]

Exercise 2.1Q Letae R, a ¢ {0,1,2} and definex; = a, X1 = 2 - 2/X, forn € N.
Find the limit points of the sequengg,} ;.

12



CHAPTER 2. SEQUENCES, SERIES AND LIMITS

Sorution. Note thatx,.4 = X, for all n € N. Therefore the sequence takes on the
values{xs, X2, X3, X4} only. O

Exercisi 2.11 For n e N, write n = 21-1(2k — 1) wherej, k € N and write
1 1

Sn=T+R.

Find all limit points of the sequend&,};” ,. Evaluatelim S, andlim S,
Sorution. Let A be the set of limit points ofSy}? ;. We claim thatA = {0} U {1/n :
n e N}. Indeed, lety = 2¢1(2k — 1) andmp = 2P1(2k — 1).Then
1

HenceA > {0} U {1/n: n e N}. Now takel € A, | # 0. Then there exists a subsequence
{Snnlmq sUch thatS,  — I. Write ny, = 2in1(2k,, — 1). Note that at least one of the
sets{jm : m e N}, {kn : m € N} is unbounded, and so we may assume, without loss of
generality, that there exist$m }°, with j, — co. Then, sinceS,, — |, we havek, —

1/1. Thereforetky, )2, is eventually constant arlde {1/ky : i € N}. lim S, = inf A =0,
limS, = supA = 1. o

Exercise 2.12 Prove that(n/e)" < n! for all n € N.

SorutioN. Induction onn. Itis clearly true fom = 1. Assuming§/€)" < n! we have

n+1 n n
(nLl) :nLl(lJr}) (2) <nLeleri=(n+1)!.

e e n
m|
Exercise 2.13 Evaluate
(@) lim (2n)1/(n)?)*™,
(b) l!im @/M[(n+ )M +2)---(n+n)]¥",
(©) lim [(2/1)(3/2)7(4/3)° - ((n+ 1)/m)"] .
SoLutioN. Let
_ (2n)! b — (n+1){+2)---(n+n)
T2 T nn ’
o —(2\(3)(4) .. (nx1Y
(1)) () ()
Then
a1 (2n+1)(2n+2) o4 bns1 _( n )“ @2n+1)(@2n+2) R 4
an (n+ 1) by \n+1 (n+ 1y e’
Cret ~ 1 n+1
c = (l + m) — e
Therefore
Ya, — 4, "bn—>g, Jch— e
m|

Exercise 2.14 Evaluatelim n — oo({/n — 1)".

13



CHAPTER 2. SEQUENCES, SERIES AND LIMITS

Sorution. Sincen — 1, there existsi, € N such that 0< {n -1 < 1/2 for all
n > no, and so O< (/n — 1)" < (1/2)". Therefore O< lim(4/n — 1)" < lim({n)" < 0. We
conclude thaﬁ linfyn-1)"=0. O

Exercise 2.15 If {X,}}?; € (0, 00) andx, — X, then(xy - - - Xn)H" — X

Sorution. By the Harmonic-Geometric-Arithmetic Means Inequality we have
n X1+ + Xn

< (o)< =

1
Xl+ +Xn

Therefore &g - - - %)Y — x. i
n
Exercise 2.16 (@) LetS,, = Y, 1/kforne N. Thenr!im |Snip—Snl =0forall pe N,
k:1 |— 00
but{Sy}, , diverges too.
(b) Find a divergent sequen¢g,}>” , in R such thatr!im [Xp2 — Xn| = 0.

SorutioN. (&) [Snip—Snl=1/(N+1)+---+1/(n+p) < p/(n+1)—0

(b) Forn > 4 letk(n) be the unique integer such th&2 < n < 22" and define
k(n)

X, = Y 1/j. Note thatk(n) — co andk(n?) = k(n) + 1. Thereforex, — co and|x; — X,| =
j=1

1/(k(n) +1) — 0. O

Exercise 2.17. There exist two divergent serigsa, and Y, b, of positive terms with
a >a>--- andb; > b, > --- such that ifc, = min{a,, b,}, then}, c, converges.

SorutioN. Let
ac=1/2% by=1/2" if2" <k< 2™ neven

and
a=1/2", by=1/2% if2" <k< 2™ nodd

EXE]ESISE 2.18 Evaluate the sums
(@) Zl 1/(n(n+ 1)(n + 2)),
n=

() 3. (n - 1)!/(n+ p)!, wherep € N is fixed.
n=1

Sorution. (@) Note that
1 1
nn+1)(n+2) 2

1 1
nn+1) (n+ 1)(n+2)]'

Consequently

s 1 1[1 1 1
Y ReDRTD 2|2 roweal” 8
(b) We have
(n-1)! 1 1 1 1
(n+p! ~n---(n+p) :5[n~~-(n+ p-1) (+1)-(+p)
Therefore

1
- —.
pp!

1 1
[E"m+nmm+m
14




CHAPTER 2. SEQUENCES, SERIES AND LIMITS

Exercise 2.19 Let ) a, be a convergent series of nonnegative terms. Then
(a) lim nay = 0,

(b) possiblylim na, > 0,

(c) if &, = any1 for all n > ng, thenlim na, = 0.

SoLuTioN. (a) Suppose that lima, > ¢ > 0 for somec. Then there existsy € N such
thatna, > c for n > ny. Consequently,

N N 1
Zan>CZ——>oo as n— oo,
N=nNg n=non

a contradiction.
(b) Leta, = 1/2¥if k # 2" anday = 1/2" if k = 2". Then

N N )
Zak:Zak+Zak§Z%+ Z 2—1ns222—1k<oo
k=1 k#2n k=2n k=1 n:2"<N k=1
and lim2"ax» = 1.
r%(_g)mNote that
2n+1

2n
nagnsZakeo and naZMsZak—m.
k=n+1 k=n+2

Thereforen lim2nag, = rlim (2n + 1)azy:1 = 0. We conclude that lima, = 0. O

Exercise 2.20 If {cq}>_, < [0, o] and

m=1

then

Sorution. Define

- ngfb ifl<m<n,
0 ifm>n
Then
Amn = Gn bn

On the other hand

Exercise 2.21 (a) Prove that' 1/m < 2.
n=1
(b) Prove that



CHAPTER 2. SEQUENCES, SERIES AND LIMITS

Sorution. (@) We have

n=1 n=2 n(n-1) \n-1.n
(b) We have
— _ 2 —_—— ———
1

O

Exercise 2.22 Letb be an integer- 1 and letd be a digit(0 < d < b). LetA denote
the set of alk € N such that thé-adic expansion of fails to contain the digitl.

(a) If ax = 1/k for k € Aandax = 0 otherwise, theny, ax < oo.

k=1
(b) For n € N let A(n) denote the number of elementsAfthat are< n. Then
rlim (A(n)/n) = 0.

SoLutioN. Let

A, = {k : kis ann-digit number and does not contain the digjit
={k:b" <k<bnA

Note thatAn| = (b - 2)(b — 1)".

(a) We have
00 o 0o |An| [5) b—l n-1
Y-y sy -0-2) (5 <o
k=1 n=1 keAq n=1 n=1

(b) If b # 2 then

A< > IAl=(0-2) ) (-1 <nt/osab g

k:bk-1<n k:bk<n

If b =2 thenA(n) = |{k : 2 < n}| < log, n. Thereforen lim(A(n)/n) = 0. O

Exercise 2.23 Let0 < x < 1. Thenx has a terminating decimal expansion if and only
if there exist nonnegative integarsandn such tha™5"x is an integer.

Sorution. If x has a terminating decimal expansion, ther= p/10¢ = p/(25Y).
Conversely, if 25"x = N € N for some, saymn < n, thenx = 2""™N/10". O

Exercise 2.24 Evaluatelim (nle - [n!€]).
N—oo

n
Sorution. Let Sy = ) 1/kl. Then, using the error estimate for the “tail”, we have

k=0
0 < nle-nlS, < 1/n. We conclude that{ €] = n!S, and thereforele—[nle] - 0. O

Exercise 2.25 Show thatlim nsin(2ren) = 2r.
n—.oo

16



CHAPTER 2. SEQUENCES, SERIES AND LIMITS

SOLUTION. Sincenlim(eri —[en]) = 0 we have
. sin(2ren — 2x[en]) . sin(2ren)
lim =1=lim ———= =
% " 2renl — 2xjen] = 0% e — [en]

Note that the error estimate for the Maclaurin series expansione dmplies
1/(n+ 1) <en —[en] < 1/n, and so limn(en — [en]) = 1. It follows that
n—oo

nsin(2ren) = n(en — [en]) Sln(zierrz o
O
Exercise 2.26 Find the sum of the series
nZ:; (n+ 1)\/_ n+nvn+1
SOLUTION.
i i (ﬂ _ Vn+ 1) ~
e (n+1)\/_+nw/ﬁ Zi{"n " n+1
O

EXERCISE 2.27. Leta, > Ofor eachn e N. Then
€) Z an < o0 |mpllesz Vanans1 < o0,

(b) the converse of (a) |s false,

(c) Z an < o |mpI|es§](an +al) ™t <o,
(d) the converse of (c) |s false.

Sorution. By the Harmonic-Geometric-Arithmetic Means Inequality, we have
1
Z(agl + ar:-il-l)71 < Vanani1 < é(an + an+l)a
proving (a) and (c). For (b) and (d), la§ = 1/nif nis even andy, = 1/n®if nisodd. O

Exercise 2.28 Suppose thad, > 0 for all n € N and f} = co. What can be said of
n=1
the following series?

(@) 3, ch/(1+ ch),

(b) 3, ch/(1+ k),

(© 3 du/(1+ D).
n=1

SorutioN. (@) If {dn}7>, is bounded then /{1 + dy) is bounded from below, therefore

£ 1+dn >CZdn_

If {dn};>, is unbounded then there exists a subsequémgk® ; with dy, — co. Therefore

there existsiy such that, /(1+dy,) > 1/2 foralln > ng. Consequentlﬁ dn/(1+dy) =
n=1

17
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(b) Letd, = 1 foralln e N. Then

— - d
Zdnzz 1+:1dn -

n=1 n=1

Letdy = 1/2%if k # 2" anddy = 2" if k = 2". Then Y’ dn = oo and

n=1
d | ifk=2,
1+kd |& ifk=2n

Thereforeg dn/(1+ nd,) < oco.
n=1

(c) Letdn = 1 foralln. Then S dn/(L+ d2) = co. Letdy = n2. Then Y, dn/(1+ d2) <
n=1 n=1

00, m}
Exercise 2.29 LetO < a < b < oo and definex; = a, xo = b, andXn,2 = /X Xns1 fOr
ne N. Find r!im Xn.
Sorution. Lety, = log X, and use Exercise 2.6. O

Exercise 2.30 Let0O < a < b < co and definex; = a,y1 = b, Xni1 = 2061 + yH) 72,
andyn.1 = \/XnYn. Then{x,};", and{y,};, both converge and have the same limit.

Sorution. Prove inductively, using the Harmonic-Geometric Means Inequality, that

1
A< X < X1 <Y1 <Yn<b and Yni1 — Xoe1 < E(yn_ Xn).

O

Exercise 2.31 Show that if§ ax=1andO< a, < i ,n=12 ..., then for every
k=1 k=n+1

x € (0,1) there is a subserie§; a, whose sum is.
k=1

Sorution. Note that, since the sum of the series is 1 a(0, 1), there exists;; € N

such that . N
Zak>x and Z a < X

k=ny k=n;+1

implying
Z a >X—a, and a, <X

k:n1+1
Therefore there exists > n; such that

i:ak>x—anl and Z < X— ay,.

k=n, k=ny+1

Continuing this way, we can find a sequence of integers n, < --- such that

Osx—zm:ank< i a.
k=1

k=nm+1

Lettingm — oo, we conclude thad; a, = x. O
k=1

18



CHAPTER 2. SEQUENCES, SERIES AND LIMITS

Exercise 2.32 Show that i, by € R, (@n+bn)by # 0,n = 1,2, ..., and bothy’ an/by
n=1
and i (an/bn)? converge, therﬁ an/(an + by) converges.
n=1 n=1

SorutioN. Choosekg € N such thatl + a/by| > 1/2 for allk > kg. Then

L _ 2
lawby + b2 [
Note that . . . )
Y T R D
o At by = by = acby + bﬁ
and . 5 . ,
% S <2) %
k=Ko akbk + bk keko K
We conclude tha& an/(an + by) converges. O
n=1

Exercise 2.33 Show that ib, N\, 0 and f bn = oo, then there is a sequenta, ), , C
n=1
R such thata,/b, — 1asn — « and i (-1)"a, diverges.
n=1
SoLution. Let
n bn
— —_— p— n_
Sn_;bk, an = by + (1) 5
Note thata, > O for largen and
m m m b
n _ _1\n -n
2 (Wan= ) (Lot )
n=1 n=1 n=1
The first series in the above sum converges, being alternating, while the second diverges by

Abel's Theorem. Thereforé a, diverges. On the other hana,/b, =1+ (-1)"/Sp, —» 1
asn — co. =t o

Exercise 2.34 Show that i > 2, then 3. (1 — (1 — 279" ~ logn.
k=1

Sorution. Note that

1 1 00 1-1/2k+1 1 1\
= x"dx = x"dx < —|1-=
m+1 fo ;j;l/zk _ézk( 2k)

and similarly
iil 1\"_ 2
:12k 2 T m+1
Therefore
0o 1n oor'l—ll lm n—1cx>1 lm
-(-g) ) R n 05 -2z 2)
k k k k k
~Zn:1~lon
~ m_ g
m=1
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O
Exercrs 2.35 Show that ity € R, thenlim 5 eX(sin(x + ry))"dx = 0.
SOLUTION.
f le”*(sin(x + ry))"|dx = f € ¥ sin(x + rmod 2r)|"dx
0 0
= g/nmod ?”f e ¥ sin(X)["dx
ramod 2r
< ez”f e ¥ sin(x)|"dx
0
Note that sin(x)|" — 0 almost everywhere, and so, by the Dominated Convergence Theo-
rem, [~ €| sin(x)"dx — 0. o
Exercise 2.36 Let f : [0,1] — R be defined by
><)|:+glx ifo<x<1,
f(x) =10 if x=0,
1 if x=1.
Show that
1 © 1
f(x)dx=1
fo Z; n2(n— 1)
Sorution. Note that
xlogx < x(1—-X)"
x-1 Z n+1
and the convergence is uniform on 10 by Weierstrass M-test. Therefore
1 00 1 1 00 1
f(dx= » —— 1-x)"dx= _—
fo (X)dx n; n+1f0 X(1=x)dx nz_lo (n+ 1E(n+2)
= 1
=1-) ———.
nZ:; n2(n-1)
O

Exercise 2.37. Show that

Conclude that

Sorution. Note that

Therefore



CHAPTER 2. SEQUENCES, SERIES AND LIMITS

and consequently
1\ &1 k
loglk+ =)< » - <loglk+ —].
ol )= 2y = ol 753
Taking the limit asn — oo, we obtain the first assertion. To prove the second assertion,

note that
2n

& (-1) 1 N1 n g x4
; j :;‘T_Z;Z_jzijéj—ﬁﬁlogZasneoo,

j=n+1

=log 2. O

Sincey®, (‘1j)j+1 converges by Leibniz, we conclude tHef (‘11.)]“

Exercise 2.38 Show thagX’/2 [ e’/2dtis a decreasing function ofon [0, «0) and
that its limit asx — o is 0.

Sorution. By L’Hospital's Rule we have

foo e_tZ/Zdt _e_Xz 1
. M e 1
)!E:noo e—X2/2 - )I(El]o _Xe_X2/2 - )!EIL % 0
Now let

o0 e X2 ~

g(x) = &2 f e/Zdt and h(x)=—— - f o t2gt

X X

Then 2
00 ~x2/2
g/(X) = Xe?(2/2‘fv eftZ/Zdt_ 1 and h/(X) - _ v <0.
X

Hencehis strictly decreasing. Note th){(;lt lit(x) = 0. thereforéh(x) > 0 and consequently
g(x) <O. O
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CHAPTER 3

Topology

Exercise 3.1 Let X be a 2nd countable space. Show tha{Gf}i, is an arbitrary
family of open sets iiX then there exists a countable subdet | such that Ji; G =

Uies Gi-
Sorution. SupposdUy ke is a basis for the topology of X. Let
K ={keN:3i(k) € | suchthaly c Gj}
and putd = {i(k) : k e K}. O

Exercise 3.2 Let X be a 2nd countable space, and ket X be an uncountable set.
Prove thatA has at least one condensation point.

Sorution. Suppose that for eache A there is an open sét, ¢ X with x € Uy and
AN Uyl < No. SinceX is 2nd countable there existg,}>, ¢ A such that J,.p Ux =
Unet Ux,- HenceA = (U2, (Ux, N A) and thereford),, N Amust be uncountable for some
Ng, a contradiction. O

Exercise 3.3, If X is a 2nd countable space aris a closed subset &, then there
exist a perfect sé® and a countable sé¥, such thatA = PuU N. Conclude that any subset
of a 2nd countable space can have only countably many isolated points.

Sorution. Let P = {x € X : for each nbdJy of x, Uy N Aiis uncountablg Using the
preceding exercis@ is perfect andA \ P is countable. O

Exercise 3.4. Prove the following assertions.

(a) If Ais nonempty perfect subset of a complete metric spaceXisenncountable.

(b) Any countable closed subset of a complete metric space has infinitely many iso-
lated points.

(c) There exists a countable closed subsét dfving infinitely many limit.points.

SoLuTioN. SupposeX is a complete metric space.

(a) Note that sincé\ is a closed subset of, it is complete as a metric space.Afis
countable then by the Baire category theorem, at least one of its points must be isolated.
(b) Assume that there exists a countable closed subsetnath finitely many isolated
points. Removing these points results in a countable perfect set, contradicting (a).

(c) Take infinite copies of a convergent sequence together with its limit. O

Exercise 3.5. It is impossible to expregd, 1] as a union of disjoint closed nondegen-
erate intervals of lengtk: 1.

Sorution. Suppose [01] = Ui [Xi, Vil where{[X;, Vil}ic is disjoint. Note that must
be countable. Then the set of endpoiritg (i € 1} U {y; : i € I})\ {0, 1} is a countable
perfect set, a contradiction by the preceding exercise. O
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Exercise 3.6. It is impossible to expreg®, 1] as a countable union of disjoint closed
sets.

SorutioN. Suppose [01] = |}, Fn with the Fy's closed and pairwise disjoint. Since
F1nF, =0, we can find a closed intervil suchthat . NF; =0, I1NF £ 0, 11\ Fa # 0.
We repeat the same procedure insigavith I; N F, playing the role ofF; andl; N Fy
playing the role of», whereFy is the first set in the sequenfie,}” ; intersecting ;. We
thereby construct a decreasing sequence of closed int¢hyils such thal,NnF, =0, a
contradiction. O

Exercise 3.7. LetAbe a bounded subset®iwhich is not closed. Construct explicitly
an open cover oA that has no finite subcover.

Sorution. Let x € R\ A be a point such thai(— €,x + €) N A # 0 for all e > 0. For
eachn choosex, € (x— 1/n, X+ 1/n) N A. Without loss of generality we may assume that
{Xn}pe1 IS monotone. Ifx; < --- < X, < --- X, consider the covel(—oo, X))}, U {(X, o)}

If X; > -+ > Xy > -+ X then take the coveringx,, ©)}”; U {(=c0, X)}. O

Exercise 3.8, Let (X, p) be a metric space and, B c X disjoint closed sets. Show
that there exists a continuous functiébn X — R such thatf | A=0andf | B=1.

SorutioN. Let

p(x, A)
f) = ——————.
) (X, A) + p(x, B)
Thenf is well-defined and has the required properties. O

Exercise 3.9, If X is a connected metric space with at least two points, tkeis
uncountable.

Sorution. Let x,y € X be two distinct points. By the preceding exercise, there exists
a continuous functiorf : X — R with f(x) = 0 andf(y) = 1. SinceX is connected,
f has the intermediate value property. Thereforel][0c f(X). We conclude thaK is
uncountable. ]

Exercise 3.10 LetS be a nonempty closed subsefRofind letf : S — R be contin-
uous. Then there exists a continu@usR — R such thatf(x) = g(x) for all x € S and
SUPBr 19(X)| = sups | T(X)|. This is false for every nonclos&dc R.

Sorution. Write R\ S = |J;2; In, Where thd,’s are disjoint open intervals and extend
f on eachl, linearly (if (-0, a) or (a, ) appear among thi’'s take f to be constant
on these intervals). I§ is not closed we can find a point¢ S and, say, an increasing
sequencey < --- < X < --- < X of points inS such that lim x, = x. Any continuous
function f onR \ {x}, and therefore 08, with f(x,) = n cannot be extended to the whole
line. O

Exercise 3.11 Let X be a topological spacey, a metric spacef : X — Y an arbitrary
function and definéd; = {x € X : fis continuous akj}.

(a) Prove thatAs is aG; set.

(b) Assume that there exists a $&tc X such thatD and X \ D are both dense in
X. Prove that for anyG; setG c X there exists a functiofi : X — R such that
A; =G.

(c) Show that there is no functioh: R — R which is continuous at each rational
and discontinuous at each irrational.
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(d) Construct explicitly a functiori : R — R which is continuous at each irrational
and discontinuous at each rational.

Proor. For any pointx € X define the oscilation of at x by
wi(X) = inf{diam(f (U)) : U is a nbd ofx}.
(a) Note thaix € A; if and only if w(x) = 0. Therefore

Af = ﬂ{xe X:wi(X) < 1/n}.
n=1
The sets in the intersection are open, heces G;.
(b) Write G = N, Gn where eaclG,, is open andX = G; > G, O ---. Define
f:X—>Rby
0 if xeG,
f(X)={1/n if xe DN (Gy\ Gpsa),
=1/n if xe (X\ D) N (Gn\ Gny1)
(c) If such a function existed) would beG; by (a).
(d)
F(x) = {1/n |_f x_: .m/n,_ (mn) =1, .
0 if xis irrational
O

Exercise 3.12 Construct a strictly increasing function that is continuous at each ir-
rational and discontinuous at each rational.

Sorution. Let {r, : n € N} be an enumeration of the rationals and defineR — R
by f(x) = 2. <x1/2". Note thatf(r,—) = f(rn) = f(rn+)-1/2"andf(x-) = f(x) = f(x+)
forall x+inR \ Q. O

Exercise 3.13 Let X be a topological space anfY, p) a metric space. Suppose that
{fn}}2, is a sequence of continuous functions fridnmto Y and thatf : X — Y is some
function such thalim, f,(x) = f(x) for all x € X.

(a) Show that there exists a sBtc X that is of 1st category irX such thatf is
continuous at each point of \ E. In particular, if X is a complete metric space,
thenf is continuous at every point of a dense subsext.of

(b) f-X(V)is anF, setinX for every operv c Y.

(c) There is no sequengé,};”, of continuous real functions dk such thatf,(x) —
1for xe Qandf,(X) —» Oforxe R\ Q.

(d) Show thatyq, the characteristic function o, is the pointwise limit of a se-
quence of functions, so that each of them is the pointwise limit of a sequence of
continuous functions.

Sorution. (a) LetAcm = {Xx € X : p(fm(X), fn(X)) < 1/kfor all n > m}. Then eacthm
is closed, and sy m \ A;;m is nowhere dense. Now let

G= ﬁ 0 Ali,m’ E= O O(Akm \ Aﬁm)

k=1 m=1 k=1 m=1
ThenE is of 1st categoryX \ G c E (sinceX = |J;_; Axm for all k), and eaclx e Gis a

point of continuity off.
(b) F73V) = Uy Upqfx € X2 p(fa(¥), Y \ V) > 1/k for all n > m}.
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(c) If such a sequence existed then the characteristic functiQmafuld be continuous
at some point by (a).
(d) Let¢ : R — R be defined byy(x) = |2x — 2k — 1| for x € [k, k + 1], k € Z. Then

Hm[ﬁm¢0m©1=XQ@)fmaerR
m—oo | N—oo
O

Exercise 3.14 Every compact metric spacéis the continuous image of the Cantor
space{0, 1}V,

Sorution. Construct inductively a family of nonempty closed s@Bg}sc(o1)<« Such
that

l!im diam@B, ) = O for all @ € {0, 1},

U Bs=XforallneN, Bg=BsqUBsjforall se{0,1}<“.

Isi=n
We give the first step. Using compactness, we can find a numdband a covering
{F1,...,Fan} of X by closed sets such that diakRj)( < 1/2diam(X) for all i. From these
sets construct aB;’s with |t| < N. Repeat the same procedure inside each compact space
Bs with | = N. Now definef : {0, 1} — X by

f(@) =) B
n=1

[m]

Exercise 3.15 Construct an example of a two-to-one functibn [0, 1] — R. Prove
that no suchf can be continuous of®, 1].

Sorution. Let {r, : n € N} be an enumeration of the rationals in JQ and define

f:[0,1] - R by

[2x — 1] if xis irrational,

f(X) = {ra1 if X =ra1,

lok—1 if x= k.
Suppose now thatt is a continuous two-to-one function. We can then assume that its, say,
minimum is attained at the points < X, and X, is not an endpoint. Choose disjoint
closed intervalsdy, by], [a, bo] with X3 € [ag,by], X1 # by andx, € (az, b,). Then the
intermediate value theorem implies that a valuwéth min{f(b1), f(ap), f(b2)} > r > min f
is taken on at least three times. O

Exercise 3.16 Suppose thaf : [a,b] — R satisfiesf~2({y}) is closed for ally € R
and f([c, d]) is connected for allc, d] c [a, b]. Prove thatf is continuous.

Sorution. Let x € [a b] and take{x,}?, < [a b] such thatx, T x. Thenl =
N, (%, X)) is an interval containingf(x). We claim thatl = {f(x)} and therefore
f(xn) — f(X). Indeed, takef(y) € I. Then there exist, € [X,, X] such thatf(t,) =
f(y). Hencet, — x andt, € f~1({f(y)}). Sincef=1({f(y)}) is closed, it follows that

x € f71({f(y)})), and sof (x) = f(y). O

Exercise 3.17. Let(X, p) be a metric space. Then there exists a contindouX — R
that is not uniformly continuous oXif and only if there exist two nonempty disjoint closed
setsA and B such thatdist(A, B) = 0.
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SorLution. Suppose thaf and B are disjoint closed sets with dig{(B) = 0. Define
f:X—>Rby
p(x, A)

p(X%A) +p(x, B)

Thenf is continuous but not uniformly continuous. Nowfifis a real continuous function
on X which is not uniformly continuous, then we can inductively choose poitg, € X
such thap(xa, yn) < 1/n, [f(xq) — f(yn)l > €0, for a certainey, and{X,}7>; N (Y}, = 0.
The setgx, : n € N} and{y;, : n € N} have the required properties. O

f(x) =

Exercise 3.18 Let f : R — R be continuous and satisf{(x) — f(y)| > c|x -y for all
X,y € R, wherec does not depend axnandy. Thenf(R) = R.

Sorution. Note thatf is one-to-one and that
[ lim f(X)| = lim f(X)| = .
X—o00 X——00
O

Exercise 3.19 Letf : R — R be arbitrary. Show that the sé& of x € R such thatf
has a simple discontinuity atis at most countable.

SorutioN. Suppose thaE is uncountable. Then at least one of the skts {x :
f(x+) # f(x=)} andB = {x : f(x+) = f(x-), f(xX) # f(x+)} must be uncountable.
Without loss of generality, we may assume tlais uncountable, and so there exists a
numbereg such that the sdix : |f(x+) — f(Xx-)| > &} is uncountable and therefore has
a point of accumulatioa. Then we can find two sequences};; ; and{yn}., such that
X T a ¥Yn Taand|f(x,) — f(yn)l = €/2, contradicting the fact that ligp, f(X) exists. O

Exercise 3.20 If f : R — R has a local maximum at eack € R, then f(R) is
countable.

Sorution. For everya € f(R) choosex, € R with f(x;) = a and an open intervdl
with rational endpoints such thag € |, and for eachx € I, f(X) > f(Xg) = a. Then the
function

f(R)sam lae{(p.0): p.qeQ}
is one-to-one. O

Exercise 3.21 Leta € R\ Q. Thenthe sef = {ma + n: mne Z}is dense irR.

Sorution. Note that all the elements & are distinct sincer is irrational. So, the
set{ma — [ma] : m € N} is an infinite subset of [A] and therefore has a limit point.
Consequently, there exisfis,} ¢ Awith 0 <r, | 0. Now letx > 0, e > 0. Choosen € N
with rp, < € and letm be the smallest integer such timat, > x. Then (n— 1)r, < xand so,
O<mrp—Xx<r,<e. O
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Measure and Integration

Exercise 4.1 Let{¢n};> , be an approximate identity ib'(R) (that is, ¢, > O, f¢n =
1, limpse fm>5 ¢n(t)dt = Ofor all § > 0). Show thatim_,« lI¢nllp = co for all p > 1.

Sorution. Let M > 0. Then there existsy € N such that for alh > ng

3/4 < f on(t)dt < f on(t)dt + f on(t)dt
]

tI<1/(8M) {t:tl<1/(8M)}IN[gn<M] [n=M
<1/4+ f on(t)dt.
[¢n=M]

It follows that

f on(t)dt > 1/2

[¢n=M]
and therefore

f SR(t)dt > f PLt)ypn(t)dt > MPL f Pn(t)dt > 1/2MPL,

[pn=M] [pn=M]

We conclude thaign|lp — oo. O

Exercise 4.2 Let A ¢ R be a measurable set witd| > 0. Then for anyn € N, A
contains arithmetic progressions of length

SorutioN. Let Xy be a point of density oA. Chooses > 0 such thahey < 1/8. Then
there exist$ > 0 such thai(xo—I’, Xo +1") N Al > 2(1- )I’ forall 0 < I’ < I. Now choose
€ > 0 such that?e < 1/8l. Then fork=0,1,...,n— 1 we have

(Xo—=1,%+D)Nek+ A =lek+ (X — | — ek, Xg + | — k) N Al
>lek+ (X —1+en Xo+1—en)n Al
=|(X—-1+en,Xp+1—en)NA
> 2(1- e)(l — en).
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Hence
n-1 n-1
(o—lxo+ D\ [ )ek+ A =|[ Joxo-1x0+1)\ ek+A
k=0 k=0
n-1
<) lx-Lxo+1)\ek+ A
k=0
n-1
=) (@~ (%0~ 1, %o +1) N ek + A)
k=0
n-1

<) (2 -2(1-e)(l - en))
k=0
<2en® +2nel < 1/4+1/4=1/2.

Therefore| V-5 ek + Al > 0. In particular, there exists € -5 ek + A, and sox, X —
€...,Xx—(n=-1eeA O

Exercise 4.3, Let A be a measurable set of reals with arbitrarily small periods (there
exist positive numberg, with p, — 0 so thatp, + A = Afor all n). Then eitherA or its
complement has measure zero.

Sorution. Suppose tha®\ > 0 and/AC| > 0. Letx; be a point of density oA andx,
a point of density ofAC with X1 < Xo. Then there exists > 0 such that

(X1 = 6, %1 +8) N Al > 35/2, (X2 — &, % +6) N AL > 35/2.
It follows that
(X2 =8, %2+ ) N X2 — X1 + Al = |(X2 — Xg) + (X1 — 6, X1 + 6) N Al
=|(Xa =8, X+ ) NA > 35/2.
Consider the functio : [0, «0) — R defined by
d(X) = (%2 — 6, X2 + 6) N X+ Al

Theng is continuous and therefore constant, since it is constant on the dersepset
m, n € N}. Therefore

(X2 =6, X +8)NA=|(X—06X+8)NXy— Xy + Al > 35/2.
But this is impossible sincéx, — 6, X, + ) N AC| > 36/2. o

Exercise 4.4. Let f : R — R be a measurable function with periodsandt whose
guotient is irrational. Prove thaf is constant a.e.

Sorution. Note that sinces/t is irrational, the setns+ mt: m,n € Z} is dense irR.
Therefore the set~*([a, b]) has arbitralily small periods and hence has either full or zero
measure for al& < b. If it has zero measure for al < bthenf = +o0 or f = —co almost
everywhere. Suppose thht!(l;) has full measure for some interval Divide |, into two
subintervals of equal length. Then the inverse image of one of these subintervals must have
full measure. Call this intervdb. Continuing this way we obtain a decreasing sequence
1 o1, > --- of closed intervals whose length tends to zero. {kgt= (o2, In. Then the
setf=({r}) = N>, f1(1,) has full measure and therefofe= r aimost everywhere. O
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Exercise 4.5. Let A, B ¢ R be measurable sets of positive measure. ShowAkaB
contains an interval.

Sorution. Let x; be a point of density ofA andx; a point of density oB. Then there
existss > 0 such that

(X1 =6, X1 +8) NA >35/2, |(X2—06,% +3d6)NB|=>35/2
It follows that
(X2 =6, % +8)NXo =X+ Al =|(X2— X))+ (Xg = 6, X +5) N A
=|(X¢ =8, X+ ) NA > 35/2.
Thereforg(x; — 6, X2 + 8) N (X2 — X1 + A) N B| > 0. Now consider the function
d(X) =|(x2— 6, % +6)N(x+A) NB,.

Theng is continuous ana@(x; — x;) > 0. Hence there is an intervhlsuch that(x) > 0
forall x e I. It follows that xk+ A) N B # @ forall xe | and so] c B—- A. O

Exercise 4.6. SupposeX, u) is a o-finite measure space and Iét: X — C be a
measurable function such th|a}f fgl < oo for all g € LP(X). Show thatf € L9(X) whereq
is the exponent conjugate o

Sorution. Write X = g ; Ac with A disjoint andu(Ayx) < co. Suppose that > 0,
[f9=coandletB, =[2" < f <2™!], ne Z. Then

oo ffq_n——oo v _nZookZ—:‘anﬁAk

00

s Z D 2Mu(By N A = Z 2NOu(Bugy N Amgy)-

n=—oco k=1
Let |
Sn = 2™Mu(Bugy N Augo)

k=1

and NG/
2aN(@i)/p
g Z S | XBN(l)ﬂAMm

Then

ZqN(I)
fgp = u“(Bngy N Amgyy) < o0
i=1 N(I)
by Abel's Theorem. On the other hand

2, 2aN(@)/p 20N(i)/poN(i)
fg= f f> _— (BN()QAM())
f le D) JBniNAMG) Z Sn) I I

SN(l) -1 i
->%

By Abel's Theorem again. O

20aN(i)
),U(BN(i) N Aw(y) = o
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