Exercises in Classical Real Analysis

Themis Mitsis

Contents

Chapter 1. Numbers 5
Chapter 2. Sequences, Series and Limits 11
Chapter 3. Topology 23
Chapter 4. Measure and Integration 29

CHAPTER 1

Numbers

Exercise 1.1. Let a, b, c, d be rational numbers and x an irrational number such that $c x+d \neq 0$. Prove that $(a x+b) /(c x+d)$ is irrational if and only if $a d \neq b c$.

Solution. Suppose that $(a x+b) /(c x+d)=p / q$, where $p, q \in \mathbb{Z}$. Then $(a q-c p) x=d p-b q$, and so we must have $d p-b q=a q-c p=0$, since x is irrational. It follows that $a d=b c$. Conversely, if $a d=b c$ then $(a x+b) /(c x+d)=b / d \in \mathbb{Q}$.

Exercise 1.2. Let $a_{1} \leq a_{2} \leq \cdots \leq a_{n}$ and $b_{1} \leq b_{2} \leq \cdots \leq b_{n}$ be real numbers. Prove that

$$
\left(\sum_{i=1}^{n} a_{i}\right)\left(\sum_{j=1}^{n} b_{j}\right) \leq n \sum_{k=1}^{n} a_{k} b_{k}
$$

and that equality obtains if and only if either $a_{1}=a_{n}$ or $b_{1}=b_{n}$.
Solution. Since $\left\{a_{i}\right\}_{i=1}^{n}$ and $\left\{b_{i}\right\}_{i=1}^{n}$ are both increasing, we have

$$
0 \leq \sum_{1 \leq i, j \leq n}\left(a_{i}-a_{j}\right)\left(b_{i}-b_{j}\right)=2 n \sum_{k=1}^{n} a_{k} b_{k}-2\left(\sum_{i=1}^{n} a_{i}\right)\left(\sum_{j=1}^{n} b_{j}\right) .
$$

If we have equality then the above implies $\left(a_{i}-a_{j}\right)\left(b_{i}-b_{j}\right)=0$ for all i, j. In particular $\left(a_{1}-a_{n}\right)\left(b_{1}-b_{n}\right)=0$, and so either $a_{1}=a_{n}$ or $b_{1}=b_{n}$.

Exercise 1.3. (a) If $a_{1}, a_{2}, \ldots, a_{n}$ are all positive, then

$$
\left(\sum_{i=1}^{n} a_{i}\right)\left(\sum_{i=1}^{n} \frac{1}{a_{i}}\right) \geq n^{2}
$$

and equality obtains if and only if $a_{1}=a_{2}=\cdots=a_{n}$.
(b) If a, b, c are positive and $a+b+c=1$, then

$$
(1 / a-1)(1 / b-1)(1 / c-1) \geq 8
$$

and equality obtains if and only if $a=b=c=1 / 3$.
Solution. (a) By the Cauchy-Schwarz inequality we have

$$
n=\sum_{i=1}^{n} a_{i}^{1 / 2}\left(\frac{1}{a_{i}}\right)^{1 / 2} \leq\left(\sum_{i=1}^{n} a_{i}\right)^{1 / 2}\left(\sum_{i=1}^{n} \frac{1}{a_{i}}\right)^{1 / 2} .
$$

(b) Since $a+b+c=1$, (a) implies $1 / a+1 / b+1 / c \geq 9$ and therefore

$$
(1 / a-1)(1 / b-1)(1 / c-1)=1 / a+1 / b+1 / c-1 \geq 8
$$

Exercise 1.4. Prove that for all $n \in \mathbb{N}$ we have

$$
\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdots \frac{2 n-1}{2 n} \leq \frac{1}{\sqrt{3 n+1}}
$$

end equality obtains if and only if $n=1$.
Solution. Note that

$$
\frac{2 k-1}{2 k} \leq \frac{\sqrt{3 k-2}}{\sqrt{3 k+1}}
$$

and therefore the product telescopes.
Exercise 1.5. (a) For all $n \in \mathbb{N}$ we have

$$
\sqrt{n+1}-\sqrt{n}<\frac{1}{\sqrt{n}}<\sqrt{n}-\sqrt{n-1}
$$

(b) If $n \in \mathbb{N}$ ad $n>1$ then

$$
2 \sqrt{n+1}-2<\sum_{k=1}^{n} \frac{1}{\sqrt{k}}<2 \sqrt{n}-1
$$

Solution. (a) We have

$$
\begin{aligned}
& \sqrt{n+1}-\sqrt{n}=\frac{1}{\sqrt{n+1}+\sqrt{n}}<\frac{1}{2 \sqrt{n}} \\
& \sqrt{n}-\sqrt{n-1}=\frac{1}{\sqrt{n}+\sqrt{n-1}}>\frac{1}{2 \sqrt{n}}
\end{aligned}
$$

(b) Sum inequalities (a) for $k=2,3, \ldots, n$.

Exercise 1.6. Let $n \in \mathbb{N}$ and $x \in \mathbb{R}$. Then
(a) $-1<x<0$ implies $(1+x)^{n} \leq 1+n x+(n(n-1) / 2) x^{2}$.
(b) $x>0$ implies $(1+x)^{n} \geq 1+n x+(n(n-1) / 2) x^{2}$.

Solution. Induction on n.
Exercise 1.7. If $n \in \mathbb{N}$, then $n!\leq((n+1) / 2)^{n}$.
Solution. In the Geometric-Arithmetic Means Inequality, take $a_{k}=k$.
Exercise 1.8. If $b_{1}, b_{2}, \ldots, b_{n}$ are positive real numbers, then

$$
\frac{n}{\frac{1}{b_{1}}+\frac{1}{b_{2}+\cdots \frac{1}{b_{n}}} \leq\left(b_{1} b_{2} \cdots b_{n}\right)^{1 / n}}
$$

Solution. In the Geometric-Arithmetic Means Inequality, take $a_{k}=1 / b_{k}$.
Exercise 1.9. If $x, y \in \mathbb{R}$ and $n \in \mathbb{N}$, then
(a) $[x+y] \geq[x]+[y]$,
(b) $[[x] / n]=[x / n]$,
(c) $\sum_{k=0}^{n-1}[x+k / n]=[n x]$.

Solution. (a) $[x]+[y]$ is an integer and satisfies $[x]+[y] \leq x+y$, therefore $[x]+[y] \leq$ $[x+y]$.
(b) We claim that $[x / n] \leq[x] / n$. Indeed, if this were not the case we would have $[x] / n<[x / n] \leq([x]+\epsilon) / n$, for some $0 \leq \epsilon<1$. Therefore $[x]<n[x / n] \leq[x]+\epsilon$, a contradiction since $n[x / n]$ is an integer. It follows that $[x / n] \leq[[x] / n]$. The converse inequality is obvious.
(c) Let

$$
f(x)=\sum_{k=0}^{n-1}[x+k / n]-[n x] .
$$

Then f is periodic with period $1 / n$ and vanishes on the interval $[0,1 / n]$. So, $f=0$ identically.

Exercise 1.10. (a) If a, b, c are positive real numbers then

$$
\left(\frac{1}{2} a+\frac{1}{3} b+\frac{1}{6} c\right)^{2} \leq \frac{1}{2} a^{2}+\frac{1}{3} b^{2}+\frac{1}{6} c^{2}
$$

with equality if and only if $a=b=c$.
(b) If a_{1}, \ldots, a_{n} and w_{1}, \ldots, w_{n} are positive real numbers with $\sum_{i=1}^{n} w_{i}=1$ then

$$
\left(\sum_{i=1}^{n} a_{i} w_{i}\right)^{2} \leq \sum_{i=1}^{n} a_{i}^{2} w_{i}
$$

with equality if and only if $a_{1}=a_{2}=\cdots=a_{n}$.
Solution. (a),(b) Cauchy-Schwarz inequality.
Exercise 1.11. If $n \in \mathbb{N}$, then
(a) $\sum_{k=1}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}$.
(b) $\sum_{k=1}^{2 n}(-1)^{k}\binom{2 n}{k}^{2}=(-1)^{n}\binom{2 n}{n}$.

Solution. (a) By the Binomial Theorem we have

$$
(1+x)^{2 n}=\sum_{k=0}^{2 n}\binom{2 n}{k} x^{k}
$$

But

$$
\begin{aligned}
(1+x)^{2 n} & =(1+x)^{n}(1+x)^{n}=\left(\sum_{i=0}^{n}\binom{n}{i} x^{i}\right)\left(\sum_{j=0}^{n}\binom{n}{j} x^{j}\right) \\
& =\sum_{i, j}\binom{n}{i}\binom{n}{j} x^{i+j}=\sum_{k=0}^{2 n} x^{k} \sum_{i+j=k}\binom{n}{i}\binom{n}{j} .
\end{aligned}
$$

Equating the coefficients of x^{n} we get

$$
\binom{2 n}{n}=\sum_{i+j=n}\binom{n}{i}\binom{n}{j}=\sum_{i=0}^{n}\binom{n}{i}\binom{n}{n-i}=\sum_{i=0}^{n}\binom{n}{i}^{2} .
$$

(b) As in (a) we have

$$
\left(1-x^{2}\right)^{2 n}=\sum_{k=0}^{2 n}\binom{2 n}{k}(-1)^{k} x^{2 k}
$$

and

$$
\begin{aligned}
\left(1-x^{2}\right)^{2 n} & =(1-x)^{2 n}(1+x)^{2 n}=\left(\sum_{i=0}^{2 n}\binom{2 n}{i}(-1)^{i} x^{i}\right)\left(\sum_{j=0}^{2 n}\binom{2 n}{j} x^{j}\right) \\
& =\sum_{i, j}\binom{2 n}{i}\binom{2 n}{j}(-1)^{i} x^{i+j}=\sum_{k=0}^{4 n} x^{k} \sum_{i+j=k}(-1)^{i}\binom{2 n}{i}\binom{2 n}{j} .
\end{aligned}
$$

Equating the coefficients of $x^{2 n}$ we get

$$
(-1)^{n}\binom{2 n}{n}=\sum_{i+j=2 n}(-1)^{i}\binom{2 n}{i}\binom{2 n}{j}=\sum_{i=0}^{2 n}(-1)^{i}\binom{2 n}{i}^{2}
$$

Exercise 1.12. If $m, n \in \mathbb{N}$, then $1+\sum_{k=1}^{m}\binom{n+k}{k}=\binom{n+m+1}{m}$.
Solution.

$$
1+\sum_{k=1}^{m}\binom{n+k}{k}=1+\sum_{k=1}^{m}\left(\binom{n+k+1}{k}-\binom{n+k}{k-1}\right)=\binom{n+m+1}{m} .
$$

Exercise 1.13. Prove Lagrange's inequality for real numbers

$$
\left(\sum_{k=1}^{n} a_{k} b_{k}\right)^{2}=\left(\sum_{k=1}^{n} a_{k}^{2}\right)\left(\sum_{k=1}^{n} b_{k}^{2}\right)-\sum_{1 \leq k<j \leq n}\left(a_{k} b_{j}-a_{j} b_{k}\right)^{2} .
$$

Solution. We have

$$
\sum_{1 \leq k<j \leq n}\left(a_{k} b_{j}-a_{j} b_{k}\right)^{2}=\sum_{1 \leq k<j \leq n}\left(a_{k}^{2} b_{j}^{2}+a_{j}^{2} b_{k}^{2}-2 a_{k} b_{j} a_{j} b_{k}\right) .
$$

But

$$
\sum_{1 \leq k<j \leq n} a_{k}^{2} b_{j}^{2}+\sum_{1 \leq k<j \leq n} a_{j}^{2} b_{k}^{2}=\left(\sum_{k=1}^{n} a_{k}^{2}\right)\left(\sum_{k=1}^{n} b_{k}^{2}\right)-\sum_{k=1}^{n} a_{k}^{2} b_{k}^{2}
$$

and

$$
\sum_{1 \leq k<j \leq n} 2 a_{k} b_{j} a_{j} b_{k}=\left(\sum_{k=1}^{n} a_{k} b_{k}\right)^{2}-\sum_{k=1}^{n} a_{k}^{2} b_{k}^{2}
$$

The result follows.
Exercise 1.14. Given a real x and an integer $N>1$, prove that there exist integers p and q with $0<q \leq N$ such that $|q x-p|<1 / N$.

Solution. For $k=0,1, \ldots, N$ let $a_{k}=k x-[k x]$. Then $\left\{a_{k}\right\}_{k=0}^{N} \subset[0,1)$, and therefore there exist $0 \leq k_{1}, k_{2} \leq N$ such that $\left|a_{k_{1}}-a_{k_{2}}\right|<1 / N$.

Exercise 1.15. If x is irrational prove that there are infinitely many rational numbers p / q with $q>0$ and such that $|x-p / q|<1 / q^{2}$.

Solution. Assume there are finitely many, say, $p_{1} / q_{1}, \ldots, p_{n} / q_{n}$. Then, by the preceding exercise, there exists p / q such that $|x-p / q|<1 /(q N)$ with $q \leq N$ and $1 / N<$ $\min \left\{\left|x-p_{i} / q_{1}\right|: 1 \leq i \leq n\right\}$. (The minimum is positive because x is irrational.)

CHAPTER 2

Sequences, Series and Limits

Exercise 2.1. Evaluate $\lim _{n \rightarrow \infty} \prod_{k=0}^{n}\left(1+a^{2^{k}}\right)$ where $a \in \mathbb{C}$.
Solution. If $a \neq 1$, then for all $n \in \mathbb{N}$ we have

$$
\prod_{k=0}^{n}\left(1+a^{2^{k}}\right)=\frac{1-a^{2^{n+1}}}{1-a}
$$

Therefore the sequence converges to $1 /(1-a)$ for $|a|<1$. It diverges for $|a|>1$ or $a=1$. The limit does not exist if $|a|=1$ and $a \neq 1$.

Exercise 2.2. Evaluate $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{\sqrt{n^{2}+k}}$.
Solution. Note that

$$
\frac{n}{\sqrt{n^{2}+n}} \leq \sum_{k=1}^{n} \frac{1}{\sqrt{n^{2}+k}} \leq 1
$$

Therefore the sum converges to 1 .
Exercise 2.3. Let $x=2+\sqrt{2}$ and $y=2-\sqrt{2}$. Then $n \in \mathbb{N}$ implies
(a) $x^{n}+y^{n} \in \mathbb{N}$ and $x^{n}+y^{n}=\left[x^{n}\right]+1$.
(b) $\lim _{n \rightarrow \infty}\left(x^{n}-\left[x^{n}\right]\right)=1$.

Solution. (a) By the Binomial Theorem, we have

$$
x^{n}+y^{n}=\sum_{k=0}^{n}\binom{n}{k} 2^{k+\frac{n-k}{2}}\left(1+(-1)^{n-k}\right)=\sum_{\substack{0 \leq k \leq n \\ n-k \text { even }}}\binom{n}{k} 2^{k+1+\frac{n-k}{2}} \in \mathbb{N} .
$$

Since $x^{n}+y^{n}-1<x^{n}<x^{n}+y^{n}$, we conclude that $\left[x^{n}\right]=x^{n}+y^{n}-1$.
(b) By (a), $x^{n}-\left[x^{n}\right]=1-y^{n} \rightarrow 0$ as $n \rightarrow \infty$.

EXercise 2.4. If $\left\{x_{n}\right\}_{n=1}^{\infty} \subset \mathbb{R},\left\{y_{n}\right\}_{n=1}^{\infty} \subset(0, \infty)$ and $\left\{x_{n} / y_{n}\right\}_{n=1}^{\infty}$ is monotone, then the sequence $\left\{z_{n}\right\}_{n=1}^{\infty}$ defined by

$$
z_{n}=\frac{x_{1}+\cdots+x_{n}}{y_{1}+\cdots+y_{n}}
$$

is also monotone.
Solution. Assume that $\left\{x_{n} / y_{n}\right\}_{n=1}^{\infty}$ is increasing and prove inductively that $z_{n} \leq z_{n+1} \leq$ x_{n+1} / y_{n+1} using the fact

$$
\frac{a}{b} \leq \frac{c}{d} \Rightarrow \frac{a}{b} \leq \frac{a+c}{b+d} \leq \frac{c}{d}
$$

Exercise 2.5. Let $0<a<b<\infty$. Define

$$
x_{1}=a, \quad x_{2}=b, \quad x_{2 n+1}=\sqrt{x_{2 n} x_{2 n-1}}, \quad x_{2 n+2}=\frac{x_{2 n}+x_{2 n-1}}{2}
$$

Then the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges.
Solution. Note that $\left[x_{2 n+1}, x_{2 n+2}\right] \subset\left[x_{2 n-1}, x_{2 n}\right]$ and

$$
x_{2 n+2}-x_{2 n+1} \leq \frac{x_{2 n}-x_{2 n-1}}{2} \leq \cdots \leq \frac{x_{2}-x_{1}}{2^{n-1}} \rightarrow 0
$$

Therefore the sequence converges and

$$
\lim _{n \rightarrow \infty} x_{n}=\bigcap_{n=1}^{\infty}\left[x_{2 n-1}, x_{2 n}\right]
$$

Exercise 2.6. Let $0<a<b<\infty$. Define

$$
x_{1}=a, \quad x_{2}=b, \quad x_{n+2}=\frac{x_{n}+x_{n+1}}{2} .
$$

Prove that the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges and determine its limit.
Solution. Note that $x_{n+1}-x_{n}=(-1 / 2)^{n-1}\left(x_{2}-x_{1}\right)$. Therefore

$$
x_{n}=x_{1}+\left(x_{2}-x_{1}\right) \sum_{k=0}^{n-2}\left(-\frac{1}{2}\right)^{k} \rightarrow a+(b-a) \frac{2}{3}=\frac{a+2 b}{3} .
$$

Exercise 2.7. Let $\left\{x_{n}\right\}_{n=1}^{\infty} \subset \mathbb{R}$ satisfy $0<x_{n}<1$ and $4 x_{n+1}\left(1-x_{n}\right) \geq 1$ for all $n \in \mathbb{N}$. Show that $\lim _{n \rightarrow \infty} x_{n}=1 / 2$.

Solution. Note that

$$
x_{n+1} \geq \frac{1}{4\left(1-x_{n}\right)} \geq x_{n}
$$

Therefore the sequence is increasing. Since it is bounded, it converges to a limit l which must satisfy $4 l(1-l) \geq 1$. We conclude that $l=1 / 2$.

Exercise 2.8. Let $1<a<\infty, x=1$, and $x_{n+1}=a\left(1+x_{n}\right) /\left(a+x_{n}\right)$. Show that $x_{n} \rightarrow \sqrt{a}$.

Solution. Prove inductively that the sequence is decreasing and bounded from below by \sqrt{a}.

Exercise 2.9. Define $x_{0}=0, x_{1}=1$, and

$$
x_{n+1}=\frac{1}{n+1} x_{n-1}+\frac{n}{n+1} x_{n}
$$

Prove that $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges and determine its limit.
Solution. Note that $x_{n+1}-x_{n}=(-1)^{n} /(n+1)$!, and so

$$
x_{n}=\sum_{k=0}^{n-1} \frac{(-1)^{k}}{(k+1)!} \rightarrow \frac{1}{e}
$$

Exercise 2.10. Let $a \in \mathbb{R}, a \notin\{0,1,2\}$ and define $x_{1}=a$, $x_{n+1}=2-2 / x_{n}$ for $n \in \mathbb{N}$. Find the limit points of the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$.

Solution. Note that $x_{n+4}=x_{n}$ for all $n \in \mathbb{N}$. Therefore the sequence takes on the values $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ only.

Exercise 2.11. For $n \in \mathbb{N}$, write $n=2^{j-1}(2 k-1)$ where $j, k \in \mathbb{N}$ and write

$$
S_{n}=\frac{1}{j}+\frac{1}{k}
$$

Find all limit points of the sequence $\left\{S_{n}\right\}_{n=1}^{\infty}$. Evaluate $\underline{\lim } S_{n}$ and $\overline{\lim } S_{n}$.
Solution. Let A be the set of limit points of $\left\{S_{n}\right\}_{n=1}^{\infty}$. We claim that $A=\{0\} \cup\{1 / n$: $n \in \mathbb{N}\}$. Indeed, let $n_{k}=2^{k-1}(2 k-1)$ and $m_{p, k}=2^{p-1}(2 k-1)$.Then

$$
S_{n_{k}}=\frac{2}{k} \rightarrow 0, \quad S_{m_{p, k}}=\frac{1}{p}+\frac{1}{k} \rightarrow \frac{1}{p} \quad \text { as } k \rightarrow \infty .
$$

Hence $A \supset\{0\} \cup\{1 / n: n \in \mathbb{N}\}$. Now take $l \in A, l \neq 0$. Then there exists a subsequence $\left\{S_{n_{m}}\right\}_{m=1}^{\infty}$ such that $S_{n_{m}} \rightarrow l$. Write $n_{m}=2^{j_{m}-1}\left(2 k_{m}-1\right)$. Note that at least one of the sets $\left\{j_{m}: m \in \mathbb{N}\right\},\left\{k_{m}: m \in \mathbb{N}\right\}$ is unbounded, and so we may assume, without loss of generality, that there exists $\left\{j_{m_{i}}\right\}_{i=1}^{\infty}$ with $j_{m_{i}} \rightarrow \infty$. Then, since $S_{n_{m_{i}}} \rightarrow l$, we have $k_{m_{i}} \rightarrow$ $1 / l$. Therefore $\left\{k_{m_{i}}\right\}_{i=1}^{\infty}$ is eventually constant and $l \in\left\{1 / k_{m_{i}}: i \in \mathbb{N}\right\} . \underline{\lim } S_{n}=\inf A=0$, $\overline{\lim } S_{n}=\sup A=1$.

Exercise 2.12. Prove that $(n / e)^{n}<n!$ for all $n \in \mathbb{N}$.
Solution. Induction on n. It is clearly true for $n=1$. Assuming $(n / e)^{n}<n$! we have

$$
\left(\frac{n+1}{e}\right)^{n+1}=\frac{n+1}{e}\left(1+\frac{1}{n}\right)^{n}\left(\frac{n}{e}\right)^{n}<\frac{n+1}{e} e n!=(n+1)!.
$$

Exercise 2.13. Evaluate
(a) $\lim _{n \rightarrow \infty}\left((2 n)!/(n!)^{2}\right)^{1 / n}$,
(b) $\lim _{n \rightarrow \infty}(1 / n)[(n+1)(n+2) \cdots(n+n)]^{1 / n}$,
(c) $\lim _{n \rightarrow \infty}\left[(2 / 1)(3 / 2)^{2}(4 / 3)^{3} \cdots((n+1) / n)^{n}\right]^{1 / n}$.

Solution. Let

$$
\begin{gathered}
a_{n}=\frac{(2 n)!}{(n!)^{2}}, \quad b_{n}=\frac{(n+1)(n+2) \cdots(n+n)}{n^{n}} \\
c_{n}=\left(\frac{2}{1}\right)\left(\frac{3}{2}\right)^{2}\left(\frac{4}{3}\right)^{3} \cdots\left(\frac{n+1}{n}\right)^{n}
\end{gathered}
$$

Then

$$
\begin{gathered}
\frac{a_{n+1}}{a_{n}}=\frac{(2 n+1)(2 n+2)}{(n+1)^{2}} \rightarrow 4, \quad \frac{b_{n+1}}{b_{n}}=\left(\frac{n}{n+1}\right)^{n} \frac{(2 n+1)(2 n+2)}{(n+1)^{2}} \rightarrow \frac{4}{e} \\
\frac{c_{n+1}}{c_{n}}=\left(1+\frac{1}{n+1}\right)^{n+1} \rightarrow e
\end{gathered}
$$

Therefore

$$
\sqrt[n]{a_{n}} \rightarrow 4, \quad \sqrt[n]{b_{n}} \rightarrow \frac{4}{e}, \quad \sqrt[n]{c_{n}} \rightarrow e
$$

Exercise 2.14. Evaluate $\lim n \rightarrow \infty(\sqrt[n]{n}-1)^{n}$.

Solution. Since $\sqrt[n]{n} \rightarrow 1$, there exists $n_{0} \in \mathbb{N}$ such that $0<\sqrt[n]{n}-1<1 / 2$ for all $n \geq n_{0}$, and so $0<(\sqrt[n]{n}-1)^{n}<(1 / 2)^{n}$. Therefore $0 \leq \underline{\lim }(\sqrt[n]{n}-1)^{n} \leq \overline{\lim }(\sqrt[n]{n})^{n} \leq 0$. We conclude that $\lim _{n \rightarrow \infty}(\sqrt[n]{n}-1)^{n}=0$.

Exercise 2.15. If $\left\{x_{n}\right\}_{n=1}^{\infty} \subset(0, \infty)$ and $x_{n} \rightarrow x$, then $\left(x_{1} \cdots x_{n}\right)^{1 / n} \rightarrow x$.
Solution. By the Harmonic-Geometric-Arithmetic Means Inequality we have

$$
\frac{n}{\frac{1}{x_{1}}+\cdots+\frac{1}{x_{n}}} \leq\left(x_{1} \cdots x_{n}\right)^{1 / n} \leq \frac{x_{1}+\cdots+x_{n}}{n} .
$$

Therefore $\left(x_{1} \cdots x_{n}\right)^{1 / n} \rightarrow x$.
Exercise 2.16. (a) Let $S_{n}=\sum_{k=1}^{n} 1 / k$ for $n \in \mathbb{N}$. Then $\lim _{n \rightarrow \infty}\left|S_{n+p}-S_{n}\right|=0$ for all $p \in \mathbb{N}$, but $\left\{S_{n}\right\}_{n=1}^{\infty}$ diverges to ∞.
(b) Find a divergent sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ in \mathbb{R} such that $\lim _{n \rightarrow \infty}\left|x_{n^{2}}-x_{n}\right|=0$.

Solution. (a) $\left|S_{n+p}-S_{n}\right|=1 /(n+1)+\cdots+1 /(n+p) \leq p /(n+1) \rightarrow 0$
(b) For $n \geq 4$ let $k(n)$ be the unique integer such that $2^{2^{k(n)}} \leq n<2^{2^{k(n)+1}}$ and define $x_{n}=\sum_{j=1}^{k(n)} 1 / j$. Note that $k(n) \rightarrow \infty$ and $k\left(n^{2}\right)=k(n)+1$. Therefore $x_{n} \rightarrow \infty$ and $\left|x_{n^{2}}-x_{n}\right|=$ $1 /(k(n)+1) \rightarrow 0$.

Exercise 2.17. There exist two divergent series $\sum a_{n}$ and $\sum b_{n}$ of positive terms with $a_{1} \geq a_{2} \geq \cdots$ and $b_{1} \geq b_{2} \geq \cdots$ such that if $c_{n}=\min \left\{a_{n}, b_{n}\right\}$, then $\sum c_{n}$ converges.

Solution. Let

$$
a_{k}=1 / 2^{k}, \quad b_{k}=1 / 2^{n} \quad \text { if } 2^{n} \leq k<2^{n+1}, n \text { even }
$$

and

$$
a_{k}=1 / 2^{n}, \quad b_{k}=1 / 2^{k} \quad \text { if } 2^{n} \leq k<2^{n+1}, n \text { odd. }
$$

Exercise 2.18. Evaluate the sums
(a) $\sum_{n=1}^{\infty} 1 /(n(n+1)(n+2))$,
(b) $\sum_{n=1}^{\infty}(n-1)!/(n+p)!$, where $p \in \mathbb{N}$ is fixed.

Solution. (a) Note that

$$
\frac{1}{n(n+1)(n+2)}=\frac{1}{2}\left[\frac{1}{n(n+1)}-\frac{1}{(n+1)(n+2)}\right]
$$

Consequently

$$
\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)}=\frac{1}{2}\left[\frac{1}{2}-\frac{1}{(n+1)(n+2)}\right] \rightarrow \frac{1}{4}
$$

(b) We have

$$
\frac{(n-1)!}{(n+p)!}=\frac{1}{n \cdots(n+p)}=\frac{1}{p}\left[\frac{1}{n \cdots(n+p-1)}-\frac{1}{(n+1) \cdots(n+p)}\right] .
$$

Therefore

$$
\sum_{k=1}^{n} \frac{(k-1)!}{(k+p)!}=\frac{1}{p}\left[\frac{1}{p!}-\frac{1}{(n+1) \cdots(n+p)}\right] \rightarrow \frac{1}{p p!}
$$

Exercise 2.19. Let $\sum a_{n}$ be a convergent series of nonnegative terms. Then
(a) $\underline{\lim } n a_{n}=0$,
(b) possibly $\overline{\lim } n a_{n}>0$,
(c) if $a_{n} \geq a_{n+1}$ for all $n>n_{0}$, then $\lim n a_{n}=0$.

Solution. (a) Suppose that $\underline{\lim } n a_{n}>c>0$ for some c. Then there exists $n_{0} \in \mathbb{N}$ such that $n a_{n}>c$ for $n \geq n_{0}$. Consequently,

$$
\sum_{n=n_{0}}^{N} a_{n}>c \sum_{n=n_{0}}^{N} \frac{1}{n} \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty,
$$

a contradiction.
(b) Let $a_{k}=1 / 2^{k}$ if $k \neq 2^{n}$ and $a_{k}=1 / 2^{n}$ if $k=2^{n}$. Then

$$
\sum_{k=1}^{N} a_{k}=\sum_{k \neq 2^{n}} a_{k}+\sum_{k=2^{n}} a_{k} \leq \sum_{k=1}^{N} \frac{1}{2^{k}}+\sum_{n: 2^{n} \leq N} \frac{1}{2^{n}} \leq 2 \sum_{k=1}^{\infty} \frac{1}{2^{k}}<\infty
$$

and $\lim _{n \rightarrow \infty} 2^{n} a_{2^{n}}=1$.
(c) Note that

$$
n a_{2 n} \leq \sum_{k=n+1}^{2 n} a_{k} \rightarrow 0 \quad \text { and } \quad n a_{2 n+1} \leq \sum_{k=n+2}^{2 n+1} a_{k} \rightarrow 0
$$

Therefore $\lim _{n \rightarrow \infty} 2 n a_{2 n}=\lim _{n \rightarrow \infty}(2 n+1) a_{2 n+1}=0$. We conclude that $\lim n a_{n}=0$.
Exercise 2.20. If $\left\{c_{m}\right\}_{m=1}^{\infty} \subset[0, \infty]$ and

$$
b_{n}=\frac{1}{n(n+1)} \sum_{m=1}^{n} m c_{m}
$$

then

$$
\sum_{n=1}^{\infty} b_{n}=\sum_{m=1}^{\infty} c_{m}
$$

Solution. Define

$$
a_{m, n}= \begin{cases}\frac{m c_{m}}{n(n+1)} & \text { if } 1 \leq m \leq n, \\ 0 & \text { if } m>n .\end{cases}
$$

Then

$$
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} a_{m, n}=\sum_{n=1}^{\infty} \frac{1}{n(n+1)} \sum_{m=1}^{n} m c_{m}=\sum_{n=1}^{\infty} b_{n} .
$$

On the other hand

$$
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{m, n}=\sum_{m=1}^{\infty} m c_{m} \sum_{n=m}^{\infty} \frac{1}{n(n+1)}=\sum_{m=1}^{\infty} c_{m} .
$$

Exercise 2.21. (a) Prove that $\sum_{n=1}^{\infty} 1 / n^{2}<2$.
(b) Prove that

$$
\sum_{m=1}^{\infty}\left(\sum_{n=1}^{\infty} \frac{1}{(m+n)^{2}}\right)=\infty
$$

Solution. (a) We have

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=1+\sum_{n=2}^{\infty} \frac{1}{n^{2}}<1+\sum_{n=2}^{\infty} \frac{1}{n(n-1)}=1+\sum_{n=2}^{\infty}\left(\frac{1}{n-1}-\frac{1}{n}\right)=2 .
$$

(b) We have

$$
\begin{aligned}
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{(m+n)^{2}} & =\sum_{m=1}^{\infty} \sum_{n=m+1}^{\infty} \frac{1}{n^{2}} \geq \sum_{m=1}^{\infty} \sum_{n=m+1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right) \\
& =\sum_{m=1}^{\infty} \frac{1}{m+1}=\infty
\end{aligned}
$$

Exercise 2.22. Let b be an integer >1 and let d be a digit $(0 \leq d<b)$. Let A denote the set of all $k \in \mathbb{N}$ such that the b-adic expansion of k fails to contain the digit d.
(a) If $a_{k}=1 / k$ for $k \in A$ and $a_{k}=0$ otherwise, then $\sum_{k=1}^{\infty} a_{k}<\infty$.
(b) For $n \in \mathbb{N}$ let $A(n)$ denote the number of elements of A that are $\leq n$. Then $\lim _{n \rightarrow \infty}(A(n) / n)=0$.

Solution. Let

$$
\begin{aligned}
A_{n} & =\{k: k \text { is an } n \text {-digit number and does not contain the digit } d\} \\
& =\left\{k: b^{n-1} \leq k<b^{n}\right\} \cap A .
\end{aligned}
$$

Note that $\left|A_{n}\right|=(b-2)(b-1)^{n-1}$.
(a) We have

$$
\sum_{k=1}^{\infty} a_{k}=\sum_{n=1}^{\infty} \sum_{k \in A_{n}} a_{k} \leq \sum_{n=1}^{\infty} \frac{\left|A_{n}\right|}{b^{n-1}}=(b-2) \sum_{n=1}^{\infty}\left(\frac{b-1}{b}\right)^{n-1}<\infty .
$$

(b) If $b \neq 2$ then

$$
A(n) \leq \sum_{k: b^{k-1} \leq n}\left|A_{k}\right|=(b-2) \sum_{k: b^{k} \leq n}(b-1)^{k} \leq n^{1 / \log _{b-1} b}-1 .
$$

If $b=2$ then $A(n)=\left|\left\{k: 2^{k} \leq n\right\}\right| \leq \log _{2} n$. Therefore $\lim _{n \rightarrow \infty}(A(n) / n)=0$.
Exercise 2.23. Let $0<x<1$. Then x has a terminating decimal expansion if and only if there exist nonnegative integers m and n such that $2^{m} 5^{n} x$ is an integer.

Solution. If x has a terminating decimal expansion, then $x=p / 10^{k}=p /\left(2^{k} 5^{k}\right)$. Conversely, if $2^{m} 5^{n} x=N \in \mathbb{N}$ for some, say, $m \leq n$, then $x=2^{n-m} N / 10^{n}$.

Exercise 2.24. Evaluate $\lim _{n \rightarrow \infty}(n!e-[n!e])$.
Solution. Let $S_{n}=\sum_{k=0}^{n} 1 / k!$. Then, using the error estimate for the "tail", we have $0<n!e-n!S_{n}<1 / n$. We conclude that $[n!e]=n!S_{n}$ and therefore $n!e-[n!e] \rightarrow 0$.

Exercise 2.25. Show that $\lim _{n \rightarrow \infty} n \sin (2 \pi e n!)=2 \pi$.

Solution. Since $\lim _{n \rightarrow \infty}(e n!-[e n!])=0$ we have

$$
\lim _{n \rightarrow \infty} \frac{\sin (2 \pi e n!-2 \pi[e n!])}{2 \pi e n!-2 \pi[e n!]}=1 \Rightarrow \lim _{n \rightarrow \infty} \frac{\sin (2 \pi e n!)}{e n!-[e n!]}=2 \pi .
$$

Note that the error estimate for the Maclaurin series expansion of e implies $1 /(n+1)<e n!-[e n!]<1 / n$, and so $\lim _{n \rightarrow \infty} n(e n!-[e n!])=1$. It follows that

$$
n \sin (2 \pi e n!)=n(e n!-[e n!]) \frac{\sin (2 \pi e n!)}{e n!-[e n!]} \rightarrow 2 \pi .
$$

Exercise 2.26. Find the sum of the series

$$
\sum_{n=1}^{\infty} \frac{1}{(n+1) \sqrt{n}+n \sqrt{n+1}}
$$

Solution.

$$
\sum_{n=1}^{\infty} \frac{1}{(n+1) \sqrt{n}+n \sqrt{n+1}}=\sum_{n=1}^{\infty}\left(\frac{\sqrt{n}}{n}-\frac{\sqrt{n+1}}{n+1}\right)=1 .
$$

Exercise 2.27. Let $a_{n}>0$ for each $n \in \mathbb{N}$. Then
(a) $\sum_{n=1}^{\infty} a_{n}<\infty$ implies $\sum_{n=1}^{\infty} \sqrt{a_{n} a_{n+1}}<\infty$,
(b) the converse of (a) is false,
(c) $\sum_{n=1}^{\infty} a_{n}<\infty$ implies $\sum_{n=1}^{\infty}\left(a_{n}^{-1}+a_{n+1}^{-1}\right)^{-1}<\infty$,
(d) the converse of (c) is false.

Solution. By the Harmonic-Geometric-Arithmetic Means Inequality, we have

$$
2\left(a_{n}^{-1}+a_{n+1}^{-1}\right)^{-1} \leq \sqrt{a_{n} a_{n+1}} \leq \frac{1}{2}\left(a_{n}+a_{n+1}\right)
$$

proving (a) and (c). For (b) and (d), let $a_{n}=1 / n$ if n is even and $a_{n}=1 / n^{3}$ if n is odd.
Exercise 2.28. Suppose that $d_{n}>0$ for all $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty}=\infty$. What can be said of the following series?
(a) $\sum_{n=1}^{\infty} d_{n} /\left(1+d_{n}\right)$,
(b) $\sum_{n=1}^{\infty} d_{n} /\left(1+n d_{n}\right)$,
(c) $\sum_{n=1}^{\infty} d_{n} /\left(1+d_{n}^{2}\right)$.

Solution. (a) If $\left\{d_{n}\right\}_{n=1}^{\infty}$ is bounded then $1 /\left(1+d_{n}\right)$ is bounded from below, therefore

$$
\sum_{n=1}^{\infty} \frac{d_{n}}{1+d_{n}} \geq C \sum_{n=1}^{\infty} d_{n}=\infty
$$

If $\left\{d_{n}\right\}_{n=1}^{\infty}$ is unbounded then there exists a subsequence $\left\{d_{k_{n}}\right\}_{n=1}^{\infty}$ with $d_{k_{n}} \rightarrow \infty$. Therefore there exists n_{0} such that $d_{k_{n}} /\left(1+d_{k_{n}}\right)>1 / 2$ for all $n \geq n_{0}$. Consequently $\sum_{n=1}^{\infty} d_{n} /\left(1+d_{n}\right)=\infty$.
(b) Let $d_{n}=1$ for all $n \in \mathbb{N}$. Then

$$
\sum_{n=1}^{\infty} d_{n}=\sum_{n=1}^{\infty} \frac{d_{n}}{1+n d_{n}}=\infty
$$

Let $d_{k}=1 / 2^{k}$ if $k \neq 2^{n}$ and $d_{k}=2^{n}$ if $k=2^{n}$. Then $\sum_{n=1}^{\infty} d_{n}=\infty$ and

$$
\frac{d_{k}}{1+k d_{k}}= \begin{cases}\frac{1}{k+2^{k}} & \text { if } k \neq 2^{n}, \\ \frac{2^{n}}{1+4^{n}} & \text { if } k=2^{n} .\end{cases}
$$

Therefore $\sum_{n=1}^{\infty} d_{n} /\left(1+n d_{n}\right)<\infty$.
(c) Let $d_{n}=1$ for all n. Then $\sum_{n=1}^{\infty} d_{n} /\left(1+d_{n}^{2}\right)=\infty$. Let $d_{n}=n^{2}$. Then $\sum_{n=1}^{\infty} d_{n} /\left(1+d_{n}^{2}\right)<$ ∞.

Exercise 2.29. Let $0<a<b<\infty$ and define $x_{1}=a$, $x_{2}=b$, and $x_{n+2}=\sqrt{x_{n} x_{n+1}}$ for $n \in \mathbb{N}$. Find $\lim _{n \rightarrow \infty} x_{n}$.

Solution. Let $y_{n}=\log x_{n}$ and use Exercise 2.6.
Exercise 2.30. Let $0<a<b<\infty$ and define $x_{1}=a$, $y_{1}=b$, $x_{n+1}=2\left(x_{n}^{-1}+y_{n}^{-1}\right)^{-1}$, and $y_{n+1}=\sqrt{x_{n} y_{n}}$. Then $\left\{x_{n}\right\}_{n=1}^{\infty}$ and $\left\{y_{n}\right\}_{n=1}^{\infty}$ both converge and have the same limit.

Solution. Prove inductively, using the Harmonic-Geometric Means Inequality, that

$$
a<x_{n} \leq x_{n+1} \leq y_{n+1} \leq y_{n}<b \quad \text { and } \quad y_{n+1}-x_{n+1} \leq \frac{1}{2}\left(y_{n}-x_{n}\right) .
$$

Exercise 2.31. Show that if $\sum_{k=1}^{\infty} a_{k}=1$ and $0<a_{n} \leq \sum_{k=n+1}^{\infty}, n=1,2, \ldots$, then for every $x \in(0,1)$ there is a subseries $\sum_{k=1}^{\infty} a_{n_{k}}$ whose sum is x.

Solution. Note that, since the sum of the series is 1 and $x \in(0,1)$, there exists $n_{1} \in \mathbb{N}$ such that

$$
\sum_{k=n_{1}}^{\infty} a_{k}>x \quad \text { and } \quad \sum_{k=n_{1}+1}^{\infty} a_{k} \leq x
$$

implying

$$
\sum_{k=n_{1}+1}^{\infty} a_{k}>x-a_{n_{1}} \quad \text { and } \quad a_{n_{1}} \leq x
$$

Therefore there exists $n_{2}>n_{1}$ such that

$$
\sum_{k=n_{2}}^{\infty} a_{k}>x-a_{n_{1}} \quad \text { and } \quad \sum_{k=n_{2}+1} \leq x-a_{n_{1}} .
$$

Continuing this way, we can find a sequence of integers $n_{1}<n_{2}<\cdots$ such that

$$
0 \leq x-\sum_{k=1}^{m} a_{n_{k}}<\sum_{k=n_{m}+1}^{\infty} a_{k} .
$$

Letting $m \rightarrow \infty$, we conclude that $\sum_{k=1}^{\infty} a_{n_{k}}=x$.

EXERCISE 2.32. Show that if $a_{n}, b_{n} \in \mathbb{R},\left(a_{n}+b_{n}\right) b_{n} \neq 0, n=1,2, \ldots$, and both $\sum_{n=1}^{\infty} a_{n} / b_{n}$ and $\sum_{n=1}^{\infty}\left(a_{n} / b_{n}\right)^{2}$ converge, then $\sum_{n=1}^{\infty} a_{n} /\left(a_{n}+b_{n}\right)$ converges.

Solution. Choose $k_{0} \in \mathbb{N}$ such that $\left|1+a_{k} / b_{k}\right| \geq 1 / 2$ for all $k \geq k_{0}$. Then

$$
\frac{1}{\left|a_{k} b_{k}+b_{k}^{2}\right|} \leq \frac{2}{\left|b_{k}\right|^{2}}
$$

Note that

$$
\sum_{k=k_{0}}^{n} \frac{a_{k}}{a_{k}+b_{k}}=\sum_{k=k_{0}}^{n} \frac{a_{k}}{b_{k}}-\sum_{k=k_{0}}^{n} \frac{a_{k}^{2}}{a_{k} b_{k}+b_{k}^{2}}
$$

and

$$
\sum_{k=k_{0}}^{n}\left|\frac{a_{k}^{2}}{a_{k} b_{k}+b_{k}^{2}}\right| \leq 2 \sum_{k=k_{0}}^{n}\left|\frac{a_{k}}{b_{k}}\right|^{2}
$$

We conclude that $\sum_{n=1}^{\infty} a_{n} /\left(a_{n}+b_{n}\right)$ converges.
ExERCISE 2.33. Show that if $b_{n} \searrow 0$ and $\sum_{n=1}^{\infty} b_{n}=\infty$, then there is a sequence $\left\{a_{n}\right\}_{n=1}^{\infty} \subset$ \mathbb{R} such that $a_{n} / b_{n} \rightarrow 1$ as $n \rightarrow \infty$ and $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ diverges.

Solution. Let

$$
S_{n}=\sum_{k=1}^{n} b_{k}, \quad a_{n}=b_{n}+(-1)^{n} \frac{b_{n}}{S_{n}}
$$

Note that $a_{n}>0$ for large n and

$$
\sum_{n=1}^{m}(-1)^{n} a_{n}=\sum_{n=1}^{m}(-1)^{n} b_{n}+\sum_{n=1}^{m} \frac{b_{n}}{S_{n}}
$$

The first series in the above sum converges, being alternating, while the second diverges by Abel's Theorem. Therefore $\sum_{n=1}^{\infty} a_{n}$ diverges. On the other hand, $a_{n} / b_{n}=1+(-1)^{n} / S_{n} \rightarrow 1$ as $n \rightarrow \infty$.

Exercise 2.34. Show that if $n \geq 2$, then $\sum_{k=1}^{\infty}\left(1-\left(1-2^{-k}\right)^{n}\right) \simeq \log n$.
Solution. Note that

$$
\frac{1}{m+1}=\int_{0}^{1} x^{m} d x=\sum_{k=0}^{\infty} \int_{1-1 / 2^{k}}^{1-1 / 2^{k+1}} x^{m} d x \leq \sum_{k=1}^{\infty} \frac{1}{2^{k}}\left(1-\frac{1}{2^{k}}\right)^{m}
$$

and similarly

$$
\sum_{k=1}^{\infty} \frac{1}{2^{k}}\left(1-\frac{1}{2^{k}}\right)^{m} \leq \frac{2}{m+1}
$$

Therefore

$$
\begin{aligned}
\sum_{k=1}^{\infty}\left(1-\left(1-\frac{1}{2^{k}}\right)^{n}\right) & =\sum_{k=1}^{\infty} \sum_{m=0}^{n-1} \frac{1}{2^{k}}\left(1-\frac{1}{2^{k}}\right)^{m}=\sum_{m=0}^{n-1} \sum_{k=1}^{\infty} \frac{1}{2^{k}}\left(1-\frac{1}{2^{k}}\right)^{m} \\
& \simeq \sum_{m=1}^{n} \frac{1}{m} \simeq \log n .
\end{aligned}
$$

Exercise 2.35. Show that if $r_{n} \in \mathbb{R}$, then $\lim _{n \rightarrow \infty} \int_{0}^{\infty} e^{-x}\left(\sin \left(x+r_{n}\right)\right)^{n} d x=0$.
Solution.

$$
\begin{aligned}
\int_{0}^{\infty}\left|e^{-x}\left(\sin \left(x+r_{n}\right)\right)^{n}\right| d x & =\int_{0}^{\infty} e^{-x}\left|\sin \left(x+r_{n} \bmod 2 \pi\right)\right|^{n} d x \\
& =e^{r_{n} \bmod 2 \pi} \int_{r_{n} \bmod 2 \pi}^{\infty} e^{-x}|\sin (x)|^{n} d x \\
& \leq e^{2 \pi} \int_{0}^{\infty} e^{-x}|\sin (x)|^{n} d x
\end{aligned}
$$

Note that $|\sin (x)|^{n} \rightarrow 0$ almost everywhere, and so, by the Dominated Convergence Theorem, $\int_{0}^{\infty} e^{-x}|\sin (x)|^{n} d x \rightarrow 0$.

Exercise 2.36. Let $f:[0,1] \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}\frac{x \log x}{x-1} & \text { if } 0<x<1 \\ 0 & \text { if } x=0 \\ 1 & \text { if } x=1\end{cases}
$$

Show that

$$
\int_{0}^{1} f(x) d x=1-\sum_{n=2}^{\infty} \frac{1}{n^{2}(n-1)}
$$

Solution. Note that

$$
\frac{x \log x}{x-1}=\sum_{n=0}^{\infty} \frac{x(1-x)^{n}}{n+1}
$$

and the convergence is uniform on $[0,1]$ by Weierstrass M-test. Therefore

$$
\begin{aligned}
\int_{0}^{1} f(x) d x & =\sum_{n=0}^{\infty} \frac{1}{n+1} \int_{0}^{1} x(1-x)^{n} d x=\sum_{n=0}^{\infty} \frac{1}{(n+1)^{2}(n+2)} \\
& =1-\sum_{n=2}^{\infty} \frac{1}{n^{2}(n-1)}
\end{aligned}
$$

Exercise 2.37. Show that

$$
\lim _{n \rightarrow \infty} \sum_{j=n}^{k n} \frac{1}{j}=\log k
$$

Conclude that

$$
\sum_{j=1}^{\infty} \frac{(-1)^{j+1}}{j}=\log 2
$$

Solution. Note that

$$
\int_{j}^{j+1} \frac{d x}{x} \leq \frac{1}{j} \leq \int_{j}^{j+1} \frac{d x}{x-1}
$$

Therefore

$$
\int_{n}^{k n+1} \frac{d x}{x} \leq \sum_{j=n}^{k n} \frac{1}{j} \leq \int_{n}^{k n+1} \frac{d x}{x-1}
$$

and consequently

$$
\log \left(k+\frac{1}{n}\right) \leq \sum_{j=n}^{k n} \frac{1}{j} \leq \log \left(k+\frac{k}{n-1}\right)
$$

Taking the limit as $n \rightarrow \infty$, we obtain the first assertion. To prove the second assertion, note that

$$
\sum_{j=1}^{2 n} \frac{(-1)^{j+1}}{j}=\sum_{j=1}^{2 n} \frac{1}{j}-2 \sum_{j=1}^{n} \frac{1}{2 j}=\sum_{j=n+1}^{2 n} \frac{1}{j}=\sum_{j=n}^{2 n} \frac{1}{j}-\frac{1}{n} \rightarrow \log 2, \text { as } n \rightarrow \infty .
$$

Since $\sum_{j=1}^{\infty} \frac{(-1)^{j+1}}{j}$ converges by Leibniz, we conclude that $\sum_{j=1}^{\infty} \frac{(-1)^{j+1}}{j}=\log 2$.
Exercise 2.38. Show that $e^{x^{2} / 2} \int_{x}^{\infty} e^{-t^{2} / 2} d t$ is a decreasing function of x on $[0, \infty)$ and that its limit as $x \rightarrow \infty$ is 0 .

Solution. By L'Hospital's Rule we have

$$
\lim _{x \rightarrow \infty} \frac{\int_{x}^{\infty} e^{-t^{2} / 2} d t}{e^{-x^{2} / 2}}=\lim _{x \rightarrow \infty} \frac{-e^{-x^{2}}}{-x e^{-x^{2} / 2}}=\lim _{x \rightarrow \infty} \frac{1}{x}=0 .
$$

Now let

$$
g(x)=e^{x^{2} / 2} \int_{x}^{\infty} e^{-t^{2} / 2} d t \quad \text { and } \quad h(x)=\frac{e^{-x^{2} / 2}}{x}-\int_{x}^{\infty} e^{-t^{2} / 2} d t
$$

Then

$$
g^{\prime}(x)=x e^{x^{2} / 2} \int_{x}^{\infty} e^{-t^{2} / 2} d t-1 \quad \text { and } \quad h^{\prime}(x)=-\frac{e^{-x^{2} / 2}}{x^{2}}<0
$$

Hence h is strictly decreasing. Note that $\lim _{x \rightarrow \infty} h(x)=0$. therefore $h(x)>0$ and consequently $g^{\prime}(x)<0$.

CHAPTER 3

Topology

Exercise 3.1. Let X be a 2nd countable space. Show that if $\left\{G_{i}\right\}_{i \in I}$ is an arbitrary family of open sets in X then there exists a countable subset $J \subset I$ such that $\bigcup_{i \in I} G_{i}=$ $\bigcup_{i \in J} G_{i}$.

Solution. Suppose $\left\{U_{k}\right\}_{k \in \mathbb{N}}$ is a basis for the topology of X. Let

$$
K=\left\{k \in \mathbb{N}: \exists i(k) \in I \text { such that } U_{k} \subset G_{i(k)}\right\}
$$

and put $J=\{i(k): k \in K\}$.
Exercise 3.2. Let X be a 2nd countable space, and let $A \subset X$ be an uncountable set. Prove that A has at least one condensation point.

Solution. Suppose that for each $x \in A$ there is an open set $U_{x} \subset X$ with $x \in U_{x}$ and $\left|A \cap U_{x}\right| \leq \mathbf{\aleph}_{0}$. Since X is 2nd countable there exists $\left\{x_{n}\right\}_{n=1}^{\infty} \subset A$ such that $\bigcup_{x \in A} U_{x}=$ $\bigcup_{n=1}^{\infty} U_{x_{n}}$. Hence $A=\bigcup_{n=1}^{\infty}\left(U_{x_{n}} \cap A\right)$ and therefore $U_{x_{n_{0}}} \cap A$ must be uncountable for some n_{0}, a contradiction.

Exercise 3.3. If X is a 2nd countable space and A is a closed subset of X, then there exist a perfect set P and a countable set N, such that $A=P \cup N$. Conclude that any subset of a 2nd countable space can have only countably many isolated points.

Solution. Let $P=\left\{x \in X\right.$: for each nbd U_{x} of $x, U_{x} \cap A$ is uncountable $\}$. Using the preceding exercise, P is perfect and $A \backslash P$ is countable.

Exercise 3.4. Prove the following assertions.
(a) If A is nonempty perfect subset of a complete metric space then A is uncountable.
(b) Any countable closed subset of a complete metric space has infinitely many isolated points.
(c) There exists a countable closed subset of \mathbb{R} having infinitely many limit.points.

Solution. Suppose X is a complete metric space.
(a) Note that since A is a closed subset of X, it is complete as a metric space. If A is countable then by the Baire category theorem, at least one of its points must be isolated.
(b) Assume that there exists a countable closed subset of X with finitely many isolated points. Removing these points results in a countable perfect set, contradicting (a).
(c) Take infinite copies of a convergent sequence together with its limit.

Exercise 3.5. It is impossible to express $[0,1]$ as a union of disjoint closed nondegenerate intervals of length <1.

Solution. Suppose $[0,1]=\bigcup_{i \in I}\left[x_{i}, y_{i}\right]$, where $\left\{\left[x_{i}, y_{i}\right]\right\}_{i \in I}$ is disjoint. Note that I must be countable. Then the set of endpoints $\left(\left\{x_{i}: i \in I\right\} \cup\left\{y_{i}: i \in I\right\}\right) \backslash\{0,1\}$ is a countable perfect set, a contradiction by the preceding exercise.

Exercise 3.6. It is impossible to express $[0,1]$ as a countable union of disjoint closed sets.

Solution. Suppose $[0,1]=\bigcup_{n=1}^{\infty} F_{n}$ with the F_{n} 's closed and pairwise disjoint. Since $F_{1} \cap F_{2}=\emptyset$, we can find a closed interval I_{1} such that $I_{1} \cap F_{1}=\emptyset, I_{1} \cap F_{2} \neq \emptyset, I_{1} \backslash F_{2} \neq \emptyset$. We repeat the same procedure inside I_{1} with $I_{1} \cap F_{2}$ playing the role of F_{1} and $I_{1} \cap F_{k}$ playing the role of F_{2}, where F_{k} is the first set in the sequence $\left\{F_{n}\right\}_{n=3}^{\infty}$ intersecting I_{1}. We thereby construct a decreasing sequence of closed intervals $\left\{I_{n}\right\}_{n=1}^{\infty}$ such that $I_{n} \cap F_{n}=\emptyset$, a contradiction.

Exercise 3.7. Let A be a bounded subset of \mathbb{R} which is not closed. Construct explicitly an open cover of A that has no finite subcover.

Solution. Let $x \in \mathbb{R} \backslash A$ be a point such that $(x-\epsilon, x+\epsilon) \cap A \neq \emptyset$ for all $\epsilon>0$. For each n choose $x_{n} \in(x-1 / n, x+1 / n) \cap A$. Without loss of generality we may assume that $\left\{x_{n}\right\}_{n=1}^{\infty}$ is monotone. If $x_{1}<\cdots<x_{n}<\cdots x$, consider the cover $\left\{\left(-\infty, x_{n}\right)\right\}_{n=1}^{\infty} \cup\{(x, \infty)\}$. If $x_{1}>\cdots>x_{n}>\cdots x$, then take the covering $\left\{\left(x_{n}, \infty\right)\right\}_{n=1}^{\infty} \cup\{(-\infty, x)\}$.

Exercise 3.8. Let (X, ρ) be a metric space and $A, B \subset X$ disjoint closed sets. Show that there exists a continuous function $f: X \rightarrow \mathbb{R}$ such that $f \mid A=0$ and $f \mid B=1$.

Solution. Let

$$
f(x)=\frac{\rho(x, A)}{\rho(x, A)+\rho(x, B)} .
$$

Then f is well-defined and has the required properties.
Exercise 3.9. If X is a connected metric space with at least two points, then X is uncountable.

Solution. Let $x, y \in X$ be two distinct points. By the preceding exercise, there exists a continuous function $f: X \rightarrow \mathbb{R}$ with $f(x)=0$ and $f(y)=1$. Since X is connected, f has the intermediate value property. Therefore $[0,1] \subset f(X)$. We conclude that X is uncountable.

Exercise 3.10. Let S be a nonempty closed subset of \mathbb{R} and let $f: S \rightarrow \mathbb{R}$ be continuous. Then there exists a continuous $g: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x)=g(x)$ for all $x \in S$ and $\sup _{x \in \mathbb{R}}|g(x)|=\sup _{x \in S}|f(x)|$. This is false for every nonclosed $S \subset \mathbb{R}$.

Solution. Write $\mathbb{R} \backslash S=\bigcup_{n=1}^{\infty} I_{n}$, where the I_{n} 's are disjoint open intervals and extend f on each I_{n} linearly (if $(-\infty, a)$ or (a, ∞) appear among the I_{n} 's take f to be constant on these intervals). If S is not closed we can find a point $x \notin S$ and, say, an increasing sequence $x_{1}<\cdots<x_{n}<\cdots<x$ of points in S such that $\lim _{n} x_{n}=x$. Any continuous function f on $\mathbb{R} \backslash\{x\}$, and therefore on S, with $f\left(x_{n}\right)=n$ cannot be extended to the whole line.

Exercise 3.11. Let X be a topological space, Y a metric space, $f: X \rightarrow Y$ an arbitrary function and define $A_{f}=\{x \in X$: fis continuous at $x\}$.
(a) Prove that A_{f} is a G_{δ} set.
(b) Assume that there exists a set $D \subset X$ such that D and $X \backslash D$ are both dense in X. Prove that for any G_{δ} set $G \subset X$ there exists a function $f: X \rightarrow \mathbb{R}$ such that $A_{f}=G$.
(c) Show that there is no function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is continuous at each rational and discontinuous at each irrational.
(d) Construct explicitly a function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is continuous at each irrational and discontinuous at each rational.

Proof. For any point $x \in X$ define the oscilation of f at x by

$$
w_{f}(x)=\inf \{\operatorname{diam}(f(U)): U \text { is a nbd of } x\} .
$$

(a) Note that $x \in A_{f}$ if and only if $w_{f}(x)=0$. Therefore

$$
A_{f}=\bigcap_{n=1}^{\infty}\left\{x \in X: w_{f}(x)<1 / n\right\} .
$$

The sets in the intersection are open, hence A_{f} is G_{δ}.
(b) Write $G=\bigcap_{n=1}^{\infty} G_{n}$ where each G_{n} is open and $X=G_{1} \supset G_{2} \supset \cdots$. Define $f: X \rightarrow \mathbb{R}$ by

$$
f(x)=\left\{\begin{array}{ll}
0 & \text { if } x \in G \\
1 / n & \text { if } x \in D \cap\left(G_{n} \backslash G_{n+1}\right), \\
-1 / n & \text { if } x \in(X \backslash D) \cap\left(G_{n} \backslash G_{n+1}\right)
\end{array} .\right.
$$

(c) If such a function existed, \mathbb{Q} would be G_{δ} by (a).
(d)

$$
f(x)=\left\{\begin{array}{ll}
1 / n & \text { if } x=m / n,(m, n)=1 \\
0 & \text { if } x \text { is irrational }
\end{array} .\right.
$$

Exercise 3.12. Construct a strictly increasing function that is continuous at each irrational and discontinuous at each rational.

Solution. Let $\left\{r_{n}: n \in \mathbb{N}\right\}$ be an enumeration of the rationals and define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=\sum_{r_{n}<x} 1 / 2^{n}$. Note that $f\left(r_{n}-\right)=f\left(r_{n}\right)=f\left(r_{n}+\right)-1 / 2^{n}$ and $f(x-)=f(x)=f(x+)$ for all $x+i n \mathbb{R} \backslash \mathbb{Q}$.

Exercise 3.13. Let X be a topological space and (Y, ρ) a metric space. Suppose that $\left\{f_{n}\right\}_{n=1}^{\infty}$ is a sequence of continuous functions from X into Y and that $f: X \rightarrow Y$ is some function such that $\lim _{n} f_{n}(x)=f(x)$ for all $x \in X$.
(a) Show that there exists a set $E \subset X$ that is of 1 st category in X such that f is continuous at each point of $X \backslash E$. In particular, if X is a complete metric space, then f is continuous at every point of a dense subset of X.
(b) $f^{-1}(V)$ is an F_{σ} set in X for every open $V \subset Y$.
(c) There is no sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ of continuous real functions on \mathbb{R} such that $f_{n}(x) \rightarrow$ 1 for $x \in \mathbb{Q}$ and $f_{n}(x) \rightarrow 0$ for $x \in \mathbb{R} \backslash \mathbb{Q}$.
(d) Show that $\chi_{\mathbb{Q}}$, the characteristic function of \mathbb{Q}, is the pointwise limit of a sequence of functions, so that each of them is the pointwise limit of a sequence of continuous functions.

Solution. (a) Let $A_{k, m}=\left\{x \in X: \rho\left(f_{m}(x), f_{n}(x)\right) \leq 1 / k\right.$ for all $\left.n \geq m\right\}$. Then each $A_{k, m}$ is closed, and so $A_{k, m} \backslash A_{k, m}^{\circ}$ is nowhere dense. Now let

$$
G=\bigcap_{k=1}^{\infty} \bigcup_{m=1}^{\infty} A_{k, m}^{\circ}, E=\bigcup_{k=1}^{\infty} \bigcup_{m=1}^{\infty}\left(A_{k, m} \backslash A_{k, m}^{\circ}\right) .
$$

Then E is of 1st category, $X \backslash G \subset E$ (since $X=\bigcup_{m=1}^{\infty} A_{k, m}$ for all k), and each $x \in G$ is a point of continuity of f.
(b) $f^{-1}(V)=\bigcup_{k=1}^{\infty} \bigcup_{m=1}^{\infty}\left\{x \in X: \rho\left(f_{n}(x), Y \backslash V\right) \geq 1 / k\right.$ for all $\left.n \geq m\right\}$.
(c) If such a sequence existed then the characteristic function of \mathbb{Q} would be continuous at some point by (a).
(d) Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $\phi(x)=|2 x-2 k-1|$ for $x \in[k, k+1], k \in \mathbb{Z}$. Then

$$
\lim _{m \rightarrow \infty}\left[\lim _{n \rightarrow \infty} \phi(m!x)^{n}\right]=\chi_{\mathbb{Q}}(x) \quad \text { for all } x \in \mathbb{R}
$$

Exercise 3.14. Every compact metric space X is the continuous image of the Cantor space $\{0,1\}^{\mathbb{N}}$.

Solution. Construct inductively a family of nonempty closed sets $\left\{B_{s}\right\}_{s \in\{0,1\}^{<\omega}}$ such that

$$
\begin{gathered}
\lim _{k \rightarrow \infty} \operatorname{diam}\left(B_{\alpha \uparrow k}\right)=0 \text { for all } \alpha \in\{0,1\}^{\mathbb{N}}, \\
\bigcup_{|s|=n} B_{s}=X \text { for all } n \in \mathbb{N}, \quad B_{s}=B_{s^{-} 0} \cup B_{s^{-1}} \text { for all } s \in\{0,1\}^{<\omega} .
\end{gathered}
$$

We give the first step. Using compactness, we can find a number N and a covering $\left\{F_{1}, \ldots, F_{2^{N}}\right\}$ of X by closed sets such that $\operatorname{diam}\left(F_{i}\right) \leq 1 / 2 \operatorname{diam}(X)$ for all i. From these sets construct all B_{t} 's with $|t| \leq N$. Repeat the same procedure inside each compact space B_{s} with $|s|=N$. Now define $f:\{0,1\}^{\mathbb{N}} \rightarrow X$ by

$$
f(\alpha)=\bigcap_{n=1}^{\infty} B_{\alpha \upharpoonright n} .
$$

Exercise 3.15. Construct an example of a two-to-one function $f:[0,1] \rightarrow \mathbb{R}$. Prove that no such f can be continuous on $[0,1]$.

Solution. Let $\left\{r_{n}: n \in \mathbb{N}\right\}$ be an enumeration of the rationals in $[0,1]$ and define $f:[0,1] \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}|2 x-1| & \text { if } x \text { is irrational }, \\ r_{2 k-1} & \text { if } x=r_{2 k-1}, \\ r_{2 k-1} & \text { if } x=r_{2 k}\end{cases}
$$

Suppose now that f is a continuous two-to-one function. We can then assume that its, say, minimum is attained at the points $x_{1}<x_{2}$, and x_{2} is not an endpoint. Choose disjoint closed intervals $\left[a_{1}, b_{1}\right],\left[a_{2}, b_{2}\right]$ with $x_{1} \in\left[a_{1}, b_{1}\right], x_{1} \neq b_{1}$ and $x_{2} \in\left(a_{2}, b_{2}\right)$. Then the intermediate value theorem implies that a value r with $\min \left\{f\left(b_{1}\right), f\left(a_{2}\right), f\left(b_{2}\right)\right\}>r>\min f$ is taken on at least three times.

Exercise 3.16. Suppose that $f:[a, b] \rightarrow \mathbb{R}$ satisfies $f^{-1}(\{y\})$ is closed for all $y \in \mathbb{R}$ and $f([c, d])$ is connected for all $[c, d] \subset[a, b]$. Prove that f is continuous.

Solution. Let $x \in[a, b]$ and take $\left\{x_{n}\right\}_{n=1}^{\infty} \subset[a, b]$ such that $x_{n} \uparrow x$. Then $I=$ $\bigcap_{n=1}^{\infty} f\left(\left[x_{n}, x\right]\right)$ is an interval containing $f(x)$. We claim that $I=\{f(x)\}$ and therefore $f\left(x_{n}\right) \rightarrow f(x)$. Indeed, take $f(y) \in I$. Then there exist $t_{n} \in\left[x_{n}, x\right]$ such that $f\left(t_{n}\right)=$ $f(y)$. Hence $t_{n} \rightarrow x$ and $t_{n} \in f^{-1}(\{f(y)\})$. Since $f^{-1}(\{f(y)\})$ is closed, it follows that $x \in f^{-1}(\{f(y)\})$, and so $f(x)=f(y)$.

Exercise 3.17. Let (X, ρ) be a metric space. Then there exists a continuous $f: X \rightarrow \mathbb{R}$ that is not uniformly continuous on X if and only if there exist two nonempty disjoint closed sets A and B such that $\operatorname{dist}(A, B)=0$.

Solution. Suppose that A and B are disjoint closed sets with $\operatorname{dist}(A, B)=0$. Define $f: X \rightarrow \mathbb{R}$ by

$$
f(x)=\frac{\rho(x, A)}{\rho(x, A)+\rho(x, B)} .
$$

Then f is continuous but not uniformly continuous. Now if f is a real continuous function on X which is not uniformly continuous, then we can inductively choose points $x_{n}, y_{n} \in X$ such that $\rho\left(x_{n}, y_{n}\right)<1 / n,\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \epsilon_{0}$, for a certain ϵ_{0}, and $\left\{x_{n}\right\}_{n=1}^{\infty} \cap\left\{y_{n}\right\}_{n=1}^{\infty}=\emptyset$. The sets $\left\{x_{n}: n \in \mathbb{N}\right\}$ and $\left\{y_{n}: n \in \mathbb{N}\right\}$ have the required properties.

Exercise 3.18. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous and satisfy $|f(x)-f(y)| \geq c|x-y|$ for all $x, y \in \mathbb{R}$, where c does not depend on x and y. Then $f(\mathbb{R})=\mathbb{R}$.

Solution. Note that f is one-to-one and that

$$
\left|\lim _{x \rightarrow \infty} f(x)\right|=\left|\lim _{x \rightarrow-\infty} f(x)\right|=\infty .
$$

Exercise 3.19. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be arbitrary. Show that the set E of $x \in \mathbb{R}$ such that f has a simple discontinuity at x is at most countable.

Solution. Suppose that E is uncountable. Then at least one of the sets $A=\{x$: $f(x+) \neq f(x-)\}$ and $B=\{x: f(x+)=f(x-), f(x) \neq f(x+)\}$ must be uncountable. Without loss of generality, we may assume that A is uncountable, and so there exists a number ϵ_{0} such that the set $\left\{x:|f(x+)-f(x-)|>\epsilon_{0}\right\}$ is uncountable and therefore has a point of accumulation a. Then we can find two sequences $\left\{x_{n}\right\}_{n=1}^{\infty}$ and $\left\{y_{n}\right\}_{n=1}^{\infty}$ such that $x_{n} \uparrow a, y_{n} \uparrow a$ and $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \epsilon_{0} / 2$, contradicting the fact that $\lim _{x \uparrow a} f(x)$ exists.

Exercise 3.20. If $f: \mathbb{R} \rightarrow \mathbb{R}$ has a local maximum at each $x \in \mathbb{R}$, then $f(\mathbb{R})$ is countable.

Solution. For every $a \in f(\mathbb{R})$ choose $x_{a} \in \mathbb{R}$ with $f\left(x_{a}\right)=a$ and an open interval I_{a} with rational endpoints such that $x_{a} \in I_{a}$ and for each $x \in I_{a}, f(x) \geq f\left(x_{a}\right)=a$. Then the function

$$
f(\mathbb{R}) \ni a \mapsto I_{a} \in\{(p, q): p, q \in \mathbb{Q}\}
$$

is one-to-one.
Exercise 3.21. Let $\alpha \in \mathbb{R} \backslash \mathbb{Q}$. Then the set $A=\{m \alpha+n: m, n \in \mathbb{Z}\}$ is dense in \mathbb{R}.
Solution. Note that all the elements of A are distinct since α is irrational. So, the set $\{m \alpha-[m \alpha]: m \in \mathbb{N}\}$ is an infinite subset of $[0,1]$ and therefore has a limit point. Consequently, there exists $\left\{r_{n}\right\} \subset A$ with $0<r_{n} \downarrow 0$. Now let $x>0, \epsilon>0$. Choose $n \in \mathbb{N}$ with $r_{n}<\epsilon$ and let m be the smallest integer such that $m r_{n}>x$. Then ($m-1$) $r_{n} \leq x$ and so, $0<m r_{n}-x \leq r_{n}<\epsilon$.

CHAPTER 4

Measure and Integration

EXERCISE 4.1. Let $\left\{\phi_{n}\right\}_{n=1}^{\infty}$ be an approximate identity in $L^{1}(\mathbb{R})$ (that is, $\phi_{n} \geq 0, \int \phi_{n}=$ $1, \lim _{n \rightarrow \infty} \int_{|t| \geq \delta} \phi_{n}(t) d t=0$ for all $\left.\delta>0\right)$. Show that $\lim _{n \rightarrow \infty}\left\|\phi_{n}\right\|_{p}=\infty$ for all $p>1$.

Solution. Let $M>0$. Then there exists $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}$

$$
\begin{aligned}
3 / 4 & \leq \int_{|t| \leq 1 /(8 M)} \phi_{n}(t) d t \leq \int_{\{t:|t| \leq 1 /(8 M)\} \cap\left[\phi_{n} \leq M\right]} \phi_{n}(t) d t+\int_{\left[\phi_{n} \geq M\right]} \phi_{n}(t) d t \\
& \leq 1 / 4+\int_{\left[\phi_{n} \geq M\right]} \phi_{n}(t) d t .
\end{aligned}
$$

It follows that

$$
\int_{\left[\phi_{n} \geq M\right]} \phi_{n}(t) d t \geq 1 / 2
$$

and therefore

$$
\int \phi_{n}^{p}(t) d t \geq \int_{\left[\phi_{n} \geq M\right]} \phi_{n}^{p-1}(t) \phi_{n}(t) d t \geq M^{p-1} \int_{\left[\phi_{n} \geq M\right]} \phi_{n}(t) d t \geq 1 / 2 M^{p-1} .
$$

We conclude that $\left\|\phi_{n}\right\|_{p} \rightarrow \infty$.

Exercise 4.2. Let $A \subset \mathbb{R}$ be a measurable set with $|A|>0$. Then for any $n \in \mathbb{N}, A$ contains arithmetic progressions of length n.

Solution. Let x_{0} be a point of density of A. Choose $\epsilon_{0}>0$ such that $n \epsilon_{0}<1 / 8$. Then there exists $l>0$ such that $\left|\left(x_{0}-l^{\prime}, x_{0}+l^{\prime}\right) \cap A\right| \geq 2\left(1-\epsilon_{0}\right) l^{\prime}$ for all $0<l^{\prime} \leq l$. Now choose $\epsilon>0$ such that $n^{2} \epsilon<1 / 8 l$. Then for $k=0,1, \ldots, n-1$ we have

$$
\begin{aligned}
\left|\left(x_{0}-l, x_{0}+l\right) \cap \epsilon k+A\right| & =\left|\epsilon k+\left(x_{0}-l-\epsilon k, x_{0}+l-\epsilon k\right) \cap A\right| \\
& \geq\left|\epsilon k+\left(x_{0}-l+\epsilon n, x_{0}+l-\epsilon n\right) \cap A\right| \\
& =\left|\left(x_{0}-l+\epsilon n, x_{0}+l-\epsilon n\right) \cap A\right| \\
& \geq 2\left(1-\epsilon_{0}\right)(l-\epsilon n) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left|\left(x_{0}-l, x_{0}+l\right) \backslash \bigcap_{k=0}^{n-1} \epsilon k+A\right| & =\left|\bigcup_{k=0}^{n-1}\left(x_{0}-l, x_{0}+l\right) \backslash \epsilon k+A\right| \\
& \leq \sum_{k=0}^{n-1}\left|\left(x_{0}-l, x_{0}+l\right) \backslash \epsilon k+A\right| \\
& =\sum_{k=0}^{n-1}\left(2 l-\left|\left(x_{0}-l, x_{0}+l\right) \cap \epsilon k+A\right|\right) \\
& \leq \sum_{k=0}^{n-1}\left(2 l-2\left(1-\epsilon_{0}\right)(l-\epsilon n)\right) \\
& <2 \epsilon n^{2}+2 n \epsilon_{0} l<l / 4+l / 4=l / 2 .
\end{aligned}
$$

Therefore $\left|\bigcap_{k=0}^{n-1} \epsilon k+A\right|>0$. In particular, there exists $x \in \bigcap_{k=0}^{n-1} \epsilon k+A$, and so, $x, x-$ $\epsilon, \ldots, x-(n-1) \epsilon \in A$.

Exercise 4.3. Let A be a measurable set of reals with arbitrarily small periods (there exist positive numbers p_{n} with $p_{n} \rightarrow 0$ so that $p_{n}+A=A$ for all n). Then either A or its complement has measure zero.

Solution. Suppose that $|A|>0$ and $\left|A^{\complement}\right|>0$. Let x_{1} be a point of density of A and x_{2} a point of density of A^{C} with $x_{1}<x_{2}$. Then there exists $\delta>0$ such that

$$
\left|\left(x_{1}-\delta, x_{1}+\delta\right) \cap A\right| \geq 3 \delta / 2, \quad\left|\left(x_{2}-\delta, x_{2}+\delta\right) \cap A^{\complement}\right|>3 \delta / 2
$$

It follows that

$$
\begin{aligned}
\left|\left(x_{2}-\delta, x_{2}+\delta\right) \cap x_{2}-x_{1}+A\right| & =\left|\left(x_{2}-x_{1}\right)+\left(x_{1}-\delta, x_{1}+\delta\right) \cap A\right| \\
& =\left|\left(x_{1}-\delta, x_{1}+\delta\right) \cap A\right| \geq 3 \delta / 2 .
\end{aligned}
$$

Consider the function $\phi:[0, \infty) \rightarrow \mathbb{R}$ defined by

$$
\phi(x)=\left|\left(x_{2}-\delta, x_{2}+\delta\right) \cap x+A\right| .
$$

Then ϕ is continuous and therefore constant, since it is constant on the dense set $\left\{m p_{n}\right.$: $m, n \in \mathbb{N}\}$. Therefore

$$
\left|\left(x_{2}-\delta, x_{2}+\delta\right) \cap A\right|=\left|\left(x_{2}-\delta, x_{2}+\delta\right) \cap x_{2}-x_{1}+A\right| \geq 3 \delta / 2
$$

But this is impossible since $\left|\left(x_{2}-\delta, x_{2}+\delta\right) \cap A^{\mathrm{C}}\right| \geq 3 \delta / 2$.
Exercise 4.4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a measurable function with periods s and t whose quotient is irrational. Prove that f is constant a.e.

Solution. Note that since s / t is irrational, the set $\{n s+m t: m, n \in \mathbb{Z}\}$ is dense in \mathbb{R}. Therefore the set $f^{-1}([a, b])$ has arbitralily small periods and hence has either full or zero measure for all $a<b$. If it has zero measure for all $a<b$ then $f=+\infty$ or $f=-\infty$ almost everywhere. Suppose that $f^{-1}\left(I_{1}\right)$ has full measure for some interval I_{1}. Divide I_{1} into two subintervals of equal length. Then the inverse image of one of these subintervals must have full measure. Call this interval I_{2}. Continuing this way we obtain a decreasing sequence $I_{1} \supset I_{2} \supset \cdots$ of closed intervals whose length tends to zero. Let $\{r\}=\bigcap_{n=1}^{\infty} I_{n}$. Then the set $f^{-1}(\{r\})=\bigcap_{n=1}^{\infty} f^{-1}\left(I_{n}\right)$ has full measure and therefore $f=r$ almost everywhere.

Exercise 4.5. Let $A, B \subset \mathbb{R}$ be measurable sets of positive measure. Show that $A-B$ contains an interval.

Solution. Let x_{1} be a point of density of A and x_{2} a point of density of B. Then there exists $\delta>0$ such that

$$
\left|\left(x_{1}-\delta, x_{1}+\delta\right) \cap A\right| \geq 3 \delta / 2, \quad\left|\left(x_{2}-\delta, x_{2}+\delta\right) \cap B\right| \geq 3 \delta / 2
$$

It follows that

$$
\begin{aligned}
\left|\left(x_{2}-\delta, x_{2}+\delta\right) \cap x_{2}-x_{1}+A\right| & =\left|\left(x_{2}-x_{1}\right)+\left(x_{1}-\delta, x_{1}+\delta\right) \cap A\right| \\
& =\left|\left(x_{1}-\delta, x_{1}+\delta\right) \cap A\right| \geq 3 \delta / 2 .
\end{aligned}
$$

Therefore $\left|\left(x_{2}-\delta, x_{2}+\delta\right) \cap\left(x_{2}-x_{1}+A\right) \cap B\right|>0$. Now consider the function

$$
\phi(x)=\left|\left(x_{2}-\delta, x_{2}+\delta\right) \cap(x+A) \cap B\right| .
$$

Then ϕ is continuous and $\phi\left(x_{2}-x_{1}\right)>0$. Hence there is an interval I such that $\phi(x)>0$ for all $x \in I$. It follows that $(x+A) \cap B \neq \emptyset$ for all $x \in I$ and so, $I \subset B-A$.

Exercise 4.6. Suppose (X, μ) is a σ-finite measure space and let $f: X \rightarrow \mathbb{C}$ be a measurable function such that $\left|\int f g\right|<\infty$ for all $g \in L^{p}(X)$. Show that $f \in L^{q}(X)$ where q is the exponent conjugate to p.

Solution. Write $X=\bigcup_{k=1}^{\infty} A_{k}$ with A_{k} disjoint and $\mu\left(A_{k}\right)<\infty$. Suppose that $f \geq 0$, $\int f^{q}=\infty$ and let $B_{n}=\left[2^{n} \leq f<2^{n+1}\right], n \in \mathbb{Z}$. Then

$$
\begin{aligned}
\infty & =\int f^{q}=\sum_{n=-\infty}^{\infty} \int_{B_{n}} f^{q}=\sum_{n=-\infty}^{\infty} \sum_{k=1}^{\infty} \int_{B_{n} \cap A_{k}} f^{q} \\
& \lesssim \sum_{n=-\infty}^{\infty} \sum_{k=1}^{\infty} 2^{q n} \mu\left(B_{n} \cap A_{k}\right)=\sum_{i=1}^{\infty} 2^{q N(i)} \mu\left(B_{N(i)} \cap A_{M(i)}\right) .
\end{aligned}
$$

Let

$$
S_{n}=\sum_{k=1}^{n} 2^{q N(k)} \mu\left(B_{N(k)} \cap A_{M(k)}\right)
$$

and

$$
g=\sum_{i=1}^{\infty} \frac{2^{q N(i) / p}}{S_{N(i)}} \chi_{B_{N(i)} \cap A_{M(i)}} .
$$

Then

$$
\int g^{p}=\sum_{i=1}^{\infty} \frac{2^{q N(i)}}{S_{N(i)}^{p}} \mu\left(B_{N(i)} \cap A_{M(i)}\right)<\infty
$$

by Abel's Theorem. On the other hand

$$
\begin{aligned}
\int f g & =\sum_{i=1}^{\infty} \frac{2^{q N(i) / p}}{S_{N(i)}} \int_{B_{N(i)} \cap A_{M(i)}} f \geq \sum_{i=1}^{\infty} \frac{2^{q N(i) / p} 2^{N(i)}}{S_{N(i)}} \mu\left(B_{N(i)} \cap A_{M(i)}\right) \\
& =\sum_{i=1}^{\infty} \frac{2^{q N(i)}}{S_{N(i)}} \mu\left(B_{N(i)} \cap A_{M(i)}\right)=\infty
\end{aligned}
$$

By Abel's Theorem again.

