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Abstract

We study the following question: Given an open set Ω, symmetric about 0, and a continuous, in-
tegrable, positive definite function f , supported in Ω and with f(0) = 1, how large can

R

f be? This
problem has been studied so far mostly for convex domains Ω in Euclidean space. In this paper we study
the question in arbitrary locally compact abelian groups and for more general domains. Our empha-
sis is on finite groups as well as Euclidean spaces and Zd. We exhibit upper bounds for

R

f assuming
geometric properties of Ω of two types: (a) packing properties of Ω and (b) spectral properties of Ω.
Several examples and applications of the main theorems are shown. In particular we recover and extend
several known results concerning convex domains in Euclidean space. Also, we investigate the question
of estimating

R

Ω
f over possibly dispersed sets solely in dependence of the given measure m := |Ω| of Ω.

In this respect we show that in R and Z the integral is maximal for intervals.
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§0. Introduction

0.1 A problem of Turán and Stechkin
We study the following problem proposed by Turán and Stechkin [St72]:

Given an open set Ω, symmetric about 0, and a continuous, positive definite, integrable
function f , with supp f ⊆ Ω and with f(0) = 1, how large can

∫
f be?

The cases studied so far concern Ω being a convex subset of Rd [AB01, AB02, Go01, KR03] or an interval
in the torus T = R/Z [GM02, St72, AKP96].

Such a question is interesting in the study of sphere packing [Go00, CE03], in additive number theory
[Rzs79, KMF78] and in the theory of Dirichlet characters and exponential sums [KS99], among other
things.

In this paper we study the problem in more general locally compact abelian (LCA) groups. This simplifies
and unifies many of the existing results and gives several new estimates and examples. If G is a LCA group
a continuous function f ∈ L1(G) is positive definite if its Fourier transform f̂ : Ĝ → C is everywhere

nonnegative on the dual group Ĝ, see §1.1. For the relevant definitions of the Fourier transform we refer to
[Ka76, Chapter VII] or [Ru62].

The set Ω will always be taken in this paper to be a 0-symmetric, open set in G.
If f ∈ L1(G) is continuous, positive definite and supported in Ω it follows that f(0) ≥ f(x) for any x ∈ G.

This leads to the estimate
∫

G f ≤ |Ω|f(0), called the trivial estimate from now on.
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Definition 1. The Turán constant TG(Ω) of a 0-symmetric, open subset Ω of a LCA group G is the supre-
mum of the quantity

∫
G
f/f(0), where f ∈ L1(G) is continuous and positive definite, and supp f is a closed

set contained in Ω.

Remark 1. The quantity TG(Ω) depends on which normalization we use for the Haar measure on G. If G
is discrete we use the counting measure and if G is compact and non-discrete we normalize the measure of
G to be 1.

The trivial upper estimate for the Turán constant is TG(Ω) ≤ |Ω|.

0.2 Previous work
Let us review some of the known results.

Stechkin [St72] proves TT(Ω) = 1
2 |Ω| if Ω ⊆ T = R/Z is a 0-symmetric interval whose half length divides

the length of T.
In [AB01, AB02] Arestov and Berdysheva prove that if Ω ⊆ Rd is a convex polytope which can tile

space when translated by the lattice Λ ⊆ Rd (this means that the copies Ω + λ, λ ∈ Λ, are non-overlapping
and almost every point in space is covered) then TRd(Ω) ≤ 2−d|Ω|.

Gorbachev [Go01] also shows the same inequality if Ω is the Euclidean ball in Rd (a different proof of
this is given in [KR03]). The ball clearly cannot tile space.

Kolountzakis and Révész [KR03] show the same inequality for all convex domains in Rd which are
spectral (the definition appears later in this paper in §1.3)–convex spectral sets are conjecturally the same as
convex tiles [Fu74]. It is known that all convex tiles are spectral (see e.g. [KR03]), so the result of Arestov
and Berdysheva [AB01, AB02] is also a consequence of the result in [KR03].

Gorbachev and Manoshina [GM02] study the function TT(Ω) when Ω is a 0-symmetric interval whose
half length does not divide the length of T, and they give more detailed information on TT(Ω) when that
length is of a certain arithmetical type.

0.3 Various forms of the Turán problem
In fact, it is worth noting that Turán type problems can be, and have been considered with various settings,
although the relation of these has not been fully clarified yet. Thus in extending the investigation to LCA
groups or to domains in Euclidean groups which are not convex, the issue of equivalence has to be dealt
with. One may consider the following function classes.

F1(Ω) :=

{
f ∈ L1(G) : supp f ⊂ Ω, f positive definite

}
, (1)

F&(Ω) :=

{
f ∈ L1(G) ∩ C(G) : supp f ⊂ Ω, f positive definite

}
, (2)

Fc(Ω) :=

{
f ∈ L1(G) : supp f ⊂⊂ Ω, f positive definite

}
, (3)

F(Ω) :=

{
f ∈ C(G) : supp f ⊂⊂ Ω, f positive definite

}
. (4)

In F1,F& supp f is assumed to be merely closed ad not necessarily compact, and in F1,Fc the function f
may be discontinuous.

The respective Turán constants are

T (1)
G (Ω) or T &

G (Ω) or T c
G(Ω) or TG(Ω) := (5)

sup

{∫
G
f

f(0)
: f ∈ F1(Ω) or F&(Ω) or Fc(Ω) or F(Ω), resp.

}
.

In general we should consider functions f : G → C. But according to (10) also f and thus even ϕ := <f
is positive definite, while belonging to the same function class. As we also have f(0) = ϕ(0) and

∫
f =

∫
ϕ,

restriction to real valued functions does not change the values of the Turán constants.
To start with, we prove in §1.1
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Theorem 1. We have for any LCA group the equivalence of the above defined versions of the Turán con-
stants:

T (1)
G (Ω) = T &

G (Ω) = T c
G(Ω) = TG(Ω) . (6)

Note that the original formulation, presented also above in §0.1 corresponds to T &
G (Ω).

Remark 2. It is not fully clarified what happens for functions vanishing only outside of Ω, but having
nonzero values up to the boundary ∂Ω.

0.4 New results
In this paper we focus mostly (but not exclusively) on finite or compact abelian groups.

Especially in the case of finite groups we can show clearly the geometric aspects of the problem without
being sidetracked by technicalities that arise when the group is not discrete or not compact.

We present two types of results. In the first type some kind of “packing” condition is assumed on Ω
which leads to an upper bound for TG(Ω). (The justification of the term “packing” should be more evident
in the statement of Corollary 5 in §3.1.)

Theorem 2. Suppose that G is a compact abelian group, Λ ⊆ G, Ω ⊆ G is a 0-symmetric open set and
(Λ − Λ) ∩ Ω ⊆ {0}. Suppose also that f ∈ L1(G) is a continuous positive definite function supported on Ω.
Then ∫

G

f(x) dx ≤ |G|
|Λ| f(0). (7)

In other words TG(Ω) ≤ |G|/|Λ|.

(Observe that the conditions imply that Λ is finite.)
The proof appears in §3.
The following Theorem 3 is analogous to Theorem 2 for the non-compact case.

Theorem 3. Suppose that G is one of the groups Rd or Zd, that Λ ⊆ G is a set of upper density ρ > 0, and
Ω ⊆ G is a 0-symmetric open set such that Ω ∩ (Λ − Λ) ⊆ {0}. Let also f ∈ L1(G) be a continuous positive
definite function on G whose support is a compact set contained in Ω. Then

∫

G

f(x) dx ≤ 1

ρ
f(0). (8)

In other words TG(Ω) ≤ 1/ρ.

In §2.4 and §3.2–§3.5 we present several examples and applications of Theorems 2 and 3 in various groups.
These theorems in particular imply the results of [St72, AB01, AB02], but are much more general.

The second type of result we give is analogous to that proved in [KR03]. Here we suppose that Ω can
be embedded in the difference set of a spectral set (see definition in §1.3) and we derive an upper bound for
TG(Ω) from that.

Theorem 4. Suppose G is a finite abelian group, Ω, H ⊆ G, Ω ⊆ H −H, and that H is a spectral set with
spectrum T ⊆ Ĝ. Then for any positive definite function on G with support in Ω we have

∑

x∈G

f(x) ≤ |H |f(0). (9)

In other words TG(Ω) ≤ |H |.

What was essentially proved in [KR03] was a “continuous” version of Theorem 4. Essentially, the
following was proved.

Theorem 5. [KR03] If H is a bounded open set in Rd which is spectral, then for the difference set Ω = H−H
we have TRd(Ω) = |H |.
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The result there was only formulated for convex sets H ⊂ Rd (for which H − H = 2H) but the proof
works verbatim for the result we just stated. Let us emphasize here that in the continuous case we demand
that eligible functions for our extremal problem have compact support contained in the given open set Ω
(whose Turán constant we are estimating).

We give the proof of Theorem 4 in §4.1.
Furthermore, in §4.2 we show that there are cases when Theorems 4 and 5 give provably better results

than any application of Theorems 2 and 3, respectively. For this we use one of Tao’s [Ta03] recent examples
which show one direction of Fuglede’s conjecture to be false.

§1. Preliminaries
In this section we describe the basic facts about positive definite functions, translational tiling, packing and
spectral sets on LCA groups.

1.1 Positive definite functions on LCA groups
In this subsection we explore a few facts on positive definite, not necessarily continuous functions. We could
not decide if anything is new here, as we have found it very hard to locate these facts in the literature
without assuming continuity of the positive definite function at the outset. So we collected these facts here.

Recall that on a LCA group G a function f is called positive definite if the inequality

N∑

n,m=1

cncmf(xn − xm) ≥ 0 (∀x1, . . . , xN ∈ G, ∀c1, . . . , cN ∈ C) (10)

holds true. Note that positive definite functions are not assumed to be continuous. Still, all such functions
f are necessarily bounded by f(0) [Ru62, p. 18, Eqn (3)]. Moreover, f(−x) = f̃(x) := f(x) for all x ∈ G
[Ru62, p. 18, Eqn (2)], hence the support of f is necessarily symmetric, and the condition supp f ⊂ Ω
implies also supp f ⊂ Ω ∩ (−Ω). The latter set being symmetric, without loss of generality we can assume
at the outset that Ω is symmetric itself.

It is immediate from (10) that for any subgroup K of G, the restriction f |K of a positive definite function
f is also positive definite on K.

The Fourier transform f̂ of an f ∈ L1(G) belongs to A(Ĝ) ⊂ C0(Ĝ), and the Fourier transform of the

convolution f ∗ g of f, g ∈ L1(G), defined almost everywhere, satisfies f̂ ∗ g = f̂ ĝ [Ru62, Theorem 1.2.4].
Similarly, for ν, µ ∈ M(G) and their convolution µ ∗ ν ∈ M(G) the Fourier transforms are bounded and
uniformly continuous and µ̂ ∗ ν = µ̂ν̂ [Ru62, Theorem 1.3.3].

In case f, g ∈ L2(G), the convolution h := f ∗ g is defined even in the pointwise sense and h ∈ C0(Ĝ)

[Ru62, Theorem 1.1.6(d)]. For f ∈ L2(G) arbitrary (denoting as above, f̃(x) := f(−x)), f ∗ f̃ is continuous

and positive definite with Fourier transform |f̂ |2 [Ru62, 1.4.2(a)].

Note that for any given γ ∈ Ĝ f is positive definite if and only if f(x)γ(x) is positive definite; this can
be checked by modifying the coefficients in (10) accordingly.

Lemma 1. Suppose that f is (measurable and) positive definite and g ∈ L2(G) is arbitrary. Then the
product f · (g ∗ g̃) is positive definite.

Proof. As written above, h := g ∗ g̃ ∈ C0(G), while f , being positive definite, is also bounded. Take now
xn ∈ G and cn ∈ C for n = 1, . . . , N arbitrarily. Then

N∑

n,m=1

cncmf(xn − xm)h(xn − xm)

=

N∑

n,m=1

cncmf(xn − xm)

∫

G

g(xn − y)g(xm − y)dy

=

∫

G

N∑

n,m=1

an(y)am(y)f(xn − xm) dy ,
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where an(y) := cng(xn − y) ∈ L2(G) (n = 1, . . . , N). Since the expression under the integral sign is
nonnegative by (10) for each given y, also the integral is nonnegative and the assertion follows.

Note that we did not assume f to be integrable, and neither the product fh is supposed to belong to
any subspace. By positive definiteness, f is bounded; but if G is not compact, f̂ is not necessarily defined.
However, as h ∈ C0(G), in any case we must have fh ∈ L∞(G). This follows from positive definiteness of
fh, too.

The next Lemma is obvious for compact groups as we can take k = 1.

Lemma 2. Suppose C is a compact set in a LCA group G and δ > 0 is given. Then there exists a compactly
supported, positive definite and continuous “kernel function” k(x) ∈ Cc(G) satisfying k(0) = 1, 0 ≤ k ≤ 1,

and k|C ≥ 1 − δ. Moreover, we can take k = h ∗ h̃, where h is the L2-normalized indicator function of a
suitable Borel measurable set V ⊃ C with compact closure V .

Proof. We may clearly assume that G is not compact.
The deduction will follow the proof of 2.6.7 Theorem on page 52 of [Ru62] with a slight modification

towards the end of the argument. In this proof the compact set C is given, and then another Borel set E and
an increasing sequence of Borel sets VN (N ∈ N) are found, so that C ⊂ E = V0 and |VN | = (2N + 1)n|E|
(with n a fixed nonnegative integer constant); moreover, all the VN have compact closure and VN +E ⊂ VN+s

is ensured for some fixed s and for all N ∈ N. Hence for every c ∈ C ⊂ E we have VN+s − c ⊃ VN . Denoting
the indicator function of VN+s by χ we are led to

∫
G χ(x + c)χ(x)dx ≥ |VN |. Putting h := |VN+s|−1/2χ

yields h ∗ h̃(c) ≥ |VN |/|VN+s| > 1− δ, if N is chosen large enough (depending on the constants n, s and the
given δ). With this choice of h and V := VN+s all assertions of the Lemma are true.

Remark 3. As Rudin points out, this argument essentially depends on structure theorems of LCA groups.

Lemma 3. Suppose that f ∈ L1(G) is positive definite. Then the Fourier transform f̂ is nonnegative.

Proof. Since for any character γ ∈ Ĝ we have γ̂f = f̂(· − γ), and f is positive definite precisely when γf is

such, it suffices to prove that f̂(0) ≥ 0.
For technical reasons, we need to modify f to have compact support. Let δ be any positive parameter.

Since dν(x) := f(x)dx is a regular Borel measure, for some compact set C we have ‖f‖L(G\C) < δ. Take the
function k provided by Lemma 2 for the compact set C and the chosen parameter δ > 0. If g := kf , Lemma 1
shows that g is positive definite, while |ĝ(0)− f̂(0)| ≤ |

∫
C
f−

∫
C
g|+‖f‖L1(G\C) < δ

∫
C
|f |+δ ≤ δ(1+‖f‖L1).

Choosing δ small enough, it follows that there exists a compactly supported positive definite g ∈ L1(G) with

ĝ(0) < 0 provided that f̂(0) < 0. Hence it suffices to prove the assertion for compactly supported positive
definite functions g.

Applying definition (10) with all cn chosen as 1 yields

0 ≤
N∑

n=1

N∑

m=1

g(xn − xm) .

Integrating over CN (where C := supp g) we obtain

0 ≤ N |C|Ng(0) + (N2 −N)|C|N−1

∫

C

g ,

which implies

−|C|g(0)

N − 1
≤ ĝ(0).

Letting N → ∞ concludes the proof.

Lemma 4. Suppose that f, g ∈ L1(G) are two positive definite functions. Then the convolution f ∗g ∈ L1(G)
is uniformly continuous and positive definite.
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Proof. Since a positive definite function is bounded, we have also f ∈ L∞(G), hence f ∗ g is uniformly

continuous c.f. [Ru62, Theorem 1.1.6(b)]. For the Fourier transform f̂ ∗ g = f̂ ĝ of the continuous function

f ∗ g positive definiteness is equivalent to f̂ ∗ g ≥ 0. Now Lemma 3 gives f̂ ≥ 0 and ĝ ≥ 0, hence f̂ ∗ g ≥ 0
and f ∗ g is positive definite.

Lemma 5. Suppose U is a given neighborhood of 0 in a LCA group G. Then there exists a compactly
supported, continuous, positive definite and nonnegative “kernel function” k(x) ∈ Cc(G) satisfying supp k ⊂⊂
U and

∫
k = 1. Moreover, we can take k = h ∗ h̃, with h = |W |−1χW , where χW is the indicator function of

a compact set W satisfying W −W ⊂ U .

Proof. By continuity of the operation of subtraction, there exists a compact neighborhood W of 0 satisfying
W −W ⊂ U . With the above definitions of k and h we clearly have supp k ⊂⊂ W −W ⊂ U (c.f. [Ru62,

Theorem 1.1.6(c)] and also
∫
k = |W |−2(

∫
χW )2 = 1. Since h, h̃ ∈ L2(G), k ∈ C0(G), and as supp k is

compact, k ∈ Cc(G). Since h is nonnegative, so is f . Finally, [Ru62, 1.4.2(a)] gives positive definiteness of
k.

Lemma 6. Let f be positive definite and integrable. Then for any ε > 0 and open set U containing 0, there
exists a nonnegative, positive definite function of the form k = h ∗ h̃ (with h ∈ L2(G)), so that supp k ⊂⊂ U ,∫

U
k = 1, and ‖f − f ∗ k‖1 < ε.

Proof. For the given function f there exists a neighborhood V of 0 with the property that ‖f − f ∗ u‖ < ε
whenever

∫
G u = 1 and u ≥ 0 is Borel measurable and vanishing outside V [Ru62, Theorem 1.1.8]. Now

we can construct for the open set U0 := V ∩ U the kernel function k as in Lemma 5. Clearly, k satisfies all
conditions for u, hence ‖f − f ∗ k‖1 < ε follows. By construction, supp k ⊂⊂ U0 ⊂ U and

∫
U
k = 1.

Lemma 7. For any pair of sets K ⊂⊂ U with K compact and U open, there exists a neighborhood V of 0
satisfying K + V ⊂ U .

Proof. Since addition is continuous, for any open neighborhood U0 of 0 there exists a neighborhood W so
that W+W ⊂ U0. Take now to each point x ∈ K an open neighborhood Wx of 0 such that x+Wx+Wx ⊂ U ,
ie. Wx + Wx ⊂ U − x. Clearly the family of open sets {x + Wx : x ∈ K} form an open covering of K,
so in view of compactness of K there exists a finite subcovering {Wxk

+ xk : k = 1, . . . , n}. Take now
V :=

⋂n
k=1 Wxk

. We claim that K + V ⊂ U . Indeed, if y ∈ K and z ∈ V then considering any index k with
y ∈ xk +Wxk

, we find y + z ∈ (xk +Wxk
) + V ⊂ xk +Wxk

+Wxk
⊂ U .

Lemma 8. Let ε > 0 be arbitrary. Assume that f is measurable and positive definite and compactly supported
in the open set Ω. Then there exists another positive definite, but also continuous function g with f(0) ≥ g(0)
and

∫
G
g ≥

∫
G
f − ε, also supported compactly in Ω.

Proof. Observe that f , being positive definite, is also bounded, and since it is compactly supported, it also
belongs to L1(G). Thus we can use the Fourier transform f̂ . Let K := supp f ⊂⊂ Ω and consider a
neighborhood U of 0 with K + U ⊂ Ω. Such a U is provided by Lemma 7. Lemma 6 provides a positive
definite, continuous kernel k ∈ Cc(G), compactly supported in U and satisfying

∫
G
g ≥

∫
G
f − ε. In view

of k = h ∗ h̃ and Lemma 4 also g := f ∗ k is positive definite while obviously g ∈ Cc(G) is supported
compactly in K + U ⊂ Ω. It remains to note that by k ≥ 0,

∫
k = 1 and |f | ≤ f(0) we also have

g(0) =
∫
k(x)f(−x)dx ≤ f(0)

∫
k = f(0).

Proposition 1. With the definitions above we have T (1)
G (Ω) = T c

G(Ω).

Proof. Let ε > 0 and δ > 0 be arbitrary and f ∈ F1(Ω) be chosen so that
∫

G f > T (1)
G (Ω)−δ. As f ∈ L1(G),

the measure |f(x)|dx is absolutely continuous with respect to the Haar measure, hence it is also a regular
Borel measure and there exists a compact subset C ⊂⊂ supp f so that

∫
G\C |f | < δ. Now an application of

Lemma 2 with C and δ provides us the positive definite, compactly supported kernel function k satisfying
k(0) = 1, and k|C > (1− δ). Let g := fk. Then supp g ⊂ (supp k ∩ supp f) ⊂⊂ supp f , hence g is compactly
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supported within Ω. Moreover, g(0) = 1 and g is positive definite in view of Lemma 1. Hence g ∈ Fc(Ω).
We now have

∫
g =

∫

Ω

kf =

∫

Ω

f −
∫

Ω

(1 − k)f

≥
∫

Ω

f − δ

∫

C

|f | −
∫

Ω\C

|f |

≥
∫

Ω

f − δ

∫

Ω

|f | − δ ≥ (1 − δ)
(
T (1)

G (Ω) − δ
)
− δ.

Clearly, if δ was chosen small enough, we obtain
∫
g > T (1)

G (Ω)−ε. Now taking sup over g ∈ Fc(Ω) concludes
the proof, since ε > 0 was arbitrary.

Proposition 2. With the definitions above we have TG(Ω) = T c
G(Ω).

Proof. Since Fc(Ω) ⊃ F(Ω), it suffices to prove T c
G(Ω) ≤ TG(Ω).

Let ε > 0 and f ∈ Fc(Ω) be chosen so that
∫
f > T c

G(Ω)− ε, while supp f is a compact subset of the open
set Ω. Hence an application of Lemma 8 provides a g ∈ F(Ω) with TG(Ω) ≥

∫
g >

∫
f − ε > T c

G(Ω) − 2ε.
Now ε→ 0 yields the Proposition.

Proof of Theorem 1. We have the obvious inclusions F1(Ω) ⊃ F&(Ω) ⊃ F(Ω) and F1(Ω) ⊃ Fc(Ω) ⊃ F(Ω),

hence T 1
G(Ω) ≥ T &

G (Ω) ≥ TG(Ω) and T (1)
G (Ω) ≥ T c

G(Ω) ≥ TG(Ω). On combining these inequalities with
Propositions 1 and 2 the assertion follows.

If we consider a continuous positive definite function f , then it must also be uniformly continuous
[Ru62, p. 18, Eqns (3), (4)]. When supp f has bounded Haar measure (and, in particular, when supp f is
compact) then f belongs to L1(G), too. For an integrable, continuous and positive definite function f the

Fourier transform f̂ of f exists, and the Fourier inversion formula holds, cf. [Ru62, 1.5.1]. The well-known
Bochner-Weil characterization says that f ∈ C(G) being positive definite is equivalent to the existence of a

non-negative measure µ on the dual group Ĝ so that

f(x) =

∫

bG

γ(x) dµ(γ);

moreover, this representation is unique cf. [Ru62, 1.4.3], Comparing the Fourier inversion formula and the
unique representation above leads to the further characterization that for a continuous and integrable f
being positive definite is equivalent to f̂ ≥ 0, compare [Ru62, 1.7.3(e)]. Thus it is really advantageous to
restrict the function class considered from F1(Ω) to F(Ω), say.

Our setting is that Ω is an open (symmetric) set, and we require that f can be nonzero only in Ω. This is
an essential condition. In this respect approximation has its limitations: eg. we cannot relax the conditions
to require supp f ⊂ Ω only.

Indeed, if Ω is not fat, meaning that Ω = int Ω, this can lead to essential changes of the Turán constants.
Eg. if G = R and Ω = (−a, a) \ {±b}, then intΩ = (−a, a) and TR((−a, a)) = a, while TR(Ω) = b if
a/2 ≤ b ≤ a, see Theorem 7 below. Similarly, if G = T and Ω = T \ {π}, then TT(Ω) = 1/2, but obviously
TT(Ω) = 1. That is, forcing the function f to vanish at one single point can, through positive definiteness,
bring down the values essentially in general.

In this respect, original formulations of the Turán problem in [AB02] and [KR03] may be misleading,
since for a convex body Ω in Rd or Td the allegedly extremal function χΩ/2 ∗ χΩ/2 does not belong to the
function class F&(Ω) considered there. Instead, a corresponding limiting argument should provide the same
extremal value. In convex or star bodies in Euclidean spaces one can easily obtain a positive definite function
supported properly in the body from one that may be “non-zero up to the boundary”, by a slight dilation
of space, without losing much integral. It is unclear how to do this in general, even for domains in Rd.

1.2 Tiling and packing
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Suppose G is a LCA group. We say that a function f ∈ L1(G) tiles G by translation with a set Λ ⊆ G at
level c ∈ C if ∑

λ∈Λ

f(x− λ) = c

for a.a. x ∈ G, with the sum converging absolutely. We then write “f + Λ = cG”.
We say that f packs G with the translation set Λ at level c ∈ R, and write f + Λ ≤ cG, if

∑

λ∈Λ

f(x− λ) ≤ c,

for a.a. x ∈ G.
When the group is finite (and we do not, therefore, have to worry about the set Λ being finite or not)

the tiling condition f + Λ = cG means precisely f ∗ χΛ = c. Taking Fourier transform, this is the same as
f̂ χ̂Λ = c|G|χ{0}, which is in turn equivalent to the condition

supp χ̂Λ ⊆ {0} ∪
{
f̂ = 0

}
and c =

|Λ|
|G|

∑

x∈G

f(x). (11)

Finally, if E ⊆ G we say that E packs with Λ if χE packs with Λ at level 1. Observe that E packs with
Λ if and only if

(E −E) ∩ (Λ − Λ) = {0}.

1.3 Spectra
Let G be a LCA group and Ĝ be its dual group, that is the group of all continuous group homomorphisms
G→ C. A set H ⊆ G has the set T ⊆ Ĝ as a spectrum if and only if T forms an orthogonal basis for L2(H).

Suppose from now on that G is finite.
It follows that |T | = |H |, the dimension of `2(H), and with a little more work it follows that T is a

spectrum of H if and only if we have the tiling condition

|χ̂H |2 + T = |H |2Ĝ. (12)

Indeed, for t1, t2 ∈ Ĝ we have by definition of the Fourier transform that

〈t1, t2〉H =
∑

x∈H

t1(x)t2(x) =
∑

x∈H

(t1 − t2)(x) = χ̂H(t1 − t2).

Suppose now that T is a spectrum of H . If t ∈ Ĝ we have (Parseval)

|H | = ‖t‖2
`2(H)

=
∑

s∈T

∣∣∣∣
〈
t,

s

‖s‖

〉∣∣∣∣
2

=
1

|H |
∑

s∈T

|〈t, s〉|2

=
1

|H |
∑

s∈T

|χ̂H(t− s)|2,

which is precisely the statement that |χ̂H |2 +T = |H |2Ĝ. That this tiling condition is also sufficient to imply
that T is a spectrum of H follows similarly (we are not using this direction in this paper).

By the analysis of tiling shown in §1.2 it follows that this happens if and only if

supp χ̂T ⊆ {0} ∪ (H −H)c and |T | = |H |. (13)

§2. Generalities about Turán constants on groups
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2.1 Homomorphic images and the Turán constant
Let G and H be two LCA groups, and ϕ : G → H a continuous group homomorphism which maps

G onto H . Denote K := Ker(ϕ) ≤ G. By continuity of ϕ, K is a closed subgroup, hence a LCA group
itself. We consider G/K as fixed together with the canonical or natural projection π : G→ G/K defined as
π(g) := [g] := g +K ∈ G/K. By definition of the topology of G/K, π is an open and continuous mapping.
Compare §B.2, B.6 in Appendix B of [Ru62]. Moreover, ϕ ◦π−1 : G/K → H is an isomorphism of the LCA
groups G/K and H .

For the determination of the Turán constants, the choice of the Haar measure is relevant. Haar measures
are unique up to a constant factor: we can always choose the Haar measures µK and µG/K so that dµG =
dµKdµG/K , in the sense of (2) in [Ru62, 2.7.3]. On the other hand fixing a particular Haar measure µH

of H always leaves open the question of compatibility with the fixed measure µG/K and the mapping ϕ.
Let A ⊂ H be an arbitrary Borel set. Then one can define ν(A) := µG/K(π(ϕ−1(A))); since ϕ is onto,
clearly this defines another Haar measure on H . Since Haar measures are constant multiples of each other,
we necessarily have C := dµH/dν a constant. Once H and µH are given, various homomorphisms ϕ may
generate different measures, but the constant C = C(ϕ) can always be read from this relation.

Proposition 3. Let G and H be LCA groups, and ϕ : G → H be a continuous group homomorphism
onto H. Suppose an open subset Ω ⊂ G is given, and let Θ := ϕ(Ω) ⊂ H. Consider the closed subgroup
K := Ker(ϕ) ≤ G, and the quotient group G/K together with their Haar measures µG/K and µK , normalized
as above. We then have

TG(Ω) ≤ 1

C
TH(Θ)TK(Ω ∩K) (C :=

dµH

dν
) . (14)

Here ν := µG/K ◦ π ◦ ϕ−1 is defined as above.

Proof. As K is the kernel of the continuous homomorphism ϕ, K is a closed subgroup of G. Therefore, the
factor group G/K is a LCA group, which is continuously isomorphic to H .

The image Θ of the open set Ω is open, since ϕ is also an open mapping. Indeed, π is open by its
definition, and thus π(Ω) is open in G/K for any open Ω in G. However, the isomorphism ψ : G/K → H ,
defined by ψ := ϕ ◦ π−1, brings over the open set π(Ω) to Θ, which is then open by the isomorphism itself.

Observe that Ωg := Ω ∩ (K + g) is relatively open for any g ∈ G, while the coset K + g is closed. Let us
choose arbitrarily a representative g(h) ∈ G of each coset ϕ−1(h) of K to all h ∈ H . Now for any uniformly
continuous function f : G→ C we can define

F (h) :=

∫

K

f(g(h) + k) dµK(k) =

∫

ϕ−1(h)

f(x) dµK(x− g(h)). (15)

Since f is uniformly continuous, the function F : H → C is continuous, F (0) =
∫

K
fdµK , and by Fubini’s

Theorem
∫

H

F (h)dµH(h) =

∫

H

∫

ϕ−1(h)

f(g(h) + k) dµK(k)Cdν(h)

= C

∫

H

∫

K

f(g(h) + k) dµK(k)dµG/K(πϕ−1(h)) (16)

= C

∫

H×K

f(g(h) + k) dµK(k)dµG/K([g(h)]) = C

∫

G

f dµG ,

taking into account the choice of normalization of the Haar measures for K and G/K. Next we prove that
F is positive definite on H in case f is positive definite on G. Indeed, for any character χ on H there is a
character γ := χ ◦ ϕ on G, and applying (16) to fγ yields

∫

H

F (h)χ(h)dµH (h) = C

∫

G

f(g)γ(g) ≥ 0 .

Thus we have
∫

H FdµH ≤ TH(Θ)F (0). Moreover, f |K is positive definite on K, hence we also have F (0) =∫
K∩Ω

f dµK ≤ TK(K ∩ Ω)f(0). Comparing these inequalities with (16) yields C
∫

G
f dµG ≤ TH(Θ)TK(K ∩

Ω)f(0), and taking supremum of
∫

G fdµG/f(0) (14) obtains.
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2.2 Automorphic invariance of the Turán constant
One of the reasons to work out Proposition 3 is its corollary to the case when we deal with an automor-

phism of the group G.

Corollary 1. Let G be a LCA group and let ϕ : G → G be an automorphism. Then we have for any open
set Ω ⊂ G the identity

TG(ϕ(Ω)) =
|ϕ(Ω)|
|Ω| TG(Ω) . (17)

Proof. In our case H = G and ϕ is an automorphism. Clearly then K = {0} is the trivial group, µK = δ0
is the trivial measure, K ∩ Ω = {0}, TK(K ∩ Ω) = 1, µK(K ∩ Ω) = 1 and G/K ∼= G, µG/K

∼= µG.
Thus we find ν = µG ◦ ϕ−1, and C := dµH/dν being constant, it can be computed on Ω∗ := ϕ(Ω) as
C = |ϕ−1(ϕ(Ω))|/|ϕ(Ω)| = |Ω|/|ϕ(Ω)|. Applying Proposition 3 yields (17) with ≤ first. However, ϕ−1 is also
an automorphism, and that implies the reverse inequality, too. Whence Corollary 1 follows.

The important special case when G = Rd and ϕ is any linear mapping A : Rd → Rd was already noted
in [AB01]. There the computation of the constant C is equivalent to the calculation of the volume element,
ie. the determinant, of the linear mapping A.

The next assertion was also observed in [AB01] for Rd.

Corollary 2. Let G = G1 × · · · ×Gn and Ωj ⊂ Gj (j = 1, . . . , n), Ω = Ω1 × · · · × Ωn. Then we have

TG(Ω) = TG1(Ω1) · · · TGn
(Ωn) . (18)

Proof. The ≤ direction easily follows from iteration of Proposition 3. On the other hand take any positive
definite functions fj on Gj with supp fj ⊂⊂ Ωj for (j = 1, . . . , n). It is easy to see that then the product
f := f1 · · · fn is a positive definite function on G, with supp f ⊂⊂ Ω, hence also the ≥ part of (18) follows.

2.3 Turán constants on quotient groups

Corollary 3. Let G be a LCA group, K a closed subgroup of G, and suppose that the Haar measures µK

and µG/K of G and G/K, respectively, are normalized (as always) so that dµG = dµKdµG/K . Let Ω be any
open set in G and Θ be its projection on G/K, ie. Θ := {g +K : g ∈ Ω}. Then we have

TG(Ω) ≤ TG/K(Θ)TK(Ω ∩K) . (19)

In particular, if Ω ∩K = {0}, then TG(Ω) ≤ TG/K(Θ).

Proof. Consider H := G/K and the natural projection π : G → G/K. It is a continuous group homomor-
phism and thus Proposition 3 can be applied with ϕ := π. In this case Θ = π(Ω) comprises the class of
cosets K + g so that K + g ∩ Ω 6= ∅, and the arising measure ν is identical to µG/K . Hence C = 1 and we
are led to (19). The special case is obvious.

2.4 Restrictions to subgroups and the Turán constants
We show now that there is some sort of monotonicity in the first argument of TG(Ω) as well.

Corollary 4. Let G be a compact abelian group, and K a closed subgroup of G. Let the Haar measures µK

and µG be normalized arbitrarily, and let Ω be any open set in G. Then we have

TG(Ω) ≤ |G|
|K|TK(Ω ∩K) . (20)

Here |G| = µG(G) and |K| = µK(K).

Proof. With µG and µK already given, we can define the Haar measure µG/K so that the condition µG =
µKµG/K still holds. Let ϕ := π and H := G/K as in the previous Corollary. Since we always have
Θ ⊂ G/K, and thus TG/K(Θ) ≤ TG/K(G/K) = µG/K(G/K), an application of Corollary 3 yields TG(Ω) ≤
µG/K(G/K)TK(Ω∩K). It remains to see that for a compact group G and (closed, hence compact) subgroup
K also the quotient is compact, and according to our choice of normalization we have µG/K(G/K) =
µG(G)/µK(K). The assertion follows.
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Example 1. Let us remark here that Lemma 1 of [GM02] can be proved via Corollary 4 by taking G = T,
Ω to be the interval (−p/q, p/q) ⊆ T (for some co-prime integers p and q with p/q ≤ 1/2) and K to be
the (finite) subgroup of T generated by 1/q. The results in [GM02] first show that the Turán problem in
this case can be reduced to a finite problem of linear programming (this is obviously the case for any Turán
problem on a finite group) and Corollary 4 shows half the reduction. The reverse inequality is also true in
this particular case (this can be shown by “convolving” a positive definite function on the subgroup with a
Fejér kernel of half-base 1/q) but it cannot be expected to hold in general.

§3. Upper bound from packing
Here we show in §3.1 the three main results which give us upper bounds for the Turán constant using
“packing”. In the remaining part of this section we show several examples and applications of these, in
various groups.

3.1 Proof of the main bounds from “packing”
Proof of Theorem 2. Define F : G → C by

F (x) =
∑

λ,µ∈Λ

f(x+ λ− µ).

In other words F = f ∗ δΛ ∗ δ−Λ, where δA denotes the finite measure on G that assigns a unit mass to

each point of the finite set A. It follows that F̂ = f̂
∣∣∣δ̂Λ

∣∣∣
2

≥ 0 so that F is continuous and positive definite.

Moreover, we also have
suppF ⊆ supp f + (Λ − Λ) ⊆ Ω + (Λ − Λ) (21)

and
F (0) = |Λ|f(0), (22)

since Ω ∩ (Λ − Λ) ⊆ {0}. Finally ∫

G

F = |Λ|2
∫

G

f. (23)

Applying the trivial upper bound
∫

G F ≤ F (0)|Ω + (Λ − Λ)| to the positive definite function F and using
(22) and (23) we get ∫

G

f ≤ |Ω + (Λ − Λ)|
|Λ| f(0). (24)

Estimating trivially |Ω + (Λ − Λ)| from above by |G| we obtain the required TG(Ω) ≤ |G|/|Λ|.
2

Corollary 5. Let G be a compact abelian group and suppose Ω, H,Λ ⊆ G, H + Λ ≤ G is a packing at level
1, that Ω ⊆ H −H and that f ∈ F(Ω). Then (7) holds.

In particular, if H + Λ = G is a tiling, we have

TG(Ω) ≤ |H |. (25)

Proof. Since H + Λ ≤ G it follows that (H − H) ∩ (Λ − Λ) = {0}. Since Ω ⊆ H − H by assumption it
follows that Ω and Λ − Λ have at most 0 in common. Theorem 2 therefore applies and gives the result. If
H + Λ = G then |G|/|Λ| = |H | and this proves (25).

Proof of Theorem 3. Let ε > 0 and choose R > 0 and x ∈ G such that

|Λ ∩QR(x)| ≥ (ρ− ε)|QR(x)| ≥ (ρ− ε)(R− 1)d,

where QR(x) is the cube of side R and center at x. Assume also that supp f ⊆ Qr(0).
Let Λ′ = Λ ∩ QR(x) and construct the function F as in the proof of Theorem 2, with Λ′ in place of Λ.

We now have that
suppF ⊆ supp f + (Λ′ − Λ′) ⊆ Q2R+r(0).

11



This time we do not apply the trivial upper estimate to F as we did in Theorem 2 (then, we had no detailed
information on the support). Instead we use that for L ∈ 2N

TG(QL(0)) ≤ (L/2 + 1)d . (26)

The validity of TRd(QL(0)) ≤ 2−dLd (∀L > 0) and hence (26) in the case of G = Rd has been proved, for
example, in [AB01, AB02, KR03]. For G = Zd we give a proof here.

Notice first that for any finite Ω ⊆ Zd and any large enough positive integer M we have

TZd(Ω) ≤ T
Z

d

M

(Ω). (27)

Indeed, if M is large enough (e.g. M > diam(Ω)/2) then the closed subgroup K := MZd only intersects Ω
in 0, while the factor group Zd

M will have an injective image Θ of Ω: hence Corollary 3 applies.

If Ω = Qd
L(0) = {−L/2, . . . , L/2}d define H to be the set {0, . . . , L/2}d such that Ω = H −H . Take now

M = 10(L/2 + 1), for example, so that (a) H tiles Zd
M by translation, and, (b) M is large enough to have

all elements of Ω distinct mod Zd
M . Using Corollary 5 we obtain (26) from (25) in the group Zd

M , and hence
also in Zd because of (27).

Hence taking L := L(R, r) in (26) as the least even integer not less than 2R + r, we obtain both for
G = Rd and G = Zd the estimate

∫
G F ≤ TG(QL(0))F (0) ≤ (R+ r/2 + 2)dF (0). Comparing this with (22)

and (23) (with Λ′ in place of Λ) we are led to

∫

G

f ≤ f(0)
(R+ r/2 + 2)d

|Λ′| ≤ (R+ r/2 + 2)d

(ρ− ε)Rd
.

Since ε > 0 can be taken arbitrarily small and R arbitrarily large, we get
∫

G
f ≤ 1

ρf(0).

3.2 Sharpness
The bound (7) can be sharp. Take, for example, Ω to be a subgroup of G of finite index and H = Ω. Take
also Λ to a complete set of coset representatives of G/Ω, so that |Λ| < ∞. Then H + Λ = G and Corollary
5 applies and gives ∑

x∈G

f(x) ≤ |Ω|f(0) (28)

for every positive definite function f : G → C supported in Ω, which is also the trivial bound. Taking
f = χΩ, which is positive definite because Ω is a group, gives equality in (28).

More generally (and as in the next example) the inequality (7) is sharp whenever H + Λ = G and
Ω = H −H . In such a case the function f = χH ∗ χ−H achieves equality in (7).

3.3 Examples

Example 2. Take G = Z8 = {0, 1, . . . , 7}, H = {0, 1, 4, 5}, Ω = H −H = {0, 1, 3, 4, 5, 7} and Λ = {0, 2}, so
that Λ − Λ = {0, 2, 6} and H + Λ = G. It follows that

∑

x∈G

f(x) ≤ 4f(0)

for any positive definite function on Z8 which vanishes on ±2, instead of the trivial
∑

x∈G f(x) ≤ 6f(0).
The equality can be achieved by the function f = χH ∗ χ−H .

Example 3. Let G := Z and Ω := ΩN := {−N,−1, 0, 1, N}; then the trivial estimate is A(N) := TZ(ΩN ) ≤
5. Let f ∈ F(Ω) be a positive definite and real valued function: then f(k) = f(−k), that is, f is even. The
dual group is T, and positive definiteness of f means p(x) := 1+2f(1) cosx+2f(N) cosNx ≥ 0 (as f(0) = 1
by normalization). In the Turán problem we are to maximize

∫
Z
f = 1 + 2f(1) + 2f(N) = p(0); we have

A(N) = max p(0).
To find A(N) in case when N = 2n+1 is odd we may look at the value p(π) = 1−2f(1)−2f(2n+1)≥ 0

to see that p(0) = 2− p(π) ≤ 2. Clearly, any function with f(1)+ f(2n+1) = 1/2 achieves this bound while
p ≥ 0 if additionally we require 0 ≤ f(1), f(2n+ 1). Hence A(2n+ 1) = 2.
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If N = 2n is even, the solution is less simple. We claim that A(N) = 1 + 1/ cos π
2n+1 =: C(N), say, and

the extremal function is

p0(x) := 1 +
2n

(2n+ 1) cos π
2n+1

cosx+
1

(2n+ 1) cos π
2n+1

cos 2nx .

Clearly p0(0) = C(N), and standard calculus proves nonnegativity of p0, hence it is an admissible trigono-
metric polynomial and A(N) ≥ C(N).

To show its extremality we consider a general p(x) = 1 + a cosx + b cos 2nx (where a := 2f(1), b :=
2f(N)) at the point z0 := π + π/(2n + 1), which yields 0 ≤ p(z0) = 1 − a cos π

2n+1 − b cos π
2n+1 . Thus

p(0) = 1 + a+ b = 1 + (1 − p(z0))/ cos π
2n+1 ≤ C(N), and the calculation is concluded.

Now let us consider the estimates obtainable from the use of Theorem 3. In case N is odd, taking Λ := 2Z

is optimal. Indeed, since Λ is a subgroup, Λ − Λ = Λ, and it does not intersect ΩN (apart from 0), hence
an application of Theorem 3 gives the right value A(N) ≤ 1/dens(Λ) = 2. Hence in this case Theorem 3 is
sharp.

Let us see that it is not in the case when N = 2n is even. To this, first we have to find the best upper
density, that is,

L(N) := sup
ΩN∩(Λ−Λ)={0}

dens(Λ) .

Let us consider the set Λ∗ := {0, 2, . . . , 2n− 2}∪ {2n+ 1, 2n+ 3, . . . , 4n− 1}+ (4n+ 2)Z, which contains
2n elements in each interval

[
k(4n+2), (k+1)(4n+2)

)
of 4n+2 numbers and hence has density n/(2n+1).

A direct calculation shows that ΩN ∩ (Λ∗ − Λ∗) = {0}, hence L(N) ≥ n/(2n+ 1). On the other hand we
assert that for no Λ satisfying ΩN ∩ (Λ − Λ) = {0} can any interval I = [k, k + 2n] of 2n + 1 consecutive
numbers contain more than n elements of Λ. Indeed, no pair of neighboring numbers belong to Λ, because
1 ∈ ΩN , and (at least) n + 1 non-neighboring numbers can be placed into I only if all m ∈ I with the
same parity as k is contained. However, then both k and k + 2n is contained, having difference 2n ∈ ΩN , a
contradiction. Hence for a Λ satisfying our condition, the upper density can not exceed n/(2n+ 1), which
proves L(N) = n/(2n+ 1).

Now we can compare the best estimate TZ(ΩN ) ≤ 1/L(N) = 2+1/n arising from Theorem 3 to the exact
value 2 + 1/ cos π

2n+1 found above. It shows that application of Theorem 3 – although much better than the
trivial estimate, but still – is not optimal in this case. This example highlights also the fact that number
theoretical, intrinsic structural properties – like e.g. N being even or odd – essentially influence the values
of the Turán constants and sharpness of the estimates we have.

Example 4. Another example of a nice set with nontrivial, but not sharp estimate arising from Theorem
3 is the unit disk D in R2 (with Lebesgue measure). The area of D is π and the right value of the Turán
constant, first computed by Gorbachev [Go01], is |D|/2d = π/4 in this case. Now D is the difference set of
H := D/2, and the best density we can have is, in fact, the sphere packing constant of R2. It is well-known
[AP95] that the best packing is the regular hexagon lattice packing, hence L(D) = 2/

√
3 and the arising

estimate is
√

3/2. In comparison, note that the estimate of §3.5 gives |D|/2 = π/2, while the estimate
of Theorem 5 from the spectral approach does not apply, since the ball is not spectral. The above values
compare as π/4 = 0.785 · · · <

√
3/2 = 0.866 · · · < π/2 = 1.57 . . . .

Example 5. We see that for a general Ω ⊂ H−H or even Ω = H−H the “best translational set”, (i.e. the
maximal number of elements or the highest possible upper density), does not always achieve an exact bound
of TG(Ω). In this respect it is worth mentioning that, on the other hand, results of Herz [Hr56], [Hr60]
show that each subgroup Λ of G provides the theoretically best possible, sharp estimate for some open set
Ω. E.g. if G is compact, and Λ is a finite subgroup having n elements, there exists a Borel set H with the
properties |H | = 1/n, Ω := H −H is open, and Ω ∩Λ = {0}. See also [Ru62, 7.4.1]. Clearly for this Ω and
H we have that H + Λ = G is a tiling, and TG(Ω) = 1/n, achieved by χH ∗ χ−H .

Example 6. The size of the Turán constant of a set Ω may be extremely small. Take for example in the
group G = Z2n the set Ω = {0} ∪Kc, where K is the subgroup generated by 2. Let then Λ = K and apply
Theorem 2. It follows that TG(Ω) ≤ 2 while |Ω| = n+ 1.

The same way we have TZ(Ω) ≤ 2 for any subset Ω ⊂ ({0}∪(2Z+1)) in view of Theorem 3 and considering
the set Λ := 2Z. (This covers the N odd case of Example 3, too.)

The generality of this example should be obvious.
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Figure 1: The Turán constant of H −H (right) is equal to the area of H

3.4 The Turán constant of difference sets of tiles in Rd or Zd.
Here we show how to generalize the results in [AB02] (see also [KR03]). In [AB02] the Turán constant

of convex polytopes which tile Rd by lattice translation was determined.
Actually being a polytope and lattice translation need not be assumed as it is a fact (see e.g. the references

in [KR03]) that any convex body that tiles space by translation is a polytope and can also tile by lattice
translation.

From Theorem 3 it follows that if H is any measurable set of finite measure that tiles Rd or Zd by
translation with Λ then the Turán constant of H −H is equal to 1/densΛ = |H |.

Whenever Ω is a convex body in Rd one can take H = 1
2Ω, so Theorem 3 is indeed a generalization of

the result in [AB02].
However, Theorem 3 can determine the Turán constant of many more sets than those dealt with in

[AB02], such as the one in Figure 1. The subset of the plane H shown on the left tiles the plane by
translation hence its difference set shown on the right has Turán constant equal to |H |.
Example 7. Let H ⊂ Z2 be the three-element set {(0, 0), (0, 1), (1, 0)} and Ω be the difference set H−H =
{(−1, 0), (−1, 1), (0,−1), (0, 0), (0, 1), (1,−1), (1, 0)}. Then |Ω| = 7, but H tiles Z2, hence Theorem 3
applies and yields |H | = 3. Observe that the set Λ := Z(1, 1)+Z(2,−1) provides a translational set. Indeed,
any points (n + 2m,n − m) of Λ, and thus also of Λ − Λ, has the property that the first coordinate is
congruent to the second mod 3, hence Ω ∩ Λ − Λ = {(0, 0)}. On the other hand all points of Z2 with the
above congruence property belong to Λ, i.e. Λ is a subgroup of index 3. It follows that the density of Λ is
1/3, and Theorem 3 gives the assertion.

3.5 The Turán constant of dispersed sets
As an application of Theorem 3 we show that, in R, the Turán constant of a set of given length is the largest
if the set is an interval. The construction extends to Z, and even to Rd and Zd giving a generally valid
improvement of the trivial bound by about a factor of 2.

Theorem 6. Let Ω ⊆ Rd be an open set of finite measure m. Then we have

TRd(Ω) ≤ m

2
. (29)

Let Ω ⊆ Zd be a set of size m containing the origin and denote by m+ the number of lattice points in the
”nonnegative half of Ω”, i.e. in Ω ∩

(
[0,∞) × Zd−1

)
. Then we have

TZd(Ω) ≤ m+ . (30)
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Proof. Let us denote P := [0,∞) × Rd−1 or [0,∞) × Zd−1, respectively, and put Ω+ := Ω ∩ P . Note that
in Rd we simply have m+ := |Ω+| = m/2. It is easy to see that Theorem 1 (on the equivalent formulations
of the Turán constant), allows us to assume that Ω is bounded: so let Ω ⊂ B(0, r) with some fixed ball of

radius r. Take a large parameter L0 > max{2, r}, define Lk = L2k

= L2
k−1 (∀k ∈ N), say, and put

Qk := QLk
((Lk, 0, . . . , 0)) = [0, 2Lk] × [−Lk, Lk]d−1 (k ∈ N), Q0 := ∅ . (31)

Note that |Qk| = (2Lk)d in Rd and (2Lk + 1)d in Zd. Define

Sk := Qk \ (Qk−1 + Ω) (k ∈ N) . (32)

Obviously, Sk are closed sets of measure

|Sk| ≥ |Qk| − |Qk−1 + Ω| ≥ (2Lk)d − ((2Lk−1 + 1) + 2r)d ≥ 2dLd
k

(
1 −

(2 + r

Lk−1

)d
)

(k ∈ N), (33)

satisfying (Sk − Sn) ∩ Ω = ∅ for k 6= n. We aim at constructing the discrete set

Λ :=
∞⋃

k=1

Λk, Λk ⊂ Sk (k ∈ N) (34)

with as many as possible elements but satisfying (Λk − Λk) ∩ Ω = {0}. Note that if the latter condition is
satisfied, then we will also have (Λ − Λ) ∩ Ω = {0} in view of the respective property of Sk ⊃ Λk. So now

we define the elements of Λk inductively by a “greedy algorithm” as follows. Let λ
(k)
0 be any element of the

nonempty set Sk with first coordinate 0. Such an element clearly exists. Then for n ≥ 1 take any

λ(k)
n := (x1,n, . . . , xd,n) ∈

(
Sk \

n−1⋃

j=1

(λ
(k)
j + Ω+)

)

with (35)

x1,n = min

{
x1 : ∃ x = (x1, . . . , xd) ∈

(
Sk \

n−1⋃

j=1

(λ
(k)
j + Ω+)

)}
.

Defining new elements λ
(k)
n of Λk terminates in a finite number of steps, but not before ∪n−1

j=1 (λ
(k)
j + Ω+)

covers Sk, so with m+ := |Ω+| we must have

#Λk ≥ |Sk|
|Ω+| ≥

2dLd
k

(
1 − ( 2+r

Lk−1
)d

)

m+
(k ∈ N) . (36)

By construction, for any n > j λ
(k)
n − λ

(k)
j ∈ Ω is not possible, hence Λ−Λ ∩Ω = {0}. Moreover, in view of

(36) we have

dens Λ ≥ lim sup
k→∞

#Λk

|Qk|
≥ lim sup

k→∞

(
1 − ( 2+r

Lk−1
)d

)

m+
=

1

m+
. (37)

Now an application of Theorem 3 with Λ concludes the proof.

Remark 4. For d = 1 (29) is sharp for intervals in R. It is plausible, but we do not know if intervals are
the only cases of equality.

Remark 5. As Ω is always symmetric, in Z we always have m+ = (m + 1)/2. The estimate (30) can also
be sharp at least for d = 1. Take e.g. Ω = Ω0 or Ω1 from Example 3, or, more generally, take Ω := [−N,N ].
Then m = 2N + 1, m+ = (m + 1)/2 = N + 1, and the Fejér kernel shows that this value can be achieved.
Thus TZ([−N,N ]) = N +1, and intervals have maximal Turán constants once again. However, here the sets
k[−N,N ] := {kn : |n| ≤ N} of similar size have equally large Turán constants, hence intervals are not the
only extremal examples in Z.
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Remark 6. It can be proved that the asymptotic uniform upper density of all sets remain the same both in
Rd and in Zd if we define it replacing QR by RK with any other convex body K. Thus in the above proof
one can consider the slightly modified basic sets RQ(T ), where RQ(T ) is the R-dilated copy of the unit box
rotated by the isometry T ∈ SO(d). If we choose T to be ”irrational” in the sense that no lattice point
(apart from the origin) moves to the hyperplane {x1 = 0}, then with these sets a similar argument leads the
same estimate but now with m+ = #Ω+ = (m+ 1)/2. We leave the details to the reader.

3.6 The Turán constant of an interval missing two points
Our next result shows the effect of forcing a positive definite function to vanish at a neighborhood of one
point in an interval.

Theorem 7. Suppose 0 < b < a ≤ 2b and let

Ω = (−a,−b) ∪ (−b, b) ∪ (b, a).

Then TR(Ω) = TR(−b, b) = b.

Proof. Simply take Λ = bZ and apply Theorem 3 to obtain that TR(Ω) ≤ b. The other direction is obvious
by the monotonicity of TG(·).

The condition a < 2b is necessary in Theorem 7. Indeed, if a > 2b then, with c = min{b, (a− b)/2} > b/2
and d := (a + b)/2 the function f := χ(0,c) ∗ χ(−c,0) ∗ (δ0 + δd) ∗ (δ0 + δ−d), whose graph consists of three
triangles centered at 0 and ±d of width 2c and heights 1 (for the central triangle) and 1/2 (for the other
two) is positive definite and supported in Ω, yet has f(0) = 2c and

∫
R
f = 4c2. Hence TR(Ω) ≥ 2c > b.

§4. Upper bound from spectral sets

4.1 Proof of the bound from spectral sets
Proof of Theorem 4. Since T is a spectrum of H we have (see §1.3)

supp χ̂T ⊆ {0} ∪ (H −H)c

⊆ {0} ∪ Ωc

⊆ {0} ∪ {f = 0}.

Hence f̂ + T = cĜ is a tiling and c = |T |f(0), as
∫

bG
f̂ =

∣∣∣Ĝ
∣∣∣f(0).

Since f̂ ≥ 0 in Ĝ it follows that f̂(0) ≤ c or
∑

x∈G

f(x) ≤ |T |f(0) = |H |f(0).

2

4.2 Comparison of Theorems 2, 3 and 4, 5
First we give an example when Theorem 4 gives a better bound than any possible application of Theorem 2.
Let G = Z12

2 and H = {e1, e2, . . . , e12}, where ei is the vector in G with all zeros except at the i-th position
where we have 1. The set H was recently shown by Tao [Ta03] to have a spectrum, and it is clear that H
cannot tile G since |H | = 12 does not divide |G| = 212.

Let Ω = H −H . This means that Ω consists of the all-zero vector plus all vectors in G with precisely
two 1’s, hence |Ω| =

(
12
2

)
+ 1 = 67.

By Theorem 4 we have that if f : G → C is a positive definite function supported on Ω then
∑

x∈G

f(x) ≤ 12f(0).

Suppose now that Theorem 2 applies with some Λ ⊆ G, such that Ω ∩ (Λ−Λ) = {0}. Since Ω = H −H
this implies that H + Λ ≤ G is a packing at level 1, hence |Λ| ≤ 1

12 |G|. In fact |Λ| < 1
12 |G| as |Λ| is an

integer but 1
12 |G| is not. Clearly then (7) is inferior than

∑
x∈G f(x) ≤ 12f(0) given by Theorem 4.
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Tao [Ta03] also shows how to construct a domain (in fact, a finite union of unit cubes) in Rd, d ≥ 5, which
is spectral but not a translational tile. SupposeH is such a domain. Theorem 5 shows that TRd(H−H) ≤ |H |.
We claim that Theorem 3 gives a worse upper bound for the set Ω = H −H . Indeed, suppose that Λ ⊆ Rd

is a set for which

Ω ∩ (Λ − Λ) = {0},

as required by Theorem 3, and that ρ is the upper density of Λ. Condition (38) means that H+Λ is a packing,
hence |H |dens Λ ≤ 1. The fact that H is not a tile implies (this requires a proof, an easy diagonal argument)
that the inequality above is strict, so that 1/ρ > |H |, which shows that any application of Theorem 3 gives
a worse result than Theorem 5 for H −H .
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