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Abstract. We prove qualitative and quantitative results concerning the asymptotic density in dilates of
centered convex bodies of the frequency vectors of orthogonal exponential bases and frames associated to
bounded domains in Euclidean space.

1. Introduction

Let Ω ⊂ Rd be a bounded domain. We say that Ω is spectral if L2(Ω) possesses an orthogonal basis of the
form EΛ = {e2πix·λ}λ∈Λ, where Λ is a subset of Rd. We shall refer to Λ as a spectrum of Ω. The set Λ is
easily seen to have a separation property: |λ− µ| ≥ ε for all λ, µ ∈ Λ, λ 6= µ, and is therefore a discrete set.

A systematic study of such spectra was initiated by Fuglede in [1]. This problem has received much recent
attention.

Let
D+

R(Ω) = max
x∈Rd

#{Λ ∩QR(x)},

and
D−

R(Ω) = min
x∈Rd

#{Λ ∩QR(x)},

where QR(x) denotes the cube of side-length 2R centered at x. Landau [7] proved that

(1) lim sup
R→∞

D+
R

(2R)d
= |Ω|,

and the same equality holds for D−
R .

If EΛ is only a frame for L2(Ω), in the sense that there exist positive constants A and B such that

(2) A||g||2L2(Ω) ≤
∑
A

|ĝ(λ)|2 ≤ B||g||2L2(Ω),

where ĝ denotes the Fourier Transform of g, then one can only conclude that

(3) lim sup
R→∞

D−
R

(2R)d
≥ |Ω|.

Observe that EΛ is an orthogonal basis if and only if (2) holds with A = B = 1.

In [4], the authors proved that if ∂Ω has Minkowski dimension α < d, with α-dimensional upper Minkowski
content denoted by |∂Ω|α, (2) holds, and

(4) R ≥ C

(
B|∂Ω|α
A|Ω|

) 1
d−α

,

for some C > 0, then for every x ∈ Rd, QR(x) contains at least one element of Λ.
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In §3 we show an alternative estimate for the minimum R such that every cube of side-length R necessarily
contains a point of a (A,B)-frame for the domain. For the quite general case of planar domains which are
simple polygons we show that this estimate is always as good as (4) and often much better.

The main purpose of this paper is to prove a Weyl type estimate (see e.g. [9, Ch. 5] for a description of
the classical Weyl asymtotics in the context of Riemannian manifolds) for #{Λ∩R ·K}, where K is a convex
body in Rd, symmetric with respect to the origin, in the case when EΛ is an orthogonal basis for L2(Ω). In
analogy with the classical Weyl formula we ask whether

#{λ : ||λ||K ≤ R} = cΩ,ΛRd + o(Rd),

where || · ||K is the norm induced by K.

It turns out that the answer is yes, and under some additional assumptions we obtain more quantitative
estimates on the error term. We shall see that our estimates imply both (1) and (4) at the same time, thus
presenting a unified description of geometric properties of spectra.

Theorem 1. Let Ω be a bounded domain in Rd of positive Lebesgue measure. Let EΛ be defined as above.
If EΛ is an orthogonal basis for L2(Ω), then

(5) #{λ ∈ Λ : ||λ||K ≤ R} = |K|Rd|Ω|+ E(R),

with

(6) E(R) = o(Rd).

Moreover, if the boundary of Ω has upper Minkowski dimension α < d, then

(7) |E(R)| ≤ CK |∂Ω|αRα,

where C is a constant depending on the domain Ω only.

If EΛ is merely a frame with constants A and B as in (2) above, then

(8) A|Ω| ≤
#{λ ∈ Λ : ||λ||K ≤ R}

|K|Rd
≤ B|Ω|.

Remark 1. We do not have an example where the estimate |E(R)| . Rα holds only with α > d− 1. A
family of examples with α = d − 1 is given in the Example 1 below. Nevertheless, the upper Minkowski
assumption allows to obtain better results than the o(Rd) estimate obtained without any assumption on the
boundary of Ω.

Observe that (4) follows immediately from (5) and (7) in the case Λ is a spectrum, while (1) and (3) follow
from (6) and (8), respectively. To see the former, we use the fact that the proof of (5) and (7) shows that the
same estimate still holds with uniform constants for a translated spectrum, i.e #{λ ∈ Λ : ||λ− x||K ≤ R} =
|K|Rd|Ω| + E(x,R), with |E(x,R)| ≤ CK |∂Ω|αRα with constants independent of x, under the assumption
that the boundary of Ω has upper Minkowski dimension α < d. It follows that if CK |∂Ω|αRα is much smaller
than the main term |K|Rd|Ω|, the set {λ ∈ Λ : ||λ− x||K ≤ R} is not empty and (4) follows.

It is interesting to compare Theorem 1 with a model situation where Ω = [0, 1]d, K is the unit Euclidean
ball of volume ωd, and Λ = Zd. In this case, it is known that

(9) #{λ ∈ Λ : |λ| ≤ R} = ωdR
d + O(Rd−2),

if d ≥ 5, and

(10) #{λ ∈ Λ : |λ| ≤ R} = ωdR
4 + O(R2 log(R)),

if d = 4. In two and three dimensions the situation is more murky. In two dimensions, Hardy’s conjecture
says that the remainder should be O(R

1
2+ε), for any ε > 0. The best known result in dimension two, due

to Huxley, gives O(R
46
73 ). In three dimensions, the best known result is due to Heath-Brown who obtained

O(R
21
16 ). See [2] and the references contained therein.
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All these results are driven by the curvature of the boundary of the Euclidean ball. To see this observe
that if Ω = [0, 1]d, Λ = Zd, and K = [−1, 1]d, the best we can say is

(11) #{λ ∈ Λ : ||λ||K ≤ R} = 2dRd + O(Rd−1),

since an integer dilate of the unit cube contains ≈ Rd−1 integer lattice points on its boundary.

Observe that the remainders in all these results are much better than the ones given by Theorem 1,
especially in the case where K is the Euclidean ball. However, the following construction shows that even
when Ω is the unit cube in Rd and K is the Euclidean ball, the situation becomes much worse when the
integer lattice is replaced by a more complicated spectrum.

Example 1. Consider the standard lattice of cubes in Rd. View each cube as a translate of [0, 1]d. We call
the image of the origin under this translation the defining vertex of the cube.

Consider a sphere of radius 100 centered at the origin. Move each relevant column of cubes in such a way
that the defining vertex of one the cubes in the column is on this sphere. Now consider a sphere radius 2100.
Leave the previously moved columns alone, and move the other columns in such a way that the defining
vertex of one of the cubes in each column is on this sphere. Continuing this process, we produces a family
of spheres with radii {Ri}, Ri →∞, and a discrete set Λ′ such that the i’th sphere contains ≈ Rd−1

i points
of Λ′ with constants independent of i.

Since [0, 1]d + Λ′ is clearly a tiling, the result proved independently by Lagarias, Reeds and Wang [8] and
Iosevich and Pedersen [3] (see also [5]), implies that EΛ′ is an orthogonal basis for L2(Ω). It is clear that in
this case, the estimate (7) cannot be improved.

2. Proof of Theorem 1

Suppose that EΛ is an orthogonal basis for L2(Ω). It follows (see e.g. [5] or Remark 2 below) that

(12)
∑
λ∈Λ

f(x− λ) = |Ω|2,

where f = |χ̂Ω|2. Notice also that
∫

f = |Ω|.

Let Kt denote the set t ·K, let Λt denote the set Λ ∩Kt and let finally

N(t) = #Λt.

From the orthogonality of the exponentials in EΛ it follows that for any two distinct points λ, µ ∈ Λ their
difference is a zero of f , hence there is a lower bound for their distance. This separation means that
N(t) ≤ Ctd and also that N(t+R)−N(t) ≤ Ctd−1R if R > 0 is a large enough constant. Roughly speaking,
if a domain is not too thin then the number of Λ-points in it is bounded above by its volume.

Remark 2. If EΛ is only a frame for the space L2(Ω) with frame constants A and B then it follows that,
for f = χ̂Ω we have for almost all x ∈ Rd

(13) A|Ω|2 ≤
∑
λ∈Λ

f(x− λ) ≤ B|Ω|2.

This is easily seen by applying (2) to an arbitrary exponential function. The proof below for the case of EΛ

being an orthonormal basis also gives (8) with trivial modifications: the separation property does not hold
for frames, however using the upper bound in (13) one easily gets that Λ has the property that matters in
the proof below, namely that the number of Λ-points in K-balls and shells is controlled by the volume of
the region.
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First we follow [6] to show that N(t) = |K||Ω|td + o(td), under no assumptions about ∂Ω. For this let
1 < R < T be large numbers and integrate (12) over the region KT to get

|Ω|2|KT | =
∫

KT

∑
λ∈Λ

f(x− λ) dx

=
∫

KT

∑
ΛT−R

f(x− λ) dx +
∫

KT

∑
ΛT+R\ΛT−R

f(x− λ) dx +
∫

KT

∑
Λ\ΛT+R

f(x− λ) dx

=
∫

Rd

∑
ΛT−R

f(x− λ) dx− E1 + E2 + E3

= N(T −R)|Ω| − E1 + E2 + E3,

so that
N(T −R) = |KT ||Ω| −

E1

|Ω|
+

E2

|Ω|
+

E3

|Ω|
,

where

E1 =
∫

Kc
T

∑
ΛT−R

f(x− λ) dx,

E2 =
∫

KT

∑
ΛT+R\ΛT−R

f(x− λ) dx,

E3 =
∫

KT

∑
Λ\ΛT+R

f(x− λ) dx.

Let ε > 0 be arbitrary and fixed, and choose R so that∫
Kc

R

f(x) dx ≤ ε.

We have, since T > R,

E1 ≤ εN(T −R)
≤ εN(T )

≤ CεT d,

and

E3 =
∑

Λ\ΛT+R

∫
λ+KT

f(x) dx

≤ CT d

∫
Kc

R

f(x) dx

≤ CεT d,

as each point in Kc
R is contained in at most CT d of the sets λ + KT , with λ ∈ Λ \ΛT+R. For E2 we trivially

have

E2 ≤ (N(T + R)−N(T −R))|Ω|
= o(T d), as R is fixed.

Since ε is arbitrary and N(T −R) = N(T )− o(T d) as T →∞ we have proved that

N(T ) = |K||Ω|T d + o(T d).

In other words the set Λ has density |Ω|.

Let us now assume that ∂Ω has finite α-dimensional upper Minkowski content, with α < d. We shall
prove that

(14)
∫

K2R\KR

f(x) dx ≤ CK |∂Ω|αR−(d−α),
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where |∂Ω|α denotes the Minkowski content of ∂Ω.

To see (14) we choose N (independent of j) boxes Qν and N vectors hν , with 2−(j+1) ≤ ‖hν‖K ≤ 2−j ,
such that the region

{
y : 2j ≤ ‖y‖K ≤ 2j+1

}
is contained in

⋃
Qν and∣∣e2πiy·hν − 1

∣∣ ≥ 1, (y ∈ Qν).

We now have, where 2j ∼ R,∫
2j≤‖y‖K≤2j+1

f(y) dy ≤
N∑

ν=1

∫
Qν

∣∣χ̂Ω(y)(e2πiy·hν − 1)
∣∣2 dy

≤
N∑

ν=1

∫
Rd

|χΩ(x)− χΩ(x− hν)|2 dx

≤
N∑

ν=1

∣∣{x ∈ Rd : dist (x, ∂Ω) < hν

}∣∣
≤ C

N∑
ν=1

|∂Ω|α|hν |d−α

≤ CK |∂Ω|α2−j(d−α).

Let R →∞, ε =
∫

Kc
R

f = O(R−(d−α)) and integrate (12) on KR to get, similarly to what we did above,

N(R) = |Ω||KR| −
E1

|Ω|
+

E2

|Ω|
+

E3

|Ω|
,

where now

E1 =
∫

Kc
R

∑
ΛR

f(x− λ) dx,

E2 =
∫

KR

∑
Λ2R\ΛR

f(x− λ) dx,

E3 =
∫

KR

∑
Λ\Λ2R

f(x− λ) dx.

We have as before
E3 ≤ Rd

∫
Kc

R

f = O(Rα).

To bound E1 we decompose the set ΛR in shells of width 2j , j = 0, 1, . . . , log2 R:

Aj = Λ ∩ (KR−2j \KR−2j+1),

thinner near ∂KR and doubling in width as we move towards the origin. Using (14) we get

E1 ≤
log2 R∑
j=0

#Aj2−j(d−α)

≤ C

log2 R∑
j=0

Rd−12j2−j(d−α)

≤ CRd−1

log2 R∑
j=0

2j(1−d+α)

= O(Rα).

We bound E2 similarly by decomposing in dyadic shells the set Λ2R \ ΛR, thinner near ∂KR and doubling
as we move out:

Bj = Λ ∩ (KR+2j+1 \KR+2j ),
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We get

E2 ≤
log2 R∑
j=0

#Bj2−j(d−α)

≤ C

log2 R∑
j=0

(R + 2j)d−12j2−j(d−α)

≤ CRd−1

log2 R∑
j=0

2j(1−d+α)

= O(Rα).

We have proved
N(R) = |Ω||K|Rd + O(Rα).

3. An improved upper bound for the side-length of empty cubes

In this section we show a very simple new upper bound on the size of Λ-free cubes, when EΛ is a frame
for L2(Ω). This bound ignores the roughness of ∂Ω and cares about the thickness of the interior.

Theorem 2. Suppose Ω ⊆ Rd is measurable with positive measure and also that the point set Λ ⊆ Rd is
such that EΛ is a frame for L2(Ω) with lower and upper frame constants being A and B, respectively. Let R
be such that there is a cube in Rd of side-length R containing no point of Λ. Finally, assume that Ω contains
a cube of side-length ε > 0. Then

(15) R ≤ Cd
B

A
ε−1.

Proof. Let Q ⊆ Ω be a cube of side-length ε contained in Ω. By the definition of a frame (2) it follows that
EΛ is a frame for L2(Q) with the same frame constants. Applying (4) for Q, with α = d − 1, we get the
result. �

The new estimate (15) can easily seen to be much better than (4) in some cases. Take for example in R2

a perturbation of the unit square that creates a very long boundary but leaves intact a square of side 1/2
inside. And, in the quite general case of simple polygonal domains the new estimate (15) is at least as good
as (4), as the following theorem claims.

Theorem 3. Suppose Ω is a simple polygon and let ε be the maximum side-length of a cube contained in Ω.
Then, for some constant C > 0, we have

(16)
|∂Ω|
|Ω|

≥ Cε−1.

Proof. Consider the usual subdivision of the plane into squares of side ε, translated at the points (εZ)2. Let
N be the number of those squares intersecting Ω. It follows that N ≥ |Ω|ε−2.

By our assumption about ε these squares all contain some point of Ωc and therefore also some point of
∂Ω. Let these squares be called Qi, i = 1, . . . , N , and let pi ∈ Qi ∩ ∂Ω.

Partition the set of these squares into four classes depending on the parity of the x- and y-coordinate of
their lower left corner (after multiplying these coordinates by ε−1). At least one of these classes contains
at least N/4 squares. There are therefore at least N/4 points on ∂Ω with minimum distance Cε from each
other, and these are connected to each other along ∂Ω. It follows that the total length of ∂Ω is at least

C
N

4
ε ≥ C|Ω|ε−1.

�
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