# ON THE BUSEMANN-PETTY PROBLEM ABOUT CONVEX, CENTRALLY SYMMETRIC BODIES IN $\mathbb{R}^{n}$ 

MICHAEL PAPADIMITRAKIS

§1. Introduction. Let $A$ and $B$ be two compact, convex sets in $\mathbb{R}^{n}$, each symmetric with respect to the origin $0 . L$ is any $(n-1)$-dimensional subspace. In 1956 H. Busemann and C. M. Petty (see [6]) raised the question: Does $\operatorname{vol}(A \cap L)<\operatorname{vol}(B \cap L)$ for every $L$ imply $\operatorname{vol}(A)<\operatorname{vol}(B)$ ? The answer in case $n=2$ is affirmative in a trivial way. Also in 1953 H. Busemann (see [4]) proved that if $A$ is any ellipsoid the answer is affirmative. In fact, as he observed in [5], the answer is still affirmative if $A$ is an ellipsoid with 0 as center of symmetry and $B$ is any compact set containing 0 .

The first breakthrough was in 1975 (see [8]) when D. G. Larman and C. A. Rogers took $B=B_{n}$, the unit ball in $\mathbb{R}^{n}$ and proved that, if $n \geqslant 12$, there exist $A$ 's which are arbitrarily small perturbations of $B$ and which give a negative answer to the problem. Their proof is not constructive and uses probabilistic reasoning.

In 1988, K. Ball (see [2]) proved that, if $n \geqslant 10, B=B_{n}$ and $A$ an appropriate dilation of $[-1,1]^{n}$ give a negative answer. Also in 1990, A. Giannopoulos (see [7]) proved that, if $n \geqslant 7, B=B_{n}$ and $A$ a cylinder of the form $\left\{\left(x_{1}, \ldots, x_{n}\right): x_{1}^{2}+\ldots+x_{n-1}^{2} \leqslant a^{2},\left|x_{n}\right| \leqslant b\right\}$ (for a certain choice of $a, b$ ) provide a negative answer.

In 1990, J. Bourgain (see [3]) proves non-constructively that, if $n \geqslant 7$ and $B=B_{n}$, there are arbitrarily small perturbations $A$ of $B$ giving a negative answer. He also proves that, if $n=3$ and $B=B_{3}$ then for every small perturbation $A$ of $B$ the answer is affirmative.

Observe that the only constructions giving a negative answer are those of K. Ball and A. Giannopoulos with $B=B_{n}$ but in both cases $A$ is not a small perturbation of $B$.

In this paper I will construct $B$ (not $B_{n}$ ) and small perturbations $A$ of $B$ which give negative answer for $n=5,6$. Thus the problem is still open for $n=3,4$.
§2. Constructions. I will consider the following type of solids. Let a curve be given in polar coordinates $(\theta, r(\theta)), 0 \leqslant \theta \leqslant \pi / 2$ such that $r(\theta)$ is a continuous function of $\theta$ and $r(\theta) \sin \theta$ is a decreasing and concave function of $r(\theta) \cos \theta$. Consider the set:

$$
A=\left\{\left(x_{1}, \ldots, x_{n}\right):\left|x_{n}\right| \leqslant \varphi\left(\sqrt{x_{1}^{2}+\ldots+x_{n-1}^{2}}\right)\right\},
$$


where $s=\varphi(t)$ is defined by

$$
t=r(\theta) \cos \theta, \quad s=r(\theta) \sin \theta
$$

Then $\boldsymbol{A}$ is a compact convex set with 0 as center of symmetry.
Obviously

$$
\operatorname{vol}(A)=2 V_{n-1} \int_{0}^{\pi / 2} r^{n-1}(\theta) \cos ^{n-1} \theta d(r(\theta) \sin \theta)
$$

where $V_{n-1}$ is the $(n-1)$-dimensional volume of $B_{n-1}$. After integration by parts:

$$
\operatorname{vol}(A)=2 V_{n-1} \frac{n-1}{n} \int_{0}^{\pi / 2} r^{n}(\theta) \cos ^{n-2} \theta d \theta
$$

Now, if $L$ is any $(n-1)$-dimensional subspace of $\mathbb{R}^{n}, \operatorname{vol}(A \cap L)$ is uniquely determined by $\theta$, the angle of $L$ and the $x_{n}=0$ subspace.

If $\theta=0$ then $\operatorname{vol}(A \cap L)=V_{n-1} r(0)^{n-1}$.
If $\theta>0$ then the intersection of $A \cap L$ with any $x_{n}=\alpha$ hyperplane is nonempty only if $|\alpha| \leqslant r(\theta) \sin \theta$ and then this intersection is an ( $n-2$ )-dimensional ball of radius

$$
r(\varphi) \sqrt{\cos ^{2} \varphi-\sin ^{2} \varphi \cot ^{2} \theta} \quad \text { where } \quad \alpha=r(\varphi) \sin \varphi, \quad|\varphi| \leqslant \theta .
$$

Therefore, if $\theta>0$

$$
\operatorname{vol}(A \cap L)=2 V_{n-2} \int_{0}^{\theta} r^{n-2}(\varphi)\left(\cos ^{2} \varphi-\sin ^{2} \varphi \cot ^{2} \theta\right)^{(n-2) / 2} d\left(\frac{r(\varphi) \sin \varphi}{\sin \theta}\right)
$$

which after integration by parts becomes $\operatorname{vol}(A \cap L)=2 V_{n-2} \frac{n-2}{n-1} \cdot \frac{1}{\sin \theta} \int_{0}^{\theta} r^{n-1}(\varphi) \cos ^{n-3} \varphi\left(1-\tan ^{2} \varphi \cot ^{2} \theta\right)^{(n-4) / 2} d \varphi$.

I will use the notation $R(\theta)$ for the integral in the last formula of $\operatorname{vol}(A \cap L)$.
Therefore the question of Busemann, Petty for this type of solid becomes.
Do there exist two functions $r_{j}(\theta), j=1,2$, of $\theta \in[0, \pi / 2]$ such that:
(i) $r_{j}(\theta)$ is continuous and $r_{j}(\theta) \sin \theta$ is a decreasing and concave function of $r_{j}(\theta) \cos \theta$;
(ii) $r_{1}(0) \leqslant r_{2}(0)$ and, for every $0<\theta \leqslant \pi / 2, R_{1}(\theta) \leqslant R_{2}(\theta)$; but
(iii) $\int_{0}^{\pi / 2} r_{1}^{n}(\theta) \cos ^{n-2} \theta d \theta>\int_{0}^{\pi / 2} r_{2}^{n}(\theta) \cos ^{n-2} \theta d \theta$ ?

Case $\boldsymbol{n}=6$. The idea is to invert the transform

$$
R(\theta)=\int_{0}^{\theta} r^{5}(\varphi) \cos ^{3} \varphi\left(1-\tan ^{2} \varphi \cot ^{2} \theta\right) d \varphi
$$

and then to choose $R(\theta)$ in a way that when we perform some negative variation $\delta R(\theta)$ the resulting variation in the volume integral $\int_{0}^{\pi / 2} r^{6}(\theta) \cos ^{4} \theta d \theta$ is positive.

The following change of notation is convenient

$$
x=\tan \theta, \quad y=\tan \varphi, \quad \varphi(x)=r(\theta) \cos \theta, \quad f(x)=\varphi^{5}(x), \quad F(x)=R(\theta)
$$

Then

$$
F(x)=\int_{0}^{x} f(y)\left(1-\frac{y^{2}}{x^{2}}\right) d y=\int_{0}^{x} f(y) d y-\frac{1}{x^{2}} \int_{0}^{x} f(y) y^{2} d y
$$

and, by taking $g(x)=\int_{0}^{x} f(y) d y$,

$$
F(x)=\frac{2}{x^{2}} \int_{0}^{x} y g(y) d y
$$

and finally

$$
\begin{equation*}
f(x)=\frac{d}{d x}\left(\frac{1}{x} \frac{d}{d x}\left(\frac{1}{2} x^{2} F(x)\right)\right) \tag{1}
\end{equation*}
$$

The necessary conditions of continuity and concavity become
(a) $\varphi(x)$ and $x \varphi(x)$ continuous in $[0,+\infty]$, and
(b) $x \varphi(x)$ is a decreasing and concave function of $\varphi(x)$. Or, equivalently: $\varphi+x \varphi^{\prime} \geqslant 0,2\left(\varphi^{\prime}\right)^{2} \geqslant \varphi \varphi^{\prime \prime}$.
Suppose we perform a small negative variation $\delta F$ to $F$. Then by (1) the resulting variation in $f$ is

$$
\begin{equation*}
\delta f=\left(\frac{1}{x}\left(\frac{1}{2} x^{2} \delta F\right)^{\prime}\right)^{\prime} \tag{2}
\end{equation*}
$$

and the variation in the volume integral $V=\int_{0}^{\pi / 2} r^{6}(\theta) \cos ^{4} \theta d \theta=\int_{0}^{\infty} f^{6 / 5}(x) d x$ is

$$
\partial V=\frac{6}{5} \int_{0}^{\infty} f^{1 / 5}(x) \delta f(x) d x+\int_{0}^{\infty} f^{6 / 5}(x) O\left(\left(\frac{d f}{f}\right)^{2}\right) d x
$$

I require that $\delta F$ and hence also $\delta f$ be $\equiv 0$ outside some interval $(a, b) 0<a<b<\infty$.

$$
\delta V=\frac{6}{5} \int_{0}^{\infty} \varphi \cdot \delta f d x+O\left((\delta f)^{2}\right)
$$

and I need only $\int_{0}^{\infty} \varphi \cdot \delta f d x>0$.
Using (2) and integration by parts

$$
\int_{0}^{\infty} \varphi \cdot \delta f d x=\frac{1}{2} \int_{0}^{\infty} x^{2} \delta F \cdot\left(\frac{\varphi^{\prime}}{x}\right)^{\prime} d x
$$

I will construct $\varphi$ so that it satisfies the necessary continuity and concavity conditions (a), (b) above. Also the (b) inequalities will be strict in an interval $(a, 1), 0<a<1$. Furthermore, $\left(\varphi^{\prime} / x\right)^{\prime}<0$ in $(a, 1)$.

This will enable me to take sufficiently small $\delta F \leqslant 0$ with $\delta F<0$ in a subinterval of $(a, 1)$ and $\delta F \equiv 0$ outside $(a, 1)$ and prove my claim.

Such a $\varphi$ is given by

$$
\varphi(x)= \begin{cases}\frac{1}{2}(3-a), & 0 \leqslant x \leqslant a \\ \frac{1}{2}(3-a)-\frac{1}{2}(x-a)^{2} /(1-a), & a \leqslant x \leqslant 1, \\ 1 / x, & 1 \leqslant x \leqslant+\infty\end{cases}
$$

Remark. (a) The graph of $x \varphi=r(\theta) \sin \theta$ versus $\varphi=r(\theta) \cos \theta$ looks as in the picture. The corresponding solid is close to a cylinder, the type of solid used in [7].
(b) The sphere does not work since $\varphi(x)=\cos \theta$ and an elementary calculation shows $\left(\varphi^{\prime} / x\right)^{\prime}=3 \cos ^{4} \theta \sin \theta>0$.

Case $n=5$. Now $R(\theta)=\int_{0}^{\theta} r^{4}(\varphi) \cos ^{2} \varphi \sqrt{1-\tan ^{2} \varphi \cot ^{2} \theta} d \varphi$.
The idea is the same as in case $n=6$ but the details are more complicated.

$$
x=\tan \theta, \quad \varphi(x)=r(\theta) \cos \theta, \quad f(x)=\varphi^{4}(x), \quad F(x)=R(\theta) .
$$



Then

$$
F(x)=\int_{0}^{x} f(y) \sqrt{1-\frac{y^{2}}{x^{2}}} d y
$$

Using $s=x^{2}, t=y^{2}, G(s)=2 x F(x), g(t)=1 / x f(x)$ we find

$$
\begin{gathered}
2 G^{\prime}(s)=\int_{0}^{s} g(t) \frac{d t}{\sqrt{s-t}}, \\
2 G^{\prime}(s)-\pi f(0)=\int_{0}^{s}\left(g(t)-\frac{f(0)}{\sqrt{t}}\right) \frac{d t}{\sqrt{s-t}} .
\end{gathered}
$$

By the well-known Abel's inversion formula (see [9])

$$
g(s)-\frac{f(0)}{\sqrt{s}}=\frac{2}{\pi} \int_{0}^{s} G^{\prime \prime}(s) \frac{d t}{\sqrt{s-t}}
$$

which finally gives

$$
f(x)-f(0)=\frac{2}{\pi} x \int_{0}^{x}\left(\frac{1}{y}(y F)^{\prime}\right)^{\prime} \frac{d y}{\sqrt{x^{2}-y^{2}}}
$$

Suppose that we perform a small non-positive variation $\delta F$ to $F(x)$, which is $\equiv 0$ outside an interval $(a, b)$ with $0<a<b<\infty$. Then, by also taking $\delta f(0)=0$,

$$
\begin{equation*}
\delta f(x)=\frac{2}{\pi} x \int_{0}^{x}\left(\frac{1}{y}(y \delta F)^{\prime}\right)^{\prime} \frac{d y}{\sqrt{x^{2}-y^{2}}} \tag{3}
\end{equation*}
$$

The corresponding variation in the volume integral

$$
V=\int_{0}^{\pi / 2} r^{5}(\theta) \cos ^{3} \theta d \theta=\int_{0}^{\infty} f^{5 / 4}(x) d x
$$

is

$$
\begin{equation*}
\delta V=\frac{5}{4} \int_{0}^{\infty} f^{1 / 4}(x) \delta f(x) d x+\int_{0}^{\infty} f^{5 / 4}(x) O\left(\left(\frac{\delta f}{f}\right)^{2}\right) d x \tag{4}
\end{equation*}
$$

Now we must guarantee that $\delta f / f$ is uniformly small in $[0,+\infty]$. Since $\delta F \equiv 0$ in $[0, a](3)$ gives that $\delta f \equiv 0$ in $[0, a]$. Now as $x \rightarrow+\infty$

$$
\delta f(x)=\frac{2}{\pi} x \int_{a}^{b}\left(\frac{1}{y}(y \delta F)^{\prime}\right)^{\prime} \frac{d y}{\sqrt{x^{2}-y^{2}}}
$$

$$
\begin{gather*}
\delta f(x)=\frac{2}{\pi} \int_{a}^{b}\left(\frac{1}{y}(y \delta F)^{\prime}\right)^{\prime}\left[1+\frac{1}{2} \frac{y^{2}}{x^{2}}+\frac{3}{8} \frac{y^{4}}{x^{4}}+O\left(\frac{y^{6}}{x^{6}}\right)\right] d y \\
\delta f(x)=\frac{6}{\pi x^{4}} \int_{0}^{\infty} y^{2} \delta F(y) d y+O\left(\frac{1}{x^{6}}\right) \tag{5}
\end{gather*}
$$

where $O$ is small if $\delta F$ is small. But $x \varphi(x)=r(\theta) \sin \theta$ is bounded from below as $x \rightarrow+\infty$. Therefore, $\delta f / f=\delta f / \varphi^{4}$ is bounded as $x \rightarrow \infty$ and so uniformly bounded in $[0, \infty)$. It is also uniformly small if $\delta F$ is small.

From (4) we need $\int_{0}^{\infty} \varphi(x) \delta f(x)>0$ in order to have a positive variation in $V$.

Using (3) and integration by parts the last integral becomes

$$
\begin{equation*}
\frac{2}{\pi} \int_{0}^{\infty} \delta F(y) y^{2} \int_{y}^{\infty}\left(\frac{\varphi^{\prime}}{x}\right)^{\prime} \frac{d x}{\sqrt{x^{2}-y^{2}}} d y \tag{6}
\end{equation*}
$$

In order not to interrupt the line of thought I will prove this in the supplement.

To produce a counterexample to the Busemann-Petty problem we need a $\varphi$ such that:
(a) $\varphi$ and $x \varphi$ are continuous on $[0,+\infty]$;
(b) $x \varphi^{\prime}+\varphi \geqslant 0$ and $2\left(\varphi^{\prime}\right)^{2} \geqslant \varphi \varphi^{\prime \prime}$; and
(c)

$$
\int_{y}^{\infty}\left(\frac{\varphi^{\prime}}{x}\right)^{\prime} \frac{d x}{\sqrt{x^{2}-y^{2}}}<0
$$

in some interval $(a, b), 0<a<b<+\infty$.
Because then we take $\delta F \equiv 0$ outside some subinterval of $(a, b)$ and $\delta F<0$ and small otherwise. We have to make sure though that $\varphi+\delta \varphi$ satisfies (b). We achieve this as follows. Let $0<a<1$ and $1<c<2$. Let $d=\frac{1}{2}(2-c) /(1-a)$.

$$
\varphi(x)= \begin{cases}1+d(1-a)^{2}, & 0 \leqslant x \leqslant a \\ 1+d(1-a)^{2}-d(x-a)^{2}, & a \leqslant x \leqslant 1 \\ (c / x)-(c-1) / x^{2}, & 1 \leqslant x \leqslant+\infty\end{cases}
$$

Then $\varphi(1)=1, \varphi^{\prime}(1)=c-2<0$ and $x \varphi^{\prime}+\varphi>0,2\left(\varphi^{\prime}\right)^{2}>\varphi \varphi^{\prime \prime}$ in ( $a, 1$ ). Also, in $(1,+\infty)$,

$$
x \varphi^{\prime}+\varphi=\frac{c-1}{x^{2}}, \quad 2\left(\varphi^{\prime}\right)^{2}-\varphi \varphi^{\prime \prime}=\frac{2(c-1)^{2}}{x^{6}} .
$$

From (5) we get

$$
\begin{gather*}
\varphi+\delta \varphi=(f+\delta f)^{1 / 4}=\left[\varphi^{4}+\frac{6}{\pi x^{4}} \int_{0}^{\infty} y^{2} \delta F d y+O\left(\frac{1}{x^{6}}\right)\right]^{1 / 4},  \tag{7}\\
\frac{\delta \varphi}{\varphi}=-\rho+\frac{k}{x}+O\left(\frac{1}{x^{2}}\right)=-\rho+\frac{k}{x}+T(x)
\end{gather*}
$$

where

$$
\begin{gathered}
\rho=1-\left\{1+\frac{6}{\pi c^{4}} \int_{0}^{\infty} y^{2} \delta F d y\right\}^{1 / 4}, \\
k=\frac{6(c-1)}{\pi c^{5}} \int_{0}^{\infty} y^{2} \delta F d y\left\{1+\frac{6}{\pi c^{4}} \int_{0}^{\infty} y^{2} \delta F(y) d y\right\}^{-3 / 4} .
\end{gathered}
$$

Since $\delta F \leqslant 0$, we get $\rho>0, k<0$. Also, $\rho, k$ and the $O$ in (7) are small if $\delta F$ is small.

We can also prove that $T^{\prime}(x)=O\left(1 / x^{3}\right), T^{\prime \prime}(x)=O\left(1 / x^{4}\right)$. Using all this information we have from (7)

$$
\begin{aligned}
2\left((\varphi+\delta \varphi)^{\prime}\right)^{2}-(\varphi+\delta \varphi)(\varphi+\delta \varphi)^{\prime \prime}>0 & \text { and, } \\
x(\varphi+\delta \varphi)^{\prime}+(\varphi+\delta \varphi)>0 & \text { as } x \rightarrow \infty .
\end{aligned}
$$

Hence, if $\delta F$ is small, $\varphi+\delta \varphi$ satisfies (b).
Next I will prove that

$$
\int_{a}^{\infty}\left(\frac{\varphi^{\prime}(x)}{x}\right)^{\prime} \frac{d x}{\sqrt{x^{2}-a^{2}}}<0
$$

which will give (c) for an interval around $a$.

$$
\begin{aligned}
\int_{a}^{\infty}\left(\frac{\varphi^{\prime}}{x}\right)^{\prime} \frac{d x}{\sqrt{x^{2}-a^{2}}} & =-\int_{a}^{1} \frac{2 a d}{x^{2} \sqrt{x^{2}-a^{2}}} d x+\text { bounded term } \\
& =-\frac{2 d}{a} \int_{1}^{1 / a} \frac{d t}{t^{2} \sqrt{t^{2}-1}}+\text { bounded term }
\end{aligned}
$$

If $a \rightarrow 0+$ then the last expression $\rightarrow-\infty$.
Exactly the same remarks apply as in case $n=6$.
§3. Supplement

$$
\begin{aligned}
& \frac{\pi}{2} \int_{0}^{\infty} \varphi(x) \delta f(x) d x \\
& \quad=\int_{0}^{\infty} x \varphi(x) \int_{a}^{x}\left(\frac{1}{y}(y \delta F)^{\prime}\right)^{\prime} \frac{d y}{\sqrt{x^{2}-y^{2}}} d x
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{b}^{\infty} \varphi(x) \int_{0}^{b}\left(\frac{1}{y}(y \delta F)^{\prime}\right)^{\prime}\left(\frac{x}{\sqrt{x^{2}-y^{2}}}-1-\frac{1}{2} \frac{y^{2}}{x^{2}}\right) d y d x \\
& +\int_{0}^{b} \varphi(x) \int_{0}^{x}\left(\frac{1}{y}(y \delta F)^{\prime}\right)^{\prime} \frac{x}{\sqrt{x^{2}-y^{2}}} d y d x \\
& =\int_{0}^{b}\left(\frac{1}{y}(y \delta F)^{\prime}\right)^{\prime} \int_{b}^{\infty} \varphi(x)\left(\frac{x}{\sqrt{x^{2}-y^{2}}}-1-\frac{1}{2} \frac{y^{2}}{x^{2}}\right) d x d y \\
& +\int_{0}^{b}\left(\frac{1}{y}(y \delta F)^{\prime}\right)^{\prime} \int_{y}^{b} \varphi(x) \frac{x}{\sqrt{x^{2}-y^{2}}} d x d y \\
& =\int_{0}^{b}\left(\frac{1}{y}(y \delta F)^{\prime}\right)^{\prime} \int_{b}^{\infty} \varphi(x)\left(\sqrt{x^{2}-y^{2}}-x+\frac{1}{2} \frac{y^{2}}{x}\right)^{\prime} d x d y \\
& +\int_{0}^{b}\left(\frac{1}{y}(y \delta F)^{\prime}\right)^{\prime} \int_{y}^{b} \varphi(x)\left(\sqrt{x^{2}-y^{2}}\right)^{\prime} d x d y \\
& =\int_{0}^{b}\left(\frac{1}{y}(y \delta F)^{\prime}\right)^{\prime}\left\{-\varphi(b)\left(\sqrt{b^{2}-y^{2}}-b+\frac{1}{2} \frac{y^{2}}{b}\right)\right. \\
& \left.-\int_{b}^{\infty} \varphi^{\prime}(x)\left(\sqrt{x^{2}-y^{2}}-x+\frac{1}{2} \frac{y^{2}}{x}\right) d x\right\} d y \\
& +\int_{0}^{b}\left(\frac{1}{y}(y \delta F)^{\prime}\right)^{\prime}\left\{\varphi(b) \sqrt{b^{2}-y^{2}}-\int_{y}^{b} \varphi^{\prime}(x) \sqrt{x^{2}-y^{2}} d x\right\} d y \\
& =-\int_{0}^{b}\left(\frac{1}{y}(y \delta F)^{\prime}\right)^{\prime} \int_{b}^{\infty} \varphi^{\prime}(x)\left(\sqrt{x^{2}-y^{2}}-x+\frac{1}{2} \frac{y^{2}}{x}\right) d x d y \\
& -\int_{0}^{b}\left(\frac{1}{y}(y \delta F)^{\prime}\right)^{\prime} \int_{y}^{b} \varphi^{\prime}(x) \sqrt{x^{2}-y^{2}} d x d y \\
& =\int_{0}^{b} \frac{1}{y}(y \delta F)^{\prime} \int_{b}^{\infty} \varphi^{\prime}(x)\left(-\frac{y}{\sqrt{x^{2}-y^{2}}}+\frac{y}{x}\right) d x d y \\
& -\int_{0}^{b} \frac{1}{y}(y \delta F)^{\prime} \int_{y}^{b} \varphi^{\prime}(x) \frac{y}{\sqrt{x^{2}-y^{2}}} d x d y
\end{aligned}
$$

$$
\begin{aligned}
&= \int_{0}^{b}(y \delta F)^{\prime} \int_{b}^{\infty} \frac{\varphi^{\prime}(x)}{x}\left(1-\frac{x}{\sqrt{x^{2}-y^{2}}}\right) d x d y \\
&-\int_{0}^{b}(y \delta F)^{\prime} \int_{y}^{b} \frac{\varphi^{\prime}(x)}{x} \cdot \frac{x}{\sqrt{x^{2}-y^{2}}} d x d y \\
&=\int_{0}^{b}(y \delta F)^{\prime}\left\{-\frac{\varphi^{\prime}(b)}{b}\left(b-\sqrt{b^{2}-y^{2}}\right)-\int_{b}\left(\frac{\varphi^{\prime}(x)}{x}\right)^{\prime}\left(x-\sqrt{x^{2}-y^{2}}\right) d x\right\} d y \\
&-\int_{0}^{b}(y \delta F)^{\prime}\left\{\frac{\varphi^{\prime}(b)}{b} \sqrt{b^{2}-y^{2}}-\int_{y}^{b}\left(\frac{\varphi^{\prime}(x)}{x}\right)^{\prime} \sqrt{x^{2}-y^{2}} d x\right\} d y \\
&=-\int_{0}^{b}(y \delta F)^{\prime} \int_{b}^{\infty}\left(\frac{\varphi^{\prime}(x)}{x}\right)^{\prime}\left(x-\sqrt{x^{2}-y^{2}}\right) d x d y \\
&+\int_{0}^{b}(y \delta F)^{\prime} \int_{y}^{b}\left(\frac{\varphi^{\prime}(x)}{x}\right)^{\prime} \sqrt{x^{2}-y^{2}} d x d y \\
&= \int_{0}^{\infty} y \delta F \int_{y}^{\infty}\left(\frac{\varphi^{\prime}(x)}{x}\right)^{\prime} \frac{y}{\sqrt{x^{2}-y^{2}}} d x d y .
\end{aligned}
$$

Acknowledgement. I thank Prof. S. Pichorides for the many discussions we had about this problem.

## References

1. K. M. Ball. Cube slicing in $\mathbb{R}^{n}$. Proc. Amer. Math. Soc., 97 (1986), 465-473.
2. K. M. Ball. Some remarks on the geometry of convex sets. Geometric Aspects of Functional Analysis, LNM 1317 (Springer, 1988), 224-231.
3. J. Bourgain. On the Busemann-Petty problem for perturbations of the ball. Geom. Funct. Anal., 1 (1991), 1-13.
4. H. Busemann. Volumes in terms of concurrent cross-sections. Pacific J. Math., 3 (1953), 1-12.
5. H. Busemann. Volumes and areas of cross-sections. Amer. Math. Monthly, 67 (1960), 248-250 and 671.
6. H. Busemann and C. M. Petty. Problems on convex bodies. Math. Scand., 4 (1956), 88-94.
7. A. Giannopoulos. A note on a problem of H. Busemann and C. M. Petty concerning sections of convex symmetric bodies. Mathematika, 37 (1990), 239-244.
8. D. G. Larman and C. A. Rogers. The existence of a centrally symmetric convex body with central sections which are unexpectedly small. Mathematika, 22 (1975), 164-175.
9. F. Riesz and B. S. Nagy. Functional Analysis (Ungar, New York, 1955).

Dr. M. Papadimitrakis,
Department of Mathematics, Washington University, Campus Box 1146, One Brookings Drive, St. Louis, MO 63130-4899, U.S.A.

52A20: CONVEX AND DISCRETE GEOMETRY; General convexity; Convex sets in n-dimensions.

