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Abstract

A fundamental solution for a linear differential operator A is a distribution F , which

satisfies the in-homogeneous equation AF = δ(x), where δ is the Dirac ”delta func-

tion”. The existence of a fundamental solution for any operator A with constant

coefficients was shown by Bernard Malgrange and Leon Ehrenpreis.
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Chapter 1

Distributions

1.1 Introduction

1.1.1 Definition and Examples

We begin with the notion of a multi-index. This is any n-tuple of non-negative

integers

α = (α1, α2, ..., αn)

The order of a multi-index is the quantity

|α| =
n∑
i=1

αi

If α is a multi-index, there is a partial differential operator Dα corresponding to it:

Dα =

(
∂

∂x1

)α1
(

∂

∂x2

)α2

· · ·
(

∂

∂xn

)αn

=
∂|α|

∂xα1
1 · · · ∂xαn

n

The space C∞(Rn) consists of all functions φ : Rn → C such that Dαφ ∈ C(Rn) for

each multi-index α. Thus, the mixed partial derivatives of φ of all orders exist and

are continuous.

A vector space D(Rn), called the space of test functions, is now introduced.

Its elements are all the functions in C∞(Rn) having compact support. The support

of a function φ is the closure of {x : φ(x) 6= 0} and it is denoted supp(φ). Another

notation for D(Rn) is C∞c (Rn).

An element φ ∈ C∞(Rn) such that

φ ≥ 0

∫
Rn

φ(x)dx = 1 supp(φ) ⊆ {x : |x| ≤ 1 }

1



CHAPTER 1. DISTRIBUTIONS 2

is called a mollifier. If φ is a mollifier, then the scaled versions o φ, defined by

φδ(x) =
1

δn
φ
(x
δ

)
(δ > 0)

play a role in certain arguments.

When we say that φj → φ for a sequence φj in D(Rn) and a φ ∈ D(Rn) we mean

that there is a compact set K so that supp(φj) ⊆ K for every j and Daφj → Daφ

uniformly in Rn for every multi-index a.

Theorem 1 For every multi-index α, Dα is a continuous linear transformation

of D(Rn) into D(Rn).

A distribution is a continuous linear functional on D. Continuity of such a

linear functional T is defined by this implication:

[φj ∈ D(Rn) & φj → 0]⇒ T (φj)→ 0

The space of all distributions is denoted by D′(Rn).

Example 1 The Dirac distribution δξ is defined by selecting ξ ∈ Rn and writing

δξ(φ) = φ(ξ)

It is a distribution, because firstly, it is linear:

δξ(λ1φ1 + λ2φ2) = (λ1φ1 + λ2φ2)(ξ) = λ1φ1(ξ) + λ2φ2(ξ) = λ1δξ(φ1) + λ2δξ(φ2)

Secondly, it is continuous because the condition φj → 0 implies that φj(ξ)→ 0.

If we write δ without a subscript we refer to ξ = 0, i.e. δ = δ0.

Example 2 The Heaviside distribution H̃ is defined, when n = 1, by

H̃(φ) =

∫ ∞
0

φ(x)dx (φ ∈ D(Rn))

Example 3 Let f : Rn → R be integrable on every compact set in Rn. We say

that f is locally integrable or f ∈ L1
loc(Rn). With f we associate a distribution f̃ by

means of the definition

f̃(φ) =

∫
Rn

f(x)φ(x)dx (φ ∈ D(Rn))

The linearity of f̃ is obvious. For the continuity, we observe that if φj → 0, then

there is a compact K containing the supports of all φj. Then we have

∣∣∣f̃(φj)
∣∣∣ =

∣∣∣∣∫
K

f(x)φj(x)dx

∣∣∣∣ ≤ sup
x
|φj(x)|

∫
K

|f(y)| dy → 0
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because φj → 0 entails supx |φj(x)| → 0.

We say that f̃ is the image of f in the space of distributions. Distributions of

the form f̃ are called regular distributions.

Example 4 If H is the Heaviside function, defined by the equation

H(x) =

{
1, if x ≥ 0

0, if x < 0

then Example 2 above illustrates the principle in Example 3.

Example 5 Fix a multi-index α and define

T (φ) =

∫
Rn

Dαφ (φ ∈ D(Rn))

This is a distribution.

1.1.2 Derivatives of Distributions

We have seen that the space D′(Rn) of distributions is very large; it contains (images

of) all locally integrable functions in Rn. Then, too, it contains functionals on D(Rn)

that are not readily identified with functions. Now we will define derivatives of

distributions, taking care that the new notion of derivative will coincide with the

classical one when both are meaningful.

Definition If T is a distribution and α is a multi-index, then DαT is the dis-

tribution defined by

DαT = (−1)|α|T ◦Dα

Example Let H̃ be the Heaviside distribution, and then δ be the Dirac distri-

bution at 0. Then with n = 1, α = 1 and D = d
dx

, we have DH̃ = δ. Indeed, for

any test function φ,

(DH̃)(φ) = −H̃(Dφ) = −
∫ ∞

0

φ′(x)dx = φ(0)− φ(∞) = φ(0) = δ(φ).

Theorem Let n = 1, and let T be a distribution for which DT = 0. Then T is

c̃ for some constant c.

1.1.3 Convolutions

The convolution of two functions f and φ on Rn is a function f ∗φ whose defining

equation is

(f ∗ φ)(x) =

∫
Rn

f(y)φ(x− y)dy (x ∈ Rn) (1.1)
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The integral will certainly exist if φ ∈ D(Rn) and if f ∈ L1
loc(Rn), because for

each x, the integration takes place over a compact subset of Rn. With a change of

variable in the integral, y = x− z, one proves that

(f ∗ φ)(x) =

∫
Rn

f(x− z)φ(z)dz = (φ ∗ f)(x)

In taking the convolution of two functions, one can expect that some favorable

properties of one factor will be inherited by the convolution function. This vague

concept will be illustrated now in several ways. Suppose that f is merely integrable,

while φ is a test function. In Equation (1.1), suppose that n = 1, and that we

wish to differentiate f ∗ φ. On the right side of the equation, x appears only in the

function φ, and consequently

(f ∗ φ)′(x) =

∫ ∞
−∞

f(y)φ′(x− y)dy

The diffentiability of the factor φ is inherited by the convolution product f ∗φ. This

phenomenon persists with higher derivatives and with many variables.

We shall see that convolutions are useful in approximating functions by smooth

functions. Let φ be a mollifier; that is, φ ∈ D(Rn), φ ≥ 0,
∫
Rn φ(x)dx = 1, and

φ(x) = 0 when |x| ≥ 1. With φδ(x) = 1
δn
φ
(
x
δ

)
it is easy to verify that

∫
Rn φδ(x)dx =

1. Then

f(x)− (f ∗ φδ)(x) = f(x)−
∫
Rn

f(x− z)φδ(z)dz

=

∫
Rn

f(x)φδ(z)dz −
∫
Rn

f(x− z)φδ(z)dz

=

∫
Rn

[f(x)− f(x− z)]φδ(z)dz

Since φ(x) vanishes outside the unit ball in Rn, φδ(x) vanishes outside the ball of

radius δ, as is easily verified. Hence in the equation above the only values of z

that have any effect are those for which |z| < δ. If f is uniformly continuous, the

calculation shows that f ∗φδ(x) is close to f(x), and we have therefore approximated

f by the smooth function f ∗ φδ.
We define special linear operators B and Ex by

(Exφ)(y) = φ(y − x)

(Bφ)(y) = φ(−y)
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We can write Equation (1.1) in the form

(f ∗ φ)(x) = f̃(ExBφ) (1.2)

For f ∈ L1
loc(Rn) and φ ∈ D(Rn) we have

Ẽxf(φ) =

∫
Rn

Exf(y)φ(y)dy =

∫
Rn

f(y − x)φ(y)dy =

∫
Rn

f(z)φ(z + x)dz

= f̃(E−xφ).

i.e.

Ẽxf = f̃ ◦ E−x (1.3)

Based on (1.2) and (1.3) we have the following definition:

Definition If T is a distribution, we define the distribution ExT by

ExT = T ◦ E−x

Also, if φ ∈ D(Rn) and T is a distribution, we define the function T ∗ φ by

(T ∗ φ)(x) = T (ExBφ)

Lemma 1 For T ∈ D′(Rn) and φ ∈ D(Rn),

Ex(T ∗ φ) = (ExT ) ∗ φ = T ∗ Exφ

Theorem If T is a distribution and if φ is a test function, then for each multi-

index α,

Dα(T ∗ φ) = (DαT ) ∗ φ = T ∗Dαφ

1.2 Differential Operators

Definition A linear differential operator with constant coefficients is any

finite sum of terms caD
a. Such an operator has the representation:

A =
∑
|α|≤m

cαD
α

The constants cα may be complex numbers. Clearly, A can be applied to any

function in Cm(Rn).

Definition A distribution T is called a fundamental solution of the operator
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∑
|a|≤m caD

a if
∑
|a|≤m caD

aT is the Dirac distribution:

∑
|a|≤m

caD
aT = δ

Example 1 What are the fundamental solutions of the operator D = d
dx

in the

case of n = 1? We seek all the distributions T that satisfy DT = δ. We saw in the

Example in Section 1.1.2 that DH̃ = δ, where H is the Heaviside function. Thus H̃

is one of the fundamental solutions. Since the distributions sought are exactly those

for which DT = DH̃ , we see by the Theorem in Section 1.1.2 that T = H̃ + c̃ for

some constant c.

Theorem 1 Let A be a linear differential operator with constant coefficients,

and T be a distribution that is a fundamental solution of A. Then for each test

function φ,

A(T ∗ φ) = φ

Proof Let A =
∑
|a|≤m caD

a. Then
∑
|a|≤m caD

aT = δ. The theorem of Section

1.1.3 states that

Da(T ∗ φ) = DaT ∗ φ

From this we conclude that

A(T ∗ φ) =
∑

caD
a(T ∗ φ) = (

∑
caD

aT ) ∗ φ = δ ∗ φ = φ

In the last step, we use the calculation

(δ ∗ φ)(x) = δ(ExBφ) = (ExBφ)(0) = (Bφ)(0− x) = φ(x)

Example 2 We use the theory of distributions to find a solution of the differ-

ential equation du
dx

= φ, where φ is a test function. By Example 1, one fundamental

solution of d
dx

is the distribution H̃. By the preceding theorem, H̃ ∗ φ will solve the

differential equation. We have, with a simple change of variable,

u(x) = (H̃ ∗ φ)(x) =

∫ ∞
−∞

H(y)φ(x− y)dy =

∫ x

−∞
φ(z)dz

Example 3 Let us search for a solution of the differential equation

u′ + au = φ

using distribution theory. First, we try to discover a fundamental solution, i.e. a

distribution T such that DT + aT = δ. If T is such a distribution and if v(x) = eax,
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then

D(vT ) = DvT + vDT = avT + v(δ − aT ) = vδ = δ

Consequently, by Example 1,

vT = H̃ + c̃

and

T =
1

v
(H̃ + c̃)

Thus T is a regular distribution f̃ , and since c is arbitrary, we use c = 0, arriving at

f(x) = e−axH(x)

A solution to the differential equation is then given by

u(x) = (f ∗ φ)(x) =

∫ ∞
−∞

e−ayH(y)φ(x− y)dy =

∫ ∞
0

e−ayφ(x− y)dy

This formula produces a solution if φ is bounded and of class C1.

Let us introduce the Laplace operator, denoted by ∆ and given by

∆ =
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
n

The following are easy to prove:

∂

∂xj
|x| = xj |x|−1 , x 6= 0

∂2

∂x2
j

|x| = |x|−1 − x2
j |x|

−3 , x 6= 0

Also, for x 6= 0 and g ∈ C2(0,∞):

∆g(|x|) = g′′(|x|) + (n− 1)|x|−1g′(|x|) (1.4)

In order to find a fundamental solution to the Laplace operator, we require a

function g (not a constant), such that ∆g(|x|) = 0, throught Rn, with the exception

of the singular point x = 0. By (1.4), we see that g must satisfy the following

differential equation, in which the notation r = |x| has been introduced:

g′′(r) +
n− 1

r
g′(r) = 0

From this we get

g′(r) = cr1−n
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If n ≥ 3, the last equation gives g(r) = r2−n as the desired solution. Thus, we have

proved the following result:

Theorem 3 If n ≥ 3, then ∆|x|2−n = 0 at all points of Rn except x = 0.

This theorem can be proved by a direct verification that |x|2−n satisfies the

Laplace equation, except at 0. The fact that the Laplace equation is not satisfied

at 0 is of special importance in what follows.

Let f(x) = |x|2−n. As usual, f̃ will denote the corresponding distribution. In

accordance with the definition of derivative of a distribution, we have:

∆f̃ =
n∑
i=1

∂2

∂x2
i

f̃ =
n∑
i=1

(−1)2f̃ ◦ ∂2

∂x2
i

= f̃ ◦∆

For any test function φ,

(∆f̃)(φ) = f̃(∆φ) =

∫
Rn

|x|2−n(∆φ)(x)dx (1.5)

The integral on the right is improper because of the singular point at 0. It is therefore

defined to be:

lim
ε→0

∫
|x|≥ε
|x|2−n(∆φ)(x)dx (1.6)

For sufficiently small ε, the support of φ will be contained in {x : |x| < ε−1}. The

integral in (1.6) is over the set

Aε =
{
x : ε ≤ |x| ≤ ε−1

}
An appeal will be made to Green’s Second Identity, which states that for regions Ω

satisfying certain mild hypotheses,∫
Ω

(u(x)∆v(x)− v(x)∆u(x))dx =

∫
∂Ω

(u(x)Ov(x)− v(x)Ou(x)) ·N(x)dS(x)

In the last formula, N denotes the unit normal vector to the surface ∂Ω. Applying

Green’s formula to the integral in equation (1.6) , we notice that ∆|x|2−n = 0 in Aε.

Hence the integral is∫
Aε

|x|2−n∆φ(x)dx =

∫
∂Aε

(|x|2−nOφ(x)− φ(x)O|x|2−n) ·N(x)dS(x) (1.7)

The boundary of Aε is the union of two spheres whose radii are ε and ε−1. On

the outer boundary, φ = Oφ = 0 because the support of φ is interior to Aε. The
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following computation will also be needed for the points of the inner boundary:

O|x|2−n ·N(x) = −
n∑
j=1

(
∂

∂xj
|x|2−n)

xj
|x|

= −
n∑
j=1

(2− n)|x|1−n
(
xj
|x|

)2

= (n− 2)|x|1−n

The first term of the right side of equation (1.7) is estimated as follows on the inner

boundary:∫
|x|=ε

∣∣|x|2−nOφ(x) ·N(x)
∣∣ dS(x) ≤ ε2−n max

|x|=ε
|Oφ(x)|

∫
|x|=ε

dS(x)

≤ cε2−n σnε
n−1 = O(ε)

Hence, when ε → 0, this term approaches 0. The symbol σn represents the ”area”

of the unit sphere in Rn. As for the other term,∫
|x|=ε

∣∣[φ(x)− φ(0)]O|x|2−n ·N(x)
∣∣dS(x) ≤ (n− 2)

∫
|x|=ε
|x|1−n|φ(x)− φ(0)|dS(x)

≤ (n− 2)ε1−n max
|x|=ε
|φ(x)− φ(0)|

∫
|x|=ε

dS(x)

= (n− 2)ε1−nω(ε)σnε
1−n → 0

In this calculation, ω(ε) is the maximum of |φ(x) − φ(0)| on the sphere defined by

|x| = ε. Obviously, ω(ε)→ 0, because φ is continuous. Also,

−φ(0)

∫
|x|=ε
5|x|n−2 ·N(x)dS(x) = (2− n)φ(0)

∫
|x|=ε
|x|1−ndS(x) = (2− n)σnφ(0)

= (2− n)σnδ(φ)

Thus the integral in (1.7) is

(2− n)σnφ(0) = (2− n)σnδ(φ)

Hence, this is the value of the integral in equation (1.5). We have established,

therefore, that ∆f̃ = (2− n)σnδ. Summarizing, we have the following result:

Theorem 4 A fundamental solution of the Laplace operator in dimension n ≥ 3

is the regular distribution corresponding to |x|2−n

(2−n)σn
, where σn denotes the area of

the unit sphere in Rn.

Example We will find a fundamental solution of the operator A defined (for

n = 1) by the equation

Aφ = φ′′ + 2aφ′ + bφ
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where a, b are constants. We seek a distribution T such that AT = δ. Let us look

for a regular distribution, T = f̃ . Using the definition of derivatives of distributions,

we have

(Af̃)(φ) = f̃(φ′′ − 2aφ′ + bφ) =

∫ ∞
−∞

f(x)(φ′′(x)− 2aφ′(x) + bφ(x))dx

Guided by previous examples, we guess that f should have as its support the interval

[0,∞). Then the integral above is restricted to the same interval.Using integration

by parts, we obtain:

fφ′|∞0 −
∫ ∞

0

f ′(x)φ′(x)dx− 2afφ|∞0 + 2a

∫ ∞
0

f ′(x)φ(x)dx+ b

∫ ∞
0

f(x)φ(x)dx

= −f(0)φ′(0)− f ′φ|∞0 +

∫ ∞
0

f ′′(x)φ(x)dx+ 2af(0)φ(0)

+

∫ ∞
0

(2af ′(x) + bf(x))φ(x)dx

= −f(0)φ′(0) + f ′(0)φ(0) + 2af(0)φ(0) +

∫ ∞
0

(f ′′(x) + 2af ′(x) + bf(x))φ(x)dx

The easiest way to make this last expression simplify to φ(0) is to define f on [0,∞)

in such way that:

1. f ′′ + 2af ′ + bf = 0

2. f(0) = 0

3. f ′(0) = 1

This is an initial-value problem, which can be solved by writing down the general

solution of the equation in (i) and adjusting the coefficients in it to achieve (ii) and

(iii). The characteristic equation of the differential equation in (i) is:

λ2 + 2aλ+ b = 0

Its roots are −a±
√
a2 − b. For example, if a2 > b and d =

√
a2 − b, then the general

solution of (i) is

c1e
−axedx + c2e

−axe−dx

Upon imposing the conditions (ii) and (iii) we find that

f(x) =

{
d−1e−ax sinh dx, x ≥ 0

0, x < 0

A linear differential operator with non constant coefficients is typically of the
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form

A =
∑
|α|≤m

cαD
α (1.8)

In order for this to interact properly with distributions, it is necessary to assume

that cα ∈ C∞(Rn). Then AT is defined, when T is a distribution, by

AT =
∑
|α|≤m

cα(DαT ) =
∑
|α|≤m

(−1)|α|cα(T ◦Dα) (1.9)

We notice that T ◦ Dα is a distribution; multiplication of this distribution by the

C∞-function cα is well-defined: multiplication of a distribution T by a function

f ∈ C∞(Rn) is defined as the distribution fT given by

(fT )(φ) = T (fφ)

The result of applying (1.9) to a test function φ is therefore

(AT )(φ) =
∑
|α|≤m

(−1)|α|(T ◦Dα)(cαφ)

The parentheses in (1.9) are necessary because cαT ◦D is ambiguous; it could mean

(cαT ) ◦D.

It is useful to define the formal adjoint of the operator A in (1.8) . It is

A∗φ =
∑
|α|≤m

(−1)|α|Dα(cαφ) (φ ∈ D(Rn))

This definition is in harmony with the definition of adjoint for operators on Hilbert

space, for we have

(AT )(φ) = T (A∗φ) (T ∈ D′(Rn), φ ∈ D(Rn))

Using the last Example, as a model, we can prove a theorem about fundamental

solutions of ordinary differential operators in dimension n = 1.

Theorem 5 Consider the operator

A =
m∑
j=0

cj(x)
dj

dxj

in which cj ∈ C∞(R) and cm(x) 6= 0 for all x. This operator has a fundamental

solution which is a regular distribution.

Proof We find a function f defined on [0,∞) such that



CHAPTER 1. DISTRIBUTIONS 12

1.
∑m

j=0 cjf
(j) = 0

2. cm−1(0)f (m−1)(0) = 1

3. cj(0)f (j)(0) = 0 (0 ≤ j ≤ m− 2)

Such a function exists by the theory of ordinary differential equations. In particular,

an initial-value problem has a unique solution that is defined on any interval [0, b] ,

provided that the coefficient functions are continuous there and the leading coeffi-

cient does not have a zero in [0, b]. We also extend f to all of R by setting f(x) = 0

on the interval (−∞, 0). With the function f , we must verify that Af̃ = δ. This is

done as in the previous example.



Chapter 2

Fourier Transform

2.1 Introduction to Fourier Transform

2.1.1 Definitions and Basic Properties

In general, integral transforms are helpful in problems where there is a function f to

be determined from an equation that it satisfies. A judiciously chosen transform is

then applied to that equation, the result being a simpler equation in the transformed

function F . After this simpler equation has been solved for F , the inverse transform

is applied to obtain f . We illustrate with the Fourier transform.

We define a set of functions called characters ey by the formula

ey(x) = e2πix·y x, y ∈ Rn

Here we have written

x · y = x1y1 + · · ·+ xnyn

where the xi and yi are the components of the vectors x and y.

The characters satisfy these equations:

1. ey(u+ v) = ey(u)ey(v)

2. Euey = ey(−u)ey, where (Euf)(x) = f(x− u)

3. ey(x) = ex(y)

4. ey(λx) = eλy(x) (λ ∈ R)

The Fourier transform of a function f in L1(Rn) is the function f̂ defined by

the equation

f̂(ξ) =

∫
Rn

e−2πix·ξf(x)dx (ξ ∈ Rn)

The kernel e−2πix·ξ is obviously complex-valued, but x and ξ run over Rn.

13
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Theorem 1 We have

Êyf = e−yf̂ , êyf = Eyf̂

Theorem 2 If f and g belong to L1(Rn), then

f̂ ∗ g = f̂ ĝ

2.1.2 The Schwartz Space

The space S(Rn), called Schwartz space, is the set of all φ in C∞(Rn) such that

P Dαφ is a bounded function, for each polynomial P and each multi-index α. If

P (x) =
∑
|α|≤m cαx

α is a polynomial, then P (D) is defined to be the differential

operator

P (D) =
∑
|α|≤m

cαD
α

Lemma 1 The function ey(x) defined by ey(x) = e2πixy obeys the equation

P (D)ey = P (2πix)ey

for any polynomial P , where P+(x) = P (2πix).

Theorem 1 If φ ∈ S(Rn) and if P is a polynomial, then

P̂ (D)φ = P+φ̂

Example 2 Let ∆ denote the Laplace operator

∆ =
n∑
j=1

∂2

∂x2
j

Then ∆ = P (D) if P is defined to be

P (x) = x2
1 + · · ·+ x2

n = |x|2

Hence, for φ ∈ S(Rn)

∆̂φ(ξ) = P̂ (D)φ(ξ) = P+(ξ)φ̂(ξ) = −4π2|ξ|2φ̂(ξ)

Theorem 2 If φ ∈ S(Rn) and P is a polynomial, then

P (D)φ̂ = P̂−φ
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where P−(x) = P (−2πix).

2.1.3 The Inversion Theorems

Theorem 1 If φ ∈ S(Rn), then

φ(x) =

∫
Rn

φ̂(ξ)e2πiξ·xdξ

Theorem 2 If f and f̂ belong to L1(Rn), then for almost all x,

f(x) =

∫
Rn

f̂(ξ)e2πiξ·xdξ

2.2 Applications of the Fourier Transform

We will give some representative examples to show how the Fourier Transform can

be used to solve differential equations and integral equations.

Example 1 Let n = 1 and D = d
dx

. If P is a polynomial, say P (x) =
∑m

j=0 cjx
j,

then P (D) is a linear differential operator with constant coefficients:

P (D) =
m∑
j=0

cjD
j

We consider the ordinary differential equation

P (D)u = g, −∞ < x <∞ (2.1)

in which g is given and is assumed to be element of L1(R). Apply the Fourier

Transform F to both sides of equation (2.1). Then use Theorem 1 in section (2.1.2)

,which asserts that if u ∈ S(R) then

F [P (D)u] = P+F(u)

where P+(x) = P (2πix). The transformed version of Equation (2.1) is therefore

P+F(u) = F(g) (2.2)

The solution of Equation (2.2) is

F(u) = F(g)/P+
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The function u is recovered by taking the inverse transformation, if it exists:

u = F−1[F(g)/P+] (2.3)

Theorem 2 in Section 2.1.1 states that

F(φ ∗ ψ) = F(φ)F(ψ)

An equivalent formulation, in terms of F−1, is

φ ∗ ψ = F−1[F(φ)F(ψ)] (2.4)

If h is a function such that F(h) = 1/P+, then Equations (2.3) and (2.4) yield

u = F−1
[
F(g)/P+

]
= F−1[F(g)F(h)] = g ∗ h

In detail,

u(x) =

∫ ∞
−∞

g(y)h(x− y)dy

The function h must be obtained by the equation h = F−1(1/P+).

Example 2 This is a concrete case of Example 1, namely

u′(x) + bu(x) = e−|x| (b > 0, b 6= 1) (2.5)

We will find the Fourier Transform of the function k(x) = e−|x|: We have

k(x) =

{
e−x, x ≥ 0

ex, x < 0

Then, the Fourier Transform will have the form

k̂(ξ) =

∫ ∞
−∞

e−2πixξk(x)dx =

∫ 0

−∞
e−2πixξexdx+

∫ ∞
0

e−2πixξe−xdx

=

[
ex(1−2πiξ)

1− 2πiξ

]x=0

x→−∞
+

[
ex(−1−2πiξ)

−1− 2πiξ

]x→∞
x=0

=
1

1− 2πiξ
+

1

1 + 2πiξ

=
2

1 + 4π2ξ2

The Fourier Transform of Equation (2.5) is:

2πiξû(ξ) + bû(ξ) = 2/(1 + 4π2ξ2)
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Solving for û(ξ), we have

û(ξ) =
2

(1 + 4π2ξ2)(b+ 2πiξ)

By the Inversion Theorem,

u(x) =

∫ ∞
−∞

2e2πixξ

(1 + 4π2ξ2)(b+ 2πiξ)
dξ

To simplify this, substitute ξ for 2πξ, to obtain

u(x) =
1

π

∫ ∞
−∞

eixξ

(1 + ξ2)(b+ iξ)
dξ

The integrand, call it f(ξ), as a function of a complex variable ξ has poles at

ξ = +i,−i, ib. In order to evaluate this integral, we use the residue calculus:

πu(x) =

∫ ∞
−∞

f(ξ)dξ =

{
2πi(Res(f ; i) +Res(f ; ib)) , x > 0

2πiRes(f ;−i) , x < 0
(2.6)

Now we calculate:

Res(f ; i) =

[
(ξ − i) eixξ

(ξ − i)(ξ + i)(b+ iξ)

]
ξ=i

=
e−x

2i(b− 1)

Res(f ;−i) =

[
(ξ + i)

eixξ

(ξ − i)(ξ + i)(b+ iξ)

]
ξ=−i

=
−ex

2i(b+ 1)

Res(f ; ib) =

[
(ξ − ib) eixξ

(ξ − i)(ξ + i)(b+ iξ)

]
ξ=ib

=
e−bx

i(1− b2)

Then Equation (2.6) gives

u(x) =
e−x

b− 1
+

2e−bx

1− b2

for x > 0 and

u(x) =
−ex

b+ 1

for x < 0.

Lemma 2 If f is analytic in the horizontal zone {z ∈ C | 0 ≤ Imz ≤ η} and

|f(x+ iy)| ≤ C
x2

, where C does not depend on x and y, then∫
Imz=η

f(z)dz =

∫
Imz=0

f(z)dz



CHAPTER 2. FOURIER TRANSFORM 18

Proof The condition |f(x+ iy)| ≤ C
x2

implies the existence of∫
Imz=η

f(z)dz =

∫ +∞

−∞
f(x+ iη)dx

and of ∫
Imz=0

f(z)dz =

∫ +∞

−∞
f(x)dx

Now we apply the theorem of Cauchy in the rectangle [−R,R]× [0, η]:∫ R

−R
f(x)dx+

∫ η

0

f(R + iy)dy −
∫ R

−R
f(x+ iη)dx−

∫ R

0

f(−R + iy)dy = 0

We have ∣∣∣∣∫ η

0

f(R + iy)dy

∣∣∣∣ ≤ ∫ η

0

|f(R + iy)| dy ≤ C

R2
η → 0 as R→∞

and ∣∣∣∣∫ η

0

f(−R + iy)dy

∣∣∣∣ ≤ ∫ η

0

|f(−R + iy)| dy ≤ C

R2
η → 0 as R→∞

Hence ∫ +∞

−∞
f(x)dx−

∫ +∞

−∞
f(x+ iη)dx = 0

Example 3 Consider the integral equation∫ ∞
−∞

k(x− y)u(y)dy = g(x)

in which k and g are given, and u is an unknown function. We can write

u ∗ k = g

After taking Fourier transforms and using Theorem 2 in Section 2.1.1 we have

ûk̂ = ĝ

Hence û = ĝ/k̂ and u = F−1(ĝ/k̂). For a concrete case, contemplate this integral

equation: ∫ ∞
−∞

e−|x−y|u(y)dy = e−x
2/2

Here, the functions k and g in the above discussion are

k(x) = e−|x| g(x) = e−x
2/2
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The Fourier transform of k is given by the previous example as:

k̂(ξ) =
2

1 + 4π2ξ2

We find ĝ(ξ):

ĝ(ξ) =

∫ ∞
−∞

e−2πixξg(x)dx =

∫ ∞
−∞

e−2πixξe−x
2/2dx

= e−2π2ξ2
∫ ∞
−∞

e−
1
2

(x+2πiξ)2dx

We set z = (x+ 2πiξ)/
√

2 and, using Lemma 2, the last expression is

√
2e−2π2ξ2

∫
Imz=

√
2πξ

e−z
2

dz =
√

2e−2π2ξ2
∫
Imz=0

e−z
2

dz =
√

2πe−2π2ξ2

Finally,

ĝ(ξ) =
√

2πe−2π2ξ2

We have

û(ξ) =
ĝ(ξ)

k̂(ξ)
= ĝ(ξ)

1 + 4π2ξ2

2

We consider P (x) = 1−x2
2

, so P+(x) = P (2πix) = 1+4π2x2

2
. Using Theorem 1 in

section 2.1.2 , we get

û = P+ĝ = P̂ (D)g

Finally,

u(x) = P (D)g(x) =
1

2
(g(x)− g′′(x)) =

1

2
e−x

2/2(2− x2)

2.3 Applications to Partial Differential Equations

Example 1 The simplest case of the heat equation is

uxx = ut (2.7)

in which the subscripts denote partial derivatives. The distribution of heat in an

infinite bar would obey this equation for −∞ < x < ∞ and t ≥ 0. A fully defined

practical problem would consist of the differential equation (2.7) and some auxiliary

conditions. To illustrate, we consider (2.7) with initial condition

u(x, 0) = f(x) −∞ < x <∞ (2.8)
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The function f gives the initial temperature distribution in the bar. We define û(ξ, t)

to be the Fourier transform of u in the space variable. Thus,

û(ξ, t) =

∫ ∞
−∞

u(x, t)e−2πixξdx

Taking the Fourier transform in Equations (2.7) and (2.8) with respect to the space

variable, we obtain:

−4π2ξ2û(ξ, t) =
d

dt
û(ξ, t) û(ξ, 0) = f̂(ξ)

This is a first order ordinary differential equation in the time variable with initial

condition and we obtain:

û(ξ, t) = f̂(ξ)e−4π2ξ2t

Also, we consider G given by

G(x, t) =
1√
4πt

e
−x2

4t

for t > 0 and we have Ĝ(ξ, t) = e−4π2ξ2t. Thus,

û(ξ, t) = f̂(ξ)Ĝ(ξ, t)

Consequently,

u(x, t) = (f ∗G(·, t))(x) =
1√
4πt

∫ ∞
−∞

f(x− y)e−
y2

4t dy (2.9)

Example 2 We consider the problem{
uxx = ut x ≥ 0, t ≥ 0

u(x, 0) = f(x), u(0, t) = 0 x ≥ 0, t ≥ 0
(2.10)

This is a minor modification of Example 1. The bar is ”semi-infinite”, and one end

remains constantly at temperature zero. It is clear that f should have the property

f(0) = u(0, 0) = 0. Suppose that we extend f somehow into the interval (−∞, 0)

and then use the solution (2.9) of the previous example. Then at x = 0 we have

u(0, t) =
1√
4πt

∫ ∞
−∞

f(−y)e−
y2

4t dy (2.11)

The easiest way to ensure that this will be zero (and thus satisfy the boundary

condition in our problem) is to extend f to be an odd function. Then the integrand

in Equation (2.11) is odd, and u(0, t) = 0 automatically. We define f(−x) = −f(x)
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for x > 0, and then equation (2.9) gives the solution for the problem (2.10).

Example 3 Again, we consider the heat equation with boundary conditions:{
uxx = ut x ≥ 0, t ≥ 0

u(x, 0) = f(x), u(0, t) = g(t) x ≥ 0, t ≥ 0
(2.12)

Because the differential equation is linear and homogeneous, the method of super-

position can be applied. We solve two related problems:

vxx = vt v(x, 0) = f(x) v(0, t) = 0 (2.13)

wxx = wt w(x, 0) = 0 w(0, t) = g(t) (2.14)

The solution of (2.12) will be u = v+w. The problem in (2.13) is solved in Example

2. In (2.14), we take the sine transform of both sides in the space variable. The sine

transform of a function f(x) is defined by

fS(ξ) =

∫ ∞
0

f(x) sin(2πxξ)dx

Then we have:

[wxx(x, t)]
S (ξ) =

∫ ∞
0

wxx(x, t) sin(2πxξ)dx = −2πξ

∫ ∞
0

wx(x, t) cos(2πxξ)dx

= 2πξw(0, t)− (2πξ)2

∫ ∞
0

w(x, t) sin(2πxξ)dx

= 2πξg(t)− 4π2ξ2wS(ξ, t)

[wt(x, t)]
S (ξ) =

∫ ∞
0

wt(x, t) sin(2πxξ)dx =
d

dt

∫ ∞
0

w(x, t) sin(2πxξ)dx

=
d

dt
wS(ξ, t)

wS(ξ, 0) =

∫ ∞
0

w(x, 0) sin(2πxξ)dx = 0

Then, Equation (2.14) becomes:

2πξg(t)− 4π2ξ2wS(ξ, t) =
d

dt
wS(ξ, t)

This is a first order ordinary differential equation with initial condition and its
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solution is easily found to be:

wS(ξ, t) = 2πξe−4π2ξ2t

∫ t

0

e4π2ξ2σdσ

If w is made into an odd function in the space variable by setting w(x, t) = −w(−x, t),
when x < 0, then we know that the Fourier transform of w in the space variable

must be as follows:

ŵ(ξ, t) =

∫ ∞
−∞

w(x, t)e−2πixξdx =

∫ 0

−∞
w(x, t)e−2πixξdx+

∫ ∞
0

w(x, t)e−2πixξdx

= −
∫ ∞

0

w(−x, t)e2πixξdx+

∫ ∞
0

w(x, t)e−2πixξdx

=

∫ ∞
0

w(x, t)(e−2πixξ − e2πixξ)dx = −2i

∫ ∞
0

w(x, t) sin(2πxξ)dx

= −2iwS(ξ, t)

Therefore by the Inversion Theorem in Section (2.1.3)

w(x, t) =

∫ ∞
−∞

ŵ(ξ, t)e2πixξdξ

and hence

w(x, t) = −4πi

∫ ∞
−∞

e2πixξξe−4π2ξ2t

∫ t

0

e4π2ξ2σg(σ)dσdξ

To simplify this, we replace 2πξ by ξ and get

w(x, t) =
−i
π

∫ ∞
−∞

ξeixξ
∫ t

0

e−ξ
2(t−σ)g(σ)dσdξ

Example 4 The Helmholtz Equation is

∆u− gu = f

in which ∆ is the Laplacian
∑n

k=1
∂2

∂x2k
. The functions f and g are prescribed on

Rn, and u is the unknown function of n variables. We shall look at the special case

when g = 1. To illustrate some variety in approaching such problems, let us simply

try the hypothesis that the problem can be solved with an appropriate convolution:

u = f ∗ h. Substitution of this form for u in the differential equation leads to

∆(f ∗ h)− f ∗ h = f

Carrying out the differentiation under the integral that defines the convolution, we
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obtain

f ∗∆h− f ∗ h = f

Is there a way to cancel the three occurrences of f in this equation? After all, L1(Rn)

is a Banach algebra, with multiplication defined by convolution. But there is no unit

element and therefore there are no inverses. However, the Fourier transform converts

the convolution into ordinary products, according to Theorem 2 in Section 2.1.1:

f̂ ∆̂h− f̂ ĥ = f̂

From this equation we cancel the factor f̂ , and then express ∆̂h as in Example 1 in

Section 2.1.2:

−4π2|ξ|2ĥ(ξ)− ĥ(ξ) = 1

ĥ(ξ) =
−1

1 + 4π2|ξ|2

The formula for h itself is obtained by use if the inverse Fourier transform, which

leads to

h(x) = πn/2
∫ ∞

0

t−n/2e−t−π
2 |x|2

t dt



Chapter 3

The Malgrange-Ehrenpreis

Theorem

Malgrange and Ehrenpreis proved that every linear differential operator with con-

stant coefficients has a fundamental solution. Let

L =
∑
|α|≤k

cαD
α

When the dimension of the space is n = 1, we write

L = Dk + ck−1D
k−1 + · · ·+ c1D + c0

We will show that for every f ∈ C∞c (R) the equation

Lu = Dku+ ck−1D
k−1u+ · · ·+ c1Du+ c0u = f (3.1)

has a solution u ∈ C∞(R).

The natural tool for studying such operators is the Fourier transform:

L̂u(ξ) = (2πiξ)kû(ξ) + ck−1(2πiξ)k−1û(ξ) + · · ·+ c0û(ξ) = P (ξ)û(ξ) (3.2)

where,

P (ξ) =
∑
|α|≤k

cα(2πiξ)α, ck = 1

The polynomial P is called the symbol of L. In view of (3.2), if f ∈ C∞c (R), it would

seem that we should be able to solve Lu = f by taking

û(ξ) =
f̂(ξ)

P (ξ)

24
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That is,

u(x) =

∫
R
e2πixξ f̂(ξ)

P (ξ)
dξ (3.3)

The problem with this is that usually the polynomial P will have zeros, so that
f̂(ξ)
P (ξ)

is not a locally integrable function and the integral (3.3) is not well-defined.

Let λ1, . . . , λk be the complex roots of P (ξ), where

P (ξ) = (2πi)k(ξ − λ1) · · · (ξ − λk)

We consider the k + 1 intervals

[−k − 1,−k + 1), [−k + 1,−k + 3), . . . , [k − 3, k − 1), [k − 1, k + 1)

and the k real numbers Imλ1, . . . , Imλk. Then at least one of the above intervals

does not contain any of these numbers. If m is the center of such an interval, i.e.

one of the numbers −k,−k + 2, . . . , k − 2, k, then,

|m− Imλj| ≥ 1, j = 1, . . . , k

Lemma 1 Let g(z) be a monic polynomial of degree k in the complex variable

z such that g(0) 6= 0, and let λ1, . . . , λk be its zeros. Then

|g(0)| ≥ (d/2)k

where d = min |λj|.
Proof We have g(z) = (z − λ1) · · · (z − λk) and g(0) = (−1)kλ1 · · ·λk. So,∣∣∣∣g(z)

g(0)

∣∣∣∣ =

∣∣∣∣1− z

λ1

∣∣∣∣ · · · ∣∣∣∣1− z

λk

∣∣∣∣
When |z| ≤ d we get |z|

|λj | ≤
d
d

= 1 and consequently

∣∣∣∣g(z)

g(0)

∣∣∣∣ ≤ 2k

By the Cauchy integral formula,

k! = g(k)(0) =
k!

2πi

∫
|z|=d

g(z)

zk+1
dz

Hence,

k! =
∣∣g(k)(0)

∣∣ =≤ k!

2π
max
|z|=d

|g(z)|
|z|k+1

2πd =
k!

dk
max
|z|=d
|g(z)| ≤ k!

dk
2k |g(0)|
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Finally,
(
d
2

)k ≤ |g(0)|.
We continue by taking the Fourier Transform of f :

f̂(ξ) =

∫
R
e−2πixξf(x)dx

where ξ ∈ R.

Now we suppose that ξ ∈ C and ξ = η + iζ. Then, we have

f̂(ξ) =

∫
R
e−2πix(η+iζ)f(x)dx =

∫
R
e−2πixηe2πxζf(x)dx (3.4)

We have to prove that the function in the last integral is integrable. Due to the fact

that f has compact support, there is M > 0 such that the function f is equal to

zero outside of the interval [−M,M ]. Then:∫
R

∣∣e−2πix(η+iζ)f(x)
∣∣ dx =

∫ M

−M

∣∣e−2πix(η+iζ)f(x)
∣∣ dx ≤ e2πM |ζ|

∫ M

−M
|f(x)| dx < +∞

Therefore, e−2πix(η+iζ)f(x) is integrable in R and f̂(ξ) is well-defined by (3.4).

The function f̂(ξ) defined by (3.4) can be easily proven to be an analytic function

in C, because e−2πixξ is an analytic function of ξ. Consequently, the function

e2πixξ f̂(ξ)

P (ξ)
= e2πix(η+iζ) f̂(η + iζ)

P (η + iζ)

is an analytic function in C \ {λ1, . . . , λk}.
Now, for every j ∈ N , we have:

(−2πiξ)j f̂(ξ) =

∫
R
Dj(e−2πiξx)f(x)dx = (−1)j

∫
R
e−2πiξxDjf(x)dx

and hence

(2π|ξ|)j|f̂(ξ)| =
∣∣∣∣∫

R
e−2πiξxDjf(x)dx

∣∣∣∣ ≤ e2πM |ζ|
∫ M

−M

∣∣Djf(x)
∣∣ dx

≤ 2Me2πM |ζ| ∥∥Djf
∥∥
∞ =: C(f, j, ζ)

Finally, ∣∣∣f̂(ξ)
∣∣∣ ≤ C∗(f, j, ζ)

|ξ|j
(3.5)

where the constant C∗(f, j, ζ) = C(f, j, ζ)/(2π)m depends on f , j and the imaginary

part of ξ.

Now, the solution of Lu = f will be defined by changing formula (3.3). We

consider the horizontal straight line parallel to the x-axis at height m, parametrized
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Figure 3.1

The horizontal zone with vertical width equal to 2 and median line
ξ = η + im, η ∈ R.

by ξ = η + im, η ∈ R. With this as the median line, we create the horizontal zone

with vertical width equal to 2. The roots λ1, . . . , λk lie outside of this zone (figure

3.1). So, for every ξ = η + im, η ∈ R,

g(z) :=
1

(2πi)k
P (z + ξ)

is a monic polynomial of z and degree k. The roots of this polynomial are λ
′
1 =

λ1− ξ, . . . , λ
′

k = λk− ξ. In addition, |λ′1|, . . . , |λ
′

k| ≥ 1, because the distance between

λ1, . . . , λk and ξ is not less than 1. Thus,

d = min
1≤j≤k

|λ′j| ≥ 1

Using Lemma 1 for the polynomial g(z), we get:

|g(0)| ≥ (d/2)k ≥ 1/2k

Then,

|P (ξ)| ≥ πk (3.6)

for every ξ = η + im at the horizontal line.

Now we give the formula for the solution u of Lu = f . We define:

u(x) :=

∫
R
e2πix(η+im) f̂(η + im)

P (η + im)
dη =

∫
Imξ=m

e2πixξ f̂(ξ)

P (ξ)
dξ (3.7)
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From (3.5) for j = 2, and from (3.6), we get:∣∣∣∣∣e2πix(η+im) f̂(η + im)

P (η + im)

∣∣∣∣∣ = e−2πxm

∣∣∣∣∣ f̂(η + im)

P (η + im)

∣∣∣∣∣ ≤ e−2πxm C
∗(f, 2,m)

πk|η + im|2
=

C∗∗

η2 +m2

where C∗∗ is a constant independent of η. Thus,

e2πx(η+im) f̂(η + im)

P (η + im)

as a function of η is integrable on R and u is well-defined by (3.7).

Also, for every j ∈ N:∣∣∣∣∣(2πi)j(η + im)je2πix(η+im) f̂(η + im)

P (η + im)

∣∣∣∣∣ = (2π)je−2πxm |η + im|j|f̂(η + im)|
|P (η + im)|

From (3.5) for j + 2 instead of j, and from (3.6), we get:

(2π)je−2πxm |η + im|j|f̂(η + im)|
|P (η + im)|

≤ (2π)je−2πxmC
∗(f, j + 2,m)

πk|η + im|2
=

C∗∗

η2 +m2

where C∗∗ is a constant independent of η. Therefore,

(2πi)j(η + im)je2πix(η+im) f̂(η + im)

P (η + im)

is a function of η integrable on R. Hence the j-th degree derivative of u exists:

Dju(x) =

∫
R
Dj(e2πix(η+im))

f̂(η + im)

P (η + im)
dη

=

∫
R
(2πi)j(η + im)je2πix(η+im) f̂(η + im)

P (η + im)
dη

We sum for j = 0, 1, . . . , k:

Lu(x) =
k∑
j=0

cjD
ju(x)

=

∫
R

(
k∑
j=0

cj(2πi)
j(η + im)j

)
e2πix(η+im) f̂(η + im)

P (η + im)
dη

But P (ξ) =
∑k

j=0 cj(2πi)
jξj, so

Lu(x) =

∫
R
e2πix(η+im)f̂(η + im)dη
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Since f̂ satisfies (3.5) for j = 2 and is an analytic function in C, we may use Lemma

2 in Section 2.2 and transfer the previous integral from the straight line at height m

and parametrization ξ = η + im, to the line at height 0 and parametrization ξ = η,

without changing the integral. Thus,

Lu(x) =

∫
R
e2πixηf̂(η)dη = f(x)

We conclude that

u(x) =

∫
Imξ=m

e2πixξ f̂(ξ)

P (ξ)
dξ

is the solution of (3.1).

All the previous constitute the proof of the next theorem in the case n = 1:

Theorem If L is a differential operator with constant coefficients on Rn and

f ∈ C∞c (Rn), there exists u ∈ C∞(Rn) such that Lu = f .

Now we prove

The Malgrange-Ehrenpreis Theorem Every differential operator L with

constant coefficients has a fundamental solution.

Proof Again in the case of dimension n = 1 and with notation as above, we

define a linear functional K on C∞c (Rn) by

K(f) :=

∫
R

f̂(−η − im)

P (η + im)
dη =

∫
Imξ=m

f̂(−ξ)
P (ξ)

dξ (3.8)

Looking carefully at the constant C∗(f, j, ζ) of equation (3.5) for j = 2:

|f̂(−ξ)| ≤ 2Me2πM |m| ‖D2f‖∞
4π2|ξ|2

Combining (3.6) and (3.8) we have:

|K(f)| ≤
∫
R

2Me2πM |m| ‖D2f‖∞
4πk+2|η + im|2

dη =

∫
R

1

η2 +m2
dη

Me2πM |m|‖D2f‖∞
2πk+2

= C‖D2f‖∞

This implies that K is distribution.

Now from the definition of distributions :

LK(f) =
k∑
j=0

cjD
jK(f) =

k∑
j=0

cj(−1)jK(Djf) =
k∑
j=0

cj(−1)j
∫
Imξ=m

D̂jf(−ξ)
P (ξ)

dξ

=
k∑
j=0

cj(−1)j
∫
Imξ=m

(−2πiξ)j f̂(−ξ)
P (ξ)

dξ =

∫
Imξ=m

[
k∑
j=0

cj(2πiξ)
j

]
f̂(−ξ)
P (ξ)

dξ

=

∫
Imξ=m

f̂(−ξ)dξ =

∫
R
f̂(−η − im)dη
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We transfer again the integral from the horizontal line at height −m, to the straight

line at height 0 without changing the integral:

LK(f) =

∫
R
f̂(−η − im)dη =

∫
R
f̂(−η)dη = f(0) = δ(f)

Hence LK(f) = δ(f) for every f ∈ C∞c (R) and thus LK = δ.

In case of more than one variables, on Rn with n ≥ 2, we suppose that the

differential operator is:

L =
∑
|α|≤k

cαD
α =

∂k

∂xkn
+

∑
|α|≤k,αn≤k−1

cαD
α

Then the equation Lu = f with u ∈ C∞(Rn), f ∈ C∞c (Rn) is equivalent to:

(2πiξn)k û(ξ) +
∑

|α|≤k,αn≤k−1

cα (2πiξ)α û(ξ) = f̂(ξ)

More specifically,

P (ξ)û(ξ) = f̂(ξ)

where P (ξ) is the n-variables polynomial:

P (ξ) = P (ξ1, . . . , ξn) = (2πi)k ξkn +
∑

|α|≤k,αn≤k−1

cα (2πi)|α| ξα1
1 · · · ξαn

n

The polynomial P (ξ1, . . . , ξn), when ξ1, . . . , ξn−1 are constants, is a k-th degree poly-

nomial of ξn with maximum degree coefficient (2πi)k. In addition,

P (ξ1, . . . , ξn) = (2πi)kξkn +
k−1∑
j=0

Pj(ξ1, . . . , ξn−1)ξjn

where for all j = 0, 1, . . . , k− 1 the Pj(ξ1, . . . , ξn−1) is a polynomial of (ξ1, . . . , ξn−1),

with constant coefficients.

For each fixed ξ
′

= (ξ1, . . . , ξn−1) ∈ Rn−1, we consider P (ξ1, . . . , ξn) = P (ξ
′
, ξn) as a

polynomial in the single complex variable ξn. Let λ1(ξ
′
), . . . , λk(ξ

′
) be the roots of

this polynomial. Then there is m ∈ {−k,−k + 2, . . . , k − 2, k} such that

|m− Imλj(ξ
′
)| ≥ 1, j = 1, . . . , k

where m depends on ξ
′
, m = m(ξ

′
).

Lemma 2 If the coefficients of the polynomial Pu(z) =
∑k

j=0 cj(u)zj are con-

tinuous functions of u, then its roots sre also continuous functions of u.

Proof Let z0 be a root of Pu0(z) for a specific value u0 of u. We take a small
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radius ε > 0 so that the only root of Pu0(z) in the disk |z − z0| ≤ ε is z0. By the

continuity of cm(u) at u0, there is a δ > 0 so that

|Pu(z)− Pu0(z)| ≤ a

for |z − z0| = ε and |u− u0| ≤ δ, where a = min|z−z0|=ε |Pu0(z)|.
Therefore,

|Pu(z)− Pu0(z)| ≤ |Pu0(z)|

for |z − z0| = ε and |u− u0| ≤ δ.

We apply the theorem of Rouche and we get that Pu(z) has the same number of

roots in the disk |z − z0| ≤ ε as Pu0(z). If we apply this to every root of Pu0(z),

we see that the roots of Pu(z) are all in a small disk of radius ε around the roots of

Pu0(z), if |u− u0| ≤ δ. Hence, the roots of Pu(z) are continuous functions of u.

Lemma 3 There is a Borel measurable function m : Rn−1 → {−k, . . . , k} such

that for all ξ
′ ∈ Rn−1:

|m(ξ
′
)− Imλj(ξ

′
)| ≥ 1, j = 1, . . . , k

Proof Let

Vm =
{
ξ
′ ∈ Rn−1 : |m− Imλj(ξ

′
)| ≥ 1, j = 1, . . . , k

}
Since the functions Imλj(ξ

′
) are continuous functions of ξ

′
, each Vm is a closed set.

Also,

Rn = V−k ∪ V−k+2 ∪ · · · ∪ Vk−2 ∪ Vk

and we define

m(ξ
′
) =


−k, ξ

′ ∈ V−k
−k + 1, ξ

′ ∈ V−k+1\V−k
−k + 2, ξ

′ ∈ V−k+2\(V−k+1 ∪ V−k)
...

...

Now the function m(ξ
′
) has the properties we need.

Now, imitating the formula for solution of Lu = f and for the fundamental

solution K we found in the case n = 1, we give the corresponding formulas in the

general case:

u(x) =

∫
Rn−1

(∫
Imξn=m(ξ′ )

e2πi(x1ξ1+···+xnξn) f̂(ξ1, . . . , ξn)

P (ξ1, . . . , ξn)
dξn

)
dξ1 . . . dξn−1
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and

K(f) =

∫
Rn−1

(∫
Imξn=m(ξ′ )

f̂(−ξ1, . . . ,−ξn)

P (ξ1, . . . , ξn)
dξn

)
dξ1 . . . dξn−1

Based on the last two formulas, the proof in the case n = 1 for Lu = f and LK = δ

can be repeated for the case of general n.

Example 1 We consider the wave equation in dimension 2:

utt − uxx = f(t, x)

The corresponding differential operator is:

L =
∂2

∂t2
− ∂2

∂x2

and the corresponding polynomial is:

P (η, ξ) = −4π2(η2 − ξ2)

When ξ is constant, the polynomial in the η variable has the roots:

η = ±ξ

To avoid these roots we will consider η-integrals on the line with equation η + i,

η ∈ R. Then the fundamental solution is:

K(f) = − 1

4π2

∫
R

∫
R

f̂(−η − i,−ξ)
(η + i)2 − ξ2

dηdξ

= − 1

4π2

∫
R

∫
R

(∫
R

∫
R

e2πi((η+i)t+ξx)

(η + i)2 − ξ2
f(t, x)dtdx

)
dηdξ

= − 1

4π2

∫
R

∫
R

∫
R

(∫
R

e2πiηt

(η + i)2 − ξ2
dη

)
e2πiξxdξe−2πtf(t, x)dtdx

By the method of residues we find:

∫
R

e2πiηt

(η + i)2 − ξ2
dη =

{
0, t > 0

2π
ξ
e2πt sin(2πtξ), t < 0

Therefore,

K(φ) = − 1

2π

∫
R

∫ 0

−∞

(∫
R

sin(2πtξ)

ξ
e2πiξxdξ

)
f(t, x)dtdx



CHAPTER 3. THE MALGRANGE-EHRENPREIS THEOREM 33

Again, by the method of residues we find when t < 0:

∫
R

sin(2πtξ)

ξ
e2πiξxdξ =

{
0, |x| > −t
−π, |x| < −t

Hence, the fundamental solution is given by:

K(f) =
1

2

∫ 0

−∞

∫ t

−t
f(t, x)dxdt, f ∈ C∞c (R2)

Example 2 Now we take the heat equation in dimension 2:

ut − uxx = f(t, x)

The corresponding differential operator is:

L =
∂

∂t
− ∂2

∂x2

and the corresponding polynomial is:

P (η, ξ) = −2πi
(
η + 2πiξ2

)
Now if ξ is constant, the polynomial in the η variable has one root:

η = −2πiξ2

with non-positive imaginary part. To avoid the root we will consider η integrals on

the line with equation η + 2πi, η ∈ R. The fundamental solution is:

K(f) =
i

2π

∫
R

∫
R

f̂(−η − 2πi,−ξ)
η + 2π(1 + ξ2)i

dηdξ

=
i

2π

∫
R

∫
R

(∫
R

∫
R

e2πi((η+2πi)t+ξx)

η + 2π(1 + ξ2)i
f(t, x)dtdx

)
dηdξ

=
i

2π

∫
R

∫
R

∫
R

(∫
R

e2πiηt

η + 2π(1 + ξ2)i
dη

)
e2πiξxdξe−4π2tf(t, x)dtdx

By the method of residues we find:

∫
R

e2πiηt

η + 2π(1 + ξ2)i
dη =

{
0, t > 0

−2πie4π2t(1+ξ2), t < 0
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Thus,

K(f) =

∫ 0

−∞

∫
R

(∫
R
e4π2tξ2e2πiξxdξ

)
f(t, x)dxdt

Now we have for t < 0: ∫
R
e4π2tξ2e2πiξxdξ =

1

2
√
π|t|

e
x2

4t

Therefore, the fundamental solution is:

K(f) =
1

2
√
π

∫ 0

−∞

∫
R

1√
|t|
e

x2

4t f(t, x)dxdt, f ∈ C∞c (R2)
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