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Chapter 1

Introduction

We shall define the spaces H'(R%) and BMO(RY) and prove that the dual space of the first is
isomorphic to the second. The first proof of this result was given by Charles Fefferman and Elias
Stein in 1972.

In the second chapter we shall define certain maximal functions which will play an important
role in the sequel. In the third chapter we shall prove two theorems: the Whitney decomposition
and (a generalization of) the Calderén-Zygmund decomposition. In the fourth chapter we shall
define the spaces H',(R?) and H'(RY) and prove that they are isomorphic. Finally, in the fifth
chapter we shall define the space BM O(R?) and give the proof of the main result:

(HY(R%))* =2 BMO(RY).
We denote B(x,r) the open ball with center  and radius » > 0. The Euclidean norm and the
Euclidean inner product are given by

lz] = /23 + - + 22, Toy=xY1+ -+ TqYd

when z = (z1,...,24),y = (y1,--.,ya) € R%
Ifz=(21,...,29) ER%and o = (a1,...,04), 8= (B1,...,5q) ENg,wewrite
BIE

=t o) =1+ -+ aq =00 ——"
! ¢ 7 8x'fl~-6w§d

T

and we write o < B if a; < B forevery j =1,...,d.
The Lebesgue measure of a Lebesgue measurable A C R? is denoted | A|.
The Schartz space S(R?) contains all functions ¢ € C°°(R¢) which satisfy

sup(1 + |x|2)m/2|85¢(x)| < 40

for every m € Ny and 3 € N¢. For each m € Ny we define the following norm on S(R%):

pm(@) = sup (1+[z[))™?0%¢(x), ¢ € SR?).

x, |B]<m

The norms p,,,, m € Ny, induce a translation invariant metric on S(R?) defined by

= 1 pm(ﬁb*'@b)
d(¢, ) = Z om ma

m=0

6,9 € S(RY).

For every o, 8 € Ng we define the following seminorm on the Schwartz space:

I6lla,6 = sup [z°87¢(x), ¢ € S(RY).
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There are positive constants c,, 4 and Clm, 4> depending only on m and d such that

Cm,d Pm () < omax |pllap < ChnaPm(®), ¢ € SRY.

Thus, the collection of all seminorms || - ||, g defines the same locally convex topology on the
Schwartz space as the metric topology defined by the family of all p,,. The Schwartz space is
complete and hence a Fréchet space.

When we say that F is a family of seminorms on S(R?) we mean that F consists of || - ||..5
for a certain collection of pairs «, 8 € Ng.

If ¢ € S(R?), then the functions

To(x) =z —y), @) =0¢(-z),  du(z) =t 'z) (t>0)

also belong to S(R%).

We denote S'(RY) the space of all continuous linear functionals of S(R?). The elements of
S'(RY) are called tempered distributions. A linear functional f : S(R?) — C is continuous and
hence belongs to &’(R?) if and only if there is an m € Ny and a constant c so that

[f@O) <epm(9), &€ SR
Now let f € §'(R?) and ¢ € S(R?). We define the function f * ¢ : R? — C by

[ o) = f(m20)-

Thg convolution f * ¢ is a smooth function of polynomial growth. To prove this we observe that
7:90(y) = ¢(x — y) and we write

pm(Ta0) = sup (14 |y|*)™?10°p(x —y)| = sup (1+ |z —y[>)"?(0%(y)|
. 81<m v, |81<m

< 22 (14 |z} |sﬁu‘p L+ g2 (y)| = 22 (1 + |2)™ pm (),
v, |Bl<m

where for the first inequality we used the (1+ |z —y[?) < 2(1+|z|?)(1+]|y/|?). Since f € S'(RY),
there is an m € Ny and a constant ¢ so that | f(¢)| < ¢pm(¢) and thus

If % 6(@)| = [f(720)| < epm(120) < 2™ p (@) (1 + |2]2)™2. (1.1)

Therefore the function f*¢ induces a tempered distribution. If we denote this tempered distribution
with the same symbol f * ¢, we have
frow) = [ v ro)@rdo= [ w(a)f(nd)do
Rd Rd
N _ (1.2)
=1 [ p@)mbds) = 10 x)
R4

for all ¢p € S(R?). Of course, the third equality above needs careful justification and this can be
done by approximating fRd ¥ (x) T, ¢ dx with appropriate Riemann sums.
The Fourier transform of a function f € L'(R?) is defined by

F& = fla)e?™tde, ¢eR%
Rd

The function f is continuous on R? and f(£) — 0 as |¢] — +00. Moreover, 1flloe < I1£1l1. We
also have the Fourier inversion formula which says that, if also f € L'(R?), then

fz) = Fle)e¥m = g, ae. x € R
Rd
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If, besides f € L'(R?), the functions 2 f(x), || < M, also belong to L' (R?), then
079 = [ (~mia) fl)e e o = ((<2wia) f@)] (), ¢ R

for all « with |a| < M.

If, besides f € L'(R?), the functions 9% f, |a| < M, also belong to L' (R%), then

(mie)* f(&) = (-1 | f@)age de = | 0 f(x)e T dw = 90f(€), € € RY,
R R
for all  with |a| < M.

Based on these properties of the Fourier transform, we can see that it is an isomorphism of
S(R%) onto itself.

By ¢,q4,... we denote a constant which depends upon the quantities p, g, . . .. The constant ¢, ...
may depend upon other quantities besides those which are explicitly written, but these extra quan-
tities must be mentioned. We may use the same symbol c, , ... for different constants even if they
occur in the same argument.



Chapter 2

Maximal functions

The well-known Hardy-Littlewood maximal function for functions f € L{ (R%) is defined by

1
Mf(@) =9 rpr ) /BW) 1) dy.

It is a fact that the operator M is strong-(p, p) for all p with 1 < p < 4o00:
M fllp < cpallflp, feLP(RY).
Also M is weak-(1,1):
C
{z | Mf(x) >N < S Ifl A>0, feLY(RY).

Now let ® € S(RY) with [, ® # 0 and consider a tempered distribution f € S'(R?). We
define the following maximal functions:

Mg f(x) = sup |f * D¢(z)],
>0

Mg f(z) = sup  |fx=P(y)l,
t>0, |y—x|<t
— x|\ —(d+1)
Maaf () = sup |f » @) (14 M)
t>0,y

Now, [ f * @¢(z)| < sup,_y<; |f * ®+(y)| and hence
M f(z) < Mj f(2).
Moreover, if |y — x| < t, then | f * ®;(y)| < 29T f * By (y)|(1 + ‘y;—x‘)_(dﬂ). Therefore,
Mg f(x) < 2T Mg af (x).
We just proved the inequality
Myf < Myf <2 Myaf,  feS'RY)

which implies, for example, || Mg f||1 < ||[Mgf|l1 < 2971 || Mg 4f||1 or other similar inequalities
related to magnitude.

Now, if F is a finite collection of seminorms on the Schwartz space, we define a new maximal
function by

Mzf(z) = sup Mg f(z),
PeSx

where S is the set defined by
Sr={®c SR, [(a® #0|||®|lnp <1 forevery || - [los € F}.

We state our first theorem.



Theorem 2.1. (i) Let F be any finite collection of seminorms. Then for every & € S(R%) with
Jga ® # 0 there is a constant cg r > 0 so that

[Ma fll1 < cor[[Mrfll1, fe S RY.

(ii) There is a fixed finite collection F of seminorms with the property: for every ® € S(R?) with
Jra ® # 0 there is a constant cg 4 > 0 so that

Mz, fll1 < coallMafll1, feSRY.

Proof. (i) Since the collection F is finite, there is a constant cy r > 0 depending only on F and

® such that ||®||,,3 < co r for every seminorm || - || 5 in F. Thus, cf; € Sr and hence

[Ma fll1 < co.7 [|MFfll-
(ii) This proof will be a consequence of certain lemmas and their corrolaries. O

Lemma 2.1. let & € S(RY) with [, ® # 0 and f € S'(R?). Then there is a constant cq so that

/ sup ]f*(bt(y)\dxgcd(l—i—a)d/ sup |f * @(y)| dx
R? >0, |y—z|<at R% >0, |[y—z|<t

for every a > 0.

Proof. We shall prove

Ha: ‘ t>0,|zu£tl<at |f * Di(y)| > )\H <cqg(1+ a)d‘{x ‘ t>07s‘;1£>x‘<t |f*D(y)| > )\H .1

for every A > 0. This is enough to finish the proof of the lemma: we just integrate (2.1) with
respect to A using the well-known identity [, |g(z)|dx = 0+°° Hz|lg(x)] > A} dA.

It is clearly enough to prove (2.1) when a > 1.

We define the sets:

C:{x‘ sup |f*<1>t(y)]>)\}, O:{x‘ sup |f*<1>t(y)\>>\}.

t>0, |ly—z|<at t>0, |y—zx|<t
When 0 < v < 1 we define
|O N B(x,r)|
@) :{x‘7>vforsomer>0}. (2.2)
! |B(z,7)]

Now let z € C. Then there are § and ¢ > 0 with |§ — z| < at such that | f * ®z(7)| > .

If | —z[ <% then A < |f*P¢(¥)| < SUPp~g, |y—s(<¢ | *Pt(y)| and thus = € O. Hence B(y,t) C
O. Moreover, it is clear that B(g,t) C B(z, (1 + a)t) and we get B(g,t) C O N B(z, (1 + a)t).
Therefore, |O N B(x, (1 + a)t)| > |B(¥y, t)| and we find

ONBa,(0+a)f) _ 1

[B(z,(1+a)t)]  — (L+a)®
Now if we fix any v with 0 < v < W, then we have x € O,. Since x € C'is arbitrary,
Cco,. (2.3)

By the definition of the Hardy-Littlewood maximal function, we have

o)) =g e

5



Now (2.2) says
0, = {a| M(x0)(@) > 7}

and, since the Hardy-Littlewood maximal operator is weak-(1, 1), we get

Cd (6%
@) </Xoxdx:O.
0,1 | olwydr = 10]

Therefore, (2.3) implies
cl< 2ol
gl
Finally, we take the limit as v — m — and we get (2.1). O

Corollary 2.1. Let ® € S(R?) with [pq ® # 0. Then there is a constant c4 so that
1Ma,aflh < callMgfllr, — feS'®RY.

Proof. For every s > 0 and x, z we have

|2 — @\ @+ _ X (1—k)(d+1)
Freal(1+ 5=2) T <y sp|frDufy). @4)
5 k=0 t>0, |y—z|<2kt

Indeed, if |z — x| < s, then the term corresponding to £ = 0 of the sum on the right side is
not smaller than the left side of (2.4). Also, if 2¢=!s < |z — 2| < 2Fs for some k& > 1, then
(1+ @)—(d—s—l) < 2(1=k)(d+1) apd |f*@s(2)] < SUPy .0, [y—az| <2kt |f * @i(y).

Now we take the supremum with respect to s > 0 and z of the left side of (2.4) and we integrate
with respect to z:

+00
[Maafls < 22(1"“)<d+1)/ sup  |f * By(y)| da. (2.5)
k=0 R? >0, |y—z| <2kt

The result of Lemma 2.1 with a = 2* gives

/R sup [ % @y(y)|d < g (1+ 20 / sup | * By(y)] di = | MGf |

@ >0, |y—z| <2kt Re >0, |y—=z|<t
Therefore (2.5) implies
+oo
1Mo af 1 < cq Y 20D+ 25 MG flly = ca || M £
k=0
and the proof is complete. O

Lemma 2.2. Take o, 8 € N, M > 0 and ® € S(R?) with [, ® # 0 and let F = F, 3,1,q be
the collection of seminorms || - || o g with |&/| < |a| +d+1and |5'| < |B|+ [M]+d + 1. Then
for every U € Sz there is a sequence of functions n;, € S(R?) such that

—+00
U=> Py
k=0

Moreover,

|7k lov.p = sup |2°0°ny(2)| < caprrda2 ™M
xT

for all k.



Proof. We take any x € C°°(R%) such that x (&) = 1 for |¢| < 1 and x(¢) = 0 for |£| > 2. Then
x € S(R%) and, since the Fourier transform is an isomorphism of S(R?) onto S(R?), there is a
¢ € S(R?) such that

for all £. We also define the functions sz € S(RY) by

Do(€) = 6(6),  Uk(€) = d(27Fe) — (2" Vg), k>1,

for all £. We observe that supp(to) C {€]1¢] < 2} and supp(iy) C {€] 21 < |¢] < 21} for
k > 1. Also: .
sup 0% (€)] < cg27HPAL. (2.6)

Now > ;4 17}2(5) = 5(2*”5) — $(O) = x(0) =1 as n — 400 and hence
—+00
> () =1 2.7)
k=0

forall §. We may assume 6(0) = fRd ® = 1. Hence there is kg € N such that
B >1/2,  J¢] <2~ lo=D),

And now we define the functions 7 by

O =0, 1<k<k—1 @@ =208 > p,

B(27k¢) -
for all £. We have 73, € S(R?), hence 1, € S(R?). Finally, from (2.7),

+oo +oo
T(E) = D MmO =D (B2 7Fe)
k=0

k=ko

for all &, and this implies the representation of ¥ in the statement of the lemma. Now, by the
Fourier inversion formula,

o) = | [ @ m@) e ag

= (2m)lBl=led

| e@eneme
* (2.8)
< n) [ (el (€) de

= (2m)lPI=le |0° (€% (€))] de.

2k*k071§|£‘§2k71€0+1

for all x. We temporarily set

(€)= 927 OUE), k> ko,
for all £, where ~ ~
(ko) — g(2kotig)

B(¢)
and we shall estimate the quantity inside the last integral of (2.8). We have

0*(EPk(€) = > cas @G = D cap s’ 00 O(E) (2.9)

6<a,p 6<a,f

9(§)
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for all £. Also,

0* (&) = 0° 70 (927 W) = Y Canc O (9(275€)) 0 TOEW()

e<a—ad

~ (2.10)
= ) cap2 FElOTg27FE) 000 0(g)
e<a—¢
for all €. By the definition of g we get sup, [0°g(¢)| < cc ¢ and (2.9) and (2.10) imply
O EREON< D D capacaldlO U
o<a,fe<a—4
for all £. Thus,
/ 07 (€2 () de
2k*k071§|£‘§2k7k0+1
(2.11)

<3 Y conien [ 611991 or 5= &) de.

k—kg—1 k—kg+1
6<a,fe<la—0 2k ko~ 1<|g]<2k o

To estimate the last integral in (2.11) we consider any v € N¢ with |y| = [M] + 1 + d and write

R A
‘5’“675|+|7| |8a75—5\’1}(€)’ (2.12)

/Qk—ko-lgﬂgzk—koﬂ |1

de.

Now
i G T (3T e ) i e 103

< Y eepasdlE 00T TEE(E
(cl=18—8|+1n1 2.13)

S pmsaed] (020U (@))) ()]

I<I=18—61+l

A

for all £. For the summands in (2.13) we have

(0202w () (6)] < / |0 (220w (2)| da
]Rd
S/Rd Z ccolr® 00 000 (2)| da

0<(,a—d0—¢
Y o<ca—se Cco (14 |z)) Tz 070 900 (z)|
Rd (1 + [z[)d+?
_ Y o<t be o<t Cco a0 90U (a))|
= Jpa (1 + ||yt

(2.14)

dzx

dx

for all £&. We observe that, due to the restrictions imposed on A, 9, ¢, {, 6, we have
A+a—-—0—ec—0|<|a|+d+1, IC—0| <|B]+[M]+d+ 1.

Since F is the collection of seminorms ||- ||/ g with |&/| < |a|+d+1and |3'| < |B]+[M]+d+1,
we conclude that, if ¥ € Sx, then

sup |00 90U ()] < || W] ata—s-e—0¢-0 < 1.

x



Thus, (2.14) implies ~
‘ (6C(x06—5—€\1/(x))) (5)‘ S ca,&,s,{,d

and from (2.13) we get =
’E‘ \ﬁ—6|+|’y| ‘806—6—5\1/(5)’ S Ca7ﬁ’7767€,d

for all £&. Now, from (2.12) we have

/ €10 jor5=G¢)| e
2k7k071§‘5|g2k7k0+1

1

—kM

S ca,ﬂ7’776)67d/ |'\/| dé‘ = C&,ﬁ,'}/,é,E,M,ko,d 2 :
oh—ko—1<|¢|<2k—ho+1 €]

Finally, (2.11) implies

~ —kM
Lk_k0_1<£|<2k ko+1 |aa(£6nk(§))| dé_ S Cavﬁvaq)vd 2

and from (2.8) we get

sup 220" ni(2)| < capare,a 2"
xT

and the proof is complete. O

Corollary 2.2. There is a fixed finite collection F; of seminorms with the property: for every
® € S(R?) with [, ® # O there is a constant cg 4 > 0 so that

Mz, f <coaMsaf, feS'(RY.

Proof. We take o € Nd and we consider F,, 4 to be the collection of seminorms F,, 4 /4 encoun-
tered in Lemma 2.2 with 8 = (0,...,0) and M = 2d + 2.
Now let ¥ € Sx, ,. Then with the functions 7, as in Lemma 2.2 we have

+o0

My f(z) = sup | f + Wy (x |<sup2\f* (Mg * Po—i)i()]
t>0 t>07-,

—SUPZ\ * Po—ig) * (1) e(2)]

>0k:0

supZ (@) =) [ ()]

t>0
(2.15)
[yl a1 1 y
< M. (1 ) - (f ‘d
iggz eaf@) - (1+555) = |m t) y
~ Moaf @) Z /R (1 2 )] dy
< My af(a 22“"“ [ bl dy
forall z. If |y| < 1,
(1 + )22 ()] < 222y ().
Ifly| = 1,
(L4 D22 ()] < 22522 2 ) < 202 3 calym@)l (216)

la|<2d+2



Since ¥ € S, ,, Lemma 2.2 implies

sup |y (y)| < ca,@,a2 FET. (2.17)
)

Now we consider the finite collection of seminorms

Fq= U Fad
| <2d+2

and take Cp,d = MaX|y|<2d+2 Ca,®,d-
If U € Sx,, then ¥ € S, , forall a with o] < 2d + 2 and hence (2.16) and (2.17) imply

1+ [y)) 22|k (y)] < cop,q 27 R

when |y| > 1 and from (2.15) we have

+00
My f(x) < coq Mo af () kz_:_o g h(d+) /Rd Mzwdﬂ dy = co g Mo af(x)
for all z. We conclude the proof by taking the supremum of the left side over all ¥ € Sr,. O
The collection of seminorms of Corollary 2.2 is
Fa=All"llasllal,18] < 3d+3}. (2.18)

Lemma 2.3. For every ® € S(R?) with Jga ® # 0 there is a constant cg 4 > 0 so that
IMG Iy < coallMafly,  feS'RY.

Proof. (i) We initially assume that || Mg f||1 < +oo.
We consider the collection F,; given by (2.18), and which appears in Corollary 2.2, and for each
A > 0 we define the set:

Ex ={z|Mr,f(z) < AMg f(z)}.

Then

Cp.d
A

Co,d
A

Mif(@)de< 5 [ Mpf@)do < 5 1Mzl < 521 Moafls < S0
A

ES

where the last two inequalities come from Corollary 2.2 and Corollary 2.1, respectively. If we
choose A = 2cq g, then [, Mg f(z)dx < 3 || M f|1 and hence
A

Myl <2 /E M f(z) da. 2.19)

We fix the A we have chosen and for simplicity we write £ = E).
Now we take any x and then there are 7, ¢ such that |j — x| < ¢ and

1 # Bela)| > 5 M f(x). (220

We consider a small 7 > 0, to be made precise later on, and the ball B(g, rt).
For every 2/ € B(y,rt) there is 2’ = (1 — ¢)y + ¢z’ for some ¢ € [0, 1] such that

|+ i) = [ p(m)] < 2" — g [V(f = Dp)(2")].
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Since |2’ — | < rt, we have |2” — g| < rt and hence

|f* @p(a") — f+P(g)| <t sup  |V(f x Dp)(2)].

|z—g|<rt
From |7 — x| < ¢ we get

|f*®p(a”) — f+ ()| <t sup  [V(f*Pp)(2)]

|z—z|<(r+1)t (2 21)
=rt sup |V(f*xPp)(z+ 2)| ’
|z|<(r+1)E
We also have .
0z (f * @) (y) = I (02, ®)i(y) (2.22)

for all y. We consider any j = 1, ..., d and the subset
Aj ={0,;®(-+h)||n| <r+1}

of S(R?). We take a sequence 9, ®(- + hy) with |h,| < r + 1. Then there are h,,, such that
hn, — h for some h with || < r + 1. Hence 0., ®(- + hy,) — 0.,®(- + h) in S(R?) and
9., ®(- + h) € A;. We have proved that each A; is a compact subset of S(R?). If we assume
r < 1, then the compact set A; depends only on ¢ and j. Since every seminorm || - ||, 3 of the
collection F; is continuous, there are finite constants c, g ;o so that

102, @(- + h)la,p < ca,p,50

for |h| <7+ 1 < 2. But Fy is finite and we may consider the finite constant ¢ ¢ = max c, g j o
forall || - ||, of Fgandall j = 1,...,d and then we have

1
®.d

Now

£ (02, @) i@ + BE) = f 7yt (0=, B)g) = £ (7 (102, ®))) = F(ra (7ne(D=, )
= f(Tx((T—h(aqu)))f)) = f(TJ:CI’vt_) = f* Vg(x)

where ¥ (y) = 7_,0.,®(y) = 0., ®(y+h) if|h] <r+1
and hence
|f % (0, @)¢(x + ht)| = | f * Vi(z)| < cpa Mz, f(z), | <r+1,j=1,...,d.
Combining with (2.22),
d
1 c \f
\VU*¢0x+hﬂ—;(§: e+ m)P) " < BV ar )

for |h| <7+ 1. Thus
Co d\[

sup [V(f * @p)(z + 2)| <
1< (r+1)F

M]—'df( )

and (2.21) implies
|f * ®i(a’) = [+ Bi(y)] < reg.aVd Mg, f(z).

11



Now, if we consider z € F, then we have
|f % ®p(2') — f % Bp(y)| < repqVd My f(z).
Therefore, if we choose r = min{1,1/(4c¢ q \/&)}, which depends only on d and @, then

1
[|f# @) = |f * 2e(@)|| < [f = @e(a”) — f+ 2i(y)] < 7 My f(w)
and due to (2.20) we finally get
1
£ e 2 M (@) (224)

forz € E and 2’ € B(y,rt).
Now we see that B(g,rt) C B(z, (r + 1)t).
We fix ¢ so that 0 < ¢ < 1 and, because of (2.24), we get

44

Mpf(z)! < ——— f* @p(2))|9dx’
W@ S BE o) i
r—+1\d / ,
< 44 [ ®p(a)|?dx
() Baorm e ) 2.25)

<cCpgim———— Mg f(2')? dx
24 \B(x,<r+1>a|/3<m,<mm »/()

< cpaM((Msf)?)(x),

for x € F, where M is the Hardy-Littlewood maximal operator.
Now (2.19) and (2.25) imply

IV < 268 [ M) ) e < 26 [ 2 (00 f)7) )

Since the Hardy-Littlewood maximal operator is strong-(1/q,1/q), we get

M3l < coa | (10 )@)7 do = oo dlMa 1

where the constant ¢, ¢ 4 depends on ¢, ® and d. But the constant ¢, ¢ ¢ can be considered to
depend only on ® and d since we may take ¢ = %
(ii) Now we continue with the case || Mg f||1 = +oo and we consider a modification of M as

follows: .

t

Myotf@) = sup  [fxB(y)| —————F
® t<%,|y—1’\<t (€+t+€’y|)L

for all z, with 0 < ¢ < 1 and L > 0 to be specified shortly.
Since f is a tempered distribution, we apply (1.1) for appropriate m > 0 and ¢ > 0 depending on
f and get

[f % @u(y)] < 22 (L [y*)™2 pn(@)
2™ (L4 y)™? sup (L4 [2*)™? 107 ()|

z,|Bl<m
m m m ]' z
=2 (1L [Py S (1) o \a%(f)\
7 Sm

— gz L (L+y»)™?2 sup (1+t2]z]*)™/?
td z,|8]<m

max{t™, ¢t~
LI G E s ( ) 0%)

7 [0°0(c)
c2m/

max{t™,t™ " m
/2 PULTTL (4 yyyeszy, (@)

12



Now, if we take L > m + d, then for t < 1 and |y — z| < t we have

tL 2m/2 maX{tL+m d tL_m_d}
(5+t+5|y|)L - (e+t+elyhk
9 maX{tLﬁ’WL*d’thm d} 9 m/2
1+ P
L (@)
2fL-l-m—d tL—m—d}
et (1+ |y
2m/2 maX{tL+m d tL m— d} o(L— m)/2(1+ ’y x| )L m)/2 (q))
el (14 [op)E=mz Pm
Qmax{tLerfd’thmfd} (1+t2)(L m)/2
2 (1+ [z2)E—mr P
maX{tQL_d,tL_m_d}pm( ) 1
el (1 + |x’2)(L—m)/2
<, 2L—(m/2) pm(q)) 1
= e3L—d (14 |z|2)E—m)/2"

| @e(y)] (L+ [y p (@)

< com/

< pom/? max{

)T—m)/2 pm(®)

< c2t/ (@)

< col-m/2)

Thus,
2L=(m/2) (D) 1
*,e,L Pm
Mg="f(z) <c 23L—d (1 + |z[2)E—m)/2

for all . Since L > m + d, we have that M3=" f € L'(R?).
The second step is to define

\y—x\)*(dﬂ) th

MZhf(z) = sup |f*y(y)l (1 T (e+t+elyht

y,0<t<%

and prove a variant of the result of Corollary 2.2. We start by modifying (2.15). We consider any
zandlett < % and |y — x| < t. Then

tL
\f*‘l’t(y)!m Z|f (k% Py )e(y )|m

—+o0 tL
- kZ:O I o) ()W) e

400 1 z tL
:Z/Rdw*%kt>(y—z)\td\nk(t)\dzw+g,w

— d

- Lol

tL

(e+2- kt+5\y—z])L 1 k(z>’ :

PR J— z—
(2=F1)L |\ et+t+ely)t

+oo
< Mgt 20 [ (2487 o ()

k=0
+oo
,L
= Mc;df(x) Z2k(L+d+1) /Rd(2 + |Z’)L+d+1 ‘nk(z)‘ dz.
k=0

Now, exactly as in the proof of Corollary 2.2 we see that, if F% = {||-||a.5]||al, |8] < L+3d+3}
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andV¥V €S FL then (2.26) implies

tL

|f o+ Uy(y)| LfcédLMcpdf( )

(e+t+ely|)

when ¢ < 1 and [y — z| < t. Thus

M= f(2) < o Mé;jf(w)

for all . Now we define
M;LLf — sup Myt
d \IJES]_.(%
and our result is:
e, L e, L
M]_-dL f<coarnMg,f. (2.27)

Before we continue, we must remark that all these estimates as well as the collection of seminorms
F dL depend on L, which in turn depends on f, but they do not depend on .
Examining the proof of Lemma 2.1, we see that it goes without change, resulting to

+L
sup | x (Y| ————np d
/Rd t<l |y—z|<at (e +1t+ely))*
) " (2.28)
<cqg(l1+a) / sup |f * ®y(y)| ———————— dx
Re p 1y o|<t (e+t+ely)t
for every a > 0. The next step is to take (2.4) and write it as
|z — x|\ —(d+1D) sk
YT EE) R
[f# @s(2)] (e +s+elz))t
+o0 tL (2.29)
<D 2RE T sup [ D(y)|
Z t<i, ly—z|<2kt (e +t+elyh-

when 0 < s < % The proof is the same. Now, taking the supremum of the left side of (2.29) over
zand s < %, integrating the resulting inequality and using (2.28) with a = 2¥, we end up with a
variation of the result of Corollary 2.1:

L *,e, L
Mg qfll < callMg=" £l
This together with (2.27) imply
L *,e,L
||Mjr’dL fllt < coarn IMy=" fl1- (2.30)

The last step is to rework the proof of part (i) using || Mg L

For each \ > 0 we define the set:

— o My f(@) < AM™" f(@)}.

fllh < +ooinstead of || Mg f|1 < +oo.

Then, due to (2.30),
%,e,L 1 L 1 L C<I>dL el
[ Mgetpayan < [ M@ de < Il < LGS,
A A

We choose A\ = 2¢q 4 1,, and we find
PG <2 [ M) de 231)
Ex

14



We fix the A we have chosen and for simplicity we write £ = E).
Now we take any z and then there are 7, ¢ such that ¢ < %, | — x| < tand

t_L

. M*,e,L )
(e +E+elg)” v @)

| @e(y)| > | f * P(y)| >

1
2
From this point we repeat the proof of part (i) without change (except that we work with F, C% instead
of F4) and we find a small » > 0, depending on d, ¢ and L (but not on ¢), so that
1 *,e,L
1 % le!)] = 4 My™ f(a)

for x € F and 2’ € B(y,rt). Therefore
! 1 *,e,L
My f(a') > TM*E ()

forxz € Fandall 2/ € B(y,rt) C B(xz, (r 4+ 1)t). The rest of the proof is the same.
We fix ¢ so that 0 < ¢ < 1 and we get

MES" f(x) Mg f ()7 da’

449
PR
‘B(ya TE)‘ B(y,rt)

r4+1\4d 1 /
< 44 M.
= ( r ) 1B(z, (r + D)) /(. 1D 2/

<o M((Mof)?)(z),

for x € F, where M is the Hardy-Littlewood maximal operator. Now (2.31) and (2.32) imply

)1 da! (2.32)

HM;E,Lle < 20;/737L /EM((Mq)f)q)(x)l/q dx < cqo.d.1 /Rd M((M@f)q)(x)l/q dx

< Cq,@,d,L /d ((M‘I’f)q(ﬂf))l/q dz = cqoa.Ll|Maf|1
R

Now we observe that M:{,’E’L f 1 Mg f ase ] 0. Taking the limit as ¢ — 0+ in the last inequality,

we find that, if M f € L*(RY), then | M} flli < cpoar||Maf|1 < +oo. Hence, if Mg f €
LY(RY), then M} f € L'(R?) and from part (i) we get

Mg £l < co.dl Ma fl]1-
On the other hand, if Mg f ¢ L'(R?), then the last inequality is trivially true. O
We may now finish the proof of Theorem 2.1.

Proof. (ii) We consider the collection of seminorms F; of (2.18), which appears in Corollary 2.2
and Lemma 2.3. Then Corollary 2.2 implies || Mz, f||1 < ¢4 | Ma.qaf|1, Corollary 2.1 says that
Mo aflli < cql||Mgf|l1 and Lemma 2.3 says that || Mg f||1 < coq||Maf||1. O

Remark. Let &, ¥ ¢ S(R?) with Jga® # 0and [, ¥ # 0. Theorem 2.1 says that there are
constants cg d, g 4, Cw,q and ¢y, ;4 so that

coa|Mr,fll < IMaflly < coql Mz fllr, €S R

and
cva | Mz, flli < IMufllh < ¢y q Mz, flli,  feS'RY.

Thus, there are constants cg v ¢ and cj, 4 so that

cowd|Mufl < [|Maflli < ¢pgqllMyfli, f €S (RY).
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Corollary 2.3. (i) Let ® € S(R?) with [, ® # 0. If Mo f € L'(RY), then Mo f € L*°(R?).
(i) Let F be a finite collection of seminorms and assume Mz f € L'(R?). Then for every ® ¢
S(R?) with [ ® # 0 we have Mo f € L°°(R?).

Proof. (i) We fix = and let |y — x| < 1. Then
[fx@e(z)] < sup [fxPy(z)| < sup  [f o (Rr)e(2)]

|z—y|<1 t'>0, |z—y|<t’
= t/>075|121§y|<t/ |f* @ (2)] = Mg f(y).
Hence
Fr@) < [ Mpfy)dy < caMaflh.

|B(z,1)| JB(z)
Now Lemma 2.3 implies
| @i(2)] < o

Mo 1

and thus Mg f € L>=(RY).
(ii) A consequence of (i) and Theorem 2.1. O

Remark. If F is a finite collection of seminorms || ||, 3, we consider a new collection F), defined
as follows:
Far = Al llap el < M, B8] < M},
where M = max{|al|,|8] || - |la.p € F}-
Clearly, 7 C Fjr and hence Sr,, C Sr. Therefore,

Mz, f(z) < Mz f(x)

and hence
Mz, fll < [Mzfl-

Lemma 2.4. Let F be a finite collection of seminorms and M & N such that F C Fj as in the
last remark. Let ¢ € C™(R?) with supp(¢) C B, where B is an open ball of radius r, and let
f e LY(RY). If sup,, [0°p(x)| < s for every 3 € N§ with || < M, then

‘ o f(@)p(z)dx| < epr Mz, f(2) < ey Mzf(Z)

for every x € B.
Proof. The second inequality is included in the last remark. Now if Z € B, we define
U(z) = rip(z — ra) (2.33)
for all . Then
o(z) = ¥ (T — 2)
for all « and hence
| [ t@o@yda] =| [ rinta o) da) (2.34)
Now, (2.26) and supp(¢) C B imply supp(v)) C B(0,2) and
sup [07y(x)| < eu
when || < M. Therefore,

sup [z°9°(x)| < 2Mep = en
x

if ||, |8] < M and hence £ € Sr,,- Thus,

CMm

| [ 7@00@ = a)da| = 1 «7(@)| < Mo () < car My @
and (2.27) finishes the proof. O
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Chapter 3

Whitney and Calderon-Zygmund
decompositions

We shall first discuss the theorem describing the well-known Whitney decomposition of an open
set.

Theorem 3.1. Let O be an open proper subset of R%. Then there is a countable collection Q of
closed cubes with edges parallel to the coordinate axes and with the following properties:

() Ugeo @ = 0.

(ii) Different cubes in Q have disjoint interiors.
(iii) diam(Q) < dist(Q, O°) < 4 diam(Q) for every Q € Q.

Proof. For each k € Z let M;, be the collection of closed cubes with edge-length equal to 2~ and
vertices from the points

(a12_k,...,ad2_k), al,...,aq € 7.

If Q € M, then diam(Q) = vd 27~

We observe that every cube of the collection M, contains exactly 2¢ cubes of the collection M,
and is contained in exactly one cube of the collection Mj,_1.

We consider a fixed constant ¢ > 0, which will be specified in a moment, and for each k& € Z we

define
O = {z € O|c27% < dist(z, 0°) < 2=k},

It is obvious that | .., Or = O and that the sets O, k € Z, are pairwise disjoint.
Now we shall make an initial choice of a collection Qg of cubes and the final choice Q will result
from Qg by choosing certain of its cubes in a particular way. We define the collection of cubes

Qo = U{QGMk!QﬁOk?é@}

kEZ

Now taking ¢ = 2v/d, we easily see that the cubes of the collection Q satisfy (i) and (iii). In fact,
if Q € Qy, then for some k € Z we have Q € My, and Q N Oy # (. If x € Q N Ok, then

dist(Q, 0°) < dist(z, 0°) < 4Vd27F = 4 diam(Q)
and

dist(Q, 0°) > dist(z, 0°) — diam(Q) > 2vd 2% — diam(Q)
= 2diam(Q) — diam(Q) = diam(Q).

Also, if Q € Qo, then from dist(Q, O°) > diam(Q) > 0 we get @ C O. Thus Jgeg, @ € O.
On the other hand, for every x € O there is some k so that x € Oy and also some ) € M so
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that z € Q. Then Q N Oy # () and hence Q € Qy. So every z € O belongs to some @) € Qg and
hence UQe 0, @ = O. Although the cubes of Qy satisfy (i) and (iii), they may not have pairwise
disjoint interiors.

Now take any Q € Q. If Q' € Qq contains @, then

diam(Q’) < dist(Q’, O°) < dist(Q, O°) < 4 diam(Q).

Hence, if Q € M, for some k, then either Q' = @, or @’ is the unique cube in Mj,_; which
contains @, or @’ is the unique cube in M}_, which contains ). We conclude that for every
Q € Qq there is a unique maximal cube Q" € Q, which contains ().

Now we collect those maximal cubes of the collection Oy and form the collection Q:

Q=1{Q" € Q| Q’ is maximal}.

Since for every @ € Qo thereisa @' € Q so that Q C @', we have that Jgcg @' = O.

Since every Q' € Q belongs to Qg, we have diam(Q’) < dist(Q’,0¢) < 4diam(Q’) for every
Q' € Q.

If the interiors of Q}, Q) € Q intersect, then one of them contains the other and, since both are
maximal, they are equal.

Therefore Q satisfies (i), (ii) and (iii). O

The collection of closed cubes Q described in Theorem 3.1 is called the Whitney decompo-
sition of the open set O.
If Q1, Q- are cubes of the collection Q, we say that they touch if 0Q, N 0Q2 # (.

Corollary 3.1. Let O be a proper open subset of R? and let Q be the collection of closed cubes
considered in Theorem 3.1. Then:

() If Q1, Q2 € Q touch, then
47" diam(Q,) < diam(Q1) < 4 diam(Qy).

(i) If Q € Q, there are at most N = 12% cubes of Q which touch Q.

(iii) Let 1 < 0 < g. From the collection Q of cubes () we produce a new collection Q* of
corresponding closed cubes QQ* as follows: if () € Q has center x and edge-length [, then (Q* has
the same center x and edge-length 01. Then O = UQ*GQ* Q* and for every x € O there is a small

open neighborhood W of  which intersects at most N = 12% cubes Q* € Q*.

Proof. (i) If Q1,Q2 € Q touch, then there is some x € ()1 N Q2. Hence
diam(Q;) < dist(Q1,0°) < dist(z, O°) < dist(Q2, O°) + diam(Q2) < 5 diam(Q2).

Since diam(()2)/diam(Q;) must be a power of 2, we get that diam(Q);) < 4 diam(Q2) and the
symmetric relation gives diam(Q1) > 4~! diam(Q3).

(ii) Take @ € Q. Then @ € My for some k € Z, where the families M, are those defined in the
proof of Theorem 3.1. It is clear that there are exactly 3¢ cubes in M}, touching @ (Q itself and
its “neighbors”). Now each of these 3¢ cubes either is contained in exactly one cube in Q which
touches @ or (because of (i)) contains at most 4¢ cubes in Q which touch Q. Therefore, there are
at most 3949 = 129 cubes in Q which touch Q.

(iii) Take Q¢ € Q and another ) € Q with center x and edge-length [. Then, because of (i), all
cubes in @ which touch () must have diameters > 4-1 diam(Q). Hence the union of all cubes in
Q which touch @ contains the cube Q** with center x and edge-length % [. Therefore, if Qg does
not touch @, then Qo NQ** = () and hence there is an open cube Q1, slightly larger than @y, which
does not intersect (Q*. In other words, if Q* intersects (01 then () touches Q).

Now take any z € O. Then x belongs to at least one Q)g € Q. We take W = ()1, which is an open
neighborhood of z, and then the cubes Q* which intersect W must come from the cubes () which
touch Qo and hence their number is not more than N = 12¢. ]
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We say that a collection of sets .4 has the bounded intersection property if there isan N € N
such that every x has an open neighborhood which intersects at most V sets of A.
Now we go on with a generalization of the well-known Calder6n-Zygmund decomposition.

Theorem 3.2. Consider f € L*(R%), A > 0 and a finite collection F of seminorms on S(R?) such
that Mz f € L*(R?). Then there is a decomposition of f as a sum

+o00
F=g+> b
k=1

and a collection of closed cubes Q* = {Q7,Q5, ...} so that:
(1) g is essentially bounded, with ||g|loc < cr 4.
(2) For every k we have by, € L*(R?), supp(by,) C Q) and fQZ b, = 0 and

M@bk(ZL’) dx < Co F.d M]-‘f(.l‘) dx
R4 Q%
for every ® € C*°(R?) with supp(®) C B(0,1) and [, ® # 0.
(3) The collection Q* has the bounded intersection property and

+oo
| Qi = {=| Mrf(z) > A}.

k=1

Proof. We consider the open set
O ={z|Mzf(x) > A}

and its Whitney decomposition, which is a collection of closed cubes {Q1, @2, . ..} such that:

() U2 @ = O.

(i) If Q, Q; are different then they have disjoint interiors.

(iii) diam(Qy) < dist(Qg, O°) < 4 diam(Qy) for every k.

Wetakel < 0 < 0 < g and, as in Corollary 3.1, if . is the center and [, is the edge-length of Qy,
we consider the closed cubes Qv,’; and ();, with center x;, and edge-lengths ] l, and Ol respectively.

Then
+oo " +oo
Uai=Uai=0
k=1 k=1

Moreover, each of the collections {@f, @3, ...} and {@7, @3, ...} has the bounded intersection
property.

Now we consider a fixed function ¢ € C>°(R%) such that 0 < ¢ < 1inR?, ¢ = 1 in the cube with
center 0 and edge-length 1 and ¢ = 0 outside the cube with center 0 and edge-length 6. We then
define the functions ¢ € C°°(R?) by

Gulw) = ¢(F)

Ik

for every z and every k£ € N. Then for every k& we have that 0 < ¢, < 1in R% ¢, = 1in Qy, and
supp(¢x) € Q. Finally, we define the functions 7, by

Gk ()
() = )
0, x € 0OF

reO
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for every £ € N. For every x € O we have Zjﬁi’ ¢j(z) > 1 since x belongs to at least one Q;.

On the other hand, for every «x there are at most /N cubes QV; which contain z. Hence,

+oo
1<) (@) <N (3.1)
j=1

for every x € O. Of course, if z € O€, then ;“:"f j(x) = 0. Now, if we take any z € O,

then there is an open neighborhood W of z so that at most N = 12¢ of the cubes @;‘ intersect W

and hence there is some M so that Zj:o‘f i(y) = Zj\i 1 Gi(y) for all y € W. Therefore, every
function 7y, is in C°°(W). Also, for every = € O€ there is an open neighborhood W of x so that
nr = 0 in W. We conclude that n, € C*° (R9) for every k.

We also observe that supp(77) C Q} and that 7 > 0 in R? for every k and that

+0o0
> mw(x) =1 (32)
k=1

for every z € O. Thus, the functions 7, k € N, form a partition of unity for the set O with respect
to the collection {Q7, @5, .. .}. From the definition of (; we have

sup |0° ()| < cpal;!”!

for all 8 € N¢ and from this and (3.1) we get

sup |07 m(2)| < cpaly” (3.3)

for all 3 € N&. The constants cg 4 depend on 8 and on the function ¢ and hence on 8 and d. We

also see that (3.1) implies
/ e :/ ne > N7 (3.4)
Rd Qr

for every k. Next we define constants p; by

1

S e 1 _ f(@)ne() dx

fé: ke JQ;

/ f (@) (x) dz =
Rd

Pk =

and the functions b, by
be(z) = (f(z) — p) me()

for all . Then by = 0 outside @Z and

/ b = /~ b, =0
Rd :
for every k. Finally, we define

IS (), €0
ole) = {f(x)v x € O°

Then (3.2) implies
+00
f(z) = g(@) + Y bi(x)
k=1
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for every .
From (iii) of Theorem 3.1 we get that for every k there is some Z € O€ such that diam(Qj) <
dist(z, Qx) < 4diam(Qy), i.e.

Vil < dist(z, Qr) < 4Vd 1.
Now we consider the ball B}, with center z;, and radius 5v/d [;,. Then
Q;C By, Z€B (3.5)

We consider M = max{|c/, |3||||-|la,s € F}, where F is the given finite collection of seminorms,

and we apply Lemma 2.4 with our ball By, and the function ¢ = f~1 o ks which appears in the
Q%

definition of pg. Using (3.3), (3.4) and (3.5) to verify the assumptions of Lemma 2.4, we get

1
x| = )f o e f(@)n(z) de| < Neya Mpf(Z) < Nemad =crad,  (3.6)
Rd

where the last inequality is justified by z € O€. In exactly the same manner we prove that for
every x € Q7. we have

lpk| < cxaMrf(x). (3.7)
Now from the definition of g and from (3.2) and (3.6) we get

lg(x)| <crpar,  z€O. (3.8)

We take any particular ¥ € S(R?) with fRd ¥ = 0, and we remember from the proof of part (i) of
Theorem 2.1 that there is a constant ¢y, 7 = cr 4 so that CF% € Sr. Now, since f € L'(R?), we
have limy_o |f * Ui ()| = | f(x)| for a.e. x. Therefore, for a.e. x € O° we have

l9(@)] = |F(@)] < sup|f + Vo(@)] = M f(w) < exa Mrf(z) < exa

This together with (3.8) imply
9(z)] < craX

for a.e. z.

The only thing which remains to be proved is the integral inequality of part (2) and we consider
any & € C°°(R?) with supp(®) C B(0,1) and [, @ # 0.

At first we shall prove:

Maby(z) < co,7q MF f(x), T € Q)
lgﬂ (3.9)

Mabg(z) < coFa A [ — 2y 1 z ¢ Qy

To prove the first inequality in (3.9) we observe that

Maby () = Mo (fnr — prnr)(x) < Mo (i) () + |pk| Mank(z). (3.10)

Since 0 < 1 < 1, we have

@l =] [ e —vrw ] < [ el = [ ewla=c.

)

This together with (3.7) imply
ol Mo (z) < co 7a Mrf(z),  z€Qy. (3.11)
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Now we write

(Fi) + oz / F ) ()@ (@ — ) dy. (3.12)

For the function ¢(y) = nx(y) ®:(z — y) we have supp(¢) C B(z,t). If t < [, then, using (3.3),
we get

B7¢7d
sup [0°¢(y)| <
Y tBl+d”

Then, considering again the quantity A/ = max{|a|, |3|||| - |lo,3 € F}, we apply Lemma 2.4 to
(3.12) and find

[(frw) * @u(2)| < coraMrf(z),  x€Q], (3.13)
ift <. Ift > I, we observe that for the function ¢(y) = nx(y)P+(xz — y) we have supp(¢) C
B(zy,V/dly). Also, since t > I, we have

3 ,B,th
sup " 6(y)] < =i

We apply Lemma 2.4 again to (3.12) and get

|(fne) * @¢(2)| < coFra Mrf(z), =@,

if £ > [. Combining with (3.13) we get

Mg (for)(z) < co7a Mrf(z), T € Q-

This together with (3.10) and (3.11) imply the first inequality in (3.9) and we continue with the
second inequality in (3.9).
If z ¢ Qp, then

by 5 By(x) = / b (y)@4( — y) dy = / () (1 — ) — B4z — 1)) dy,

* *
k k

where we use that f@* b, = 0. Hence
k

b x @e(x) = | f(y)m(y)(@e(z —y) — Sz —2x)) dy
i (3.14)
o [ )@l = )~ B — ) d
Qk
We consider the function ¢(y) = nx(y)(®:(x —y) — @ (x — xp)) with supp(¢) QWQ;:, and we take

x ¢ Q. To estimate the integrands in (3.14) we may of course assume that y € Q5.
If |8| > 1, then

0] (@1 —y) — @yl — 20))] = |95 (ol — )] <

For the case || = 0 we have that there is 2’ = (1 — ¢)y + czy, for some ¢ € [0, 1] such that

Vdeg |y — x| < Codlk

(@i —y) = Dole — @) < |y —@xl|V(®)(z = 2)| < ——775 <

Combining these last two estimates with (3.3) and assuming as we may that Qy(r —y) # 0 forat
least one y € Q ;. and hence that ¢ > clj, where c depends on the parameters 6, 6, we get

o 1P| < k . 3.15
up[0°0)| < epd T P (1)
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Considering as before the ball B, with center x;, and radius 5v/d l},, which contains some zZ € O€,
and using Lemma 2.4, we get

d+1
) (@u(x —y) — Bz — ap)) dy| < coFq ——— MF[(Z)
k o1 (3.16)
k
A
> Cy Fd |ZL' .’L‘k’d+1
Moreover, using (3.15) with 5 = (0,...,0), we find
sup [6(y)| < e g X
g OIS e T [
and (3.6) implies
ld+1
Oy(r —y) — Pi(z — 1)) dy| < coprg ——— A 3.17
|k ‘ /@Z M (y) (Pe(x — y) — Pe( k) dy| < co Fa P—r (3.17)

Finally, (3.14), (3.16) and (3.17) imply the second inequality in (3.9) and now we finish the proof
by verifying the inequality of part (2) of our theorem.
Using (3.9) we get

M@bk(x) dr = M@bk(m) dx + / M@bk(l‘) dr

d * d *
) “ e ) (3.18)
< CoFd Mzrf(z)dr + co ra) lg“ / e

— g |dHT
Q% RAQz: T |

We observe that, if |z — x| < %“, then x € Q7. Therefore

1 Cq

/ L 4 </ d
b < L g
RAQ: |7 — 2| (o] |2|>1 2} 1|4 Ik

and (3.18) implies

Mgby(z) dr < co Fq / Mg f(z) dz + cora Nj. (3.19)
R4 Qx

But, for v € @}, we have Mr f(x) > A and hence

Mxzf(z)dr > N|Q}| = ca ME.
QL

Finally, (3.19) gives

/ M@bk(l’) dx < Co F.d / M;f(a:) dx
Rd Q%

and the proof is complete. O

The splitting
+oo

f=g+b=g+) b

k=1
of f, described in Theorem 3.2, is called Calderon-Zygmund type decomposition of f. The
function g is the “good” function, since it is bounded, and the function b = 2;3 by, is the “bad”
function.
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It is easy to see that b € L' (R?). In fact, by the definition of each pj, and each by, we have

[om@iar < [ 1s@m@ i lol [ e < [ 5@

<2 [ @)

Therefore

+o00 +0o0 oo
b(z)| dz < by ()| de < 2 de=21{ |f - (z)d
[ b)) da ,;/R' ()] dr ];/Q f@ldz=2 [ | 3 xgy )
§2N/ |f(z)] dx < 400,
R4

since every z belongs to at most N = 124 of the sets @*,;

Since both f and b belong to L!(R?), we have that g € L'(R%). But also g € L>(R%) and
hence g € LP(R?) for all p with 1 < p < +o0.

The “bad” function b, on the other hand, is not so bad. We can decompose b in “pieces” by,
each of which is supported in a cube QVZ and its integral is 0. These cubes are almost mutually
disjoint, in the sense that they have the bounded intersection property. Moreover, we can control
the maximal function of each piece b, by the maximal function of f over the corresponding Q7.
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Chapter 4

The spaces H ét(IR{d) and H'(RY)

Definition. A function a : R — C is called atom if it there is some ball B so that
(i) a = 0 a.e outside B.

(iD) Jlalloc < -
(iii) fRd a = fBa =0.

Lemma 4.1. If a is an atom, then a € L'(R%) and
lallh < 1.

Proof. Obvious.

Lemma 4.2. Let ® € C°°(R?) with supp(®) C B(0,1) and [, ® # 0. If a is an atom then

Mgya(x)dx < co 4,
]Rd

where cg 4 is a constant independent of the atom a.

Proof. Let B = B(z,7) be the ball corresponding to the atom a (by the definition of the atom)

and let B* = B(&, 27). Then, if z € B*,

Maa(z) = sup|a  ®(z)| < sup / la(w)| [ ®e(z — 4)| dy
t>0 t>0 JRd

1 1 Cp
§sup/ Ou(x —y dy:/ O(y)|dy = —-.
’B =0 Jrd | t( )| ‘B‘ B(0.1) | ( )| |B‘

Mgya(x)dx < ¢ q.
B*

Therefore,

If x ¢ B*, we write
ax Oy(x / a(y)®¢(z — )dyz/a(y)@t(x—y)dy
R4 B

a(y)(Pi(z —y) — Py(x — 7)) dy.

I
m\

Hence )
0x@@)| < g [ @1l —y) = @il - )| dy.
1Bl Js
Now, there is 2/ = (1 — ¢)y + ¢Z for some ¢ € [0, 1] so that

|[@1(x —y) = Pi(z —T)| < Iy — | [V(2)(z — )| < 7[V(Q4) (2 — )]

/

—x r
td+1 )v(p( ¢ Ngcq’tdﬂ'
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We observe in (4.3) that, if |®;(z — y) — ®,(z — Z)| # 0, then |z — 2/| < t. If y € B, then this
last inequality implies

v—F <|o—a |+ - <t4ly—q| <t+r<i4 2T
| | y 5
and hence |z — z| < 2t. Now (4.3) implies
_ T
|Pi(z —y) — Py(z —T)| < cog 7@ —
when y € B and from (4.2) we get
r
M(I)CL(.’E) S qu’d W
Thus 1
/ Mga(z)dx < c@7dr/ Ty 47 = cod.
Rd\B* Rd\B* xr —LU| +
This, together with (4.1) imply [pu Mea(z) dz < cg 4. O

We continue with the definition of some of the main spaces of our work.
Definition. We define
too +oo
HL(RY = {Z)\j aj } a;j is an atom, \; € C, Z I\ < —I—oo}
j=1 j=1
and
H'R?Y) = {f € S'(R?) |thereisa ® € S(R?) with [z, ® # 0 so that Mg f € L*(R%)}.
Corollary 4.1. If a is an atom, then a € H},(R?) and a € H'(R?)
Proof. The first is trivial and the second is a consequence of Lemma 4.2. O
Now we shall prove that both H),(R?) and H'(R¢) are subspaces of L' (R%).
Proposition 4.1. /},(R?) C L'(R%).

Proof. Let f € HL,(R?). Then there are atoms a; and \; € C with Zjﬁf |\j| < 400 so that

“+00
fZZE:)gaj
j=1

Thus
+oo +o0
[ @lde <3l [ last@lde < Y ] < oc,
Rd ; Rd ,
7j=1 7=1
where the second inequality id due to Lemma 4.1 O

We observe that in the last proof we have got the following inequality:

+o00 400
I fll < inf{ Z I\ ’aj isanatom, \; € C, f = Z/\j aj}. (4.4)
j=1 j=1

Proposition 4.2. H'(R?) C L'(R%).
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Proof. Let f € H'(R?). Then f € &'(R?) and there is some ® € S(R?) with [, ® # 0 so that
Mg f € L*(R?). We may also assume that [, ® = 1.
Now we define the functions

hi(z) = f* ®y(x)
for each t > 0. Then h; € L'(R%) and Corollary 2.3 implies that h; € L>(R%) and
1tlloe < [Ma flloo < co.allMa fl1- (4.5)

We know that h; can also be equivalently defined as a tempered distribution:
() = fx@u($) = f(W+B), ¢ € SRY.

Since 1 * ®; — 1 in S(R%) as t — 0+, we get

he(¥) = f(* @) — f(¥), ¥ € SRY,

as t — 0+. Since hy € L'(R?), we have the following connection between the function h; and
the tempered distribution h;:

m) = [ @@ b e SE.

Therefore,

| @@ de = sw). v eS@, 46)

ast — 0+.
Now every & is in L' (R?) and hence defines an absolutely continuous finite Borel measure jy,,
on R? by:

tin, (E) = / hi(x)dz,  E Borel subset of RY.
E
The total variation of y, is
e, || = [Pl < [ Ma fl (4.7)

and by the Banach-Alaoglu theorem, there is a sequence ¢,,, — 0+ and a finite Borel measure p
on R< so that

Phy,, s (4.8)
As a consequence of (4.7) we get
[l < 1M £l (4.9)
Now, (4.6) and (4.8) imply
f@) = | w@du@), b SERY. (4.10)

We shall prove that y is absolutely continuous. Let E be a Borel set with |E| = 0. Then there is
an open set U O E so that |U| < € and then

@) =sup{| [ vle)du@)] v € SR, supp(v) C U 0l <1}, (41
Rd
For every 1) € S(R?) with supp(¢)) C U and ||1)||sc < 1 we have from (4.5) that

| [ @), (@) da| < coa|[Moflls|U] < ol Mof]s e
R
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Now, (4.11) implies
[Wl(E) < |pl(U) < coalMafllie

and this gives |u|(E) = 0. Thus, 4 is absolutely continuous and so there is a g € L' (R%) so that
w(E) = / g(x) dzx, E Borel subset of RY.
E

From this and (4.10) we have
f(w) = / Y(z)g(z)de, ¢ € SR
Rd

which says that the tempered distribution f is identified with the function g € L' (R?). Therefore
we consider f as a function in L*(R?). O

A consequence of the last proof is that every f € H'(R?) is in L!(R?) and moreover

1l < [Ma f]1- (4.12)

Indeed, f was identified with ¢ and from (4.9) we get || f|l1 = |lg]l1 = ||»]] < || Ma f]|1-
Because of Propositions 4.1 and 4.2 we may re-define the two spaces as follows.

+00 +oo
HL(RY) = {f c L'(RY) ‘ f= Z/\jaj, a; is an atom, \; € C, Z IAj] < —l—oo}
j=1 j=1
and for each f € H},(RY) we set
+o0 +oo
1f 1, = inf{z I\ ‘ aj isanatom, \j € C, f=> ) aj}.
7=1 7j=1

Also,
H'RY) = {f € L'(R?) | there isa ® € S(R?) with [, ® # 0 so that Mo f € L'(R?)}.
and for each f € H'(R?) we set
11l = [[Ma 1l
forany ® € S(R?) with [, ® # 0 and Mo f € L' (R?).
Remark. By the remark after the proof of Theorem 2.1 (just before Corollary 2.3) we have that
the choice of ® is irrelevant. Indeed, if we consider any two ®, ¥ € S(R%) with Jga ® # 0 and

Jga ¥ # 0, then Mg f € L*(R?) if and only if My f € L'(R?). Also, the quantities || Mg f||; and
|| Mg f||1 are equivalent: their ratio is between two positive constants independent of f.

It is easy to prove that || - || 1 is a norm on Hy,(R?) and that || - ||+ is a norm on H'(R?).
We also observe that (4.4) says

1A < Wl f € Hap(RY).
Similarly, (4.12) says
£l < fllees  F e HY(RY.

Hence the embeddings of both H},(R?) and H'(R?) into L' (R?) are bounded.
Now we shall prove that the spaces H,(R%) and H'(R¢) are equal and their norms are equiv-
alent.
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Theorem 4.1. H,(R?) C H'(RY) and
£l < callflm,, — f € Hy(RY.

Proof. Let ® € S(R?) with supp(®) C B(0,1) and [, @ # 0.
We take any f € H. (R?) and then there are atoms a; and \; € C with > =1 |Aj] < +oo so that

+o0
f = Z )\jaj.
j=1

Then Lemma 4.2 implies

—+o00 “+00
M fll <> NlIMaalh < caa | [Aj] < 400, (4.13)
j=1 j=1

Therefore f ¢ H'(R?) and, taking the infimum of the right side of (4.13), we get ||f||;x =
Mo fll < coallfllay,- -

The converse is more difficult and more substantial.

Theorem 4.2. H'(R?) C H},(R?) and
s <calflas, e MY,

Proof. Let ® € S(R?) with supp(®) C B(0,1) and [, @ # 0.
We take any f € H'(R?) and then Mg f € L' (R?) and || f|| ;1 = || Ma f||1.
We consider the finite family of seminorms F,; appearing in Theorem 2.1 and we have M, f €
LY(R?) with

1Mz, flly < co.allMafllr = coall fllm-
Now we apply Theorem 3.2 with A = 2" for each n € Z. Thus for every n € Z there is a
decomposition of f as a sum

+o0
£ =gt 4 b® = g™ £ S p0),
k=1

and a collection of closed cubes Q™* = {Q]"*, Qy™", ...} so that:
(1) g™ is essentially bounded, with ||g(™)||o0 < ¢q2".
(2) For every k we have b,in) € L'(RY), supp(b,g")) C Qp*and fQZv* b,(c") =0and

M@bén) () dx < co 4 / Mz, f(x)dz.
R Qe
(3) The collection Q™* has the property of bounded intersection and

+oo
U Q" = (x| Mz, f(2) > 27).
k=1

We set O = {z| Mz, f(z) > 2"}.
At first we shall prove
1= 9™l =0 (4.14)
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as n — +o00. We have

+o0 I
Mq)b(n) (.ZU) dx S Z/ Mq)bén) (.’L’) dx S Cq)yd Z/ M]:df(':v) dx
R4 k=1 R4 k=1 sz*

Since for each n every x belongs to at most N = 12¢ of the cubes Q" we get
60 = [ Mob (@) do < coaN [ Mi,f(a)da.
Rd o)

Now, O"*1) C O™ for every n and, since M, f € L*(R%), wehave (/> O = {). Therefore,
Jow Mz, f(x) dz — 0as n — +oc. Hence [[b™ || 1 — 0 as n — +oc and this is (4.14).
From ||g( ||os < cq2" we see that

¢"™ — 0 uniformly as n — —oc.

Now we shall construct atoms and corresponding coefficients for f. We recall some definitions
and notation from the proof of Theorem 3.2, wh1ch form the basis of the construction of the de-

composition f = g{) + p(9) + 3 b . We have
. L . (2) dz
) = () - ), o = L ,
fRd 77k ) dx

where n,(f ) e 0= (RY), supp( )y C Q)" and also

+o0o
Zn,(j)(a:)zl, z e 0V,
k=1

Now we define

A,(gj)(x) _ b](gj)(l‘) 77( )( +1) )+ Z o mn%*‘l

where
0 _ Jea W5V @ (@) da
km T fRd 77(J+1)( )dm .
We observe that
S 40 (a) = 0o Zp S S0 @ @) e b @ de
= Joa S () da  feana (@) de

and
Zn(i bUTD () = b0+ (), x e 0l

We used that 3> 771; (z) = 1 when z € O and that OU+Y) C OU), We used also that every
QY intersects only finitely many Q* keN.
Therefore, for every = € OU), we have > /> (‘7)( ) = bW (z) — Ut (z) = gUtD(z) —

g9 (z). On the other hand, if z € (OV)), then S A(J (z) = b9 (z) = f(z) — gV (z) =
gt (z) — gU)(z). Thus,

ZA V(@) = g7 (@) gV () (4.15)
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for all x.
We continue with the study of the support of A( 7). The terms b/,(f 7 and n(j Jpl+1) in the definition

of A,(g 7 are supported in QJ *. We also see that pk - 0 implies that Q% " intersects QJ . Now,

‘7 ’ mterects at most 12% cubes Q , r € N, and every Qi’ contains 2% cubes QH L * m e N.
Hence, Q intersects at most 24¢ cubes Q%F 1’*, m € N. If [; is the side-length of {C’*, then we
have [; ;1 = 5 [; and hence

supp(Ay)) € BY = Blay, V1), (4.16)
Now we shall examine more carefully the definition of A,(Cj ).

—+00

A,(Cj)(x) _ b]gj)(x) . n}(j)(x) Z b%+1 )+ Z p(JmnnZLJrl
m=1
= F@n (2) = o0 (z) - Z 9 (x

+oo
() z) Z PG+ () 4 Z Py mm(%+1
= f(@)n “)( )k U )—f(af)n(j)( )Xow (@)

Z p]+1) ]+1) + Z Py mn7(7gl+1

= f(x)n(j)(m)xwum) () - p?mi”( )

Z py+1) ]+1) + Z Py mn%+1

(4.17)

We have
) f (J+1( ) (j)(x) dx f J+1)( ) (j)(x) dx
p,(:) _ Jrd L)k D) re Im L) '
. fRd o () da S ™ (@) da

In the same manner that we verified (3.6) in the proof of Theorem 3.2, we see that

Jea £( ””( Y (a) de

< g VT
fRd 77m 1)(ac) dz

We also know that [p$ ™| < ¢, 2/ and it is easy to see that

fRd nY J+1)( ) (j)(aj) d
f]Rd im ]H)( ) dx

< Cd.

Therefore,
‘pk) | < Cd2]+1

In the proof of Theorem 3.2 we saw that

F@nd @)x o6y @) < 1f(@)] < a2t
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Now (4.17) implies
\A;j><x>\<\f<x>< ()X(o<1+1> <>r+rp;>rn ()

Z!p”l Gr( +Z|pkm\n3“ )

< g2 g2 4 g 20! Z nS () 4 cg 27 Z nYU+h (z)

m=1 m=1

(4.18)

§cd2j+1.

Also

RdAlij)(x)dx:/[Rdblgj)(x)dx—/IRdnlg)( x)b ]H dx—l—z,o / ,(%H( ) dx

—— [ @) do + 5 @l @) da
m=1
“+o0o

= [ (@ )l @) e =

m=1

Now we look at (4.18) and with the same constant ¢4 we set

)‘l(c]) = ¢y 2j+1 |B](€J)"

where B () B(zy, Vdl, ;) are the balls which appear in (4.16) and define
()
Gy Ak (%)
a. (@) = RO
k

All functions a,(cj ) are atoms and (4.15) says that

Z >\ = gUt)(z) — gV ()

for all z. Since ¢(™)(x) — 0asn — —oo for a.e. z, we get

n—1 n—1 oo
9 @)= 30 (97 (@) - = > XA a
j=—00 j=—o0 k=1
for a.e. 2. We also have
+oo 4o () +oo 4o . ()
.2 W= D0 Y 2B
j=—o0 k=1 j=—o00 k=1
+oo +oo ‘ ) +oo ‘ ‘
— Z chQJ ’Q]gﬂ)| — ¢4 Z 2710V)|
j=—o0 k=1 j=—00
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because the cubes Q,(Cj ), k € N, have disjoint interiors and 0) is their union. Thus,

+o0o  +o0o ) +o0o ‘ A
SN S W= Y Y x| Mg, f(2) > 27}
j=—0o0 k=1 j:—oo
< %4 JZOO / | M, (@) > t}] dt o

—+00
_ 2cd/ | My, f(2) > £} dt
—QCd/ M]:d diL'—2CdHM]:de1 < +00.

This says that the function
+oo  +oo

F—ZZ/\k ak

j=—o0 k=1

isin HL,(R%). Since ¢ — f in H'(R?%) we get that g — f in L'(R?) as n — +o00. On the
other hand,

400 +o0
1E = g™, <SS =0
j=n k=1

as n — +oo. Thus ¢(™ — F in L'(R%) as n — 400 and we conclude that
+oo +oo
f= 3 N a)

j=—o00 k=1

a.e. in R%,
We proved that f € H),(R?) and now (4.19) implies

1z, < cal Mr, fll <

and hence HfHH;t < coal fllm- -
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Chapter 5

The space BM O(Rd) as the dual space
of H(RY)

Definition. Let f € L{ (R?). We define

M.f(@) = s oz [ 17 Solds,

B>z

where the supremum is over the balls B which contain x and where we denote
fo= g [ f0)d
B = y)ay
1Bl Js

Definition. We define the space BM O(R?) by

the mean value of f over B.

BMORY) = {f € LL.(RY) | M, f is bounded in R%}.

The space BMO(R?) is called the space of functions of bounded mean oscillation and we
say that the f, g € BMO(R?) are equal if their difference f — g is an a.e. constant function. Under
this agreement, the || - || defined by

I fll« = sup M, f(x)

is a norm on the linear space BMO(RY).
Lemma 5.1. If f € BMO(R?), then | f| € BMO(R?).
Proof. Let f € BMO(R?) and take any z and any ball B containing z. Then
W =1fls] < [IfI =1l [+ |[1fsl = |fls| < |f (W) = fol + [If5l = |flB]- (.1
Also,

15l = 1115 | =116l = g [ W] = | [ sl =1sslyay

(5.2)
1 1
< @ /B||f(y)|_‘fBde§ @ /B’f(y)_mey-
Now, (5.1) and (5.2) imply
1 2
1B| /B @I = 1f1s | dy < 157 /B!f<y) — f5ldy < 2||f]..
Hence, |f| € BMO(RY) and || [f] |« < 2[/f|+- -
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Lemma 5.2. L=(R%) C BMO(R?).

Proof. Let f € L°>°(R?) and take any z and any ball B containing . Then
1
5 1w = ssldy < i [ sy 17l < 2 [ 15 dy < 20l

Therefore, f € BMO(R?) and || f||+ < 2| f]|oo- O

Now we consider the following dense subspace of H},(R9):

HNRY) = {Z)\ a; ‘a] is an atom, \; € C, J is finite}.
JjeJ

To see that H; (R?) is dense in Hj,(R?) we take any f € Hy(R?). Then f = 3 7% \; q;
for certain atoms a; and \; € C with ;“:Of |Aj| < +oc. Then we take f, = >°7_; A;j a; Wthh
belongs to H}(R?) and we have

—+00
1f = Fallzr, < >0 Nl =0

Jj=n+1
as n — +o00.

Theorem 5.1. Let f € BMO(R?). Then the linear functional l; : H}(R?) — C defined by

o) = [ s@i@de,  ge HIE.
can be extended as a bounded linear functional l; : H},(R%) — C. Moreover

12l < £

Proof. Let g € H!(R?). Then

QZZ)‘jaj

jeJ
where each a; is an atom, each \; is a number and .J is finite. For each a; there is a ball B; so
that supp(a;) C Bj, ||aj]lec < ﬁ and [, aj(x)dz = 0. Then l;(g) is well defined, since
J J

f € LL_(R9), and we have
ZA/ aj(z dac—Z)\/ aj(z)(f(z) — fp,) dx
JjeJ jeJ

Hence

(@) < 30l 5 J‘/ @) = fydo < [l S -

jeJ jeJ

Taking the infimum over all representations of g as sums » | jeg Aj aj, we get

()] < £l gl

Thus, the linear functional I is bounded on the dense subspace H}!(R?) of H},(R?) and its norm
on H!(R?) satisfies || ¢|| < ||f||+. Therefore [ can be extended as a bounded linear functional on
H gy (RY) with [|17]] < [ f]]. O
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Remark. We have proved the equality of spaces
H'(R) = H},(RY)

and that this space has two equivalent norms: [|- ||z and || - || g1, . Thus the functional I defined in

Theorem 5.1 is a bounded linear functional on H*(R?). The inequality ||/¢|| < || f|| has to change
though since the norms || - |1 and | - [| 1, are not equal. Indeed, we have

()] < £l gl

and hence
(@) < 1Sl 19l 2, < callfllx Ngllm-

Therefore, we have [|{y[| < || f[|« if we consider the norm | - [[ 71 on H'(RY) = H},(RY), and we
have ||| < cq || f|« if we consider the norm || - || ;1 on HY(R?) = H},(R?).

Now comes the converse of Theorem 5.1.

Theorem 5.2. Let | be any bounded linear functional on H'(RY) = H},(R?). Then there is a
unique f € BMO(RY) so that

l9) = 1y() = [ a@)f@)de, g€ TR

Moreover,
[ £l < callZ]]-

Proof. Take any ball B. We define the space
L% (RY) = {g € L*(RY) | g = 0 ae. in B°}.

We consider the norm || - ||2. 5 on L%(R?) to be the restriction of the usual norm | - ||2 on B. Thus,

1/2
ol = ( [ la@Paz)”.  ge b,

Of course LQB (Rd) is a Hilbert space. We also define the closed linear subspace of LQB (Rd):
Lho(®) = {g € L3®Y)| [ glx)do =0},
B

Let ® € S(R?) with supp(®) C B(0,1) and [. ® # 0. We also assume that P is a radial function
and that ®(|z|) is a decreasing function of |z|.

Now we consider any g € LQBD(R‘I) and we look back at the proof of Lemma 4.2. If B = B(z, 7),
we take also the ball B* = B(z, 27).

We use the well-known inequality

lg * ®i(7)] < cp Mg(x),

where Mg is the Hardy-Littlewood maximal function of g, and we get Mgg(z) < cp Mg(x).
Since the Hardy-Littlewood maximal operator is strong-(2, 2), we have

1/2 1/2
Mgg(x)dx < ]B*]l/z ( M<pg(x)2 d:c) < cp ]B*]l/z (/ Mg(ac)2 dx)
B* B* R4 (5.3)

1/2
<cnal B2 ([ lo@)P )" = cualBI2 gl
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If © ¢ B*, then

) (5.4)
2 /2
<l ([ oo~ ) - @ula - 2)dy)
B
We saw in the proof of Lemma 4.2 that
_ T
[@4(z —y) — Pz — 2)| < caa =
for y € B. Then (5.4) implies
Mag(z) < caallglo,s B "
when z ¢ B* and hence
[ Mug(o)do < cou B gl
R4\ B*
Considering also (5.3), we find
gl = | Magly < co.a|BI'? lgll2,5- (5.5)

We have thus proved that LQB70(Rd) C H'(R?) and we can restrict our linear functional on
L% o(RY). In fact (5.5) implies

W) < gl < caal B2l gllzm, g€ LR (5.6)

If we denote (7 : LQB’O(RCZ) — C this restriction of /, then from (5.6) we have
1P < caa|BIY2 1)

Since L% ((R?) is a Hilbert space, there is a function F'” € L3 ;(R?) such that
l9) = 17(0) = [ a@P @)= [ ge)FP@)de, g€ Lhy®). 6

and
IFP||o,5 = 1P < coq|BI"? . (5.8)

Up to now we have a function F'Z corresponding to each ball B. From these functions we shall
construct a function f € BMO(R?) so that for every ball B the difference f — F'P is a.e. constant
on B.

At first we observe that, if B and B’ are balls with B C B’, then LZB7O(]Rd) C LQB, O(Rd) and
hence (5.7) implies

[ 9@ (FP @) = P @) do = 1%(6) =17 (9) = 1g) = 1(6) =0, g€ Lho(R.

Therefore, FZ — FB is a.e. constant on B.
Now we consider the balls B,, = B(0,n), n € N, and we define the constants ¢,, n € N, so that:

cn = FB(z) — FPr(2), a.e. .z € Bj.
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We also define the functions f, : B, — C,n € N, by
fa(2) = FBr(2) + cn, r € By,.
If n < m, then for a.e. z € B,, we have
(@) = fm(z) = FP(2) + o = FP(2) — e = ¢,

where c is a constant, because FZ» — F'B» must be a.e. constant on B,,. To find the value of ¢ we
take x € B; and we get

c=FB(z)+ ¢, — FP(2) — ¢, = FP1(2) — FP'(z) = 0.

Therefore,
fu(x) = fin(x), a.e. x € By,
and we may define the function f : R? — C so that

f(x) = fu(z) = FB(2) + cp, ae. r € By.

Now take any x and any ball B containing . Then there is a B,, such that B C B,,. Hence there
is a constant c so that F'5(x) — FB(z) = c for a.e. € B. Then

fx)=FB)+c+cp, ae.r€B (5.9)

and thus )
fB:/(FB(x)+c+cn)da::c+cn
|B| JB

since [, F5 () dz = 0. Therefore,

5 L@ = slae < o ([ i - galae) ™ = o ([ irrpa) ™

< caalll

from (5.8). We conclude that f € BMO(R?) and
1f1l+ < coa ]l
For every ball B we have
o) = [ al@)PPa)dn, g€ LR,
From (5.9) we get
(g) = [ slalf@)de, g€ Lho®Y, (5.10)

since [ g(z) dx = 0. Now let g € H, L(R?). Then there is a finite set .J, atoms a; and numbers

Aj so that
g = Z Ajaj.
JjeJ

SN Plas@P do = 1 I [ as(o)f? do

If Bj is the ball corresponding to a;, we take a ball B containing the union of all B;, j € J and
JjeJ jeJ B;

we get
/ 9(0)? de < |J] /
B B
|A

2
S\J!Z é| < +o00.
jeJ "
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Also

/gg(x)dx:ZAj[B_aj(x)dxzo.

jeJ i

Hence g € L% ((R?) and now (5.7) and (5.10) imply

I(g) = /B g(@)f(z)dz = 1;(g), g H\RY.

We have already proved that || f||« < ¢4 !||, where the constant can be made to depend only on
d since @ is any particular function with properties described above.
To prove the uniqueness of f, we assume that f € BMO(R?) has the property:

[ a@r@ iz =o. g iR

Then for every atom « supported in a certain ball B we have

/ a(x)f(x)dr =0
B
and hence
| a@)(@) = fi)da =0,

Therefore, for any constant ¢ and any atom supported in B we have

[ (@) +07(@) = fa)do =0
and, finally,
[ 0@ @)~ fr)dr =0
B

for every bounded function h in B. This implies that f — fp = 0 and hence f is a.e. constant
in B. Since the ball B is arbitrary, we conclude that f is a.e. constant and hence f = 0 in
BMO(R?). O

Theorems 5.1 and 5.2, together, say that the linear operator
T : BMO(RY) — (H(R%)"

defined by
T(f) =1y, f e BMO(RY),

is an isomorphism of BMO(R?) onto (H'(R?))".
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