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We shall study the celebrated theorem of Dirichlet:

Ifm, k ∈ N and (m, k) = 1, there are infinitely many primes of the formm+kn, n = 1, 2, 3, . . . .

We shall denote p the general prime, ϕ is the well known Euler function and we shall denote
U(R) the group of the invertible elements of a ring R. For example, U(Z/kZ) consists of all
equivalence classes mod k of the form [n]k with n ∈ Z and (n, k) = 1.
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Chapter 1

Characters

We consider the multiplicative group C∗ = C \ {0}.

Definition. Let G be a finite Abelian group. Every group homomorphism χ : G → C∗ is called
character of G

Proposition 1.1. If |G| = n and χ : G → C∗ is a character of G, then χ(g) is a n-th root of unity
for every g ∈ G.

Proof. χ(g)n = χ(gn) = χ(e) = 1, where e is the unit element of G.

For example, if χ is a character of U(Z/kZ), then χ([n]k) is a ϕ(k)-th root of unity for every
[n]k ∈ U(Z/kZ).

We observe that χ(G) ⊆ S1 = {z ∈ C | |z| = 1} for every character χ of G.

Definition. We denote Ĝ the set of all characters of the group G

Ĝ is an abelian group with multiplication (χ1, χ2) 7→ χ1χ2, where (χ1χ2)(g) = χ1(g)χ2(g)
for every g ∈ G.

Definition. We denote χ0 the character χ0 : G → C∗ defined by χ0(g) = 1 for every g ∈ G.

The character χ0 is the unit element of Ĝ.

Theorem 1.1. G ≃ Ĝ.

Proof. It is enough to prove the result for finite cyclic groups G, since the structure theorem of
finite Abelian groups will allow us to extend the result from the finite cyclic groups to all finite
Abelian groups.
Let |G| = n and assume that G is generated by g0. If Λn is the cyclic group of all n-th roots of
unity, then G ≃ Λn.
We define f : Ĝ → Λn by

f(χ) = χ(g0) for every χ ∈ Ĝ.

Clearly f is a homomorphism.
Now take χ ∈ Ĝ such that f(χ) = 1. Then for every g ∈ G we have g = gm0 for some m ∈ N
and then χ(g) = χ(gm0 ) = χ(g0)

m = f(χ)m = 1. Hence χ = χ0 and thus f is one-to-one.
Finally, f is onto since for every ω ∈ Λn there is a specific χ ∈ Ĝ such that χ(g0) = ω and hence
f(χ) = ω.

Proposition 1.2. For every χ1, χ2 ∈ Ĝ we have

∑
g∈G

χ1(g)χ2(g) =

{
0, if χ1 ̸= χ2

|G|, if χ1 = χ2
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Proof. If χ1 = χ2, then ∑
g∈G

χ1(g)χ1(g) =
∑
g∈G

|χ1(g)|2 =
∑
g∈G

1 = |G|.

If χ1 ̸= χ2, we choose g0 ∈ G such that χ1(g0) ̸= χ2(g0) or, equivalently, χ1(g0)χ2(g0) ̸= 1 and
we get

χ1(g0)χ2(g0)
∑
g∈G

χ1(g)χ2(g) =
∑
g∈G

χ1(gg0)χ2(gg0) =
∑
g∈G

χ1(g)χ2(g).

Thus
∑

g∈G χ1(g)χ2(g) = 0.

Proposition 1.3. For every g1, g2 ∈ G we have

∑
χ∈Ĝ

χ(g1)χ(g2) =

{
0, if g1 ̸= g2

|G|, if g1 = g2

Proof. The proof is similar to the previous one.

Definition. For every character χ of the group U(Z/kZ) we define χ : Z → C by:

χ(n) =

{
χ([n]k), if (n, k) = 1

0, otherwise

The function χ : Z → C is called charactermod k.

The function χ : Z → C has the same symbol as the character χ from which it is derived, but
this should cause no confusion.

The new function χ is substantially an extension of the original χ from the numbers n ∈ Z
with (n, k) = 1 to all numbers n ∈ Z. We observe that the new function is multiplicative, i.e.

χ(nm) = χ(n)χ(m) for every n,m ∈ Z.

In the case of characters mod k Propositions 1.2 and 1.3 take the following forms.

Proposition 1.4. If χ1, χ2 are charactersmod k andA ⊆ Z consists of k numbers from k different
equivalence classes mod k, then

∑
n∈A

χ1(n)χ2(n) =

{
0, if χ1 ̸= χ2

ϕ(k), if χ1 = χ2

Proposition 1.5. For every n,m ∈ Z we have

∑
χ char. mod k

χ(n)χ(m) =

{
0, if n ̸≡ m(mod k)
ϕ(k), if n ≡ m(mod k)

Proposition 1.6. Let χ be a character mod k. If n ∈ N and n = pa11 · · · pamm is the representation
of n as a product of primes, then

∑
d|n

χ(d) =
1− χ(p1)

a1+1

1− χ(p1)
· · · 1− χ(pm)am+1

1− χ(pm)
,

where the expression 1−ta+1

1−t is taken to be equal to a+ 1 when t = 1.
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Proof. The divisors of n are the numbers d = pb11 · · · pbmm with 0 ≤ b1 ≤ a1, . . . , 0 ≤ bm ≤ am.
Hence∑

d|n

χ(d) =
∑

0≤b1≤a1,...,0≤bm≤am

χ(pb11 · · · pbmm ) =
∑

0≤b1≤a1,...,0≤bm≤am

χ(p1)
b1 · · ·χ(pm)bm

=

a1∑
b1=0

χ(p1)
b1 · · ·

am∑
bm=0

χ(pm)bm =
1− χ(p1)

a1+1

1− χ(p1)
· · · 1− χ(pm)am+1

1− χ(pm)

and the proof is complete.
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Chapter 2

The zeta-function of Riemann

Definition. The zeta-function of Riemann, ζ : {s ∈ R | s > 1} → R, is defined by

ζ(s) =

+∞∑
n=1

1

ns
for every s > 1.

When we write
∑

p a(p) we mean the series of numbers a(p) over all primes p. Thus, if
p1 < p2 < . . . < pn < . . . are the primes in increasing order, we define

∑
p

a(p) =
+∞∑
n=1

a(pn).

The same can be said of the product:

∏
p

a(p) =
+∞∏
n=1

a(pn).

Proposition 2.1. For every s > 1 we have

ζ(s) =
∏
p

(
1− 1

ps

)−1
.

Proof. We observe that ζ(s) 1
ps =

∑
n≡0(mod p)

1
ns and thus

ζ(s)
(
1− 1

ps

)
=

∑
n ̸≡0(mod p)

1

ns
. (2.1)

If p1 < p2 < . . . < pn < . . . are the primes in increasing order, we define

an = ζ(s)

n∏
m=1

(
1− 1

psm

)
.

Using (2.1) with p = p1 and applying induction, we can easily prove that

1 ≤ an =
∑

m̸≡0(mod(p1···pn))

1

ms
≤ 1 +

+∞∑
m=pn+1

1

ms

Therefore an → 1 and hence
∏

p(1−
1
ps )

−1 converges to ζ(s).

Proposition 2.2. ζ(s) = 1
s−1 + O(1) when s → 1+.
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Proof. For all s > 1 we have

ζ(s) =

+∞∑
n=1

1

ns
≥

+∞∑
n=1

∫ n+1

n

1

ts
dt =

∫ +∞

1

1

ts
dt =

1

s− 1

and

ζ(s) = 1 +

+∞∑
n=2

1

ns
≤ 1 +

+∞∑
n=2

∫ n

n−1

1

ts
dt = 1 +

∫ +∞

1

1

ts
dt = 1 +

1

s− 1
.

Hence 1
s−1 ≤ ζ(s) ≤ 1 + 1

s−1 for every s > 1.

Theorem 2.1.
∑

p
1
ps = log 1

s−1 + O(1) when s → 1+.

Proof. From log(1− z)−1 =
∑+∞

n=1
zn

n and Proposition 2.2 we get

∑
p

+∞∑
n=1

1

npns
=

∑
p

log
(
1− 1

ps

)−1
= log

∏
p

(
1− 1

ps

)−1
= log ζ(s) = log

1

s− 1
+ O(1)

when s → 1+. Moreover, for every s > 1 we have

0 ≤
∑
p

+∞∑
n=2

1

npns
≤

∑
p

+∞∑
n=2

1

pn
=

∑
p

1

p(p− 1)
< +∞

These two relations and

∑
p

1

ps
=

∑
p

+∞∑
n=1

1

npns
−

∑
p

+∞∑
n=2

1

npns

imply the result.
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Chapter 3

Dirichlet’s theorem

Dirichlet’s Theorem. If m, k ∈ N and (m, k) = 1, there are infinitely many primes p such that
p ≡ m(mod k).

Proof. We takem′ ∈ Z so thatmm′ ≡ 1(mod k). Proposition 1.5 implies

∑
χ char. mod k

χ(pm′) =

{
0, if p ̸≡ m(mod k)
ϕ(k), if p ≡ m(mod k)

Hence

ϕ(k)
∑

p≡m(mod k)

1

ps
=

∑
p

1

ps

∑
χ char. mod k

χ(pm′) =
∑

χ char. mod k

χ(m′)
∑
p

χ(p)

ps
. (3.1)

For the term of the last sum corresponding to χ = χ0 we observe that:

χ0(m
′)
∑
p

χ0(p)

ps
=

∑
(p,k)=1

1

ps
=

∑
p

1

ps
−

∑
p|k

1

ps
.

Since
∑

p|k
1
ps is a finite sum, Theorem 2.1 implies that the right side of the last identity diverges

to +∞ when s → 1+.
The only thing left for us to show is that, if χ ̸= χ0, then

∑
p
χ(p)
ps = O(1) when s → 1+. Indeed,

if we show this, then (3.1) will imply that∑
p≡m(mod k)

1

p
= lim

s→1+

∑
p≡m(mod k)

1

ps
= +∞

and thus there will be infinitely many primes p such that p ≡ m(mod k).
That

∑
p
χ(p)
ps = O(1) when s → 1+ is the content of Proposition 4.3 at the end of this work.

It is worthwhile to note that up to now we have used no complex analysis.
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Chapter 4

Dirichlet’s L-functions

We use the halfplane notation

H+
σ = {s ∈ C | Re(s) > σ}

for every σ ∈ R.
Now we extend the zeta-function on the halfplane H+

1 in the natural manner:

ζ(s) =

+∞∑
n=1

1

ns
, Re(s) > 1.

The series defining ζ(s) converges absolutely when Re(s) > 1.

Definition. If (an) is a complex sequence, the series

∞∑
n=1

an
ns

, s ∈ C

is called Dirichlet series.

For instance, the series defining the zeta-function is a Dirichlet series.

Lemma 4.1. If the Dirichlet series
∑+∞

n=1
an
ns converges when s = s0 ∈ C, then for every θ ∈

(0, π/2) it converges uniformly on the angular set Γ(s0, θ) = {s ∈ C | |Arg(s− s0)| < θ}.

Proof. Let s = σ + iτ ∈ Γ(s0, θ) and s0 = σ0 + iτ0. We set bn = an
ns0 and then we have

rn :=

+∞∑
l=n

bl → 0 when n → +∞.

We consider an arbitrary ϵ > 0 and then there is some n0 so that |rn| < ϵ for every n ≥ n0.
Moreover, since s ∈ Γ(s0, θ), we have that σ − σ0 > 0 and thus |ns−s0 | = nσ−σ0 ≥ 1 for every
n ∈ N.
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Now, if n,m ∈ N and n0 ≤ n < m, then:

∣∣∣ m∑
l=n

al
ls

∣∣∣ = ∣∣∣ m∑
l=n

bl
ls−s0

∣∣∣ = ∣∣∣ m∑
l=n

rl − rl+1

ls−s0

∣∣∣ = ∣∣∣ m∑
l=n

rl
ls−s0

−
m+1∑
l=n+1

rl
(l − 1)s−s0

∣∣∣
≤

∣∣∣ rn
ns−s0

∣∣∣+ ∣∣∣ rm+1

ms−s0

∣∣∣+ ∣∣∣ m∑
l=n+1

rl

( 1

ls−s0
− 1

(l − 1)s−s0

)∣∣∣
≤ 2ϵ+

∣∣∣ m∑
l=n+1

rl(s− s0)

∫ l

l−1

1

ts−s0+1
dt
∣∣∣

≤ 2ϵ+ ϵ|s− s0|
m∑

l=n+1

∫ l

l−1

1

tσ−σ0+1
dt = 2ϵ+ ϵ|s− s0|

∫ m

n

1

tσ−σ0+1
dt

= 2ϵ+ ϵ
|s− s0|
σ − σ0

( 1

nσ−σ0
− 1

mσ−σ0

)
≤ 2ϵ+

ϵ

cos θ
1

nσ−σ0
≤ 2ϵ+

ϵ

cos θ
.

Cauchy’s criterion implies the result.

Lemma 4.2. For every r,R with 0 < r < R < +∞ the partial sums of the series
∑+∞

n=1
1
ns are

uniformly bounded on the halfring {s ∈ C | Re(s) ≥ 1, r ≤ |s− 1| ≤ R}.

Proof. Take s = σ + iτ such that σ ≥ 1 and r ≤ |s− 1| ≤ R. Then

∣∣∣ N∑
n=1

1

ns

∣∣∣ ≤ ∣∣∣ N∑
n=1

( 1

ns
−

∫ n+1

n

1

xs
dx

)∣∣∣+ ∣∣∣ N∑
n=1

∫ n+1

n

1

xs
dx

∣∣∣
=

∣∣∣ N∑
n=1

∫ n+1

n

( 1

ns
− 1

xs

)
dx

∣∣∣+ ∣∣∣ ∫ N+1

1

1

xs
dx

∣∣∣
= |s|

∣∣∣ N∑
n=1

∫ n+1

n

∫ x

n

1

ts+1
dt dx

∣∣∣+ 1

|s− 1|

∣∣∣1− 1

(N + 1)s−1

∣∣∣
≤ (1 +R)

N∑
n=1

∫ n+1

n

∫ x

n

1

tσ+1
dt dx+

1

r

(
1 +

1

(N + 1)σ−1

)
≤ (1 +R)

N∑
n=1

∫ n+1

n

∫ x

n

1

t2
dt dx+

2

r
≤ (1 +R)

N∑
n=1

∫ n+1

n

∫ x

n

1

n2
dt dx+

2

r

≤ (1 +R)

N∑
n=1

1

n2
+

2

r
≤ (1 +R)

+∞∑
n=1

1

n2
+

2

r

and the result has been proved.

Lemma 4.3. If b1 ≥ . . . ≥ bN ≥ 0, then

∣∣∣ N∑
n=1

bnxn

∣∣∣ ≤ b1 max
1≤n≤N

∣∣∣ n∑
l=1

xl

∣∣∣.
Proof. Let s0 = 0 and sn =

∑n
l=1 xl for all n with 1 ≤ n ≤ N .
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IfM = max1≤n≤N |
∑n

l=1 xl|, then∣∣∣ N∑
n=1

bnxn

∣∣∣ = ∣∣∣ N∑
n=1

bn(sn − sn−1)
∣∣∣ = ∣∣∣ N∑

n=1

bnsn −
N−1∑
n=0

bn+1sn

∣∣∣
=

∣∣∣N−1∑
n=1

(bn − bn+1)sn + bNsN

∣∣∣ ≤ N−1∑
n=1

(bn − bn+1)|sn|+ bN |sN |

≤
N−1∑
n=1

(bn − bn+1)M + bNM = b1M.

and the proof is complete.

Lemma 4.4. Suppose that for some s0 ∈ C the sequence ( an
ns0−1 ) is non-negative and decreasing.

Then for every r,R with 0 < r < R < +∞ the partial sums of the Dirichlet series
∑+∞

n=1
an
ns are

uniformly bounded on the halfring {s ∈ C | Re(s) ≥ Re(s0), r ≤ |s− s0| ≤ R}.

Proof. Assume that Re(s) ≥ Re(s0) and r ≤ |s− s0| ≤ R. We set bn = an
ns0−1 and xn = 1

ns−s0+1

and we have that b1 ≥ . . . ≥ bn ≥ . . . ≥ 0 and the Dirichlet series takes the form
∑+∞

n=1 bnxn.
Lemma 4.2 implies that there is M = M(r,R) so that |

∑n
l=1 xl| ≤ M for every n and Lemma

4.3 implies the result: |
∑N

n=1 bnxn| ≤ b1M = a1M .

Theorem 4.1. Let (fn) be a sequence of analytic functions on the open Ω ⊆ C. If fn → f
uniformly on the compact subsets of Ω, then f is analytic on Ω.

Proof. f is continuous on Ω since the convergence is uniform on every closed disc contained in Ω
and since every fn is continuous. Now we take any triangle ∆ in Ω and the uniform convergence
on ∂∆ together with Cauchy’s theorem imply∫

∂∆
f(z) dz = lim

n→+∞

∫
∂∆

fn(z) dz = 0.

Morera’s theorem implies the result.

Theorem 4.2. Let
∑+∞

n=1
an
ns be a Dirichlet series.

(i) If the series converges when s = s0 = σ0+iτ0 ∈ C, then the series defines an analytic function
on the open halfplane H+

σ0
.

(ii) If for some s0 = σ0 + iτ0 ∈ C the sequence ( an
ns0−1 ) is non-negative and decreasing, then the

series defines an analytic function onH+
σ0

and for every r,R with 0 < r < R < +∞ this analytic
function is bounded on the halfring {s ∈ C | Re(s) > σ0, r ≤ |s− s0| ≤ R}.

Proof. (i) Every compact subset of H+
σ0

is contained in Γ(s0, θ) for some θ ∈ (0, π/2). Thus the
result is a corollary of Lemma 4.1 and Theorem 4.1.
(ii) Take s′0 = σ′

0 + iτ0 with σ′
0 > σ0. Then the series

+∞∑
n=1

an

ns′0
=

+∞∑
n=1

an
ns0−1

1

nσ′
0−σ0+1

converges absolutely and, according to (i), defines an analytic function on H+
σ′
0
. Therefore the

series defines an analytic function on H+
σ0
. The rest is a consequence of Lemma 4.4.

Corollary 4.1. The zeta-function is analytic on H+
1 and for every r,R with 0 < r < R < +∞ it

is bounded on the halfring {s ∈ C | Re(s) > 1, r ≤ |s− 1| ≤ R}.
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We observe that

(1− 21−s)ζ(s) =

+∞∑
n=1

1

ns
−

+∞∑
n=1

2

(2n)s
=

+∞∑
n=1

(−1)n+1

ns
, Re(s) > 1. (4.1)

The series at the right side of (4.1) converges for every s > 0, and Theorem 4.2 implies that
it defines a function, say f , analytic on H+

0 . Hence the function h(s) =
f(s)

1−21−s is analytic on H+
0

except for possible poles at the points s = 1 +m 2π
log 2 i (m ∈ Z) which are the roots of order one

of the function 1 − 21−s and all of which lie on the line Re(s) = 1. Since h is identical to the
zeta-function onH+

1 and due to Corollary 4.1, all the above points, except s = 1, are regular points
of h. Moreover, Proposition 2.2 implies that s = 1 is a pole of order one of h. We can now extend
the zeta-function on H+

0 defining it as being identical to the function h. Therefore we can think of
the zeta-function as a meromorphic function on H+

0 with a single pole of order one at s = 1.

Definition. Let χ be a character mod k, χ ̸= χ0. The function L(·, χ) : H+
0 → C defined by

L(s, χ) =

+∞∑
n=1

χ(n)

ns
, Re(s) > 0,

is called Dirichlet’s L-function.
Especially for χ0, we define Dirichlet’s L-function L(·, χ0) in the same way but with H+

1 as its
domain of definition.

Lemma 4.5. If χ is a charactermod k, χ ̸= χ0, then |
∑m

l=n χ(l)| ≤ ϕ(k) for every n,m ∈ Z with
n ≤ m.

Proof. We group the natural numbers l from n up tom in subsets each of which consists of k suc-
cessive numbers and at most one of which consists of at most k−1 successive numbers. Proposition
1.4 implies that the sum

∑
l χ(l) over each of the complete subsets consisting of k successive num-

bers equals 0. Moreover, the sum over the last subset contains at most ϕ(k) non-zero terms and
each of them satisfies |χ(l)| ≤ 1.

Proposition 4.1. If χ is a charactermod k, χ ̸= χ0, then the Dirichlet series
∑+∞

n=1
χ(n)
ns converges

on H+
0 and the corresponding L(·, χ) is analytic on H+

0 . If χ = χ0, we have the same result but
with H+

1 instead of H+
0 .

Proof. Take χ ̸= χ0 and s > 0. Then for every n,m with n ≤ m Lemmas 4.3 and 4.5 imply∣∣∣ m∑
l=n

χ(l)

ls

∣∣∣ ≤ ϕ(k)

ns
.

By Cauchy’s criterion the Dirichlet series
∑+∞

n=1
χ(n)
ns converges. Since this is true for every s > 0,

the Dirichlet series converges on H+
0 and L(·, χ) is analytic on H+

0 .
If χ = χ0, then we simply observe that |χ0(n)| ≤ 1 for every n, and hence

∑+∞
n=1

χ0(n)
ns converges

for every s > 1.

Proposition 4.2. If χ is any character mod k, then

L(s, χ) =
∏
p

(
1− χ(p)

ps

)−1
=

∏
p̸≡0(mod k)

(
1− χ(p)

ps

)−1
̸= 0, Re(s) > 1.

Especially when χ = χ0,

L(s, χ0) =
∏

p̸≡0(mod k)

(
1− 1

ps

)−1
= ζ(s)

∏
p≡0(mod k)

(
1− 1

ps

)
̸= 0, Re(s) > 1.
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Proof. Let Re(s) > 1. We define

an = L(s, χ)
n∏

m=1

(
1− χ(pm)

psm

)
.

With the method of the proof of Proposition 2.1, we show that an → 1. Thus L(s, χ) ̸= 0 and∏
p(1−

χ(p)
ps )−1 converges to L(s, χ).

If k is not a prime, the product
∏

p≡0(mod k)(1−
1
ps ) contains no terms and it is equal to 1. In this

case we have L(s, χ0) = ζ(s) when Re(s) > 1. If k is prime, then
∏

p≡0(mod k)(1−
1
ps ) = 1− 1

ks

and hence L(s, χ0) = ζ(s)(1 − 1
ks ) when Re(s) > 1. In every case we can extend the function

L(s, χ0) on H+
0 with a single pole of order one at s = 1.

Theorem 4.3. If χ is a character mod k, χ ̸= χ0, then L(1, χ) ̸= 0

Proof. We consider two cases.
(i) Assume that there is at least one complex (i.e. having at least one non-real value) character χ1

mod k such that L(1, χ1) = 0. Then χ2 = χ1 is a second complex character mod k such that
L(1, χ2) = 0. We define the function ζk by

ζk(s) =
∏

χ char. mod k

L(s, χ).

Then ζk is analytic on H+
0 except for at most one pole of order one at s = 1. Since L(s, χ0) has a

pole of order one at s = 1 and the product defining ζk contains at least two functions having s = 1
as a root, we get ζk(1) = 0. But when s > 1 we have:

log ζk(s) = log
∏

χ char. mod k

∏
p

(
1− χ(p)

ps

)−1
=

∑
χ char. mod k

∑
p

log
(
1− χ(p)

ps

)−1

=
∑

χ char. mod k

∑
p

+∞∑
n=1

χ(pn)

npns
=

∑
p

+∞∑
n=1

1

npns

∑
χ char. mod k

χ(pn)

= ϕ(k)
∑
p

∑
n:pn≡1(mod k)

1

npns
≥ 0.

Hence ζk(s) ≥ 1 for all s > 1 and we arrive at a contradiction.
(ii) If every character mod k is real, the previous argument does not work.
Now for every real character χ mod k we define

f(n) =
∑
d|n

χ(d).

Since χ is real, its only possible values are 0 and±1. Proposition 1.6 easily implies that f(n) ≥ 0
and f(n2) ≥ 1 for every n ∈ N. Therefore

+∞∑
n=1

f(n)√
n

≥
+∞∑
n=1

f(n2)√
n2

≥
+∞∑
n=1

1

n
= +∞.

Now it is enough to show that
∑N2

n=1
f(n)√

n
= 2NL(1, χ) + O(1). This contradicts L(1, χ) = 0.

In the following, the symbol 1M denotes the characteristic function of the set M : the function
which equals 1 onM and 0 on the complement ofM .
We consider the following subsets of N× N:

A = {(d, b) | d ≤ N, b ≤ N2/d}, B = {(d, b) | b ≤ N,N < d ≤ N2/b}.
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Now, considering that all variables of the following sums are natural numbers, we have:∑
d≤N

χ(d)√
d

( ∑
b≤N2/d

1√
b

)
+

∑
b≤N

1√
b

( ∑
N<d≤N2/b

χ(d)√
d

)
=

∑
d,b

χ(d)√
db

1A(d, b) +
∑
d,b

χ(d)√
db

1B(d, b) =
∑
d,b

χ(d)√
db

(
1A(d, b) + 1B(d, b)

)
=

∑
d,b

χ(d)√
db

1A∪B(d, b),

(4.2)

The last equality is true because A ∩B = ∅.
Now we observe that A ∪ B = {(d, b) | db ≤ N2} and we make the change of variables: d = d,
n = db. Then 1A∪B = 1C , where C = {(n, d) |n ≤ N2, d | n} and thus

∑
d,b

χ(d)√
db

1A∪B(d, b) =
∑
n,d

χ(d)√
n
1C(n, d) =

N2∑
n=1

1√
n

∑
d|n

χ(d) =

N2∑
n=1

f(n)√
n
.

The last equality together with (4.2) imply

N2∑
n=1

f(n)√
n

=
∑
d≤N

χ(d)√
d

( ∑
b≤N2/d

1√
b

)
+

∑
b≤N

1√
b

( ∑
N<d≤N2/b

χ(d)√
d

)
= P +Q. (4.3)

We shall first prove that P = 2NL(1, χ) + O(1). We have:

P =
N∑
d=1

χ(d)√
d

( ∑
b≤N2/d

1√
b

)

=

N∑
d=1

χ(d)√
d

( ∑
b≤N2/d

1√
b
− 2N√

d

)
+ 2N

( N∑
d=1

χ(d)

d
− L(1, χ)

)
+ 2NL(1, χ)

= I + II + III.

The integral criterion for series implies:∑
b≤N2/d

1√
b
= 2

√
N2

d
+ O(1) =

2N√
d
+ O(1).

Hence:

|I| =
∣∣∣ N∑
d=1

χ(d)√
d

( ∑
b≤N2/d

1√
b
− 2N√

d

)∣∣∣ = O(1)
∣∣∣ N∑
d=1

χ(d)√
d

∣∣∣ = O(1).

The last equality is due to the convergence of
∑+∞

d=1
χ(d)√

d
.

Regarding II we observe the following. Since
∑+∞

d=1
χ(d)
d = L(1, χ), there is some M ≥ N + 1

such that |
∑+∞

d=M+1
χ(d)
d | < ϵ

2N . Then:

|II| = 2N
∣∣∣ +∞∑
d=N+1

χ(d)

d

∣∣∣ ≤ 2N
∣∣∣ M∑
d=N

χ(d)

d

∣∣∣+ 2N
∣∣∣ +∞∑
d=M+1

χ(d)

d

∣∣∣ ≤ 2N
ϕ(k)

N
+ ϵ = O(1)

For the second inequality we used Lemmas 4.3 and 4.5.
We have thus proved P = 2NL(1, χ) + O(1) and we shall now show that Q = O(1).
Lemmas 4.3 and 4.5 imply: ∣∣∣ ∑

N<d≤N2/b

χ(d)√
d

∣∣∣ ≤ ϕ(k)√
N

.
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Hence

|Q| =
∣∣∣ N∑
b=1

1√
b

∑
N<d≤N2/b

χ(d)√
d

∣∣∣ ≤ ϕ(k)√
N

N∑
b=1

1√
b
= O(1).

Finally, (4.3) implies
∑N2

n=1
f(n)√

n
= 2NL(1, χ) + O(1) and the proof is complete.

Proposition 4.3. If χ is a character mod k, χ ̸= χ0, then
∑

p
χ(p)
ps = O(1) when s → 1+.

Proof. Using ∑
p

+∞∑
m=2

∣∣∣χ(pm)

mpms

∣∣∣ ≤ ∑
p

+∞∑
m=2

1

pm
=

∑
p

1

p(p− 1)
< +∞

for every s > 1, we get

∑
p

χ(p)

ps
=

∑
p

+∞∑
m=1

χ(pm)

mpms
−

∑
p

+∞∑
m=2

χ(pm)

mpms
=

∑
p

+∞∑
m=1

χ(pm)

mpms
+ O(1)

=
∑
p

log
(
1− χ(p)

ps

)−1
+ O(1) = logL(s, χ) + O(1)

for every s > 1. Theorem 4.3 implies that the function logL(s, χ) is well defined and analytic in
a neighborhood of 1.
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