ON BEST UNIFORM APPROXIMATION BY BOUNDED ANALYTIC FUNCTIONS

M. PAPADIMITRAKIS

$C(T)$ is the space of continuous functions on the unit circle T with the supremum norm $\|\cdot\|_{\infty} \cdot H^{\infty}(T)$ is the space of nontangential limits of bounded analytic functions in the unit disc D. Also, $A(T)=H^{\infty}(T) \cap C(T)$. Let $\mathscr{F} \ell^{1}$ be the subspace of $C(T)$ of all functions whose Fourier series is absolutely convergent with norm

$$
\|f\|_{\mathscr{\ell ^ { \prime }}}=\sum|\hat{f}(n)|, \quad \hat{f}(n)=\int f\left(e^{i \theta}\right) e^{-i n \theta} \frac{d \theta}{2 \pi} .
$$

$H^{1}(T)$ is the Hardy space of nontangential limits of functions F analytic in D such that

$$
\|F\|_{1}=\sup _{0<r<1} \int\left|F\left(r e^{i \theta}\right)\right| \frac{d \theta}{2 \pi}<+\infty
$$

and $H_{0}^{1}(T)=\left\{F \in H^{1}(T): \hat{F}(0)=0\right\}$.
It is known (see [2]) that any $f \in C(T)$ has a unique best approximation $g \in H^{\infty}(T)$ in the sense

$$
d=d\left(f, H^{\infty}\right)=\inf _{n \in H^{\infty}(T)}\|f-h\|_{\infty}=\|f-g\|_{\infty}
$$

and that, by duality,

$$
\begin{equation*}
d=\sup \int f\left(e^{i \theta}\right) F\left(e^{i \theta}\right) \frac{d \theta}{2 \pi}, \quad F \in H_{0}^{1}(T), \quad\|F\|_{1}=1 \tag{*}
\end{equation*}
$$

There is also (at least) one F for which the sup (*) is attained. f, g and any of those maximizing F are connected by

We agree to write $g=T(f)$.
Generally, differentiability properties of f are preserved by g; see $[1,2]$.
It is also known (see [3] for more information) that $f \in \mathscr{F} \ell^{1}$ implies $g \in \mathscr{F} \ell^{1}$. In [3], the following question is raised (with expectation of a negative answer). Is it true that

$$
\|g\|_{\mathscr{F} \boldsymbol{l}^{1}} \leqslant c \cdot\|f\|_{\mathscr{F} \ell^{1}}
$$

for some absolute constant c ? The answer is negative indeed!
Theorem. There is no absolute constant c such that $\|g\|_{\mathscr{F} l^{1}} \leqslant c \cdot\|f\|_{\mathscr{F} t^{1}}$, where g is the best approximation of $f \in \mathscr{F} \ell^{1}$ in $H^{\infty}(T)$.

1991 Mathematics Subject Classification 30D55.

Remark. In the same context, one should note that the operator of best approximation is bounded on the Besov classes $B_{p}^{1 / p}$ and on VMO (see [4]), and unbounded on the Besov classes B_{p}^{s} with $s>1 / p$ and on the Hölder classes (see [3]).

Proof. We start with a simple observation. Suppose $f \in A(T), \hat{f}(0)=0$, $g \in H^{\infty}(T), \quad F \in H^{1}(T)$ and $\bar{f}+g=e^{-i \theta} \cdot \bar{F} /|F|$ a.e. in T. Then $-g=T(\bar{f})$ and $d\left(\bar{f}, H^{\infty}\right)=1$.

The proof is trivial and uses (*).
Now consider any nice F in $H^{1}(T)$, with $\bar{F} /|F|$ having an absolutely convergent Fourier series. $F(z)=e^{i z}$ with $\bar{F} /|F|=e^{-i \cos \theta}$ is good.

Let $\bar{F} /|F|=\sum a_{n} e^{i n \theta}, \sum\left|a_{n}\right|<+\infty$.
Let $R>1$. We shall investigate the behaviour of the Fourier series of $\bar{G} /|G|$, where $G=(z-R)^{2} \cdot F$, when $R \rightarrow 1+$:

$$
\begin{align*}
\frac{\bar{G}}{|G|} & =\sum a_{n} e^{i n \theta} \cdot\left[-\frac{1}{R} e^{-i \theta}+\sum_{0}^{\infty}\left(1-\frac{1}{R^{2}}\right) \frac{1}{R^{n}} e^{i n \theta}\right] \\
& =-\sum \frac{a_{n+1}}{R} e^{i n \theta}+\sum a_{n} e^{i n \theta} \cdot \sum_{0}^{\infty}\left(1-\frac{1}{R^{2}}\right) \frac{1}{R^{n}} e^{i n \theta} . \tag{**}
\end{align*}
$$

The first series, if $R \rightarrow 1+$, is almost the series of $\bar{F} /|F|$ shifted one step to the left. Now we need the following.

Lemma. Suppose that $h=\sum a_{n} e^{i n \theta}$ with $\sum\left|a_{n}\right|<\infty, \sum a_{n}=0$. Let

$$
h \cdot \sum \beta_{n}(r) e^{i n \theta}=\sum c_{n}(r) e^{i n \theta}
$$

where we assume

$$
\sup _{0<r<1} \sum\left|\beta_{n}(r)\right|<\infty, \quad \lim _{r \rightarrow 1} \sum\left|\beta_{n}(r)-\beta_{n-1}(r)\right|=0
$$

Then $\lim _{r \rightarrow 1} \sum\left|c_{n}(r)\right|=0$.
The proof of the lemma is contained in the proof of Wiener's theorem (about absolutely convergent Fourier series) which is in [6, Chapter VI] and in [5].

The third series in (**) behaves like the $\sum \beta_{n}(r) e^{i n \theta}$ of the Lemma, as a trivial calculation shows. We cannot immediately apply the Lemma to the second term of (**) since

$$
A=\sum a_{n}=\frac{\bar{F}}{|F|}(0) \neq 0
$$

In fact, $|A|=1$.
Write

$$
\begin{aligned}
\frac{\bar{G}}{|G|}= & -\sum \frac{a_{n+1}}{R} e^{i n \theta}+\left(\sum a_{n} e^{i n \theta}-A\right) \cdot \sum_{0}^{\infty}\left(1-\frac{1}{R^{2}}\right) \frac{1}{R^{n}} e^{i n \theta} \\
& +A \sum_{0}^{\infty}\left(1-\frac{1}{R^{2}}\right) \frac{1}{R^{n}} e^{i n \theta} .
\end{aligned}
$$

The $\mathscr{F} \ell^{1}$ norm of the middle term approaches 0 as $R \rightarrow 1$. Hence the series of $\bar{G} /|G|$, if R is close to 1 , looks like

$$
-\sum_{-\infty}^{-1} \frac{a_{n+1}}{R} e^{i n \theta}-\sum_{0}^{\infty}\left\{\frac{a_{n+1}}{R}-\left(1-\frac{1}{R^{2}}\right) \frac{A}{R^{n}}\right\} e^{i n \theta}
$$

In particular, any initial coefficients of the nonnegative (frequency) part are arbitrarily close to $-a_{1},-a_{2}, \ldots$.

Obviously, $\lim _{R \rightarrow 1} \sum_{-\infty}^{-1}\left|a_{n+1} / R\right|=\sum_{-\infty}^{-1}\left|a_{n+1}\right|$.
I claim that

$$
\lim _{R \rightarrow 1} \sum_{0}^{\infty}\left|\frac{a_{n+1}}{R}-\left(1-\frac{1}{R^{2}}\right) \frac{A}{R^{n}}\right|=2+\sum_{0}^{\infty}\left|a_{n+1}\right| .
$$

To prove the claim, we choose N so large that

$$
\sum_{N+1}^{\infty}\left|a_{n+1}\right|<\varepsilon .
$$

Then

$$
\lim _{R \rightarrow 1} \sum_{0}^{N}\left|\frac{a_{n+1}}{R}-\left(1-\frac{1}{R^{2}}\right) \frac{A}{R^{n}}\right|=\sum_{0}^{N}\left|a_{n+1}\right| .
$$

Also,

$$
\sum_{N+1}^{\infty}\left|\frac{a_{n+1}}{R}-\left(1-\frac{1}{R^{2}}\right) \frac{A}{R^{n}}\right|
$$

differs from

$$
\sum_{N+1}^{\infty}\left(1-\frac{1}{R^{2}}\right) \frac{|A|}{R^{n}}=\frac{1+1 / R}{R^{N+1}}
$$

by at most ε in absolute value. Thus

$$
\left.\limsup _{R \rightarrow 1}\left|\sum_{0}^{\infty}\right| \frac{a_{n+1}}{R}-\left(1-\frac{1}{R^{2}}\right) \frac{A}{R^{n}}\left|-2-\sum_{0}^{\infty}\right| a_{n+1} \right\rvert\, \leqslant 2 \varepsilon, \quad \text { for all } \varepsilon>0 .
$$

We summarize. If R is close enough to 1 , then:
(α) the new series is almost the old one shifted one step to the left;
(β) the new negative part has $\mathscr{F} \ell^{1}$ norm almost the $\mathscr{F} \ell^{1}$ norm of the old negative part plus the old $\left|a_{0}\right|$;
(γ) the new nonnegative part has $\mathscr{F} \ell^{1}$ norm almost the $\mathscr{F} \ell^{1}$ norm of the old nonnegative part minus $\left|a_{0}\right|$ plus 2.
Fixing M in advance and choosing R_{1}, \ldots, R_{M} close to 1 , we may perform the previous procedure M times, and the result on $\bar{F} /|F|$ will be to shift (with any degree of accuracy) $\left|a_{0}\right|+\ldots+\left|a_{M-1}\right|$ from the $\mathscr{F} \ell^{1}$ norm of the nonnegative part to the $\mathscr{F} \ell^{1}$ norm of the negative part, simultaneously adding $2 M$ to the last norm.

Hence the $\mathscr{F} \ell^{1}$ norm of the nonnegative part will increase by $2 M-\left|a_{0}\right|-\ldots-\left|a_{M-1}\right|$, while the norm of the negative part will increase by $\left|a_{0}\right|+\ldots+\left|a_{M-1}\right|$, a quantity which is bounded uniformly in M.

Now start with our initial $\bar{F}\left(e^{i \theta}\right) /|F|$, and suppose that N is the $\mathscr{F} \ell^{1}$ norm of the negative part of its Fourier series, P is the norm of the positive part, and a_{0} is the constant term.

Now if R_{1}, \ldots, R_{M} are close enough to 1 , then $\bar{G}_{M} /\left|G_{M}\right|$, where

$$
G_{M}=\left(z-R_{1}\right)^{2} \ldots\left(z-R_{M}\right)^{2} F,
$$

will have

$$
\begin{gathered}
N_{M}<N+\left|a_{0}\right|+P+1, \\
P_{M}>2 M-P-1 .
\end{gathered}
$$

Letting $M \rightarrow \infty$, we obtain $N_{M} / P_{M} \rightarrow 0$.

Writing now $\bar{f}_{M}+g_{M}=e^{-t \theta} \cdot \bar{G}_{M} /\left|G_{M}\right|$ and using the initial observation, we obtain

$$
\left\|f_{M}\right\|_{\mathscr{F} \ell^{1}} /\left\|g_{M}\right\|_{\mathscr{F} \ell^{\prime}}
$$

arbitrarily small.
I should like to thank the referee, because a suggestion of his made the end of the proof simpler and slightly shorter.

References

1. L. Carleson and S. Jacobs, 'Best uniform approximation by analytic functions', Ark. Mat. 10 (1972) 219-229.
2. J. Garnett, Bounded analytic functions (Academic Press, New York, 1981).
3. V. V. Peller, 'Boundedness properties of the operators of best approximation by analytic and meromorphic functions', Ark. Mat. 30 (1992) 331-343.
4. V. V. Peller and S. Khrushchev, 'Hankel operators, best approximations and stationary Gaussian processes', Russian Math. Surveys 37: 1 (1982) 61-144.
5. N. Wiener, The Fourier integral and certain of its applications (Dover, New York, 1958).
6. A. Zygmund, Trigonometrical series (Dover, New York, 1955).

Department of Mathematics
University of Crete
Iraklion
Crete
Greece

