
ALMOST ISOMETRIC MAPS OF THE HYPERBOLIC PLANE

J. B. GARNETT AND M. PAPADIMITRAKIS

1. Introduction

The hyperbolic distance between points p and q in the open unit disc D is

2\dz\

y ,,. 1-M2'

where the infimum is over all arcs y in D joining p to q. If Jt denotes the group of
conformal self maps

of D, then
d(Tp,Tq) = d(p,q)

for all TeJi\ thus maps in Ji are hyperbolic isometrics. The Schwarz-Pick theorem
asserts that if/:Z)->Z) is analytic then / decreases distances,

. fl .t . „ d{Ap\M)^d{p,q), (1.1)
or lnnnitesimally,

i-W/OI1 < L (I-2)

Equality anywhere in (1.1) or (1.2) implies that feJi and then equality holds
everywhere.

Fix a constant c> 0. Following C. McMullen, we write M(c) for the set of
analytic / : / ) -> / ) such that whenever B is a hyperbolic ball in D,

diam (/(£)) ^ diam(5)-c,

where diam denotes diameter in the hyperbolic metric. For example,

n M(C) = jt,
c>0

while f(z) = zN eM(c) provided c is large. This paper gives three characterizations of
the set M(c). The first characterization concerns nearly isometric behavior along
certain geodesies, and the second is in terms of angular derivatives at boundary
points. Each/eM(c) is a Blaschke product, and the third characterization is by the
distribution of the zeros. We thank Curt McMullen for bringing M(c) to our attention
and for the results of the next section.

2. First properties of M(c)

By the invariance of the hyperbolic metric we clearly have

/ e M(c) if and only if Tofo S e M(c) for all T,SeJ{. (2.1)
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Suppose that/eM(c). Then by Fatou's theorem/has angular limit/(() at almost
all CedD. Condition M(c) implies that \J[Q\ = 1.

LEMMA 2.1. Suppose thatfe M{c) and suppose that a is an arc in D with end point
(edD.If

lim f(z) — a

exists, then |a| = 1.

Proof. Since/is bounded, Lindelof's theorem gives

lim J[z) = a

for every cone T = F(K) = {z:\z-Q < K(\ - \z\), K>0.FixR> \c and for 0 < r < 1
set Br = {z:d(z, r() < R}. Then there is K = K(R) such that Br c T(K) for 1 -r small
and such that

lim sup |z —Cl = 0.

Hence
lim sup|/(z) —a| = 0.

If |a| < 1, then lim diam (J{Br)) = 0 while diam5r = 2R > c, a contradiction to M(c).

By convention we call/(z) = XB{z) a Blaschke product if B(z) is a Blaschke product
and \X\ = 1.

COROLLARY 2.2. //"/e Af(c), then Tofo S is a Blaschke product for all T, SeJL

Proof. By (2.1) it is enough to prove that/is a Blaschke product. By Lemma 2.1
/ i s an inner function: \f{Q\ = 1 almost everywhere on 3D. Every inner function is a
Blaschke product times a singular function and every singular function has radial
limit 0 at some (e<5Z), see [4, p. 76]. So if the singular factor were non-constant,/
would also have radial limit 0 at (, contradicting the lemma.

A theorem of Frostman says that every inner function has the form Tof with
Te M and / a Blaschke product. So there are many Blaschke products not in
any M(c).

3. Geodesic condition

The geodesies in the hyperbolic metric are the arcs of circles and lines orthogonal
to 3D. Write (p, q) for the unique geodesic are joining the points p,qeD.

THEOREM 3.1. There exist p - p(c) and 6 = S(c) such that iffeM(c), then for all
zeD there is a geodesic a such that

dist(z,<r) = inf{d(z,p):p€(r}^p (3.1)
and

d(p,q)-S (3.2)

for allp, qeo. Conversely, if p > 0 and 3 > 0 there is c = c(p, S) such thatfe M(c) if for
every zeD there is a geodesic a satisfying (3.1) and (3.2).
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Proof. Assume that/eM(c). Since (3.1) and (3.2) are conformally invariant, we
may assume that z = 0 and f[0) = 0. Then there are zn and wn such that

d(zn, 0) = n, d(wn, 0) = n, d(f{zn),f{Wn)) >2n-c.

By the Schwarz-Pick theorem,

d(zn,wn)^2n-c

and the angle 9n ^ n between (0, zn) and (0, wn) satisfies

cosh2 ( « ) - cosh d(zn,wn)
COS t/_ — • i 9 y \

sinh2 («)

by [1, p. 148]. Hence

and there is 9{c) > 0 such that

\im0n> 6{c).

Take subsequences so that zn^>(sdD,wn^>dD. Then |( — co\ ^ 2sin(|0(c)), and the
geodesic a = (C,co) satisfies (3.1) with p determined by 6{c).

To prove (3.2), let p,qeo. There are pn and qn in (zn,wn) such that pn-*p and
<7n -> qf. Say /?n falls between zn and ^n on (zn, vvn). Then

d{Apn),Aqn)) > d<J{zn),Awn))-d(zn,pn)-d(wn,qn)

> d(zn,wn)-c-d(zn,pn)-d(qn,wn)

= d(pn,qn)-c.

Thus (3.2) holds with S = c.
Conversely, let R> p and set B = {w:f/(w, z) < /?}. When <r satisfies (3.1) and

(3.2), af)dB = {p,q] and
d(p,q)>2R-2p.

Then by (3.2)

Therefore
(3.3)

whenever diam.fi > 2p. Since (3.3) is trivial if diami? ^ 2p we conclude that fsM(c)
with c = 2p + S.

REMARK. The above proof works because the hyperbolic metric has constant
negative curvature. The negative curvature shows up in the inequality iim0ra > 0.

Condition (3.2) is very strong. It implies t h a t / h a s an angular derivative and a
unimodular conical limit of each end point of a. Moreover, when restricted to a cone
at either end point of a, / i s asymptotic to a Mobius transformation.

THEOREM 3.2. Let a be the geodesic arc joining p e D to CedD, let S > 0, and let
f be an analytic map from D to D satisfying

d(fLz),fiw)) > d(z,w)-S for all z,weo. (3.4)
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Then there exist XedD and A,0 < A ^ es, such that for every cone

T = {z:\z-Q <K(\-\z\)}, K>0,

lim f{z) = X

and

lim = lim f\z) = AX(.

If geJf satisfies g(Q = X and g'(Q = AX(, then

lim d(f{z),g(z)) = O.

When (3.6) holds we say/has angular derivative AXC,dX ( and we write/'(C) =
By the theorem on the angular derivative (see [4, p. 43]) if

(3.5)

(3-6)

then (3.6) and (3.5) hold for some X and for the same A. It then follows that

sup
1-lzl

(3.7)

for every cone T(K) with vertex of (.

Proof We can suppose that/? = O,f\p) = 0 and £ = 1. For 0 < x < 1, (3.4) gives

1 _(. \f[x) I 1 •+- x
)'°) = 1°g-i—T^-TT^1O8- l-x

so that

—x
and the angular derivative theorem yields (3.5) and (3.6) for some X and for A ^ e5.

We can suppose that X= 1. If geJf, if g(l) = 1 and if g'(l) = A, then by (3.6)

Urn - « < * > ' . 0 .

Now

— z\ 1-z 1 - z 1 - z

and the expression in braces is bounded away from zero when zeT and |1 — z\ is small.
Therefore

lim d(f{z),g(z)) = 0.

4. Angular derivative condition

Let / be an arc on dD with measure |/| < n. Let c, be the center of / and write
j = (1 — 1/1/27:)^. Let/denote an analytic map from D to D.
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THEOREM 4.1. Iffe M(c) then f has angular derivative on a dense subset of 3D and
there is A = A(c) such that, for every arc I with \I\ < n,

(el l~\zi\

Conversely, there is c = c{A) such that, */(4.1) holds for every arc I with |/| < n, then
feM(c).

Note that the inequality which is the reverse of (4.1), with a different value A,
holds whenever/has angular derivative at C,el. That follows from (3.7).

Before proving Theorem 4.1 we give some lemmas on the hyperbolic derivative

l/'OOl (i-H2)

which is invariant under Mobius transformations of z or off[z).

LEMMA 4.2. Given R>0 and e > 0 there is n > 0 such that if

— \- \ f lz)\2° > X~V

at zQeD, then on B(zo,R) = {w:d(z0, w) < R},

\J \ / I V I I / -»»̂  -1 / A *^\

— l - l / M I 2 — ^ l ~ E (4-2^
and

where FeJf satisfies F(z0) =f{z0) and argF'(z0) = arg/'(z0).

Proof Clearly (4.3) implies (4.2), and a normal family argument yields (4.3).

LEMMA 4.3. IfzoeD, ifC,edD and if

d{p,q)-c (4.4)
for all p,qs(zQ,O, then

satisfies
2\dz\

< c/e. (4.5)
1 Ec * 1*1

If also (zo,Q = (0,1) andflfl) = 0,/U) = 1, 'hen

has

/i^<c/«. (4.6)
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Proof. We prove (4.6), which implies (4.5). We have by Theorem 3.2,

\imd(x,0)-d(f{x),0)) = limlogfj+*)[^j) = log/'(l) ^ c,

and also

\imd(x,0)-d(RtAx),0) = I i m l o g ( ) + X l ^ ^ = log/'(l) ^ c,

because by (3.6)

Therefore
2dx

" l-(Re/(x))2 J T ^ -

and since the integrand is positive, Chebychev's inequality gives (4.6).

LEMMA 4.4. Let e > 0. There is 3 = 3(c, e) such that if (4.4) holds for all
p,ge(z0,0, zoeD,(edD and if

then

Proof. Set

(

where

l-z0C

Then g(0) = 0, ̂ (1) = 1 and g satisfies (4.4) in (0,1). By Lemma 4.3, |argg'(*)l < \e
for some jte(0,1) with d(x,0) ^ 2c/e = R. By Lemma 4.2, |argg'(w)-argg'(0)| < ê
for all weB(0,R) if 3 is small enough. Hence |argg'(0)l < £. But

LEMMA 4.5. IfwoeD and (edD and if

d{Ap),Aq))>d{p,q)-c

for all (p, q) e (w0,0 and if d(z0 w0) = d, then

for all (p,q)e(zo,Q.
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Proof. For ps(zo,Q, let P* be its nearest point in (wo,Q. Since the geodesies
(z0, C) and (w0, Q are asymptotic,

d{p,p*)^d(zo,z*)^d.
Then

d{Ap)M) > d(J{p*),Aq*))-d(p,p*)-d(q,q*)

>d(p*,q*)-c-2d

$s d(p,q)-c-4d
for all (p,q)e(zo,Q.

Proof of Theorem 4.1. Assume that feM(c) and fix an arc / of 3D with |/ | < n.
By Theorem 3.1 there is z0 such that d{zn z0) < px{c), 1 — |zo| < ( l - |z 7 | ) /10 and
zo/|zo |e/, and there is a geodesic cr containing z0 such that (3.2) holds on a. At least
one end point of a falls in /.

Applying Theorem 3.2 to TofoS, where TzJt, T(f{zo)) = 0 and
5(0) = z0, we see that when ze(zo,a),

1 _ | 7 | 2 ^ w I | /T_ ^ 12 | | s- -12 •
1 lzl l \J\zo)\ I1 zozl

When ze(z0, a) we also have |1 — zoz| ^ co(l — |zo|). Therefore

Since rf(z0, z7)

l - | z o | 2 ^ ' 2 l

and we shall get (4.1) with A = c3e
c provided

But now assume that

\A«)-f{zo)\>ci(l-\Azo)\) (4-7)

for some large constant c4. We may also assume that

with <5 very small, because by Lemma 4.3 there are points satisfying (4.8) and lying
a bounded hyperbolic distance from z0. Hence by Lemma 4.4,

Replacing /by / c: /, | / | = const. |/|, we can find another geodesic arc (wo,fi) such
that Pe/and

</0>),/(<7));M/>,<7)-c

for /?, q e (w>0, y9), such that

with d constant, and such that

1 — zn a \—znB 2
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Because the S in (4.8) can be chosen independent of d(e), Lemma 4.4 and Lemma 4.5
now yield

arg/ ' (zo)-arg

Then from (4.9) we obtain

arg

< S.

< 3e,

and the geodesic (J[zo),f{by) is nearly a orthogonal to (/(zo,/(a)). Then by (4.7) we get

if c4 is large enough and if e is small. Consequently

\zr
and psJ cz I.

Conversely, assume that (4.1) holds. Let S,T(=J/, S{0) = zn 5(1) = (,
2IA>,)) = 0> n / (0 ) = 1, and set g = TofoS. Then g(0) = 0, g(l) = 1 and for
z = S(t), 0<t<\,

5

by (4.1) and (3.7) since ^((0,1)) = (z/5Q lies inside a cone at ( of fixed aperture and
since

Therefore, when 0 < t <x < 1,

d(x,0)-d(g(x),0) = = S

and
d(g(x),g(t)>d(g(x),Q)-d(O,g(t))

>d(x,0)-d(0,t)-6
= d(x,t)-d.

Therefore (3.4) holds in (z/5() with constant S independent of/.
By Lemma 4.3 there is ZOG(ZJ,Q such that, given r\ > 0, d{zo,Zj) ^ p(rf) and

Let 7X and /2 be the two outer thirds of /0 = {C: \C—zJ\zo\ | < 1 — |zo|}. By hypothesis
there is C ^ ^ such that, for S fixed, (3.4) holds on (z,,(j)- If >7 is sufficiently small, then
by Lemma 4.5 and Lemma 4.4,

AQ-ACo)
arg

That means (3.2) holds (for a different S) on the full geodesic a = (Ci>C2)- A
nd clearly
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Hence by Theorem 3.1, feM(c) for c = c(A).

5. A condition on the zeros

We have seen that every feM(c) is a Blaschke product. Now suppose t ha t / i s a
Blaschke product with zeros zv, v = 1,2,.... A theorem of Frostman (see [3, p. 177])
says that / has angular derivative at a point £ e dD if and only if

and in this case |/ '(0l *s equal to this sum.

THEOREM 5.1. Given c> 0 //iere « y4 = A(c) < + oo so that iff is a Blaschke
product in M{c) and {zv} are the zeros off, then for every arc I cz dD with \I\ < n,

and

Conversely, given A < + oo there is c = c(A) > 0, so that iff is a Blaschke product
with zeros {zj, such that (5.1) and (5.2) are true for every arc I c dD with \I\ < n,

By [4, p. 286], condition (5.2) holds if and only if the measure

is a Carleson measure with constant bounded by C(A). That holds if and only if {zv}
is the union of at most N = N(A) interpolating sequences {ẑ } and

<5({z,}) = int,
Zk~ZJ do{A) > 0.

If/(z) is the Blaschke product in the upper half-plane with zeros {n + i:n + Z} t h e n /
has (5.2) but by Lemma 2.1 / i s in no M{c) because f{z) = X{e2niz-e~2n)/{\ -e-

2ne2niz)
with |A| = 1 and

Proof Suppose tha t / e M(c) and that {zv} is the zeros of/ Then by Theorem 4.1
there is A = A(c) < oo so that

The above-mentioned theorem of Frostman says that

l-|z,,|2

inf 1/(01 = inf 2_i
zel r r *-* \C-Z
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Also

Hence
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or-n z,-zv
., L r

-! / (* , ) I2
* Z I 2 '— z.,z

Therefore (5.3) implies (5.1). Now, there is an absolute constant K such that

\(-zv\^K\\-zvz{\

for every (e /and every zv. Then (5.3) implies that

~ lZv

l

Hence (5.2) is true.
Conversely suppose that (5.1) and (5.2) hold for every / c dD with |/| < n. Then,

if \flzj) | ̂  |, there is an absolute constant K such that

- log \AZJ) i 2 = - log m

z,-zu

Hence

But, then (5.1) implies that

If \Azi)\ < i then (5.1) and (5.2) imply that

inf I/'(OI < A E ̂ ^ < ^ 2
f - ^ ^ M 2 1 ^ ^ .

(e/ v l 1 — z v z / l 1 — l z / l 1 — l z / l

So in both cases, / e M(c), with c = c(y4) > 0, by Theorem 4.1.

6. An example

By Theorem 4.1 we know that if/eM(c) then/has angular derivative on a dense
subset of dD. Lennart Carleson and Peter Jones found an example where the angular
derivatives exist only on a set of measure zero. We thank them for letting us include
it here.
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THEOREM 6.1. There exists a Blaschke product f such that feM(c) for some
c > 0, but f has no angular derivative outside a subset of dD of measure zero.

Proof Consider Sk = k~2 • lO"2*, k > 1 and

Let /be the Blaschke product with zeros {zi k}. Set

/ = [eWo-n, ei9jo+1-n], 1 ^ n, 0 ^ j 0 ^ 10n - 1 .

It suffices to prove (5.1) and (5.2) for such /.
From now on all the constants will be absolute constants and the same symbol

may represent two or more constants. Now with 9, = arg (z7)

( i -1*, ! civ £_

h

clO"n

+ c

<! . - («

Eo_/f c

<5*>10-n

10*

*

sk

f
) T a

J T

H 1 0 - 2 n

)2 + (52

+ 1Q-2n

(92 + ^

£/0

o-» 10"

_ r
+ clO"n

s2

\6\<Sk °k
= clO~n

<5fc>10~" <5jt>10"n

2 £ io*

That proves (5.2).
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Now choose 9 so that \ftn(9/2n) =yo-444.... Then ( = e(file/and moreover

Denote by 9*,k ^ 1, that 6i k which is closest to 9. Then

1 _ | 7 |2 1 I- 12 1 _ | 7 * I 2

y l \zi,k\ __ y y 1 \zj,k\ . y l Izfc I
^ \l — 2 I2 ^ ^ * If — Z I2 ^ I f — 7 * l 2

But

Therefore,

and to prove (5.1), it remains only to prove that

Altogether

\C-Z Ii, k It z ; , fcl ^ 1 1 - 2 Z I2

But by (6

Now if k

Therefore

•1)>

II s

< n

- cy

- c y

then

i«-«?r

e*y+si

k 1 c '

(0-

E ^

l2+(^-<

t<n(^/-<

-«?)' +

• ) 2 + <5fc

9*y+\i

sk
,,k)2+(\

< c + c

c(|/|2 +

- ( 0 - ^ ) 2
 + <5

2

^J 10 Q4f\2 i JC2
fc<n \ " — ^fc / ' @k

{0,-91)*).

i

and we obtain (5.1). So/satisfies (5.1) and (5.2), and by Theorem 5.1,/eM(c) for
some c > 0.
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Now let Eitk = [exp(i6jk), exp(i(0Jtk + 2n<s/Sk))] and Ek = U A * - T h e n

cy/dk^\Ejtk\^cy/5k and c{\/k) ^ \Ek\ ^ c{\/k).

If C G lim sup Ek, then ( belongs to infinitely many Eik. Therefore

for infinitely many (j, k). Hence

z l
j,k\

and / has no angular derivative at (. It remains to prove that lim sup Ek has full
measure in 3D. Consider, instead,

Ek = \eie:— = 0 - ^ X j j . . . and xn = 0,n = k,k+ 1, ...,k + [\og10k]\.
{ In )

Then Ek e Ek, and it is enough to prove that lim sup Ek has full measure in 3D. The
idea is that the sets Ek act like independent events.

Claim 1. Xfcl̂ fcl

Proof. This is clear since \Ek\ ^ c/k, k ^ 1.

Claim 2. There is c so that if m < n,

\Em(]En\^c\Em\\En_J.

Proof. Case \: n> w + [log10m]. In this case

Case 2: m < n < w + [log10m]. Then

i
eie:— =

InHence

\Em n £.1 = c ( - ) = c- 1 0 " < , - — < c|£

Now by Claim 1 and Claim 2 and by [2, Exercise 18 p. 79]

> 0.

Moreover, E = lim sup Ek is invariant under translation (that is, rotation) by any
eiei>K. Because these points are dense on the circle, a point of density argument shows
E has full measure.

We thank Tom Liggett for the above reference.
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