ON THE BEST CONSTANT FOR THE DISCRETE HILBERT TRANSFORM

M. PAPADIMITRAKIS

Abstract

We relate the best constant for the discrete Hilbert transform to the best constant for another, non-discrete, multiplier transform. All comes from two letters to prof. A. Gillespie in Edinbourgh sent on March 5 and 18 of 2004.

Let $1 \leq p<+\infty$.
Suppose $C_{d, p}$ is the smallest constant so that

$$
\left\|H_{d}(a)\right\|_{p} \leq C_{d, p}\|a\|_{p}
$$

for all $a=\left(a_{n}\right)_{n \in \mathbf{Z}}$, where H_{d} is defined by

$$
H_{d}(a)_{n}=\frac{1}{\pi} \sum_{m \in \mathbf{Z}, m \neq n} \frac{1}{n-m} a_{m}
$$

for all $n \in \mathbf{Z}$.
Suppose, also, that $C_{\phi, p}$ is the smallest constant so that

$$
\left\|H_{\phi}(f)\right\|_{p} \leq C_{\phi, p}\|f\|_{p}
$$

for all f, where H_{ϕ} is defined by $\widehat{H_{\phi}(f)}=\phi \widehat{f}$ on \mathbf{R} and ϕ is 1-periodic with $\phi(\xi)=1-2 \xi$ for $0<\xi<1$.

We shall prove that $C_{d, p}=C_{\phi, p}$.
Here is something more general.
Consider a function ϕ on \mathbf{R} periodic with period 1 and integrable on $[0,1]$ and an arbitrary ψ in the Schwartz class $\mathcal{S}(\mathbf{R})$ which is supported in the interval $\left[-\frac{1}{2}, \frac{1}{2}\right]$.

Define $f(x)=\sum_{n} a_{n} \psi(x-n)$ where the sum is, for simplicity, a finite sum. Then $\widehat{f}(\xi)=$ $\sum_{n} a_{n} e^{-2 \pi i n \xi} \widehat{\psi}(\xi)$ and if we define

$$
\widehat{H_{\phi} f}(\xi)=\phi(\xi) \widehat{f}(\xi)
$$

we get

$$
\begin{aligned}
H_{\phi} f(x) & =\sum_{n} a_{n} \int_{-\infty}^{+\infty} \phi(\xi) \widehat{\psi}(\xi) e^{-2 \pi i(n-x) \xi} d \xi \\
& =\sum_{n} a_{n} \sum_{m} \int_{0}^{1} \phi(\xi) \widehat{\psi}(\xi+m) e^{-2 \pi i(n-x)(\xi+m)} d \xi \\
& =\sum_{n} a_{n} \int_{0}^{1} \phi(\xi) \sum_{m} \widehat{\psi}(\xi+m) e^{-2 \pi i(n-x)(\xi+m)} d \xi \\
& =\sum_{n} a_{n} \int_{0}^{1} \phi(\xi) \sum_{m} \psi(x+m-n) e^{-2 \pi i m \xi} d \xi \\
& =\sum_{n} a_{n} \sum_{m} \widehat{\phi}(m) \psi(x+m-n) \\
& =\sum_{n} a_{n} \sum_{m} \widehat{\phi}(m+n) \psi(x+m) \\
& =\sum_{m}\left(\sum_{n} \widehat{\phi}(n-m) a_{n}\right) \psi(x-m)
\end{aligned}
$$

where for the fourth equality we use the Poisson summation formula.
We also define

$$
H_{d}\left(\left\{a_{n}\right\}\right)=\left\{b_{m}\right\}
$$

where $b_{m}=\sum_{n} \widehat{\phi}(n-m) a_{n}$ for all m.
Then the above says that

$$
H_{\phi}(f)=g
$$

where

$$
g(x)=\sum_{m} b_{m} \psi(x-m) \quad f(x)=\sum_{n} a_{n} \psi(x-n) .
$$

Now we use the assumption about the support of ψ to get

$$
\begin{aligned}
\sum_{m}\left|b_{m}\right|^{p} & =\int_{-\infty}^{+\infty}|g(x)|^{p} d x \\
& \leq C_{\phi, p}^{p} \int_{-\infty}^{+\infty}|f(x)|^{p} d x \\
& =C_{\phi, p}^{p} \sum_{n}\left|a_{n}\right|^{p}
\end{aligned}
$$

This gives $C_{d, p} \leq C_{\phi, p}$.
For the opposite inequality we write (at least for $f \in \mathcal{S}(\mathbf{R})$ and for ϕ as above and of bounded variation on $[0,1]$):

$$
\begin{aligned}
H_{\phi} f(x) & =\int_{-\infty}^{+\infty} \phi(\xi) \widehat{f}(\xi) e^{2 \pi i x \xi} d \xi \\
& =\sum_{m} \widehat{\phi}(m) \int_{-\infty}^{+\infty} \widehat{f}(\xi) e^{2 \pi i(x+m) \xi} d \xi \\
& =\sum_{m} \widehat{\phi}(m) f(x+m)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\int_{-\infty}^{+\infty}\left|H_{\phi} f(x)\right|^{p} d x & =\int_{0}^{1} \sum_{k}\left|H_{\phi} f(x+k)\right|^{p} d x \\
& =\int_{0}^{1} \sum_{k}\left|\sum_{m} \widehat{\phi}(m) f(x+k+m)\right|^{p} d x \\
& =\int_{0}^{1} \sum_{k}\left|\sum_{m} \widehat{\phi}(m-k) f(x+m)\right|^{p} d x \\
& \leq C_{d, p}^{p} \int_{0}^{1} \sum_{m}|f(x+m)|^{p} d x \\
& =C_{d, p}^{p} \int_{-\infty}^{+\infty}|f(x)|^{p} d x .
\end{aligned}
$$

And finally, $C_{\phi, p} \leq C_{d, p}$.

