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Abstract

Using complex methods combined with Baire’s Theorem we show that
one-sided extendability, extendability and real analyticity are rare
phenomena on various spaces of functions in the topological sense.
These considerations led us to introduce the p-continuous analytic
capacity and variants of it, p ∈ {0, 1, 2, · · · } ∪ {∞}, for compact or
closed sets in C. We use these capacities in order to characterize the
removability of singularities of functions in the spaces Ap.
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1 Introduction

In [2] it is proven that the set X of nowhere analytic functions in C∞([0, 1])
contains a dense and Gδ subset of C∞([0, 1]). In [1] using Fourier methods it
is shown that X is itself a dense and Gδ subset of C∞([0, 1]). Furthermore,
combining the above methods with Borel’s Theorem ([7]) and a version of
Michael’s Selection Theorem ([12]) the above result has been extended to
C∞(γ), where γ is any analytic curve. In the case where γ is the unit circle
T every function f ∈ C∞(T ) can be written as a sum f = g + w where
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g belongs to A∞(D) and is holomorphic in the open unit disc D and very
smooth up to the boundary and w has similar properties in Dc. Now, if
we assume that f is extendable somewhere towards one side of T , say in
Dc, then because w is regular there, it follows that g ∈ A∞(D) is extend-
able. But the phenomenon of somewhere extendability has been proven to
be a rare phenomenon in the Frechet space A∞(D) ([8]). It follows that the
phenomenon of one sided somewhere extendability is a rare phenomenon in
C∞(T ) or more generally in Cp(γ), p ∈ {∞} ∪ {0, 1, 2, · · · } for any analytic
curve γ ([1]).
After the preprint [1] has been circulated, P. Gautier noticed that the pre-
vious result holds more generally for Jordan arcs without the assumption of
analyticity of the curve. Indeed, applying complex methods, appearing in
the last section of [1], we prove this result. It suffices to use the Oswood-
Caratheodory Theorem combined with Montel’s Theorem and the Poisson
integral formula applied to the boundary values of bounded holomorphic
functions in H∞(D). In fact, this complex method is most natural to our
considerations of extendability, real-analyticity and one sided-extendability.
The proofs are simplified and the results hold under much more general
assumptions than the assumptions imposed by the Fourier method. This
complex method is developed in the present paper.
In section 4 we prove that extandability and real analyticity are rare phe-
nomena in various spaces of functions on locally injective curves γ. For the
real analyticity result we assume that γ is analytic and the result holds in
any Ck(γ), k ∈ {0, 1, 2, 3, · · · } ∪ {∞} endowed with its nature topology. For
the other results the phenomena are proven to be rare in Ck(γ), provided
that the locally injective curve γ has smoothness at least of degree k.
In section 5 initially we consider a finite set of disjoint curves γ1, γ2, · · · , γn.
Then in the case where γ1, γ2, · · · , γn are disjoint Jordan curves in C bound-
ing a domain Ω of finite connectivity we consider the spaces Ap(Ω), p ∈
{0, 1, 2, 3, · · · } ∪ {∞} which by the maximum principle can be seen as func-
tion spaces on ∂Ω = γ∗1 ∪ · · · ∪ γ∗n. In these spaces we show that the above
phenomena of extendability or real analyticity are rare phenomena. For the
real analyticity result we assume analyticity of ∂Ω, but for the extendability
result we do not need to assume any smoothness of the boundary.
In section 6 we consider the one sided extendability from a locally injective
curve γ and we prove that this is a rare phenomenon in various spaces of
functions. We construct a denumerable family Gn of Jordan domains G con-
taining in their boundary a non-trivial arc J of the image γ∗ of γ, such that
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each other domain Ω with similar properties contains some Gn. We show
that the phenomenon of extendability is rare for each domain G. Then by
denumerable union (or intersection of the complements) we obtain our result
with the aid of Baire’s Category Theorem. We mention that the one-sided
extendability of a function f : γ∗ → C is meant as the existence of a function
F : G ∪ J → C which is hololomorphic on the Jordan domain G, continuous
on G ∪ J and such that on the arc J of γ∗ we have F |J = f |J . Such no-
tions of one-sided extendability have been considered in [3] and the references
therein, but in the present article and [1] it is, as far as we know, the first
time where the phenomenon is proven to be rare.
At the end of section 6 we prove similar results on one-sided extendability
on the space Ap(Ω), where Ω is a finitely connected domain in C bounded
by a finite set of disjoint Jordan curves γ1, γ2, · · · , γn. Now, the extension F
of a function f ∈ Ap(Ω) has to coincide with f only on a non-trivial arc of
the boundary of Ω, not on an open subset of Ω. Certainly if the continuous
analytic capacity of ∂Ω is zero, the latter automatically happens, but not in
general.
In section 7 we consider Ω a domain in C, L a compact subset of Ω and we
consider the phenomenon of extendability of a function f ∈ Ap(Ω \ L) to a
function F in Ap(Ω). There is a dichotomy. Either for every f this is possible
or generically for all f ∈ Ap(Ω \ L) this fails. In order to characterize when
each horn of the above dichotomy holds we are led to define the p-continuous
analytic capacity ap(L) (p ∈ {0, 1, 2, 3, · · · }∪{∞}), where a0(L) is the known
continuous analytic capacity a0(L) = a(L) ([5]).
The study of the above capacities and variants of it is done in section 3. For
p = 1 the p-continuous analytic capacity a1 is distinct from the continuous
analytic capacity a0 = a. In particular, if K1/3 is the usual Cantor set lying
on [0, 1] and L = K1/3 ×K1/3, then a0(L) > 0, but a1(L) = 0. This means
that for any open set U containing L there exists a function in A(U \L) which
is not holomorhic in U , but if the derivative of a function in A(U \L) extends
continuously on L, then the function is holomorphic in U . Generic versions
of this fact imply that A1(U \L) is of first category in A0(U \L) = A(U \L).
If we replace the spaces Ap with the Ãp spaces of Whitney type, then the
extension on L is equivalent to the fact that the interior of L is void. Thus
we can define the continuous analytic capacities ãp(L) but they vanish if and
only if the interior of L is empty. We prove what is needed in section 7. More
detailed study of those capacities will be done in future papers; for instance
we can investigate the semiadditivity of ap, whether the vanishing of ap on a
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compact set L is a local phenomenon and whether replacing the continuous
analytic capacity a by the Ahlfors analytic capacity γ we can define capac-
ities γp satisfying the analogous properties. Certainly the spaces Ap(Ω) will
be replaced by H∞p (Ω), the space of holomorphic functions on Ω such that

for every l ∈ N, l ≤ p the derivative f (l) of order l is bounded on Ω. We
will also examine if a dichotomy result as in section 7 holds for the spaces
H∞p (Ω) in the place of Ap(Ω). All these in future papers.
In section 2 some preliminary geometry of locally injective curves is pre-
sented; for instance a curve is real analytic if and only if real analyticity
of a function on the curve is equivalent to holomorphic extendability of the
function on discs centred on points of the curve. We also show that if the
map γ defining the curve is a homeomorphism with non-vanishing derivative,
then the spaces Ck(γ), k ∈ {0, 1, 2, 3, · · · } ∪ {∞} are independent of the par-
ticular parametrization γ and depend only on the image γ∗ of γ. Thus, in
some cases it makes sense to write Ck(∂Ω) and prove generic results in these
spaces, k ∈ {0, 1, 2, 3, · · · } ∪ {∞}.
Finally, we mention that some of the results of section 5 are valid for analytic
curves γ; that is, they hold when we use a conformal parametrization of γ.
Naturally comes the question whether these results remain true if we change
the parametrization of the curve; in particular what happens if we consider
the parametrization with respect to the arc length s? Answering this question
was the motivation of [9], [10] where it is proven that arc length is a global
conformal parameter for any analytic curve. Thus, the results of section 5
remain true if we use the arc length parametrization. Finally, we mention
that in the present paper we start with qualitative categorical results, which
lead us to quantitative notions as the p-continuous analytic capacity ap and
the p-analytic capacity γp.

2 Preliminaries

In most of our results it is important what is the degree of smoothness of
a curve and the relation of real analyticity of functions on a curve with the
holomorphic extendability of them around the curve. That is why we present
here some basic results concerning locally injective curves in C.

Definition 2.1. Let γ : I → C be a continuous and locally injective function,
where I is an interval or the unit circle. Let also l ∈ {1, 2, 3, · · · } ∪ {∞}.
The curve γ belongs to the class C l(I), if for k ∈ {1, 2, 3, · · · }, k ≤ l, the
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derivative γ(k) exists and is a continuous function.

Definition 2.2. Let γ : I → C be a continuous and locally injective function,
where I is an interval or the unit circle. Let also k ∈ {1, 2, 3, · · · } ∪ {∞}.
A function f : γ∗ → C defined on the image γ∗ = γ(I) belongs to the class
Ck(γ), if for l ∈ {1, 2, 3, · · · }, l ≤ k, the derivative (f ◦ γ)l exists and is a
continuous function. Let (In), n ∈ {1, 2, 3, · · · } be an increasing sequence of

compact intervals such that
∞⋃
n=1

In = I. The topology of the space Ck(γ) is

defined by the seminorms

sup
t∈In
|(foγ)(l)(t)|, l = 0, 1, 2, ..., k, n = 1, 2, 3, . . .

In this way Ck(γ), k = 0, 1, 2, ... becomes a Banach space if I is compact ,
Ck(γ), k = 0, 1, 2, ... a Frechet space if I is not compact and C∞(γ) a Frechet
space. Therefore Baire’s theorem is at our disposal.

Definition 2.3. Let γ : I → C be a continuous and locally injective function,
where I is an interval. We will say that the curve γ is analytic at t0 ∈ I if
there exist an open set t0 ∈ V ⊆ C, a real number δ > 0 with (t0 − δ, t0 +
δ) ∩ I ⊂ V and a holomorphic and injective function F : V → C such that
F |(t0−δ,t0+δ) = γ|(t0−δ,t0+δ). If γ is analytic at every t ∈ I, we will say that γ
is an analytic curve.

Lemma 2.4. Let t0 ∈ I and γ : I → C be a continuous and locally injective
function, where I is an interval.
For every function f : I → C we suppose that 1) and 2) are equivalent:
1) There exists a power series of real variable

∞∑
n=0

an(t− t0)n, an ∈ C

with a positive radius of convergence r > 0 and there exists 0 < δ ≤ r such
that

f(t) =
∞∑
n=0

an(t− t0)n

for t ∈ (t0 − δ, t0 + δ) ∩ I.
2) There exists a power series of complex variable

∞∑
n=0

bn(z − γ(t))n, bn ∈ C
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with a positive radius of convergence s > 0 and 0 < ε ≤ s such that

f(t) =
∞∑
n=0

bn(γ(t)− γ(t0))n

for t ∈ (t0 − ε, t0 + ε) ∩ I.
Then γ is analytic at t0.

Proof. We will use the implication 2) ⇒ 1) only to prove that γ is differen-
tiable at an open interval which contains t0. We consider β > 0 and J =
(t0−β, t0+β)∩I. For every t ∈ J we choose f(t) = γ(t) = γ(t0)+(γ(t)−γ(t0))
and so by the 2)⇒ 1) we have that there exists 0 < δ < β such that

γ(t) =
∞∑
n=0

an(t− t0)n

for some constants an ∈ C for every t ∈ (t0 − δ, t0 + δ) ∩ I. Therefore γ is
differentiable in this interval. Now, for g(t) = t = t0 + (t− t0) by 1)⇒ 2) we
have that there exists 0 < ε ≤ δ such that

t =
∞∑
n=0

bn(γ(t)− γ(t0))n

for some constants bn ∈ C for every t ∈ (t0 − ε, t0 + ε). We differentiate the
above equation at t = t0 and we have that 1 = b1γ

′(t0). Therefore b1 6= 0.

The power series
∞∑
n=0

bn(z−γ(t0))n has a positive radius of convergence and so

there exists α > 0 such that γ(t) ∈ D(γ(t0), α) for every t ∈ (t0− ε, t0 + ε)∩I
and the function f : D(γ(t0), α)→ C with

f(z) =
∞∑
n=0

bn(z − γ(t0))n

is a holomorphic one. Also, we have that f(γ(t)) = t for every t ∈ (t0 −
ε, t0 + ε) ∩ I. Because f ′(γ(t0)) = b1 6= 0 , f is locally invertible and let
h = f−1 in an open disk D(t0, η) where 0 < η < ε. Then, γ(t) = h(t) for
every t ∈ (t0− η, t0 + η)∩ I and h is holomorphic and injective and the proof
is complete.
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Remark 2.5. The above proof shows that if γ in Lemma 2.4 belongs to
C1(I), then the conclusion of the lemma is true even if we only assume that
1)⇒ 2) is true.

The following lemma is the inverse of Lemma 2.4.

Lemma 2.6. Let t0 ∈ I and γ : I → C be a continuous and locally injective
function, which is analytic at t0, where I is an interval. Let also f : I → C.
Then the followings are equivalent:

1) There exists a power series of real variable

∞∑
n=0

an(t− t0)n, an ∈ C

with positive radius of convergence r > 0 and there exists a 0 < δ ≤ r such
that

f(t) =
∞∑
n=0

an(t− t0)n

for t ∈ (t0 − δ, t0 + δ) ∩ I.

2) There exists a power series with complex variable

∞∑
n=0

bn(z − γ(t0))n, bn ∈ C

with positive radius of convergence s > 0 and there exists ε > 0 such that

f(t) =
∞∑
n=0

bn(γ(t)− γ(t0))n

for t ∈ (t0 − ε, t0 + ε) ∩ I.

Proof. Because γ is an analytic curve at t0, there exists an open diskD(t0, ε) ⊆
C, where ε > 0 and a holomorphic and injective function Γ : D(t0, ε) → C
with Γ(t) = γ(t) for t ∈ (t0 − ε, t0 + ε) ∩ I.
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(i)⇒ (ii) We consider the function

g(z) =
∞∑
n=0

an(z − t0)n,

z ∈ D(t0, δ), which is well defined and holomorphic in D(t0, δ). We have that

Γ−1 : Γ(D(t0, ε))→ C

is a holomorphic function. We consider the function

F = goΓ−1 : Γ(D(t0, ε))→ C,

(where Γ(D(t0, ε)) is an open set) which is a holomorphic function and

(FoΓ)(t) = f(t), t ∈ D(t0, ε) ∩ I.

Therefore, there exist bn ∈ C,n = 1, 2, 3, ... and δ > 0 such that

F (z) =
∞∑
n=0

bn(z − γ(t0))n

for every z ∈ D(γ(t0), δ) ⊆ Γ(D(t0, ε)) and thus

f(t) = (Foγ)(t) =
∞∑
n=0

bn(γ(t)− γ(t0))n

in an interval (t0 − s, t0 + s) ∩ I where s > 0.

(ii)⇒ (i) We consider the function

G(z) =
∞∑
n=0

bn(z − γ(t0))n,

z ∈ D(γ(t0), s). We choose a > 0 with a < ε such that Γ(D(t0, a)) ⊆
D(γ(t0), s). The function

GoΓ : D(t0, a)→ C
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is holomorphic. Therefore, there exist an ∈ C,n = 1, 2, 3, ... such that

(GoΓ)(z) =
∞∑
n=0

an(z − t0)n, z ∈ D(t0, a)

and consequently

f(t) = G(γ(t)) =
∞∑
n=0

an(t− t0)n, t ∈ (t0 − a, t0 + a).

Definition 2.7. Let γ : I → C be a locally injective curve and z0 = γ(t0), t0 ∈
I, where I is an interval. A function f : γ∗ → C belongs to the class of non-
holomorphically extendable at (t0, z0 = γ(t0)) functions, if there are no open
disk D(z0, r), r > 0 and η > 0 and a holomorphic function F : D(z0, r)→ C,
such that γ((t0 − η, t0 + η) ∩ I) ⊂ D(z0, r) and F (γ(t)) = f(γ(t)) for all
t ∈ (t0−η, t0 +η)∩ I. Otherwise we say that f is holomorphically extendable
at (t0, z0 = γ(t0)).

Definition 2.8. Let γ : I → C be a continuous map, where I is an interval
and t0 ∈ I. A function f : γ∗ → C is real analytic at (t0, z0 = γ(t0)), if there

exist δ > 0 and a power series
∞∑
n=0

an(t − t0)n with a radius of convergence

ε > δ > 0, such that f(γ(t)) =
∞∑
n=0

an(t− t0)n for every t ∈ (t0− δ, t0 + δ)∩ I.

The following proposition associates the phenomenon of real-analyticity
and that of holomorphically extendability.

Proposition 2.9. Let γ : I → C be an analytic curve at t0, where I is an
interval and t0 ∈ I. A function f : γ∗ → C is real analytic at (t0, z0 = γ(t0))
if and only if f is holomorphically extendable at (t0, z0 = γ(t0)).

Proof. At first, we will prove direction ⇒: If f is real analytic at (t0, z0 =
γ(t0)), then from Lemma 2.6

f(γ(t)) =
∞∑
n=0

bn(γ(t)− γ(t0))n
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for every t ∈ (t0−ε, t0+ε)∩I and for some bn ∈ C, ε > 0. From the continuity
of γ, there exists η > 0 such that γ((t0−η, t0 +η)∩ I) ⊂ D(z0, ε). Therefore,
the function

F (z) =
∞∑
n=0

bn(z − γ(t0))n

for z ∈ D(z0, ε) is equal to f on γ((t0 − η, t0 + η) ∩ I). Thus the function f
is holomorphically extendable at (t0, z0 = γ(t0)).
Next we prove direction ⇐: If f is extendable at (t0, z0 = γ(t0)), then there
exist r > 0 and a holomorphic function F : D(γ(t0), r)→ C, such that

f(γ(t)) = F (γ(t))

for every t ∈ (t0 − ε, t0 + ε) ∩ I and for some ε > 0. Let

∞∑
n=0

bn(z − γ(t0))n

be the Taylor expansion of the holomorphic function F . It follows that

f(γ(t)) = F (γ(t)) =
∞∑
n=0

bn(γ(t)− γ(t0))n

for every t ∈ (t0 − ε, t0 + ε) ∩ I and as a result, again from Lemma 2.6, we
conclude that f is real analytic at (t0, z0 = γ(t0)), because the curve γ is
analytic at t0.

The following theorem is a consequence of Lemma 2.4 and Proposition
2.9.

Theorem 2.10. Let γ : I → C be a continuous and locally injective curve,
where I is an interval and t0 ∈ I. Then, γ is analytic at t0 if and only if for
every function f : γ∗ → C the following are equivalent:
1) f is real analytic at (t0, z0 = γ(t0))
2) f is holomorphically extendable at (t0, z0 = γ(t0))

Now, we will examine a different kind of differentiability.
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Definition 2.11. Let γ : I → C be a continuous and injective curve, where
I is an interval or the unit circle. We define the derivative of a function
f : γ∗ → C at γ(t0), where t0 ∈ I by

df

dz
(γ(t0)) = lim

t→t0

f(γ(t))− f(γ(t0))

γ(t)− γ(t0)

if the above limit exists and is a complex number.

Remark 2.12. If γ : I → C is a hemeomorphism from I to γ∗, then we can

equivalently define
df

dz
(γ(t0)) as

df

dz
(γ(t0)) = lim

z∈γ∗,z→γ(t0)

f(z)− f(γ(t0))

z − γ(t0)

if the above limit exists and is a complex number.

Definition 2.13. Let γ : I → C be a homeomorphism, where I is an interval
or the unit circle. A function f : γ∗ → C belongs to the class C1(γ∗) if
df

dz
(γ(t)) exists and is continuous for t ∈ I. Also, for k ∈ {2, 3, · · · } ∪ {∞}

a function f : γ∗ → C belongs to the class Ck(γ∗), if

dkf

dzk
(γ(t)) =

d

(
dk−1f

dzk−1
(γ(t))

)
dz

(γ(t))

exists and is continuous for t ∈ [0, 1]. Finally, a function f : γ∗ → C

belongs to the class C∞(γ∗), if
dkf

dzk
(γ(t)) exists and is continuous for t ∈

I and for every k ∈ {1, 2, 3, · · · }. Let also (In), n ∈ {1, 2, 3, · · · } be an

increasing sequence of compact subsets of γ∗ such that
∞⋃
n=1

In = γ∗. For

k ∈ {1, 2, 3, · · · } ∪ {∞} the topology of the space Ck(γ∗) is defined by the
seminorms

sup
z∈In
|d

(l)f

dzl
(z)|, l = 0, 1, 2, ..., k, n = 1, 2, 3, . . .

In this way Ck(γ∗) becomes a Banach space if k < ∞ and I is compact.
Otherwise, Ck(γ∗) is a Frechet space.
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Proposition 2.14. Let γ : I → C be a homeomorphism with γ′(t) 6= 0 for all
t ∈ I, where I is an interval or the unit circle and k ∈ {1, 2, 3, · · · } ∪ {∞}.
If Ck(I) = Ck(γ∗) ◦ γ, then γ ∈ Ck(I).

Proof. The function f : γ∗ → C with f(γ(t)) = γ(t) for t ∈ I belongs to the
class Ck(γ∗) and therefore the function γ = f ◦ γ : I → C belongs to the
class Ck(I).

Now, we will prove the inverse of the previous proposition: If γ ∈ Ck(I),
then Ck(I) = Ck(γ∗) ◦ γ. In order to do that we need the following lemma,
which will also be useful later.

Lemma 2.15. Let X be an interval I ⊂ R or the unit circle T , γ ∈ Ck(X),
k ∈ {1, 2, ...} ∪ {∞} and f ∈ Ck(γ∗) and g = f ◦ γ. Then g ∈ Ck(X) and
there exist polynomials Pj,i, i, j ∈ {1, 2, 3, ...}, j ≤ i ≤ k, defined on Ci, such
that

g(i)(t) =
i∑

j=1

djf

dzj
(γ(t))Pj,i(γ

′
(t), γ

′′
(t), ..., γ(i)(t))

where the derivatives of γ are with respect to the real variable t in the case
X = I and with respect to the complex variable t, |t| = 1 in the case X = T .

Proof. We will prove the lemma by induction on i. For i = 1 ≤ k,

g
′
(t) = (f ◦ γ)

′
(t) = lim

t→t0

f(γ(t))− f(γ(t0))

t− t0

= lim
t→t0

f(γ(t))− f(γ(t0))

γ(t)− γ(t0)

γ(t)− γ(t0)

t− t0
=
df

dz
(γ(t))γ

′
(t)

and thus g ∈ C1(X) and P1,1(z) = z, z ∈ C.
If the result holds for 1 ≤ i < k, then we will prove that it also holds for

i+ 1 ≤ k. Using our induction hypothesis,

g(i)(t) =
i∑

j=1

djf

dzj
(γ(t))Pj,i(γ

′
(t), γ

′′
(t), ..., γ(i)(t)).

We differentiate with respect to t ∈ X. Then

g(i+1)(t) =
i∑

j=1

(
dj+1f

dzj+1
(γ(t))(Pj,i(γ

′
(t), γ

′′
(t), ..., γ(i)(t))γ

′
(t)
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+
djf

dzj
(γ(t))

i∑
s=1

∂Pj,i
∂zs

(γ
′
(t), γ

′′
(t), ..., γ(i)(t))γ(s+1)(t)) =

=
df

dz
(γ(t))

i∑
s=1

∂P1,i

∂zs
(γ
′
(t), γ

′′
(t), ..., γ(i)(t))γs+1(t)+

+
i∑

j=2

djf

dzj
(γ(t))(Pj−1,i(γ

′
(t), γ

′′
(t), ..., γ(i)(t))γ

′
(t)+

i∑
s=1

∂Pj,i
∂zs

(γ
′
(t), γ

′′
(t), ..., γ(i)(t))γ(s+1)(t)))+

+
di+1f

dzi+1
(γ(t))(Pi,i(γ

′
(t), γ

′′
(t), ..., γ(i)(t))γ

′
(t)).

Thus, g ∈ Ci+1(X),

P1,i+1(z1, z2, ..., zi+1) =
i∑

s=1

∂P1,i

∂zs
(z1, z2, ..., zi)zs+1,

Pj,i+1(z1, z2, ..., zi+1) =
i∑

s=1

∂Pj,i
∂zs

(z1, z2, ..., zi)zs+1+

Pj−1,i(z1, z2, ..., zi)z1,

for j = 2, 3, ..., i, and

Pi+1,i+1(z1, z2, ..., zi+1) = Pi,i(z1, z2, ..., zi)z1.

Therefore, the result holds also for i+ 1 and the proof is complete.

Proposition 2.16. Let γ : I → C be a homeomorphism with γ′(t) 6= 0,
where I is an interval or the unit circle and k ∈ {1, 2, 3, · · · } ∪ {∞}. If
γ ∈ Ck(I) , then Ck(I) = Ck(γ∗) ◦ γ.

Proof. By Lemma 2.15 we have that Ck(I) ⊃ Ck(γ∗) ◦ γ. We will now prove
by induction that Ck(I) ⊂ Ck(γ∗) ◦ γ.
For k = 1, if f ∈ C1(I), we denote g = f ◦ γ−1. Then g ◦ γ = f and

dg

dz
(γ(t0)) = lim

t→t0

g(γ(t))− g(γ(t0))

γ(t)− γ(t0)

13



= lim
t→t0

f(t)− f(t0)

t− t0
1

γ(t)− γ(t0)

t− t0

=
f ′(t0)

γ′(t0)

for t0 ∈ I. So, the function
dg

dz
exists and is continuous and thus g ∈ C1(γ∗).

If the result is true for k, we will prove that it is also true for k + 1. If
f ∈ Ck+1(I) , we denote g = f ◦ γ−1. Then g ◦ γ = f and

dg

dz
(γ(t0)) =

(f ′ ◦ γ−1)(γ(t0))

γ′(t0)

for t0 ∈ I. By the hypothesis of the induction, we have that f ′◦γ−1 ∈ Ck(γ∗).

It is also true that γ′ ∈ Ck(I) . It follows that
dg

dz
∈ Ck(γ∗) or equivalently

g ∈ Ck+1(γ∗) and the proof is complete for k finite.
The case k =∞ follows from the previous result for all k finite.

As we have showed above, if γ is a homeomorphism defined on X, then
C(X) = C(γ∗) ◦ γ. If also γ ∈ Ck(X), where k ∈ {0, 1, 2, ...} ∪ {∞}, and
γ
′
(t) 6= 0, for every t ∈ X, then Ck(X) = Ck(γ∗) ◦ γ. This implies that the

spaces Ck(γ∗) and Ck(γ) contain exactly the same elements. Now, we will
prove that they also share the same topology.

Proposition 2.17. Let X be an interval I ⊂ R or the unit circle T , k ∈
{0, 1, 2, ...}∪{∞} and γ be a homeomorphism defined on X, γ ∈ Ck(X) and
γ
′
(t) 6= 0, for every t ∈ X. Then, the spaces Ck(γ) and Ck(γ∗) share the

same topology.

Proof. At first, we will prove the proposition in the special case where X
is a compact interval I ⊂ R or the unit circle T and k 6= ∞. In order to
do so, we will find 0 < M,N < ∞, such that d1(f1, f2) ≤ Md2(f1, f2) and
d2(f1, f2) ≤ Nd1(f1, f2), for every f1, f2 ∈ Ck(γ) = Ck(γ∗), where d1, d2 are
the metrics of Ck(γ) and Ck(γ∗), respectively.

Let f1, f2 ∈ Ck(γ∗) and g1 = f1 ◦ γ, g2 = f2 ◦ γ ∈ Ck(X). We notice that

sup
t∈X
|g1(t)− g2(t)| = sup

z∈γ∗
|f1(z)− f2(z)| ≤ d2(f1, f2).

In addition,

(g1 − g2)(i)(t) =
i∑

j=1

dj(f1 − f2)

dzj
(γ(t))Pj,i(γ

′
(t), γ

′′
(t), ..., γ(i)(t)), (1)

14



for 1 ≤ j ≤ i ≤ k, where Pj,i are the polynomials of Lemma 2.15. If
mj,i = sup

t∈X
|Pj,i((γ

′
(t), γ

′′
(t), ..., γ(i)(t))| and Mi = max{mj,i, 1 ≤ j ≤ i}, then

sup
t∈X
|(g1 − g2)(i)(t)| ≤

i∑
j=1

sup
z∈γ∗
|d
j(f1 − f2)

dzj
(z)|mj,i

≤Mi

i∑
j=1

sup
z∈γ∗
|d
j(f1 − f2)

dzj
(z)| ≤Mid2(f1, f2).

Consequently,
d1(f1, f2) ≤Md2(f1, f2),

where M = 1 +M1 +M2 + ...+Mk.
We also notice that

sup
z∈γ∗
|f1(z)− f2(z)| = sup

t∈X
|g1(t)− g2(t)| ≤ d1(f1, f2).

We will prove by induction that

sup
z∈γ∗

∣∣∣∣di(f1 − f2)

dzi
(z)

∣∣∣∣ ≤ Nid1(f1, f2),

for some Ni > 0, i = 1, 2, ..., i ≤ k. Since

P1,1(z1) = z1

and
Pi+1,i+1(z1, z2, ..., zi+1) = Pi,i(z1, z2, ..., zi)z1,

it is easy to see that Pi,i(z1, z2, ..., zi) = z1
i. Thus,

si = inf
t∈X
|Pi,i((γ

′
(t), γ

′′
(t), ..., γ(i)(t))| > 0,

because also γ′(t) 6= 0, for every t ∈ X. For i = 1 ≤ k,

sup
z∈γ∗

∣∣∣∣d(f1 − f2)

dz
(z)

∣∣∣∣ ≤ 1

s1

sup
t∈X
|(g1 − g2)′(t)| ≤ 1

s1

d1(f1, f2),
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and thus N1 =
1

s1

. If the result holds for every 1 ≤ j ≤ i < k, then we will

prove that it also holds for i + 1 ≤ k. Using our induction hypothesis and
equation (1) we find

sup
t∈X
|(g1 − g2)(i+1)(t)| ≥ sup

z∈γ∗

∣∣∣∣di+1(f1 − f2)

dzi+1
(z)

∣∣∣∣ si+1

−
i∑

j=2

sup
z∈γ∗

∣∣∣∣dj(f1 − f2)

dzj
(z)

∣∣∣∣mj,i+1 ≥ sup
z∈γ∗

∣∣∣∣di+1(f1 − f2)

dzi+1
(z)

∣∣∣∣ si+1

−
i∑

j=2

Njmj,i+1d1(f1, f2).

Therefore,

sup
z∈γ∗

∣∣∣∣di+1(f1 − f2)

dzi+1
(z)

∣∣∣∣ ≤ Ni+1d1(f1, f2),

where Ni+1 =
1

si+1

+
i∑

j=2

Njmj,i+1

si+1

and the result holds also for i + 1. The

induction is complete. Now, it is easy to see that

d2(f1, f2) ≤ Nd1(f1, f2),

where N = 1 +N1 +N2 + ...+Nk.
It easily follows from the above that even in the case where X is any type

of interval I ⊂ R and/or k =∞ the respective topologies of the spaces Ck(γ)
and Ck(γ∗) are the same. The basic open subsets of Ck(γ) are defined by a
compact subset of X, an l ∈ {0, 1, 2, ...}, l ≤ k, a function f ∈ Ck(γ) and
an ε > 0. But if we recall the definition of the topology of Ck(γ∗) and use
the above, we realize that this basic open subset of Ck(γ) is also an open
subset of Ck(γ∗). Similarly, every basic open subset of Ck(γ∗) is an open
open subset of Ck(γ). The proof is complete.

Combining Propositions 2.14, 2.16 and 2.17, we obtain the following the-
orem.

Theorem 2.18. Let γ : I → C be a homeomorphism with γ′(t) 6= 0 for all
t ∈ I, where I is an interval or the unit circle and k ∈ {1, 2, 3, · · · } ∪ {∞}.
Then Ck(I) = Ck(γ∗) ◦ γ if and only if γ ∈ Ck(I). In addition the spaces
Ck(γ) and Ck(γ∗) share the same topology.
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Remark 2.19. One can prove a slightly stronger statement than the one in
Theorem 2.18. We do not need to assume γ′(t) 6= 0. Then Ck(I) = Ck(γ∗)◦γ
if and only if γ ∈ Ck(I) and γ′(t) 6= 0 for all t ∈ I.

Remark 2.20. With the definition of the derivative as in the Remark 2.12
we can define the spaces Ck(E) for more general sets E ⊂ C but it may occur
that the space Ck(E) is not complete.

Theorem 2.18 shows that if γ is a homeomorphism and γ′(t) 6= 0 for t ∈ I,
then Ck(γ) ≈ Ck(γ∗). Therefore, we have the the following corollary:

Corollary 2.21. Let γ : I → C be a homeomorphism with γ′(t) 6= 0 for t ∈ I,
where I is an interval or the unit circle and k ∈ {1, 2, 3, · · · } ∪ {∞}. Then,
the space Ck(γ) is independent of the parametrization of γ and coincides with
the space Ck(γ∗).

3 Continuous analytic capacities

Next we present a few facts for the notion of continuous analytic capacity
([5]) that we will need in sections 5 and 7 below. Section 7 leads us to
generalise this notion and thus consider the p-continuous analytic capacity.

Definition 3.1. Let U ⊂ C be open. A function f belongs to the class A(U)
if f ∈ H(U) and f has a continuous extension on U , where the closure of U
is taken in C.

Definition 3.2. Let Ω be the complement in C of a compact set. A function
f belongs to the class A(Ω ∪ {∞}) if f ∈ H(Ω) ∩ C(Ω ∪ {∞}) and f has a
continuous extension on Ω, where the closure of Ω is taken in C.

By Tietze’s extension theorem the extensions in both previous definitions
can be considered as extensions on the whole of C ∪ {∞} without increase
of the original norm ‖f‖∞.

Definition 3.3. Let L be a compact subset of C. Let also Ω = C \ L. We
denote

a(L) = sup{| lim
z→∞

z(f(z)− f(∞))| : f ∈ A(Ω ∪ {∞}), ‖f‖∞ ≤ 1}

the continuous analytic capacity of L.
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It is well known ([5]) that a(L) = 0 if and only if A(Ω ∪ {∞}) contains
only constant functions.

Theorem 3.4. Let L be a compact subset of C and U ⊂ C be open with
L ⊂ U . Then a(L) = 0 if and only if every f ∈ C(U) ∩H(U \ L) belongs to
H(U).

Proof. Assume that every f ∈ C(U) ∩H(U \ L) belongs to H(U).
We consider an arbitrary f ∈ A(Ω ∪ {∞}). Since f can be continuously
extended over L, it belongs to C(U)∩H(U \L) and thus to H(U). Therefore
f is analytic in C and continuous in C ∪ {∞} and hence it is constant.
Thus a(L) = 0.
Now assume a(L) = 0 and we consider any f ∈ C(U) ∩H(U \ L).
There exist two closed curves γ1 and γ2 in U so that γ1 surrounds L and γ2

surrounds γ1. We define the analytic functions

φ1(z) =
1

2πi

∫
γ1

f(ζ)

ζ − z
dζ for z in the exterior of γ1

and

φ2(z) =
1

2πi

∫
γ2

f(ζ)

ζ − z
dζ for z in the interior of γ2.

Then the function g which equals φ2 − f in the interior of γ2 and φ1 in the
exterior of γ1 is well defined and belongs to A(Ω ∪ {∞}). Therefore g is
constant and thus f is analytic in the interior of γ2. Hence f ∈ H(U).

Due to the local nature of the proof of the next theorem we shall state a
few facts about the so-called Vitushkin’s localization operator ([4]).

Let U ⊂ C be open and f ∈ C(C) ∩ H(U). Let also g ∈ C1(C) have
compact support. We define the function

G(z) =
1

π

∫∫
f(z)− f(w)

z − w
∂g

∂w
(w) dm(w)

= f(z)g(z)− 1

π

∫∫
f(w)

z − w
∂g

∂w
(w) dm(w).

(2)

The function G is continuous in C ∪ {∞} with G(∞) = 0, analytic in U ∪
(C \ supp g) and f −G is analytic in the interior of the set g−1({1}).
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Definition 3.5. Let L be a closed subset of C. We define

a(L) = sup{a(M) : M compact subset of L}

the continuous analytic capacity of L.

Theorem 3.6. Let L be a closed subset of C. Then a(L) = 0 if and only if
for every open set U ⊂ C every f ∈ C(U) ∩H(U \ L) belongs to H(U).

Proof. One direction is immediate from Theorem 3.4 and Definition 3.5 and
hence we assume that a(L) = 0.
We consider an arbitrary open set U ⊂ C which intersects L and an arbitrary
f ∈ C(U) ∩ H(U \ L) and we shall prove that f extends analytically over
U ∩ L.
Now L may not be contained in U but since analyticity is a local property
we shall employ Vitushkin’s localization operator.
Let z0 ∈ U ∩ L and D(z0, 3δ) ⊂ U . We consider g ∈ C1(C) with supp g ⊂
D(z0, 2δ) such that g = 1 in D(z0, δ).
We also consider the restriction F of f in D(z0, 3δ) and we extend F so that
it is continuous in C ∪ {∞}.
We define as in (2) the function

G(z) =
1

π

∫∫
F (z)− F (w)

z − w
∂g

∂w
(w) dm(w).

Now G is continuous in C ∪ {∞} with G(∞) = 0, analytic in (D(z0, 3δ) \
L) ∪ (C \D(z0, 2δ)) = C \ (D(z0, 2δ) ∩ L) and f −G = F −G is analytic in
D(z0, δ).
Since a(L) = 0, we have a(D(z0, 2δ) ∩ L) = 0 and hence G is constant 0 in
C. Therefore f is analytic in D(z0, δ).
Since z0 ∈ U ∩ L is arbitrary we conclude that f ∈ H(U).

Theorem 3.7. ([5]) If L is a Jordan arc with locally finite length, then
a(L) = 0. The same holds for any countable union of such curves. Therefore,
line segments, circular arcs, analytic curves and boundaries of convex sets are
all of zero continuous analytic capacity.

Definition 3.8. Let U be an open subset of C and p ∈ {0, 1, 2, · · · } ∪ {∞}.
A function f belongs to the class Ap(U) if f ∈ H(U) and all derivatives f (j),
j ∈ {0, 1, 2, · · · }, 0 ≤ j ≤ p, have continuous extensions f (j) on U , where the
closure of U is taken in C.
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Definition 3.9. Let Ω be the complement in C of a compact set and p ∈
{0, 1, 2, · · · } ∪ {∞}. A function f belongs to the class Ap(Ω ∪ {∞}) if f ∈
H(Ω) ∩ C(Ω ∪ {∞}) and all derivatives f (j), j ∈ {0, 1, 2, · · · }, 0 ≤ j ≤ p,
have continuous extensions f (j) on Ω, where the closure of Ω is taken in C.

Definition 3.10. Let L be a compact subset of C and p ∈ {0, 1, 2, · · · }∪{∞}.
Let also Ω = C\L. For p 6=∞, we denote the p-continuous analytic capacity
as

ap(L) = sup{| lim
z→∞

z(f(z)− f(∞))| : f ∈ Ap(Ω ∪ {∞}), max
0≤j≤p

‖f (j)‖∞ ≤ 1}.

Obviously, a0(L) = a(L).
For p =∞,

a∞(L) = sup{| lim
z→∞

z(f(z)− f(∞))| : f ∈ A∞(Ω ∪ {∞}), d(f, 0) ≤ 1},

where the Frechet distance d(f, 0) is defined by

d(f, 0) =
∞∑
j=0

2−j
‖f (j)‖∞

1 + ‖f (j)‖∞

If L is a closed subset of C then we define

ap(L) = sup{ap(M) : M compact subset of L}.

Definition 3.11. Let L be a compact subset of C and p ∈ {0, 1, 2, · · · }∪{∞}.
Let also Ω = C \ L. We denote

a′p(L) = sup{| lim
z→∞

z(f(z)− f(∞))| : f ∈ Ap(Ω ∪ {∞}), ‖f‖∞ ≤ 1}.

Obviously, a′0(L) = a(L).
If L is a closed subset of C then we define

a′p(L) = sup{a′p(M) : M compact subset of L}.

It is obvious that ap(L) and a′p(L) are decreasing function of p.

The following theorem corresponds to Theorem 3.4.

20



Theorem 3.12. Let L be a compact subset of C and U ⊂ C be open with
L ⊂ U and let p ∈ {0, 1, 2, · · · } ∪ {∞}. Then ap(L) = 0 if and only if every
f ∈ Ap(U \ L) has an extension to Ap(U), if and only if a′p(L) = 0.

The proof is a repetition of the proof of Theorem 3.4.

Definition 3.13. Let L be a compact subset of C. For p ∈ {0, 1, 2, · · · }∪{∞}
we define bp(L) such that bp(L) = 0 when ap(L) = 0 and bp(L) = ∞ when
ap(L) 6= 0. For p, q ∈ {0, 1, 2, · · · } ∪ {∞} we will say that ap(L) and aq(L)
are essentially different if bp(L) 6= bq(L).

Definition 3.14. Let U be an open subset of C and p ∈ {1, 2, · · · } ∪ {∞}.
A function f belongs to the class Ãp(U) if f ∈ Ap(U) and for 0 ≤ j ≤ j′ ≤ p
the following is true for z, w ∈ U :

f (j)(w)−
j′−j∑
k=0

1

k!
f (j+k)(z)(w − z)k = o(|w − z|j′−j) as w → z. (3)

This is supposed to hold uniformly for z, w in compact subsets of U .
The definition of the space Ãp(Ω ∪ {∞}) is analogous to the Definition 3.9
of Ap(Ω ∪ {∞}).

Note that, since f ∈ H(U), relation (3) is automatically true for z ∈ U
and thus the ”point” of the definition is when z ∈ ∂U .

If p is finite, then f ∈ Ãp(U) admits as a norm ‖f‖Ãp(U) the smallest M
such that

|f (j)(z)| ≤M for z ∈ U, 0 ≤ j ≤ p,∣∣∣f (j)(w)−
j′−j∑
k=0

1

k!
f (j+k)(z)(w − z)k

∣∣∣ ≤M |w − z|j′−j w, z ∈ U, |w − z| ≤ 1,

0 ≤ j ≤ j′ ≤ p.

It is easy to see that Ãp(U) with this norm is complete.
If p is infinite, then, using the norms for the finite cases in the standard

way, Ã∞(U) becomes a Frechet space.
There is a fundamental result of Whitney ([13]) saying that if f ∈ Ãp(U),

then f can be extended in C in such a way that the extended f belongs to
Cp(C) and that the partial derivatives of f of order ≤ p in C are extensions
of the original partial derivatives of f in U .
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Definition 3.15. Let L be a compact subset of C and p ∈ {0, 1, 2, · · · }∪{∞}.
Let also Ω = C \ L. For p 6=∞, we denote

ãp(L) = sup{| lim
z→∞

z(f(z)− f(∞))| : f ∈ Ãp(Ω ∪ {∞}), ‖f‖Ãp(U) ≤ 1}.

In the case p =∞ the norm ‖f‖Ãp(U) is replaced by the distance of f from 0

in the metric space structure of Ã∞(U).
Obviously, ã0(L) = a(L).
If L is a closed subset of C then we define

ãp(L) = sup{ãp(M) : M compact subset of L}.

It turns out that, in the case p ≥ 1, there is a simple topological charac-
terization of the compact sets L with ãp(L) = 0.

Theorem 3.16. Let L be a compact subset of C and p ≥ 1. Then ãp(L) = 0
if and only if L has empty interior.

Proof. Let L have nonempty interior and let the disc D(z0, r0) be contained
in L. Obviously, the non-constant function 1

z−z0 belongs to Ãp(Ω∪ {∞}) for
all p and thus ap(L) > 0 for all p.

Conversely, let L have empty interior and let f belong to Ã1(Ω ∪ {∞}).
Then f is analytic in Ω and at every z ∈ L we have

f(w)− f(z)− f ′(z)(w − z) = o(|w − z|) as w → z, w ∈ Ω = C.

Thus f is analytic at z (with derivative equal to f ′(z)) and hence analytic in
all of C. Since f is continuous at∞, it is a constant. Therefore Ã1(Ω∪{∞})
contains only the constant functions and ã1(L) = 0.

Theorem 3.17. There is a compact subset L of C such that ã1(L) = 0 <
ã0(L).

Proof. Due to the last theorem, it is enough to find a compact L with empty
interior and with ã0(L) = a(L) > 0.

This set L is a Cantor type set. We consider a sequence (an) with 0 <
an <

1
2

for all n = 1, 2, 3, . . . and construct a sequence (Ln) of decreasing
compact sets as follows. L0 is the unit square [0, 1] × [0, 1] and L1 is the
union of the four squares at the four corners of L0 with sidelength equal to
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a1. We then continue inductively. If Ln is the union of 4n squares each of
sidelength equal to

ln = a1 · · · an,
then each of these squares produces four squares at its four corners each of
sidelength equal to a1 · · · anan+1. The union of these new squares is Ln+1.

We denote In,k, k = 1, . . . , 4n, the squares whose union is Ln.
Finally, we define

L =
+∞⋂
n=1

Ln.

It is clear that L is a totally disconnected compact set. The area of Ln
equals

|Ln| = 4n(a1 · · · an)2 = (2a1 · · · 2an)2.

Now we assume that

+∞∑
n=1

(1− 2an) < +∞.

Under this condition we find that the area of L equals

|L| = lim
n→+∞

|Ln| = lim
n→+∞

(2a1 · · · 2an)2 > 0.

Then it is well known ([5]) that the function

f(z) =
1

π

∫∫
L

1

z − w
dm(w)

is continuous in C ∪ {∞} with f(∞) = 0 and holomorphic in C \ L. Since

lim
z→∞

zf(z) = |L| > 0,

f is not identically equal to 0 and hence ã0(L) = a(L) > 0.

Remark 3.18. The latter part of the above proof shows that if a compact set
L (not necessarily of Cantor type) has strictly positive area, then a(L) > 0,
which is a well known fact ([5]).

The problem of the characterization of the compact sets L with ap(L) = 0
seems to be more complicated.

We will show that there exists a compact set L such that a0(L) and a1(L)
are essentially different; that is a0(L) > 0 and a1(L) = 0.
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Theorem 3.19. There is a compact subset L of C such that a1(L) = 0 <
a0(L).

Proof. We consider the same Cantor type set L which appeared in the proof
of the previous theorem. We keep the same notation.

We now take any f which belongs to A1(Ω ∪ {∞}). Subtracting f(∞)
from f , we may also assume that f(∞) = 0.

Let z0 ∈ Ω. Then there is n0 such that z0 /∈ Ln for all n ≥ n0.
By Cauchy’s formula, for every n ≥ n0 we have

f(z0) = − 1

2πi

4n∑
k=1

∫
γn,k

f(z)

z − z0

dz (4)

where γn,k is the boundary curve of the square In,k.
Let zn,k be any point of Ω inside In,k (for example, the center of the

square). It is geometrically obvious that for every z ∈ γn,k there is a path
(consisting of at most two line segments) γ with length l(γ) ≤ 2ln joining
z and zn,k and contained in Ω (with the only exception of its endpoint z).
Since f ∈ A1(Ω ∪ {∞}), we get

|f(z)− f(zn,k)−f ′(zn,k)(z − zn,k)| =
∣∣∣ ∫

γ

(f ′(ζ)− f ′(zn,k)) dζ
∣∣∣

≤
∫
γ

|f ′(ζ)− f ′(zn,k)| dζ ≤ εnl(γ) ≤ 2εnln,

where εn → 0 uniformly for z ∈ γn,k and for k = 1, . . . , 4n.
Therefore∣∣∣ ∫
γn,k

f(z)

z − z0

dz
∣∣∣ =

∣∣∣ ∫
γn,k

f(z)− f(zn,k)− f ′(zn,k)(z − zn,k)
z − z0

dz
∣∣∣ ≤ εn

8l2n
δ0

where δ0 is the distance of z0 from Ln0 .
Thus from (4) we get

|f(z0)| ≤ 8 · 4nl2n
πδ0

εn =
8|Ln|
πδ0

εn ≤
8

πδ0

εn.

This holds for all n ≥ n0 and hence f(z0) = 0 for all z0 ∈ Ω.
We proved that the only element f of A1(Ω∪{∞}) with f(∞) = 0 is the

zero function and thus a1(L) = 0.
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We will now see a different proof of the above theorem. The proof is
longer from the previous one, but it provides us a more general result.

Theorem 3.20. Let K1/3 be the usual Cantor set lying on [0, 1] and L =
K1/3 ×K1/3. Then a0(L) > 0, but a1(L) = 0.

Proof. First, we observe that the area of L is 0, as

L =
∞⋂
n=0

Ln,

where each Ln is the union of 4n squares of area 9−n. It is known ([6], [14])
that there exists a function g continuous on S2 and holomorphic off L, such
that

g′(∞) = lim
z→∞

z(g(z)− g(∞)) 6= 0,

which implies that a0(L) > 0.
We will prove that a1(L) = 0 or equivalently that every function in A1(Ω∪

{∞}) is entire, where Ω = C\L. Let f ∈ A1(Ω∪{∞}), ε > 0 and ϕε = ε−2χε,
where χε is the characteristic function of the square Sε with center at 0 and
sides parallel to the axes with length ε. It is easy to see from the continuity
of f that the convolutions f ∗ϕε belong to C1(C) and converge uniformly on

D(0, 2) to f as ε → 0. Since f ∈ A1(Ω ∪ {∞}), the partial derivatives
∂u

∂x
,

∂u

∂y
and

∂v

∂x
,
∂v

∂y
of u = Ref and v = Imf , respectively, extend continuously

on C ∪ {∞} and hence are bounded. We will prove that

∂u ∗ ϕε
∂x

=
∂u

∂x
∗ ϕε (5)

on Ω. Let (a, b) ∈ Ω and h ∈ R. Then

(u ∗ ϕε)(a+ h, b)− (u ∗ ϕε)(a, b)
h

=

ε−2

∫∫
Sε

u(a+ h− x, b− y)− u(a− x, b− y)

h
dxdy.

It is easy to see that for almost every (x, y) ∈ Sε and every h ∈ R the segment
[(a + h − x, b − y), (a − x, b − y)] is a subset of Ω. Thus, from Mean value
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theorem for almost every (x, y) ∈ Sε and every h ∈ R there exists q ∈ R,
such that

u(a+ h− x, b− y)− u(a− x, b− y)

h
=
∂u

∂x
(a+ q − x, b− y),

which remains bounded by a constant M > 0. For those (x, y) ∈ Sε

u(a+ h− x, b− y)− u(a− x, b− y)

h

converges to
∂u

∂x
(a− x, b− y),

as h converges to 0. By Dominated convergence theorem (5) holds true.
Similarly,

∂u ∗ ϕε
∂y

=
∂u

∂y
∗ ϕε,

∂v ∗ ϕε
∂x

=
∂v

∂x
∗ ϕε,

∂v ∗ ϕε
∂y

=
∂v

∂y
∗ ϕε.

Since the Cauchy-Riemann equations are satisfied for f almost everywhere,
we have that

∂u

∂x
∗ ϕε =

∂v

∂y
∗ ϕε

and
∂u

∂y
∗ ϕε = −∂v

∂x
∗ ϕε.

Thus, the Cauchy-Riemann equations are satisfied for every f∗ϕε on Ω. Since
the interior of L is void, the set Ω is dense in C. From the continuity of the
partial derivatives of every f ∗ ϕε on C, the Cauchy-Riemann equations are
satisfied for every f∗ϕε on C, which implies that every f∗ϕε is holomorphic on
C. Finally, the functions f ∗ϕε converge uniformly on D(0, 2) to f , as ε→ 0,
which combined with Weierstrass theorem implies that f is holomorphic on
D(0, 2) and therefore f is holomorphic on C.

Remark 3.21. The above proof also shows that if L is a compact subset of
C with zero area and if almost for every line ε which is parallel to the x-axis
and almost for every line ε which is parallel to the y-axis, ε ∩ L = ∅, then
a1(L) = 0. In fact, it suffices that these intersections are finite for a dense
set of ε parallel to the x-axis and for a dense set of ε parallel to the y-axis.
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4 Real analyticity on analytic curves

Let L ⊂ C be a closed set without isolated points. We denote by C(L) the set
of continuous functions f : L→ C. This space endowed with the topology of
uniform convergence on the compact subsets of L is a complete metric space
and thus Baire’s theorem is at our disposal.

Lemma 4.1. Let L ⊂ C be a closed set without isolated points. Let also
z0 ∈ L be the center and r > 0 be the radius of the open disk D(z0, r) and
0 < M < +∞. The set of continuous functions f : L → C, for which there
exists a holomorphic and bounded by M on D(z0, r) function F such that
F |D(z0,r)∩L = f |D(z0,r)∩L, is a closed subset of C (L) and has empty interior.

Proof. Let A(M, z0, r) be the set of continuous functions f : L → C for
which there exists a holomorphic and bounded by M on D(z0, r) function F ,
such that F |D(z0,r)∩L = f |D(z0,r)∩L; That is we assume that |F (z)| ≤ M for
all z ∈ D(z0, r). We distinguish two cases according to whether D(z0, r) is
contained or not in L.

1) If D(z0, r) ⊂ L, then the elements of A(M, z0, r) belong to C(L) and
are holomorphic and bounded by M on D(z0, r). Let (fn)n≥1 be a sequence
in A(M, z0, r) converging uniformly on the compact subsets of L to a function
f defined on L. Then, from Weierstrass theorem, it follows that f will be
holomorphic and bounded by M on D(z0, r). Therefore, f ∈ A(M, z0, r) and
A(M, z0, r) is a closed subset of C (L).

If A(M, z0, r) has not empty interior, then there exists a function f in the
interior of A(M, z0, r), a compact set K ⊂ L and δ > 0 such that{

g ∈ C (L) : sup
z∈K
|f(z)− g(z)| < δ

}
⊂ A(M, z0, r).

Then the function h(z) = f(z) +
δ

2
z̄, z ∈ L belongs to A(M, z0, r) and there-

fore is holomorphic on D(z0, r). But then the function
δ

2
z̄ will be holomorphic

on D(z0, r), which is absurd. Thus, the interior of A(M, z0, r) is void.
2)If D(z0, r) is not contained in L, then there exists w ∈ D(z0, r)\L.

Let (fn)n≥1 be a sequence in A(M, z0, r) where fn converges uniformly on
compact subsets of L to a function f defined on L. Then, for n = 1, 2, . . .
there are holomorphic functions Fn : D(t0, r)→ C bounded by M such that
Fn|D(z0,r)∩L = fn|D(z0,r)∩L. By Montel’s theorem, there exists a subsequence
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(Fkn) of (Fn) which converges uniformly to a function F on the compact
subsets of D(z0, r) which is holomorphic and bounded by M on D(z0, r).
Because Fkn → f at D(z0, r) ∩ L we have that F |D(z0,r)∩L = f |D(z0,r)∩L and
so f ∈ A(M, z0, r). Therefore, A(M, z0, r) is a closed subset of C (L).

If A(M, z0, r) has not empty interior, then there exists a function f in the
interior of A(M, z0, r), a compact set K ⊂ L and δ > 0 such that{

g ∈ C (L) : sup
z∈K
|f(z)− g(z)| < δ

}
⊂ A(M, z0, r).

We choose 0 < a < δ inf
z∈K
|z − w|. We notice that this is possible because

inf
z∈K
|z−w| > 0, since w 6∈ L and K ⊂ L. The function h(z) = f(z)+

a

2(z − w)
for z ∈ L belongs to A(M, z0, r) and therefore it has a holomorphic and
bounded extension H on D(z0, r), such that H|D(z0,r)∩L = h|D(z0,r)∩L. How-
ever, there exists a holomorphic function F : D(z0, r) → C which coincides

with f on D(z0, r) ∩ L. By analytic continuation H(z) = F (z) +
a

2(z − w)
for z ∈ D(z0, r) \ {z0}, since they are equal on L ∩ (D(z0, r) \ {z0}), which
contains infinitely many points close to z0, all of them being non isolated.
As a result H is not bounded at D(z0, r) which is a contradiction. Thus,
A(M, z0, r) has empty interior.

Definition 4.2. Let L ⊂ C be a closed set without isolated points and z0 ∈ L.
A function f ∈ C(L) belongs to the class of non-holomorphically extendable
at z0 functions defined and continuous on L if there exists no pair of an open
disk D(z0, r), r > 0 and a holomorphic function F : D(z0, r)→ C, such that
F |D(z0,r)∩L = f |D(z0,r)∩L.

Theorem 4.3. Let L ⊂ C be a closed set without isolated points and z0 ∈
L. The class of non-holomorphically extendable at z0 functions defined and
continuous on L is a dense and Gδ subset of C(L).

Proof. The set
∞⋂
n=1

∞⋂
M=1

(
C(L)\A

(
M, z0,

1

n

))
is a dense Gδ subset of C(L) according to Baire’s Theorem and coincides
with the class of non-holomorphically extendable at z0 functions defined and
continuous on L, because every holomorphic function on D(z0, r) becomes
bounded if we restrict it on D(z0, r

′) for r′ < r.
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Definition 4.4. Let L ⊂ C be a closed set without isolated points. A func-
tion f ∈ C(L) belongs to the class of nowhere holomorphically extendable
functions defined and continuous on L, if there exists no pair of an open disk
D(z0, r), z0 ∈ L, r > 0 and a holomorphic function F : D(z0, r) → C, such
that F |D(z0,r)∩L = f |D(z0,r)∩L.

Theorem 4.5. Let L ⊂ C be a closed set without isolated points. The class
of nowhere holomorphically extendable functions defined and continuous on
L is a dense and Gδ subset of C(L).

Proof. Let zl, l = 1, 2, 3, ... be a dense in L sequence of points of L. Then the
set

∞⋂
l=1

∞⋂
n=1

∞⋂
M=1

(
C(L)\A

(
M, zl,

1

n

))
is a dense Gδ subset of C(L) according to Baire’s Theorem. This set coincides
with the class of nowhere holomorphically extendable functions defined and
continuous on L, because every holomorphic function on D(z0, r) becomes
bounded if we restrict it on D(z0, r

′) for r′ < r.

The proof of the above results can be used to prove similar results at
some special cases. Let γ : I → C be a a continuous and locally injective
curve, where I is an interval in R of any type. The symbol γ∗ will be used
instead of γ(I). It is obvious that γ∗ has no isolated points. We also recall
Definition 2.2 of Ck(γ).

Definition 4.6. Let γ : I → C be a locally injective curve and z0 = γ(t0), t0 ∈
I, where I is an interval. A function f : γ∗ → C belongs to the class of non-
holomorphically extendable at (t0, z0 = γ(t0)) functions, if there are no open
disk D(z0, r), r > 0 and η > 0 and a holomorphic function F : D(z0, r)→ C,
such that γ((t0 − η, t0 + η) ∩ I) ⊂ D(z0, r) and F (γ(t)) = f(γ(t)) for all
t ∈ (t0−η, t0 +η)∩ I. Otherwise we say that f is holomorphically extendable
at (t0, z0 = γ(t0)).

Theorem 4.7. Let k, l ∈ {0, 1, 2, ...}∪{∞} such that l ≤ k. Let also γ : I →
C be a locally injective function belonging to Ck(I), and t0 ∈ I, where I is
an interval. The class of non-holomorphically extendable at (t0, z0 = γ(t0))
functions belonging to C l(γ) is a dense and Gδ subset of C l(γ).
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Proof. Let r > 0 and η > 0 such that γ(t0 − η, t0 + η) ⊂ D(γ(t0), r). Let
also A(M, z0, r, η, l) be the set of C l(I) functions for which there exists a
holomorphic and bounded by M on D(z0, r) function F , such that F (γ(t)) =
f(γ(t)) for all t ∈ (t0− η, t0 + η)∩ I; That is we assume that |F (z)| ≤M for
all z ∈ D(z0, r).

Since γ ∈ Ck(I), the open disk D(z0, r) is not contained in γ∗ (see Propo-
sition 6.2) and thus there exists w ∈ D(z0, r)\γ∗. Similarly to Lemma 4.1,
A(M, z0, r, η, l) is a closed subset of C l(γ).

If A(M, z0, r, η, l) has not empty interior, then there exists a function f
in the interior of A(M, z0, r, η, l), b ∈ {0, 1, 2, ...}, a compact set K ⊂ I and
δ > 0 such that

{g ∈ Ck(γ) : sup
t∈K

∣∣(f ◦ γ)(j)(t)− (g ◦ γ)(j)(t)
∣∣ < δ,

0 ≤ j ≤ b} ⊂ A(M, z0, r, η, l).

We choose 0 < a < δmin{ inf
t∈K
|γ(t)−w|, inf

t∈K
|γ(t)−w|2, ..., 1

b!
inf
t∈K
|γ(t)−w|b+1}.

This is possible because w 6∈ γ∗ and γ(K) ⊂ γ∗. The function h(z) = f(z) +
a

2(z − w)
for z ∈ γ∗ belongs to A(M, z0, r, η, l), since γ ∈ Ck(I). Similarly

to Lemma 4.1, we are lead to a contradiction. Therefore, A(M, z0, r, η, l) has
empty interior.

Let sn,m, n = 1, 2, 3, ..., m = 1, 2, 3, ... be a sequence such that lim
m→∞

sn,m =

0 for every n = 1, 2, 3, ... and γ(t0− sn,m, t0 + sn,m) ⊂ D

(
γ(t0),

1

n

)
for every

n = 1, 2, 3, ... and every m = 1, 2, 3, .... Then the class of non-holomorphically
extendable at (t0, z0 = γ(t0)) functions belonging to C l(γ) coincides with the
set

∞⋂
n=1

∞⋂
m=1

∞⋂
M=1

(
C l(γ)\A

(
M, z0,

1

n
, sn,m, l

))
,

because every holomorphic function on D(z0, r) becomes bounded if we re-
strict it on D(z0, r

′) for r′ < r. Thus, according to Baire’s theorem the class
of non-holomorphically extendable at (t0, z0 = γ(t0)) functions belonging to
C l(γ) is a dense and Gδ subset of C l(γ).

Definition 4.8. Let γ : I → C be a locally injective curve, where I is
an interval. A function f : γ∗ → C belongs to the class of nowhere holo-
morphically extendable functions if there are no open disk D(z0, r), z0 =
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γ(t0), t0 ∈ I, r > 0 and η > 0 and a holomorphic function F : D(z0, r)→ C,
such that γ((t0 − η, t0 + η) ∩ I) ⊂ D(z0, r) and F (γ(t)) = f(γ(t)) for all
t ∈ (t0 − η, t0 + η) ∩ I.

Theorem 4.9. Let k, l ∈ {0, 1, 2, ...} ∪ {∞} such that l ≤ k. Let also
γ : I → C be a locally injective function belonging to Ck(I), where I is an
interval. The class of nowhere holomorphically extendable functions belonging
to C l(γ) is a dense and Gδ subset of C l(γ).

Proof. Let tn, n = 1, 2, 3, ... be a dense in I sequence of points of I. Then the
class of nowhere holomorphically extendable functions belonging to Ck(γ)
coincides with the intersection over every n = 1, 2, 3, ... of the classes of
non-holomorphically extendable at (tn, zn = γ(tn)) functions belonging to
C l(γ). Since the classes of non-holomorphically extendable at (tn, zn = γ(tn))
functions belonging to C l(γ) are dense and Gδ subsets of C l(γ) according to
Theorem 4.7, it follows that the class of nowhere holomorphically extendable
functions belonging to C l(γ) is a dense and Gδ subset of C l(γ) from Baire’s
theorem.

Now,using results of non-extendability, we will prove results for real an-
alyticity.

Proposition 2.9 and Theorem 4.9 immediately prove the following theo-
rems.

Theorem 4.10. Let γ : I → C be an analytic curve, where I is an interval
and t0 ∈ I. For k = 0, 1, 2, . . . or k = ∞ the class of functions f ∈ Ck(γ)
which are not real analytic at (t0, z0 = γ(t0)) is a dense and Gδ subset of
Ck(γ).

Theorem 4.11. Let γ : I → C be an analytic curve, where I is an interval.
For k = 0, 1, 2, . . . or k = ∞ the class of functions f ∈ Ck(γ) which are
nowhere real analytic is a dense and Gδ subset of Ck(γ).

Remark 4.12. The fact that the class of functions f ∈ C∞([0, 1]) which are
nowhere real analytic is itself a dense and Gδ subset of C∞([0, 1]) strengthens
the result [2], where it is only proven that this class contains a dense and Gδ

subset of C∞([0, 1]).

Proposition 4.13. Let γ : I → C be an analytic curve defined on an interval
I ⊂ R. Let γ∗ = γ(I) and Φ : γ∗ → C be a homeomorphism of γ∗ on
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Φ(γ∗) ⊂ C. Let δ = Φ ◦ γ : I → C. Then the set of functions f ∈ Ck(δ), k ∈
{0, 1, 2, ...} ∪ {∞} which are nowhere analytic is a Gδ and dense subset of
Ck(δ).

Proof. The map S : Ck(γ)→ Ck(δ) defined by S(g) = g ◦ Φ−1, g ∈ Ck(γ) is
an isometry onto. Also a function g ∈ Ck(γ) is nowhere analytic if and only
if S(g) is nowhere analytic. Theorem 4.11 combined with the above facts
yields the result.

Corollary 4.14. Let J ⊂ R be an interval and γ(t) = t, t ∈ J or J = R and
γ(t) = eit, t ∈ R. Let X denote the image of γ, that is X = J or X is the unit
circle, respectively. Let Φ : X → C be a homeomorphism of X on Φ(X) ⊂ C
and δ = Φ ◦ γ. Then the set of functions f ∈ Ck(δ), k ∈ {0, 1, 2, ...} ∪ {∞}
which are nowhere analytic is a Gδ and dense subset of Ck(δ).

Proof. The curve γ is an analytic curve defined on an interval. The result
follows from Proposition 4.13.

Remark 4.15. According to Corollary 4.14 for any Jordan curve δ or Jordan
arc δ with a suitable parametrization generically on Ck(δ), k ∈ {0, 1, 2, ...}∪
{∞} every function is nowhere analytic. In fact this holds for all parametriza-
tions of δ∗ and the spaces Ck(δ) are the same for all parametrizations so that
δ is a homeomorphism between the unit circle T or [0, 1] and δ∗ (see prelim-
inaries).

5 Extendability of functions on domains of finite connectivity

We start this section with the following general fact.

Proposition 5.1. Let n ∈ {1, 2, ...}. Let also X1, ..., Xn be complete metric
spaces and A1, ...An dense and Gδ subsets of X1, ..., Xn, respectively. Then
the space X1 × ... × Xn, endowed with the product topology, is a complete
metric space and A1 × ...× An is a dense and Gδ subset of X1 × ...×Xn.

Proof. Obviously X1 × ...×Xn is a complete metric space. If Ai =
∞⋂
k=1

Ai,k,

where Ai,k are dense and open subsets of Xi for i = 1, ..., n, k = 1, 2, ..., then

A1 × ... × An =
∞⋂
k=1

(A1,k × ... × An,k), where A1,k × ... × An,k are open and

dense subsets of X1, ..., Xn. Baire’s theorem completes the proof.
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Remark 5.2. The result of Proposition 5.1 can easily be extended to infinite
denumerable products, but we will not use it in the paper.

Definition 5.3. Let n ∈ {1, 2, ...}. Let also γi : Ii → C, i = 1, ..., n, be
continuous and locally injective curves, where Ii are intervals. We define the
space Cp1,...,pn(γ1, ..., γn) = Cp1(γ1) × ... × Cpn(γn), where pi ∈ {0, 1, 2, ...} ∪
{∞}, for i = 1, ..., n. The space Cp1,...,pn(γ1, ..., γn) is endowed with the
product topology and becomes a complete metric space.

We can consider the above space as the class of functions f , which are
defined on the disjoint union γ∗1∪...∪γ∗n of the locally injective curves γ1, ..., γn,
where f |γi belongs to Cpi(γi).

Definition 5.4. Let n ∈ {1, 2, ...}. Let also γi : Ii → C, i = 1, ..., n, be
locally injective curves, where Ii are intervals. A function on the disjoint
union γ∗1 ∪ ... ∪ γ∗n, f : γ∗1 ∪ ... ∪ γ∗n → C, f(z) = fi(z) for z ∈ γ∗i , belongs to
the class of nowhere holomorphically extendable functions if every function fi
belongs to the class of nowhere holomorphically extendable functions defined
on γ∗i , respectively, for every i = 1, ..., n.

Theorem 5.5. Let n ∈ {1, 2, ...}, pi, qi ∈ {0, 1, ...} ∪ {∞} such that pi ≤ qi
for i = 1, ..., n . Let also γi : Ii → C, i = 1, ..., n, be locally injective
functions belonging to Cqi(Ii), where Ii are intervals. The class of nowhere
homolomorphically extendable functions belonging to Cp1,...,pn(γ1, ..., γn) is a
dense and Gδ subset of Cp1,...,pn(γ1, ..., γn).

Proof. Let Ai be the class of nowhere holomorphically extendable functions
belonging to Cpi(γi) for i = 1, ..., n. Then the set A1 × ... × An coincides
with the class of nowhere holomorphically extendable functions belonging to
Cp1,...,pn(γ1, ..., γn). It follows from Theorem 4.9 that the sets A1, ..., An are
dense and Gδ subsets of Cp1(γ1), ..., Cpn(γn), respectively, which combined
with Proposition 5.1 implies that the class A1 × ... × An is a dense and Gδ

subset of Cp1,...,pn(γ1, ..., γn).

Definition 5.6. Let n ∈ {1, 2, ...}. Let also γi : Ii → C, i = 1, ..., n, be
locally injective curves, where Ii are intervals. A function f on the disjoint
union γ∗1 ∪ ... ∪ γ∗n, f(z) = fi(z) for z ∈ γ∗i , is nowhere real analytic if the
functions fi are nowhere real analytic for i = 1, ..., n.

The proof of the following theorem is similar to the proof of Theorem 5.5.
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Theorem 5.7. Let n ∈ {1, 2, ...} and pi ∈ {0, 1, ...} ∪ {∞}, i = 1, ..., n. Let
also γi : Ii → C be analytic curves, where Ii are intervals, Φi : γ∗i → C be
homeomorphisms of γ∗i on Φi(γi) ⊂ C and let δi = Φi ◦ γi, i = 1, ..., n. The
class of nowhere analytic functions f ∈ Cp1,...,pn(δ1, ..., δn) is a dense and Gδ

subset of Cp1,...,pn(δ1, ..., δn).

From now on, we will consider that p1 = p2 = · · · = pn. As we did for the
spaces Cp1,...,pn , we will prove analogue generic results in the space Ap(Ω),
where Ω is a planar domain bounded by the disjoint Jordan curves γ1, ..., γn,
n ∈ {1, 2, ...}. More specifically, we will define the following spaces:

Definition 5.8. Let p ∈ {0, 1, ...}∪{∞} and let Ω be a bounded domain in C.
A function f belongs to the class Ap(Ω) if it is holomorphic on Ω and every
derivative f j can be continuously extended on Ω, for all j ∈ {0, 1, ...}, j ≤ p.
The space Ap(Ω) is endowed with the topology of uniform convergence on Ω
of every derivative f (j) for all j ∈ {0, 1, ...}, j ≤ p and becomes a complete
metric space.

Remark 5.9. In particular cases it is true that Ap(Ω) is included in Cp(∂Ω)
as a closed subset. We will not examine now under which more general
sufficient conditions this remains true.

Remark 5.10. If Ω is arbitrary open set in C (probably unbounded), then
a holomorphic function f : Ω → C belongs to the class Ap(Ω) if for every
j ∈ {0, 1, 2, · · · }, j ≤ p the derivative f (j) has a continuous extension from
Ω to its closure Ω in C. The topology of Ap(Ω) is defined by the seminorms

sup
z∈Ω,|z|≤n

|f (l)(z)|, l ∈ {0, 1, 2, · · · }, l ≤ p, n ∈ N

Definition 5.11. Let Ω be a bounded domain in C defined by a finite number
of disjoint Jordan curves. Let also z0 ∈ ∂Ω. A continuous function f : Ω→
C belongs to the class of non-holomorphically extendable at z0 functions in
the sense of Riemann surfaces if there do not exist open disks D(z0, r), r > 0
and D(z1, d), z1 ∈ D(z0, r)∩Ω, d > 0 such that D(z1, d) ⊆ D(z0, r)∩Ω, and
a holomorphic function F : D(z0, r)→ C such that F |D(z1,d) = f |D(z1,d).

Theorem 5.12. Let p ∈ {0, 1, ...} ∪ {∞} and let Ω be a bounded domain in
C defined by a finite number of disjoint Jordan curves. Let also z0 ∈ ∂Ω.
The class of non-holomorphically extendable at z0 functions of Ap(Ω) in the
sense of Riemann surfaces is a dense and Gδ subset of Ap(Ω).
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Proof. Let M > 0, r > 0, z1 ∈ D(z0, r) ∩ Ω and d > 0 such that D(z1, d) ⊂
D(z0, r) ∩ Ω. Let also A(p,Ω, z0, r, z1, d,M) be the set of Ap(Ω) functions
f for which there exists a holomorphic function F on D(z0, r), such that
|F (z)| ≤ M for every z ∈ D(z0, r) and F |D(z1,d) = f |D(z1,d). We will first
show that the class A(p,Ω, z0, r, z1, d,M) is a closed subset of Ap(Ω) with
empty interior.

Let (fn)n≥1 be a sequence in A(p,Ω, z0, r, z1, d,M) converging in the topol-
ogy of Ap(Ω) to a function f of Ap(Ω). This implies that fn converges uni-
formly on Ω to f. Then, for n = 1, 2, . . . there are holomorphic functions
Fn : D(z0, r) → C bounded by M such that Fn|D(z1,d) = fn|D(z1,d). By
Montel’s theorem, there exists a subsequence (Fkn) of (Fn) which converges
uniformly on the compact subsets of D(z0, r) to a function F which is holo-
morphic and bounded by M on D(z0, r). Because Fkn → f at D(z1, d) we
have that F |D(z1,d) = f |D(z1,d) and so f ∈ A(p,Ω, z0, r, z1, d,M). Therefore,
A(p,Ω, z0, r, z1, d,M) is a closed subset of Ap(Ω).

In addition, if A(p,Ω, z0, r, z1, d,M) has not empty interior, then there
exist f ∈ A(p,Ω, z0, r, z1, d,M), l ∈ {0, 1, 2, ...} and ε > 0 such that

{g ∈ Ap(Ω) : sup
z∈Ω

∣∣f (j)(z)− g(j)(z)
∣∣ < ε,

0 ≤ j ≤ l} ⊂ A(p,Ω, z0, r, z1, d,M).

We choose w ∈ D(z0, r)\Ω and 0 < δ < εmin{inf
z∈Ω
|z−w|, inf

z∈Ω
|z−w|2, ..., 1

l!
inf
z∈Ω
|z−

w|l+1}. We notice that this is possible, since w 6∈ Ω. The function h(z) =

f(z) +
δ

2(z − w)
belongs to A(p,Ω, z0, r, z1, d,M) and therefore it has a holo-

morphic and bounded extension H on D(z0, r), such that H|D(z1,d) = h|D(z1,d).
However, there exists a holomorphic function F : D(z0, r) → C which coin-

cides with f on D(z1, d). By analytic continuation H(z) = F (z) +
δ

2(z − w)
for z ∈ D(z0, r) \ {z0}, since they are equal on D(z1, d). As a result H is not
bounded at D(z0, r) which is a contradiction. Thus, A(p,Ω, z0, r, z1, d,M)
has empty interior.

Next, let us consider B be the set of (r, z, d,M), where r =
1

n
, d =

1

m
for some n,m ∈ {1, 2, ...} for which there exists z ∈ Q + iQ such that
D(z, d) ⊂ D(z0, r) ∩ Ω, and M ∈ {1, 2, ...}. Then B is countable and thus
there exist a sequence (bn) such that B = {bn : n ∈ {1, 2, ...}}. Then the class
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of nowhere holomorphically extendable functions of Ap(Ω) coincides with the
set

∞⋂
n=1

(Ap(Ω)\A (p,Ω, z0, bn)) ,

because every holomorphic function on D(z0, r) becomes bounded if we re-
strict it on D(z0, r

′) for r′ < r. Thus, according to Baire’s theorem the class
of non-holomorphically extendable at z0 functions of Ap(Ω) is a dense and
Gδ subset of Ap(Ω).

Definition 5.13. Let Ω be a bounded domain in C defined by a finite num-
ber of disjoint Jordan curves. A continuous function f : Ω → C belongs
to the class of nowhere holomorphically extendable functions in the sense
of Riemann surfaces if for every z0 ∈ ∂Ω, f belongs to the class of non-
holomorphically extendable at z0 functions in the sense of Riemann surfaces.

Theorem 5.14. Let p ∈ {0, 1, ...} ∪ {∞} and let Ω be a bounded domain in
C defined by a finite number of disjoint Jordan curves. The class of nowhere
holomorphically extendable functions of Ap(Ω) in the sense of Riemann sur-
faces is a dense and Gδ subset of Ap(Ω).

Proof. Let zl, l = 1, ... be a dense sequence of ∂Ω. If A(zl) is the class of non-
holomorphically extendable at zl functions of Ap(Ω) in the sense of Riemann
surfaces, then, from Theorem 5.12, the set A(zl) is a dense and Gδ subset of

Ap(Ω). The set
∞⋂
l=1

A(zl) coincides with the class of nowhere holomorphically

extendable functions of Ap(Ω) in the sense of Riemann surfaces and from
Baire’s theorem is a dense and Gδ subset of Ap(Ω).

Remark 5.15. In [8] it has been also proved that the class of nowhere holo-
morphically extendable functions of A∞(Ω) in the sense of Riemann surfaces
is a dense and Gδ subset of A∞(Ω). The method in [8] comes from the theory
of Universal Taylor Series and is different from the method in the present
paper.

Now we will examine a different kind of extendability.

Definition 5.16. Let Ω be a bounded domain in C defined by a finite num-
ber of disjoint Jordan curves γ1, · · · , γn. Let also z0 ∈ ∂Ω. A continuous
function f : Ω → C belongs to the class of non-holomorphically extendable
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at z0 functions if there exist no pair of an open disk D(z0, r), r > 0 and
a holomorphic function F : D(z0, r) → C such that F (z) = f(z) for every
z ∈ D(z0, r)∩∂Ω. Otherwise we will say that f is holomorphically extendable
at z0.

Remark 5.17. If γi : Ii → C, Ii = [ai, bi], ai < bi, is continuous and γi(x) =
γi(y) for x, y ∈ [ai, bi] if and only if x = y or x, y{ai, bi}, then we observe
that a function f belongs to the class of non-holomorphically extendable at
z0 = γi(t0), t0 ∈ Ii of Definition 5.16 if and only if there are no open disk
D(z0, r), r > 0 and η > 0 and a holomorphic function F : D(z0, r) → C,
such that γi((t0 − η, t0 + η) ∩ Ii) ⊂ D(z0, r) and F (γi(t)) = f(γi(t)) for all
t ∈ (t0− η, t0 + η)∩ Ii. This holds true because of the following observations:
1)For a constant η > 0 we can find r > 0 such that D(z0, r) ∩ γ∗i ⊆ γi((t0 −
η, t0 + η) ∩ Ii). This follows from the fact that the disjoint compact sets
γi[Ii \ (t0 − η, t0 + η)] and {z0} have a strictly positive distance.
2)For a constant r > 0 we can find η > 0 such that γi((t0 − η, t0 + η)∩ Ii) ⊂
D(z0, r), because of the continuity of the map γi.

Theorem 5.18. Let p ∈ {0, 1, ...}∪{∞} and let Ω be a bounded domain in C
defined by a finite number of disjoint Jordan curves. Let also z0 ∈ ∂Ω. The
class of non-holomorphically extendable at z0 functions of Ap(Ω) is a dense
and Gδ subset of Ap(Ω).

Proof. Let M > 0, r > 0 and A(p,Ω, z0, r,M) be the class of functions
f ∈ Ap(Ω) for which there exist a holomorphic function F : D(z0, r) → C
such that F |D(z0,r)∩∂Ω = f |D(z0,r)∩∂Ω and |F (z)| ≤ M for z ∈ D(z0, r). We
will show that this class is a closed subset of Ap(Ω) with empty interior.

Similarly to the proof of Lemma 4.1 the class A(p,Ω, z0, r,M) is a closed
subset of Ap(Ω).

If A(p,Ω, z0, r,M) has not empty interior, then there exist a function f
in the interior of A(p,Ω, z0, r,M), a number b ∈ {0, 1, 2, ...} and δ > 0 such
that

{g ∈ Ap(Ω) : sup
z∈Ω

∣∣f (j)(z)− g(j)(z)
∣∣ < δ,

0 ≤ j ≤ b} ⊂ A(p,Ω, z0, r,M).

We choose w ∈ D(z0, r)\Ω and 0 < a < δmin{inf
z∈Ω
|z−w|, inf

z∈Ω
|z−w|2, ..., 1

b!
inf
z∈Ω
|z−

w|b+1}. This is possible because w 6∈ Ω. Then, similarly to the proof of The-

37



orem 4.7 we are led to a contradiction. Thus A(p,Ω, z0, r,M) has empty
interior.

The set
∞⋂

M=1

∞⋂
n=1

(
Ap(Ω) \ A

(
p,Ω, z0,

1

n
,M

))
coincides with the class of non-holomorphically extendable at z0 functions of
Ap(Ω) and Baire’s theorem implies that this set is a dense and Gδ subset of
Ap(Ω).

Definition 5.19. Let Ω be a bounded domain in C defined by a finite number
of disjoint Jordan curves. A continuous function f : Ω → C belongs to the
class of nowhere holomorphically extendable functions if for every z0 ∈ ∂Ω,
f belongs to the class of non-holomorphically extendable at z0 functions.

Theorem 5.20. Let p ∈ {0, 1, ...} ∪ {∞} and let Ω be a bounded domain in
C defined by a finite number of disjoint Jordan curves. The class of nowhere
holomorphically extendable functions of Ap(Ω) is a dense and Gδ subset of
Ap(Ω).

Proof. The proof is similar to the proof of Theorem 4.9, taking into account
the statement of Theorem 5.18.

Remark 5.21. If the continuous analytic capacity of the boundary of Ω is
zero, then Definition 5.11 implies Definition 5.16.

Indeed, let Ω be a bounded domain in C defined by a finite number of
disjoint Jordan curves, such that the continuous analytic capacity of ∂Ω is
zero, and let z0 ∈ ∂Ω. Let f be a continuous function in Ω which does not
belong to the class of Definition 5.16; That is there exist a pair of an open
disk D(z0, r), r > 0 and a holomorphic function F : D(z0, r) → C such
that F (z) = f(z) for every z ∈ D(z0, r) ∩ ∂Ω. We consider the function
G : D(z0, r)→ C

G(z) =

{
F (z), z ∈ D(z0, r) \ Ω
f(z), z ∈ D(z0, r) ∩ Ω

Then G is continuous on D(z0, r) and holomorphic on D(z0, r) \ ∂Ω. But
the continuous analytic capacity of ∂Ω is zero. From Theorem 3.6, G is
holomorphic on D(z0, r) and, since the set D(z0, r) ∩ Ω is an open subset of
C, there exist z1 ∈ D(z0, r)∩Ω and d > 0 such that D(z1, d) ⊂ D(z0, r)∩Ω.
Obviously G coincides with f on D(z1, d) and thus f does not belong to the
class of Definition 5.11.
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Now, as in section 4, we will associate the phenomenon of non-extendability
with that of real analyticity on the spaces Ap(Ω).

Definition 5.22. Let n ∈ {1, 2, ...} and let Ω be a bounded domain in C
defined by disjoint Jordan curves γ1, ..., γn. A function f : Ω → C is real
analytic at (t0, γi(t0)), γi(t0) ∈ γ∗i , i ∈ {1, 2, ..., n} if f |γi is real analytic at
(t0, γi(t0)).

At this point we can observe that if Ω is a bounded domain in C de-
fined by disjoint Jordan curves γ1, ..., γn and f ∈ Ap(Ω), then the analogous
of Proposition 2.9 under the above assumptions holds true, since nothing
essential changes in its proof. So, we have the following proposition:

Proposition 5.23. Let p ∈ {0, 1, ...} ∪ {∞}, n ∈ {0, 1, ...} and let Ω be a
bounded domain in C defined by disjoint analytic Jordan curves γ1, ..., γn. A
continuous function f : Ω → C is real analytic at (t0, γi(t0)), γi(t0) ∈ γ∗i ,
i ∈ {1, 2, ..., n} if and only if is holomorphically extendable at γi(t0).

Definition 5.24. Let p ∈ {0, 1, ...} ∪ {∞}, n ∈ {0, 1, ...} and let Ω be a
bounded domain in C defined by disjoint Jordan curves γ1, ..., γn. A function
f ∈ Ap(Ω) is nowhere real analytic if there exist no i ∈ {1, 2, ..., n} and
γi(t0) ∈ ∂Ω such that f is real analytic at (t0, γi(t0)).

Now, combining Proposition 5.23 with Theorem 5.20, we have the follow-
ing theorem:

Theorem 5.25. Let p ∈ {0, 1, ...} ∪ {∞} and let Ω be a bounded domain in
C defined by a finite number of disjoint analytic Jordan curves. The class of
nowhere real analytic functions of Ap(Ω) is a dense and Gδ subset of Ap(Ω).

Remark 5.26. We recall that for an analytic Jordan curve γ defined on
[0, 1] there exist 0 < r < 1 < R and a holomorphic injective function Φ :
D(0, r, R) → C, such that γ(t) = Φ(eit), where D(0, r, R) = {z ∈ C :
r < |z| < R}. This yields a natural parametrization of the curve γ∗; the
parameter t is called a conformal parameter for the curve γ∗. Theorem
5.25 holds if each of the Jordan curves γ1, ..., γn is parametrized by such
a conformal parameter t. Naturally one asks if the same result holds for
other parametrizations; for instance does Theorem 5.25 remains true if each
γ1, ..., γn is parametrized by arc length? This was the motivation of [9] and
[10], where it is proved that arc length is a global conformal parameter for
any analytic curve. Thus, Theorem 5.25 remains also true if arc length is
used as a parametrization for each analytic curve γi.
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6 One sided extendability

In this section, we consider one sided extensions from a locally injective curve
γ. For instance, if γ∗ is homeomorphic to [0, 1], one can find an open disc
D and an open arc J of γ∗ separating D to two components D+ and D−.
Those are Jordan domains containing in their boundaries a subarc J of γ.
We will show that generically in Ck(γ) every function h cannot be extended
to a function F : Ω ∪ J → C continuous on Ω ∪ J and holomorphic in Ω;
where Ω = D+ or Ω = D−. That is the one sided extendability is a rare
phenomenon in Ck(γ), provided that γ is of class at least Ck. In order
to prove this fact we need the following lemmas, which are well known in
algebraic topology. We include their elementary proofs for the purpose of
completeness.

Lemma 6.1. Let δ : [0, 1] → C be a continuous and injective curve. Then
the interior of δ∗ in C is void.

Proof. We will prove the lemma by contradiction. Suppose that there exists
an open disk W ⊂ δ∗. Let ts be a point in the interior of [0, 1], such that
δ(ts) ∈ W . Since the function δ is a homeomorphism of [0, 1] on δ∗ ⊂ C, then
δ|[0,1]\{ts} is a homemorphism of [0, 1] \ {ts} on δ∗ \ {δ(ts)} ⊂ C. But the set
[0, 1] \ {ts} has two connected components and thus the set δ∗ \ {δ(ts)} has
two connected components V1, V2. Both V1, V2 intersect W , because we can
find points of both V1, V2 arbitrary close to the point δ(ts) of the open set W .
Therefore, W∩V1 6= ∅, W∩V2 6= ∅ andW\{δ(ts)} = (W∩V1)∪(W∩V2). Also,
the sets V1, V2 are closed in the relative topology of δ∗\{δ(ts)} ⊃ W \{δ(ts)}.
It follows that the sets W ∩ V1,W ∩ V2 are closed in the relative topology
of W \ {δ(ts)}. Consequently, the set W \ {δ(ts)} is not connected, which is
absurd, since it is an open disk without one of its interior points. Thus, the
interior of δ∗ in C is void.

Proposition 6.2. Let I ⊂ R be an interval. Let also γ : I → C be a
continuous and locally injective curve. Then the interior of γ∗ in C is void .

Proof. Let ti ∈ I be such that γ|[ti,ti+1] is injective, where i varies on a finite
or infinite denumerable set S ⊂ Z and⋃

n∈S

[tn, tn+1] = I.
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From Lemma 6.1, the interior of every γ∗[ti,ti+1] is void in C. Also, the set⋃
n∈S

γ∗[tn,tn+1]

coincides with γ∗ and Baire’s theorem implies that the interior of γ∗ is void
in C.

Proposition 6.2 implies the following:

Corollary 6.3. Let γ : I → C be a continuous and locally injective curve on
the interval I ⊂ R. Let also Ω be a Jordan domain, such that ∂Ω contains
an arc of γ∗, γ([t1, t2]), t1 < t2, t1, t2 ∈ I. Then the set Ω \ γ∗ is not empty.

Let γ : I → C be a continuous and locally injective curve defined on
the interval I ⊂ R. Naturally one asks if a Jordan domain as in Corollary
6.3 exists. Now, we will construct denumerably many such Jordan domains,
such that every Ω, as in Corollary 6.3, contains one of these domains.

Let t0 ∈ I◦, where I◦ is the interior of I in R, and s1, s2 ∈ I ∩ Q,
s1 < t0 < s2, such that the map γ|[s1,s2] is injective. Then, the set γ([s1, t0])
is compact and the point γ(s2) does not belong to γ([s1, t0]). Thus, there
exists 0 < δ = dist(γ(s2), γ([s1, t0])). From Proposition 6.2, there exists P ∈
(Q + iQ) ∩D(γ(s2), δ/2), P 6∈ γ([s1, s2]). Let 0 < a = dist(P, γ([s1, s2])) ≤
|P − γ(s2)| < δ/2. Then there exists t0 < r ≤ s2, such that |γ(r) − P | = a,
because, for every t ∈ [s1, t0],

|γ(t)− P | ≥ |γ(t)− γ(s2)| − |γ(s2)− P | > δ − δ/2 = δ/2

Then, the segment [P, γ(r)] intersects γ([s1, s2]) only at γ(r). Similarly, if
0 < ε = dist(γ(s1), γ([t0, s2])), there exist Q ∈ (Q + iQ) ∩ D(γ(s1), ε/2),
Q 6∈ γ([s1, s2]) and s1 ≤ r̃ < t0, such that the segment [Q, γ(r̃)] intersects
γ([s1, s2]) only at γ(r̃).

We distinguish two cases according to whether the segments [P, γ(r)],
[Q, γ(r̃)] intersect or not. If the segments [P, γ(r)], [Q, γ(r̃)] intersect at
a point w, then the union of the segments [w, γ(r)], [w, γ(r̃)] and γ[r̃, r]
is the image of a Jordan curve, the interior of which is one of the desired
Jordan domains. If the segments [P, γ(r)], [Q, γ(r̃)] do not intersect, then
we consider a simple polygonal line (that is without self intersections) in
C \ γ([s1, s2]), which connects P,Q, the vertices of which belong to Q + iQ.
This is possible, since the set C\γ([s1, s2]) is a domain ([11]). We consider one
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of the connected components of this simple polygonal line minus the segments
[P, γ(r)], [Q, γ(r̃)], such that the closure of this connected component is a
simple polygonal line connecting two points z1 ∈ [P, γ(r)], z2 ∈ [Q, γ(r̃)].
Then, the union of the last simple polygonal line with the segments [z1, γ(r)],
[z2, γ(r̃)] and the arc of γ∗, γ[r̃, r] is the image of a Jordan curve, the interior
of which is one of the desired Jordan domains. We notice that t0 ∈ [r̃, r] and
that the constructed Jordan domains are denumerably many.

Proposition 6.4. Let γ : I → C be a locally injective map of class C l(I),
l ∈ {0, 1, 2, ...}∪{∞} on the interval I ⊂ R. Let also Ω be a Jordan domain,
such that ∂Ω contains an arc of γ∗, γ([t1, t2]), t1 < t2, t1, t2 ∈ I and k ∈
{0, 1, 2, ...} ∪ {∞}, k ≤ l. Let 0 < M <∞. The set of functions f ∈ Ck(γ)
for which there exists a continuous function F : Ω ∪ γ((t1, t2)), ||F ||∞ ≤M ,
such that F is holomorphic on Ω and F |γ((t1,t2)) = f |γ((t1,t2)), is a closed subset
of Ck(γ) with empty interior.

Proof. Let Ψ be a homeomorphism of D ∪ J ⊂ C on Ω ∪ γ(t1, t2), which
is also holomorphic on Ω, where J = {eit : 0 < t < 1}. This is possible
because of the Caratheodory-Osgood theorem. Let also A(k,Ω,M) be the
set of functions f ∈ Ck(γ) for which there exists a continuous function F :
Ω ∪ γ((t1, t2)) → C, ||F ||∞ ≤ M , such that F is holomorphic on Ω and
F |γ((t1,t2)) = f |γ((t1,t2)).

First, we will prove that A(k,Ω,M) is a closed subset of Ck(γ). Let
(fn)n≥1 be a sequence in A(k,Ω,M) converging in the topology of Ck(γ) to a
function f ∈ C l(γ). This implies that fn converges uniformly on the compact
subsets of γ∗ to f . Then, for n = 1, 2, . . . there exist continuous functions
Fn : Ω ∪ γ((t1, t2)) → C, ||Fn||∞ ≤ M , such that Fn are holomorphic on Ω
and Fn|γ((t1,t2)) = fn|γ((t1,t2)). If Gn = Fn ◦ Ψ, gn = fn ◦ Ψ and g = f ◦ Ψ for
n = 0, 1, 2, . . . , it follows that gn converges uniformly on the compact subsets
of J to g. Also, the functions Gn are holomorphic and bounded by M on
D. By Montel’s theorem, there exists a subsequence of (Gn), (Gkn) which
converges uniformly on the compact subsets of D to a function G which is
holomorphic and bounded by M on D. Without loss of generality, we assume
that (Gn) = (Gkn). Now, it is sufficient to prove that for any circular sector
K, which has boundary [0, eia] ∪ [0, eib] ∪ {eit : a ≤ t ≤ b}, 0 < a < b < 1,
the sequence (Gn) converges uniformly on K, because then the limit of (Gn),
which is equal to g at the arc J and equal to G on the remaining part of
the circular sector K, will be a continuous function. In order to do so, we
will prove that (Gn) is a uniformly Cauchy sequence on K. Because each
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Gn is a bounded holomorphic function on D, we know that for every n, the
radial limits of Gn exist almost everywhere on the unit circle and so we can
consider the respective functions gn defined almost everywhere on the unit
circle which are extensions of the previous gn. These gn are also bounded by
M .
Let ε > 0 be a positive number. For the Poisson kernel Pr, 0 ≤ r < 1

and for every n = 0, 1, 2 . . . , it holds that Gn(reiθ) =
1

2π

π∫
−π
Pr(t)gn(θ − t)dt.

We choose 0 < δ < min{1 − b, a}. There exists 0 < r0 < 1 such that
sup

δ≤|t|≤π
Pr(t) <

ε
8M

for every r ∈ [r0, 1). Then, (Gn) is a uniformly Cauchy

sequence on K ∩ {z ∈ C : |z| ≤ r0}, and thus, there exists n1 such that for
every n,m ≥ n1,

sup
z∈K∩{z∈C:|z|≤r0}

|Gn(z)−Gm(z)| < ε

2
(1)

In addition, because gn converges uniformly to g on J there exists n2, such

that for every n,m ≥ n2, sup
z∈J
|gn(z)− gm(z)| < ε

4
. Consequently, for n,m ≥

max{n1, n2}, for θ ∈ [a, b] and for 1 > r > r0

|Gn(reiθ)−Gm(reiθ)| ≤ 1

2π

π∫
−π

Pr(t)|gn(θ − t)− gm(θ − t)|dt =

1

2π

δ∫
−δ

Pr(t)|gn(θ − t)− gm(θ − t)|dt+

+
1

2π

∫
δ≤|t|≤π

Pr(t)|gn(θ − t)− gm(θ − t)|dt ≤

1

2π

δ∫
−δ

Pr(t) sup
z∈J
|gn(z)− gm(z)|dt+

sup
δ≤|t|≤π

Pr(t)

2π

∫
δ≤|t|≤π

2Mdt ≤

ε

4

1

2π

δ∫
−δ

Pr(t)dt+
ε

16Mπ

∫
δ≤|t|≤π

2Mdt ≤
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ε

4

1

2π

π∫
−π

Pr(t)dt+
ε

4
=
ε

2
(2)

By the continuity of the functions Gn on D∪J , making r → 1−, we find that

|Gn(eiθ)−Gm(eiθ)| ≤ ε

2
, (3)

for all θ ∈ [a, b]. Therefore, from (1), (2) and (3), it follows that (Gn) is a uni-
formly Cauchy sequence on the circular sector K and thus the set A(k,Ω,M)
is a closed subset of Ck(γ).

If A(k,Ω,M) has not empty interior, then there exists a function f in the
interior of A(k,Ω,M), a compact set L ⊂ I and δ > 0 such that

{g ∈ Ck(γ) : sup
t∈L

∣∣(f ◦ γ)(j)(t)− (g ◦ γ)(j)(t)
∣∣ < δ,

0 ≤ j ≤ b} ⊂ A(k,Ω,M).

From Corollary 6.3, we can find a w ∈ Ω \ γ∗. We choose 0 < a <

δmin{ inf
t∈K
|γ(t)−w|, inf

t∈K
|γ(t)−w|2, ..., 1

b!
inf
t∈K
|γ(t)−w|b+1}. This is possible be-

cause w 6∈ γ∗ and γ(K) ⊂ γ∗. The function h(γ(t)) = f(γ(t)) +
a

2(γ(t)− w)
,

t ∈ I belongs to A(k,Ω,M) and therefore has a continuous and bounded ex-
tension H on Ω∪γ((t1, t2)) with H|γ((t1,t2)) = h|γ((t1,t2)) which is holomorphic
on Ω. Then, the function H ◦ Ψ is continuous and bounded on D ∪ J and

holomorhic on D. We can easily see that H(Ψ(z)) = F (Ψ(z))+
a

2(Ψ(z)− w)

for z ∈ D\{Ψ−1(w)}. Indeed, let Φ(z) = H(Ψ(z))−F (Ψ(z))− a

2(Ψ(z)− w)
.

Then, Φ|J = 0 and by Schwarz Reflection Principle Φ is extended holomor-
phically on

(D ∪ J ∪ (C \D)) \ {Ψ−1(w),
1

Ψ−1(w)
}.

Therefore, because Φ = 0 on J , by analytic continuation, H(Ψ(z))−F (Ψ(z))−
a

2(Ψ(z)− w)
= 0 on (D ∪ J) \ {Ψ−1(w)}. As a result H ◦Ψ is not bounded

on D which is absurd. Thus, A(k,Ω,M) has empty interior.

Definition 6.5. Let γ : I → C be a locally injective map on the interval
I ⊂ R. Let also t0 ∈ I◦, where I◦ is the interior of I in R. A function
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f : γ∗ → C is non one sided holomorphically extendable at (t0, γ(t0)) if there
exists no pair of a Jordan domain Ω, such that ∂Ω contains an arc of γ∗,
γ([t1, t2]), t1 < t0 < t2, t1, t2 ∈ I and a continuous function F : Ω∪γ((t1, t2)),
which is holomorphic on Ω and F |γ((t1,t2)) = f |γ((t1,t2)).

Theorem 6.6. Let γ : I → C be a locally injective map of class C l(I),
l ∈ {0, 1, 2, ...} ∪ {∞} on the interval I ⊂ R and k ∈ {0, 1, 2, ...} ∪ {∞},
k ≤ l. Let also t0 ∈ I◦, where I◦ is the interior of I in R. The class of
non one sided holomorphically extendable at (t0, γ(t0)) functions of Ck(γ) is
a dense and Gδ subset of Ck(γ).

Proof. If Ω is a Jordan domain, such that ∂Ω contains an arc of γ∗, γ([t1, t2]),
t1 < t0 < t2, t1, t2 ∈ I, then A(k,Ω,M) denotes the set of functions f ∈ Ck(γ)
for which there exists a continuous and bounded by M function F : Ω ∪
γ((t1, t2)), which is holomorphic on Ω and F |γ((t1,t2)) = f |γ((t1,t2)). Let Gn,
n = 1, 2, ... be the denumerably many Jordan domains constructed above,
such that s1 < t0 < s2 where s1, s2 ∈ Q ∩ I are as in the construction of Gn

and t0 is the fixed real number in the statement of Theorem 6.6 .
From Proposition 6.4, the sets A(k,Gn,M) are closed subsets of Ck(γ)

with empty interior. We will prove that the class of non one sided holo-
morphically extendable at (t0, γ(t0)) functions of Ck(γ) coincides with the
set

∞⋂
n=1

∞⋂
M=1

(Ck(γ) \ A(k,Gn,M)),

and thus, Baire’s theorem will imply that the above set is a dense and Gδ

subset of Ck(γ).
Obviously, the set

∞⋂
n=1

∞⋂
M=1

(Ck(γ) \ A(k,Gn,M))

contains the class of non one sided holomorphically extendable at (t0, γ(t0))
functions of Ck(γ). Reversely, let Ω be a Jordan domain whose boundary
contains an arc γ([t1, t2]), t1 < t0 < t2, t1, t2 ∈ I. Let also f ∈ Ck(γ),
for which there exists a continuous function F : Ω ∪ γ((t1, t2)), which is
holomorphic on Ω and F |γ((t1,t2)) = f |γ((t1,t2)). From the construction of the
above Jordan domains Gn, we can find P,Q ∈ Ω ∩ (Q + iQ) and t1 < r̃ <
t0 < r < t2, such that the segments [P, γ(r)], [Q, γ(r̃)] intersect ∂Ω only at
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γ(r), γ(r̃), respectively. The only modifications needed in order to do that
are the following: we fix t1 < t3 < t0 < t4 < t2, t3, t4 ∈ Q and consider a
number smaller than the half of the distance of γ(t3) from the compact set
∂Ω \ γ(t1, t0) and a number smaller than the half of the distance of γ(t4)
from the compact set ∂Ω \ γ(t0, t2). We continue as in the construction,
with the only possible difference that the rational numbers t3 and t4 will
replace s1, s2 in the construction of the Gn after Corollary 6.3 and, if a
simple polygonal line, which connects P,Q and with vertices in Q + iQ, is
needed, we consider it also in the domain Ω. This Jordan domain is one of the
denumerable Jordan domains, Gn0 , constructed above and Gn0 is contained
in Ω ∪ γ([r̃, r]). It easily follows that F |Gn0

is bounded by some number
M = 1, 2, 3, ... and thus f belongs to A(k,Gn0 ,M). Therefore, the class of
non one sided holomorphically extendable at (t0, γ(t0)) functions of Ck(γ) is
a subset of the set

∞⋂
n=1

∞⋂
M=1

(Ck(γ) \ A(k,Gn,M)),

which combined with the above completes the proof.

Definition 6.7. Let γ : I → C be a locally injective map on the interval I ⊂
R. A function f : γ∗ → C is nowhere one sided holomorphically extendable if
there exists no pair of a Jordan domain Ω, such that ∂Ω contains an arc of
γ∗, γ([t1, t2]), t1 < t2, t1, t2 ∈ I and a continuous function F : Ω∪ γ((t1, t2)),
which is holomorphic on Ω and F |γ((t1,t2)) = f |γ((t1,t2)).

Theorem 6.8. Let γ : I → C be a locally injective map of class C l, l ∈
{0, 1, 2, ...} ∪ {∞} on the interval I ⊂ R and k ∈ {0, 1, 2, ...} ∪ {∞}, k ≤ l.
The class of nowhere one sided holomorphically extendable functions of Ck(γ)
is a dense and Gδ subset of Ck(γ).

Proof. Let tn ∈ I◦, n = 1, 2, ..., where I◦ is the interior of I in R, be a
dense sequence in I. Then the class of nowhere one sided holomorphically
extendable functions of Ck(γ) coincides with the intersection of the classes of
non one sided holomorphically extendable at (tn, γ(tn)) functions of Ck(γ),
which is from Theorem 6.6 and Baire’s theorem a dense and Gδ subset of
Ck(γ).

Let n ∈ {1, 2, ...} and let γi : Ii → C, i = 1, ..., n, be continuous and
locally injective curves, where Ii are intervals. We recall the definition of the
space Cp1,...,pn(γ1, ..., γn) = Cp1(γ1) × ... × Cpn(γn), where pi ∈ {0, 1, 2, ...} ∪
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{∞}, for i = 1, ..., n. Now, as we did in section 5, we will prove generic
results for the spaces Cp1,...,pn(γ1, ..., γn).

Definition 6.9. Let n ∈ {1, 2, ...}. Let also γi : Ii → C, i = 1, ..., n, be
locally injective curves, where Ii are intervals and t0 a point of some Ii0. A
function f on the disjoint union γ∗1 ∪ ... ∪ γ∗n, f(z) = fi(z) for z ∈ γ∗i , is
non oned sided holomorphically extendable at (t0, γi0(t0)) if the function fi0
defined on γ∗i0 is non one sided holomorphically extendable at (t0, γi0(t0)).

Theorem 6.10. Let n ∈ {1, 2, ...}, pi, qi ∈ {0, 1, ...} ∪ {∞} such that pi ≤ qi
for i = 1, ..., n . Let also γi : Ii → C, i = 1, ..., n, be locally injective functions
belonging to Cqi(Ii), where Ii are intervals, and t0 a point of some Ii0. The
class of non one sided homolomorphically extendable at (t0, γi0(t0)) functions
belonging to Cp1,...,pn(γ1, ..., γn) is a dense and Gδ subset of Cp1,...,pn(γ1, ..., γn).

Proof. Similar to the proof of Theorem 5.5.

Definition 6.11. Let n ∈ {1, 2, ...}. Let also γi : Ii → C, i = 1, ..., n, be
locally injective curves, where Ii are intervals. A function f on the disjoint
union γ∗1 ∪ ... ∪ γ∗n, f(z) = fi(z) for z ∈ γ∗i , is nowhere one sided holomor-
phically extendable if the functions fi defined on γ∗i are nowhere one sided
holomorphically extendable functions.

The proof of the following theorem is also similar to the proof of Theorem
5.5.

Theorem 6.12. Let n ∈ {1, 2, ...}, pi, qi ∈ {0, 1, ...} ∪ {∞} such that pi ≤ qi
for i = 1, ..., n. Let also γi : Ii → C, i = 1, ..., n, be locally injective functions
belonging to Cqi(Ii), where Ii are intervals. The class of nowhere one sided
homolomorphically extendable functions belonging to Cp1,...,pn(γ1, ..., γn) is a
dense and Gδ subset of Cp1,...,pn(γ1, ..., γn).

Definition 6.13. Let n ∈ {1, 2, ...} and let Ω be a bounded domain in C
defined by disjoint Jordan curves γi : R → C, where each γi is continuous
and periodic, i = 1, ..., n. Let also t0 ∈ R. A function f : Ω → C is non
one sided holomorphically extendable at (t0, γi0(t0)) outside Ω if there exists
no pair of a Jordan domain G ⊂ C \ Ω, such that ∂G contains a Jordan
arc of γ∗i0, γi0([t1, t2]), t1 < t0 < t2, t1, t2 ∈ R and a continuous function
F : Ω ∪ γ((t1, t2)), which is holomorphic on G and F |γi0 ((t1,t2)) = f |γi0 ((t1,t2)).
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Theorem 6.14. Let p ∈ {0, 1, ...} ∪ {∞}, n ∈ {1, 2, ...} and let Ω be a
bounded domain in C defined by disjoint Jordan curves γi : R → C, where
each γi is continuous and periodic, i = 1, ..., n. Let also t0 ∈ R. The class of
non one sided holomorphically extendable at (t0, γi0(t0)) outside Ω functions
of Ap(Ω) is a dense and Gδ subset of Ap(Ω).

Proof. The proof is a combination of proofs similar to those of Proposition
6.4 and Theorem 6.6.

Definition 6.15. Let n ∈ {1, 2, ...} and let Ω be a bounded domain in C
defined by disjoint Jordan curves γi : R → C, , where each γi is continuous
and periodic, i = 1, ..., n. A function f : Ω → C is nowhere one sided
holomorphically extendable outside Ω if f is non one sided holomorphically
extendable at (t0, γi0(t0)) outside Ω, for every t0 ∈ R and i0 = 1, 2, ..., n.

Combining Theorem 6.14 for a dense in R sequence tn and Baire’s theo-
rem, we obtain the following:

Theorem 6.16. Let p ∈ {0, 1, ...} ∪ {∞} and let Ω be a bounded domain in
C defined by a finite number of disjoint Jordan curves. The class of nowhere
one sided holomorphically extendable functions outside of Ω is a dense and
Gδ subset of Ap(Ω).

Remark 6.17. In the above statements the functions f are defined on Ω.
However, for f ∈ Ap(Ω), by the maximal principle, there is a one to one
correspondence between the function f and f |∂Ω. Therefore, we could state
the previous result considering Ap(Ω) restricted to ∂Ω.

7 Removability of singularities in the spaces Ap and the p-continuous
analytic capacities. A dichotomy result

Let Ω denote an open and bounded subset of C and L be a compact subset
of Ω. Let also G = Ω \ L, which is an open subset of C, p ∈ {0, 1, ...} ∪ {∞}
and let f0 ∈ Ap(G). Then, there are two cases:

(i) Either there exists a function F0 ∈ Ap(Ω), such that F0|G = f0

(ii) or there exists no F0 ∈ Ap(Ω), such that F0|G = f0.
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Theorem 7.1. Let p ∈ {0, 1, ...} ∪ {∞}, let Ω denote an open and bounded
subset of C and L be a compact subset of Ω. Let also G = Ω \ L. Suppose
that there exists a function f0 ∈ Ap(G) for which there exists no F0 ∈ Ap(Ω),
such that F0|G = f0. Then the set of functions f ∈ Ap(G) for which there
exists no F ∈ Ap(Ω), such that F |G = f , is an open and dense subset of
Ap(G).

Proof. Let A(p,G) be the set of functions f ∈ Ap(G) for which there exists
a continuous function F ∈ Ap(Ω), such that F |G = f .

First, we will prove that the set A(p,G) is a closed subset of Ap(G). Let
(fn)n≥1 be a sequence in A(p,G) converging in the topology of Ap(G) to a
function f ∈ Ap(G). This implies that fn converges uniformly on G to f .
By the maximum principle, the extensions Fn of fn form a uniformly Cauchy
sequence on Ω. Thus, the limit F of Fn on Ω is an extension of f . Therefore,
f ∈ A(p,G) and A(p,G) is a closed subset of Ap(G).

Now, we will prove that the set A(p,G) has empty interior in Ap(G). If
A(p,G) has not empty in Ap(G), then there exists a function f in the interior
of A(p,G) and there exist l ∈ {0, 1, ...}, l ≤ p and d > 0, such that

{g ∈ Ap(G) : sup
z∈G
|f (j)(z)− g(j)(z)| < d, 0 ≤ j ≤ l} ⊂ A(p,G).

It is easy to see that the function f0 is not identically equal to zero. Thus,
m = max{sup

z∈G
|f0

(j)(z)|, j = 0, 1, ..., l} > 0. Then, the function g(z) =

f(z) +
d

2m
f0(z), z ∈ G belongs to A(p,G). Since the functions f, g belong

to A(p,G), there are functions F,H ∈ Ap(Ω), such that F |G = f , H|G = g.

Then, the function
2m

d
(H(z) − F (z)) belongs to Ap(Ω) and is equal to f0

in G, which contradicts our hypothesis. Thus, the set A(p,G) has empty
interior in Ap(G).

The set of functions f ∈ Ap(G) for which there exists no F ∈ Ap(Ω), such
that F |G = f coincides with the set

Ap(G) \ A(p,G)

and the above set is an open and dense subset of Ap(G).

Remark 7.2. If the interior of L in C is not empty, then there always exists
a function f0 ∈ Ap(G), for which there does not exist a function F0 ∈ Ap(Ω),
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such that F0|G = f0|G. Indeed, let w ∈ Lo; then f0 =
1

z − w
belongs to

Ap(G) but it can not have an extension in Ap(Ω). Thus, the class of functions
f ∈ Ap(G) for which there exists no F ∈ Ap(Ω), such that F |G = f is dense
and open in Ap(G).

Remark 7.3. From the previous results we have a dichotomy: Either every
f ∈ Ap(G) has an extension in Ap(Ω) or generically all functions f ∈ Ap(G)
do not admit any extension in Ap(Ω). The first case holds if and only if
ap(L) = 0 and the second case if and only if ap(L) > 0 (Theorem 3.12).

Remark 7.4. The results of this section can easily be extended to unbounded
open sets Ω ⊂ C with the only difference in the definition of the topology
of Ap(Ω). The topology of Ap(Ω) is defined by the denumerable family of
seminorms

sup
z∈Ω,|z|≤n

|f (l)(z)|, l = 0, 1, 2, · · · , n = 0, 1, 2, · · · .

For p <∞ and Ω unbounded Ap(Ω) is a Frechet space, while if Ω is bounded
it is a Banach space.

Remark 7.5. In a similar way we can prove that if L is a compact set
contained in the open set U , then either every f ∈ Ãp(U \L) has an extension
in Ãp(U) or generically every f ∈ Ãp(U \ L) does not have an extension in
Ãp(U), p ∈ {0, 1, 2, · · · }∪{∞}. The first horn of this dichotomy holds if and
only if ãp(L) = 0 which is equivalent with the fact that the interior of L is
void in C (Theorem 3.16).

Now, we present some local versions of the results of section 7.

Definition 7.6. Let L be a compact subset of C and U be an open subset
of C, such that L ⊆ U . Let also z0 ∈ ∂L. A function f ∈ H(U \ L)
is extendable at z0 if there exists r > 0 and F ∈ H(D(z0, r)) such that
F |(U\L)∩D(z0,r) = f |(U\L)∩D(z0,r). Otherwise, we say that f is not extendable
at z0.

Below, we will use the above definition of extendability.

Proposition 7.7. Let L be a compact subset of C and U be an open subset
of C, such that L ⊆ U . Let also M and r be positive real numbers, p ∈
{0, 1, 2, · · · } ∪ {∞} and z0 ∈ ∂L. The set

EM,p,U,L,z0,r = {f ∈ Ap(U \ L) : there exists F ∈ H(D(z0, r)) such
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that F |(U\L)∩D(z0,r) = f |(U\L)∩D(z0,r) and ‖ F ‖∞= sup
z∈D(z0,r)

|F (z)| ≤M}

is a closed subset of Ap(U \ L). Also, if there exists f0 ∈ Ap(U \ L) which is
not extendable at z0, then the interior of EM,p,U,L,z0,r is void in Ap(U \ L).

Proof. We will first prove that the set EM,p,U,L,z0,r is a closed subset of
Ap(U\L). Let (fn)n≥1 be a sequence in EM,p,U,L,z0,r converging in the topology
of Ap(U \L) to a function f ∈ Ap(U \L). This implies that fn converges uni-
formly on U \ L to f and that there exists a sequence (Fn)n≥1 in H(D(z0, r))
such that Fn|(U\L)∩D(z0,r) = fn|(U\L)∩D(z0,r) and ‖ F ‖∞≤ M for every n ≥ 1.
By Montel’s theorem, there exists a subsequence of (Fn), (Fkn), which con-
verges uniformly on the compact subsets of D(z0, r) to a function F which
is holomorphic and bounded by M on D(z0, r). Since Fkn converges to f on
(U \L)∩D(z0, r), the functions f and F are equal on (U \L)∩D(z0, r). Thus,
f belongs to EM,p,U,L,z0,r and EM,p,U,L,z0,r is a closed subset of Ap(U \ L).
If there exists f0 ∈ Ap(U \ L) which is not extendable at z0, the interior of
EM,p,U,L,z0,r is void in Ap(U \L), the proof of which is similar to the proof of
Theorem 7.1.

Here, we have one more dichotomy, which is a local version of the first one.

Theorem 7.8. Let L be a compact subset of C and U be an open subset
of C, such that L ⊆ U and let p ∈ {0, 1, 2, · · · } ∪ {∞}, z0 ∈ ∂L. The set

Ep,U,L,z0 =
∞⋃

M=1

∞⋃
n=1

EM,p,U,L,z0,
1
n

is the set of extendable functions of Ap(U \L)

at z0. Then

(i) either every function f ∈ Ap(U \ L) is extendable at z0

(ii) or generically all functions f ∈ Ap(U \ L) are not extendable at z0.

Proof. If (i) is not true, then Proposition 7.7 shows that EM,p,U,L,z0,
1
n

is closed
with empty interior for all natural numbers n ≥ 1,M ≥ 1. Then,

Ap(U \ L) \ Ep,U,L,z0 =
∞⋂

M=1

∞⋂
n=1

(Ap(U \ L) \ EM,p,U,L,z0,
1
n
)

is the intersection of a countable number of open and dense subsets of Ap(U \
L) and Baire’s Theorem shows that Ap(U \L)\Ep,U,L,z0 , which coincides with
the set of non extendable functions of Ap(U \ L) at z0, is a dense and Gδ

subset of Ap(U \ L).
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Now, we will compare two notions: local extendability and existence of a
holomorphic extension. At first, we will examine the case of a compact set
L with empty interior.

Proposition 7.9. Let L be a compact subset of C and U be an open subset of
C, such that L ⊆ U and L◦ = ∅. Let also f ∈ H(U\L). Then, f is extendable
at every z0 ∈ ∂L if and only if there exists a holomorphic extension F of f
on U . If additionally f ∈ Ap(U \ L) for some p ∈ {0, 1, ...} ∪ {∞}, then
F ∈ Ap(U).

Proof. If there exists a holomorphic extension F of f on U , then obviously
f is extendable at every z0 ∈ ∂L = L.

Conversely, if f is extendable at every z0 ∈ L, then for every z0 ∈ L
there exist a positive real number rz0 and a holomorphic function Fz0 on
D(z0, rz0) such that D(z0, rz0) ⊆ U and Fz0 |(U\L)∩D(z0,rz0 ) = f |(U\L)∩D(z0,rz0 ).
Let z1, z2 ∈ L such that V = D(z1, rz1)∩D(z2, rz2) 6= ∅. Since L◦ = ∅, V \L
is a non-empty, open set. Thus, Fz1 , Fz2 are holomorphic on the domain V
and coincide with f on V \ L. By analytic continuation, Fz1 = Fz2 on V .
So, the function F defined on U such that F (z) = Fz(z) for every z ∈ L
and F (z) = f(z) for every z ∈ U \ L is a holomorphic extension of f on U .
Obviously, if f ∈ Ap(U \ L), then F ∈ Ap(U).

Remark 7.10. If L◦ 6= ∅ the equivalence at Proposition 7.9 is not true.
Indeed, if w ∈ L◦ 6= ∅, then the holomorphic function f(z) = 1

z−w for z ∈ U\L
can not be extended to a holomorphic function on U , but it is extendable at
every z0 ∈ ∂L.

We again consider a compact set L ⊆ C and an open set U ⊆ C, such
that L ⊆ U and a p ∈ {0, 1, 2, · · · } ∪ {∞}. Now, we want to find a simi-
lar connection between ap(L) and ap(L ∩D(z0, r)); that is, is the condition

ap(L) = 0 equivalent to the condition ap(L ∩D(z0, r)) = 0 for all z0 ∈ L?
If we suppose that L◦ 6= ∅, then there exist z0 and r > 0 such that

D(z0, r) ⊆ L. Thus, ap(L) and ap(L ∩D(z0, r)) are strictly positive.
So, we do not need to assume that L◦ = ∅, since it follows from both the

conditions ap(L) = 0 and ap(L∩D(z0, r)) = 0 for every z0 ∈ L and for some
r = rz0 > 0. Also, the first condition obviously implies the second one.

Probably Theorem 3.6 holds even for p ≥ 1. Specifically, if ap(L) = 0 and
V is an open set, then every function g ∈ Ap(V \ L) belongs to Ap(V ). This
leads us to believe that the above conditions are in fact equivalent. However,
this will be examined in future papers.
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