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Forword

During the fall semester of the academic year 1990-1991 I gave a course on
Classical Potential Theory attended by an excellent class of graduate students
of the Department of Mathematics of Washington University. That was my first
time to teach such a course and, I have to say, besides sporadic knowledge of a
few facts directly related to complex analysis, I had no serious knowledge of the
subject. The result was: many sleepless nights reading books, trying to choose
the material to be presented and preparing hand-written notes for the students.

The books I found very useful and which determined the choice of material
were the superb “Eléments de la Théorie Classique du Potentiel” by M. Brelot
and the “Selected Problems on Exceptional Sets” by L. Carleson. Other sources
were: “Some Topics in the Theory of Functions of One Complex Variable” by
W. Fuchs, unpublished notes on “Harmonic Measures” by J. Garnett, “Subhar-
monic Functions” by W. Hayman and P. Kennedy, “Introduction to Potential
Theory” by L. Helms, “Foundations of Modern Potential Theory” by N. Land-
kof, “Subharmonic Functions” by T. Rado and “Potential Theory in Modern
Function Theory” by M. Tsuji.

This is a slightly expanded version of the original notes with very few
changes. The principle has remained the same, namely to present an overview
of the classical theory at the level of a graduate course. The part called “Pre-
liminaries” is new and its contents were silently taken for granted during the
original course. The main material is the Divergence Theorem and Green’s For-
mula, a short course on holomorphic functions (, since their real parts are the
main examples of harmonic functions in the plane and, also, since one of the
central results is the proof of the Riemann Mapping Theorem through potential
theory), some basic facts about semi-continuous functions and very few ele-
mentary results about distributions and the Fourier transform. Except for the
Divergence Theorem, the Arzela-Ascoli Theorem, the Radon-Riesz Representa-
tion Theorem and, of course, the basic facts of measure theory and functional
analysis, all of which are used but not proved here, all other material contained
in these notes is proved with sufficient detail.

Material which was not included in the original notes: the section on har-
monic conjugates in the first chapter (it, actually, contains a new proof of the
existence of a harmonic conjugate in a simply-connected subset of the plane);
the section on the differentiability of potentials in the second chapter; the sec-
tions on superharmonic functions at oo and on Poisson integrals at oo in the
fourth chapter; an additional proof of the result about the direct connection
between Green’s function and harmonic measure in the fifth chapter (indicating
the role of the normal derivative of Green’s function as an approximation to
the identity); the subadditivity of capacity in the eigth chapter; the sections on
polar sets and thin sets in the ninth chapter. The definition of the notion of
“quasi-almost everywhere” in the eigth chapter has been changed. The proof of
the Riemann Mapping Theorem in the ninth chapter is corrected and given in



full detail, not relying on “obvious” topological facts any more. In the original
course the proof (taken from the notes of J. Garnett) of Wiener’s Theorem was
presented only in dimension 2. Now, the proof is given in all dimensions.

A short and very classical application of potential theory in dimension 1 on
the convergence of trigonometric series is missing from this set of notes, since
it is quite specialized. What is, also, missing is a short chapter on the metrical
properties of capacity and an example of a Cantor-like set. But this will be
included very soon, after it is expanded as a chapter on “Capacity, capacitability
and Hausdorff measures”.

Besides the new material, there is a re-organization which results, I hope, to
better exposition.

Here, I would like to thank the Department of Mathematics of Washington
University for giving me the opportunity to teach the original course and the
graduate class which attended it with great care and enthusiasm.
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0.1. EUCLIDEAN SPACES 11

0.1 Euclidean Spaces

1. We work in the Euclidean space R™ and denote the Euclidean norm of x € R®
by |z| and the Euclidean inner product of z,y € R® by = -y .

B(x;r) is the open ball with center  and radius r, B(x;r) is the closed ball
and the sphere S(x;7) is the boundary of B(x;r).

d(z, B) = inf ¢ p |z — y| denotes the Euclidean distance of the point z € R
from the non-empty subset B of R™ and d(A, B) = infyca yen | — y| denotes
the Euclidean distance between the non-empty sets A and B. If B is closed and
x ¢ B, then d(x, B) > 0 and, if A is compact, B is closed and the two sets are
disjoint, then d(A, B) > 0.

2. Suppose (2 is an open subset of R™ and consider the open sets

1
Q(m):{er:d(x,@Q)>E,|x|<m}, m € N.

It is easy to check the following four properties:

1. every {),;,) is a compact subset of 2,

2. Q(m) - Q(m—i—l) for all m,

3. U;;iolg(m) = and

4. every compact subset of (2 is contained in €,y for a sufficiently large m.

This increasing sequence {{(,,,)} of open sets, or any other with the same
four properties, is called an open exhaustion of 2.

The increasing sequence {K(,,)}, with K,y = Q(n), where {Q,,)} is an
open exhaus;cion of 2, is called a compact exhaustion of ().

3.V, = #il) is the volume of B, = B(0;1). Hence,

T 2(2m)™
Vom = —, Vom = .
? T 1035 (2m 4 1)

Also, w,_1 = nV, is the standard surface area of S"~1 = S(0;1) .
4. If dm is the Lebesgue measure in R™ and do is the standard surface measure
in S"~1, then we have the formula

/B(:E;R) fly) dm(y) = /OR /Snil f(x+rt) do(t) r* tdr

5. We define the surface-mean-value of f over S(x;r) by

T = ! T+ o = 71
Mle) = == [ fa+rt) dott) [, 1w asw)

Wn—1 Wp—1rn—t

for all f integrable with respect to dS, the surface measure in S(z;r).
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We also define the space-mean-value of f over B(z;r) by

Ayt = - [ ey i) = ooz [ ) an)

for all f integrable with respect to dm in B(x;r).
By the formula in paragraph 4,

R
Af(z) = %/0 M (x)r™~t dr

6. Define R®, the one-point compactification of R®, by adjoining the point
at oo to R" : o
Rr = R"U{o0}.

The e-neighborhoods of points x € R™ are the usual balls B(x;¢€), while the
e-neighborhood of oo is defined to be the set {x € R™ : |z| > 1} U {o0} .

We define open sets in R® through these neighborhoods, in the usual way,
and we, also, define closed sets (complements of open sets) and the notion of
convergent sequence: a sequence in Rr converges to some point of W, if the
sequence is, eventually, contained in every e-neighborhood of this point.

Hence, if the limit point is in R™, then the new notion of convergence coin-
cides with the usual one, while z,, — oo is equivalent to |z,,| — +o0.

Whenever we write A and 0A, for any A C R®, we mean the closure and
the boundary, respectively, of A with respect to R®.

Hence, if A C R™ is bounded, then these two sets coincide with the usual
closure and boundary in R™, while if A C R™ is unbounded, then the two sets
are the usual closure and boundary in R™ with the point co adjoined to them.

Any A C R™ is open in R™ in the usual sense if and only if it is open in R®.

It is easy to see that R™ and, hence, every closed subset of it, is compact.

If A is a bounded subset of R”, then A is closed in R™ if and only if it is
closed in R™. But, if A is an unbounded subset of R®, then A is closed in R®
if and only if AU {oc} is closed in R™.

The spherical metric in R® is defined by

2oyl if z,y € R®

Vita/1+y2
2
Vi+|z|2

0, ifr=y=o00.

ds(z,y) =

ifxr e R" and y = o0

The spherical metric induces exactly the open sets, closed sets and conver-
gent sequences in R™ which were described above. In fact, one can, easily,
prove that if z € R®, then, for every e-neighborhood Bg(z;e€) with respect to
the spherical metric, there is some ¢'-neighborhood of z, as this was defined
above, contained in Bg(z;€) and conversely.

7. A subset E of a metric space (X,d) is called connected, if, whenever we
write £ = AU B with AN B = () with A, B being both open relative to E, it is
implied that one of A, B is empty.
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A subset F' of E is called a connected component of F, if it is a mazimal
connected subset of F. This means that F' is connected and that there is no
connected subset of E strictly containing F'.

Every E can be uniquely decomposed in connected components: there exists
a unique (perhaps uncountable) family F such that

1. every F' € F is a connected component of E,

2. the elements of F are pairwise disjoint,

3. Uper F = E.

Especially if Q C R is open, then € is connected if and only if every two
of its points can be connected by a polygonal path which is contained in (2.

The connected components of an open {2 are all open sets and there are at
most countably many of them.

Therefore, for every open Q C R there exist (at most countably many) sets
U,,, such that

1. every U,, is connected,
2. the sets U, are pairwise disjoint and
3. U, Um =

A subset E of a metric space (X, d) is called a continuum if it is connected,
compact and contains at least two points.

0.2 Derivatives

1. If Q is an open subset of R™, then C(Q2) = C°(Q) is the space of all complex-
valued functions which are continuous in €2 and C”“(Q)7 1 <k < +o0, is the
space of all functions which are k times continuously differentiable in Q.

Similarly, we denote by C*(Q) the space of all functions whose derivatives
of all orders up to k are continuous in 2 and can be continuously extended in
Q. Note that a complex-valued function continuous in § can be continuously
extended in Q if and only if it is uniformly continuous in Q with respect to
the spherical metric dg (or, equivalently, with respect to the usual Euclidean
distance in case the set  is bounded).

For all multi-indices « = (a1, ..., a,), we denote the a-derivative of f by
gortFan olel
Daf = ] af = a f an "
Ozt - dap Ox{* - - Oxn"

The order of this derivative is |a| = a1 + -+ + a,, .
We denote, as usual, the gradient of a real- or complex-valued function by

ﬁﬁ)

grad :(8x1 U P
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and A is the Laplace operator or Laplacian

02 f 02 f
Af =Gt g

n
If ? = (V1,Va,...,V,) is a vector-function, we denote its divergence by

A v,

2. We say that the open set Q is C! at its boundary point y € R®, if
there is an open neighborhood V of y and a ¢ : V — R which is in C*(V) with
grad(y) # 0,s0that VNIQ ={x € V : ¢(z) =0}, VNQ ={z € V : ¢(x) > 0}
and V\Q={zeV:g¢(z)<0}.

Such a function ¢ is called a defining function for 2 in the neighborhood
V' of the boundary point y. A defining function is not unique; for example any
multiple of it by a positive constant is, also, a defining function.

In case there exists a defining function ¢ € C*(V) in a neighborhood V of
the boundary point y, we say that Q is C* at its boundary point y.

If Qis C! at its boundary point y € R®, we denote by 7 (y) the unit vector
at y which is normal to 0f) and has the direction towards the exterior of 2. In
terms of any defining function ¢ for €2 in a neighborhood of ¥,

—
_ graddly)
W = SRl

The directional derivative of an f in the direction of the unit normal 77 (y)

of
Fn(y) = grad }(y) - 7 (y) .
If the bounded open set  is C* at all of its boundary points, we say that
2 has C*-boundary.
If the bounded open set Q has Cl'-boundary, then there is the standard
surface measure defined in 912, denoted by dS.

is

Theorem 0.1 (The Divergence Theorem and Green’s Formulas) Let Q be a
bounded open set with C*-boundary.

A divV (z) dm(z) = [ V() 7 (y) dS(y)

o0

for all vector-functions V whose components are in C(Q) N CHQ).
2. If f is in C(Q) N CYHQ) and g is in CH(Q) N C%(Q), then

/Q (f(@)Ag(z) + grad }(z) - gradf(a)) dm(z) = | ) 2w) dSw) .

o9 on
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3. If g is in CH(Q) N C?(), then

_ [ Y
A Ag(z) dm(z) = o 1 (y) dS(y) .

4. If f and g are in C1(Q) N C%(Q), then

_ 9g of
A}f@ﬁﬁg@ﬂ*ghﬂAf@ﬁﬁmﬂx)4149(f@Dg;@D—QQOEEQD)dS@)
Proof:
The proof of 1 is considered known.
Applying 1 to V4 = faaTgl yee oy Vi = f% , we prove 2.

We prove 3 from 2, using the constant function f =1 in Q.
Finally, we prove 4, changing places of f and ¢ in 2 and subtracting.

In these notes whenever we refer to the Green’s Formula, we understand any
one of the above four formulas.
3. Since open sets with C*-boundary are widely used, (in particular, to apply
Green'’s Formula), we shall, briefly, describe a standard way to produce such
sets arbitrarily “close” to other given sets.

Suppose that K C €, where K is compact and €2 is an open subset of R".
In practice, we are, usually, given K and choose Q = {z : d(z,K) < 0} with
arbitrarily small 0 or we are given  and choose K = {z € Q : d(z,0Q) >
82| < 5}

We shall construct a bounded open set O with C*-boundary so that

K COCOCAQ.

Consider §g < ﬁ d(K,090) and observe that, if a cube @ of sidelenghth &g
intersects K, then () is contained in Q.

Now, consider the n coordinate-hyperplanes together with all other hyper-
planes which are parallel to them and at distances which are integer multiples
of dg. The space R™ is, thus, divided into a mesh of cubes

Qe = {r=(21,...,2,) : kjoo <z < (kj +1)do,1 < j <n}

of sidelenght dp, where k = (ki,...,k,) is an arbitrary multi-index with integer
coordinates. The set of all these cubes we denote by Qs, .
Now, K is intersected by finitely many qubes in Qs, and we define the set

F=|J{Q€Qs:QnK #0}.

F'is a compact subset of 2 with K C F and it is clear that the boundary of
F consists of certain of the (n — 1)-dimensional faces of the cubes that are used
to construct F'. If a face of one of the cubes contained in F' intersects K, then
the adjacent cube is, also, one of the cubes contained in F' and, hence, this face
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is not contained in the boundary of F. Therefore, the boundary of F' consists
of faces which do not intersect K and, thus, K is contained in the interior U of
F.

We have produced an open set U so that K C U C U C Q whose boundary
consists of faces of cubes contained in U. The points at which this boundary is
not C* belong to the (n — 2)-dimensional edges of these faces.

We, now, modify slightly the boundary to make it “smooth” at its edges and
we, thus, produce an open set O slightly different from U, containing K and
with C*-boundary. The “smoothening” process is geometrically clear and it is
not worth seeing the actual technical details.

4. A subset T' of R™ is said to be C! at its point v, if there exists some open
neighborhood V' of y and a real-valued ¢ : V — R which is in C*(V) with
grado(y) #0,sothat TNV ={x € V: ¢(x) =0} .

Any such ¢ is called a defining function for I' in the neighborhood of its
point y. Again, ¢ is not unique; for example, any multiple of it by a non-zero
real constant is, also, a defining function.

If the defining function ¢ can be chosen to be in C*(V), then we say that T
is C* at y.

I is called a C*-hypersurface, if it is C* at all of its points.

A C'-hypersurface has a standard surface measure dS naturally defined
on it.

If I'is C* at y and ¢ € C*¥(V) is a defining function for I' in a neighborhood
V of y, then, because of continuity, we may choose V to be small enough so
that grad ¢ # 0 everywhere in V. Now, if M = supy, ¢ and m = infy ¢, then
m < 0 < M and the sets

" = {zeV:¢(x)=t}, m<t< M,

are pairwise disjoint C*-hypersurfaces constituting a “continuous” partition of
V. In fact, ¢ itself is a defining function for eac}LI’t at every point of it.
One can, easily, prove that, for every f € C(V),

f(z) dS(z)
r‘t

(where dS is the surface measure in I'") is a continuous function of ¢ € (m, M).
At every point y where I' is C! there are exactly two unit vectors normal to
I". These, in terms of any defining function ¢ in a neighborhood of y, are

) — £ T

~ Tlgradely)|

The C'-hypersurface I' is called orientable, if, for every y € T', we can
choose one of the two possible 77 (y) so that the resulting 77 : I' — R® is
continuous. Then, we call 77 a continuous unit vector field normal to T.

In such a case, the function —7 is, also, a continuous unit vector field
normal to I' and, if I" is connected, these are the only continuous unit vector
fields normal to I'.
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If Q is a bounded open set with C'-boundary, then I' = 92 is an orientable
C'-hypersurface and there are two continuous unit vector fields normal to 9€;
one of them has the direction towards the exterior of €2 and the other has the
opposite direction.

In this special case, we keep the notation 7 only for the vector field with
the direction towards the exterior of €2, in agreement with the discussion in
paragraph 2.

5. A function f which is in C*(B(z¢; R)) has a Taylor-expansion of order k
at the point xzg. Using the notation a! = ag!- -+ a,! and y® = y7* - - - y&», this
means that

flz) = Z % D f(zo)(x — x0)* + Ri(x;20) , x € B(zo; R) ,
lo|<k

[ R (z320)|
|z—z0|®

where — 0 as x — zg. In fact,

1 67 (o3 [e3%
Ry (x;m0) = Z o (D f(2") = D f(x0)) (z — o)
|| =k
for some o’ = 2/(x) contained in the linear segment [z¢, z] and, thus,

T — l‘o|k sup |Daf(x/) - Daf(x0)| )

la|=Fk,|z’—zo|<|z—=0|

|Ry(z;20)] < Cion

where CY,, is a constant depending only on k& and n.
A function f defined in an open neighborhood of zy € R™ is called real-
analytic at zg, if there is some R > 0 and constants a,, for all multi-indices «,

so that
f@) =) aalz —z0)®

for every © € B(xo; R).
This series expansion is unique and is called the Taylor-series of f at x.
Then, f is real-analytic at every other point of B(zo; R), it is infinitely many
times differentiable in B(zp; R) and we have the formulas

6. Suppose that I' is C! at its point y and let ¢ € C1(V) be a defining function
for T in the neighborhood V' = B(y;r) of y.
We write the Taylor-expansion of order 1 at y

p(z) = grado(y) - (x—y)+ Ri(z;y),  x € By;r),

we choose t with 0 < t < |grad ¢(y)| and we take r small enough so that
|R1(z;y)| < tlz — y| for all z € B(y;r).
It is, then, a matter of simple calculations to see that the two sets

Fy = {z:tlr —y| <+ grado(y) - (x —y) < tr}
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are two open truncated cones with common vertex y and contained in the sets
{z: £¢(x) >0} N B(y;r)

respectively.

As a special case we have that, if the open set Q is C! at its boundary point
y, then there are two open truncated cones with common vertex y so that one
of them is contained in € and the other is contained in R® \ ) .

Now, suppose that I' is C? at its point y and let ¢ € C%(V) be a defining
function for I in the neighborhood V = B(y;r) of y.

We, now, write the Taylor-expansion of order 2 at y in the simplified form

o(z) = grado(y) - (x —y) + Ra(x3y) ,  x € By;r)

where
[Ra(a;y)| < Mlz—yl?

for all @ € B(y;r). In fact, M = Gy, sup|q|=2 e B(y;r) [P ¢(7)], where C,, is a
constant depending only on n.

If we choose @ = min , then it is, again, a matter of

2!gmd dw)| )

calculations to see that the two open balls
By = {a: ’x— (yj:agrad(b )’ < oz’grad¢ |}
are mutually tangent at the point y and they are contained in the sets
{z: £¢(x) >0} N B(y;r)

respectively.

Hence, if the open set Q is C? at its boundary point ¥, then there are two
open balls mutually tangent at the point y so that one of them is contained in
Q and the other is contained in R™\ Q2 .

0.3 Holomorphic Functions

If Q is an open subset of C = R2, a function f = Rf +iSf : Q@ — C is
called holomorphic in Q, if Rf,Sf € C1(2) and they satisfy the system of
Cauchy-Riemann equations

ORf) _ 9SS ORf) _ 9SS

61}1 8.132 ’ 6372 81‘1

everywhere in ) or, equivalently, M +ig- df =0 everywhere in Q.

It is trivial to see that the property of holomorphy is preserved under ad-
dition, multiplication, division and composition of functions and that the usual
formulas (f +g)" = f"+4¢', (f9) = "9+ fg's (fog) =(f og)g hold.
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If f is holomorphic in €, writing the Taylor-expansions of order 1 at every
x € Q for Rf and Sf and using the Cauchy-Riemann equations, we easily find
that

0 .0

1) = 1@+ L@y -2+ Riye) = f@) =i 2L @)y - 2) + Ry )
ory Oz

where % — 0 as y — 2. Therefore, the limit f/(z) = lim,_,, &=/

Yy—x
exists at every x € §2. This limit is called the (complex) derivative of f at x

and
f(x) = %(m) = —i%(x), reN.

In elementary courses on the theory of holomorphic functions it is, actually,
proved that the converse is, also, true: if the complex derivative of f exists at
every point of Q, then Rf and S f are in C1(2) and satisfy the Cauchy-Riemann
equations. We shall not need this result.

In this section, our aim is to develop only a very small part of the theory of
holomorphic functions leading, through Cauchy’s Theorem, up to the Argument
Principle and one of its consequences. These results will not be stated in the
generality (requiring homological considerations) in which they are presented
in the standard courses on the theory of holomorphic functions. We shall be
restricted to the study of curvilinear integrals only over boundaries of open sets
with C'-boundary. Our main tool, therefore, is the Divergence Theorem.

Theorem 0.2 (Cauchy’s Theorem) Let f be holomorphic in Q and the open
set Qy with C*-boundary be such that Q; C Q. Then,

fly)dy = 0.
o0

Remark This integral is called the curvilinear integral of f over 0(; in
the positive direction of 99; with respect to €2;. Here, we define

dy = in(y) dS(y) , y e o,

where 1 = 11 +1n9 is the continuous unit vector field normal to 02; and directed
towards the exterior of €);.
Proof:

From the Cauchy-Riemann equations and the Divergence Theorem,

0 = i/gl(;i(x)ﬂgé(x)) dm(z)

i [ Fwmy) ds) / F)ma(y) dS(y)

o o

Fw)in(y) dS(y) = /8 S dy

o
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Theorem 0.3 (Cauchy’s Formula) Let f be holomorphic in Q and the open set
Q1 with C'-boundary be such that Q1 C Q. Then,

1 f(y)

@) = 27 Joq, Y — T dy

for every x € Q.
Proof:
Let r > 0 be small so that B(z;r) C Q; and let Qy = Q; \ B(x;r). We

apply Cauchy’s Theorem to the function g(z) = ic(f; , z € Q\ {z}, which is
holomorphic in 2\ {z} and get

0 — @) 4, - f) dy_/ 1wy,
0, Y — T o Yy — 2 0B(zyr) Y —
Therefore,
1 1
1 f(y) &y = 7/ f) dy
21 Joq, Y — 270 JoB(ai) Y —

_ 1 fly) y—=
= /d dS(y)

% B(z;r) y—x r

= @ g [ (- sw) as).

27
The continuity of f at x implies that the last term tends to 0 as r — 0+
and the proof is complete.

Example The first case below is implied by Cauchy’s Formula and the second
by Cauchy’s Theorem:

1 1 d _{1, it x € B(xog;7)
271 SB(wo;r) Yy—x vy = 0 5 lfl' ¢ B(.’Eo;T) .
Theorem 0.4 Let f be holomorphic in Q. Then,
1. f’ is holomorphic in Q and
2. for every B(x;r) C Q, f can be expanded in B(xz;r) in a unique way as an
absolutely convergent power series

+oo
flz) = Zan(z—x)” , z € B(x;r) .
n=0

Proof:

1. From Cauchy’s Formula f(z) = 5= f{)B(m;r) J;(f’z dy, z € B(x;r), it is trivial
to prove, using difference quotients for both sides and interchanging limit and
integration, that

1 f()

B Tm OB (z;r) (y - Z)

f'(2)

5 dy z € B(x;r) .
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Interchanging, again, partial derivatives and integration, we easily see that

g£ - and 2 8:1: are continuous in € and -+ z = 0 everywhere in €.
2. For every z € B(x;r), the geometrlc “series
11 I *i (z —a)"
y—z y—x 1-2=2 iy —a)t
converges absolutely and uniformly in 0B(x;r), since ‘;’fi‘ = @ < 1. This

permits us to interchange integration and summation in Cauchy’s Formula to
get

+o00
1) = Y anz - o)
n=0

If
+oo —+o0
= Zan(zfx)” = Za’n(zfm)", 2 € B(z;r)
n=0 n=0

then, using z = x, we get ag = aj. Cancelling ag and simplifying, we find

Zan-H z—x)" ZanH —z)", z € B(x;r) \ {z} .

By the continuity of both power series at x, we get a; = a}. We continue
inductively to conclude that a,, = a/, for all n.

We may, inductively, see that, if f is holomorphic in €, then it has (complex)
derivatives of all orders and that, for every B(x;r) C ,

n! fy)
fM(z) = —/ ——dy, z € B(z;r) .
27 OB (x;r) (y - Z)nJrl
Therefore, the coefficients in the power series f(z) = :OOO an(z—x)™ are given
f(”)(r)

by an

Suppose now that f is holomorphic in €2 and consider its expansion as a
power series in any B(z;r) with B(x;r) C Q.

If all coefficients a,, are equal to 0, then f = 0 everywhere in B(x;r) and we
say that x is a zero of f of infinite multiplicity.

If a,, # 0 for at least one n, and NN is the smallest such n, then

f(z) = (z—x) Zan+Nz—x , z € B(x;r) .

We, now, define

o(z) = {(j(j;v, if € Q\ {z}
a

NF#0, ifz==x
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and it is trivial to prove that g is holomorphic in 2. Therefore,
fz) = (z—2)%g(2), 2€9,

where g is holomorphic in  and g(z) # 0. In this case we say that z is a zero
of f of finite multiplicity and the number N is called the multiplicity of =
as a zero of f and it is denoted by m(x; f).

Of course, f(z) # 0 is equivalent to m(x; f) = 0. Whenever we say that x is a
zero of f, we shall understand that f(z) = 0 or, equivalently, that m(z; f) > 1.

Using the series expansion, we, easily, see that the set of the zeros of finite
multiplicity and the set of zeros of infinite multiplicity are both open sets and,
hence, we get

Proposition 0.1 If f is holomorphic in the open connected ), then either all
points of Q are zeros of f of finite multiplicity or f = 0 everywhere in ).

We, also, see that if f is holomorphic in the open connected 2 and is not
= 0 identically in €2, then every zero of f is isolated. Therefore,

Theorem 0.5 (Analytic Continuation Principle) If f is holomorphic in the
open connected ) and is not = 0 identically in ), then every compact subset of
Q contains at most finitely many zeros of f.

Theorem 0.6 (Argument Principle) Let f be holomorphic in Q and the open
set Oy with C'-boundary be such that Q; C Q. If 9Q, contains no zeros of f,

then ) )
Y
— dy = m(z; f) .
27i Jaq, f(y) 03;1
Proof: o
By the Analytic Continuation Principle, €2 contains at most finitely many
zeros of f (which are all contained in Q4), x1,...,zn, and let m; = m(x;; f)
be the corresponding multiplicities. We may, then, write
flx) = (& —a)™ - (x—ay)"g(z), we,

where ¢ is holomorphic in €2 and has no zeros in Q; . Therefore,

F@) & mp g2
@) :;x—xk+g(x)v v €\ {a1,...,ax} \ {z € Qi gle) =0} .

We consider small closed discs B(x;;r;) which are pairwise disjoint and are
all contained in ©; and the open set 2 = Q5 \ Uévle(xj; ;).

Then, fT/ is holomorphic in an open set containing €, and, by Cauchy’s
Theorem,

1 f'(y) 1 "(y) / f Y)
0 = — dy = — —= dy .
2mi Joq, f(y) 2mi Joq, f(y) Z 210 JoB(a;ry) f(Y)
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Thus,

1 W, s L mi,
i T Y T L), iy

B(xj;rj) Y— Tk

j=1k=1

N

1 / 9'(y)

+ P dy

;2771 OB(xj;rj) g(y)

N N

= > omy =Y mla;f) = Y mxf),

j=1 j=1 €M

from the example after Cauchy’s Formula and from Cauchy’s Theorem applied

’

to % which is holomorphic in Q;.

If f(x) = w, then z is a zero of f — w and its multiplicity is denoted by
m(z; f,w).

Theorem 0.7 Let f be holomorphic in 2 and the open set {2y with C*'-boundary
be such that Q1 C Q. If w',w"” € C are contained in the same component of the
complement of the compact set f(0Q1), then

Z m(z; f,w') = Z m(z; fyw') .

e ze

Proof:
Applying the Argument Principle to the function f — w, we get

1 f'(y)

Zm(fr;f,w) = o vy F(y) —w dy , w ¢ f(O) .

reN

The integral in the right side is a continuous function of w in the complement of
f(091) and it is integer-valued, as the left side shows. Therefore, this function
is constant in each component of the complement of f(9€;).

An important example of holomorphic function is the exponential func-
tion exp: C — C\ {0} given by

exp(z) = e**(cosxa +isinzs) , r=x1+ix9 € C.

(Of course, there is no contradiction to use the notation e”, instead of exp(z),
and we shall very often do so.)
This satisfies the identity exp(z’ + z’") = exp(z) exp(z”) and it is periodic
with period i27. In fact, the only periods of exp are the numbers k27, k € Z.
A, perhaps, even more important function is the logarithmic “function”,
denoted by log, which is the many-valued inverse of exp. For each z € C\ {0},
we have that log(z) = log |z| + i0 + ik2m, where 0 is any real number so that

e = ﬁ and k takes all integer values.
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To be strict, one has to talk about branches of the logarithmic function, as
follows. A function f in any A C C\ {0} is called a branch of the logarithm
in A, if it is continuous in A and

exp(f(z)) = =z, zeA.

More generally, if g : A — C\ {0} is continuous in A, then f: A — C is
called a branch of the logarithm of g in A if it is continuous in A and

exp(f(z)) = g(z), z€A.

If Q is open and g is holomorphic in §2, then it is trivial to show that every
branch f of the logarithm of g in € is holomorphic in £ and that

g (z)
g9(z)

f(z) = : reN.

It is, also, trivial to show, by continuity of the branches, that, if A is con-
nected, then any two branches of the logarithm of g in A differ by a constant of
the form k27, k € Z.

As the simplest example, if Qg = C\ {z = x1 + izg : z2 = 0,21 < 0} then
the principal branch of the logarithm in Qy is log, : 2¢ — C given by

logy(z) = log|z|+ 0 ,
where 0 is the unique real number so that cosf +isinf = é—‘ and —7 < 0 < .
Therefore, the totality of branches of the logarithm in €y are all functions of
the form logy(x) + ik2m, x € Qy, where k runs in Z.

If Qp = C\ {z = —re’ : r > 0}, then the totality of branches of the
logarithm in 4 are the functions of the form log,(e~*x) +id+ ik2m, x € Qy,
where k runs in Z.

Here is a negative result.

Lemma 0.1 Let Ay and Agir be connected with 4,1) C Qg and Apsrr C Qpyr.
If these two sets have a common point o' = |z'|e? with ¢ < § < ¢ +7 and

another common point x” = \x”|ew” with ¢ — m < 6" < ¢, then there is no
branch of the logarithm in A = AgU Agir .
Proof:

Let f be a branch of the logarithm in A = A, U Apyrx .

Since Ay is connected, f(z) = logy(e~*?z) + i¢ + ik27 for all x € Ay and
for some k € Z. Hence, f(z') — f(z") = log ;—,/, +6 —06".

Since Agy, is connected, f(z) = logg(e™ "+ ™x) +i(¢ + m) + il27 for all
x € Ayir and for some | € Z. Hence, f(2’) — f(2”) = log f—,/, +6 —0" —2m.

We, thus, get a contradiction.

For instance, there is no branch of the logarithm in C\ {0} or, even, in any
circle S(0;7).
Lemma 0.1 is used to prove a purely topological result.
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Theorem 0.8 Let the compact sets Ay and Agyr be connected with Ay C Qg
and Agrr C Qgir. Suppose, also, that these two sets have a common point
2 = || with ¢ < 0 < ¢+ and another common point =" = |z | with
p—m <0 <o

Then, 0 (which is not in A= Ay U Ayyr) does not belong to the unbounded
component of C\ A= C\ (Ag U Agyr).

Proof:
Consider the functions g, : C\ {a} given by

go(x) = 2 —a, xz e C\{a}.

If |a’ — a| < d(a, A), then the existence of a branch of the logarithm of g, in
A implies the existence of a branch of the logarithm of g,/ in A. Indeed, if f, is
a branch of the logarithm of g, in A, then, for all x € A,

’

log (14 &= a—d
e fa(@)Hlogg (1+4=5) gu(x)(l—F x_a) = gu(2) .

It is obvious now that, if |’ — a| < d(a’, A), then the non-existence of a
branch of the logarithm of g, in A implies the non-existence of a branch of the
logarithm of g, in A.

Now, take any R so that A C B(0; R) and any point z9 ¢ B(0; R). Then,
xo belongs to the unbounded component O of C\ A.

The set of points a € O such that there exists a branch of the logarithm of
go in A and the set of points a € O such that there does not exist a branch of
the logarithm of g, in A are, by the previous discussion, both open sets and x
is in the first set. By the connectedness of O, the second set is empty. Lemma
0.1, finally, implies that 0 ¢ O.

0.4 Equicontinuity

Let F be a family of complex-valued functions defined in a subset E of a metric
space (X, d).

The family is called bounded at = € E, if sup;c z | f(z)] < +oo .

The family is called equicontinuous at x € F, if for every ¢ > 0 there is
d = d(e) > 0, so that for all f € F it holds |f(y) — f(z)| < € whenever y € E
and d(y,x) < 4.

Observe that 4, in this definition, does not depend on f € F.

The following is one of several versions of the Ascoli-Arzela Theorem.

Theorem 0.9 (Arzela and Ascoli) Suppose F is a family of functions defined
in some compact subset K of a metric space and let F be bounded and equicon-
tinuous at every point of K.

Then, from every sequence in F we can extract a subsequence which con-
verges uniformly in K to some function (not necessarily belonging to F).

In these notes we shall apply this result when the metric space is either R™
with the Euclidean metric or R® with the spherical metric.
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0.5 Semi-continuity

Suppose that F is a subset of a metric space (X, d).
Definition 0.1 A function f is called lower-semicontinuous in E, if
1. —oo < f(x) <400 forallxz € E and
2. f(z) <liminfgsy, f(y) foralzeE
or, equivalently, if
1. —co < f(z) < 400 forallxz € E and
2. {ye E: X< f(x)} is open relative to E for every real \.

We call f upper-semicontinuous in F, if —f is lower-semicontinuous
i E: in all relations above we just reverse the inequalities, replace 00 by Foo
and replace liminf by lim sup.

Properties of semicontinuous functions
(1) f is continuous in E if and only if it is simultaneously lower- and upper-
semicontinuous in E.
(2) Linear combinations of lower-semicontinuous functions with non-negative
coefficients are lower-semicontinuous. This is true for upper-semicontinuous
functions, also.
The proofs are easy.
(3) The supremum of any family of lower-semicontinuous functions is lower-
semicontinuous. There is a dual statement for upper-semicontinuous functions.
Suppose that each f € F is lower-semicontinuous in E and let F(z) =
supser f(x) for every x € E. Then, it is obvious that —oo < F(z) for all x € E
and, since f(y) < F(y) for all y € E and all f € F, we find

f(z) < liminf f(y) < liminf F(y)

E>y—zx E>y—z
for x € E. Taking the supremum over all f € F, we conclude

< limi .
F(z) < lim inf F(y)

(4) The minimum of finitely many lower-semicontinuous functions is lower-
semicontinuous. There is a dual statement for upper-semicontinuous functions.

It is enough to consider two lower-semicontinuous functions f1, fo and let
f =min(f1, f2). Then, it is obvious that f(z) > —oc for all x € E.

Take A < f(z) and, hence, A < fi(x) and A < fa(x). There exist §; > 0 and
d2 > 0 so that A < fi(y) for all y € E with d(y,z) < §; and A < fa(y) for all
y € E with d(y,z) < d2 .

If 6 = min(dy,d2), then A < f(y) for all y € E with d(y,z) < §. Therefore,



0.5. SEMI-CONTINUITY 27

The following four propositions state properties of semicontinuous functions
which we shall make constant use of in later chapters.

Proposition 0.2 If f is lower-semicontinuous in a compact set K, then f is
bounded from below in K and takes a minimum value in K.
There is an obvious dual statement for upper-semicontinuous functions.

Proof:

Let m = inf ek f(x) and take {xx} in K so that f(zx) — m. Replacing
{zx} by some subsequence, if necessary, we may assume that x, — x for some
x € K. But then,

- < b - _
m < f(z) < lElnglgfﬁf(y) < Jim f(zx) = m

and we get that —oco < m = f(x).
Another proof of the boundedness from below runs as follows. Since f does
not take the value —oo,

—+oo

K c |J{zeK:—k<f(2)}.

k=1
The terms of the union are open and increasing with k and, since K is

compact, K is contained in one of them.

The following is a partial converse of property (3) of lower-semicontinuous
functions.

Proposition 0.3 If f is lower-semicontinuous in a compact set K, then there
exists an increasing sequence of continuous functions { fr,} in K which converges
to f pointwise in K.

There is the usual dual statement for upper-semicontinuous functions.

Proof:
If f = 400 identically in K, we consider f; = k identically in K.
Otherwise, we define

fe(x) = inf (f(y) + kd(z,y))

yeK

for all z € K. Since, by Proposition 0.2, both f and d(z,-) are bounded from
below in K, we have that f(x) is a real number.
From the inequality

|(f(y) + kd(z,y)) — (f(y) + kd(z',y))| < kd(x,2"),

we, easily, prove that

[fi(x) = ful@)] < kd(z,2')

implying that f; is continuous in K.
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It is, also, clear that {f} is increasing and that fi(x) < f(x) for all k and
all z: just take y = z in the definition of fi(z).

Now, fix z € K and A\ < f(x).

By the lower-semicontinuity of f, there exists § > 0 so that A < f(y) for all
y € K with d(z,y) < 0.

If we take k large enough, then A\ < f(y) + kd(x,y) for all y € K with
d(z,y) > d. In fact, by Proposition 0.2, ming f is finite and, then it is enough
to take k > (X — ming f).

Therefore, if k is large enough,

A< i (f0) +kd(r.y) = fil@)

This, together with fj(x) < f(x), implies

lim fy(z) = f(x)

k— 400

forall z € K.

Proposition 0.4 (First Minimum Principle) Let f be lower-semicontinuous
in a connected subset E of a metric space with the property that, if it has a
minimum value at some point, then it is constant in some open (relative to E)
neighborhood of the same point.

Then, if f takes a minimum value in E, it is constant in E.
There is a dual Mazimum Principle for upper-semicontinuous functions.

Proof:

The assumptions imply that both sets {x € E : infg f = f(x)} and {z € E :
infg f < f(x)} are open relative to E. Therefore, since E is connected, one of
them is empty and the other is all of F.

Proposition 0.5 (Second Minimum Principle) Suppose that O is an open con-
nected subset of a metric space with compact closure O and with non-empty
boundary. Let f be lower-semicontinuous in O with the property that, if it has
a minimum value at some point, then it is constant in some open neighborhood
of the same point.

1. If f takes a minimum value in O, then it is constant in O.

2. Let m = infycpo (liminfose—y f(2)). Then m < f(x) for all z in O.
If m = f(x) for some x € O, then f =m identically in O.
There is a dual Maximum Principle for upper-semicontinuous functions.

Proof:
The first part is straightforward from the First Minimum Principle.
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As for the second part, extend f in 0O, defining

Hy) = lminf f(x)
for all y € 00.
Then, it is easy to see that f becomes lower-semicontinuous in O and, from
Proposition 0.2, this extended f takes a minimum value in O, say m*.
If m* < m, then m* is taken at a point of O and, by the first part, f must
be constant, f = m*, in O. Therefore, taking any boundary point y,

m < f(y) = liminf f(z) = m*
O3x—y
and we get a contradiction.
Hence, m < m*.
If for some = € O we have m = f(z), then, by the first part, f =m in O.

0.6 Borel Measures

1. The Borel o-algebra B(R"™) is the smallest o-algebra of subsets of R™
which contains all open sets. Its elements are called Borel sets.
If A is any Borel set, then we define the Borel o-algebra of A by

B(A) = {BeBR") :BCA}.

A complex measure du on B(A) is called a complex Borel measure in A.

A non-negative measure du on B(A) is called a non-negative Borel mea-
sure in A if, additionally, du(K) < +oo for every compact K C A.

A signed Borel measure in A is any difference of two non-negative Borel
measures in A at least one of which is finite.
2. A Borel measure du of any kind (complex, signed, non-negative) in R® is
said to be supported in a Borel set A, if du(B) = 0 for all Borel sets B such
that BN A= 0.

For any kind of Borel measure di in R™ and any Borel set A, we define the
restriction of du in A by

dja(B) = du(B N A)

for all Borel sets B. This is a Borel measure supported in A.

One should observe and keep in mind the difference between a Borel measure
in a Borel set A and a Borel measure in R™ supported in the Borel set A.
3. Every signed Borel measure dy has a non-negative variation dp™ and
a non-positive variation du~, which are both non-negative Borel measures,
they are supported in disjoint Borel sets, at least one of them is finite and satisfy
dp = dp™ — dp~. Then, the non-negative Borel measure |du| = du™ + du~ is
called the absolute variation of dpu.
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It is true that, for every signed Borel measure du and every Borel set A,
|dp|(A) = sup Y |du(By)| over all m € N and all partitions A = U™, By, of
A into pairwise disjoint Borel subsets of it.

We extend to the case of complex Borel measures and, for every complex
Borel measure du and every Borel set A, we define

|dul(A) = supy  |du(By)]
k=1

over all m € N and all partitions A = U] ; By, of A into pairwise disjoint Borel
subsets of it.
Then, |dp| is a finite non-negative Borel measure and the finite number

ldull = |dul(R™)

is called the total variation of du.
4. If f is integrable in R™, then a complex Borel measure djis is defined by

dug(A) = [ fa) dm(a)
for all Borel sets A. This measure is denoted, also, by
fdm = duy .

The integrable function f is called the density function or the Radon-
Nikodym derivative with respect to dm of the complex Borel measure
fdm.

If f* = max(f,0) and f~ = max(—f,0), whence f = f* — f~ and |f| =
fT+ f, then

(Fdm)* = frdm, (Fdm)” = f~dm ., |fdm| = |f]dm
and
Ifdml = [ \f(e)] dma).

We, also, have that f dm is supported in the Borel set A if and only if f =0
almost everywhere in R™ \ A.

The complex Borel measures of the form du = f dm are called absolutely
continuous and are characterized by the property:

du(A) = 0 for all Borel sets A with dm(A4) =0 .
For every x € R™ we define the Dirac mass at x as the measure

1, ifzeA
d0:(4) = {0, ifr¢ A
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for all Borel sets A. This is not absolutely continuous and is supported in {z}.
5. The space M(R™) of all complex Borel measures in R™ is a linear space and
| - || is @ norm on it. Under this norm, M(R™) becomes a Banach space.

If the complex Borel measure dp is supported in the Borel set A, then,
obviously, |du| is also supported in A and ||du|| = |dp|(A). We, then, denote by
M(A) the space of all complex Borel measures supported in A. This space is
just a closed linear subspace of M(R™) and, hence, a Banach space itself.

6. If A is a subset of a metric space, then Cg(A) is the Banach space of all
complex-valued functions continuous and bounded in A, with the norm

[fllc = sup[f(z)],  feCr(A).
z€A
If A is compact, then Cp(A) = C(A).
We shall need the following simple version of an important theorem.

Theorem 0.10 (Representation Theorem of J. Radon and F. Riesz) Let L be a
bounded linear functional on the Banach space C(K), where K is any compact
subset of R™. Le.

L(af +bg) = aL(f)+bL(g)

for all a,b € C and all f,g € C(K) and
LA < £ [[fll

for all f € C(K) and some k not depending on f.
Then, there exists a unique complex Borel measure du supported in K so
that

1) = [ f@) duto)
for all f € C(K). We, also, have that
ldull = IILIl = sup{|L(f)]: f € C(K), [fllc <1} .
If L is, also, non-negative, i.e.
L(f) = 0
for all f € C(K) with f > 0 everywhere in K, then du is non-negative.
If for every du € M(K) we define the function

Lau(f) = /K f@) du(z) . feC(K),

then Lg, is a continuous linear functional on the Banach space C'(K), i.e. an
element of C(K)*.

The content of the Representation Theorem of J. Radon and F. Riesz is that
the (obviously, linear) mapping

M(K) 3 dp v Ly, € C(K)*
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is a bijective isometry.
7. If {dum} is a sequence of Borel measures, then we say that it converges
weakly on the compact set K to the Borel measure dp, if for all f € C(K),

| 1@ dunta) [ 5@ duta).

In this case, by the Uniform Boundedness Theorem, it is true that there is
a constant M so that |du|(K) < M and |du,,|(K) < M for all m.

As an application of the Banach-Alaoglou Theorem in the Banach space
C(K), we get that for any sequence {d ., } of complex Borel measures supported
in K with [|dum,| < M for some M < 400 not depending on m, there is some
subsequence converging weakly on K to some complex Borel measure supported
in K.

If the sequences {du’ } and {du?,} converge weakly on the compact subsets
K; and Ky of R® to du' and du?, respectively, then the product measures
dpl, x du2, converges weakly on K7 x Ko to dut x du®. To show this, consider
an arbitrary product f1(x)f2(y) of continuous functions in K; and Ks. Then,
by the Theorem of Fubini, it is clear that

/ f1() f2(y) dﬂqln X dﬂfn(%y) — f1(x) fa(y) dﬂl X d#2(xay) .
KixKs K1 xKa

For the arbitrary continuous f(z,y) in K1 x Ko, we use the Stone-Weierstrass
Theorem to approximate f by a polynomial >~ x%y® uniformly in K; x K, and
that ldut, x du2, | < ldud, |[ldii2, || < My Ms < +o0o, to prove

/ flzy) dpy, x dps, (z,y) — flz,y) dp' x dp?(z,y) .
K1XK2 K1><K2

8. All kinds of Borel measures du are regular. This means that, for every Borel
set B with finite du(B) and every € > 0, there is an open set U and a compact
set K so that K C BCU and |du|(U\ K) <e€.

9. Let dp be a non-negative Borel measure and let the extended-real-valued f
be defined in the Borel set A. We, then, define the upper integral of f in A
by

[ 1@ duta) = it [ ot2) auto).

where the infimum is taken over all bounded from below lower-semicontinuous
¢ in A with ¢ > f everywhere in A. We, also, define the lower integral

/ @) dutz) = s /A (w) du(z)

where the supremum is taken over all bounded from above upper-semicontinuous
¥ in A with ¢ < f everywhere in A.
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It is, then, true that

/ @) dnte) < [ 1@ dute)

It is, also, true that f is du-integrable in A if and only if

o< f 1) ) = [ s aute) < 4.

and, in this case, the common value of the upper and the lower integral is equal

to [, f(x) du(z).

0.7 Distributions

The following is only a short exposition of very few elementery facts about
distributions with brief proofs of only those of them which are considered new
or not easy enough to be proved by the inexperienced reader.

If f is a measurable function in R", then x € R" is said to be a support-
point for f, if f is almost everywhere 0 in no neighborhood of z.

The support of a measurable function f : R™ — C is the smallest closed
set in R™ outside of which f is almost everywhere 0 and it is defined by

supp(f) = {x € R": x is a support-point for f} .

Saying that the support of a measurable function is bounded is equivalent to
saying that it is a compact subset of R™ and equivalent to saying that the func-
tion vanishes almost everywhere outside a compact subset of R™. In this case,
we say that the function is compactly supported or that it has compact
support.

In case f is continous in R™, then it is easy to see that its support is the
smallest closed set in R™ outside of which f is everywhere 0.

If du is a Borel measure (of any kind), we say that the point x € R™ is a
support-point of du, if du is the zero measure in no neighborhood of x. The
support or, sometimes called, closed-support of du is defined by

supp(dp) = {x € R™: z is a support-point of du} .

It is easy to see, using the regularity of du, that supp(du) is the smallest
closed set in R™ outside of which du is the zero measure.

Example
The finite non-negative Borel measure dy = Zj’? 27%d51 is supported in
- k

the set {7 : k € N}, but supp(dp) = {3 : k € N} U {0} .

Whenever we say that du is compactly supported or that it has compact
support, we mean that supp(du) is a compact subset of R™.
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In case du = fdm is an absolutely continuous compex Borel measure with
density function f € L'(R™®), then, clearly,

supp(f dm) = supp(f) .
Let f,g € L*(R™). Then, the convolution
frglx) = - flx—y)g(y) dm(y)
is defined for almost every x and it is true that f x g € L'(R™). Also,
1f*gllermny < [fller@n gl @) -
It is true that
frxg =gxf,  [fx(gxh) = (fxg)*h

and

supp(f *g) € supp(f) + supp(g) ,

where A+ B={x+y:2€Ayec B} for A,BCR"

The convolution is defined in other instances also.

Let f be measurable in R™ and integrable in all compact subsets of R™.
We, then, say that f is locally integrable in R™ and the space of all such f
is denoted by L} (R™).

If f is locally integrable and g is integrable and compactly supported, then
f * g(z) is, obviously, well-defined for almost every .

The convolution is a useful device and one reason is that it preserves the
regularity properties of its component functions.

For instance,

Proposition 0.6 Suppose f is locally integrable and g is continuous and com-
pactly supported. Then f * g is everywhere defined and continuous.
If, moreover, g is in CF(R®), then f * g is, also, in C*(R™) and

D*(fxg) = fxD%

for all multi-indices o = (o, . .., ap) with order |a] < k.
The same conclusions hold, if we assume that [ is locally integrable and
compactly supported and g is continuous or in C*(R™P).

Proof:
(i) Let supp(g) be contained in the compact K C R™. Then, for every z,

[ 1=yl dmw) < gl [ 1) dm(y) < +oc.
since x — K = {z —y:y € K} is compact.
(ii) For fixed z and for |2’ — 2| < § < 1, the function g(z' —-) — g(z —-) has
its support contained in the compact subset L = {y : d(y,z — K) < 1} of R™.
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Therefore,

[f *g(a') = f*g(z)]

IN

A}ﬂ@%@’—w—g@—yﬂmdw
< sup Ig(a)—-gdﬁlji\f(y)ldwwy)

la—b|<é

and, since g is uniformly continuous, the last quantity tends to 0 as § — 0.
Thus, f * g is continuous at x.

(iii) Now, suppose that g € C*(R™). Then, as before, for fixed x and for h € R

with |h| < <1,

‘f*g(a:—f—he}jl‘)—f*g(x) _ f(y)a%g(a:—y) dm(y)‘

/Lf wgw+hq Dogle-y) 09

69 /
< su dm(y
<8 b‘p<5 &’c] 8x] ‘ |f ()l

and, since 86 is uniformly continuous, the last quantity tends to 0 as § — 0.
Thus, @(x) =[x aT(m) for every z and, from part (ii), f*g € C*(R™).
J hat)

x
Using induction, we extend to derivatives of higher order.

The proof of the second part is, after trivial modifications, similar to the
proof of the first part.

A useful technical tool is the function

_ exp(—1), ift>0
¢o(t) {0, ift<0.

It is easy to prove that ¢g is in C>°(R) and supp(¢o) = Ry . Therefore, if
C > 0, the function

[ Cexp(—1—=) . ifz e B(0;1)
() = {0, . if z ¢ B(0;1)

has the properties:
1. ®isin C°(R"),
2. ® is non-negative and supp(®) = B(0;1) ,
3. @ is radial. L.e. ®(z) = ®(y) whenever |z| = |y| ,

4. [gn ®(z) dm(x) =1, if we choose the constant C' appropriately.
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Now, the functions (6 > 0)

1 T
— O(= R"
5 ((5)’ T € ,

have the same properties 1, 3 and 4 and property 2 replaced by

P5(z) =

supp(®s) = B(0;0) .

Definition 0.2 The family of functions {®5 : § > 0}, or any other similar
family coming from any ® with properties 1-4, is called an approximation to
the identity.

Starting with any radial function F, the following function is well-defined
for all € Ry for which there is at least one x in the domain of definition of F
with |z| =7 :

F.(r) = F(x), for any x with r = |z| .

This is useful whenever we use polar coordinates to evaluate integrals.

Let f be measurable in €2, an open subset of R®, and integrable in all
compact subsets of (2. We call f locally integrable in (2 and the space of all
such f is denoted by L}, ().

Proposition 0.7 If f is in L} (), g is in C*(R™) and supp(g) C B(0;4),
then the convolution

frg(@) = - flx=y)g(y) dm(y)
is defined for all x in the open set
Qs ={z € Q:d(z,00) >}
and it is in C*(Qs). Moreover,
D(f+g) = f+D%
in Qs, for all a with |a| < k.

Proof:
A minor modification of the proof of Proposition 0.6.

Definition 0.3 Let Q be an open subset of R™. Then the space of test-
functions in Q, denoted by D(R), is the space of all infinitely differentiable
complez-valued functions with compact support contained in 2.

D(R) is a linear space and f¢ € D() for every f € C>*(Q) and every
¢ € D(2). In fact, since C*(2) is an algebra, we see that D(2) is an ideal in
C>(Q).

The next result is technically very helpful.
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Lemma 0.2 Suppose that 2 is an open subset of R™ and K is a compact subset
of Q. Then, there exists a ¢ € D(Q) so that

1. 0 < ¢ <1 everywhere in Q0 and

2. ¢ =1 everywhere in K.

Proof:
Consider 6y < i d(K,090) and the compact set

K250 = {.Z‘ : d(l‘,K) S 260} .

We also consider any approximation to the identity {®s : § > 0} and the
convolution

d) = XK250 *®50 b

where X, is the characteristic function of Kas,.

By Proposition 0.6, ¢ € C°(R"™) and supp(¢) C Kas, + B(0;09) which is a
compact subset of Q. Hence, ¢ € D(Q).
Also, for every =,

0< o) = [ Byla-w)dmly) < [ sy dmly) = 1.
Koas,, n
Finally, if € K, then B(z;dp) C Kas, and, thus,

P(x) = /B (w;éo)xméo(y)%o(x—y) dm(y) = /B (w;%)@ao(x—y) dm(y) = 1.

We define a notion of convergence for sequences in D(f2) as follows.
Definition 0.4 Let {¢,,} and ¢ be in D(Q?). We write
¢m — ¢ in D(Q),
if
1. there exists some compact K C Q so that supp(¢m) C K for allm and
2. D%, — D¢ uniformly in Q0 for every multi-index o .
Of course, 1 and 2 imply that supp(¢) C K .

Proposition 0.8 1. If ¢, = ¢ and ¥, — ¢ in D(Q), then Ay, + pthy, —
Ap 4w and Gpthy — o in D(Q) for all \,u € C .

2. If o — ¢ in D(Q) and f € C=(Q), then fém — fé in D(Q) .
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Proof:

If the supports of all ¢,,, are contained in the compact K and the supports
of all v,,, are contained in the compact L, then the supports of all A, + um,
are contained in the compact K U L, the supports of all ¢,,1,, are contained in
the compact K N L and the supports of all f¢,, are contained in K.

The rest is an easy application of the rule of Leibniz for the derivatives of
products.

Proposition 0.9 For every ¢ in D(2) and any approximation to the identity
{®s: 5 > 0} we have that ¢ x D5 belongs to D(Q) for small enough & and

ox D5 — ¢ in D(Q)
as 6 — 0+ .

Proof:

Observe that ¢, defined to be equal to 0 outside 2, is in C°°(R™) . Therefore,
from Proposition 0.6,

D¢+ ®s) = D% x P;
in R™.

If we consider K = supp(¢) and dg = % d(K,09Q) > 0, then, for all § < do,
the support of ¢ x ®; is contained in the compact set L = K + B(0;0¢) = {x :
dz, K) <} CQ.

Hence, ¢ * ®5 belongs to D(2) for all & < Jp .

Now, for every x,

D (6 @) (x) ~ D6(x)| = D6 By(w) ~ Do(a)
[ 1Dtz ) - D*6(a)]@s(y) dm(y)

IA

- /Rn D¢z — 6y) — D¢(x)|P1(y) dm(y)

< sup [D%(a) — D¢(b)|
la—b|<s

and the last term tends to 0 as § — 0 .
Therefore, D% (qS * <I>5) — D%¢ uniformly in R™.

This notion of convergence defines a topology in the space D(2), which then
becomes a locally convex topological vector space, but we shall not touch and
not need this more abstract matter.

We call distribution in £ any continuous linear functional 7" on D(2). Thus,

Definition 0.5 A function
T : D) —C

1s called distribution in ), if
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1. T\¢+ pp) = XT(¢)+ uT() for all ¢,9p € D(Q) and all \,p € C .
2. T(¢m) — T(Pp) whenever ¢, — ¢ in D(Q) .
We denote by D*(Q) the set of all distributions in ) .

The space D*(2) becomes a linear space, when we define

(AT + pS)(¢) = AT'(¢) + pS(9)

for all ¢ € D(Q). In fact, it is trivial to prove that XT' + uS is a distribution in
Q whenever T and S are distributions in € .
We can, also, define the notion of (w*-)convergence in D*(2) as follows.

Definition 0.6 We write
Tn—T in D*(Q),

if
To(o) — T(¢)
for all p € D() .

The two examples which will be introduced in Definitions 0.7 and 0.10 show
how certain concrete objects, like functions and measures, can be viewed as
distributions.

Definition 0.7 For ecvery f € L (Q), we define

loc

Ty(¢) = | o(@)f(x) dm(x)

Q
for all ¢ € D().

It is trivial to prove that T is a distribution in 2.
The (obviously) linear map

Llloc(Q) >5f = Tf € D*(Q)

is a continuous injection.
This means that,

1. if Ty =Ty, then f = g almost everywhere in Q and

2. Ty, — Ty in D*(Q), whenever f,,, — f in L}, .(Q) or, equivalently, when-
ever [ |fm(x) — f(z)| dm(z) — 0 for every compact K C Q.

The second statement is trivial to prove, and the first is equivalent to

Proposition 0.10 If f and g are locally integrable in Q0 and if
| @)@ am@) = [ g@)ota) dmia)

for all ¢ € D(Q), then f = g almost everywhere in Q.



40

Proof:
If K is a compact subset of €, consider Uy, = {z : d(z,K) < =} .
Then, K = N} U,,, implying dm(U,, \ K) < € for large m.
By Lemma 0.2, there exists a ¢ € D(U,,) so that

1. 0 < ¢ <1 everywhere and
2. =1 in K.

Then,
[ st am) [ e amw)| < [ s ane).

with a similar inequality for g.
Letting € — 0 and using the hypothesis, we get

[ 1@ dm@) = [ gla) dm(z)

for all K.
By the regularity of dm, the proof is complete.

We may, thus, “identify” locally integrable functions in 2 with the corre-
sponding distributions in €.

Definition 0.8 If for some distribution T there exists a (necessarily unique)
locally integrable f so that T'= Ty, then we say that T is represented by f or
that T' is identified with f.

Because of this identification, it is common practice to use the symbol f for
both the function and the distribution represented by it. We, thus, write

f(6) = /Q o(2)f(x) dm(x) .

Therefore, the symbol f has two meanings; the “function” meaning, when
f acts on points of €2, and the “functional” meaning, when f acts on functions
¢ € D(Q).

Let du be a complex-valued function defined on the union of B(K) for all
compact K C Q (where B(K) is the Borel o-algebra of K), so that it is a
complex Borel measure in every such compact K.

To say the same thing in a different way,

Definition 0.9 Let du(A) be defined as a complex number for every Borel set
A contained in a compact subset of Q and let

du@ Ay) = iczumk) :
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whenever the Borel sets Ay are pairwise disjoint and are all contained in the
same compact subset of ).

Every such du is called a locally finite complex Borel measure in Q) and
the set of all such du is denoted Moe(S2).

If du is a non-negative Borel measure in 2, then du(A) is defined for all
Borel subsets A of © and, by definition, it is a (finite) non-negative number
whenever A is contained in a compact subset of 2. Thus, by just restricting its
domain of definition, du becomes a locally finite complex Borel measure in 2
with non-negative values.

The converse is the content of the next result.

Proposition 0.11 Suppose that du is a locally finite complex Borel measure in
Q with non-negative values.

Then, the domain of definition of du can be extended to B(Y) so that du
becomes a non-negative Borel measure in Q.

The extension of du on B(QY) is unique.

Proof:
If A is an arbitrary Borel subset of 2, define

duo(A) = supdu(B)

over all Borel sets B C A which are contained in compact subsets of €.
(i) Tt is obvious that, if A itself is contained in a compact subset of ), then
dpg(A) = du(A) and, thus, dug is an extension of du.
(ii) Now, let the sets Ag, k € N, be pairwise disjoint Borel subsets of Q.

If BC U;;“I’Ak is contained in a compact subset of 2, then all BN A, are
contained in the same compact subset of €2 and, thus,

+oo +oo
du(B) = Y dp(BNAy) < Y duo(Ay) .
k=1 k=1
This implies that
—+oo +oo
duo(U Ak) < ZdMO(Ak) :
k=1 k=1

Now, for each k with 1 < k < m, consider arbitrary Borel sets By C Ay con-
tained in compact subsets of 2. Then U}’ , By is, also, contained in a compact
subset of Q and, hence, Y~ du(By) = du(Uy, By) < dpuo(U{25 Ag).

Taking the supremum over each By, independently, we find >";" | duo(Ax) <
duo (U2 Ag) and, letting m — +o0,

—+o0

ZdMO(Ak) < dﬂo(J[jAk) -

k=1 k=1
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Therefore, dpg is a non-negative Borel measure in Q.
(iii) Now, let duy be another extension of du and consider a compact exhaustion
{K(m)} of Q. Then, for every Borel subset A of Q, the sets B,, = K(,) N A
increase towards A and each is contained in a compact subset of Q. Therefore,

din(4) = lim du(Bp) = lim du(By) = lm duo(Bp) = dpo(A).

Because of the last proposition we shall never distinguish between non-
negative Borel measures in ) and locally finite Borel measures in £ with non-
negative values.

If du is a locally finite complex Borel measure in §2, then through the ex-
tension procedure of Proposition 0.11, we can define the non-negative Borel
measures |du|, dut and dup~ in Q satisfying |du|(A) = dut(A) + du~(A) for
all A € B(Q) and du(A) = dut(A) — dp~(A) for all A € B(Q) contained in a
compact subset of ).

If f is a locally integrable function in €2, then a locally finite complex Borel
measure fdm in (Q is defined, as usual, by

fdm(A / f(x) dm(x

for all Borel sets A which are contained in compact subsets of (2.
It is obvious that we may integrate any continuous function with compact
support contained in 2 against any locally finite complex Borel measure in Q.

Definition 0.10 For every du € M,.(2) we define
Tdu / ¢ d/”
for all ¢ € D().

It is clear that T}, is a distribution in €2 and that the linear map
Mloc(Q) = d/i — Td# € D*(Q)

is a continuous injection.
This means that,

1. if Ty, = Tqy, then du = dv and

2. Tau,, = Tay in D*(Q), whenever dpi,, — dp in Mo (£2) or, equivalently,
whenever |dp,, — du|(K) — 0 for every compact K C €.

The first statement is the same as

Proposition 0.12 If du and dv are two locally finite complex Borel measures

i Q and
/qs d(z /qs ) du(z

for all € D(Q), then du = dv.
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Proof:
The proof is identical to the proof of Proposition 0.10, replacing f(z)dm(x)
by du(x) and g(x)dm(z) by dv(x) and using the regularity of Borel measures.

Therefore, we identify locally finite complex Borel measures in ) with the
corresponding distributions in 2 and, as above for functions,

Definition 0.11 If for a distribution T in Q there exists some (necessarily
unique) locally finite complex Borel measure dy in 2 so that T = Ty, then we
say that T s represented by du or that T is identified with du.

As in the case of functions and because of this identification between mea-
sures and distributions, it is common practice to use the same symbol du for
both the measure and the distribution represented by it. We, therefore, very
often write

dp(p) = A ¢(z) du(z) .

Hence, the symbol du has two meanings; one is the meaning of a “measure”,
when du acts on certain Borel subsets of €2, and the other is the “functional”
meaning, when dpu acts on functions ¢ € D(Q).

A particular case is when the measure is the dd,, the Dirac-mass at a point
a € Q). Then,

d52(8) = Tus,(#) = /Q 6(z) dba(z) = o(a)

for all ¢ € D(Q).
Another particular case is when the measure is of the form fdm for some
locally integrable function f in £2. Then,

fdm(@) = Tyam(@) = /Q 6(2)f(z) dm(z) = Ty(6) = 1()

for all ¢ € D(RY), implying T gm, = T or, informally, f dm = f.
Definition 0.12 A distribution T in Q is called non-negative and we write
T>0,

if
T(¢) = 0
for all ¢ € D(Q) with ¢ > 0 everywhere in Q.

Theorem 0.11 If T is a non-negative distribution in €, then there exists a
non-negative Borel measure dp in §) so that T =Ty, .

Proof:
Consider any open exhaustion {2y} of Q and fix m.
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By Lemma 0.2, there exists ¢ € D(Q2) such that 0 < ¢y < 1 everywhere
and ¢g = 1 in the compact Q) .

Then, for every ¢ € D(Q(y,)), we have |¢| < ||¢]|cdo everywhere in € and,
since T' > 0,

T(@) < [TRO)|+T(SP)| < 2T(¢0)|9]l oo -

Therefore, T'is a bounded linear functional on the linear subspace D(£(;,)) of
the normed space C(£)(,,)). By the Hahn-Banach Theorem, T" can be extended
as a bounded linear functional on C(Q(,))-

By the Representation Theorem of J. Radon and F. Riesz, there exists a

complex Borel measure dj, supported in €)(,,) so that

T(¢) = [ o) dpm(x)
Qo)
for all ¢ € D(Q())-
If K is any compact subset of {)(,,), then, as in the proof of Proposition
0.10, there exists ¢ € D(Q,)) so that 0 < ¢ < 1 in Qpy, ¢ = 1 in K and
A, (supp((b) \ K) < e. This implies

() =T < [ ula) = 6@)] dpn () < e
(m)
and, since T'(¢) > 0 and ¢ is arbitrary,
i (K) > 0.

By the regularity of du,,, we conclude that it is a non-negative measure.
Now, since fmqb(x) dpim (z) = T(¢) = fﬂ<m+1) o(x) dppmar(z) for every
® € D((m)), Proposition 0.12 implies that

d:um = d//fm+ 1

in Q). Therefore, the measures dp,, define a locally finite complex Borel
measure dpu in ) with non-negative values so that the restriction of dp in each
() coincides with dp,,; simply, define, for all Borel sets A which are contained
in compact subsets of (2,

du(A) = dpm(A)
for any m with A C Q) .
Finally, if ¢ € D(12), then, since supp(¢) is compact, ¢ € D(Q(y,)) for large
m and

Tonld) = [ 6(o) duta) = (2) dpm(z) = T(9) .

Q(m)

In the rest of this section we define two operations on distributions, the
differentiation and the convolution with infinitely differentiable functions with
compact support in R™, and study their calculus.
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Definition 0.13 If T is a distribution in ), we define
oT 0¢
9@ = T(5)

for all € D(R) and call gTT the j-derivative of T.

Then, 7 is a new distribution in €2, as one can, easily, see.
J

Inductively, we see that a distribution in 2 has derivatives of all orders and
these are, also, distributions in €2. In fact, for every multi-index a,

D°T(¢) = (~=1)*IT(D*¢) .

Definition 0.14 If T} s the distribution identified with the locally integrable
function f, then the distribution % 1s called the distributional j-derivative
J

of f.

By Definitions 0.7 and 0.13, this means nothing more than that this distri-
butional j-derivative is a functional on D(), defined by

G0 = 1 (52) = - [ 1052 @) ).

Therefore, a locally integrable function has distributional derivatives of all
orders which are, in general, distributions.

To avoid a conflict, we must find the relation between the distributional
derivative and the classical derivative, whenever this last one exists. Therefore,
assume that f is in C1(Q) f be its usual j-derivative in Q. Then, for

every ¢ € D(Q),

@) = = [ 1052w ane) = [ ZL@ow ant) = Ty ).

al‘_j Oz ;

The second equality is the well-known Integration by Parts formula and
can be proved using Green’s Formula in a bounded open set G with C' L_boundary
and with supp(¢) C G C G C Q (so that ¢ and %?; vanish in 0G).

Thus,

Proposition 0.13 The distributional j-derivative of any f in C1(S2) is identi-
fied with its classical j-derivative.

Based on this last result and on the identification between f and T}, we,
often, use the customary symbol % to denote %, even though f may not be
J J
differentiable in the classical sense. Thus, the informal notation is

8% /f 8x] dm(z) .
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If T € D*(£2), then

PT oT  9¢ ¢
72 = 5. (o) = T(52) -
Therefore, the Laplacian of a distribution T is given by
AT(¢) = T(A¢)
for all ¢ € D(Q).

Another case which we shall often consider is the distributional Laplacian
Af of alocally integrable function. The correct notation is, of course, AT} and
it is the distribution which, for every ¢ € D(f), satisfies

ATy(¢) = Tr(A¢) = Qf(ﬂS)Aaﬁ(%‘) dm(z) .

The informal notation is, of course,

Af(6) = /Q f(@)Ad(x) dm(z) |

even if f is not differentiable in the classical sense.
In case f € C*(Q), using the formula of Integration by Parts,

DTy (¢) (-D)Ty (D) = (—1)'“'/Qf(x)D“¢(x) dm(z)

/Q D f(2)é(x) dm(z) = Tpes(0)

for all ¢ € D(Q) and all multi-indices « of order at most k. Thus,

Proposition 0.14 The distributional a-derivative of an f in C*(Q) is identi-
fied with its classical a-derivative, for all o with |a| < k.

Again, the informal notation, even if f is not differentiable, is

Dof(g) = (~1) /Q (@) D(x) dm(x) .

Let § > 0 and consider any f € C*°(R"™) with supp(f) C B(0;6). Denote

fla) = f(-x), weR™.

Definition 0.15 For any T € D*(QQ) and any ¢ € D(Qys), we define

Txf(¢) = T(f*¢).

T x f is called the convolution of the distribution T and the function f.
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This is well-defined. Indeed, f*q& € C>*(R") and supp(f*gﬁ) C B(0;0)4+Qs C
Q and, hence, f * ¢ € D(Q).

Proposition 0.15 If T € D*(Q) and f € C*(R"™) with supp(f) C B(0;9),
then T x f is a distribution in s.

Proof:
The linearity is trivial to prove and we consider ¢,, — ¢ in D(Qs).

If all supp(d.,) are contained in the compact K C Qg, then all supp(f * ¢u,)
are contained in the compact L = K 4+ B(0;6) C Q. Moreover,

D (F 4 6m)(a) = D*(F ) o)
< [ 1D%6uly) = D6 Flz - )] dm(y)

IN

sup [D%6,,(5) = Do) [ 17(:)] ).

yeR®

and, hence, D*(f * ¢n,) = D*(f * ¢) uniformly in R™.
This implies that f * ¢, — f* ¢ in D(Q) and, since T € D*(Q), we, finally,
get

T f(dm) = T(f*bm) — T(fxd) = Txf(9).

Guided by the “principle” that convolution preserves the regularity of its
components, we shall prove that T % f can be identified with some function
g € C=(Qs).

Remark

In the proof that follows there are four “why”s and “how”s. The interested

reader is advised to answer them, providing the easy but technical proofs.

Define f*(y) = f(x — y) and observe that f* € D(Q), if x € Qs. Therefore,
the function

g(l‘) = T(fx)a er(Sa
is well-defined.
If ., = x, then f* — % in D(Q) (why?) and, hence, g(z,,) — g(x).
Therefore, g is continuous in 5.
Next, we see easily (how?) that, for all x € Qs, if h — 0 in R, then

frtesh _ fu . (af )x

h oz
in D(R2), where e; is the j-coordinate unit vector.
From this,
o St eh) —g(@) Lo Tt = N OF e
) h - ;?L%T( I ) - T((axj) ) '
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Hence,

99 (1) = T((af)x>, zeQs,

implying that ¢ has continuous partial derivatives of first order and, by induc-

tion, of any order:
g€ C™(Qys) .
Take, now, any ¢ € D(Qy).

Since the function ¢g is continuous with compact support contained in g,

$(x)g(x) dm(z) = lim)  ¢(zx)g(ze)Aml(zy)

Qs
where the last sum is a Riemann-sum defined, as usual (how?), by a mesh of

small cubes and the limit is taken as the size of the cubes tends to 0.
Now, it is easy to prove (how?) that, also,

[ ()70 dm(@) = m Y (@) (Am(s) i D).

Finally,

[ #@@) dmie) = 1im 3 olon)gwn) Ama)

= lim ) ¢(ap)T(f™) Am(wy)

= (3 0l () Am(a)
- T(Nﬂéqb(x)f’”(-) dm(z))

= T(fx¢) = Txf(9),

where the third equality holds because the sum is finite.
We conclude that T « f is identified with the function g € C°°(€s). Thus,

Proposition 0.16 The convolution of a distribution in  and an infinitely dif-
ferentiable function supported in B(0;0) is a distribution in Qs identified with
a function in C*(Qy).

We can easily prove

Proposition 0.17
T (fxg) = (T'x[f)*g
for all T € D*(Q) and f,g € C*(R™) with supp(f) C B(0;9) and supp(g) C
B(05¢) .
In this equality, both sides are distributions in Qs .
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Proof:
For any ¢ € D(Qs4.), and since supp(f x g) C B(0; +¢€) ,
(T*(F*9)(@) = T((frg)%6) = T([*@*0))
(T f)G=d) = (T*f)*g)() -

Proposition 0.18 For all T € D*(Q) and f € C®(R™) with supp(f) C
B(06),

DT« f) = DT« f = T«D*f,
as distributions in Qs .

Proof:
For every ¢ € D(s),

DT+ f)(¢) = (~1)°N(T x f)(D¢) = (~1)l*IT(f+ D) .

This is, on one hand, equal to

(~DIIT(D*(f+¢)) = DT(f+¢) = (DT * )(¢)

and, on the other hand, equal to

T(Dofx¢) = (T*D*f) () .

Proposition 0.19 If h € L}, () and f € C®(R™) with supp(f) C B(0;6),
then
Ty, f = Th*f

as distributions in Qg .

Proof:
By Proposition 0.7, the function h * f is in C*°(£2s) and, hence, both sides
are distributions in Qs. If ¢ € D(Qs) and supp(¢) is contained in the compact

K C Qg, then supp(f * ¢) is contained in the compact L = K + B(0;4) C Q
and, using the Theorem of Fubini,

(Tus )6) = Ta(Fxe) = /Q h(z) /K f(y — 2)b(y) dm(y) dm(z)
- / h(x) / f(y - 2)6(y) dm(y) dm(z)
L K

- /K(h*f)(y)asw) dm(y) = Thes(9) -
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Proposition 0.20 Consider any approzimation to the identity {®s : § > 0},
let T be a distribution in Q and fix an arbitrary € > 0.
Then, for all 6 < e, T x ®g is a distribution in Q. and

Tx®s —T in D*(Q)
as 6 — 0.

Proof:
Take any ¢ € D(€)¢) and write

(T ®5)(¢) = T(B5%¢) = T((®)s*¢) = T(¢)

since, by Proposition 0.9, (CB)(; x ¢ — ¢ in D(Q) as § — 0.

0.8 Concavity

An extended-real-valued function f defined in an interval I C [—oo,+00] is
called concave in I, if it takes only real values in the interior of I and

flta+ (1 —t)b) > tf(a)+ (1 —1)f(b)

for all a,b € I and all ¢t € (0,1).

f is called convex in I, if —f is concave in I.

If f is concave in the interval I, then f is continuous at every interior point
of I and, at each of the endpoints, the one-sided limit of f exists. In case the
endpoint is contained in I, this limit is no smaller than the value of f there.

If f is concave in the open interval I, then f is differentiable at all points
of a subset D of I, where I \ D is at most countable. At every a € I\ D
the one-sided derivatives of f exist and f’ (a) > f/ (a). The functions f’ and
fi are decreasing in I and, hence, f’ is decreasing in D. The corresponding
Lebesgue-Stieltjes measure df’ is a non-positive Borel measure in I, which is the
zero measure in I if and only if f is a linear function in 1.

Also, at every interior point ag of I, f has a line supporting its graph from
above. This means that for some [,k € R,

fla) < la+k

for every a € I, and
f(ao) = lag+ k.

As | we may consider any number between the one-sided derivatives of f at ag.
If f is twice continuously differentiable in the open interval I, then f is
concave in [ if and only if f” < 0 everywhere in I.

Theorem 0.12 (Inequality of Jensen) Let dv be a non-negative measure in the
measure space (X, A) with dv(X) =1 and ¢ be an extended-real-valued function
in X which is in L'(dv).
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Then, for every f which is concave in an interval containing the values ¢(x)
for almost all (with respect to dv) x € X,

1([ o@ avia)) > [ foote) dvia).

The inequality is reversed, if f is convex instead of concave.

Proof:

Let I be an interval such that ¢(x) € T for almost all (with respect to dv)
z € X.

If the real number ag = [ ¢(z) dv(x) is an endpoint of I, then ¢ is almost
everywhere (with respect to dv) equal to ag and Jensen’s inequality is trivial to
prove.

Now, suppose that ag = [, ¢(x) dv(z) is an interior point of I.

Then, there exist [, k so that f(ag) = lag+k and f(a) <la+k for all a € I.

Hence, for almost all (with respect to dv) z € X, f(¢(x)) < l¢(z) + k and,
integrating,

/X fod(@) dv(@) < 1 /X o) dv(x) +k = f( /X o) du(x))

0.9 The Fourier Transform

In this section we shall state and prove only a few elementary properties of the
Fourier transform of functions and measures which we shall need later on in
these notes.

Definition 0.16 If f € L*(R™), we define

for = [ o) dmia)

for all € € R™.

It is clear that the Lebesgue integral of the definition is well-defined as a
complex number.

Definition 0.17 If f € L*(R™), then the function
]?: R" - C
18 called the Fourier transform of f.

Example
If

for any a > 0, then
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For the proof we use the Theorem of Fubini to reduce the calculation to the
case of dimension n = 1 and, then,

~ +oo . 2
f(f) — / 6727m§acefom: dm(x) .
Taking derivative and using integration by parts we may, easily, prove that
8f 22
=L = - cR.
5O = —T-eflo. ¢

Therefore,

O (po =22\ 200 o w20 o 217 x20
e J©e7) = " fOem 1 flO7 - 67 =0, ¢eR.

Since f(0) = VE, we find

The proof of the next result is trivial.

Proposition 0.21 If f € L*(R®), then

~

sup [f(§) < [Ifllzr®m)
£ERR
and, thus, R
f e L*R").
Moreover, for every fi and fa in L*(R™) and all \; and \s in C,
Afi+Xefe) = Afi+ Xafo .
Definition 0.18 The linear operator
F:L'R™ — L®R")

defined by R
F(f) =1

is called the Fourier transform on L'(R™).

Proposition 0.22 The norm of the linear operator F : L*(R™) — L*°(R™) is
equal to 1.

Proof:
The norm is, by Proposition 0.21, at most 1.
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Taking any non-negative f € L*(R™), we have, for all £ € R?,

~ ~

Fol < [ @)dan@) = [ 1@ dn(@) = Fo).

Therefore,

-~

sup [f(E) = [Ifllcr@mn)
(ER™

implying that the norm of the Fourier transform on L!(R™) is equal to 1.

Theorem 0.13 (The Lemma of Riemann and Lebesgue) If f € L*(R™), then
the function f is continuous in R™ and

~

lim f(¢§) = 0.

£—o0

Proof:
If & — &, then

~ ~

Fle) = F1©) = [ (726w = 260) f(a) dm(a) — 0

by the Dominated Convergence Theorem and this proves the continuity of f
(i) It
f=x1

is the characteristic function of an n-dimensional interval
I = [a1,b1] X -+ X [an, by] ,
then, for every £ = (&1, ...,&,), we calculate

—2mi;b; _ e—27ri§jaj

W@ = II——¢

We, now, easily, show that
lim x7(§) = 0.
E— o0

This property extends, by the linearity in Proposition 0.21, to all linear

combinations .
f = Z)\kxlk'
k=1

(ii) If f € L*(R™) and € > 0 is arbitrary, we take a linear combination of
characteristic functions of n-dimensional intervals g = >, ; A X1, so that

If—9glloimey < €.
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Then, from Proposition 0.21 and the result of (i),

limsup|f(€)] < limsup|f(€) — g(€)| + limsup |5(€)]
£—o0 §—o0 £—o0
< |f —9||L1(Rn)
< €.

Since € is arbitrary, the proof is complete.

Proposition 0.23 If f and g are in L'(R™), then

Proof:
In fact, by the Theorem of Fubini,

[xg(€)

/ e [ f = w)gly) dm(y) dm()
/n/n —2mi&-(z—y) f(iﬂf )dm( ) —2mi&y ( )dm(y)

. F(©e 2™V g(y) dm(y)
= f(97() -

Definition 0.19 If du is a complex Borel measure in R™, then we define

) = [ e duto)

for all £ € R™.
The function
dp:R* —» C

is called the Fourier transform of du € M(R™).
Proposition 0.24 If du € M(R™), then

sup [dp(&)| < [|dull
£ERR

and, thus,
dp € L*(R").
Moreover, for all du; and dus in M(R™) and all Ay and A2 in C,
(AMdpr + Aodpe)™ = )\ld//z + )\2@ .

The proof is clear.
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Definition 0.20 The linear operator
F: MR — L*R"),
defined by
Fldp) = du,

is called the Fourier transform on M(R").

Proposition 0.25 If du € M(R™), then E;\L is continuous in R™.

Proof:
The proof, based on the Dominated Convergence Theorem, is identical to
the proof of the first part of Theorem 0.13.

The second part of Theorem 0.13 is, in general, not true for measures.

Example
d(Sa (5) — 672m'§<a

for all £ € R™ and, hence,
|doa ()] = 1

for all £ € R"™.

Example
For every absolutely continuous measure fdm with density function f €
L'(R™), it is clear that

fdm = f.
Proposition 0.26 The Fourier transform on M(R™) has norm equal to 1.
Proof:

The proof is identical to the proof of Proposition 0.22 and uses any non-
negative Borel measure in M(R™).

Definition 0.21 For every du and dv in M(R™) and every Borel set A, we
define

durdvld) = [ xalo+y) dulo) x doly)
R»xR®?
where du X dv is the product measure and the double integral is well-defined as

a complex number by the Theorem of Fubini.
dp *x dv is called the convolution of the measures dy and dv.

The proof of the next result is easy and is based on the definition of total
variation.
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Proposition 0.27 Ifdu and dv are in M(R™), then du*dv is o-additive and,
thus,
dpxdv € M(R") .

Moreover,
dp* dv]l < |[dplllldv] -

Proposition 0.28 Ifdu, dv and dp are in M(R™), then
duxdv = dvxdy

and
(dpxdv)xdp = dpx* (dv*dp) .

Proof:
By the Theorem of Fubini, for every Borel set A,

duxdv(A) = /Rn o xa(z +y) du(z) x dv(y)
_ / ,, / iy (@) du() dv(y)
-
= [ dwA-2) du(z)
-
- / n / Xaaly) duy) dv()
_ / n / Xaa(y) dul@) du(y)

_ / Ya(z +y) dv(z) x du(y)
R»xR"?
= dvxdu(A) .

The proof of the second identity is similar and, even, easier.
Definition 0.22 If f € L}(R™) and dv € M(R™), we define
frdv@) = [ fa—y)duly), zeR",
Rn

and call the function f*xdv the convolution of the function f and the measure
dv.

It is trivial to prove that f * dv is in L'(R™) and that

If*dv|pimny < [Ifllor@m)lldv]l -
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Proposition 0.29 Suppose that dp and dv are in M(R™) and that du = f dm
1s absolutely continuous with density function f. Then, du * dv is, also, abso-
lutely continuous and its density function is

[rdv(-) = fG —y) dv(y) .
Rn

Proof:
For every Borel set A,

duxdv(A) = - du(A —y) dv(y)

/ f(z) dm(z) dv(y)
nJA—y

/H/Af(fﬂ —y) dm(z) dv(y)
/A | f@—y) dvy) dm(a)

Proposition 0.30 Ifdu and dv are in M(R™), du is supported in the Borel set
M and dv is supported in the Borel set N, then du* dv is supported in M + N.
Hence,

supp(dp * dv) C supp(dp) + supp(dv) .

Proof:
If the Borel set A is disjoint from M + N and if y € N, then

MN(A-y) =0

and, hence,

dusdv(d) = [ [ xacy@) duta) avty) = [ an(an(a-p) dvty) = 0.

Lemma 0.3 If du € M(R™), then

Rl_l)lllooHd/i—dﬂB(o;R)H =0.
Proof:
ldu = dupor)ll = ldprm\Bo:r)l = ldul(R*\ B(0;R)) — 0,

since |dp| is a finite non-negative Borel measure and B(0; R) T R™ as R 1 400 .

Proposition 0.31 Ifdu and dv are in M(R™) and f is any bounded continuous
function in R®, then

FG) dusdvls) = [ flaty) dute) % dv(y)
R» R xR®
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Proof:
By Lemma 0.3, we may take large enough R so that

ldp = dupor)ll < €, |dv — dvp.r)ll < €.
Because of the uniform continuity of f in B(0;2R), we may, also, take a

linear combination
m

9 = > exa,
k=1

where B(0;2R) = U}, Ay, is a partition of B(0;2R) in pairwise disjoint Borel
subsets of small diameter, so that

sup |f(2) —g(2)| < e
z€B(0;2R)

and, hence,

sup |g(z)] < sup |f(z)|+e€.
zER”® zER®

The measure dpp(o;r)*dVp(0; r) is supported in B(0; R)+B(0; R) = B(0;2R).
Therefore,

‘/R f(2) dupo;r) * dvpo;r) (2) — /R 9(2) dupo;r) * dVB(O;R)(Z)’

< elldupoir) * dvpor)ll < elldulllldv] .
We, clearly, have that

‘ f(Z) dp * dv(z) —/ f(Z) dMB(o;R) * dVB(O;R)(Z)‘
R» R»
s s |f(2)ldp — dupo;r)lllldv |l
+ Slg’ |f()lldpso;rylllldv — dvpo.r) |l
zeR"
< e sup [f(2)[(l|dp] +[ldv]) -
zeR®
In the same manner,
’/ g(2) dp x dv(2) —/ 9(2) dpp(o;r) * Avp(o;r)(2)
< e sup |g(2)|(ldul| + [ldv])
zeR®
< e(sup [£(2)] +€) (ldul + llav])
With similar calculations, we find that

| F(a ) dpl) % dvy)
B(0;R)x B(0;R)

—/‘ gz + ) dulz) x duy)
B(0;R)xB(0;R)
< eldylllldv] ,
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that
‘/ flx+y) du(x) x dv(y)
-/ Fla+y) dy(e) x dv(y)|
B(0;R)x B(0;R)
< e sup |f(2)|(Ildp] + [|dv|)
zeR™
and that

’/ . g(z +y) du(z) x dv(y)

-/ 9(z +) du(z) x dv(y)|
B(0;R)x B(0;R)

< e(sup [f(2)] + €] (ldpl| + lldv]) -
zER™

Finally, from the definition of du * dv and from linearity, we have

| dundvs) = [ gla+y) duta) < avly)

Combining all the above estimates with the last equality, we conclude that

[ @ durv) - [ gy dule) x dvly)| < Ce,
R» R»xR®™

where C' is a constant independent of €, and this finishes the proof.

Proposition 0.32 If du and dv are in M(R™), then
du/*\du = Eﬁdf\y
Also, if f € LY(R™) and dv € M(R™), then
f/*Tiz/ = fé;

Proof:
For the first part, we apply Proposition 0.31 to the function

flz) = e 2Ttz z€ R™.

For the last part, we just imitate the proof of Proposition 0.23.

Lemma 0.4 Suppose that f and g are in L' (R™) and that [g,. g(x) dm(z) = 1.
Then,

frgs — f
in LY(R™) as § — 0+ .
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Proof:
| 1f % as@) = 1) dmo)
=l

/ | |f@—by) — f(@)] dm(a) lg(y)| dm(y) -

(fla—dy) — [(@))g(y) dm(y)| dm(z)

The function
ds(y) = / |f(z = 6y) — f(2)] dm(z) ,  yeR,
Rn

has the properties:

L sup,cgn [@5(y)] < 2|/ f]L1(rn) and
2. lims_0 ¢5(y) = 0 for all y € R™.

By the Dominated Convergence Theorem,

lim \f*ga( ) = f(x)] dm(z) = 0.

—0

Theorem 0.14 (The Inversion Formula) If f € L' (R™) and fe LY(R™), then

f@) = [ e fie) amie)

for almost every x € R™.

Proof:
For every a > 0 and every z € R",

[ emese e i) dm(¢)
-/ / e () f(y) dm(y)

(5)" [ == sty dmiy)

Since f € L*(R™), by the Dominated Convergence Theorem, the left side
converges t0 [gn 2T F(€) dm(€) as o — 0.

From Lemma 0.4, the right side converges to f in L!(R®) as a — 0 and the
proof is complete.
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Theorem 0.15 (The Fourier transform is injective) If f and g are in L'(R™)
and f =49, then f = g. L
If dp and dv are in M(R™) and dp = dv, then dp = dv.

Proof:

It is, clearly, enough to consider the case when g = 0 and dv is the zero
measure.

If f =0, then the Inversion Formula gives that f = 0.

Now, assume that dy = 0.
By Proposition 0.32, for all f € L'(R®?),

frdp = fdp = 0

and, thus, by the first part,
f*xdy = 0.

Considering any approximation to the identity {®s : § > 0} and any ¢ €
D(R™),
0 = | ®sxdu(o) ola) dm(a)
Rn
- / / D5(2)0(y — ) dm() du(y)
— ¢(y) duly) ,
Rl’l

as & — 0, by the Dominated Convergence Theorem and Proposition 0.9.
Therefore,

o(y) du(y) = 0
Rn

for all ¢ € D(R™) and, by Proposition 0.12, du is the zero measure.

Theorem 0.16 Suppose that (1+|-|)¥f(-) € LY(R®). Then fe Ck(R™) and

-~

Do) = [ e (amia) fla) dm(e) = (~2m)° [ FO]E)

for all £ € R™ and all o with |o] < k.

Proof:
By induction, it is enough to consider the case |a| = 1. We, thus, suppose
that (1+]-[)f(-) € L*(R™) and we get, for all j with 1 < j <n,
iy A ny ) —2mix;h __
lim f(§ + h’e]) f(g) lim e—27‘rlI~f € ’ 1
h—0 h h—0 Jrn h

_ /ne—%“-f(—zmj)f(x) dm(z) .

f(x) dm(z)
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The use of the Dominated Convergence Theorem in the above limit is per-
2mix

mitted by the inequality ’7]_1’ < 2m|z;].

Theorem 0.17 Suppose that f € C*(R®) and D*f € L*(R™) for all a with
|o| < k. Then

Def() = (2mig)"f(©)
for all ¢ € R™ and all o with |a| < k.
Proof:
By induction, it is enough to consider the case |a| = 1.
We estimate

‘/nefzmmg f(chrhefjl') - f(=) dm(z) 7/11672772'95-5 SJJ(I) dm(x)‘

_ ’/ 72m-5/ (;Z( +thej)§£( )) dt dm(x)‘

< / / x-l—thej)—%( )\ dm(z) dt
n J
af of
< su —(-+ .
\y\Sll)h\ 9 C+u)- 83:] ¢ )‘ L'(R®)
Therefore,

Jim - o~ 2mia€ fla+ he}i) — f(@) dm(z) = /n e~ 2mieg if(x) dm(x) .

On the other hand,

o= 2mine€ f(x + hej) — f(x)

oy . h dm(z)
) 2mil;h 1
— T —2mix-& €
;ILIL% - e — f(x) dm(x)
= 2mig; f(€)

and we conclude that

for all £ € R"™.

Corollary 0.1 1. If |- |¥f(:) € LY(R®) for all k > 0, then fe C*(R"™) and
Dafe L>*(R™) for all a. In particular, if f is compactly supported in R™, then
J € C=(R™).

2. If f € C®(R™) and D*f € L'(R®) for all «, then |- |*f(-) € L®(R™) for
all k > 0.
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The most symmetric result comes after the following definition.

Definition 0.23 f is called a Schwartz-function if it belongs to C*°(R"™)
and | - |F|D*f(-)| € L=®(R™) for all k > 0 and all c.

The space of all Schwartz-functions is denoted by S(R™) and it is called the
Schwartz-class.

For example, every ¢ € D(R™) belongs to S(R™).

Theorem 0.18 The Fourier transform is a linear, one-to-one mapping from
S(R™) onto itself:
F : SR - SR").
Proof:
If f € S(R™), then |- |*|f(-)] € L>(R®) for all k > 0 and, hence, |- [*|f(")| €

LY(R™) for all k> 0. By Corollary 0.1, f belongs to C*°(R™).
A combination of Theorems 0.16 and 0.17 gives

@2mi) 1P Df(e) = (—2mi) ™ [DP{()* F()}]7(€)

for all ¢ and all o and 8. From f € S(R®) we get that D?{(-)*f(-)} € L'(R®)
and, thus, | - |'*lD*f(-) € L>°(R™) for all « and 8.

Hence, f € S(R™) and F is a linear and, by Theorem 0.15, one-to-one
mapping of S(R™) into itself.

If g € S(R™), we consider the function f = 5\ This belongs to S(R™) and,
by the Inversion Formula, g = ]?

There exists a natural metric on S(R™) and F is a homeomorphism of S(R™).
We shall not work in this direction.
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Chapter 1

Harmonic Functions

1.1 Definition

Suppose € is an open subset of R".

Definition 1.1 A complex-valued function u defined in Q is called harmonic
i ), if

1. w s continuous in €2 and

2. u(x) = Ml (x) for all z € Q and all r < d(z,0N)
or, if

1. w is continuous in Q and

2. u(x) = Al (x) for allx € Q and all v < d(z,09) .

Both conditions 2 are called the mean-value property of harmonic func-
tions. The first is the surface-mean-value property and the second the space-
mean-value property.

The two definitions are equivalent because, if u(x) = M (z) for all x € Q
and all r < d(z,09), then

Al (x) = 7"% ; M (z)s"tds = % ; u(z)s" 'ds = u(x)

and, if u(z) = A7 (z) for all z € Q and all r < d(z,0Q), then

ru(z) = n/ M (z)s™Hds
0

and, taking derivatives with respect to r, we get
nr"tu(z) = nr" I M (2)

67
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and, hence,

Properties of harmonic functions
(1) Linear combinations of harmonic functions are harmonic.
(2) Harmonic functions are preserved by rigid motions of the space.

Suppose © is harmonic in the open © and 2’ = O(z) + b is a rigid motion,
where O is an orthogonal linear transformation and b € R”.

Then Q' = O(2) +b = {O(x) +b : z € Q} is open and v/ (z') = u(x) is
defined and continuous on §’. By the invariance of distances and of Lebesgue
measure under rigid motions,

) = ule) — 1 u m _ 1 J () dmld
u'(z') = u(x) Vo /BW) (y) dm(y) Vo /IB(x/;r) (') dm(y')

for every 2’ € Q' and every r < d(z’,0Q).
(3) Locally uniform limits of harmonic functions are harmonic.

Because, suppose u; — wu locally uniformly in , i.e. uniformly on every
compact subset of Q. Then, u is, obviously, continuous on Q. Also, S(z;r) is
compact in Q if z € Q and r < d(x,99). Therefore,

w(@) = up(er) = M, (z) = M(2),

because of uniform convergence on S(x;r).
(4) (Picard) If the real-valued u is harmonic in R™ and bounded from above or
from below, then it is constant.
It is enough to assume v > 0 in R™.
Take x # y and B(x;7r1) C B(y;r2). Let, in fact,
ro = 1 +|lx—vyl.
Then,
Ay @) = [ uEdne) < [ () dm() = Vi)
B(w;r1) B(ysr2)

and, hence,
riu(z) < ryu(y) .

Letting r1, 72 — 400, we get, since :—; — 1,
u(z) < u(y)

and, symmetrically, u(y) < u(z). Therefore,

and u is constant.
(5) If the real-valued harmonic u has a local extremum at x, then it is constant
in an open neighborhood of x.
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Suppose u(y) < u(zx) for all y € B(x;r) and u is harmonic in an open set
containing B(z;r). Then,

1 1
we) = g [ e ) < g [ ) dm) = ute)

The inequality becomes equality only if u(y) = u(x) for almost every y in
B(z;r) and, since u is continuous,

for every y € B(z;r).

1.2 Maximum-minimum principle

Theorem 1.1 (Mazimum-Minimum Principle for Harmonic Functions) Let u
be real-valued and harmonic in the open QQ C R™.

1. If u takes one of its extremum values at some x, then u is constant in the
connected component of Q0 which contains x.

2. If

M = sup (limsupu(z)) , m = inf (liminfu(z)) ,
ye@%(ﬂaz—ml;) ( )) yESQ(QBm—w ( ))

then m < wu(x) < M for all x in Q.

If u(z) = m or if u(z) = M at some x € 2, then u is constant in the
connected component of Q which contains x.

Proof:

By the fifth property of harmonic functions and, since —wu is harmonic when
u is, the result is an immediate application of Proposition 0.5.

If O is any connected component of €2, then its closure O is compact and its
boundary 0O is a non-empty subset of 9€2. By Proposition 0.5,

m < inf (liminfu(z)) < w(z) < sup (limsupu(z)) < M
yEc’?O(Oax—>y @) < ule) < yeapo(OBm—E @) <

for all z € O.
Corollary 1.1 Let u be harmonic in the open Q C R™. If limosg—y u(z) =0

for all y € 09, then u is identically 0 in €.

Later on we shall study the

Problem of Dirichlet Given the open 0 C R™ and the complex-valued f
defined in 09), find u harmonic in Q so that

im u(@) = f()
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for all y € 0. This is the Dirichlet Problem for Q) with boundary func-
tion f.

The only remark we shall make at this point is that, if a solution exists,
then, by the Corollary 1.1, it is unique.

1.3 Differentiability of harmonic functions

If » is harmonic in the open subset Q of R™ and {®s : § > 0} is any approxi-
mation to the identity, then, for every = € Qs,

%*u@)==‘émmuu—yWdem@>

/05 P5.(r) /Sn_1 w(z +rt) do(t) ¥ dr

)
= wnfl/ M (2)®s. (r) v Ldr
0

5
wn_lu(x)/ B (r) r"tdr
0

- mmﬂ%@¢awmmw
= u(z).

From this and from Proposition 0.7, we get that u is in C°°(£2s5) and, since
0 is arbitrary, that u is in C°°(Q2). Therefore, we proved the

Theorem 1.2 If u is harmonic in the open set Q C R™, then u is infinitely
differentiable in €.

Theorem 1.3 u is harmonic in the open set Q@ C R™ if and only if u is in
C?(Q) and satisfies the Laplace equation Au = 0 everywhere in .

Proof:
Suppose u is harmonic in 2. By Theorem 1.2, u is in C?(f2) and, taking any
B(z; R) C Q and applying Green’s Formula, we get

ou
meAwamma mea¢wdaw

= R"! /SM %(u(x +7rt)),_p do(t)
= R"_lc;i(/snl u(x + rt) da(t))TZR

d
= W B (M@), g
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d
= wn—anilﬁ(u(x))r:R
= 0.

Since Aw is continuous in §2 and the ball is arbitrary, we conclude that

. 1
Au(z) = RIH& VR /B(:zz;R) Au(z) dm(z) = 0
for all x € Q.
Now, suppose Au = 0 everywhere in €2, fix an arbitrary x € € and take any
R < d(z,00).

By reversing the calculations above, we find

d T

%('/\/lu(x))rzpb =0

and, therefore, MZ(z) is constant in the interval 0 < R < d(z, 092).
By the continuity of u at z,

u(z) = Jlim M)

and we conclude that
u(z) = M7 (x)
for all R < d(x,090).

Lemma 1.1 If f is twice continuously differentiable in some neighborhood of
the point x € R™, then
2 2 2

Af(z) = lim = (M}(z) - f(z)) = lim An+2)

r—04 7“2 r—04 7“2

(A% (z) = f(z)) -

Proof:
We write the Taylor-expansion of order 2 of f at z and observe the resulting
cancellation in M7 (z) and A% ().

In case f is not differentiable but satisfies the necessary integrability condi-
tions on spheres or balls, then either of the limits in Lemma 1.1 is used to define
the so-called generalized Laplacian of f.

1.4 Holomorphy and harmonic conjugates

The standard examples of harmonic functions in dimension 2 are the real and
imaginary parts of holomorphic functions in open sets.

Let f be holomorphic in the open set 2 C R2. Then, if u = Rf and
v = &f, the functions u and v are infinitely differentiable in 2 and satisfy the
Cauchy-Riemann equations

ou ov ou ov

dxy Oz’ Ory  Omp
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Therefore,
Au = Av = 0

in Q.
In another way, using the Cauchy’s Formula,

r0 = g [ M= o s asw)

2710 Js(ay Y — @ wrr

and taking real and imaginary parts, we prove the mean-value property of u
and v.

At least locally, these are the only examples of harmonic functions in di-
mension 2. In fact, if u is real-valued and harmonic in an open rectangle
R = (a1,b1) x (az2,bz), then there exists a holomorphic f in this rectangle
so that u = Rf.

To see this, we fix a point (¢1,¢2) € R and define

X X
L Ou 2 Ou
’U(Xl,XQ) = — . 87562(3?1702) dl‘l—i-/cQ aixl(Xl,Jfg) dxo
for all X = (X1,X5) € R .
We, clearly, have
ov ou
— (X1, X,) = — (X1, X
8x2( 1, X2) 83;1( 1, X2)
and
Ov Ou X2 92y,
— (X1, X = ——(X — (X
8361( 1, X2) 81'2( 1,¢2) + . ax%( 1,%2) dzo
ou X2 92y,
= _a.'L'Q (lecQ) o @(Xl,xQ) dmZ
ou ou ou
= ——(X X, X — (X
8m2( 1,C2) 895( 1 2)+0x2( 1,C2)
ou
= —— (X1, X
89:2( 1, X2)

Therefore, the functions u and v satisfy the Cauchy-Riemann equations in
R and, thus, the function f = u + v is holomorphic in R with v = Rf there.

If ¢ = u+iw is another function holomorphic in R with © = Rg there, then,
by the Cauchy-Riemann equations, we get that v and w differ by some (real)
constant in R and, hence, f and g differ by an imaginary constant in R.

This result is, as we shall see in a moment, true, even when we replace the
rectangle by an arbitrary simply-connected open Q@ C R2. On the other hand,
the function v : R?\ {0} — R given by

u(z) = logle|,  x#0
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is harmonic in R? \ {0}, but there is no f holomorphic in R? \ {0} so that
Rf = u everywhere in R? \ {0}.
In fact, if there was such an f, then we would have that

f(z) = logy(x) +ia, x € Qo

for some constant a € R, where Qy = R? \ {z = (21,0) : 21 < 0} and log,
is the principal branch of the logarithm in €. This, clearly, contradicts the
continuity of f at the points of the negative-z-axis.

Definition 1.2 Let u be real-valued and harmonic in the open Q C R2. If v is
real-valued and harmonic in  and

ou ov ou ov

vy Oz’ Oxz 0wy
everywhere in Q, then v is called a harmonic conjugate of u in €.

It is obvious that the existence of a harmonic conjugate of w in € is equivalent
to the existence of a holomorphic function in €2 whose real part is w. Further-
more, if € is, also, connected, then any two harmonic conjugates of u differ by
a real constant in 2.

If v is a harmonic conjugate of u, then —w is a harmonic conjugate of v.

The many-valued “function” called argument is defined in R? \ {0} by
arg(x) = 0 + k27, where 0 is any number with e = ra7 and k takes all values
in Z.

If g: A — R?\ {0} is continuous in A, then any function v : A — R which
is continuous in A and is such that

ep(iv) = 05

for all x € A, is called a branch of the argument of g in A. It is easy to
see, by continuity, that if A is a connected set and a branch v of the argument
of g exists in A, then the totality of branches of the argument of g in A are the
functions v + k27w, where k € Z.

It is obvious that, through f = log|g|+ iv every branch of the logarithm
of g defines a branch of the argument of g and wvice versa.

Proposition 1.1 If g : Q — R2\ {0} is holomorphic in the connected open set
Q C R2, then every branch of the argument of g in € is a harmonic conjugate of
log|g| in Q and, conversely, every harmonic conjugate of log|g| in Q is, except
for an additive constant, a branch of the argument of g in €.

If v is any branch of the argument of ¢ in €, then, clearly, the function
f = log|g| + iv is a branch of the logarithm of ¢ in Q and, hence, v is a
harmonic conjugate of log|g| in . Conversely, if v is a harmonic conjugate of
log|g| in €, then the function f = log|g| + ¢v is holomorphic in © and the
functions exp(f) and g have the same absolute value everywhere in Q. It is, now,
easy to show, through the Cauchy-Riemann equations, that, in each component
of Q, exp(f) = \g, where A\ = € is a constant with |\| = 1. Hence, v — 0 is a
branch of the argument of g in 2.
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Definition 1.3 An open set Q C R2 is called simply-connected if ) is con-
nected and R?\ Q is connected.

Lemma 1.2 Suppose that R1 and Ry are two open rectangles with sides parallel
to the x1- and xo-azes with one common side I and let R be the open rectangle
Ri1URoUint(I). If u is harmonic in R and vy is a harmonic conjugate of u in
R1, then there exists a harmonic conjugate v of u in R so that v =v1 in Rq.

Proof:
Let vy be any harmonic conjugate of w in R. This is, also, a harmonic
conjugate of u in Ry and, hence, vg = v1 + a everywhere in R, for some real

constant a. Then v = vy — a is the harmonic conjugate of u in R with v = v
in Rl.

Theorem 1.4 Suppose that u is real-valued and harmonic in the simply-conne-
cted Q0 C R2. Then, there exists a harmonic conjugate of u in Q. Two such
harmonic conjugates of u differ by a real constant in Q.

Proof:
Fix a small 6 > 0 and consider the collection of all closed squares

Qr = {z=(x1,22) 1 k10 <21 < (k1 +1)0, kod < 2o < (ko +1)d},

where k = (k1,k2) € Z x Z.
Fix, also, a large K € Z and consider the finite subcollection Qg( of all Qy
with |k1| < K and |kz| < K which are contained in 2. Form the set

QF = int| J{Qr: Qr e O},

which consists of the interiors of all Q) € QF together with the interiors of all
common sides of all these squares.

We separate, in the obvious way, Q? into horizontal layers of height § where
each layer consists of finitely many open rectangles arranged horizontally and
having no common sides. These layers are “glued” at the common parts of their
horizontal sides to form the set Qg( .

Starting with the first (bottom) layer, we construct a harmonic conjugate of
u in each of its rectangles and we, thus, have a harmonic conjugate vy of u in
this first layer.

Suppose that we have constructed a harmonic conjugate vy of u in the part
Qf’k of QX which lies below its k + 1 layer and consider the first (to the left)
rectangle R of the k + 1 layer of Q. If R has no common side with any of the
rectangles of the k layer, we construct, arbitrarily, a harmonic conjugate of u in
R. If the lower side of R has a common part with the upper side of only one
rectangle R’ of the k layer, we use Lemma 1.2 (at most three times) to extend
v1 as a harmonic conjugate of u in the union Q?’k UR.
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If the lower side of R has a common part with the upper side of at least
two rectangles R’,R”,... of the k layer, then we consider the sets O},O}, ...
defined as the components of Q?’k which contain R',R”, ..., respectivelly.

Observe, now, that these components are pairwise disjoint as a trivial ap-
plication of Theorem 0.8 shows!

We may now extend vy, in the union of, say, O}, with R and, next, modify vy,
in the other components O, ..., adding an appropriate (for each component)
constant to it, so that the, already constructed extension of vy from Oy into R
coincides (in R) with its similarly constructed extensions from O}, ... into R.
After all this, we end up with a harmonic conjugate of u in the union Qg(’k UR.

We, now, continue with the second from the left rectangle in the £+ 1 layer
and, with the same procedure, we modify and extend the already constructed
harmonic conjugate into this new rectangle. After finitely many steps, we shall
end up with a harmonic conjugate vi41 of u in Qg(’kﬂ.

Finally, after finitely many steps we find a harmonic conjugate of u in QX.

Now, we consider any open exhaustion {2y} of € so that every Q) is
connected. Each (), is contained in some (2§, provided ¢ is small and K is
large. Therefore, there is some harmonic conjugate v(,,) of u in Q).

Since Q(;,) is connected, modifying v(,,41) by some appropriate constant, we
may arrange so that v(m,41) = V() in Q). Therefore, a function v is defined
in © which, clearly, is a harmonic conjugate of u in 2.

Proposition 1.2 Consider the open subsets Qq and Qy of R2, a function f
holomorphic in Q1 and assume that f(21) C Qg .
If w is harmonic in o, then u o f is harmonic in €y .

Proof:
Direct calculation, using the Cauchy-Riemann equations, shows that

Afuo f)(x) = |f'()]* Au(f(z)) = 0
for every x € §2;.
Example

If the open set @ C R? does not contain 0 and wu is harmonic in €, we
consider the open set Q* = {z : 1 € O} and define

x
for all x € Q*. Then «* is harmonic in Q*.

1.5 Fundamental solution

Now, suppose that u is defined in a ring B(0; R1, Re) = {x e R™ : R} < |z| <
Ry} and that it is a radial function:

u(r) = u(y)
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for all x,y € B(0; Ry, Ry) with |z| = |y|.
Then the function

w() = u@).  forany « € B0 Ry, Ry) with [e] = 1

is well-defined in the interval R; <7 < Rs .

By trivial calculations, we can prove that w is twice continuously differen-
tiable in B(0; Ry, R2) if and only if u, is twice continuously differentiable in the
interval Ry < r < Ry and, if this is true,

d>u n—1 du,
Au(z) = S (lal) + -

o — 2 (ja)

identically in B(0; Ry, Rs).

Proposition 1.3 Let u be a radial function defined in B(0; Ry, R2). Then u is
harmonic there if and only if

Alog > +B, n=2
u(r) = 1‘90|
AW—FB, n> 2

for some constants A and B.
If w is radial and harmonic in B(0; R), then u is constant there.

Proof:
We, easily, solve the second order ordinary differential equation

d>u, n—1 du,

W(T)—i— r dr (r) =0

in the interval R; < r < Rs.
The last statement is proved from the first, using the continuity of u at 0.

Definition 1.4 We call the function

log |71\ , n=2
hw) = i n>2
[z["—2 >

the fundamental solution of the Laplace equation in R™\ {0} .
We, also, define

h.(z) = h(x —2), zeR",
for every z € R™.

In any case the fundamental solution becomes +oco at 0, but observe a crucial
difference between n = 2 and n > 2. The fundamental solution is bounded from
below (by 0) when n > 2, while it tends to —oo when z tends to oo in R2.
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Lemma 1.3

L h.(R) ifle|=r <R
—_— h.(y) dS = ’ X
ey = BRUEL) iy, TEZTSR.

Proof:
Consider the function
=
u(x) = —— h:(y) dS(y) , reR”.
@) = ST o 1) 4SW)

It is clear that u is well-defined for all x ¢ S(0; R), since h, is bounded in
S(0; R). For the same reason, using the ideas in the proof of Proposition 0.6,
we may interchange integration and differentiation and prove that Au = 0 in
R™\ S(0; R).

u is also well-defined for all z € S(0; R), since, as it is easy to see, h, is
integrable in S(0; R).

If |x1| = |x2|, we consider any orthogonal transformation O so that xo =
O(x1) and, since dS' is rotation invariant and O preserves distances,

1
u(zy) = P T /S(O;R) ho()(y) dS(y)
1
= — how,)(O(2z)) dS(z
wn—an71 /S(O;R) o )( ()) ()

1
= — he, (2) dS(z
— . ERACEEE

= u(zy) .

Hence, u is radial and this, by Proposition 1.4, implies that « is constant in
B(0; R). This constant is u(0) = h.(R).

hy is harmonic in R™ \ {z} and, if |z| > R, we may apply the mean-value
property to get

1
wn_an—l

/ ha(y) dS(@y) = ha(0) = h(z) .
S(0;R)

Now, consider any z with |z| = R and the points % z for all » > R. It is

trivial to see that .
— _ < _

for all y € S(0; R) and all r > R.
Therefore, by the Dominated Convergence Theorem,

u(z) = lim u(% x) = lim h(% x) = h(z) = h(R)

r—R+ r—R+

and this finishes the proof.
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1.6 Potentials

Definition 1.5 Let du be a compactly supported complex Borel measure. The
function

Uit(z) = | ha—y)du(y) = | he(y) dmly), @€ R\ supp(dy) ,

is called the h-potential of du. More precisely, the logarithmic potential in
case n = 2 and the Newtonian potential in case n > 2.

In case the support of du is contained in a C'-hypersurface T, then the h-
potential is, also, called single-layer potential of du.

Definition 1.6 Let du be a complex Borel measure with compact support con-
tained in an orientable C'-hypersurface I'. Then the function

U = [ GE@dut), xR \suppldn)

where T is a continuous unit vector field normal to T', is called double-layer
potential of du.

Comments A Newtonian potential can be defined for locally finite complex
Borel measures dy which are not necessarily supported in compact subsets of
R"™, provided they are of a definite sign, non-negative or non-positive. This
is because the fundamental solution is positive and we end up integrating a
quantity of a definite sign. The integral is, then, well-defined for all x € R™,
although it may take the value +oo.

The situation is different for the logarithmic potential, because the funda-
mental solution is, on the one hand, bounded from below in every bounded
set but, on the other hand, is not bounded from below in any unbounded set.
Therefore, a Borel measure not supported in a compact subset of R", even if it
is of a definite sign, may not have a well-defined logarithmic potential.

Hence, we never consider logarithmic potentials of Borel measures which are
not compactly supported.

Example: The h-potential of the Dirac mass dd, is equal to the translate of
the fundamental solution at the point a :

Ule = h, .

Proposition 1.4 Any of the above defined potentials of a compactly supported
complex Borel measure du is harmonic in the open set R™ \ supp(du).

Proof:

We, easily, prove that AU(z) = 0 for every « ¢ supp(du), by passing the
derivatives inside the integrals. To do this, we use a simple variant of the proof
of Proposition 0.6.
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1.7 Flux

The next three theorems in this and the next section are applications of the
Green’s Formulas. The first is for a special kind of domains, but for general
harmonic functions. The second and third theorems together with their corollary
are quite general and fundamental.

Theorem 1.5 If u is harmonic in the ring B(x;r1, 1), then the quantity

8u

is constant as a function of r in the interval ry < r < ro. Here, 1 is the con-
tinuous unit vector field normal to S(x;r) in the direction towards the exterior
of B(xz;r).

Also, for some constant \,
{—Jllog}q—i—)\, if n=2

M (x) = . .
U( ) _(n72)w”,1 ,rnlfz + A 5 Zf n > 2

i the interval r < r < rg.
If the ring becomes a ball B(x;r3), then 7 = 0 in all the above.

Proof:
Take r1 < r <71’ <ry and Q = B(z;r,r’"). Then
8u /Au )dm(z) = 0,
9} 877

where 77 is the continuous unit vector field normal to €2 in the direction towards
the exterior of Q2. This implies

Ju ou
Lo mwasw + [ S ase) = o,

where, in each integral, 77 is the continuous unit vector field normal to the
sphere in the direction towards the exterior of the corresponding ball.

Therefore,
5u
is constant.

Now, the last equality, easily, becomes

d ., . T
oM = S
and this implies the formula for M7 (z).
If w is harmonic in B(x;rg), then M, (x) = u(z) is constant as a function of
r and, hence, 7 = 0.
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Theorem 1.6 Suppose 2 is an open subset of R™, K is a compact subset of Q)
and u is harmonic in the open set '\ K. Consider a variable bounded open 1,
with C'-boundary such that K C Q, C Q, C Q. Then, the quantity

ou
T = /{m 877(1/) dS(y) ,

where T is the continuous unit vector field normal to 0Q, in the direction
towards the exterior of Q., does not depend on €.
In case K is empty, which means that u is harmonic in 2, then T = 0.

Proof:
We consider a third bounded open ; with C*-boundary such that

KCQ O C.

and apply Green’s theorem in Q, \ Q; .

Then
ou ou

-~ 677(”) dS(y) = o %(y) dS(y) -

Now, given two sets, (2, and (),., as in the statement of the theorem, we can
use an € such that Q; € Q, N Q.. and finish the proof, by comparing the 7’s
for these two sets with the 7 for the third set.

The last result is proved, by applying Green’s Formula in €.

Definition 1.7 Suppose I is an orientable C*-hypersurface, 7 is a continuous
unit vector field normal to T’ and u is harmonic in an open set containing T.

Then the quantity
Ju

=) 677(9) dS(y)

1s called flux of u through I' in the direction determined by the vector

field 7.

1.8 The representation formula

Notation

_ —W1 , if n=2
Fn = —(n—2)wp_1, if n>2.

Theorem 1.7 If Q is a bounded open set with C'-boundary, u is harmonic in
Q and belongs to C1(QQ), then

1 Ohy ou
u@) = = | (Grwu) k)G @) ds)

Kn

for every x € Q, where 7 is the continuous unit vector field normal to S in
the direction towards the exterior of €.

Therefore, u is represented as a difference between a double- and a single-
layer potential.
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Proof:
Take € Q and B(z;r) C Q and apply Green’s Formula in the open set
=Q\ B(x;r) with f =w and g = h,

Ohy ou
0 = [ (s G0 - h )G w) a5

Ohy, ou
+ /su;r) (u(y) gy W)~ heW) 5y )) dS(y) ,

where 77 is the continuous unit vector field normal to €2 in the direction towards
the exterior of Q and normal to S(x;r) in the direction towards the interior of
B(xz;T).

In case n = 2, using Theorem 1.5, the second integral becomes

: : 8u . = wiul\r
T/S(r;r) U(y) dS(y) a log’r/zr) 577( )dS( ) - wlMU(x) = wiu( )

Similarly, in case n > 2, the second integral becomes

1 1 ou
=2 [ asw) — o [ Grasw

= (n— Qe i M (2) = (n—2wn_1u(z) .

The result of the theorem is, now, obvious.

Corollary 1.2 Let du be a compactly supported complex Borel measure and €,
a bounded open set with C*-boundary such that supp(dp) C Q.. Then

U
= [T dSt) = madu(R)
o0 n

where U;f“ is the h-potential of du.
Proof:

y) dp(z) dS(y)
/89 /supp(du) 877

= o o, 50 850 )

Observe that, if © € supp(du), then z € Q. and, applying Theorem 1.7 with

u=1,
Oh,
= dsS = Kp .
| G ast)
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Therefore,

U n
) (y) dS(y) = Knd,u(x) = Hnd:u(R ) :
. on supp(dp)

Combining Corrolary 1.2 with the last part of Theorem 1.6, we may state a
general

Principle: The flux of the h-potential of a compactly supported complex Borel
measure du through the boundary of a bounded, open set Q with C'-boundary
disjoint from supp(dp) and in the direction towards the exterior of Q is equal to
a (negative) constant times the total mass of the part of the measure which lies
inside the open set.

1.9 Poisson integrals

Definition 1.8 If x # x, then the point

2
*

¥ = x0+ (x — o)

|x — 2|2
is called the symmetric of x with respect to the sphere S(xo; R).
We define oo as the symmetric of o and xo as the symmetric of co.

It is easy to see that x and x* are on the same half-line having x( as vertex
and the product of their distances from g is equal to R?. This, in an extended
sense, happens, also, for the pair of zy and oco.

Observe that x is the symmetric of 2*, x = (z*)*, and that = z* if and
only if x € S(zo; R).

Suppose u is harmonic in B(zo; R) and belongs to C'(B(x; R)). Then,
applying Theorem 1.7 to Q = B(zo; R), we find, for every x € B(zg; R),

wo) = = [ (T - k) g ) S

Kn JS(zo;R)

where 77 is the continuous unit vector field normal to S(z¢; R) directed towards
the exterior of B(zg; R).

If © # x(, consider, also, the symmetric * of x with respect to the sphere
S(zo; R). Then h,~ is harmonic in an open set containing B(xo; R) and Green’s
Formula implies

1 Ol ou
' S(zO;R)( an (y)“(y)*hz*(y)%(y)) dS(y) .

Let n = 2.
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Then  fipe (y) — ha(y) = log 1524 = log 522l for all y € S(xp; R) and,

z*—y|
subtracting the two equations above, we get

1 O(hy — har)

- = D ) ds
u() w2 Jsoun) an (y)u(y) dS(y)
1 |x — o] ou
+ —log —Y “(y) dS(y) .

Py - 877(y) (y)

The last integral is 0 and a trivial calculation of the directional derivative of
he(-) = he=(-) = log == in the direction of 7 gives

lz— |

2y a2
u(e) = R —le=aol” ) asqy) .

wi R S(zo;R) |$—y‘2

Now, let n > 2.
Then h,(y)

- ﬁ he(y) = 0 for all y € S(zo; R) and, if we subtract
% , we find

the two equations, after multiplying the second by the factor =

1 0 R"—2
u(x) = — —(hy — —————— he ) (y)u(y) dS(y) .
@ = o f (e = e e ) @) dS)
Again, a calculation gives
1 / R? — |z — xo)?
u(z) = ——F  u(y) dS(y) .
( ) wp—1R S(zo;R) |x_y|n ( ) ( )

Of course, this formula covers the case n = 2 above and it is, trivially, true
for x = xg.

Definition 1.9 If x € B(xo; R), then the function

1 R?—|z—x0)?

wn—lR |l’ 7y|n

P(y;.’)i‘7.’170,R) = ) ye S<x07R) B

is called the Poisson kernel of the ball B(xo; R) with respect to x.
We have proved the

Theorem 1.8 If u is harmonic in B(zo; R) and it belongs to C*(B(xo; R)),
then

u(z) :/ P(y:x, 20, Ryu(y) dS(y) .« € B(ao; R) .
S(zo;R)

This is called the Poisson integral formula.
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Properties of the Poisson kernel
(1) P is positive.
(2) P is a harmonic function of x in B(xg; R).
This is a matter of calculation of the Laplacian.
(3) fS(:L’O;R) P(y;x,z9,R) dS(y) = 1.
We just apply the Poisson integral formula to u = 1.
(4) If V is an open neighborhood of yo € S(xo; R), then

lim Ply;xz,29,R) = 0
B(zo;R)2x—yo (y 0 )
uniformly in y € S(xo; R)\'V.
If |y — yo| > do for all y € S(xp; R) \ V, then, when |z — yo| < %50, we have

1 R2—(R—l|z—yl)’

< — 0
T w1 R (%(50)"

0 S P(y;CE,ZL'o,R)

as |r —yo| — 0.

Definition 1.10 Let f be integrable in S(xo; R) with respect to the surface mea-
sure dS and define

Pr(x) = Pr(z;20,R) == Pp(z;B) = / P(y; @, 20, R) f(y) dS(y)
S(zo;R)
for all x € B(zo; R).
This is called the Poisson integral of f in B = B(zo; R).

Theorem 1.9 Py(- ;z0, R) is harmonic in B(xo; R).
If f is continuous at some yg € S(xo; R), then

li Py (x: 20, R) = .
g r(z;20, R) = f(yo)

Therefore, if f is continuous in S(zo; R), then Py(- ;xo, R) is the solution
of the Dirichlet problem in B(xo; R) with boundary function f.

Proof:
The harmonicity of Py(- ;xzo,R) results from property (2) of the Poisson
kernel.
For the limit, it is enough, by linearity, to assume that f is real-valued and,
then, to prove
limsup Py(z;z0,R) < f(yo) -
B(zo;R)2z—yo

Indeed, we then apply this to —f, find

f(yo) < liminf  Pp(x;z0, R)

" B(zo;R)>z—yo

and combine the two inequalities to get the equality we want to prove.
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Let M > f(yo) and fix an open neighborhood V of yy so that f < M in
S(xzo; R)N'V. Then,

Plo) = [ PlaaeRf() dSG)
S(zo;R)NV
b Pl R dSG)
S(zoiR)\V
Now, by properties (1) and (3) of the Poisson kernel, the first integral is

S(zo;R)NV S(xo;R)\V

and, by property (4) of the Poisson kernel, the integrals over S(zo; R) \ V tend
to 0 as © — yg-
Hence,

limsup Pr(z) < M
B(zo;R)3>x—yo

and, since M can be taken arbitrarily close to f(yo), the proof is complete.

Remark There is a second way to prove the Poisson Integral Formula, without
going through Green’s Formula (in case we wish to avoid its heavy technical
machinery).

Suppose u is harmonic in B(xo; R) and it belongs to C*(B(zo; R)) and con-
sider the function P, (- ;xg, R), the solution of the Dirichlet problem in B(x; R)
with the restriction of u in S(xg; R) as boundary function. By the uniqueness
of the solution, we conclude that

u(z) = Pu(z;20, R) | r € B(zo; R) .

1.10 Consequences of the Poisson formula

Proposition 1.5 Ifu is harmonic in the open @ C R™, then it is real-analytic
in Q.

Proof:
Let 29 € © and take B(xo; R) C Q. Write u(z) = Py(x;x0, R) in B(zo; R)
and use the real-analyticity of P(y;z,xo, R):

1 R%?—|z—x?
wp1 R |z —y["

1 R? — |z — xo)?
wn1 R |(z = 20) = (y — z0)|”

S aa(y)(@ - 20)*

P(y;l’,.’bo,R) =
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where the sum is over all multi-indices a = (a1, ..., ay), a4 is a polynomial in
y and the series converges uniformly in y € S(zo; R) and in z € B(xo; %R)
Therefore,

u(z) = Zﬁa(x—xo)a , T € B(mo;%R) ,

where 3, = fs(mO,R) aq(y)u(y) dS(y) and, hence, u is real-analytic at the arbi-
trary point xg of Q.

Theorem 1.10 Suppose that u is harmonic in the connected open set 0 C R™
and that uw =0 in an open subset O of Q. Then u = 0 identically in 2.

Proof:
It is obvious that, for all x € O, D*u(x) = 0 for every multi-index a.
We consider the sets

A = {z €Q:D%(z) =0 for all o}, B = Q\A.

If zp € B, then D*wu(xzg) # 0 for some multi-index «g and, by continuity,
this is true in some neighborhood of zy. Hence, the set B is open.

If g € A, then the Taylor-series expansion of u in a neighborhood of zy has
all its coefficients equal to 0, and, thus, w = 0 in this neighborhood. Therefore,
this neighborhood is contained in A and A is an open set.

By the connectivity of 2, we get that Q = A and, thus, v = 0 in .

Theorem 1.11 (Weak mean-value property) If u is continuous in the open Q C
R™ and if for every x € §) there exists a sequence {ry(z)} such that ri(x) — 0
and u(x) = Z’“(w)(a:) for all k, then u is harmonic in €.

The same is true, if we replace the surface-means with the space-means in
the above statement.
Proof:

Take B(xo; R) C Q and consider
¢(x) = u(x) — Py(x;20, R) , x € B(xo; R) .

By the continuity of v and Theorem 1.9, we have that ¢ is continuous in
B(zo; R) and that limp(zy;r)32—y@(x) = 0 for every y € S(zo; R).
Since P, (- ;xo, R) is harmonic in B(zo; R), for every x € B(xo; R) we have
that
o(x) = M ()

for every k which is large enough so that B(x;ri(z)) C B(zo; R).

From this, in the same way in which we proved the fifth property of harmonic
functions, we can prove that, if ¢ takes one of its extremal values at some point
in B(zo; R), then ¢ is constant in a neighborhood of this point.
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Now, applying Proposition 0.5 to ¢ and —¢, we conclude that
p(x) = 0

for every x € B(zo; R).

Hence, u is equal to the harmonic P, in B(zo; R) and, since the ball is
arbitrary in 2, we get that « is harmonic in €.

Exactly the same argument applies when we replace M, by A, .

The following theorem gives a necessary and sufficient condition for a point
to be a removable isolated singularity of a harmonic function.

Theorem 1.12 (Riemann) Suppose u is harmonic in B(xo; R) \ {zo} .
Then, u can be defined at xq so that it becomes harmonic in B(xo; R) if and
only if
u(z)

li = 0.
R

Proof:
The necessity of the condition is trivial.
Fix Ry < R and consider

o(x) = u(x) — Pu(z;z0, R1) — G(hxo (z) — h*(Rl)) , x € B(xo; R1) \ {z0},
for an arbitrary € > 0.

By Theorem 1.9, we have that ¢ is harmonic in Q = B(xo; R1) \ {zo} and,
also, by the hypothesis, that lim supgs,_,, ¢(x) < 0 for every y € 9.

Theorem 1.1 implies that ¢(z) < 0 for all z € B(xo; R1) \ {x0}. Hence,

u(x) < Py(z;z0, R1) + €(hay(x) — ha(Ry))
for all € B(zg; R1) \ {zo} and every e > 0 and, finally,
u(z) < Pu(z;z0,R1),  z€ B(xo;Ry)\ {zo} .

Working in the same manner with —u, we find the opposite inequality.
Therefore,

u(x) = Py(x;z0,R1) , x € B(zo; R1) \ {wo} -
But, Py (- ; o, R1) is harmonic in B(zo; R1) and, defining
w(zo) = Pu(wo;m0, R1) = ML (x0) ,

u becomes harmonic in B(xz; R1) and, hence, in B(zg; R).
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Theorem 1.13 (Reflection Principle of H. Schwartz) Let L be a hyperplane in
R? and 2 C R® be open and symmetric with respect to L. Let LT and L~ be the
two open half-spaces on the two sides of L and let QF = QNLT, Q- =QNL~
and ' =QnNL.

Suppose u is harmonic in Q" and

lim w(z)=0
Qtsz—y

for every y € T.

Then, u can be defined in I' U Q™ so that it becomes harmonic in Q.

Proof:
Define

_]0, ifxel
u(z) = —u(z*), ifxeQ™ 7’

where z* is the symmetric of x with respect to L.

Since u is harmonic in Q7, it satisfies the mean-value property for all balls
which are contained in Q.

Since symmetry with respect to a hyperplane is a rigid motion, we have, by
the second property of harmonic functions, that the extended u is harmonic in
Q™ and it satisfies the mean-value property for all balls contained in Q.

We also have that the extended w is continuous in €2 and, if we take any
point z € T and any B(z; R) C €, then

u(z) = 0 = Aj(x)

for all » < R. This holds because the two integrals over the two half-balls,
B(z;r)N LY and B(x;r) N L™, cancel.
Therefore, by Theorem 1.11, w is harmonic in (2.

Theorem 1.14 (Harnack’s Inequalities) Let u be positive and harmonic in the
open set @ C R™ and let B(xo; R) C Q. Then,

R— |J) — $0| n—2 < ’U,(l‘) < R+ |J) — $0| Rn—Q
(R + |z — zof)"~! u(zo) — (R— |z — o)}
for all x € B(zo; R).
Also,

for all z,z" in B(zo; 3R).
Moreover, if § is connected and K is any compact subset of ), then there is

a constant C' = Cy, g o > 0 depending only on n, K and Q so that

1 < u(x)

<
C ~ u(z) ~ ¢

for all z,x' in K.
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Proof:
The first set of inequalities is an immediate application of the Poisson integral
formula, when we make use of the

R—|z—xg| < |z—yl < R+|z—mz|, yeS(xoR),

of the positivity of v and of the mean-value property of u at xg.
If | — o] < %R, then from these inequalities we get

on—2 u(x)

n—2
3n—1 = 3-2 :

For the last set of inequalities, we observe that it is enough to prove the
inequality in the right.

For each x € K take B(z;R(z)) C Q and find z1,...,zy so that K C
UN_ B(zk; A R(zy)).

Now, set

M = max(u(zq),...,u(zN)) , m = min(u(x1),...,u(zy)) .

From the first part, we get that

g2
R\
3

for every z, 2’ in K.

It is obvious that there is some p € N, depending only on the points
z1,...,xn and €2, so that for every two x and z; there are at most p successive
points in Q, the first being x; and the last being z; and every two consecutive
ones of which are contained in the same closed ball whose double is contained
in Q.

Applying the first part, we see that, for all k and I, Z((z’:)) < 3P™ and, finally,

u(z)

< 3(P+2)n
~ =

u\xr

for all z, 2’ in K.

Theorem 1.15 (Gradient Estimates) Let u be harmonic in the open set Q C

R"™ and B(zo; R) C Q.

% n
1. |gradu(zg)| < EW fS(a:o;R) lu(y)| dS(y) -
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2. If, also, u is positive in S(xo; R), then |gradu(zo)| < % u(wo) -

8. Ifm <u< M in S(zo; R), then |gradi(zo)| < % M5™
Proof:
If 29 = (z01,---,%o,n), then, by an easy calculation in the Poisson integral,

Ou n
87j(x0) = _W/S(xo;zz)(xo’j —y;)uly) dS(y) .

Multiplying both sides by %(xo), then summing over j = 1,...,n and
J
using Cauchy’s inequality inside the integral, we prove 1.
If uw > 0 in S(zo; R), then

=3
T o1l lu(y)] dS(y) = u(zo)
wp—1 R" ! S(zo;R)
and 2 is implied by 1.
Finally, if m < u(y) < M for all y € S(zp; R), then we apply 1 to the

function u — & ;‘m and prove 3.

1.11 Monotone sequences

Theorem 1.16 (Monotone sequences of harmonic functions) Suppose {u,,} is
a sequence of real-valued functions harmonic in the connected open set 2 C R™
and up <ug < ... 1in Q.
Then, either u, T +oo uniformly on compact subsets of ) or there exists
some u harmonic in € so that u,, T u uniformly on compact subsets of ).
There is a dual result for decreasing sequences of harmonic functions.

Proof:
Subtracting u; from all u,,, we may assume that

OSU1SU2<U3§...

in . By the Maximum-Minimum Principle, we may even assume that all
inequalities are strict everywhere in €.

(1) Let zp € Q with u,,(z9) T +o0o and consider any compact K C Q. By
Theorem 1.14 applied to K U {xo}, we have that, for some C' > 0 independent

of m,
1

c
for all x € K. This implies that wu,, T +oco uniformly in K.

(2) Let zp € Q with u,,(xg) T M for some real M and consider any compact
K C Q. Again by Theorem 1.14, we have that

U (20) < um(x)

up(z) — um(z) < Clug(zo) — um (o))
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for all x € K and all m,k with m < k. This means that {u,,} is uniformly
Cauchy in K and, hence, it converges uniformly in K to some real-valued func-
tion.

If we, now, define u(x) = lim,, 400 up(x) for all x € Q, then u,, T u
uniformly on compact subsets of 2. By the third property of harmonic functions,
u is harmonic in €.

1.12 Normal families of harmonic functions

If we drop the assumption of monotonicity, the results are not that clear, but
we still get some “normal families”-type of results.

Theorem 1.17 If {u,,} is a sequence of harmonic functions in the open Q) C
R"™ and u,, — u uniformly on compact subsets of €2, then the derivatives of the
Uy, converge to the corresponding derivatives of u uniformly on compact subsets
of Q.

Proof:

Take B(zo; R) C Q and observe that, if # € B(zo; 3R), then B(z; 3R) C
B(zo; R). By Theorem 1.15(1),

2
lgrad(u, —u)(x)| < il sup |um — ul .

R B(zo;R)

Therefore, %“—;J’_’ — 5% uniformly on B(zg; %R) and, since xq is arbitrary,
the convergence is uniform on all compact subsets of 2.
By Theorem 1.3, all derivatives of harmonic functions are harmonic and, by

induction, we can prove uniform convergence on compact sets for all derivatives.

Theorem 1.18 Let U be a family of harmonic functions in the open  C R™
which are uniformly bounded on compact subsets of ).

Then, their derivatives are also uniformly bounded on compact subsets of €1
and from every sequence in U we can extract a subsequence converging uniformly
on compact subsets of Q to some harmonic function.

Proof:

Take B(zo; R) C Q. Then, there is some M = M (xo, R) so that
lu(z)] < M

for every x € B(xo; R) and every u € U.
By the same argument as in the proof of the previous theorem, we get that

— 2
lgradu(z)| < il sup |u| < —M

for every z € B(wo; 3 R) and every u € U.
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Since x is arbitrary, we conclude that the derivatives of first order of the
functions in U are uniformly bounded on compact subsets of 2.
From the mean value theorem of the differential calculus,

for every z € B(zo; 1R) and every u € U. Therefore, U is equicontinuous (and
bounded) at every point in €.

Now, take any compact exhaustion {K(,,} of Q.

Given {u} in U, we use the Arzela-Ascoli theorem for each K, to extract
a subsequence converging uniformly on K(,,). Then, by the usual diagonal ar-
gument, we find a subsequence converging uniformly on every K(,,) and, hence,
on every compact subset of 2. By the third property of harmonic functions, the
limit function is harmonic in .

Definition 1.11 Suppose F is a family of extended-real-valued functions de-
fined in the set E. Then, the function

F(z) = sup f(z) , reFE,
fer

is called the upper envelope of the family F.
The lower envelope is similarly defined.

Theorem 1.19 Suppose U is a family of positive harmonic functions in the
connected open 2 C R™. Then, the upper envelope of the family is either iden-
tically +00 in Q or everywhere finite and continuous in Q.

In the first case, there exists a sequence in U diverging to +o0o uniformly on
compact subsets of €).

In the second case, from every sequence in U we can extract a subsequence
converging uniformly on compact subsets of £ to some harmonic function.

There is a dual statement for lower envelopes of families of negative har-
monic functions.

Proof:

Let U be the upper envelope of U.
(1) If there is some xg € Q with U(zg) = +oo, then there exists {u,,} in U so
that u,,(zg) — +00. By Theorem 1.14 and in the same manner as in the proof
of Theorem 1.16, we prove that u,,(x) — +oo uniformly on compact subsets of
Q and, thus, U = +00 everywhere in €.
(2) Now, suppose that U(zg) < +oo for some zo € Q.

Again by Theorem 1.14, for every compact K C Q, thereisa C' = Cy, g0 > 0
so that

u < Cu(zg) < CU(zo)

everywhere in K for all w € U and, thus,
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in K.

This implies that U is bounded on every compact subset of {2 and, in par-
ticular, everywhere finite in 2. By Theorem 1.18, we immediately get that
from every sequence in U we can extract a subsequence converging uniformly
on compact subsets of {2 to some harmonic function.

It, only, remains to prove the continuity of U.

Consider xy €  and take {un,} in U so that w,,(xo) — U(xo). Then, for
every m, by the continuity of u,,,

Um(x0) = lminfu,,(z) < liminfU(x)
T—To T—T0
and, letting m — +oo,
U(zg) < liminfU(x) .

Tr—rTo

Consider M = limsup,, ., U(z).

Then, there exist x,, — xg so that U(z,,) — M and, by the definition of U,
there exists {u,, } in U so that u,(z,,) = M.

Extracting, if necessary, a subsequence, we may assume that u,, converges
uniformly on compact subsets of {2 to some v harmonic in €2. Then,

M = mgr_eoo Um (Tm) = u(zg) = ml_i}r_rkloo Um (o) < Ul(xo)
and, thus,
limsupU(x) < U(xo) ,
T—TQ

implying the continuity of U at xg.

The hypotheses of Theorem 1.19 can be slightly weakened. Instead of the
positivity of all the functions in i, it is enough to assume that on every compact
subset of € the family I/ is uniformly bounded from below.

We then work with an open exhaustion {€(,,)} of Q. In each Q) the family
is uniformly bounded from below by some constant and we may apply Theorem
1.19 there. The passage from the {2(,,)’s to {1 presents absolutely no difficulty,
except that we must apply a diagonal argument when we extract subsequences.

The interested reader may, easily, complete the details.

1.13 Harmonic distributions

And, now, we prove the famous

Theorem 1.20 (Lemma of H. Weyl and L. Schwartz) If T is a distribution in
the open Q C R™ and AT = 0, then T is identified with a harmonic function u
i . This means T =T, or, more specifically,

T(¢) = / o(z)u(z) dm(z)

for every ¢ € D(Q).
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Proof:

Consider an approximation to the identity {®s: 4 > 0} .

Fix § > 0 and consider variable d1, dy < %5 .

Then T+ @5, and T'* 5, are both distributions in Q45 and (T'* @5, ) x 5, =
(T x ®s,) * Ps, is a distribution in Qs .

Observe that, by Proposition 0.16, all these distributions are identified with
infinitely differentiable functions.

By Proposition 0.18,

A(T*q)(gl) = AT*(I’(;l =0

as a distribution in €21,.
Let v be the infinitely differentiable function which represents T'+®5, in {21 5.
Then Th, = AT, = 0, implying Av = 0 and, hence, v is harmonic in Q%a .
From the proof of Theorem 1.2, we get that

v s, = v in Qs .
This implies, of course,
(Tx®Ps,) %P5, = T, xPs, = vidy, = Ly = T *Pg, in Qs

and, hence,
(T*q)tsz)*(b& = T*(I)gl ian.

Now, let §; — 0 and get
T % (I)(;Q =T in Qg .

The same argument applied to 1" @5, concludes that 7' @5, and, hence, T’
is identified, as a distribution in 25, with some function us harmonic in €y .

If & < 6, then in Qg, which is smaller than Qgs/, we have that us and ugs
represent the same distribution. Therefore, us is an extension of ug and, since
Us>0Q2s = , we conclude that all the us’s define a single u harmonic in €2 which
T is identified to.

Suppose f is a locally integrable function in {2 whose distributional Laplacian
vanishes in 2. Le.

/ f(@)Ad(x) dm(z) = 0
Q

for all ¢ € D(Q).
The Lemma of Weyl and Schwartz implies that there exists some v harmonic
in § so that Ty = T, and, hence,

for almost every = € (.

In other words, we can change f in at most a set of measure zero and make
it harmonic in .

If f is continuous to begin with, then it is identical to v and, hence, it is
harmonic.
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Proposition 1.6 If the distributional Laplacian of a locally integrable function
f in the open Q C R™ is zero, then f is almost everywhere equal to a harmonic

function in Q.
If, in addition, f is continuous in 2, then it is harmonic in ).
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Chapter 2

Superharmonic Functions

2.1 Definition

Let Q be open in R™.
Definition 2.1 A function u is called superharmonic in €, if
1. u is lower-semicontinuous in €2,
2. w is not identically +00 in any connected component of 2 and
3. Mo (z) <u(x) for allx € Q and all r < d(z, 00).
The function u is called subharmonic, if —u is superharmonic.

Condition 3 is called the super-mean-value property while the corre-
sponding condition for subharmonic functions is called the sub-mean-value
property.

Comments

1. A superharmonic function is extended-real-valued and may take the value
400, but not the value —oo.

2. If w is superharmonic in €, then u(z) = liminf,_,, u(y) for all z € Q.

In fact, let liminf, ,, u(y) > u(z) and consider a number A between these
two quantities. Take ¢ so that u(y) > A for all y € B(x;4). Then M? (z) > A >
u(z) for all r < §, a contradiction to the definition.

3. From Proposition 0.2, we get that M7 (x) is well-defined, either as a real
number or as +oo, for all z € Q and all r for which S(z;r) C Q.
4. We, easily, see that lim, o4 M7, () = u(z).

In fact, take A < u(x) and, by the lower-semicontinuity, find § > 0 so that

u(y) > A for all y € B(z;d). Then u(x) > ML (x) > A for all r < 4.
5. If a function u satisfies conditions 1 and 3 of the definition, but it is identically
400 in some connected components of €2, then we may drop these components
and form the set 2* as the union of the remaining connected components of (2.
Since all components are open sets, * is open and u is superharmonic in *.

97
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Properties of superharmonic functions

(1) Linear combinations with non-negative coefficients of superharmonic func-
tions are superharmonic and the same is true for subharmonic functions.

(2) The minimum of finitely many superharmonic functions is superharmonic.
There is a dual statement for subharmonic functions.

The lower-semicontinuity is taken care of by property (4) of lower-semiconti-
nuous functions. As for the super-mean-value property, if w1, ..., u; have it and
u = min(ui, ..., ux), then for every j we have Mj (z) < M7 (2) < u;(z) and,
hence, M7, () < u(x).

(3) Increasing limits of superharmonic functions are superharmonic, dropping,
if necessary, the connected components where the limits are identically +o0c.

There is a dual statement for subharmonic functions.

In fact, let {u,,} be an increasing sequence of superharmonic functions in §2
and let u,,(z) T u(x) for all x € Q. The lower-semicontinuity of u comes from
the third property of lower semi-continuous functions.

Also, for every m, M;, (x) < wm(z) < u(z) and we prove M (z) < u(zx),
using Proposition 0.2 and the Monotone Convergence Theorem.

(4) If u is superharmonic in the open Q& C R™ and if u has a local minimum at
x € Q), then u is constant in some open neighborhood of x.

A dual result is true for subharmonic functions.

Suppose u(z) < u(y) for all y € B(x; R), where B(z; R) C Q.

Then, for all r < R, u(z) < M, (z) < u(z) and for equality to hold we must
have u(y) = u(z) for all y € S(z;7), except for at most a set E C S(x;7) of zero
surface measure.

Now, take y € E. Then, there is some {y,,} in S(z;7)\ E so that y,, — .
Hence, u(z) < u(y) < liminf, ,, u(z) < limp,— 400 w(ym) = u(zr) and we get
that u(y) = u(z) for all y € S(x;7).

Therefore, since r is arbitrary with » < R, we conclude that w is constant in
B(z; R).

(5) Superharmonic and subharmonic functions are preserved by rigid motions
of R™.

The proof is exactly the same as the proof of property (2) of harmonic
functions.

2.2 Minimum principle

Theorem 2.1 (The Minimum Principle for superharmonic functions) Suppose
u s superharmonic in the open 2 C R".

1. If u takes its minimum value at some x € Q, then u is constant in the
connected component of Q) which contains x.

2. If

IO
mo= il (fminfo(@) .

then m < u(x) for all x € Q.
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If m = u(x) for some x, then u is constant, u = m, in the connected
component of Q0 which contains x.

Proof:
The proof is an application of the fourth property of superharmonic functions
and of Proposition 0.5 and is identical to the proof of Theorem 1.1.

The next result provides a characterization of superharmonicity and it is
fundamental.

Theorem 2.2 Suppose u is lower-semicontinuous in the open @ C R™ and it
is not identically +00 in any connected component of 2. Then the following are
equivalent.

1. w is superharmonic in €.

2. For every B(xg; R) C Q and every v harmonic in B(xo; R), the validity
of Iminfp(zyryse—y(u(@) —v(z)) = 0 for all y € S(zo; R) implies that
u>wv in B(xg; R).

Proof:

Since v being harmonic implies that —v is superharmonic, one direction is a
trivial application of Theorem 2.1.

Now, take arbitrary B(zg; R) C .

Proposition 0.3 implies that there exist f,,, continuous in S(zg; R) so that

fm(y) 1T uly)

for all y € S(xo; R).
Consider Py, (- ;x0,R), the Poisson integral of f,, in B(xo;R). Then, by
Theorem 1.9,

B(g}ifg)igf_)y(u(w)—me(w;woﬂ)) > u(y) — fm(y) = 0

for all y € S(zo; R).
By the hypothesis,

u(xzg) > Py, (xo;20,R) = M'Rm (o) -
Finally, by the Monotone Convergence Theorem and Proposition 0.2,
u(zo) = My (wo)
and u is superharmonic in 2.

If w is superharmonic in an open set containing a ball B(zg; R), then it is
bounded from below on the ball and, hence, the Poisson integral of u at every
point of B(zp; R) is well-defined either as a real number or as +oo.
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Proposition 2.1 Let u be superharmonic in an open set containing B(xo; R).
Consider P,(- ;xo, R), the Poisson integral in B(xzo; R) of the restriction of u
on S(xo; R). Then,

1. Py(x;x0, R) < u(x) for every x € B(xo; R).

2. FEither Py(x;x0, R) = 400 for every x € B(xo; R) or P,(- ;x0, R) is har-
monic in B(zg; R).

In particular, if ME(z¢) = +o0, then u = +oco identically in B(zo; R).

Proof:
Consider f,, continuous in S(zo;R) so that f,,(y) T u(y) for every y €
S(xo; R) and their Poisson integrals Py, (- ; o, R). Then,

liminf  (u(z) — Py,, (z;20,R)) > u(y) — fm(y) > 0

B(zo;R)2z—y
for all y € S(x0; R) and, from Theorem 2.1 or Theorem 2.2, we get
Py, (x; w0, R) < u(x)

for every & € B(xo; R). By the Monotone Convergence Theorem and the posi-
tivity of the Poisson kernel, we prove statement 1.

Let —oo < m < wu(y) for every y € S(zo; R) and write v = u — m.

Then, either (i) M (zg) = +oo or (ii) m < MPE(zy) < 400 and, hence,
either (1) MZ%(z¢) = +o0 or (i) 0 < ME(z) < +o0.

In case (i): let 2 € B(xo; R) and consider k = minycg(zq;r)P(Y; T, 20, R) >
0. Then, since 0 < v(y) for all y € S(zo; R),

uw) > Puleiao B) = Purizo Rytm >k [ oly) dS(y)im = +oo.
S(zo;R)

In case (ii): P,(z;zo, R) = P,(x;x0, R) + m is harmonic in B(xg; R), since
v is integrable in S(zo; R).

2.3 Blaschke-Privaloff parameters

Definition 2.2 If f is extended-real-valued and f(z) is a real number, we de-

fine:

— . 2n ., . — . 2(n+2 -
M a) = timsup 25 (M3(0) (@) . Ay (o) = imsup 22 (45 0)-1(0)

and

L 22n, .. .2n+2)
M (z) = liminf — (Mj(2)=f(2)) ,  Af(z) = liminf ——5—

(A} (@)= f(2))

whenever the mean values that appear are defined for all small enough r.
These four numbers are called Blaschke-Privaloff parameters of f at x.
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Lemma 1.1 says that, if f is twice continuously differentiable in some neigh-
borhood of z, then all four Blaschke-Privaloff parameters of f at x are equal to

Lemma 2.1 If f is extended-real-valued and f(z) is real, the four Blaschke-
Privaloff parameters of f at x satisfy:

M(2) < As0) < Ap(x) < My(a).

Proof:

The middle inequality is obvious and it is enough to prove the third one,
since the first is implied by this, using —f in place of f.

In case M s(z) = 400, the result is obvious. Therefore, assume M ;(z) <
+00.

Let M ¢(x) < A, implying that, for some R,

2 (My(@) ~ (@) < A

for all < R.
Then, for r < R,

+2), +2 S (2) 8"
2 (o) - @) = ([ Mot s po)
< LH% T)\ s? s 1dg
0
Hence,
Zf(x) < M.

Letting A | M ;(z), we conclude that

Ap(z) < My(x).

The following is a general characterization of superharmonicity. Observe, to
begin with, that the Blaschke-Privaloff parameters are well-defined for a lower-
semicontinuous u, whenever u(z) < 4o0.

Theorem 2.3 (Blaschke and Privaloff) If u is lower-semicontinuous in the
open 2 C R™ and not identically 400 in any connected component of €1, then
u 1s superharmonic in Q if and only if M, (x) <0 for all x with u(x) < 400 .

Proof:

The necessity is trivial and, for the sufficiency, take arbitrary B(zo; R) C
Q and consider f,, continuous in S(xg; R), so that f,,(y) 1T u(y) for all y €
S(zo; R).
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Consider, also, the auxiliary function
w(x) = | —x0|> — R% .
Using w, define, for every € > 0,

o) = {1 Pz ) —cue) 2 € B
u(x)ffm(x) s I’GS(SC();R) .

Then, v is lower-semicontinuous in B(zg; R) and, thus, takes a minimum
value in there. Its values on S(zg; R) are non-negative and, hence, if we assume
that its minimum value is < 0, then it is taken at some = € B(xg; R).

But, then M, (z) > 0, while M (z) = M, () — 0 —€e2n < —e2n.

We, thus, get a contradiction and conclude that v(z) > 0 for all z € B(xo; R).

Now, letting first ¢ — 0 and then m — 400, we find for x = z,

u(zo) > My(zo) .

Corollary 2.1 Suppose u is lower-semicontinuous in the open  C R™ and not
identically 400 in any connected component of 2.

1. If, for every x € Q, there is some sequence {rmy(z)} so that rp(z) — 0 and
/\/lf[”(z)(x) < wu(z) or A ) () < u(zx) for all m, u is superharmonic in 2.

2. If u is in C?(Q), u is superharmonic in Q if and only if Au(x) < 0 for all
x € Q.

In view of the extra regularity, Corollary 2.1(2) has an additional proof which
uses Green’s Formula, in exactly the same way as in the proof of the similar
Theorem 1.3.

In fact, we use the formula

/ Au(z) dm(z) = wn_lr"_liMZ(x)
B(z;r) dr

which was derived in that proof.

If Au < 0 identically in €2, then, by the above formula, M7 (z) is decreasing
in the interval 0 < r < d(z,0Q?) and, taking the limit as r — 0+, we find
M (x) < u(z) for every x €  and every r < d(z, 0f).

If, conversely, M7 (x) < u(x) for every z € Q and every r < d(x,0%), then
Au(z) = lim, o4 22 (M7 (z) — u(z)) < 0.

We, thus, get a weakened version of the original definition of superharmoni-
city, while the next result is the version of the original definition, having the
surface-mean-values replaced by the space-mean-values.
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Theorem 2.4 Suppose u is lower-semicontinuous in the open @ C R™ and not
identically +00 in any connected component of ).
Then u is superharmonic in 0 if and only if, for every x € Q and all r <
d(xz,00),
Al (z) < ulx) .

Proof:

The necessity follows from A7 (z) = 2 [ M5 (x) s"ds.

For the sufficiency, we may observe that the above assumption, together
with Lemma 2.1, implies M, (z) < A,(x) < 0 and the proof is concluded by
Theorem 2.3.

Or, else, we may use Theorem 2.2 as follows. Take B(zg;R) C Q and
v harmonic in B(zo; R) so that iminfg(,y;r)50—y(u(z) —v(x)) > 0 f
y € S(zo; R).

Now, A7, (z) < u(x) implies

(u—v)(®) < (u—0)(z),

for all x € B(zo; R) and all r < R — |x — x|

But, from this, in the usual manner (we repeat the proof of the fourth
property of superharmonic functions; this is even simpler), we get that, if u —v
takes a minimum value at some point in B(xzg; R), then it is constant in a
neighborhood of this point.

Proposition 0.5 implies that u > v everywhere in B(x; R).

By Theorem 2.2, u is superharmonic in 2.

Example
If
u(x) = [z[*,  zeR"\{0},

then, using Corollary 2.1(2) and the formula

dPu, n—1 duy
Auw) = T (lal) + = S (la)
which holds for all twice continuously differentiable radial functions, we find
that w is superharmonic if and only if 2 — n < a < 0 and subharmonic if and

onlyifa<2—nor0<a.

Theorem 2.5 Suppose u is superharmonic in B(zo; R) \ {zo} -
Then, u can be defined at xg so that it becomes superharmonic in B(xo; R)
if and only if

o T (@)

Proof:
The nessecity comes from the fact that if u is superharmonic in B(x; R),
then it is bounded from below in some neighborhood of zg.
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For the sufficiency, fix r < R and consider functions f,, continuous in S(zg; )
so that f,,(y) T u(y) for every y € S(xo;7).
We, also, consider the function

o(z) = u(z) — Py, (x;20,7) + e(hmo(:r) — h*(r)) , x € B(xzo;r) \ {z0} ,

for an arbitrary € > 0.
By Theorem 1.9, we have that ¢ is superharmonic in Q = B(zg;7) \ {zo}
and, also by the hypothesis, that liminfos,_,,, ¢(z) > 0 for every y € 0.
Theorem 2.1 implies that ¢(x) > 0 for all z € B(xo;r) \ {zo}. Hence,

u(x) > Py, (2;20,7) — €(hayy (z) — ha(r))
for all x € B(zg;r) \ {zo} and every € > 0 and, finally,
u(z) = Py, (z;20,7) z € B(wo;r) \ {zo} .
By the Dominated Convergence Theorem,
u(z) > Py(z;0,7)
for all x € B(zo;r) \ {zo} and, thus,

liminfu(z) > P,(zo;z0,7) = M} (2z0) -
T—x0

Now, since r is arbitrary, if we define u(xo) = liminf,_,,, u(z), we immedi-
ately conclude that w is lower-semicontinuous on B(xg; R) and an application
of Corollary 2.1(1) concludes the proof.

In fact, the extended u satisfies the super-mean-value property at xg, and,
since it coincides with the original superharmonic v in B(xo; R)\{zo}, it satisfies
the super-mean-value property at all other points of B(xg; R) with respect to
small enough balls centered at these points.

Theorem 2.6 If u is superharmonic in the open @ C R™, then,

1. u(z) < +o0o for almost every x € Q2 and

2. for every B(x;r) C £,

Al (z) < o0, M () < +oo.

Therefore, u is locally integrable in ).

Proof:

It is enough to work separately in the various connected components of §2
and, hence, suppose that €2 is connected.

There exists some x € Q so that u(x) < +oo. Therefore, AJ,(z) < +oo for
r < d(xz,00) and, hence, u is integrable in B(x;r) for all these r.
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Define
A = {zx € Q:u is integrable in some neighborhood of z} ,

B = {z € Q:uis not integrable in any neighborhood of =} .

A is open and non-empty and we shall prove that B is, also, open.
Take 29 € B. Then, A}, (zo) = +oo for r < d(zg, Q).
Now, for all 2 € B(xo; §) it is true that xo € B(z; §) and, hence,

u(z) > Aé(m) =+00.

Therefore, B(xo; 5) C B.

Since €2 is connected, u is integrable in a neighborhood of any point in €.
This implies that u(z) < +oo for almost every x € Q. It, also, implies that
A" (z) < 400 for every z € Q and all r < d(z,99). In fact, as we proved above,
if A}, (x) = +oo for some x € Q and some r, then u = +o0 in B(xz; §).

If, for some B(z;r) C 2, we have M (x) = +o0, then, from Proposition 2.1,
u = 400 identically in B(x;r) and this is false.

2.4 Poisson modification

Theorem 2.7 Suppose u is superharmonic in the open subset 0 of R™ and
B(zo; R) C Q. Define

unym (@) = 4 Lul@zo B),if 2 € Blao; )
B(zo;R) 'U,(:B) , ifx e \ B(:BO; R) .

Then
1. up@er) < win ) and
2. UB(zg;R) 15 superharmonic in @ and harmonic in B(xo; R).

Proof:

The first part and the harmonicity of up(,,;r) in B(zo; R) are consequences
of Proposition 2.1 and Theorem 2.6.

That —00 < ug(ze;r) () for all x € Q, is obvious.

Now, take f, continuous in S(xg;R) so that fn,,(y) T u(y) for all y €
S(zo; R). Then, for any y € S(zo; R),

fm(y) =  liminf Py, (x;20,R) < liminf P,(z;z0, R)

B(zo;R)2xz—y B(zo;R)2z—y
and, letting m — +oo,

< liminf Py(zi20,R) = liminf _ '
uw) < g Jminl | PlwiooR) = Iminf | usen (@)
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We, also, have

< liminf < lim inf . .
u(y) < Iminfu(z) < opiminf | uB(a:n) (z)
Therefore,
< liminf .
u(y) < ngil_r}y uB(xO,R)(x)
for all y € S(xo; R) and, thus, up(,,;r) is lower-semicontinuous in Q.

As for the super-mean-value property, this is obvious, by the harmonicity of
the function in B(xg; R), at points x € B(xp; R) with respect to small enough
balls centered at x.

If x € Q\ B(zo; R), then

UB(agir) (7)) = u(z) > My(z) > My, - ().

Definition 2.3 Suppose that Q) is an open subset of R™ and B(xo; R) C Q. If
u s superharmonic or subharmonic in 2, then the function

| Pu(x;z0,R), ifxe B(xo;R)
UBGoiR) (T) = {u(x), ’ imeQ\OB(xO;R)

is called the Poisson modification of u with respect to B(xzo; R).

Proposition 2.2 Superharmonicity is a local property: if u is superharmonic
in a neighborhood of every point of the open 2 C R™, then it is superharmonic

mn Q.

Proof:
It is immediate from Corrolary 2.1(1).

Example

Let f be holomorphic in the open © C R? and not identically 0 in any
connected component of Q. Then the function — log|f| is superharmonic in €.

—log|f| is defined as 400 at the points where f = 0. In fact, these points
are isolated and —log | f| is not identically +o0 in any connected component of
Q.

—log |f] is, trivially, lower-semicontinuous in {2, it is, by Proposition 1.2,
harmonic in a neighborhood of every point at which f # 0 and it satisfies
the super-mean-value property at every x where f(x) = 0, simply because
—log | f(z)| = +oc.

Example

Suppose u is real-valued and harmonic in the open 2 C R™ and ¢ is concave
in the real interval (m, M), where m = infq u and M = supg u. Then ¢ ow is
superharmonic in 2.
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Without loss of generality, we suppose that {2 is connected. If u = m or
u = M at some point, then u is constant and, no matter how ¢ is defined at
the endpoints m, M, ¢ o u is constant and, hence, superharmonic. Therefore,
we may assume that m < u < M in €.

¢ is continuous in (m, M), implying that the composition is also continuous.

As for the super-mean-value property, by the inequality of Jensen,

pou(z) = ¢(My(x)) = Mi,,(x)
for every x € Q and all r < d(x,00).

Example
If a >0, p>1and u is real-valued and harmonic in the open 2 C R", then
ut,u™, e and |ulP are subharmonic in .

Example
Suppose u is superharmonic in the open 2 C R™ and ¢ is increasing and
concave in the real interal (m, M|, where m = infq u and M = supg u. Observe
that, necessarily, ¢(M) = lim;_, py— ¢(t). Then ¢ o u is superharmonic in Q.
Except for minor modifications, the proof is the same as the proof in the
second example.

Example

If v is subharmonic in the open @ C R® and o > 0, then ut,e® are
subharmonic in 2.

Also, if p > 0 and f is holomorphic in the open 2 C R? and not identically
0 in any connected component of €, then |f|P is subharmonic in Q. This is a
special case of the last example, when we use the increasing convex function
¢(t) = eP! and the subharmonic log | f].

Example

The function h,, is superharmonic in R".

The function is continuous in R™ \ {x¢} and lim,_, ., hs, () = +00. Hence,
hg, is lower-semicontinuous in R".

It is harmonic in R™\ {z¢} and, thus, satisfies the super-mean-value property
at every x # xy with respect to all sufficiently small balls centered at z.

It satisfies the super-mean-value property, also, at xy simply because its
value there is +o0.

2.5 Potentials

The next example is, in a sense, the most general and deserves to be stated as
a theorem.
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Theorem 2.8 Suppose dy is any compactly supported non-negative Borel mea-
sure. Then, its h-potential

Ut (z) = | @) du(y) . wEeR?,

is superharmonic in R".

In case n > 2, we get the same result for any non-negative Borel measure
dp, assuming only that Ug“(x) < +00 for at least one point x.

In any case, U,‘f“ is harmonic in R™ \ supp(dp).

Proof:

Suppose that dp has compact support in R™.

The statement about harmonicity is the content of Proposition 1.4 and,
because of this harmonicity, U ,‘f“ is not identically +o00 in R"™.

If d is such that supp(du) C B(0;d), then, for any B(xg;r),

/i / Ih(z — )| duly) dmf(z)

B(zosr) J supp(du)

- / / Ih(z — y)| dm(z) du(y)
supp(du) J B(zo;r)

/ / (h(a)| dm(z) duy)

supp(du) J B(xo—y;T)

/ / Ih(z)| dm(z) du(y)

supp(du) J B(0;|xo|+d+r)

= H\mo\-l-d-i-r,nd:u‘(Rn) < +o0o,

IN

where k; , is a finite number depending only on ¢ and n.
Therefore, we may use Fubini’s Theorem and, from the last example of
section 2.4,

Apgolen) = [ A (a0) duty)

< /K hy(xo) du(y)
= U(w) -

By Lemma 1.3, there is another way to prove the super-mean-value property.

M au(w0) = / My, (o) du(y)
h supp(dp)

/ ha(r) du(y)
supp(dp)NB(zo;r)

n / haq (y) dp(y)
supp(du)\B(zo;r)

Uiczlﬂ(xo) )

IN
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where the use of the Theorem of Fubini is justified by the proof of Lemma 1.3.
It remains to prove that U, ,‘f“ is lower-semicontinuous and let x,, — x.
If |2y — 2| <1, then |z, —y| < |z|+d+ 1 for all m and all y € supp(dp).
Therefore, the functions h,, are all bounded from below in supp(du) by the
same constant and an application of the Lemma of Fatou gives

lim inf / ha,, (y) duly) = / ha(y) dp(y) -
supp(dp)

mrteo supp(dy)

Thus, U, Zl“ is lower-semicontinuous.

When n > 2, the function h is positive everywhere and, in this case, we
may freely interchange integrations and apply Fatou’s Lemma without having
to assume that dyu is supported in a compact set.

Or, in a different way, consider the restrictions dup;m) of du in the balls
B(0;m).

By the first part, U:”B(O"”) is superharmonic in R™ and harmonic in R™ \
(B(O; m) N supp(du)) and, hence, in R™ \ supp(dp).

Since h is positive, USHB(O"") 0 U,Cf” everywhere in R™. By the assumption,
Uff“ is not identically +oo and, finally, by the third property of superharmonic

functions and Theorem 1.16, Ug“ is superharmonic in R™ and harmonic in
R™ \ supp(dp).

Later on we shall prove the fundamental theorem of F. Riesz stating that
the most general superharmonic function is, more or less, the sum of a harmonic
function and the h-potential of a non-negative Borel measure.

2.6 Differentiability of potentials

Proposition 2.3 Under the hypotheses of Theorem 2.8, U;Li“ is absolutely con-
tinuous on almost every line parallel to the principal xj-azes, 1 < j < n, it has
partial derivatives at almost every point of R™ and these partial derivatives are
locally integrable.

Proof:
We fix an arbitrary m € N and we shall work in the cube

Qm = {z=(21,...,25) : Jz;] <m for all 5} .

In case n = 2, the measure is supported in a compact set. In case n > 3 the
measure need not be supported in a compact set, but we may split dp = dpug,,, +
dpgrn\Q,,, and observe that the h-potential of the second term is harmonic in
Q.» and, hence, infinitely differentiable there.

We may, therefore, assume that du is supported in some compact set and,
in particular, that it is finite.
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By a trivial calculation, there is a constant C,, depending only on the di-

mension, so that
Ohy (@ ‘ < Cn
81‘]‘

= oy
for all z,y € R™.
Therefore,
<
L LG wlamane < o[ [ o i@

< Chmdp(R™) < 400

Thus, the function

oh
w@) = [ SU@ ), v Qn,
Rn O
is integrable in @, and, by Fubini’s Theorem, it is integrable on almost every
line segment parallel to the x;-axis and extending between the two sides of Q,
which are perpendicular to this axis.
If [a,b] is any part of such a segment, then

/abum)dxj - // Sk (a) day di(y)

= [ ()~ (@) duty)
= U™ (b) - U™a) .

This says that U ,‘f“ is absolutely continuous on almost every line segment

parallel to the z;-axis and extending between the two sides of @, and that

au
52— = u; almost everywhere on such a line segment.
Lj

dp
By Fubini’s Theorem, again, 6[;; L is defined and equal to u; almost every-
J
where in Q.
Since m is arbitrary, the proof is finished.

Definition 2.4 Suppose that the non-negative function f is locally integrable in
R™. The h-potential of f is defined to be the h-potential of the non-negative
Borel measure fdm. We denote it by

U}]: — U}{dm )

According to Theorem 2.8, if n = 2, we assume that [ is compactly supported
and, if n > 3, we assume only that U,{(J:) < 400 for at least one x.

Proposition 2.4 Under the hypotheses of the previous definition, if the non-
negative function f is in C*(R®), 0 < k < +o0, then the h-potential of f is in
Ck+1(Rn).
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Proof:

If n = 2, then f has compact support. If n > 3, then f need not have
compact support, but, since we want to study the h-potential in a neighborhood
of an arbitrary point x, we may take a large R so that € B(0; R) and split
f=fo+ f(1—¢), where ¢ is in D(R™) with ¢ = 1 identically in B(0;2R) and
0 < ¢ <1 everywhere. The existence of ¢ is due to Lemma 0.2.

Then, the h-potential of f(1—¢) is harmonic in B(0; R) and, hence, infinitely
differentiable in a neighborhood of . Thus, we need to study the h-potential
of the function f¢ which is in C*(R™) and has compact support.

We, therefore, assume that f has compact support.

Since h is locally integrable, by Proposition 0.6, the convolution U }{ =hxf
is in C*(R™) and

D(U]) = hxD"f
for all multiidices o with || < k.

Hence, the proof reduces to showing that, if f is in C'(R™) with compact
support, then h x f is in C1(R™).

We observe that 9

Ly
5o @) = ~(n-2)

for all  # 0 and, thus, % is locally integrable.
J
We write, now,

h* f(x +te;) —hx* f(x) :/ hMz —y+te;) — h(zx —y)
t n t

[

fly) dm(y) .

If z is not on the x;-axis, then

h(z+te;) —h(z) /1ah _
=, 6xj(z+ste])ds

t
and, hence,

h* 1 *h* 1 h
f(x+t6;) fl) /R /0 %(%ymej) ds f(y) dm(y)

” J

1

h
- /0 /R %(I*y+5t€j)f(y) dm(y) ds

” J

! oh
= / / T(y)f(xfy+stej) dm(y) ds .
0 JR» 0Tj
Therefore, if |¢t] < 1,
’h*f(ertej)fh*f(o:) Oh

t al‘j
1
<
O n
<

oh
</ ()| am(z) sw [5(a)  70)

W)] £ =y + stej) = f(@ — )| dm(y) ds

Oz
B(as1)+supp(f) | OT; la—b|<|¢]
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and, thus,
ohxp) _ oh
Bgcj ax]-
Since 6(?7’2 is locally integrable and f is continuous with compact support, by

Proposition 0.6, the last convolution is continuous.

2.7 Approximation, properties of means

Theorem 2.9 (First property of the means) Let u be superharmonic in the open
Q C R™. Then, for every x € Q, M%(z) is a decreasing function of r in the
interval 0 < r < d(z,0Q). We, also, have that lim,_,or M (x) = u(z).

Ezactly the same results hold for the space-means A7, (x).

Proof:
Consider 71 < 19 < d(z,09Q) and the Poisson integral P, (- ;z,72) in the ball
B(x;ry). From Proposition 2.1, u(-) > P,(- ;x,r2) in this ball and, hence,

le(l‘> 2 M;lu( ;w,m)(‘r) = Pu(l‘;l',rg) = MZQ(‘Z') :

The equality lim, o4 M7, (z) = u(x) is just Comment 4 after the definition
of superharmonic functions.
For the space-means,

n [

At(x) = A M (x)r™ " dr
T2 ori
= En M2 (z)r™t dr
T3 Jo
ro
> L M@yt dr
T2 Jo
= Az(z),

where in the last inequality we used the result about the surface-means.
The limit lim, o+ A% (z) = u(x) is trivial and can be proved in the same
way as the limit of the surface-means above.

Corollary 2.2 If u and v are superharmonic in the open Q@ C R™ and u(x) =
v(x) for almost every x € , then u and v are identically equal in 2.

Theorem 2.10 (Approzimation) Suppose u is superharmonic in the open 2 C
R™ and {®s : § > 0} is an approximation to the identity. Then, for every d,
the function ux ®5 € C*(Qs) is superharmonic in Qs and,

ux Ps(x) T ulx)

as 0 1 0, for every x € Q).
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Proof:
From Proposition 0.7 and Theorem 2.6 we find that u * ®5 is in C°°(Q5).
For every z € Qs and B(x; R) C Qs,

1
ME L () = 7/ / u(y — 2)®s(z) dm(z) dS
W) = G [ 2)es(e) dm) dst)

/ T / uly — 2) dS(y) (=) dm(z)
B S(z;R)

(0:5) Wn—1 B

< /13(0;5) u(z — 2)Ps(2z) dm(z)
= ux*xPs(x),

where the last inequality is true because W fS(a:;R) u(y — z) dS(y) is the
surface-mean of the function u(- — z) which is superharmonic in the open set
Q — z containing B(x; R) whenever z € B(0;9).

Therefore, u * ®4 is superharmonic in 5 .

Now, since ®; is radial,

5
uxPs(x) = wn_1/ Dsu(r)M? (z) v tdr .
0

By Theorem 2.9, for any A < u(z) we have A < M7 (z) < u(z) for small
enough r. Thus, if ¢ is small,

d 5
)‘Wn—l/ D5 () v Hdr < ux @s(x) < u(x)wn—1/ B (r) ¥ ar
0 0

implying
A< ux®s(z) < u(z).

We conclude that u * ®5(z) — u(x) as § — 0.
Also, taking § < ¢,

)
webs(e) = womr [ o lrIMG(a) s
0
)
1
_ wn_1/0 57 P (M)
& 1 r T
= wnfl/ — &y, ()M (2) r"ldr
0 6/n 5/

"1 r . _
> wn,l/ S @1*(§)Mz(x) r"tdr
0
= uxdy(x) .

The last inequality is true by Theorem 2.9.
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Proposition 2.5 Consider the open subsets Q; and Qy of R2, the holomorphic
function f in Q1 and let f(Q21) C Qo. If u is superharmonic in Qo, then uo f
18 superharmonic in .

The only exception is when f is constant in some connected component of
Qy and u takes the value +00 at this value of f.

Proof:

Assuming that u is twice continuously differentiable in Q5, we use the formula
A(uo f)(2) = |f'(2)|?Au(f(z)) and Corollary 2.1(2) to prove the result.

Otherwise, consider an arbitrary closed disc B(zo; R) C Q2 and the compact
set f(B(zo;R)) C Q.

We consider a bounded open set V so that B(zo; R) €V C V C Q and
using Theorem 2.10, we approximate u in V' by an increasing sequence {u,} of
functions which are twice continuously differentiable and superharmonic in V.

Then, the functions wu,, o f are, by the first part, superharmonic in B(zp; R)
and increase towards u o f there.

Thus, by the third property of superharmonic functions, v o f is superhar-
monic in B(zp; R) and, since the ball is arbitrary, v o f is superharmonic in €.

Example
If u is superharmonic in the open Q C R? which does not contain 0 and if
in the set Q* = {z : 2 € Q} we define the function

u(x) = u(l) ,

T

then u* is superharmonic in Q*.

Theorem 2.11 (Second property of the means) Let u be superharmonic in the
open Q@ C R™ and B(x; Ry, R2) € Q. Then,

Mi(z) < 40

for all v with Ry < r < Ry and M (x) is a concave function of h(r) in the
interval Ry <r < Ry .
In particular, M[ (x) is a continuous function of r in the same interval.

Proof:

Assume, first, that u is in C%(Q).

Then, from Corrolary 2.1(2), Au < 0 everywhere in .

Consider Ry < 11 < r3 < Ry and apply Green’s Formula in B(z; 71, 7r2) with
7 being the continuous unit vector field normal to dB(z; 71, 72) in the direction
towards the exterior of this ring.

/ Au(z) dm(z) Ou
B(w;r1,12)

ou
/*9(’5;7“2) %(y) dS(y) - ~/S(z;r1) %(y) dS(y)

e d
= gt / d—(u(ag + ry))T:T2 do(y)
Ssn—1 AT
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d
" /Sn—l dr (U(ZE + Ty))T:ﬁ dO'(y)

1 d ,
= ry 1$(wn,1./\/lu(9c))

L d .
_T? 1% (wnflMu(‘r))

T=Tr2

r=ry

Now, fB(I;hM) Au(z) dm(z) is a decreasing function of o and, hence,

=1L A7 (2) is a decreasing function of r. Therefore
dr u g s

d/ . . d
. n _ T <
dr (T drM"(x)> =0
in Ry <r < Rs.
If we write h = h(r), the last relation becomes
—_— <

implying

MmO (@) > M (2) + (1= M2 (2)

for all t € (0, 1) and hy = h(?"l), hoy = h(’l“g) with Ry <71 <71y < Rs.

In the general case, we use the approximation Theorem 2.10 to get a se-
quence of functions u,, superharmonic and twice continuously differentiable in
B(xz;ri,rh), with By < 7f < r1 < ro < 14 < Ry and such that u, 1 v in
B(xz;r,15).

We, then, apply the last inequality to each wu,, and prove it for v by the
Monotone Convergence Theorem.

If we assume that, for some o € (Ry, R2), M1°(z) = +o0, then, using the
above inequality, it is easy to show that M (z) = +oo for all r in (Ry, Ra).
Taking R1 < r1 <71y < R, we get

[ ) dmy) = +o0
B(z;r1,72)

contradicting the local integrability of w which was proved in Theorem 2.6.
Thus,
M (z) < 40

for all r in (Ry, R2), finishing the proof of the concavity.

Theorem 2.12 Suppose u is superharmonic in the open subset Q@ of R™ and
let B(zo; R) C Q.
Then, the only function which is superharmonic in Q, harmonic in B(zo; R)
and coincides with u in Q\ B(zo; R) is the Poisson modification up(yy;g) -
Also, up(z;r) 18 the upper envelope of the family of functions v which are
superharmonic in Q, harmonic in B(zo; R) and satisfy v < u everywhere in .
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Proof:
Consider any v with all properties in the first part of the statement.
From the definition of the Poisson modification, we have

UB(zo;R) = UB(z0;R)

in © and, hence, it is enough to prove that v = vg(yy;r) in B(zo; R).

From Theorem 2.7, we have that v > vp(yy;r) in B(wo; R) and, if we prove
that v(xo) = vB(0;r)(70), then, since both functions are harmonic in B(xo; R),
the Maximum-Minimum Principle will finish the proof.

From the harmonicity of v and of vp(y,:r) in B(zo; R) and from Theorem
211,

v(@o) = lim Mi(zo) = M (w0) = VB(ag:R) (T0)
and the proof of the first part is complete.
If v satisfies the assumptions of the second part, then, by the first part,

U = UB(aoiR) S UB(aoiR)

in Q.

2.8 The Perron process
In the proof of the next result we introduce the important Perron process.

Theorem 2.13 LetV be a non-empty family of functions v subharmonic in the
open connected Q C R™ with the following two properties

1. If v1,vy €V, then max(vy,ve) € V.

2. IfveV and B(xo; R) C Q, then vpzyr) € V-

Then, the upper envelope V' of the family V is either identically +o0o in § or
it is harmonic in 2.

There is a dual result about lower envelopes of families of superharmonic
functions satisfying the duals of properties 1 and 2.

Proof:

Fix an arbitrary B(zo; R) C Q and consider a countable set {z; : i € N}
dense in B(zo; R).

For each z;, take a sequence {vgm)} in the family V so that vgm) () T V()
as m — 400 .

Modify, defining
W™ = max(v(l),... v(m)) , meN .

[ [ Ve

{ul(.m)} is an increasing sequence in V with ugm) (2;) TV (z;) as m — 400 .
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Modify the new sequence, defining

1) m) (m) | (m)

= ugl), w™ = max(ui™, uy™, .. ul™)

w( »'m

Now, {w(™} is an increasing sequence in V with w(™ (x;) 1 V(x;) for all ;.
Modify once more, taking the sequence

Um = (w(m))B(xo;R) .

This is a new increasing sequence in V such that vy, (z;) T V(x;) for all x;,
with the additional property that all v, are harmonic in B(xo; R).

Set

v(z) = mgrfm U ()
for all « in B(zo; R).

By Theorem 1.16, either v is harmonic in B(zg; R) or v = 400 identically in
B(zo; R). It is obvious that, if v = 400 in B(xo; R), then the same is true with
V.

Suppose, for the moment, that v is harmonic in B(zo; R) and, by its con-
struction, v(z;) = V(x;) for all ;.

Consider, now, a point € B(xg; R) different from all z; and repeat the
previous construction with the set {z} U {z; : i € N}. A new function v will
be produced, harmonic in B(zg; R) with v'(z;) = V(x;) for all z; and, also,
v'(x) =V ().

The functions v, v" which are continuous in B(xo; R) agree on the dense set
{z; : i € N} of B(xo; R) and, hence, are identically equal on this ball. Therefore,
v(z) =v'(x) = V(x) at the additional point . Since x is arbitrary, this proves
that V' = v identically in B(zo; R) and, finally, that V is harmonic in B(x; R).

Now, we define the sets

A = {z€Q:V is harmonic in some neighborhood of z} ,
B = {z€Q:V =400 in some neighborhood of =} .

By what we proved before, Q@ = AU B, AN B = () and both A and B are
open sets. Since €2 is connected, either A = Q or B = Q.

2.9 The largest harmonic minorant

Definition 2.5 If f,g are extended-real-valued functions defined on the same
set E and f(z) < g(x) for all x € E, we say that f is a minorant of g and
that g is a majorant of f in E.

If the same inequality is true for all f in a family F, we say that g is a
magjorant of F in E and, if the inequality is true for all g in a family G, we say
that f is a minorant of G in E.
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Theorem 2.14 LetU be a non-empty family of functions superharmonic in the
open 0 C R™. Suppose that there exists at least one subharmonic minorant of
U in Q.

Then the upper envelope of all subharmonic minorants of U is a function
harmonic in 2.

Proof:

Let V be the non-empty family of all subharmonic minorants of the family
U and let V be the upper envelope of V.

If u € U, then V < w and, hence, V() < 400 for almost every z € Q.

Since it is very easy to see that the family V satisfies the assumptions of
Theorem 2.13 in all connected components of 2, we conclude that V' is harmonic
in Q.

Definition 2.6 LetU be a non-empty family of superharmonic functions in the
open 0 C R™ and suppose that U has at least one subharmonic minorant in €.
Then the upper envelope of all the subharmonic minorants of U is called the
largest harmonic minorant of U.

We, similarly, define the smallest harmonic majorant of a non-empty
family of subharmonic functions.

As an example, we prove the

Proposition 2.6 Let u be superharmonic in B(xo; R). Then u has at least one
subharmonic minorant if and only if lim, s g MI (x9) > —o0 .

If this condition is satisfied, then the largest harmonic minorant of u is the
Junction im, g UB(zo:r) -

Proof:

If » has some subharmonic minorant v in B(zo; R), then, by Theorem 2.6,
for every r < R, M (z9) > M}(x9) > —oo. Since, by Theorem 2.9, the
left side decreases while the right side increases when r 1T R, we see that
lim, , g M (20) > —o0.

Now, let lim,_, p— M7 (20) > —oo and fix some r¢o < R.

It is clear from Theorem 2.7, that, when ro < r < R, the functions up ;)
are superharmonic in B(zo; R), harmonic in B(zg;r9) and decrease as r in-
creases.

Since up(gy;r) (T0) = My, (20), Theorem 1.16 implies that the function

V= lip v
is harmonic in B(zo; 7).
Since 1 is arbitrary, V' is harmonic in B(xg; R).
Clearly, V' < up(z;r) < uforall 7 < R and, hence, V' is a harmonic minorant
of u in B(zo; R).
Suppose, now, that v’ is any subharmonic minorant of v in B(zg; R). We,
easily, see that Theorem 2.7 implies v/ < v%(wo;” < UB(zg;r) for all r < R.
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Therefore v < V in B(zg; R) and, finally, V is, exactly, the largest harmonic
minorant of v in B(zg; R).

2.10 Superharmonic distributions

The rest of this chapter is devoted to the study of the distributional Laplacian
of superharmonic functions and the relevant characterization of them and to the
proof of the related Decomposition Theorem of F. Riesz.

In the statement of the next theorem we denote the distributional Laplacian
of the function u by Au, instead of the more correct AT, but this, as we have
already noted, is allowed by the standard convention to identify a function with
the corresponding distribution. In the proof, though, we shall be more formal.

Proposition 2.7 If u is superharmonic in the open Q0 C R™, then its dis-
tributional Laplacian Au is a non-positive distribution in € and, hence, it is
identified with a non-positive Borel measure in €.

Proof:

Let u be superharmonic in {2 and consider any approximation to the identity
{®5 : § > 0}. From Theorem 2.10, we know that u * &5 is in C°°({s) and that
it is superharmonic in ;.

Corrolary 2.1(2) implies that A(u * ®5)(z) < 0 for all z € Q5.

Take, now, any ¢ € D(2) with ¢ > 0 everywhere in 2. Since supp(¢) C Qs
if § is small enough, using Proposition 0.9 and the calculus of distributions, we
find

ATu(9) = 61—i>%1+ ATU(®5%¢) = 61—i>%1+ T.(A(®s x 9))
61_i>%1+(Tu * ®5)(Ag)

= 62%1+ Tu*<1>,; (A(b) = 6£%1+ ATu*Qg (Qb)

—  lim T,(®s + Ad) =
6_1>%1+u(5* ?)

=l Tagenn(®) = Jim [ A 20)(@)0() dm(z)

0.

IN

Therefore, AT, < 0 and the last statement is a consequence of Theorem
0.11.

The next two results are the main examples.
Proposition 2.8 Ah,, = k,dds, .

Proof:

Consider any ¢ € D(R™). In the following calculations the third equality is
true because the integrand is in L!'(R™), the fourth equality is an application
of Green’s Formula in the set B(zg;r, R) for some R which is large enough
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so that ¢ and g—i’ vanish on S(zg; R) and the sixth equality is true because

lim, o4 7" h.(r) = 0, grad ¢ is bounded in a neighborhood of zy and ¢ is
continuous at xg.

n

AThmo(gb) = Thxo(Ad’) :/ hazo () Ap(x) dm(z)

= lim hao (2)Ad(x) dm(z
[ an)20() dm(a)

i /S 99 () hao () dS ()

=04\ (o) ON

O,
- /S o cb(y)ain(y) dS(y))

3 n— d T
= r1_1>r(r)1+(—r Y (r) /Snil o d(xo +rz) do(z) + K;n/\/l¢(a?0))

= ’Qnd)(z())
tinTas,, () -

Therefore, AThIO = Kan(;IO or, less formally,

Ahgy = Kpdly, .

Theorem 2.15 Let du be a compactly supported non-negative Borel measure
and consider the superharmonic function U,‘f“, the h-potential of du. Then,

AU;f“ = Kpdy .

In case n > 2, the non-negative Borel measure du need not be compactly
supported and we, only, assume that U;f" (z) < +oo for at least one x.

Proof:
Using the formal notation for distributions, for every ¢ € D(R"™),

My() = [ UH@ad) dm()

/ B — y)Ad(x) dm() du(y)
supp(dp) JR®

- / Th, (A0) du(y)
supp(du)

/ AT, (6) dys(y)
supp(dp)

= n T d
. /sumdm 25,(9) du(y)
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K / _ (y) du(y)
= knTau(d) -

The use of the Theorem of Fubini, justifying the second equality, is permitted
by the calculation at the beginning of the proof of Theorem 2.8 and the fifth
equality is just Proposition 2.8.

In case n > 2, even if supp(dp) is not compact in R™, the use of Fubini’s The-
orem is still justified, since, by the positivity of h, the compactness of supp(¢)
and the local integrability of the superharmonic U g“ ,

/Supp(¢ /n z —y)| du(y) [A¢(z)| dm(z)

UM (z) dm(z) < +oo,
supp($)

where M is a bound of |Ad|.

Observe that this result agrees with the fact that U, ,ff“ is harmonic in the set
R™ \ supp(dp).

Theorem 2.16 Let T be a distribution in the open Q@ C R™. Then, T is iden-
tified with a superharmonic function in Q if and only if AT <0 .

Proof:
One direction is just Proposition 2.7.
Hence, suppose AT < 0 and apply Theorem 0.11 to get a non-negative Borel
measure dy in € so that
1
Tay = — AT .
Kn
Consider, now, an arbitrary open G so that G is a compact subset of €2, the
restriction dug of dy in G and its h-potential Ud“c
If we define the distribution

Sag = T—TUE,LG ,
then, taking Laplacians, by Theorem 2.15, we have
ASqg = AT —k,Tqu, = 0

as a distribution in G.
By Theorem 1.20, S¢ is identified with some harmonic function in G and,
hence, T' = S¢ + T} auc is identified with a superharmonic function in G.
h

Now, consider an open exhaustion {£,,,)} of 2 and apply the previous result
to G = Q. For each m, there is a superharmonic ., in §,,) so that T'=T,,,
in Q). By Proposition 0.10, tm, = tm41 in Q) and, hence, the u,,’s define
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a single function u superharmonic in 2 which, for every m, coincides with wu,,
on Q(m)

Now, for every ¢ € D(Q) we have ¢ € D(Q,)) for large enough m and,
thus,

T(6) = Tu, () = / () () dm(z) = / w(@)d(x) dm(z) = Tu(s)
(m)

Hence, T is identified with u in €.

2.11 The theorem of F. Riesz

Theorem 2.17 (Decomposition Theorem of F. Riesz) Suppose u is superhar-
monic in the open @ C R™. Then, there exists a unique non-negative Borel
measure dy in £ so that, for every open G with G being a compact subset of €2,

u(@) = U (@) + v6(w)

for every x € G, where dug is the restriction of du in G and vg is some
harmonic function in G.
In the case n > 2, we, also, have

u(z) = Upt(z) + o(z)

for all x € Q for some v harmonic in 2, provided U,‘f“(x) < 400 for at least
one x € R™.

Proof:
Most of the work was done in the proof of the previous theorem. In fact,

T. = Sa +TUdHG 3
h
where S¢ is identified with a harmonic function, say vg, in G. Le.
Ty = Tug +Tpaug
h

as distributions in G.
Proposition 0.10 implies

u(z) = va(x) + UM (x)

for almost every z € G and, finally, Corollary 2.2 implies that the equality is
true everywhere in €.
The uniqueness is proved by taking distributional Laplacians in G. By The-
orem 2.15,
ATu = K‘anMG
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in G. From this, the distribution Ty, is uniquely determined in G, and, hence,
the restriction dug is, also, uniquely determined. Taking as G’s the terms of
any open exhaustion of €2, we prove the uniqueness of dy in Q.

In case n > 2, we may adjust the proof of the previous Theorem.

Consider the non-negative Borel measure dy in €2 so that

1
Ty = — AT, .

Kn

Assuming U, ff“ (x) < 400 for at least one x, Theorem 2.15 implies that the
distribution S = T,, — TUS“ satisfies AS = 0 in Q and, by Theorem 1.20, S is
identified with a harmonic v in €.

From this, as before,

u(z) = v(w)+ Upt(2)

for almost every x and, hence, for every = € Q.
Or, in another way, we may start from the restricted result of the first part
applied to the terms of an open exhaustion {(,,)} of ©,

d
u(z) = Uhlm(m) (x) + VQ () (), T € Q) -

For every x € , because of the positivity of h,

dpig
U, (@) 1 U ()

and the limit is finite for almost every » € R™. Therefore, {vq,,,, } is (eventually)

a decreasing sequence of harmonic functions in every fixed () with a limit v
which is finite almost everywhere in ). Therefore, v is harmonic in ) and

u(x) = Up(z) +v(@)

everywhere in ;) and, since k is arbitrary, everywhere in €.

2.12 Derivatives of superharmonic functions

Theorem 2.18 Let u be superharmonic in the open @ C R™. Then, u is
absolutely continuous on almost every line parallel to the principal x;-axes, 1 <
j < n, it has partial derivatives at almost every point of Q and these partial
derivatives are locally integrable in €.

If the distributional Laplacian of u is a (non-negative) function f € C*(€Q),
then u is in CF+1(Q).

Proof:
This is a trivial application of the Representation Theorem of F. Riesz and
of Propositions 2.3 and 2.4.
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Chapter 3

The Problem of Dirichlet

3.1 The generalized solution
Let’s remember that the boundary and the closure of subsets of R™ is taken
relative to R™ .

Definition 3.1 Let 2 be an open subset of R™ and f any extended-real-valued
function defined in OS.

We denote by <I>§Z the family of all functions u defined in Q with the proper-
ties:

1. in each connected component of ) either u is superharmonic or u is iden-
tically +o00,

2. w is bounded from below in 2 and

3. liminfos,y u(z) > f(y) for all y € 0.

The lower envelope of the family @g} s denoted by F?
In a dual manner, \I!? denotes the family of all v defined in Q such that:

1. in each conected component of Q) either v is subharmonic or v is identically
—00,

2. v s bounded from above in 2 and

8. limsupgs,_,, v(z) < f(y) for all y € 09.

The upper envelope of the family \I/? is denoted by ﬂ?

Both families are non-empty, since +oco € <I>§3 and —oo € \Ilic2
Comment It is easy to see that if G is any connected component of the open set
Q) C R"™, then the restriction of F? in G coincides with F? and the restriction
of ﬂ? in G coincides with ﬂ?

This allows us, in many problems, to reduce the study of these functions to
the case of the set 2 being connected.

125
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Proposition 3.1 In each connected component of ), F? is either harmonic or
identically +o0o or identically —oo.
The same is true for ﬂ?

Proof:

Consider the family V of the subharmonic restrictions of the functions in
\Ilgc2 in any particular connected component G of 2.

In case all functions in W? are identically —oo in G, then V is empty and,
obviously, ﬂ? = —o0 in G.

In case there is at least one function in \I'? with subharmonic restriction to
G, then V is non-empty and it is almost obvious that V satisfies the assumptions
in Theorem 2.13 for the connected open G. Therefore, the upper envelope of V
in G, which coincides with the restriction of H ? in G, is either harmonic in G
or identically 400 in G.

Proposition 3.2 ﬁ? > ﬂ? everywhere in Q.

Proof:

Fix an arbitrary connected component G of €.

In case either F? = 400 everywhere in G or H ? = —oo everywhere in G,
then the result is obvious. Hence, assume that there is some u € <I>§-l which is

not +o0o everywhere in G and some v € \Ilgf which is not —oco everywhere in G.
Then, u — v is superharmonic in G and

graril_rilfl(u(m) —v(z)) >0

for all y € 0G.

This last inequality is obvious for every y for which f(y) is real. In case
f(y) = 400, then the boundedness from above of v is used and, if f(y) = —oo,
then the boundedness from below of u has to be used.

From Theorem 2.1, we find that v > v in G. Since u is arbitrary in @? and

—Q
v is arbitrary in U$, we conclude that Hy > ﬁ? in G.

Definition 3.2 Let the extended-real-valued f be defined in N2, where Q@ C R™
s open.

1. If F? = ﬂ? everywhere in Q, then this common function is denoted by
Q
Hy .

2. f is called resolutive with respect to Q) if



3.1. THE GENERALIZED SOLUTION 127

everywhere in Q and if this common function is not identically +oo or
—o0 in any connected component of €).

This common function H J? is harmonic in ) and is called the generalized
solution to the Problem of Dirichlet in Q) with boundary function

1.

To motivate this definition, suppose that f is real-valued in 92 and that
the Problem of Dirichlet in 2 with boundary function f is solvable. Therefore,
there exists some u harmonic in €2 so that limgs,—, u(z) = f(y) for all y € 9Q.

The first thing to observe is that f is, then, continuous on 9f2. In fact, take
any sequence {ym,} in 9 with y,,, — y. Then, there is another {x,,} in Q
so that dg(m,ym) < = and |[u(zm) — f(ym)| < . The first inequality gives
ds(xm,y) — 0 and, hence, u(x,,) — f(y). Thus, the second inequality gives
Fym) = FW):

Since f is continuous in 912, it is bounded in 9 and Theorem 1.1 implies
that u is bounded in Q.

Therefore, u € <I>§} N \Ilgf and, hence,

w< HY < Hy <u.

This implies

in Q.

Summarizing: if the Problem of Dirichlet in Q with the real-valued boundary
function f is solvable, then f is continuous in 02 and resolutive with respect
to Q2 and the solution to the Problem of Dirichlet coincides with the generalized
solution.

Therefore, to solve the Problem of Dirichlet, we must suppose that the given
boundary function f is continuous in 902 and, then, prove

1. that f is resolutive and
2. that limgsg_y H?(x) = f(y) for all y € 9Q.

In the case of any bounded open (2, item 1 will be answered completely
by a theorem of Wiener, which we shall prove in a while, and says that every
continuous f is resolutive.

On the other hand, even if f is continuous, the Problem of Dirichlet may
not be solvable. Here is an instructive example.

Example
Consider @ = {r €e R*: 0 < |z| < 1} and

_Jo, iffyl=1
f(y)_{l, ify=0.



128

Take u,,(z) =
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(h(z) — k(1)) for all z € Q. Then u,, € @? and, hence,

3=

F?(w) < lm wup(z) = 0.

- m—+oo

On the other hand, 0 € %, implying

0 Sﬂ?(m) .

Thus, f is resolutive and continuous in 9f), with H ]9 = 0 everywhere in €,

but

Jlim HP(z) = 0 # f(0) = 1.

3.2 Properties of the generalized solution

In all statements that follow, the boundary functions are all extended-real-
valued.

1.

=0 =0
Hii.=Hf+c and ﬂ?ﬂ:ﬂ?—&—c for all c € R.

Hy; = MHy and HY; = AH} for A > 0 and Hy; = AH} for A < 0.
Under the convention 0(+o00) = 0, these formulas hold in case A = 0 also.

If f1 < fo, then Ty <Hy and HS < H} .

=0
infoo f < Hf < H; <supyq f .

All these properties are trivial to prove.

Convention When we add boundary functions f and g, we assign any

value, whatsoever, to the indeterminate forms (£00) + (Foo).
But, when we add F? and F?,
and, when we add ﬁ? and ﬂg, we assign the value —oo to them.
In any case, we assign the value 0 to 0(£00).

we assign the value +0o to these forms

—0 —0 —0 Q Q Q
Hppg<Hy+H, and Hy + Hy < Hy /.

Working in each connected component of §2 separately, it is enough to

assume that 2 is connected. Observe that, by our convention, the first

. . . R -0 =0 . .

inequality is trivial in case at least one of H, and H, is +oc identically

in Q.

Hence, take any u € ® and any v € ® which are not identically +oo.
—0 -

Then, u+v € <I>Q+g and, thus, H,, < wu+v. This is enough to conclude

the proof of the first inequality and the second is proved similarly.
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6. If both f and g are resolutive with respect to 2, then cf + dg is resolutive
and Hch+dg = cHJEZ + ngQ everywhere in €, for all ¢,d € R.

This is a simple combination of properties 2 and 5.

7. Let fr, T f and F?l be not identically —oo in a connected component G
of Q. Then F?m T H? inG.
The dual result is, also, true.
It is enough to assume that () = G is connected and that, for all m, F?m

—0
is not identically +oo in . Therefore, we assume that H is harmonic
in Q, for all m.

Fix g € Q and consider u,, € <I>Qm, superharmonic in € with

€

—Q
U (20) < Hy (x0) + om -

== . . o .
Now, u,;, —Hy,  is superharmonic and non-negative in 2 and, by the third
property of superharmonic functions, the series

—+oo

> (um = T7,)

m=1

either converges to a superharmonic function in € or it diverges to +o0
everywhere in 2. But its value at x( is < € and, thus, it is superharmonic
in Q.

By Theorem 1.16, the lim,,— 4o F?m is either 400 identically in Q or it
is harmonic in €. In the first case, what we want to prove is clear and we
assume that this limit is harmonic in Q.

Now, the function

+oo
w = lim H?m + Z (um —H?m)
m=1

m——+oo
is superharmonic in ). Furthermore, for every m,
—0 —0
w = Hy o+ (um = Hy,) = tm -
Therefore, w is bounded from below in Q and, also,

o oo -
i inf w(x) > Hm inf Um(x) =2 fm(y)

for all y € 0§ and, since m is arbitrary,

. -
iminfuw(z) > f(y)
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for all y € 09Q2.
Therefore, w € ®¢, implying that w > F? Then

=0 )
Hy(ro) < w(we) < lim Hy (x0) +e¢

m——+00

and, since € is arbitrary,

=0 . =0
Hy(zo) < lim Hy (o) .

m——+00

The inequality lim,,— +o0 F?m < F? is obvious and , by Theorem 1.1,

in Q.

Let G be an open subset of Q and f a boundary function in 0. If we

consider
1, on 0G NN,
F = {=a
Hy, ondGNQ,

then Fﬁ = F? everywhere in G.

There is a dual result for H.

Since every connected component of G is contained in one of the connected
components of €2, it is enough to assume that both G and (2 are connected.

If u e <I>¥, then, in case y € 0G N 01,

liminfu(z) > liminfu(z) > f(y) = F(y),

Gozx—y QoSz—y

while, in case y € 0G N,

liminfu(z) > u(y) > Hi() = Fl).

Hence, u € ®%, implying u > F? in G and, finally,
—0 —G
H;, > Hp
in G.
The opposite inequality is clear in case F? = —oo identically in €.

In case ﬁ? = +o0 identically in 2, then F(y) = +oo for all y € 0G N Q.

Now, taking any u € @g, we have that liminfgs,—, u(z) = +oo for all
y € 0GNA.
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Extending u as identically +00 on Q \ G, we either get a superharmonic
w in © (if u is superharmonic in G) or the function +o0 in Q (if u = 400
identically in G). But, the first alternative is impossible, since this would
imply the existence of a superharmonic function in (P?.

Therefore, u = 400 identically in G and we get that

—G —0
in G.
—0
Finally, suppose that H is harmonic in (2.

Take any u € ®% and define
v — min(u,ﬁ?), in G,
=, inQ\ @
which is superharmonic in 2.

Take arbitrary v € ‘b? and consider the function V + v — F? which is
superharmonic and bounded from below in (2.

In case y € 90\ 0G,

liminf (V(z) + v(@) - Ay () = lminfu(x) > ().
In case y € 02N 0G,
Jiminf (V(r) +o(e) = Fy (@) = liminf o(e) > [(y)
and 0
lim inf (V(z) + v(z) — H; (z)) > f(y) .

Gox—y
—0 —=Q .
Hence, V+v—Hy > Hy in Q.

This implies that V' > F? in , which gives u > F? in G and, finally,

Hy > Hy
in G.

9. Let G be an open subset of Q and f a boundary function on 0. If f is
resolutive with respect to 2, then the function

P 1, on 0G N I,
- H?, on OGN K,

is resolutive with respect to G and HG = H? identically in G.
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10. Let each f,, be resolutive and f,, — [ uniformly in 0S.
Then f is resolutive and H})m — H? uniformly in €.
Fix € > 0. For large m, f,, —€ < f < f, + € everywhere in 02 and, hence,

HY —e gﬂ? gﬁ? < HyY +ein Q. Thus, 0 gﬁ?—ﬂ? < 2¢ and,
since € is arbitrary,
Q —Q
Hy = H;

in Q and f is resolutive.
Also, f—e < fr, < f+€in 00 impliesH?—egH?m gH?—i—einQ,
from which we get the uniform convergence H? — H )9 in Q.

3.3 Wiener’s Theorem
Lemma 3.1 Let Q) be a bounded open subset of R™. Then, every real-valued f

continuous in 9 can be uniformly approzimated in OQ by the difference of the
restrictions in 0S) of two functions continuous in 2 and superharmonic in Q.

Proof:

Since 0f) is a compact subset of R™, by the Stone-Weierstrass Theorem, we
can approximate f uniformly in 9 by a real-valued polynomial P(z1,...,zy,).
Take a constant M > 0 so that AP(z) < M for all z € Q.

Now, the difference of the two functions, P(z1,...,z,) — %x% and —%x%,

approximates f uniformly on 02, while both of them are superharmonic in €.

Theorem 3.1 (N. Wiener) Let Q be a bounded open subset of R®. Then, every
real-valued f continuous in OS2 is resolutive with respect to Q.

Proof:

Let the real-valued F' be continuous in Q and superharmonic in €.

Then, obviously, F' € @% and, thus, F > F? in Q. By property 4 in section
3.2, Fﬁ is bounded and harmonic in 2 and, for every y € 012,

limsupﬁg < limsup F(z) = F(y),
Q3z—y Q3zx—y

implying that ﬁﬁ € U Hence,

Hyp = HY
and the restriction of F' in 91 is resolutive with respect to €.

By Lemma 3.1, there is a sequence {F,,, — G,,} so that all F,,, and G,, are
continuous in €, superharmonic in  and the restrictions in 9Q of F,, — G
converge to f uniformly in 0€).

From the first part and property 6, the restrictions in 02 of all F,,, — G,,, are
resolutive with respect to 2. Therefore, from property 10, f is resolutive with
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respect to .

Example
Let @ = R?\ {0} and f(0) =0, f(o0) = 1.
Ifue @?7 then, for any ¢ > 0 we have that, for all large enough M and N,

() log |z +log N
~ log M +log N

for every x with + < |z| < M. Let N — +00 and then M — 400 and get that
u(x) > 1 —€ for all © # 0,00. Since € is arbitrary, we find v > 1 and, thus,

Hy =1in Q.
Ifve \Il?, then, for any € > 0 we have that, for all large enough M and N,

log |z| + log N

<
v(z) < log M +log N

for every x with + < |z| < M. Let M — +oc and then N — 400 and get that

v(x) < e for all x # 0, 00. Since € is arbitrary, we find u < 0 and, thus, ﬂ? =0
in Q.

Therefore, f is not resolutive with respect to 2 and Theorem 3.1 cannot be
extended to hold for unbounded open sets in R2.

3.4 Harmonic measure
Let € be a bounded open set and x € 2. By Theorem 3.1,
co) > f — H;?(xo) e C

defines a (complex-)linear functional on C'(99).
This is, at first, defined for real-valued f, but it is, trivially, extended to
complex-valued f by H? (z9) = Hégf (z0) + ngf (z0).
It is easy to prove that
H?(Io) =1 ,

HP(z0) > 0
for all f € C(9€) with f > 0 in 92 and

[HF (o)l < [Iflloo

for all f € C(09). In fact, the last inequality is straightforward for real-valued
f, while, for complex-valued f, we take 6 so that H]Q(xo) = ei9|H]9(:r0)| and
write

|HY (z0)| = e “Hf(x0) = Heluos(wo)
= Hgwp(@) < RNl < oo -
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Therefore, H (Q) (o) is a non-negative bounded linear functional on C(0f2)
with norm 1 and, from Theorem 0.10, there exists a unique non-negative Borel
measure dugo supported in 02 so that

dpg, (09) = 1

and

Hf(zo) = | fly) dus,(y)
a0
for all f € C(09).

The fact that dug) is a non-negative Borel measure with total mass equal to
1 is described by calling it a Borel probability measure.

By the process of Caratheodory, the measure d,ugf0 can be considered as
uniquely extended on the o-algebra of its measurable sets. This o-algebra is
larger than B(0Q2) and a set A C 9 belongs to this o-algebra if and only if
A= BUN for some Borel set B C 0 and some N with duf (N) = 0.

Also, duf}o is complete on the o-algebra of its measurable sets.

Definition 3.3 Let Q C R™ be a bounded open set and xqg € €.
The complete probability measure d,ugo in 0S), constructed above, whose o-
algebra of measurable sets includes all Borel sets in 0 and satisfies

HY(w0) = (y) dusy, ()

f
00

for all f € C(09) is called the harmonic measure in O} with respect to )
and xg.

Lemma 3.2 Suppose Q is a bounded open subset of R™ and consider f lower-
semicontinuous in 02, Then,

1. For every xg € (2,
Hy (z9) = AW dyi, (y) -

2. f is resolutive with respect to Q if and only if it is d,ugzO -integrable for at
least one xg in every connected component of ).

The same is true, if f is upper-semicontinuous.

Proof:

Consider a sequence {f,,} of functions continuous in 9Q with f,(y) T f(y)
for every y € 092.

By Theorem 3.1,

Q
Hy (wo) = HY, (wo) < HY(wo) -
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By property 7 of H, the continuity of f,,, and the Monotone Convergence
Theorem,

Hy(wo) = lim Hy (z0) = lim [ fuly) de () = | Fly) du () .
o0 o0

m——+oo m m—+oo

From these two relations we get the first result.

Now, since f is bounded from below in 02, we have that, for every x,
Joq f(y) difl (y) < +oo if and only if f is dpufl -integrable.

If f is resolutive with respect to €2, then all integrals are finite and f is
dugo—integrable for all g € 2. On the other hand, if f is d,ugfo—integrable for at
least one xo in some connected component, then Hy(z) is finite and, hence,

H? is harmonic in the same component.

Theorem 3.2 Suppose §2 is a bounded open subset of R™. For every extended-
real-valued function f defined in 0f,

1.
H (o) = S @) B ) = [ f) def ()
200

for all xg € Q,

2. f is resolutive with respect to Q) if and only if it is d,ugf0 -integrable for at
least one xg in every connected component of ) and

3. f is resolutive with respect to Q if and only if it is dugo -integrable for every
xo 1 Q and, in this case,

Hi (zo) = (v) dus, (v)

f
oQ
for all xg € Q.

In particular, an E C 0N is dugo -measurable for every xg in Q if and only
if xg 1s resolutive with respect to  and, in this case,

HY, (x0) = dug (E)
for every xg in €.

Proof:
1. It is enough to prove the first equality and we, first, see that, by Lemma 3.2,

() du (y) = in / o(y) du (y) = inf HY(wo) > Hr(xo) .
oQ

where the infima are taken over all lower-semicontinuous ¢ in 02 with ¢ > f
everywhere in ).
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—=Q
The opposite inequality is obvious if H (x9) = 400 and, thus, assume that

F? (x9) < +00. Now, take arbitrary A > H? (xo) and u € <I>§3 so that

u(zg) < M.

The function defined by ¢(y) = liminfos,_, u(z) for all y € 9Q is lower-
semicontinuous in 92 and satisfies ¢ > f there. Hence,

f) dus () < | o(y) dus (y) = Hi(zo) < ulze) < A
o0 o0

and, since A is arbitrary, we get

Fly) dul (y) < Hy(xo) -
o

2 and 3. It is obvious, from 1, that if f is resolutive with respect to €2, then it
is du$} -integrable for every xg € Q.
If fis du?ﬂ—integrable for some xg in €2, then, from 1, the two functions,

H ? and Hy, are harmonic in the connected component of {2 which contains
xo and, by the Maximum-Minimum Principle, they are identically equal in the
same component.

Theorem 3.3 Suppose §2 is a bounded open subset of R® and x1, xo are in the
same connected component of Q). Then

1. dps} and dusl, have the same zero-sets.

2. dug}1 -measurable sets and functions are the same as the dui}z -measurable
sets and functions.

Q _ Q . .
3. LZ1 (02, dps ) = LY(02, dpsl)) and the norms in these two spaces are equiv-
alent.

Proof:
1. Let dpf, (N) = 0. From Theorem 3.2,

0= A, = [ o) i) = B, (@)
and, from the Maximum-Minimum Principle, H;’N = 0 identically in the con-
nected component of € containing x;. Now, the same set of equalities for zo
instead of z1 give that dus (N) = 0.

2. If E is du$} -measurable, then E = B U N, for some Borel set B and some
N with duS} (N) = 0. From part 1, we get that du$, (N) = 0 and, hence, E is
dug2 -measurable.

3. If fis dugl—integrable, then

HE (21) = /8 W) ) < e
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Therefore, H, f}‘ is harmonic in the connected component of €2 containing xq
and, then

[ 1@l di ) = Hw2) < oo
o0

implies that f is d,u%—integrable.
If f is dufl-integrable for some 2 € € and, hence, for all x in the same
connected component G of €2, then the function

/‘U@nw&w::H&uu reG
o0

is harmonic and non-negative in G. From Harnack’s Inequalities we have that
for every z1,z2 € G there is a constant C, depending only on these two points
and on G, so that

& [ rwlatw < [ pwlate) <o [ rela

for all f.

Proposition 3.3 Let Q) be a bounded open subset of R™.
If G is one of the connected components of Q0 and x¢ € G, then,

dug, (02\0G) = 0.

Hence, the harmonic measure with respect to Q) and xq is supported in the
boundary of the connected component of @ which contains xg.

Proof:
In fact, consider the function

_fo0, ifzed
u®) =10 ifren\@.

u is harmonic in Q and liminfos, sy u(z) > xa0\0¢(y) for all y € €.
Therefore,

—Q
0 < duf (0Q\0G) < H,, . () < ulwg) = 0.

Example

If f is defined and continuous on the sphere S(xo; R), then Ps(- ,zo; R) is
the solution to the Problem of Dirichlet in B(zg; R) with boundary function f.
Hence,

HY (@) = [ f@)Pia, B) dS()

S(zo;R)
for all z € B(zo; R).
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From the definition of harmonic measure,

dpB@oi) — p(. g 20, R) dS .

x

This means that d,uf(xo;m and susface measure on S(xo; R) are mutually

absolutely continuous and the density-function (Radon-Nikodym derivative) of

d,uf(m”;R) with respect to dS is exactly the Poisson kernel P(- ,xz,xo; R).
In particular,
1
duBEof) = —— _ 4g.
MIO wn_an—l

The harmonic measure with respect to the ball and its center is the normalized
surface measure on its surface.

3.5 Sets of zero harmonic measure

Definition 3.4 Suppose that Q is a bounded open subset of R™.

A set E C 09 is said to be of zero harmonic measure with respect to
Q, if du(E) = 0 for every x € Q or, equivalently, for at least one = in every
connected component of €.

Theorem 3.4 Suppose that Q) is a bounded open subset of R™ and let E2 C 0f).
Then, the following are equivalent.

1. There exists a function u superharmonic in 0 with v > 0 in Q0 and
limosg—y u(z) = +o00 for everyy € E.

2. E is of zero harmonic measure with respect to ).

Proof:
1. Assume the existence of a u with the properties in the statement of the
theorem. Then %u € <I>¥E for every m € N and, hence, for every x € €,

0 < HY,(@) < Hy,(

< x) < u(z) .

1
m
Now, let m — +o0 and get

A(E) = H2, (z) = 0

for every = € Q.
2. Assume d,ugk (E) = 0 for at least one xj in each of the at most countably
many connected components 2 of 2. Therefore

HY (zr) = 0

for the same points. This implies that, for every k and every m, there exists a

U,k € <I>¥E so that

1
Um,k:(l'k) < W
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Now, modify these functions and define
U = min(Um 1, Um,m) -
The functions v, are superharmonic and non-negative in Q with

liminf v, (z) > 1
Q3z—y

for all y € F and
1
Um(mk) < oM+l

fork=1,...,m.
Finally, define

—+oo
v = E Um -
m=1

Since v(xg) < 4oo for every k, by the third property of superharmonic
functions, v is superharmonic and non-negative in €2 and

+o00
ggililgv(z) > Zggilillf/vm(x) = 400
m

for every y € E.

Theorem 3.5 Suppose that ) is a bounded open subset of R™ and let E be a
subset of OQ which is dusl-measurable for all x € Q. In particular, E can be
any Borel subset of 02. Then, the following are equivalent.

1. E is of zero harmonic measure with respect to €.

2. For every u superharmonic and bounded from below in Q with

liminfu(z) > 0
Qdx—y

for everyy € 00\ E, it is true that
u > 0
everywhere in Q.

There is a dual statement for subharmonic functions.

Proof:
Let E be of zero harmonic measure with respect to €.
Assume that u satisfies the hypotheses in 2 and take M > 0 so that u > —M

identically in €. Then —ﬁu € \IISE implying

1 Q
_M’u’ S HXE
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and, since the last function is identically 0 in €2, the proof of one direction is
complete.
Now, let duS} (E) > 0 for at least one z € Q.
Then
HE, | (20) = —dpg (B) < 0
and, hence, there exists u € QQXE with u(zg) < 0.
This w is superharmonic and bounded from below in € and

liminfu(xz) > 0
Qdx—y

for every y € 00\ E.

Theorem 3.5 expresses an extension of the Minimum Principle for superhar-
monic functions. It appears that the sets of zero harmonic measure with respect
to Q are the “negligible” sets when testing the hypotheses of the Minimum Prin-
ciple. There is an extra “mild” hypothesis: the superharmonic function must
be bounded from below.

3.6 Barriers and regularity

Definition 3.5 Let Q be open in R™ and yo € 0N2.

We say that Q0 has a barrier at vy, if there is an open neighborhood V of
Yo and a positive superharmonic function u in V N Q) so that

lim wu(z) = 0.
Q3z—yo

This u is called barrier for Q at yg.

Yo is called regular boundary point of ), if there exists some barrier for
Q at yp.

Q is called regular open set, if all its boundary points are reqular boundary
points of Q.

Observe that the neighborhood of y in the definition may become as small
as we like and, hence, the part of € outside an arbitrarily small neighborhood
of yo does not play any role in whether yq is regular or not. In other words the
definition of regularity of a boundary point is local in character.

The next result is a concrete characterization of regularity of boundary
points.

Lemma 3.3 Let Q2 be open in R™, yo € 0 and yo # ©.
Then the following are equivalent.

1. yo is a regular boundary point of €.
2. There is an R > 0 so that
lim  HIMBW R gy = 0

Q3z—yo I =ol
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3. The previous condition holds for all R > 0.

If n > 3 and Q is not bounded, then oo is always a reqular boundary point
of Q.
If n =2 and 2 is not bounded, then the following are equivalent

1. o0 is a regular boundary point of €.
2. There is an R > 0 so that

Q3zx—00 /1

3. The previous condition holds for all R > 0.

Proof:
(1) Let yg # oo and suppose that the condition in 2 is true for some R.

IEG) (1) > |z — yo| > 0

for all z € QN B(yo; R). Therefore, H‘S?rlié?‘m;m is a barrier for  at yq.

Conversely, suppose that there is a neighborhood V' of yy and a positive
superharmonic w in V' N Q with limgsg—y, u(z) = 0.

We may assume that V' = B(yp;r) with r < R and we consider an extra
p<r.

Then QN S(yo; p) is an open subset of S(yo; p) and we may decompose it as
QN S(yg;p) = FUA, where F is compact, A is open in S(yo; p), FNA =0 and
dS(A) < wn_lpnilg.

For this purpose, consider a compact exhaustion {K,,)} of Q and take F' =
K () N S(yo; p) for a large enough m.

Now, define the function

Since | - —yo| is subharmonic, we have that H

wle) = o ule) £ P ) Fo . 0 € QN Bli)

which is positive and superharmonic in Q N B(yo; p) and consider an arbitrary
v € WNBWO) Phen for every y € (2N B(yo; p)),

[ —yol

limsup v(z) < liminf  w(z) .

QNB(yo;p)dx—y QNB(yo;p)dz—yY

This is easy to prove, by considering the three cases: y € 9Q N B(yo; p),
y€ Fandye A.
Therefore, v < w everywhere in Q N B(yo; p) and, thus,

HQQB(?JOV‘) <

=yl =Y
everywhere in QN B(yo; p).
This implies
. QNB(yo;r r .
limsup H*" 500 () < Hm (@) + Py, (Yo; 9o, p) +p < 2p

Q3x—yo - minpu Q3x—yo
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and, since p is arbitrarily small,

li HQOB(yO;T) _ )
At H oy (@) =0

We need to show the same thing, but with r replaced by R.

Since

Q ;
o —yol < HJH (@) < v

for all x € QN B(yo;r), we get

HQQB(yo;T) (Z) _

lim =r

QNB(yo;r)d2—x I =ol

for all z € QN S(yo;r). This implies that the function

r [ —vol

R HQﬁB(yO;T)(x) , ifreQn B(yo’r)
R, if 2 € QN (Byo; R) \ B(yo;r))

QNB(yo;R)

and, hence,
[+ —yol

belongs to ®
BB EHQOB(yO;T)
[+ —vol = ¢ 1 —yol

everywhere in Q2 N B(yo; ). Therefore,

lim  HMBW R gy = 0
Q3>z—yo I =vol

(2) Now, if n > 3 and €2 is not bounded, the function

1
h(x):W, 1'697

is a barrier for € at oco.
(3) In the case n = 2 we may either modify the proof of part (1) or, better,
consider the inversion z* = 1 which transforms Q \ {0} with oo as boundary
point to the set Q* = {z : + € ©\ {0}} having 0 as boundary point.

This inversion, as we have already seen, preserves the properties of har-
monicity and superharmonicity. Hence, it is clear that oo is regular for Q if and
only if 0 is regular for Q* and, also, that

lim H{lzGQ:|m\>R}(x) -0

Q3zx—o00 T

if and only if

* .1
lim H. PO () = 0.
Q3z—0 |l

Now, we may use the result of part (1) and complete the proof.
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Theorem 3.6 (Bouligand) Let 2 be an open subset of R™ and yo € Q. Then,
the following are equivalent.

1. yo is a regular boundary point of €.

2. For every open neighborhood V' of yq, there is a positive u superharmonic
in Q so that u =1 identically in Q\'V and limosz—y, u(z) = 0.

Proof:

One direction is trivial. Therefore, let yo be regular and V be any open
neighborhood of yg.

Assume, first, that yo € R™ and consider R > 0 small enough to have
B(yo; R) C V. By Lemma 3.3,

lim  HMBW R gy = 0

Q3z—yo I —ol

We, clearly, have

0 < |o—y| < HBW V() < R

for all z € QN B(yo; R) and, thus,

lim HIMBWoR oy — R
QNB(yo;R)dz—x I —vol

for all x € QN S(yo; R).
This implies that the function

R —yol

u(z) = { LHPG 0 (@) i@ € Q0 Blyo; R)
1, if z € Q\ B(yo; R)

has the desired properties.
If n > 3 and yo = oo, we consider R large enough so that {z : |x| > R} CV
and, then, take

n—2
u(z) = min(W,l), ze.
If, finally, n = 2 and yg = oo, then, taking R large enough and
u(z) RHgm{mtlxbR}(m) , ifzeQand|z|>R
= T
1, ifreQand|z] <R,

we conclude the proof.

3.7 Regularity and the problem of Dirichlet

Theorem 3.7 Suppose Q) is a bounded open subset of R™ and yg € 02. Then
the following are equivalent.
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1. yo is a reqular boundary point of ).

2. For every real-valued f defined and bounded in 02 and continuous at yq
it is true that

. -0 : Q
1 H = 1 H = .
QB;:IEyO f () Qaigyo = (@) 1)

That 1 implies 2 holds without the assumption of boundedness of ).

Proof:
By the subharmonicity of the function f(-) = |- —yol|, we find

0 < |z—yo| < Q?(m) < diam(Q)

for all x € . Therefore, if 2 holds, the function A ? is a barrier for 2 at yy and
Yo is a regular boundary point of Q.

Now, suppose that yg is a regular boundary point of 2 and consider any
real-valued f defined and bounded in 02 and continuous at yg.

Take any € > 0 and let V' be a neighborhood of yq so that | f(y) — f(yo)| < €
for all y € 0QNV.

Theorem 3.6 implies that there is a positive superharmonic « in Q so that
limgsg—yy, u(z) = 0 and u = 1 identically in Q\ V.

If | f(y)| < M for all y € 012, then the function

w = (M- f(yo))u+ f(yo) +¢

belongs to <I>§} and, thus, limsupgs, ., H; () < f(yo) +e€. Since € is arbitrary,

. —0
limsup H ¢ () < flyo) -
QBCE—)yo

Applying this to —f we find

lim inf ﬂ?(m) > f(vo)

Q3>z—yo

and, combining the two inequalities, we finish the proof.

Theorem 3.8 If Q2 is an open subset of R™, then the regularity of Q0 implies
that the Problem of Dirichlet is solvable for every f € C(02).
If Q) is bounded, then the converse is, also, true.

Proof:
A direct consequence of Theorem 3.7.
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3.8 Criteria for regularity

The next three results give three useful criteria for regularity of boundary points.
Much later we shall prove Wiener’s characterization of regularity of boundary
points.

Proposition 3.4 (The ball-criterion) Let @ C R™ be open and yo € I8, yo €
R™. If there is a ball B C R™\ Q so that yo € OB, then yo is a regular boundary
point of ).

If, in particular, Q is C? at yo, then yo s a regular boundary point of .
Therefore, if the bounded open 2 has C?-boundary, then it is a reqular set.

Proof:
If y; is the center of B and r is its radius, then —h,, + h.(r) is a barrier for
Q) at Yo-

Proposition 3.5 (The continuum-criterion) Let Q C R? be open and yo € 0.
If there is a continuum containing yo and contained in W\Q, then yo s a regular
boundary point of 2. o

In particular, if the complement of  with respect to R? has no component
reducing to only one point, then Q) is a regular set.

Proof:

Assume, first, that yo # co.

Let C be the continuum of the statement and consider y; € CNR2 with y; #
yo- If R = |y1 —yol|, then all connected components of the open set B(yo; R) \ C

are simply-connected. The function u(z) = log‘ 2:53 ‘, x € B(yo;R)\ C, is
harmonic in B(y; R) \ C and, by Theorem 1.4, there is a harmonic conjugate v
of it there.

Since Q N B(yo; R) C B(yo; R) \ C, it is clear that the function

r—1
T = Yo

5}%(;> , z € Q and ‘
u(x) + iv(x)
is a barrier for Q at yo.

If yg = oo, we choose a y; € C with y; # oo and, then, all connected
components of R2\ C' are simply-connected. We define a harmonic conjugate
v of the harmonic function w(z) =log|z —y1| in RZ2\ C.

Since Q € R2\ C, the function

‘>1,

1
%(m), xeﬂand|x—y1|>l,

is a barrier for Q at oco.
Proposition 3.6 (The cone-criterion) Let & C R™ be open and yo € 012,

yo € R™. If there is an open truncated cone ' C R™\ Q with vertez yo, then yo
s a regular boundary point of €).
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If, in particular, Q is C' at yo, then yo is a regular boundary point of €.
Hence, if the bounded open 2 has C'-boundary, then it is a regular set.

Proof:
Let R be the height of the cone F. It is enough to find a barrier for the open
set B(yo; R) \ F' at yo and, by Lemma 3.3, it is enough to prove

HB(?J();R)\F(:L.) = 0.

lim
[ —yol

B(yo;R)\F3z—yo

Now, set

B(yo;R)\F
u(w) = HPWH ()

for all x € B(yo; R) \ F and, then, dilate F' by a factor of two, producing the
cone

F/ = y0+2(F_y0) )
and consider

o) = ulw + 5~ w))

for all z € B(yo; 2R) \ F'.

The function v is harmonic in B(yo; 2R) \ F.

By the ball-criterion, every boundary point of B(yo; R) \ F is regular except,
perhaps, yo and, therefore,

m — wu(z) = [y—yol
B(yo; R)\Faz—y
for all y € 5‘(B(y0; R) \F) except, perhaps, yo.
By the Maximum-Minimum Principle, we have that v < R in B(yo; R) \ F

and, thus,

sup v < R.
S(yo; R)\F

Hence, we can choose a so that % <a<1and

lim (au(z) —v(z)) > 0
B(yo; R)\ '3z —y

for all y € S(yo; R) \ F. We, also, have

1
lim. (5 u(z) —v(z)) =0
B(yo;R)\F3z—y

for all y € OF \ {yo}.
Therefore,

lim (au(z) —v(z)) > 0
B(yo; R)\F3z—y

for all y € 6(B(y0; R) \F) except, perhaps, yg.
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Since the function au — v is bounded from below, we have that, for all € > 0,

lim. (au(x)—v(x)+e(hy0(x)—h*(R))> > 0
B(yo;R)\F3z—y

for all y € 9(B(yo; R) \ F).
By the Maximum-Minimum Principle

au(xr) — v(x) + €(hy, (z) — he(R)) = 0
for all 2 € B(yo; R) \ F,and, since e is arbitrary, we find
au > v

in B(yo; R) \ F.

From this,
. 1 _ 1
limsup  wu(z) > -— limsup  w(yo + §(x )
B(yo;R)\F3z—yo @ B(yo;R)\Faz—yo
1
= — limsup  wu(x),
@ B(yo;R)\Faz—yo
implying
lim u(z) = 0.

B(yo;R) \Faz—)yo

If a boundary point satisfies the ball-criterion, then it satisfies the cone-
criterion and, in case n = 2, if it satisfies the cone-criterion then it satisfies
the continuum-criterion. Therefore, the cone-criterion is the most useful in case
n > 3 and the continuum-criterion is the most useful in case n = 2.

Proposition 3.7 If Q C R™ is open and yg is an isolated point of 082, then yq
is not a regular boundary point of Q. The only exception is when n > 3 and
Yo = OQ.

Proof:

Let yo # oo be a regular boundary point of 2 and consider a small enough R
so that B(yo; 2R) \{yo} C Q and a positive superharmonic u in B(yo; 2R) \ {yo }
with limg_,,, u(z) = 0.

Let m = mingy,,r) v , being clear that m > 0.

By the Minimum Principle, for every § < R,

for all x in B(yo;d, R).
Now, let § — 0+ and find
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for all x € B(yo; R) \ {yo}, getting a contradiction.

In case n = 2 and yy = oo we modify the previous proof, taking u positive
and superharmonic in {z : |z| > 1R} C Q with lim; e u(z) = 0, defining
m = min |, —g u(x) > 0 and observing that

for all x with R < |z| < r.
We get a contradiction, letting » — +o00 and finding

u(x) > m

for all x with R < |z|.



Chapter 4

The Kelvin Transform

4.1 Definition

Consider any ball B(zo; R) and the symmetric z* of any x with respect to
S(JIQ, R)7
R2

CL‘*:SC()+ (.1‘—3?0).

| — 202
As usual, we consider each of zy and co to be symmetric to the other.
Now, for every set A C R®, we define its symmetric with respect to S(zo; R)

by

A* = {a":x € A}.
The new set A* contains xy or oo if and only if A contains oo or zg, respec-
tively.
A nice geometric property is that spheres are transformed, by symmetry,
onto spheres. In fact, doing some easy calculations, we can prove that if

x s

the sphere S(x1; R;) does not contain zg, then its symmetric, S(z1; R1)*, is
the sphere having the point

R%R,
[lzr—zol2— R3]

If the interior B(z1; R1) contains z, then it is transformed onto the exterior
of the image sphere, while the exterior is transformed onto the interior.

If the interior does not contain xg, then it is transformed onto the interior
of the image sphere, while the exterior is transformed onto the exterior.

If the sphere S(z1; R1) contains zg, then it is transformed onto the hyper-
plane described by the equation (z* — zg) - (z1 — 29) = 3R?* and the interior
and exterior of the sphere are transformed onto the two half-spaces determined
by this hyperplane.

2R
— s center and the number
o0 P T (r1 — xo) as center and the numbe

as radius.

Definition 4.1 Let 2 be an open subset of R™ not containing xg.
For every function f defined in Q2, we call the function

@) =

[ 1
=G e R AR
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defined in Q*, the Kelvin Transform of f with respect to S(zo; R).
Whenever we write about the Kelvin Transform without specifying the sphere,
we shall understand that the sphere is S(0;1).

Proposition 4.1 Let © be an open subset of R™ not containing .

Then, u is harmonic or superharmonic or suharmonic in § if and only if its
Kelvin Transform u* with respect to S(xo; R) is harmonic or superharmonic or
subharmonic, respectively, in .

Proof:
If u is in C%(Q), then, by trivial calculations, we can prove

|z — xo|" T2

Au(z)
for all z* € Q*.

We conclude that, if « is harmonic or twice continuously differentiable and
superharmonic in €2, then «* is harmonic or superharmonic, respectively, in Q*.

For a general superharmonic v in € and an arbitrary open ball B with B C
Q* we consider the symmetric closed ball B CQ and, through Theorem 2.10,
a sequence {u,,} of twice continuously differentiable superharmonic functions
in an open set Qg with B C Qo C Q which increase towards u in €.

Then, the functions u}, are superharmonic in 2§ and, hence, in B and
increase towards u* there.

By the third property of superharmonic functions, u* is superharmonic in B
and, since the ball is arbitrary, superharmonic in 2*.

4.2 Harmonic functions at oo

If V is an open neighborhood of # € R?®, then the set V \ {z} is called a
punctured neighborhood of z.

Proposition 4.2 Let u be harmonic in a punctured neighborhood V' \ {oo} of
oo and u* its Kelvin Transform with respect to S(xo; R). We know that u* is
harmonic in the punctured neighborhood V* \ {zo} of xo.

Then, the following are equivalent.

1. u* can be defined at xg so that it becomes harmonic in V*.

2.

lim u(z) = 0 mn casen >3
Tr—r 00

and

im u(@) =0 n casen =2 .
z—o0 log |z
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Proof:
In case n > 3,
. u*(z*)
x’lllgco h’évo (1‘*) B IILI{.IOU(I’) ’
while, in case n = 2,
lim u'(2”) = lim ﬂ = lim @) .
* >0 hwo (x*) T—00 log |xég"0| T—00 log |1‘|

Theorem 1.12 concludes the proof.

Proposition 4.3 Suppose that n = 2 and f is holomorphic in B(xo; R) \ {zo}.
Then, f can be extended as a holomorphic function in B(xo; R) if and only if
limg_yq, (x — o) f(z) = 0.

Proof:

The necessity of the condition is obvious.

Therefore, assume that lim,_,,, (z — zo) f(z) = 0, take 7 so that 0 < r < R
and consider the function

o) = - IO 4y we B,

2mi OB(zo;r) Y — T

which is holomorphic in B(zg; 7).
Now, fix an « € B(zo;r) \ {x0}, take € so that 0 < € < |x — x| and apply

Cauchy’s Formula to f in B(zg;7) \ B(xo;€) to get

f@) = ge [ T L] S0y,

270 JoB(aoir) Y — T 270 JoB(zgie) Y — T

= g(m)—i/ Mdy

2mi OB (xo;€) y—x

The last integral tends to 0 as e — 0+ and, thus, f(z) = g(x) for all
x € B(zo;r) \ {zo}-

Proposition 4.4 Suppose that n = 2, f is holomorphic in a punctured neigh-
borhood V \ {oc} of 0o and f* is its Kelvin Transform with respect to S(zo; R).
Then, f* is holomorphic in the punctured neighborhood V* \ {xo} of xo and it
can be extended as a holomorphic function in V* if and only if lim,_, o @ =0.
Proof:

The proof is a trivial application of Proposition 4.3.

Observe that condition 2 of Proposition 4.2 and the analogous condition of
Proposition 4.4 are independent of the sphere with respect to which we take
the Kelvin Transform. Therefore, in the following definition the use of S(0;1)
is only for reasons of simplicity and the use of any other sphere is equivalent.
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Definition 4.2 Suppose that the open set Q C R® contains oo and u is defined
We say that w is harmonic in Q if it is harmonic in Q \ {co} and there
is a punctured neighborhood V' \ {oco} of oo so that the Kelvin Transform u*,
harmonic in V* \ {0}, can be defined at O so that it is harmonic in V*.
We call w harmonic at oo, if it is harmonic in some neighborhood of co.
If n =2, we, similarly, define holomorphic functions at co.

Proposition 4.2 gives a necessary and sufficient condition on u, harmonic in
a punctured neighborhood of oo, so that it is harmonic at oo and Proposition
4.4 gives a necessary and sufficient condition on f, holomorphic in a punctured
neighborhood of oo, so that it is holomorphic at co.

Theorem 4.1 Let u be harmonic in a punctured neighborhood V' \ {c0} of oc.

Ifn > 3, u can be extended as harmonic in'V if and only if lim,_, o u(z) = 0.

If n =2, u can be extended as harmonic in'V if and only if lim,_, % =0

if and only if lim,_, o u(x) exists in C.

Suppose that n = 2 and f is holomorphic in a punctured neighborhood
V\ {oc0} of co. Then f can be extended as holomorphic in V if and only if
f(z)

=0 if and only if lim,_, . f(x) exists in C.

limg s o0

In case n > 3, if u is harmonic at oo, then, by defining u(co) = 0, we
guarrantee that u is continuous at oo. Therefore, we may say that, if u is
defined and continuous in an open set {2 containing co, then it is harmonic in
Q if and only if it is harmonic in Q \ {cc} and u(c0) = 0.

Writing w*(2*) = u*(0) + O(|z*|) when z* is near 0, we find that

u*(0) 1
u(w) = o+ 0 )
() |2 + |1
when « is near oco.
In case n = 2, we get in the same way that

u(z) = u*(0) +O(i)

when z is near oo, implying that, by defining u(oco) = u*(0), u becomes contin-
uous at co. Therefore, we may say that, if u is defined and continuous in an
open set ) containing oo, then it is harmonic in 2 if and only if it is harmonic
in '\ {oo}.

In this case there is no universal value at oo for harmonic functions there,
as is the value 0 in case n > 3.

We summarize.

Proposition 4.5 Suppose u is defined and continuous in an open set ) con-
taining oo.

If n > 3, then u is harmonic in Q if and only if u is harmonic in Q\ {oco}
and u(oo) = 0 if and only if u is harmonic in Q\{oco} and there is some complex

number a so that u(x) = |x|Z,2 + O<‘x|i,1) when x is near 0o.
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If n =2, then u is harmonic in Q if and only if u is harmonic in Q\ {oo}
if and only if w is harmonic in Q \ {oco} and u(z) = u(co0) + O(‘%l) when x is
near oo.

If f is holomorphic in an open set € containing co and all x € R? with
|| > R, then a trivial use of the Kelvin Transform with respect to S(0;1)
shows that f has a power series expansion

+oo
1
flz) = Zanx—n, |z| > R .
n=0
Of course, ag = f(o0) and

fioo) = a1 = lim a(f(z) — f(o0))

T—r+00

is called the (complex) derivative of f at oo. Observe that this coincides
with the derivative of f* at 0.

Either using the Kelvin Transform and the analogous formulas for f* or
integrating the power series of f, we may, easily, prove that

1 ne
an = 5 fly)y"tdy .
e OB(0;r)
The following is a direct application of the definitions and Theorem 1.5.

Theorem 4.2 Let u be harmonic in the neighborhood {x : R < |z|} U {oo} of
00.
In case n > 3 we have

1. 7= fS(O;r) g—;;(y) dS(y) is constant in the interval R < r < +oo.

2. M, (0) = *mﬁ in the same interval.

In case n = 2,
1. 0= fS(O'r) g—’;(y) dS(y) identically in the interval R < r < 400.
2. M7 (0) = u(oo) identically in the same interval.

Here, 7 is the continuous unit vector field which is normal to S(0;7) and
in the direction towards the exterior of B(0;r).

The next result regards the representation of a harmonic function as the
difference between a single- and a double-layer potential.
The function h. is defined by

log|z|, ifn=2
hoo($) - {gc}Lza ifn>3,

and it, also, is a fundamental solution of the Laplace equation in R™ \ {0} .
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Theorem 4.3 Let Q be an open set containing oo and having C*-boundary and
let 77 be the continuous unit vector field normal to O in the direction towards
the exterior of Q2. Then,

1. For every x € Q with x # oo,
1 .
u(@) —u(oe) = — [ (uly) ==5—(y) -

Kn Jon

2. If 1 is any point outside ), then

Ohoo(z1 — *) ou
on Y

uoo) = — [ (ulw)

Kn Joo

Proof:

The proof is a routine application of Green’s formula in the open set QN
B(0; R) or QN B(x1; R), where R is large and eventually tends to +oco. It uses
the formulas in Theorem 4.1 and it is left to the interested reader.

Theorem 4.4 If u is harmonic in R®, then, in case n > 3, it is identically 0
and, in case n = 2, it is a constant function.
Simalarly, if f is holomorphic in R2, then f is a constant function.

Proof:
u is bounded from below in R™ and, from the Theorem of Picard, it is
constant.

4.3 Superharmonic functions at oo

The following is parallel to the definition of harmonicity at oco.

Definition 4.3 Suppose that the open set Q C R® contains oo and u is defined
We say that u is superharmonic in S if it is superharmonic in Q\ {oco} and
there is a punctured neighborhood V \ {oco} of oo so that the Kelvin Transform

*

u*, superharmonic in V*\ {0}, can be defined at 0 so that it is superharmonic
m V*.

We say that u is superharmonic at oo, if it is superharmonic in some neigh-
borhood of oco.
The definition of subharmonicity is analogous.

If w is superharmonic at oo, then it is natural to admit

u(o0) = h;r_l)gfu(x)

as its value at co. This choise makes u lower-semicontinuous in the set where it
is superharmonic.
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Theorem 4.5 Let u be superharmonic in a punctured neighborhood V' \ {oo} of
00. Then u can be extended at oo so that it becomes superharmonic in V' if and

only if

1. liminf, ,o u(x) > 0, in case n > 3, and
2. liminf,_ o % >0, in case n = 2.

Proof:
The proof is a direct application of the definition and Theorem 2.5.

Theorem 4.6 u is superharmonic in R2 if and only if u is constant.
If n > 3, then w is superharmonic in R® if and only if its restriction to R™
is a non-negative superharmonic function and u(oco) = liminf, . u(x).

Proof:

The Kelvin Transform u*(x*) = u(x) is superharmonic in R?\ {0} and it can
be extended at 0 so that it is superharmonic in R2. Its value at 0 is, necessarily,
u*(0) = liminf o u*(2*) = liminf, o u(z).

If we define u(o0) = u*(0), then u is lower-semicontinuous in the compact
set R2. Therefore, it takes a minimum value in R2.

If this minimum value is taken at a point in R?2, then u is constant in R2.

Otherwise, u*, which is superharmonic in R?, takes its minimum value at 0
and it is constant. Thus, u is also constant in R? \ {0} and, hence, in R2.

To deal with the case n > 3, we just apply the Minimum Principle for u in
R" and Theorem 4.4.

Corollary 4.1 A superharmonic function in R? which is bounded from below
15 constant.

4.4 Poisson integrals at oo

Definition 4.4 Let f be integrable on S(0; R) with respect to the surface mea-
sure. We define the Poisson integral of f in the exterior of B(0; R) by

1 |z|? — R?
wn—1R Jso.r) |z —y|"

Py(z;00,R) = fly)dS(y),  |z|>R.

In order to have continuity at co, the values that are assigned to the Pois-
son integral at the point © = oo are defined (with the help of the Dominated
Convergence Theorem) by

P R lim P R ; .
(00500, R) = lim Pg(x;00, R) = 7 Jsoum F0) dS(y) , ifn=2.
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It is obvious that, if f is integrable on S(0; R), then f* is integrable on
5(0; %) and trivial calculations result to the formula

Py(z;00,R) = |2*|" 2P} (1:*;0,%)
for all x with |z| > R.

This says that the Kelvin Transform of the Poisson integral of f in the
exterior of B(0; R) is equal to Poisson integral of the Kelvin Transform of f in
the symmetric ball B(0; %).

Now, the following properties are straightforward, and can be proved either
directly, using the usual properties of the Poisson kernel, or using this last
formula.

1. P¢(- ;00, R) is harmonic in R™\ B(0; R).

This is obvious, since this function is the Kelvin Transform of a function
harmonic in B(0; ).

2. If f is continuous at some yo € S(0; R), then

lim  P(z;00,R) = f(vo) -
z—yo,|z|>R

Just observe that f* is continuous at y§ and write
lim  Pp(z;00,R) = lim |z*|" "2 Py (2*;0 l)
N I A B(0;4)32* —yp f "R
= lwl"?f (W) = fw)-

3. Thus, if f is continuous on S(0; R), then P;(- ;00, R) is the unique solution

to the Problem of Dirichlet in R™ \ B(0; R) with f as boundary function.
The uniqueness is proved easily by taking Kelvin transforms and reducing
to the uniqueness of the Problem of Dirichlet in B(0; ).

4.5 The effect of the dimension

Many of the properties of harmonic or superharmonic or subharmonic functions
that we have studied continue to hold when the domain of definition contains
oo as interior point. If this domain is the whole space R®, then most of these
properties are trivial due to the Theorems 4.3, 4.5 and Corollary 4.1. If the
domain of definition, {2, misses some point zg € R™, we, then, take the translates
u(- + xo) which are defined in the set £ — z¢ not containing 0 and apply the
Kelvin Transform. This reduces our study to the case of a domain of definition,
(Q — z0)*, contained in R™.

We shall describe, now, a difference between the cases n = 2 and n > 3
which has already, to a certain degree, appeared in our results.

Take, for example, the Maximum-Minimum Principle for harmonic func-
tions.
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The function h is, in case n > 3, harmonic in the open set R®\ B(0; 1) with
boundary values 1 in S(0;1). One would expect that the function is identically
1in R\ B(0;1), but it is not. In fact, its value at oo is 0, as is the value at oo
of every harmonic function there.

This is, best, explained using the Kelvin Transform h*(z*) = |2|"~2h(z) = 1
which is harmonic in the symmetric set B(0; 1), has boundary values 1 on S(0;1)
and is, indeed, identically 1 in B(0;1).

Thus, in case n > 3, the “correct” statement of the Maximum-Minimum
Principle is:

Let © be open in R® containing oo and let xo ¢ Q. If u is superharmonic in Q
and

liminf |z — 2|" 2u(z) > m
Qd3zx—y
for every y € 09, then
|z — 20" 2u(z) > m

for every x € Q.
There are similar statements for subharmonic and harmonic functions.

The situation is simpler when n = 2. In this case, the formula of the Kelvin
Transform, u*(z*) = u(z), does not contain the factor |z|"~2 and all results
which hold for open subsets of R? transfer, without any change, for open sets
in R2 containing oo.

4.6 Dimension 2, in particular

We state, below, the most important of the properties that hold in case n = 2
and remark that some of them hold in case n > 3, also, while some others hold
after an appropriate modification, as explained a few lines above. It is left to
the interested reader to investigate the case n > 3.

In all results below the open sets are subsets of R2 .

1. All versions of the Mazimum/Minimum Principles are valid.

2. Locally uniform limits of harmonic functions are harmonic.

3. If O and Qo are open, f is meromorphic in 1, f(1) C Qo and u is
harmonic or superharmonic or subharmonic in s, then wo f is harmonic or
superharmonic or subharmonic, respectively, in Q1 (except if f is constant ¢ in
some component of Q and u(c) = £00).

4. If u is harmonic (superharmonic) in an open set containing all x with |z| > R
together with oo, then the Poisson Formula

u(x) = (=) Pu(z;00, R)

holds for all x with || > R.

5. If u is superharmonic in an open set Q, B denotes any open disc with B C €
(its center may well be 0o) and up denotes the function which equals u in Q\ B
and equals the Poisson integral of u in B, then
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1. u>up in €,
2. up is superharmonic in 0 and
3. up is harmonic in B.

6. Harnack’s inequalities hold in general: if u is positive and harmonic in
the open Q) and K is a compact subset of 2, then
1

_ ula)

C — u(z)

<C

for all x,x' € K, where C is a positive constant depending only on  and K.
7. If {um} is an increasing sequence of harmonic functions in the connected
open set 2, then, either the u,, converge uniformly on compact subsets of Q)
to some harmonic function in ) or they diverge to +o0o uniformly on compact
subsets of ().
8. The minimum of finitely many superharmonic functions is superharmonic.
9. Limits of increasing sequences of superharmonic functions in a connected
open set are either identically +00 or superharmonic.
10. The Perron Process: suppose that V is a non-empty family of subharmonic
functions in the connected open set () so that V' contains the maximum of every
two of its elements and that it contains vy (see 5 above) for all v € V and all
closed discs B C €.
Then, the upper envelope of V is either identically +0o or harmonic in €.
From this we get the corollary
11. Let U be a non-empty family of superharmonic functions in the open €2
having at least one subharmonic minorant. Then the upper envelope of all sub-
harmonic minorants of U is harmonic in 0 and it is called the largest harmonic
minorant of U.

. . —=Q
12. For every extended-real-valued f defined in O the functions H; and ﬁ?
are defined in §2, each of them is, in every connected component of €1, either

identically +00 or identically —oo or harmonic and they satisfy ﬁ? < ﬁ?

If this inequality is equality in 0 and the common function is harmonic in
Q, we, then, call f resolutive, denote this common function by H}z and call it
the generalized solution of the Problem of Dirichlet in € with boundary function
f-

13. We have Wiener’s Theorem: if there is some disc disjoint from the open €,
then every function continuous in 0S) is resolutive.

We just translate so that the disc has center at 0 and, then, apply the Kelvin
Transform. Since the resulting open set is bounded, we may apply the original
version of Wiener’s Theorem.

The resulting functional

C(0Q) > f = Hf(x) € C

1s linear, non-negative and bounded with norm 1.
14. For every open Q which is disjoint from some disc and every xg € Q (even
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00 ) the harmonic measure d,uffo is defined in OS). This is a complete probability
measure whose o-algebra of measurable sets contains B(9S2).

Every extended-real-valued f in O is resolutive if and only if it is duS}-
integrable for all x € Q and, in this case,

HP (x) = /m F(y) du(y)

for all x € Q.

If E C 09, then E is of zero harmonic measure with respect to € if and
only if there is a non-negative superharmonic function in € having limit +oco at
every point of E.

Borel subsets of 02 of zero harmonic measure with respect to Q are negligible
regarding the assumptions of all versions of the Maximum/Minimum Principle.
15. Regularity of boundary points is defined as originally and we have the
basic result that for any open Q, the Problem of Dirichlet is solvable for every
continuous boundary function if the set is regular.

The converse is, also, true, if £ is disjoint from some disc.

16. A wuseful sufficient condition for the reqularity of a boundary point yo of an
open set ) is that there is a continuum containing yo and contained in R2 \ Q.

If, in particular, no component of R? \ Q reduces to only one point, then

s a regular set.



160 CHAPTER 4. THE KELVIN TRANSFORM



Chapter 5

Green’s Function

5.1 Definition

Definition 5.1 Suppose that ) is an open subset of R™ and let x¢g € Q. Con-
sider the family Ug) of all functions u with the properties

1. w is superharmonic in €,
2. w is a majorant of —hy, in Q.

In case this family is non-empty we say that Q has a Green’s function
with respect to the point xq and, if Ui}o is its lower envelope, the function

Gy = hy + U3

1s called the Green’s function of 2 with respect to the point xg.
In case this family is empty, we say that Q has no Green’s function with
respect to xg.

Observe that —hg, is a harmonic majorant of itself in every connected com-
ponent of Q not containing the point xg. Thus, the existence of Ggo is guarran-
teed in all these components and it is identically 0 there.

For the same reason, if O is the connected component of 2 which contains
the point xg, then the existence of Ggﬁ in  is equivalent to the existence of
G?O in O and, in this case,

Gl(x) = GO(x), z€0.

This remark helps us to reduce the study of the Green’s function to the case
of connected open sets.

Proposition 5.1 If Q@ C R"™ has a Green’s function, Ggﬂ, with respect to its
point xq, then

Q . . .
1. G%, — ha, is harmonic in (2,

161
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2. Gg}o is superharmonic in Q and harmonic in Q\ {xo},

3. Ggo (x) > 0 for every = in the connected component of Q0 containing xg
and G (z) = 0 for all other x € .

Proof:

1. By its definition, G§}, — hy, is the least harmonic majorant of the subharmonic

function —hy, in €.

2. This is obvious.

3. If O is any connected component of {2 not containing x, then —h,, is, clearly,

the least harmonic majorant of itself in O. Therefore, Ggﬂ = 0 identically in O.
If O is the connected component containing x(, then Gg}o > 0 everywhere in

O. In case Gg}o (z) = 0 for at least one x € O, then, by the Minimum Principle,

Gfgﬂ = 0 identically in O, implying that h,, is harmonic in O.

5.2 Green’s function, the problem of Dirichlet
and harmonic measure

Proposition 5.2 If Q is any bounded open subset of R™, then Q has a Green’s
function with respect to every xg €  and

G2, (2) = huy(o) + Y, (@) = hayla) = [ hay(0) a0
oQ

for all x € Q.

Proof:
1. Since Q is bounded, there is a large enough constant playing the role of a
superharmonic majorant of —h,, in €2.

Therefore, by definition, €2 has a Green’s function with respect to zg.

Since —hg, is continuous in 912, Wiener’s Theorem implies that this function
is resolutive with respect to 2. One can see this, directly, as follows.

—hg, is subharmonic in €2, bounded from above in {2 and, hence, belongs to
Vel n. - Therefore,
0

—hgo(z) < ﬂghxo ()

for all x € Q. This, easily, implies that H (—th is harmonic and, by the
Maximum-Minimum Principle, bounded from below in 2. Therefore H tho
belongs to @8% and, thus,

H*hwo S ﬂ*hﬂﬂo
everywhere in ), implying that —h,,, is resolutive with respect to Q.

By the continuity of —h,, in 092 and the definition of harmonic measure,

HE, (2) = — | hay(y) dpg(y)
o
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for all x € Q.
2. Assume that u belongs to the family ® hag? implying

gg;l_rg(u(ac) + Ry, (x)) > 0
for all y € 9.
From the Minimum Principle, we have that © > —h,, everywhere in Q and,
hence, u belongs to Z/{f}o .
If, conversely, u belongs to L[ﬁ)7 then it is automatically true that w is
bounded from below in €2 and that

.. >
gg;l_l}lg U(l‘) = hmo (y)

for all y € 9. Therefore u € (IJQh
z0
Hence, the families Ua% and ®% hay ATC identical and, thus,

Q Q
Usy = HZy

—ha,

everywhere in ).

5.3 A few examples

Proposition 5.3 1. R? has no Green’s function with respect to any point
of it.

2. If n > 3, then for every xg € R", G?OH = hy, in R".

Proof:
1. Assume that there is a superharmonic majorant u of —h, in R?.

For the arbitrary ball B(zo; R), we, then, have u(z) > log R for all z in
S(zo; R) and, by the Minimum Principle,

u(zx) > logR

in B(zo; R).
Since R is arbitrary, we get a contradiction.
2. Assume that n > 3 and let u be any superharmonic majorant of —h,, in R™.
For every ball B(zo; R), we, then, have u(z) > — zi= for all z € S(zo; R)
and, by the Minimum Principle, u(z) > — 4= for all # € B(xo; R). Therefore,

u(z) > 0
for all z € R", implying that 0 is the smallest superharmonic majorant of —h,,
in R™.

We conclude that
GR(x) = hay()
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for all z € R".

Example
Take @ = B(z1;R) and any xg € B(z1;R), ©9 # 21 and consider the
symmetric zf = x1 + ﬁ (xo — z1) of xg with respect to S(z1; R).

*|n—2
If n > 3, the function % hy; is harmonic in R™ \ {z§} and coincides
with hy, in S(x1; R).
Therefore,

Gfo(wl;R) = hgy —

in B(z1; R).
If n = 2, then, similarly,

B(z1;R) _ |71 — |
GBER) = . —1og(7)

in B(z1; R).
In case zg = x1, then

GE™ ) = hay = ha(R)
in B(z1; R), which can be recognized as the limit of both previous cases as
g — T1.
5.4 Monotonicity

Theorem 5.1 If the open set 2 C R™ has a Green’s function with respect to
some xg € Q and if Q' is another open set with

xOGQ'QQ,

then Q' has, also, a Green’s function with respect to x¢ and

everywhere in €.

Proof:
It is clear that every element of Z/lgo belongs to L{g .

Corollary 5.1 Ifn > 3, then every open subset of R™ has a Green’s function
in all of its components.

Theorem 5.2 Let {Q,,} be an increasing sequence of open subsets of R™ with
Q=U">®0,, and 2o € Q.

m=1
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1. If all Q,, have a Green’s function Gg(;" with respect to xq, then either
Ggom T +o0
everywhere in the component of ) containing xo and 2 has no Green’s

function with respect to xq or, in the opposite case, Q2 has a Green’s func-
tion with respect to xg and

Qim Q
Gy 1T Gy,
mn .

2. If Q has a Green’s function with respect to xq, then all 2, have a Green’s
function with respect to the same point and

Qm Q
G, 1 Gy,
mn .

Proof:

It is obvious, from Proposition 5.1(3) and Theorem 5.1, that in every compo-
nent of 2 which does not contain xg the Green’s functions of all sets considered
are identically 0. Therefore, the proof reduces to the case of a connected 2.

Assume that all ,,, have a Green’s function with respect to xg.

Take an arbitrary B(z;r) C Q. Then, for a large enough mg, B(z;7) C Qi
and Proposition 5.1(1) and Theorem 5.1 imply that {G2m — hg}f2, is an
increasing sequence of harmonic functions in B(z;r).

Therefore, by Theorem 1.16, every point of €2 has some neighborhood where
the sequence {G%ﬂ —hg, } , eventually, either converges to a harmonic function
or diverges to +o0o. Since {2 is connected, this sequence either converges to a
harmonic function everywhere in Q or diverges to +o0o everywhere in €.

In the first case the harmonic limit-function majorizes —h,, in 2 and, hence,
belongs to Z/lg} . Therefore 2 has a Green’s function with respect to g and the
above limit majorizes Ggo — hy, in Q.

From Theorem 5.1, the same limit-function is majorized by Ggo — hy, in Q
and we, finally, get

Gy 1 Gy
in Q.
Conversely, if 2 has a Green’s function with respect to zg, then all ,,, have
a Green’s function with respect to zg and G < G in Q,, for all m.
Therefore, the limit of G cannot be identically +oo in €.

5.5 Symmetry

Theorem 5.3 Let xg and x1 belong to the same component of the open Q C R™.
If Q has a Green’s function with respect to xq, then it has a Green’s function
with respect to 1 and

Ggo(xl) = Ggl(xo) °



166 CHAPTER 5. GREEN’S FUNCTION

Proof:
1. Assume that €2 is bounded. From Proposition 5.2, we have that

G2 (2) = hyy () - / oo (1) A1)
o0

for all x € Q.

Now, observe, by interchanging differentiations and integration, that the
integral is harmonic as a function of zo in Q and, hence, G (1) — hq, (1) s,
as a function of z(, a harmonic majorant of —h,, in €.

Therefore,

G2, (o) < G2 (a1) .

The reverse inequality is proved symmetrically.
2. If © is not bounded, consider the sets Q,, = QN B(0;m).

Assuming that Q has a Green’s function with respect to xg, we get that
Gfﬂl{) (xl) < +00.

For large enough m, xg and z; are both included in the same component of
Q,, and we apply part 1 for Q,, :

Gom (o) = GPr(z1) <GP (z1) < +o00

and, thus, the limit of Gg}l’" is not identically +oo in the component of Q con-
taining z1. Theorem 5.2 implies that €2 has a Green’s function with respect to
x1 and

G (mg) = mLiIEOOGgf"(IO) = mLiIEOOG%”(iEl) = G3 (z1) .

Observe that both sides of the equality of Theorem 5.3 are equal to 0, if xq
and x7 belong to different components of €.

Definition 5.2 We say that the open set Q@ C R™ has a Green’s function in
any one of its connected components, if it has a Green’s function with respect to
at least one of the points of that component.

5.6 Green’s function and regularity

Theorem 5.4 Let 2 C R™ be an open set having a Green’s function in every
one of its components and yg € 0. If

lim G¥(z) = 0

odim,, =)

for at least one z in every component of 2, then yg is a reqular boundary point.
If Q is bounded and yg is a regular boundary point, then the above limit holds

for every z € Q.
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Proof:
Assuming that yg is a regular boundary point of the bounded 2, we get, by
Theorem 3.7, that

lim G (x) = hg(yo) — lim Hﬁ () = 0.

Q3z—yo *o Q>z—yo 0

Now, let limgs,—y,, G(2) = 0 for at least one z in every component of Q.
If © has finitely many components O;, 1 < j < M, and z; € O; is such that
limosz—sy, G?j (x) = 0, then we form the function u which coincides in each O;
with G‘?j .

This w is, obviously, a barrier for 2 at yg.

If © has infinitely many components O;, 7 € N, then we form the positive
superharmonic function u in £ which coincides in each O; with min(G%7 %)

For arbitrary € > 0 we take jo > % and we have

- lim u(z) = 0
U;(lzzlojax*)yo

and
limsup wu(z) < €.
+oo .
Uj=jOO]9x—>y0
Hence,

limsup u(z) < e
Q3z—yo

and, since € is arbitrary, u is a barrier for ) at yq.

5.7 Extensions of Green’s Function

In this section we shall describe two possible extensions of a Green’s function
in the complement of its domain of definition 2. The second extension is for
general bounded open sets €2, while the first is for regular bounded open €2 and
it is intuitively simpler.

Proposition 5.4 Suppose that Q is a bounded regular open set and xy € €.
Then, the function Ggo, extended as identically 0 in R™\ Q, has the following
properties.

1. It is positive in the component O of Q containing xo and it is identically
0in R™\ O,

2. it is continuous and subharmonic in R™ \ {z¢} and

3. it is harmonic in O\ {xo} and its difference with hy, is harmonic in O.
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Proof:

All statements are already known, except for the second. The continuity
is a corollary of Theorem 5.4 and the subharmonicity is a consequence of the
continuity and of the simple fact that, for every y € 90, the value of the function
is 0 while the area-means over every B(y;r) are, clearly, positive.

Assume, now, that 2 is a bounded open set and zg € 2. By Proposition 5.2,

G () = hyyl(z) - / oo () A (v)
o0

for all x € Q.
Take x in the same connected component O of Q with x( and, since G%}(zo) =
G (z), we have

Go,(0) = halan) = [ hu(s) dif )
for all « in the component O of () containing xg.

If z € Q does not belong to O, the left side of the last formula is 0. Since,
by Proposition 3.3, dugo is supported in A0 and the function h, is harmonic in
O and continuous in O, the right side of the last formula is, also, 0.

Observe that this right side is, for the same reason, 0 for every = ¢ O.

Therefore,

Go(2) = hay(2) — | he@) dpz, (y)
for all xz € €.

By Theorem 2.8, the above integral is, as a function of x, superharmonic in
R"™ and harmonic in R™\ 90.
Hence, we have proved the

Proposition 5.5 Suppose that 2 is a bounded open set and xy € Q2. Then the
function

hao () — / ho(y) dug,(y) . = €R™,
onN
is an extension of Gizo with the following properties.

1. It is positive in the component O of Q containing xo and identically 0 in
R*\ O,

2. it is subharmonic in R™\ {zo} and

3. it is harmonic in O\ {xo} and its difference with hy, is harmonic in O.
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5.8 Green’s potentials

Now, let €2 be a bounded open set and du be a non-negative Borel measure with
compact support in €.
Consider the function

ha) = /QG&y)dﬂ(y), veq.

From Proposition 5.2,

U (z) =/ )ty / o ) a2 ity

- UG / / ) du(y) du(=) ,
oQ supp(du)

where the interchange of integrations is trivial to justify, since supp(du) and 92
are a positive distance apart. For the same reason, the inner integral defines a
continuous function of z in 9 and, thus, the last term is a harmonic function
of x in Q.

We conclude, by Theorem 2.8 and Theorem 2.15, that

1. Ug” is superharmonic in  and harmonic in Q \ supp(du),
2. AUgdl” = Kkpdp as distributions in 2 and
3. Ug“ > 0 everywhere in Q.

Now, only assume that the open set €2 has a Green’s function in every one
of its components.

Consider any open exhaustion {€(,)} of 2 and the restrictions dugq,,, of
the non-negative Borel measure du in €.

By Theorem 5.1 and by the previous discussion, the sequence {U 11; ;"ok
is an increasing sequence of superharmonic functions in ;1) Wthh are har-
monic in 41y \ supp(du). Therefore, it either diverges to +oo everywhere
in Q1) or it converges to a superharmonic function in 441y which is har-
monic in Q(;41) \ supp(dp). Since k is arbitrary, Theorem 5.2 and the Monotone

Convergence Theorem give the next result.

Theorem 5.5 Let Q2 C R"™ be an open set with a Green’s function in every one
of its components and du be a non-negative Borel measure in §2.

Assume that [, GS}(y) du(y) < +oo for at least one x in every connected
component of €.

Then the function
Ug“ / G (y) du(y z e,

is a non-negative superharmonic function in 2, harmonic in Q \ supp(dp).
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Also,
AUg" = Kpdu

as distributions in Q

Proof:
Since only the distribution equality remains to be proved, we take any k and

. dll‘n(m) d/lﬂ(k) 3 3 3
observe that, for all m > k, the difference UQ< o U9<k+1> is harmonic in
(ry- This is true because, by the discussion before the theorem,

dug dpa
A m wY) _ _ _
( Qmt1) U9<k+1>) = #nl(dpay,, — dpog,)) = 0

as distributions in .

d
Therefore, by the monotonicity of the sequence, the function Ug“ — Uﬂl::ﬁ;

is, also, harmonic in Q) and, thus,

HQ (1)
(k+1)

d
AUg“ = AU, = Kpdpiq,, = Kndp

as distributions in {2(). Since k is arbitrary, the proof is finished.

Definition 5.3 Let Q C R™ be an open set with a Green’s function in every
one of its components and du be a non-negative Borel measure in ).

Assume that [, GS}(y) du(y) < +oo for at least one x in every connected
component of Q.

Then the superharmonic function

Ui () = / Goy) du(y), ze9,

is called the Green’s potential of du with respect to €.

If du = f dm for some non-negative f locally integrable in 2, then the Green’s
potential is, also, denoted by Ué and it is called the Green’s potential of f
with respect to ).

Lemma 5.1 Let Q be a bounded regular open set, du be a non-negative Borel
measure in §) defining its Green’s potential with respect to ().
Then the largest harmonic minorant of Ug" in Q is identically 0 in Q.

Proof:

Without loss of generality, we may assume that €2 is connected.

Consider any z¢ € Q with Ug“(xo) < 400 and an open exhaustion {€(,,)}
of Q. Then,

Ug (x0) = G (y) dply) + / _ G2(y) duly)
Q(m) N\Q(m)
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where, by the Monotone Convergence Theorem, the last term tends to 0 as
m — +00.
Choose mg so that

[ Ghw ) <.
Q\Q(mo)

Let dpum, be the restriction of dy on Q) and dv,,, be the restriction of
dppon Q\ Q) -

We, first of all, have

Ugy’"o (xg) < €.

We, then, observe that, for each y € €1(,,,), the function Gsy2 is positive and
harmonic in € \ €(,,,), and, by Proposition 5.4, it can become continuous in
Q\Q(mo) with values 0 everywhere in 0€2. Therefore, there is some large k > my
so that Gg}(x) < e for some particular value of y € Q) and all z € Q\ Q).

From Harnack’s inequalities we get that there is a constant C' > 0 so that

fo(x) = Gg(y) < Ce

for all y € Q(m,) and all z € 2\ Q).
This implies
Ugumo () < Cdpu(Qmy)) €
for all z € Q\ Q.
Now, let u be the largest harmonic minorant of U in Q. Since the identi-
cally 0 function is a harmonic minorant of Ug“ in 2, we have

u >0
in Q. J
By the continuity of UQ“"”0 in 0y,

Q dpim Q
H (@0) = / Um0 (5) dpo (z) .
v )

Q
Also, by the superharmonicity of Ug”mo in Q2 Qy,

Hﬂ(k)

dvm
0
Uq

dvp,
(w0) < Uy ™ (20) -

Hence,

u(zg) = Hy

Q Q
- H (k) H (k)
mo (20) + o (o)

dpmg dvm

Q

IN

/ UgHmO (I) d,u?ék) (I’) + Usc_ill/mo (IO)

CdM(Q(mo)) €+e€.

IN
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Since € is arbitrary, we get u(zg) = 0 and, from the Maximum-Minimum
Principle, w is identically 0 in 2.

5.9 The Decomposition Theorem of F. Riesz

Theorem 5.6 (F. Riesz Decomposition) Let @ C R™ be any open set. Suppose
that there is a superharmonic function u in Q which is not harmonic in any
component of Q and let dy = éAu be the associated non-negative Borel measure
in Q. Suppose, also, that u has a subharmonic minorant in §2.

Then 2 has a Green’s function in each of its components, the Green’s poten-
tial of du is defined in Q and

_ dp *
u = Uy +u
everywhere in ), where u* is the largest harmonic minorant of u in 2.

Proof:

Let {Q(n)} be an open exhaustion of €2 all of whose terms are regular. In
fact, it is easy to see that the usual construction, given in section 0.1.1, produces
() which satisfy the ball-criterion at every one of their boundary points.

If dpm, is the restriction of dy in €2, then, by Theorem 2.17,

u = U™ 4w,
in Q(,,), where w,, is a harmonic function in €,,). Therefore,

_ 77dpm
u = UQ(m) + U

in Q(p,), where v, is another harmonic function in €2(,,). To see this, we observe
that, by Theorems 2.15 and 5.5, the functions U;Ll“m and Ug’(‘:‘) have the same
distributional Laplacian in €2(,,) and, hence, by Theorem 1.20, they differ by a

function harmonic in €.
If w* is the largest harmonic minorant of u in 2, we have

* dpim
— <
U VU < UQ(m)

in Q(,,) and, since the largest harmonic minorant of Uéf ;) in Q) is, by Lemma
5.1, identically 0,

U > u*
in Q(,,), whence
dptm < *
uU—u
Qmy —

in Q(m)
Taking any z¢ with u(zo) < +o0, by Theorem 5.2 and the Monotone Con-
vergence Theorem,

/ lim Ggém)(x) du(z) < ul(zg) —u*(xg) < +o00.
¢

2m—>+oo
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This, by Theorem 5.2 again, implies that 2 has a Green’s function in its
component which contains xg, and hence in every one of its components.
Also,
U < u—u*

in 2 and we get that Ug" is well defined as a superharmonic function in €.
The functions v,,, decrease towards some harmonic function v in €} with

_ dp
u = Uy +wv

in Q and, hence,

uw < w
in Q.
On the other hand, from u = Ug” + v > v, we get
ut > v
in Q and we conclude
v = u*

in €, finishing the proof.

Theorem 5.7 Let QQ C R™ be any open set with a Green’s function in each of
its components. Then the following are equivalent.

1. w is superharmonic in Q with largest harmonic minorant identically 0 in
Q.

2. w is the Green’s potential with respect to Q0 of some (unique) non-negative
Borel measure in Q.

Proof:

That 1 implies 2 is just a consequence of Theorem 5.6.

The only thing that we have to prove is that, if Ug“ is a Green’s potential,
then its largest harmonic minorant in € is the constant 0.

If w* is the largest harmonic minorant of Ug" in Q, then, by Theorem 5.6,

Uyt = U+t
in ©, where dv = - AU = dy.
Thus, v* =0 in Q.
5.10 Green’s function and harmonic measure

Lemma 5.2 Suppose that 0 < d < 1 and ¢ is a function defined in S(0;1),
integrable with respect to do with the properties

1. $=014n S(0;1)\ B(ey;d),
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2. o)l < |y — ex|? for ally in S(0;1) N B(e; d),
where ey = (1,0,...,0).
Then,
lgrad Py(- :0,1)(tey)] < C(n)d
for all t with 1 —d < t < 1, where C(n) depends only on the dimension.

Proof:
We have that

Pows0.1) = Lol ) doty) -

wWn—1 Js1) [y — ™
An easy calculation gives

01—z 2z,
Oz ly — ly — "

1— |z

ly — x| t2

+n(y; — x;)

Therefore, if x =te; and 2 < j < n,

0 1—|-|2(t ) 1—¢2
9 o) — 1Tt
YT Iy e

Oz |y — |
and

OP,(- ;0,1) | n / 12 )
ol s )y T S P d
Oz, (te1) wn—1 Js(0;1)nB(ers) |yj||y—t€1|n+2 by~ el doty)

2nd(1 —t —e)?
n ( )/ |y €1| do(y)
Wn—1 Vi

ly — teq |2
2nd(1 —t —e1]?
+ ( )/ |y 1|+2 dO’(y),
Wn—1 Va |y - tel‘n

IN

IN

where
Vi ={yesS0;1):|ly—e|<1—t}
and
Vo = {yeS0;1):1—-t<|y—e1]| <d}.

The first integral is

¢ 2 C(n)
< — - <
= (1=t /V1 ly —e|” do(y) < 1—¢°

while, the second integral is

~

1
cof L dow < €W
v, [y —ex|”

1—t°
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We, thus, get
OPy(-;0,1)
— (¢ < C(n)d
e CERE)
for2<j<n.
Ifj=1,
91— 2t 1—t?
— =1L (tey) = ————— Fn(y — ) ————— .
T P P P E R v

The absolute value of the second term is < ndm for all y € S(0;1)N

B(ey;d) and the previous argument applies, word for word, to show that its
integral is < C'(n)d.
The absolute value of the first term is < m and, hence,

OP,(- ;0,1 2 — e
M(tel)’ < n / ly—el® do(y) + C(n)d
Oxq Wn-1 Js(0;1)nB(er;a) 1Y — tea|™

2 _ 2

wn—1 Jv, ly —tes|”

+ Qn/ ly— el do(y) + C(n)d

Wn—1 Vo ‘y_te]-‘n

IA

Yy— €1|2 do(y)

1
+ C(n) /V2 = do(y) + C(n)d
< C(n)d.

8P¢( ;0, 1)(

The above estimates of ‘ tel)‘ for 1 < j < n conclude the proof.

Lemma 5.3 Suppose that {¢m} is a sequence of functions integrable in S(0;1)
with respect to do and that ¢, — ¢ in L*(S(0;1),do).
If0 < d <1 and ¢, = 0 identically in S(0;1) N B(e1;d) for all m, then

grad Py, (-;0,1) — gradPy(- ;0,1

uniformly in B(e1; 2).
All these gradients at points of S(0;1) N B(e1;d) are normal to S(0;1).

Proof:
Since all ¢,,, are 0 in S(0;1) N B(ey;d), we can easily show that, firstly, all
Py, (- ;0,1) are harmonic in the open set R™\ (S(0;1)\ B(e1; d)) and, secondly,

P¢m(~ ;0,1) — P¢( ;0,1)

uniformly on compact subsets of R™ \ (S(0;1) \ B(e1;d)).
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This implies the first statement and the second is due to the fact that S(0;1)N
B(ey;d) is, by Theorem 1.9, a common level surface of all P, (-;0,1) and of
Py(-30,1).

Theorem 5.8 Suppose that u is harmonic in the open set , X C 99 is open
relative to 0Q and Q is C? at every point of 3.

Let

lim wu(z) = 0
QSz—y

for ally € X.

Then, gradu can be continuously extended in QU Y and at each point of &
it is normal to ON).

If, also, there is an open V 2O X so that u > 0 in V N Q, then gradu is
non-zero at every point of ¥ and has the direction towards €.

Proof:

Take an arbitrary o € ¥ and let § > 0 be small enough so that B(zg;0) N
0Q C ¥ and, also, so that there is some defining function ¢ € C?(B(x¢;4)) for
). Because of continuity, we may assume, taking a smaller § if necessary, that
for some constants My, mg > 0, |grad gb(y)| > my for all y € B(xg;9) NON and
MaXye B(xo;0),|a|=2 |Da¢(x)| < My .

Regarding the last statement of the theorem, we may, also, assume that J is
small enough so that u > 0 in B(xg;d) N Q.

Considering only y in B(z; %6) and looking at the discussion at the end of

section 0.1.2, we see that there is a fixed radius r¢ = min(zc’"ioMO, %5) so that,

for every y € B(xo; %6), there are two open balls b4 and b_ with common radius
ro and mutually tangent at the point y so that

It is obvious that the open ball B_ , which has the same center as b_ and
radius Ry = 3rg, contains the ball by and is contained in B(zo;J).

Now, consider the function F' continuous in the closed ring B_\b_ , harmonic
in its interior B_ \ b_ , identically 1 in B_ and identically 0 in 9b_ .

If M is an upper bound for uw in B(xg;d) N, applying the Maximum-
Minimum Principle to the functions M F + u in B_ N2, we find

lu(z)] < MF(z)
for all z € B_ N ). By explicitly writing the formula of F', we see that
F(z) < Kolz =yl

for all z € 0b,., where K is a constant depending only on the fixed 7.
Therefore,
u(z)] < MKolz —y/?
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for all z € 0b, .
Consider, now, an arbitrary sequence {x,,} in B(zg;d) N Q with z,, — y.
Let y,,, be a point in 02 of minimum distance from z,,.
Then,

implying that y,, — y. We may, thus, assume that all y,, are contained in
B(xo; %6) and, hence, we may construct the balls b, ,,, b_ ,, and B_ ,, corre-
sponding to y.,, whose radii g and Ry do not depend on m.

It is easy to see that these balls converge towards the balls by, b_ and B_
respectively.

Since |Yym — Tm| < |y —xm| — 0, it is, also, easy to see that, for large enough
m, T, belongs to the radius of b, ,, which goes through y,.

Take 0 < d < 1 and apply Lemma 5.2 to the ball b, ,,, after the appropriate
dilation and translation.

If Yam = Oby m N B(ym;rod) and vy, wy, are the restrictions of w on vgm
and by, \ Ya,m, respectively, then

u(zm) = Pu(mm§b+,m) = Pvm(xm;b+,m) +Pwm (xm;b—l-,m)

and

gradu(z,,) = gradP,, (- ;b+,m§(xm) + grad P, (- ;b.hmj(xm) .

From Lemma 5.2, we get that, if k,m are so large that |xx — yx| < rod and
[T — Ym| < rod, then

|gradi(zi) — gradi(zm,)| < 2CMKgrod
‘ngadpwk(' §b+,k‘j(xk) —grad P, (- §b+,m>(xm)| .

By Lemma 5.3, the convergence of the balls and the uniform continuity of
u, we have that there is a vector o3, normal to 9§ at y, so that

grad P, (- ;b+7m§(mm) - .
Therefore,

limsup |grad u(zx) — gradi(zy,)| < 2CMKorod

k,m——+oco

and, since d is arbitrary, {gradu(z,,)} converges to some vector ¥'.
Thus,

grad P, (- ;blvmj(xm) — W| < CMKyrod + |gradu(xm) — ?| .

This implies that
|’U_>d— 7| S CMK()’I“()d
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and, finally, that @ is normal to 992 at v.
It is easy to see (combining two sequences into a single sequence) that o
does not depend upon the sequence {z,,} and we conclude that, defining

gradu(y) = U,

grad i becomes continuous in Q U {y}.

The continuous dependence of ¥ upon y € B(xo; %5) NN is clear and, thus,
gradw is continuously extended in Q U (B(xo; %5) N 89) and, since g € X is
arbitrary, gradu is continuously extended in U X.

Now, suppose that u > 0 in B(xg;0) N Q.

As before, consider y € B(xo; %5) N 0f, the corresponding ball b4 and an-
other open ball o', with the same center as by and radius equal to %ro. It is
obvious that the open ring by \ b, is contained in B(zo;d) N Q and is tangent
to 0 at y.

If 77 (y) is the unit vector which is normal to 9§ at y and in the direction
towards the exterior of €2, then the line [ containing this vector contains, also,
the center of b .

Consider the function G which is continuous in b4 \ ¥, , harmonic in b, \ ¥/, ,
identically 1 in 0V, and identically 0 in 0b, .

If m > 0 is a lower bound of w in 9b/, , then, by the Maximum-Minimum
Principle,

u > mG

everywhere in by \ ¥, and, since G(y) = u(y) =0,

0 o m m COZG@ L ()~ @
pz—y  |x —y 1e—y |z —y|

= Jlim gradi(a') - 7(y) = gradi(y)- 7 ()

where o/ = 2/(x) is a point of the segment [, y].
Therefore,
gradu(y) # 0

and gradu(y) is in the direction opposite to 77 (y) .

We present two proofs of the next result. The first is more straightforward
and its main ingredient is Green’s Formula. (There is only an unpleasant tech-
nical detail in this proof, which is left to the interested reader to deal with.)
The idea in the second proof is that a certain kernel associated to an open set
Q with C?-boundary behaves like the Poisson kernel associated to a ball. (All
details in this proof are, actually, presented.)

Theorem 5.9 Let Q be a connected bounded open set with C%-boundary. Sup-
pose, also, that xoy € Q, 7 is the continuous unit vector field which is normal to
0 and in the direction towards the exterior of Q and dS is the surface measure
in O0f).
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Then,
1 0GY
du), = — —*dS .
/"LI(] /{n a,r]

Moreover, dugo and dS are mutually absolutely continuous.

First proof:
By Proposition 3.4, 2 is regular and, by Proposition 5.4, Gggo can be consid-
_ oy
ered continuous in 2\ {z¢} and identically 0 in 9. By Theorem 5.8, grad Ggo
can be continuously extended in Q \ {z¢} .
Since G > 0 in €, by the same theorem,

oG, -

o (y) = gradG5 (y)-T(y) < 0

for every y € 0f2.
Consider the open set

Q° = {z€Q:G () >¢}.

This has the following properties.
L O ={ze€Q:G(z)>e} CQ.

In fact, if z,,, — z and Ggo (zm) > € for all m, then, by the continuity in
Q\ {zo}, we get G (z) > e.

If, conversely, Ggo (z) = ¢, then in every neighborhood of = there are points
where Ggo becomes larger than ¢ and points where it becomes smaller than €
and, hence, x is in the boundary of Q¢. Otherwise, by the Maximum-Minimum
Principle, Gg}o would be constant in a neighborhood of z, and, by Theorem 1.10,
it would be constant in  \ {z¢}, something impossible.

2. 00 ={x € Q: G () =e}.

This was proved in the previous paragraph.
3. QF is connected and contains xg.

That Q¢ contains z¢ is clear. If O is a component of Q¢ not containing
g, then, by 1 and 2, G;’O = ¢ identically in dO. By the Maximum-Minimum
Principle, Gg}o is identically € in O and, hence, by Theorem 1.10, in Q \ {zo},
which is impossible.

4. If € is small enough, Q¢ has C"*°-boundary.

By the continuity of | grad G, 0} and its non-vanishing in 02, there is some
-

0 > 0 so that grad Ggo (z) # 0 for all 2 € Q with d(z,09) < 6. Now, G, has a
positive minimum value in the compact set { € Q : d(x,0Q) > §}. Hence, if €
is small enough, G (z) = € implies d(z,d9) < ¢ and, thus, grad Ggo (x) # 0.

Therefore, the function Ggo is a C'*° defining function for Q¢ in a neighbor-
hood of every one of its boundary points.

Now, fix a small € so that property 4 holds.
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Considering an arbitrary w harmonic in €2, since Ggo — hg, is harmonic in
Q, we get, by Green’s formula,

1 OGS 1 ou
— u 20 (y) dS(y) — — —(y)GSL (y) dS
Y (v) n (y) dS(y) o oo 877(2/) 20 (y) dS(y)
1 oh 1 ou
= = u 20 (1) dS(y) — — Z—(y)hay (y) dS(y) .
o (y) n (y) dS(y) pall 877(1/) (y) dS(y)

Here, 77 is the continuous unit vector field normal to 99 and in the direction
towards the exterior of Q°.
Therefore, first by Theorem 1.7 and then by Theorem 1.6,

1 oGS 1 Ou
uwo) = — » u(y) 377"(3/) dS(y) - — » afn(y)G?O(y) dS(y)
1 oGS 1 ou
= Lo u(y) 377"(3/) dS(y)—EFT 595577@) dS(y)
1 OGS
= — U Lo dsS(y) .
o () n (y) dS(y)

Assume, now, that u is continuous in Q. By the continuity of u, of Ggo and

Q —
of a§;° in Q\ {z0}, we find, when ¢ — 0, that

1 oG
u(@o) = — mﬂ(y) o

(y) dS(y) -

The proof of this is quite technical and the main idea is in the discussion in
paragraph 4 of section 0.1.2. There is no actual need to see the details.

If f is any function continuous in 02, then, by the regularity of €2, the
function u = H? is harmonic in 2 and, extended as f in 0f), is continuous in

Q.

Hence,
1 dG
HP () = — 0 (y) d
7 (o) p. mf(y) n (y) dS(y) ,
implying that 5
oG
af, = - T2 ds
Kn ON

in 09.
Q

. G, . . .
Since 87']“’ is continuous and negative in 9, there are two constants Cy, Cy
so that

1 0GY
0<C < — =

<
~ Knp O < G

everywhere in 0f2.
We conclude that d,ugo and dS are mutually absolutely continuous.
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Second proof:
oGS

The idea of this second proof is to show that the kernel l% o behaves like
the Poisson kernel. Namely, it has the following four properties.
Q
1. ’% ag;m > 0 everywhere in 09).

Q
2. 88657”” (y) is, for every y € 99, a harmonic function of x in .

Q
3. L [ho B (y) dS(y) = 1.
4. If V is any neighborhood of yo € 99, then limgsg_y, ,% agi? (y) = 0,
uniformly for y € 90\ V.

We have already proved the first property and the third is an immediate
application of Theorem 1.7 with u = 1.

The second property can be proved as follows. Fix y € 912, an open exhaus-
tion {Q} of 2, a compact subset K of Q) and a sequence {x,,} in Q\ Q,
converging to y over the line containing 77 (y).

For a fixed 2’ € K,

G (@) G%(wm) e W)
= - ==
[Zm =yl zm =yl on
. GZ @) . .
as m — +oo. In particular, the sequence { Fa— } is bounded and, since

every - ”:"'y [ s a positive harmonic function in €2y, Harnack’s Inequalities
imply that this sequence of harmonic functions is uniformly bounded in K.
Since K is arbitrary, from Theorem 1.18, we get that there is some subsequence

converging to some function harmonic in Q. But, for every x € Q,

Gg (x) GGS
——m - [ —
|Zm — | on

(y)

Q
implying that %(y) is harmonic in Q) and, hence, in Q.

For the fourth property and for V. = B(yp; R), consider the compact set
K =QnNS(yo; $R) and the open set U = {z : d(z; K) < 1R} . We, also, define
the set ' = QU U, which is, also, a connected open set.

The parts of Q and Q' in B(yo; 1 R) coincide and yo, being a regular boundary
point of , is, also, a regular boundary point of €’. Therefore, for every fixed
7 ekK,

lim GY(z) = lim G%(z) = 0

Q35z—yo Q3zx—yo

and, applying Harnack’s Inequalities to the compact subset K of €/,

lim GY(z) = 0,

Q3z—yo
uniformly for z € K. Since 2 C ', Theorem 5.1 implies that

lim G¥%(z) = 0,
Q35z—yo
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uniformly for z € K. Finally, by the Maximum-Minimum Principle,

lim G%(z) = 0,

Q3x—yo

uniformly for z € Q\ B(yo; 1 R) .

Now, for an arbitrary y € 9Q \ V there is some open ball b_ contained in
R™\ Q and having y in its boundary. It was proved in the first part of the
proof of Theorem 5.8 that, if y is contained in a small enough neighborhood
of any boundary point, then the radius of b_ can be considered bounded from
below by a positive constant. Covering the compact set 9Q\ V' by finitely many
such neighborhoods, we conclude that there is some fixed r so that the ball b_,
corresponding to the arbitrary y € 92\ V, has radius r. Since b_ can be taken
smaller, if necessary, we may assume that r < %R.

Together with b_, we, also, consider the open ball B_ which has the same
center as b_ and radius 2r and it is easy to see that QN B_ C Q\ B(yo; 3 R)
for all y € 90\ V.

Let F' be the function which is continuous in the closed ring B_ \ b_ , har-
monic in the open ring B_ \ b_ , identically 1 in 9B_ and identically 0 in 9b_ .
It is, then, easy to calculate the number

oF
877(?!) )
where 77 (y) is the unit vector normal to db_ at y and, at the same time, normal
to 0N at y and directed towards the exterior of 2. This number is negative and
depends only on r and, hence, not on y € 90\ V.

Take, now, an arbitrary € and let « € € be close enough to yg so that

Gz) < €

for every z € Q\ B(yo; %R) From the Maximum-Minimum Principle, we find
that
GP(z) < €eF(2)

for all z € QN B_ . Since G%}(y) = F(y) =0,

Q
_ 968 OF

> i
an (y) > e an

(y)

for all y € 9Q \ V. This finishes the proof of property 4.
Now, take an arbitrary f € C(9f2) and consider the function

@ - L [ %
e _"Ln s On

(y)f(y) dS(y) , zeN.

Take an arbitrary € > 0 and a small neighborhood V of yy € 9 so that
[f(y) — f(yo)| < efor all y € QN V. From properties 1, 3 and 4 of the kernel
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»%,,, ag}z , we get
. . 1 oGS
limsup [u(z) ~ f(yo)l < lmsup — [ S22 (0)] 1) ~ flu)] dS(y)
Q3z—yo Q3z—yo Fn Joq ON
, 1 OGS
< timsup— [ FEE)If() - Flu)] dS()
Q3z—=yo fn Joonv O]
. 1 OGS
wlimsup = [ TR )|7(0) - )| dS(w)
Q3z—yo fn Joo\v 07
1 OGS
< e — =(y) dS(y
kn Joonv On ) )
< €.
This implies that
lim w(z) = f(yo)
Q3z—yo

for all yg € 09). Now, this, together with property 2 of the kernel, says that
u is the solution of the Problem of Dirichlet in € with boundary function f.
Therefore, for every f € C(09),

1 [ 9GY
Kn Joo On

HY(x) = (1)f(y) dS(y)

for all = € ), completing the second proof.

5.11 oo as interior point. Mainly, n = 2

We shall, now, consider an open set 2 which contains oo.
By Theorems 4.4 and 4.6, potential theory in R™ is a triviality. We, there-
fore, assume that €2 is not identical to R™ and, hence,

X¢Q,

for some X € R™.
Now, if zg € Q NR"™, we consider the function

hzy x(x) = hgo(z) —hx(z) = =20 P
[z—zo[?—2 ~ Jz—X|n—2 ITn-=o.

This is harmonic in R® \ {zg, X} and, hence, in Q\ {zo} .
Similarly, if £y = oo, we consider the function

logle — X|, ifn=2
1

hoox () = hoolr — X) = { ifn>3,

[s—X|"~2 >

which is harmonic in R™ \ {co, X} and, hence, in Q\ {oo} .
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In any case, hg, x is superharmonic in Q.

We consider the family Z/{g) x of all superharmonic majorants of the sub-
harmonic function —h,, x in © and, if this family is non-empty, the smallest
harmonic majorant Ufo X -

We, now, define the function

Q Q
Gmo = hm07X+U£0,X .

If we take another point X’ ¢ €, then the function hy, x —hg,, x+ is harmonic
in €. Therefore, the function u is a superharmonic majorant of —hg, x in Q
if and only if the function w + hgy x — hy,,x’ is a superharmonic majorant of
—hgy,x in Q. This implies that

Ui‘%LX/ = Uag),X + hao,x = hao,x
in Q and, hence, the function Ggo, defined above, does not depend upon the
choice of X ¢ Q.

The function Ggo, if it exists, is called the Green’s function of 2 with respect
to xg.

Observe that, if n > 3, then ho x is harmonic in £ and, hence, G =0
identically in €.

In the following we shall avoid certain complications arising in case n > 3
(and described, to some extent, in the previous chapter) and we shall concen-
trate on the case n = 2. In this case all results in this chapter extend in a
straightforward manner. We, briefly, describe the situation.

In all that follows, € is an open subset of R2 with oo € Q and X ¢ Q.

1. The function Gg}o, if it exists, is superharmonic in Q and harmonic in §\
{zo}, it is positive in the component of Q containing xog and it is identically 0
in every other component of €.

Also, the function Gg}o — hyo,x 1s harmonic in €.
2. If some disc in R? is disjoint from €, then Q has a Green’s function with
respect to every xg € {2 and

G, () = hagx (@) + HY, (2) = Do x (@) — o x (W) dii (y)

forallz e Q.
3. The open set R2\ {X} has no Green’s function with respect to any one of
its points.
4. If Q =R?\ B(X;R), then
Q
Gwo = hwo - hz; +logR ,
if xg € Q\ {oo} and xf is the symmetric of xo with respect to S(X; R), and

GL = hoox —logR .
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5. If xg € ' C Q and Q has a Green’s function with respect to xq, then Q' has,
also, a Green’s function with respect to xg and

GY, < GY,
in .
6. If U, T Q, x9 € Q1 and all Q,, have a Green’s function with respect to xg,
then, either G;’Om T +o00 in the component of £ containing xo and € has no
Green’s function with respect to xg, or £ has a Green’s function with respect to
zo and

Qm Q

Goyt 1 Ga,
in Q.
7. If xg and x1 are in the same component of 2, then Q) has a Green’s function
with respect to xq if and only it has a Green’s function with respect to x1 and,

in this case,
Q Q
Gaol(z1) = G (7o)

We say that Q has a Green’s function in one of its components, if it has a
Green’s function with respect to at least one xq in this component.
8. Let yo € 0Q. If
lim G%(z) = 0

Q3z—yo
for at least one x in every component of (1, then yo is a reqular boundary point
of Q.

If there is some disc disjoint from Q and yg is a regular boundary point, then
. Q

0t o) = 0
for all x € Q.
9. If Q is reqular and disjoint from some disc, xg € ) and O is the component
of Q) containing xg, then Gg}o extended as identically 0 in W\Q is subharmonic
in R2\ {zo} and identically 0 in R2\ O.
10. If there is some disc disjoint from 2, ¢ € Q0 and O is the component of )
containing xg, then the function

oo x (&) — /8 hex) dif ) @€ RE

is an extension of G, in R2 which is subharmonic in R2\ {zo} and identically
0 in R2\ O.

11. If the connected Q is disjoint from some disc and has C?-boundary, zo € €,
77 is the continuous unit vector field which is normal to O directed towards the
exterior of Q0 and dS is the surface measure in 0N, then,

1 0GY
dpl = — —%0 45 .
0 Kn On

Moreover, dugo and dS are mutually absolutely continuous.
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Chapter 6

Potentials

6.1 Definitions

We shall consider the following two types of kernels.

Definition 6.1 Kernels of first type.

Let L
_ Jlog=, ifn=2
he(r) = {1 ifn>3.

Take any non-constant increasing convex function H defined in (—oo, +00),
in case n =2, or in (0,400), in case n > 3, and define

K.(r) = H(h(r)) , 0<r<-+o00.

Hence, K, is continuous and decreasing in (0,400) with lim,_,o4 K.(r) = +00
and we, next, define the kernel

K(zy) = K|z —y) = H(h(Jz —yl)) = H(h(z —y))

for all x,y € R™.
We postulate the following rules.

1. fol K. (r)r"= dr < 0.
2. im, oo Ki(1) <0, in casen =2, orlim,_, 4o, K. (r) =0, in case n > 3.

3. If K, >0 in (0,+00), then limsup,_, | KI}ET(;)D < +00.

Kernels of second type.
If Q) is an open subset of R™ with a Green’s function in every one of its
connected components, we consider the kernel

GMayy) = GRy) = Gy(x)

for all x,y € Q.

187
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Comments 1. Observe that, in case n > 3, all our kernels are non-negative.
Also, observe that all kernels are symmetric: K(z,y) = K(y, z).
2. The third rule is not needed if in the theory, which we shall develop, we
restrict to the consideration of measures with compact support.

Examples
1. The Riesz kernel of order « is defined by

1

Ko(z,y) = Kax(lz —yl) = =g

where 0 < a < n.

IfOo<a<2 incasen=2,0or 0 < a <2, in case n > 3, then K, is of first
type.
2. The classical kernels, i.e. the Newtonian, in case n > 3, and the logarith-
mic, in case n = 2, are of first type.

Definition 6.2 K -potential for a kernel of second type.

Let Q@ C R™ have a Green’s function in all its components and du be a non-
negative Borel measure in Q. The corresponding kernel is K = G and we have
already defined the Green’s potential

Ul(x) = U (x) = /Q Gox,y) dply) .  zeQ,

only in case this is finite for at least one x in each component of ).
If du is a locally finite complex Borel measure in ), we define U}j(“ by the

same formula (and linearity) only when U]‘?M(I) is finite for at least one x in
each component of 2.
Under these assumptions, we say that the K-potential is well-defined.

We know, from last chapter, that, if K is of second type, the K-potential of
a non-negative Borel measure in the associated € is (if it is well-defined) super-
harmonic in 2 and harmonic outside the support of the measure. Therefore, the
K-potential of a locally finite Borel measure in € is (if it is well-defined) finite
almost everywhere in 2 and is a linear combination of (four) superharmonic
functions.

Definition 6.3 K-potential for a kernel of first type.
If du is a non-negative Borel measure in R™ and K is a non-negative kernel of
first type, we define the K -potential of dy by

Ug'(x) = | K@y duly), ceR",
Rn
only when this is finite for at least one x € R™.
If du is a locally finite complex Borel measure in R™ (and K is non-negative),
we define Uf{“ by the same formula (and linearity), only when U}?“l(at) 18 finite
for at least one x € R™.
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If K is of variable sign and dy is a locally finite complex (non-negative, in
particular) Borel measure in R™, we define U}i(“ as before, but only if du is
compactly supported.

Under these assumptions, we say that the K-potential is well-defined.

It is obvious that, if K is a non-negative kernel of first type and du is a non-
negative Borel measure, then the K-potential is defined everywhere as either
a non-negative number or as +oo. Proposition 6.1, which will be proved in a
moment, describes the situation more clearly. If du is a locally finite complex
Borel measure with real values (and K is non-negative), then its K-potential is

n 4
defined at those points where not both U}?‘ and U}é” take the value +oo. A
similar comment can be made for a general locally finite complex Borel measure.

6.2 Potentials of non-negative Borel measures

Lemma 6.1 If K is a kernel of first type, then, for every y € R™, K(- ,y) is
continuous and subharmonic in R™ \ {y} .

Proof:
It is clear, since h is harmonic in R™\ {0} and H is convex in an open interval
containing the values of h.

Proposition 6.1 1. If du is a non-negative Borel measure in R™, K is of first
type and Uf(“ is well-defined, then this K -potential is continuous and subhar-
monic in R™ \ supp(du).

If, in particular K = h, then the h-potential is superharmonic in R™ and
harmonic in R™ \ supp(dp).
2. If du is a mon-negative Borel measure in @ C R™, which has a Green’s
function in all its components, and Ug” is well-defined, then this K-potential is
superharmonic in 0 and harmonic in Q \ supp(du).

Proof:

The case of second type is just Theorem 5.5 and the case K = h is only
Theorem 2.8. Hence, assume that K is of the first type and, to begin with, that
K is non-negative.

By definition, U#(z0) < 400 for some zo € R™.

Therefore, for an arbitrary € > 0,

/ K(zo,y) du(y) < e,
{y:ly|>R}

for all large R. Take any @ € R™ \ supp(du) and, by the third rule on K, find
a constant C' > 0 and R so large that, besides the previous inequality,

K(ﬂf,y) < CK(xﬂvy)

for all y with |y| > R, is, also, true.
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This implies,
/ K(z,y) duly) < Ce.
{y:ly|>R}

Since K (z,- ) is bounded on supp(dpu),

Ul (z) < / K(z,y) du(y) + Ce < +o0 .
{v:lyl<Rr}
If, now, x,, — x, then K(z,,- ) = K(z,- ) uniformly in B(0; R) N supp(du)
and, thus,
limsup|Uf<“(xm) — U;é“(z)| < 2Ce,

m——+o0

proving the continuity of Uf(“ at .

From Lemma 6.1, for every B(x;r) C R™\ supp(du),
pan (@) = / Mic(. (@) dp(y) > / K(z,y) du(y) = Uil(x)
K supp(du) supp(dp)

and U is subharmonic in R™ \ supp(dp).

If K is of variable sign, then, by definition, du is supported in a compact
set and we may choose the R above so that B(0; R) contains the support of dp.
The proof of continuity of the K-potential in R?\ supp(dpu) is, now, easier, since
there is no “tail”-term in the integral.

Comment: Suppose that K is a non-negative kernel of first type and du is a
non-negative Borel measure in R™. If Uﬁf” (x0) < 400 for some z (the condition
for the K-potential to be well-defined), then the finiteness of the K-potential
at any other x depends only on the behaviour of dy in a neighborhood of .
In fact, for all large R, we have that f{y:‘be} K(zo,y) du(y) < 1. Asin
the last proof, there is some C' > 0 and some large R, so that, besides the last
inequality, we also have K (z,y) < CK(xzg,y) for all y with |y| > R. This implies
that f{y:|y|>R} K(z,y) du(y) < C and, thus, the finiteness of the K-potential

depends on the restriction of dy in B(0; R).

The same comment is valid for the Green’s potentials.

In fact, suppose that 2 C R™ has a Green’s function in all its components
and take an €(,,) from some open exhaustion of {2 so that it contains z and xg
(assumed to be in the same component of ) and fﬂ\m G (wo,y) du(y) < 1.

By Harnack’s Inequalities, there exists a C' > 0 so that G(z,y) < CG%(xg,v)
for all y € Q\ Q,,), implying fﬂ\ﬁ Gz, y) du(y) < C.

Proposition 6.2 (Lower-semicontinuity in the space-variable)

1. If dp is a non-negative Borel measure in R™, K s of first type and Uf(“ 18
well-defined, then this K -potential is lower-semicontinuous in R™.

2. If du is a non-negative Borel measure in @ C R™, which has a Green’s
function in all its components, and Ug” is well-defined, then this K-potential is
lower-semicontinuous in ).
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Proof:
This is a simple application of Fatou’s Lemma.

Proposition 6.3 (Lower-semicontinuity in measure)

1. Let K be of first type, {dur} be a sequence of non-negative Borel measures
with iminfy_, 4 o Uld(’““ (x) < +oo for at least one x. If this sequence converges
weakly on compact sets to some non-negative Borel measure du, then du has a
well-defined K -potential and

liminf U (z) > U'(2)

for every x € R™.

If the kernel is of variable sign, we, also, assume that all duy are supported
m a common compact subset of R™.
2. Let Q@ C R™ have a Green's function in all its components and {dui} be a
sequence of non-negative Borel measures in  with liminfy_, ;o Ug”’“ (z) < 400
for at least one = in each component of Q). If the sequence converges weakly on
compact subsets of () to some non-negative Borel measure du in ), then du has
a well-defined Green’s potential and

S dpg > e
liminf U™ () > U(a)

for every x € Q.

Proof:
1. Assume that K is of first type and non-negative and consider the truncated
kernel
KN(xa y) = mln(K<xa y)) N)
for all x,y € R™.
For every xz, Ky (z, -) is continuous in R™ and, taking an arbitrary R > 0,

Kn(z,y) du(y) -

lim inf U}i{“’“ () > liminf/
k— o0 k— 400 B(0;R)

Kn(z,y) duk(y) = /

B(0;R)

Now, letting R — +o00 and then N — +00, we conclude the proof in this case.
If K is of variable sign, then we repeat the same proof, replacing the arbitrary
ball with a single compact set F C R? so that all dyy, are supported in F.
2. We consider, again, the truncated kernels G and any open exhaustion
{Q(m)} of €.
Then, as before,

%minng”’“(a:) > liminf/ G () dun(y) = / G (z,y) du(y)

and the proof is finished, by letting m — +o00 and N — +o0.
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6.3 The maximum principle for potentials

Lemma 6.2 Let () be a regular bounded open set and du be a non-negative Borel
measure supported in a compact subset of (). Then, limosz_y Ugdl”(x) =0, for
all y € 09).

Proof:
For fixed z € supp(du) and y € 98, we have that limgs, ., G (z)
It is easy to see, by Harnack’s Inequalities, that limgs,—,, G¢(z) =
formly for z € supp(du) and the proof is, now, clear.

0.
0

uni-

Theorem 6.1 (The Mazimum Principle)

1. Let K be of first type and du be a mon-negative Borel measure in R™. If
a>0 and Uld(”(x) < « for all x € supp(dp), then, U;l(” < a everywhere in R™.
2. Let Q C R™ have a Green’s function in all its components and dp be a non-
negative Borel measure in Q. If a > 0 and Ug“(x) < « for all © € supp(dp),

then, Ug“ < a everywhere in Q.

Proof:
1. Let K be of first type and suppose that du is compactly supported. We shall
consider, for any N > 0, the truncated kernel

N [ K(z,y), fK(z,y) <N
ey) = {07 if K(2,y) > N

and the function

U (z) = | K@y ), weR

Then, KV 1+ K and,
Ui () 1 Ul (x)

for all x.
Applying Egoroff’s Theorem, we find that, for every e > 0, there is a closed
set F' C supp(du) with du(F) > du(R™) — € and

U 1 UM
uniformly in F.

Consider, also, dup, the restriction of dy in F.
Then, for every =,

Ut (o) — UE (2) = / K(z,y) dur(y)
{y:K(z,y)>N}

< K(a,) duly) = U () — U (2)
{y:K(z,y) >N}
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and, thus,
U 1 UR”
uniformly in F.
Therefore, for every § > 0, if N is large enough, we have

/ K(z,y) dup(y) <9
{y:K(z,y)>N}

for all x € F.
Fix, now, x € F and take any {z,,} converging to . Then,

limsup U#* (x,,) < limsup

/ K(2m,y) dup(y)
m—s+00 m—+00 J{y: K (xpm,,y)>N}

+ lim sup KN (2, y) dur(y)

m—+o0 JRRn

K(2m,y) dur(y)

= limsup/
m—=+00 J{y:K(wm,y)>N}

. KN (z,y) dur(y) -

It is, geometrically, clear that there is some number M, depending only on
the dimension n, with the property that, for every z, we can find closed convex
cones I'f, ..., '}, with the same vertex z and each having an opening of & from
its axis of symmetry so that

UM T = R™.
Now, if y € I'; N F' and &7 is a closest point of I'; N F' from z, then

lz—yl > & -yl
Applying this to every z = x,,,

M

K(zm,y)dur(y) < K(2m, y)dur(y)

/{y:K(mm,y)>N} k=1 /{y:K(mm,7y)>N}ﬁFZf’"

M

< / K€ y)dur(y)
i1’ {v:K(zm,y)>N}NLL™
M

< / K (&, y)dur(y)
o K (e ) >N

< MS§.

Therefore, we have that

lim sup U (@) < Mo + /{ ooy K@) i)
y: T,Y)>

m——+oo



194 CHAPTER 6. POTENTIALS

Now, let N — +o00 and, then, § — 0 and get

limsup USF (z,,) < U (z) < U (z) —me < a—me,
m——+oo

where m = min (0, min, e supp(ap) K (2, y))
Combining the last result with Proposition 6.2, we get that Uf(“ T is contin-

uous at every x € F' and, by Proposition 6.1, it is continuous in R"™.
From the second rule on our kernels, we, also, have that

limsup Ug#F (z) < 0.

Tr—00

By the subharmonicity of Uf(“ in R™\ F and the Maximum Principle, we
get
Uf(“ o< a—me

everywhere in R"™.
Now, let ¢ supp(dp) and let p > 0 be the distance of x from supp(dpy).
Then,

du T = xT T
U (z) /F K(z,y) du(y) + /Supp(d#)wm ) dy(y)
< a—-me+ K.(p)e

and, since € is arbitrary,
Ul (z) < «

for all x.

If du is not compactly supported, in which case K is, necessarily, non-

negative, we consider the restrictions dy.,, in B(0;m) and we have Uf(“m () <
U;i(“ (z) < a for all z € supp(dp) and, hence, for all x € supp(dpy,). From what
we proved up to now, Uf(“m () < « everywhere in R™ and letting m — +o0,
we finish the proof in this case.
2. Let Q have a Green’s function in all its components and dp be a non-
negative Borel measure with compact support contained in 2. From the first
part of the proof, we know that there is a compact subset F' of supp(du) with
du(F) > du(R™) — e so that the h-potential U;f“F is continuous in R™. We
know, from Theorems 2.15 and 5.5, that US“F and UZ“F have the same distri-
butional derivative in €2 and, hence, they differ by a function harmonic in Q.
This implies that Ug“ ¥ is continuous in €.

Assume, for the moment, that € is a regular bounded set. From Lemma 6.2,

: dur _
Q%lggyUQ (x) =0

for all y € 9. Since, also,

Ii dpp — grdpr < [yan <
lexni)yUQ (2) U (y) < Ug(y) < «a
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for all y € F', we get, by the Maximum Principle, that
U (z) < a

for all z € Q\ F and, hence, for all z € Q.
For an arbitrary x € Q \ supp(dp), denote M = Sup,cupp(ap) GHz,y) <
~+00. Then,
U (z) < U () 4+ Me < a+ Me

and, thus,
U () < «

for all z € Q\ F and, thus, for all z € Q.
To drop the assumption of regularity, take an open exhaustion {2} of Q

consisting of regular sets and large m so that supp(du) C Q). Since Ugf‘m) <

Ug“ < a in supp(dp) and €, is regular, we get

Ugdz’:m) () < «

for all x € Q(,,). By Theorem 5.2,

U (z) < «

for all xz € Q.

Finally, if du does not have compact support in €2, we consider the restric-
tions dy,, in the terms 2, of some open exhaustion of {2 and we conclude the
proof in the same manner as in the previous paragraph.

6.4 The continuity principle for potentials

Proposition 6.4 1. If K is a kernel of first type and du is a non-negative
Borel measure with compact support, there is some closed F' C supp(du) with
arbitrarily small du(R™ \ F) so that U;i(’“‘” is continuous in R™.

2. If @ C R™ has a Green’s function in all its components and dy is a non-
negative Borel measure with compact support in €, there is some closed F C
supp(dp) with arbitrarily small du(Q\ F) so that Ug”F is continuous in €.

Proof:
It is, actually, part of the proof of Theorem 6.1.

Theorem 6.2 (The Continuity Principle)

1. If K is a kernel of first type, du is a non-negative Borel measure with compact
support and Uf(”, restricted to supp(dp), is continuous in supp(dp), then it is
continuous in R™.

2. If Q C R™ has a Green’s function in all its components, du is a non-negative
Borel measure with compact support in Q and Ug“, restricted to supp(du), is
continuous in supp(du), then it is continuous in 2.
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Proof:
1. Following the argument in the proof of the Theorem 6.1, we have that
U;l(’fv + U;i” , that each Uf(’ﬁv is continuous everywhere and that U}i(” , restricted
to supp(dp), is continuous in supp(du).

By Dini’s Theorem,

Un T U

uniformly in the compact supp(dpu).

Therefore, in the same proof, we do not need to reduce supp(dp) to any
subset F'. The final result there is that Uld(“ is continuous everywhere.
2. Since Ug“ and U;l“ differ by a harmonic function in 2, the proof in this case
is straightforward, by applying the first part to UZI“.



Chapter 7

Energy

7.1 Definitions

Definition 7.1 K-energy for kernels of second type.

Let Q C R™ be an open set with a Green’s function in all its components and
dpy and dpo two non-negative Borel measures in 2. We define the mutual
K-energy or mutual Q-energy of duy and dusy by

Tidpn,dpn) = Ta(dm,dis) = [ [ 6%ap) duao) i)

which is either a non-negative number or +o00.

If duy and dus are two locally finite complex Borel measures in €, we de-
fine their mutual Q-energy by the same formula (and linearity), but only when
Iic(Jdas |, dpa]) < +o0.

In case duy = dug = du, we call K-energy or Q)-energy of du the

Io(dp) = Io(dp,dp) .

Definition 7.2 K-energy for kernels of first type.
Let K be a non-negative kernel of first type and duy and dus two non-negative
Borel measures in R™. We define the mutual K-energy of duy and dus by

I (dpur, dpz) = / LK) dina) st

If duy and dps are two locally finite complex Borel measures in R™, we
define their mutual K-energy by the same formula (and linearity), but only
when Ik (|dp|, |dps|) < +oo.

In case dpy = dus = du, we call K-energy of du the

Ix(dp) = Ix(dp,dp) .

If K is of variable sign, we define the mutual K-energy and K-energy as
before, but only for compactly supported Borel measures.

197
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It is clear, by the Theorem of Fubini, that if I (|du1], |dpe|) < 400, then
U}i{“ '(z) is a finite number for almost every x with respect to dus and vice-versa.

Example.
Ik (ddg,ddy) = K(a,b)

for all types of kernels and all a and b. In particular, the K-energy of a Dirac
mass is always +o00.

Proposition 7.1 (Lower-semicontinuity of energy in measure)

1. Let K be of first type and {duk,} and {du2,} be two sequences of non-negative
Borel measures in R® converging to the non-negative Borel measures du' and
du?, respectively, weakly on compact sets. Then,

liminf I (duy,, du2,) > Irc(dp',dp®) .
m——+oo
In case the kernel K is of variable sign, we, also, assume that all dul, and
du2, are supported in a common compact subset of R™.
2. Let Q C R™ have a Green’s function in all its components and {dul,} and
{du?} be two sequences of mon-negative Borel measures in 0 converging to

the non-negative Borel measures du' and du?, respectively, weakly on compact
subsets of Q. Then

liminf Io(dul ,du?) > Io(du',du?) .
m——+00
Proof:
1. Assume that K is of first type and non-negative and consider the truncated
kernel
KN(xa y) = mm(K(m, y)v N)

for all x,y € R™.
Now, K is continuous in R™ x R™ and, taking an arbitrary R > 0,

liminf g (dpl,,dp?) > liminf/

i
m——+00 m——00 B(O-R)

_ /i /imw dp (z) di(y) |
B(0;R) Y/ B(0;R)

since the product measures dul, x du?, converge to du' x du? weakly on compact
sets in R™ x R"™.

Now, by the Monotone Convergence Theorem, letting N — +o0o and then
R — 400, we conclude the proof in this case.

If K is of variable sign, then we repeat the same proof, replacing the arbitrary
ball with a single compact set F' so that all du,, are supported in F'.
2. Now, assuming that K = G%, consider, besides K, any open exhaustion
{Qr) } of ©.

/ Kn(z,y) duy,(x) dpz, (y)
B(0;R)
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Then, as before,

lim inf Io(dp,,, dpy,) > liminf /7 | Kn(x,y) dug,(z) dp,(y)
mortee Q) J Qi

m——+oo

/ Ky (x,y) du' (z) dp(y)
HORSO!

and the proof is finished, by letting £ — +00 and N — +o0.

7.2 Representation of energy: Green’s kernel

Let Q be any open set in R™ with a Green’s function in all its components. In
case n > 3 and Q2 = R™, the kernel GIR" coincides with the Newtonian kernel
hg.

The basis of all results in this section is the following simple

Lemma 7.1 Suppose that Q is a bounded open set with C?-boundary. Let g
and go be two non-negative functions in D(L2).

Then
1
Io(g1 dm, gadm) = ——/ grad U3t (x) - grad UE (x) dm(z) .
Kn Ja
Proof:
By Theorems 2.18 and 5.5, the potential U&' is in C*°(2) and

AUF = kng;

as distributions in €.

Since both sides in this equation are continuous functions, it holds in the
classical sense everywhere in €.

We, also, get that UJ' is harmonic in the open set Q \ supp(g;). Since Q
is a regular set, by Lemma 6.2, UJ" can be considered continuous in Q and
identically 0 in 0f2.

——=ar . .=

Therefore, by Theorem 5.8, grad U3 extends continuously in €.

Now, applying Green’s Formula,

AMMmmmwztégwummmmmmmmmw

Awwmwmw

= L [ ugwavzy) dnw)

Kn JQ
1
= - /Q gradUS! (y) - grad UF (y) dm(y)
1

8U92
+— Uél(z)T:;(z) dS(z)

Kn Jon

1
= —— | grad U (y) - grad UE (y) dm(y) ,
n JQ
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7 being the continuous unit vector field normal to 92 and directed towards the
exterior of €.

Remark
Observe that, under the assumptions of Lemma 7.1, the same application of
Green’s Theorem implies

//G 2,991 () dm(2) ga(y) dm(y)

= —— gradUgf( ) - gradUgﬁ( ) dm(y) ,
kn Jo

whenever Q' D ) is another bounded open set with C2-boundary.

Proposition 7.2 Suppose that the open set Q@ C R™ has a Green’s function
in all its components and that du is a non-negative Borel measure in Q with
I (d,u) < +o00.

Then Ug“ 1s a superharmonic function in Q and it is finite almost everywhere
with respect to du.

Proof:

If dp is the zero measure in any of the components of €2, then the result is
obvious in those components. Otherwise, the result is only an application of
Fubini’s Theorem.

Proposition 7.3 If the open set Q@ C R™ has a Green’s function in all its com-
ponents and du, dus are two non-negative Borel measures in Q with Io(du,) <
+oo and Ig(dus) < +oo, then

1
Io(dpa, dps) = " kn o grad U (z) - grad U2 (z) dm(x) < +oo .

We, also, have that Ug’“ is finite almost everywhere with respect to dus and
vice-versa.

Proof:
1. Assume, first, that both du; are supported in a compact subset A of £ and
that Q is bounded with C2-boundary.

Each Ug" ‘ is superharmonic in €2, harmonic in 2\ A and, since ) is regular,
it can, by Lemma 6.2, be considered continuous in R™ \ A and identically 0 in
R™\ Q.

Consider any approximation to the identity {®s : § > 0} and the convolution

Ut * ®5(x) = / U (@ = y)®s(y) dm(y) , 2 €9Qs .

Then, the functions Ug”i * @5 are in C*°(Qs) and, by Theorem 2.10, they
are superharmonic in 5 and

Ui 5 &5 1+ U
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in Qasd 0.
Taking § < #d(A,9d9), we know, from the beginning of section 1.3, that

Ui 4 &5 = UM in (Q\ A), . Therefore, the function

o = {Ug‘”*@é, if z € Qs
o Ul if 2 eQ\ Qs

is in C'*°(€2), is superharmonic in €2, harmonic in  \ A and can be considered
continuous in R™\ A and identically 0 in R™ \ . Also, v; 5 T Ug”i in R™ as
510.

Consider, also, the convolution

n

dpi x ®5(x) = / Ps(x —y) duiy) , xR

The non-negative functions du; * ®5 are in C°°(R™) and they are supported
in A; = A+ B(0;6), a compact subset of Q.

Therefore, the functions Ug“ *®s are superharmonic in 2, harmonic in £\
As and, by Theorem 2.18, they are in C*°(Q2). By Lemma 6.2, they can be
considered continuous in R™ and identically 0 in R™ \ .

Employing the informal notation for distributions,

A(Uglh*q)é) - AUg/—H*Q)é = Kpdp; x &5 = AU(lei*(bé

in Qg.

Therefore, the functions v; 5 and Ug“ *®5 Jiffer by a junction harmonic in
Qs and, hence, in 2. Both functions are continuous in ) and identically 0 in
0f). By the Maximum-Minimum Principle,

Uz‘,& — Uglli*<1>5
identically in Q.

Apply, now, Lemma 7.1 to the functions g; = du; * ®5,, for §; < %d(A, 09),

to get

/ U (@) dpy * B, () dm(a)
Q

1 1% Lo *
= grad Ug“ o () - grad Ugl 2xPs (z) dm(x)
n JQ

1
= —— [ gradvi s, (x) - gradvs s, (z) dm(z) .
Kn JQ
Since Ug“l*%l = v, T UI in Qas 6 | 0, the left side of the last
equality tends to

| v @) « s, 0) i)

as 6; — 0.
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Regarding the right side, it is true, by Theorem 2.18, that Ug”i has partial
derivatives at almost every point in 2 which are locally integrable in Q. From

dpg —
Theorem 5.8, we have that ag;]‘ can be continuously extended in 0\ A and,
J

hence, if we further extend it as identically 0 in R® \ §, it becomes a function

in L'(R™). Applying Lemma 0.4, we find that there is a sequence {d;} so that
lops Ui . . dvi,5,

d; — 0 and 321 * &5, — 8; almost everywhere in R™. Since, e =

B(Ug“i*<1>5.) U dri .
K3 — Q
o7, = o * ®5, in Qs,, we get

i s, U
L
(r“)il'j 8$j
almost everywhere in ) as §; — 0.
From Lemma 7.1,

1 TN %D,
[ fpradeis @) dmia)
Kn Ja

U, (x)dp; * @s, (x) dm(zx)

A
S~

U (2)dp; + 5, () dm(x)

Ug™ ™ (x) dui(x)

< UG () dpi(x)

[
N

From our last two results, we conclude that there is some sequence of J;’s so
that, for all j,

a 05 dp;
(% R N 6UQ
8xj 8l‘j
weakly in L2(Q).
Letting this sequence of d;’s tend to 0,

[ v @+ @4, (2) dino)

1 —_— N
= grad U (z) - grad vy 5, (x) dm(z) .
n JQ

The left side is equal to [, U;IZMMDS2 (x) duq(z) and, following the same pro-

cedure with d3 — 0, we find

1
Ia(dpy,dus) = —H—/ grad UM (z) - grad U (x) dm(z) .
nJa

2. Modifying slightly the proof of part 1 and using the Remark after Lemma
7.1, we, easily, prove that, under the same assumptions,

1
| [ 6w dinte) duaty) =~ | gradUF (@) - grad U @) ami)
QJQ n JQ
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whenever Q' D  is another bounded open set with C2-boundary.
3. Now, assume that €2 has a Green’s function in all its connected components
and that du; and dus are two non-negative Borel measures supported in a
compact subset A of Q.

Consider any open exhaustion {2} of 2, each Q(,,) having C?-boundary
and containing A.

From part 2, we have that

1
T (i dz) = == | gradUgy (2) - gradUg?, (2) dm(@) .
n (m)

for every m, m’ with m < m/.

Since G%m 4 G in Q, the right side has Iq(du1,dus) as its limit when
m — +00.

We, also, have that Ug’:;) = Uff’“ + Ui, where vy, ; is harmonic in Q).
Since Ug‘(‘;) T Ug’“ as m — +oo, we get that {v,, ,;} increases towards a har-

. . . d; m .
monic function v; in Q as m — 400 and, hence, U3 = U;* + v; in Q. By

Theorems 1.16 and 1.17, gradv,,; — gradv; everywhere in Q as m — +o0,
implying

grad Ug‘:ﬂ) — gradU3"

almost everywhere in ) as m — 4o0.
From part 1, we get
1 U () [2 Q

—— [ gradUq ()] dm(z) = G (@, y) dpa() dpa(y) < To(dps) .
Q)

Hence, there is some sequence of m’s so that

dpt dpi
grad UQ(m,) — gradUg

weakly in L?(Q) and some sequence of m’’s so that

gradUg’(”,) — gradUéM

weakly in L?(Q).
We, now, let, first, m’ — +oo and, then, m — +oco through these sequences
and get

Ig(dpy,dus) = f’{i grad U (z) - grad US> (z) dm(x) .
n JQ
4. Consider, finally, the general case.
Take the measures dyt,, ;, which are the restrictions of dyu; to the terms of
an open exhaustion {€,)} of Q.
By the assumption Ig(du;) < 4+o0o and Proposition 7.2, it is implied that
Ug“ “ and all Ug”m’i are superharmonic in €.



204 CHAPTER 7. ENERGY

dpk,i Udum,i
—vYQ

Therefore, for any k > m, U is harmonic in €2(,,) and

d dptmi A Aptom
U Hk,i _Uﬂ,un,z T UQ}L _UQNm,z

in Q) as k — +o00. The last function is harmonic in €(,,) and, from Theorems
1.16 and 1.17,

rad (U U rad (@R — U

in Q) as k — +oo.

Since UZ“™ has partial derivatives almost everywhere in (), we get that
Q y g

gradUS™ " = grad U
almost everywhere in €2(,,) and, since m is arbitrary, the last limit holds almost

everywhere in ).
From the equality of part 3,

/‘gradUd”"” )‘2 dm(z) = Io(dpm:) < Io(dw),

there is a sequence of m’s so that

d s
vyt — ugt

weakly in L?(Q).
If in the equality of part 3,

//G 2, Y) Aty 1() A, 2(Y)

= —— grad Udlel (z) - grad USM”LQ’z(m) dm(z) ,

Kn

we let, first, m; and, then, ms tend to 400, we find

//Gﬂ(x,y) dp (x) dus(y) = —Hi/ﬂgrad U (z) - grad US> (z) dm(z) .

Regarding the last statement of the theorem, observe that, from the Cauchy-
Schwartz inequality,

Io(dpy, dpg)® < Iog(dpi)lo(dus) < +00

11

and, hence, from Fubini’s Theorem, Ué is finite almost everywhere with re-

spect to dus and vice-versa.
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7.3 Measures of finite energy: Green’s kernel

Definition 7.3 Let the open Q C R™ have a Green’s function in all its con-
nected components. Then,

Wa = {du:du is a locally finite measure in Q with Io(|du|) < +oo}
18 called the space of measures in ) of finite Q-energy.

Theorem 7.1 Let the open 2 C R™ have a Green’s function in all its connected
components. Then, for all duy and dus in We the bilinear form Io(du1, dus) is
a complex number and

Io(dpy,dus) = ——/grad U gradUd”Q( ) dm(x) .

Under this bilinear form, Wq becomes an inner product space.

Proof:
If dpp and dus are two locally finite complex Borel measures in € of finite
Q-energy, then, by Proposition 7.3 and the Cauchy-Schwartz inequality,

Io(|dpy + dpsl) < Iﬂ(|dul\+|dﬂz\)
= Io(|dml) + 2Io(|dp1l, [dp2|) + Ia(|dpz|)

= ——/‘gmdU‘ ”1| ‘ dm(x)

- gradU‘ ’Lll( ) - gradU‘dMl( ) dm(z)

——/‘gradU‘dml ‘ dm(x)

< To(dp]) + 2L (Jdp1 )2 Io(|dus) ® + Io(|dus|)
< +4o0.

Thus, Wq, is a linear space.

From Fubini’s Theorem and from Iq(|dpu|, |dus|) < Io(|dui])2 Io(|dus])? <
+o00, we get that Ig(dui,dus) is a complex number for every du; and dps in
Wa.

If dp is a locally finite Borel measure in 2 with real values and Iq(|dul|) <
+00, then its non-negative and non-positive variations, du™ and du~, satisfy
Io(dut) < 400 and Ig(du~) < +oo. Proposition 7.3 implies that

Io(dp) = Io(du*) —2Io(du™, du™) + Io(du™)
L 2
-t / lgrad U2 )| dm(a)
Kn O

2 >
+— grad Ug’ﬁ (z) - grad UM (z) dm(x)
Q
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L e
——/’gradUQ“ (x)‘ dm(z)
Kn Ja

_ _L/Q’Wad—Ug“)(x)r dm(z) .

'V‘:n

If dpy and dug are two locally finite Borel measures in Wq with real values,
then, applying the last equality to du; + duo, we get

1
Io(dpy,dps) = —H—/ grad Ug“l(x) - grad dezm (x) dm(z) .
n JQ

By linearity, this extends to hold for all measures in Wq, (dug being replaced

by dus.)
Thus, the bilinear form Iq(du1,dps) is a complex number for all duq and
dus in Wq and, using the representation of the last formula, we get that

Io(dp) >0 for all non-negative dpu € Wq .
Assume, now, that, for some du € Waq,

Io(dp) = 0.

. . dy -

Then grad UY (z) = 0 for almost every = € Q and, since Uy is, by Theorem

2.18, absolutely continuous on almost every line parallel to any of the principal
. dp .

axes, we easily get that Uy" is equal to some constant ¢ almost everywhere in
€. Since this function is superharmonic, it is identically equal to ¢ in €.

Finally,

kndp = AUS = 0

in © in the sense of distributions and, hence, du is the zero measure.
Therefore, the bilinear form is an inner product.

7.4 Representation of energy: kernels of first
type
If K is any non-negative kernel of first type, then

lim K.(r) = 0.

r—+00

Lemma 7.2 Suppose that K is a kernel of first type with the property that, for
some R > 0,

for all x with |z| > R.
Then K € L*(R™) and
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for all € € R™. There is, also, a constant C' > 0 so that

for all £ € R™.

Proof:
The kernel is non-negative and, by the first property of kernels of first type,
we have

R
K(z) dm(z) = wn,l/ K. (r)yr"tdr < +4oo.
0

Rn
Now,
RO = [ e @) dnl)
+o0 _
= K*(r)/ e 2mira’-E do(z')r"= " dr
0 gn—1
+oo
= K. (r)J(rlg))r"~" dr,
0
where we use the notation 2’ = = = (21,...,2;,) with r = |z| and

J(r) = / e~2m T 4o (') r>0.
Sn—1
Finally, writing 2/ = (2}, 2") with 2" = (1 — 2 %)y, y € S"2, and using

do(z')=(1-— x/12)";2 do(y) dz'y, we get

1
J(r) = / / 6_2’””,1(1 — x?)n% do(y) dr}
—1.Jgn—2

z
= 2wn,2/ cos(27r cos ¢) sin™ % ¢ dg
0

and J has the following properties:
1. J(0) = wy—1 and J'(0) = 0.
2. J(r) < wp—q for all r > 0.
3. J(r) = —2=(J"(r) + =LJ'(r)) for all r > 0.
4. lim, 4o J(r) = 0.

The first three properties are trivial to prove. The fourth is an application
. 2 ’ n—2
of Theorem 0.13 to J(r) = wy_o fil e~ 2mirai(1 —x) "2 dad.
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Therefore,

K@ = ngn/ K () 0+ e
- [ () o) ar
= g [, (e
S d(K*'(éT) (@)

where the integrations by parts are easy to justify.
But, if we set s = h.(r) and K,(r) = H(s), then, in case n > 3, the last
integral becomes

+oo
(n—2) / (w1 — J(h71(5)) d(E'(1€]"25)

Y

=) [ s =TT 0) O 29)
> (n—2) min (Wnﬂ _ J(T))Hl(|§|n_2)

1<r<+oo

and, in case n = 2, it becomes

+oo
[ =g 6)) (G +10ge)

— 00

> / (w1 — J(hZY(s)) d(H' (s + log [€]))

— 00

>  min (w1 — J(r))H’(log €1) -

T 1<r<+co

Considering R large enough so that H'(R"~2) > 0 or H'(log R) > 0, respec-
tively, then, for all £ with |£] > R, we have

_ C
K(§) > R

In any case, both integrals (n — 2) 0+°° (wn—1 — J(h;1(s))) d(H'(|¢]""2s))
and f+oo (w1 — J(hy'(s))) d(H'(s + log|£])) are positive for all f 7& 0. Hence,
K(f) > 0 for all £ # 0. Since K is non-negative, K fR" (z) > 0.

The proof is concluded by the continuity of K in B (0; R).

Lemma 7.3 Suppose that K is a non-negative kernel of first type with the prop-
erty that, for some R > 0,
K.r) =0
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for allT > R.
If dpy and dus are any two compactly supported non-negative Borel measures

in R™ with Ix(dp1) < +00 and Ik (dpa) < +o0, then

Tic(dpnsdz) = | K(&)dpn (€)dua () dm(€) .

Therefore, Ik (dp,dus) < 400 and U?(’“ is finite almost everywhere with
respect to dus and vice-versa.

Proof:

Suppose that A; = supp(dy;). By Proposition 6.4, we can find restrictions
dp1,e, and dpg ¢, of dui and dus in compact sets Ay, € Ay and Ay, C Ao,
respectively, so that, for both j =1, 2,

dps — dpje; || — 0

dpije. . . .
as €; — 0 and each UK“]’ ’ is a continuous potential.
We may, also, assume that A; ., T A; as ¢; | 0, as we may easily see by
looking in the proof of Theorem 6.1. Hence,

I (dpre, dpo,e,) T Ix(dp, dps)

as € } 0.
Now introduce the functions
‘2

bp(z) = kZe ™k

for all £k > 0 and all x € R®. Then,

o) dm(z) = 1
Rn

and

— e

Pu(§) = e TF
for all £ € R™. Now, both functions ¢;, and UZM’E" = K «dp;,, are in L'(R")
and, hence,

dpje
Ul x ¢ € L'(R").
Furthermore, since (Uiﬂj’fj )" € L>(R™) and = L'(R™), we get

d”j,fj

(UR wg)™ = (U 4p € LYR) .

Hence, by the Inversion Formula,

U sot) = [ SRR e dm)
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and

/ Ud,ul €1 *d)k( )dlfﬂez( )

Rn

— /n/n 27rz:r£ d#l 61) (g)@(g) dm(g) d,u/2762(1-)
[ PO (€ am(e

[ Reyir (€@ i)

In the same way, for each j = 1,2,

J U o @) = [ R ©f dne)

By the contlnulty of Uy W

we have that U e

and the Maximum Principle for K-potentials
is, also, bounded and, hence,

dUJ €5 d/"J €j

Ug 77 *or — Up

uniformly on compact sets. Therefore, the left side of the last equality tends to

duj,e,
Jrn UK“% () dpje,; (x) as k — +o00. By the Monotone Convergence Theorem,

| B@di,©F dn(e) = [ U @) duse, (o) < Tcldy)

n

By the Cauchy-Schwartz inequality,

| R din, (©diae (O] dm(e) < +oc
and we conclude that
Lic(pr ey dizs) = | K(©dpey(€)dpines (€) dmi€) -

Since d;j:j &) — J;E(ﬁ) for all £ as €; — 0 we may, now, take a decreasing
sequence of ¢;’s so that

ditje, (€) — dp;(€)

weakly in L2(IA{dm). Letting, first, e — 0 and, then, e — 0 through the
appropriate sequences, we find from the last equality,

L dpa) = | K(€)du(€)dpal&) dm(©)

The last statement of the theorem is, just, an application of Cauchy-Schwartz
inequality and the Theorem of Fubini.
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Proposition 7.4 Suppose that K is a kernel of first type with the property that,
for some R > 0,
K.ir) =0

for allrT > R.
If du is a locally finite complexr Borel measure, let du, be its restriction in
the ball B(0;r).
If Ik (|du|) < 400, then the definition
d'u - 7111-‘?00 dﬂr
is justified as a limit in the space LQ(IA(dm).
If Ik (|du1]) < 400 and Ik (|dus]) < +oo, then

~

I (dp, dpiz) = / 072 (6) A )R (€) dm(€)

n

Proof:
1. Assume that dy is a non-negative Borel measure. By Lemma 7.3, for every
r,7 with r < r’, we have

—_— —_— 2 A~
Iy ~dr) = [ | ) = A (O R ) )
On the other hand, we can easily prove that

Irc(dprr — dpy) < Irc(dprr) — Ik (dpy) -

From the last two relations, since I (du,.) T Ik (du), we see that, if T (du) <
+00, then E/\l =lim, | o (T,L; exists as a limit in L2 (IA(dm)

Now, if duq and dus are non-negative Borel measures with I (duq) < 400
and Ik (dus) < +00, we apply Lemma 7.3 to their restrictions in B(0;r) and let
r — +00 to get

Iy, dsz) = / 072 () ) R (€) dm(€)

n

2. Now, let du be a locally finite complex Borel measure with T (|du|) < 4o0.
Then the non-negative and non-positive parts of the real and imaginary parts
of dp all have finite K-energy. From part 1, we get that L/i[\L = lim, 1 c?;;
exists as a limit in L2(Kdm) and that

I (dp, dpiz) — / 072 (E)dm(©) R (€) dm(e) .

n

for all locally finite complex Borel measures du; and dus with Tk (|dpy|) < +00
and Ik (|dus]) < +o0.
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7.5 Measures of finite energy: kernels of first
type
Definition 7.4 Suppose that K is a non-negative kernel of first type and let
Wk = {dp: dp is a locally finite Borel measure in R™ and Ix(|du|) < +oo} .
Wg is called the space of measures of finite K-energy.

Proposition 7.5 Suppose that K is a non-negative kernel of first type and let
dpy and dus be any two non-negative Borel measures with I (duy) < +o0o and
I (dus) < +00. Then,

Nl=

Irc(dpr,dpz) < (Ix(dp))? (Ix(dpz))
and Uf(‘“ 1s finite almost everywhere with respect to dus and vice-versa.

Proof:

If the measures are supported in a compact set and K vanishes for all large
enough values of its argument, then the result is an application of the last
Lemma.

Assume, now, that du; and dus are supported in a compact set but that
K(x) > 0 for all z € R™. (Observe that, if K(xg) = 0 for some zg, then
K(x) =0 for all x with |z| > |zo].)

Consider, for every § > 0, the kernel

Ks(z,y) = {0’ if K(z,y) <4.

Since lim, o0 K. (r) = 0, we see that K is a non-negative kernel of first
type and that Ks(x) = 0 for all large enough |z| and, hence, Lemma 7.3 applies
to K.

Therefore,

Ly (dpr, dps) < (T, (dpin))* (T, (dpa)) ®

Since Ks T K as § — 0, by the Monotone Convergence Theorem or by
Fatou’s Lemma, we get

I (dpy,dps) < (IK(dul))%(IK(dm))%-

If the measures are not supported in a compact set, then apply the result to
the restrictions of the measures on the balls B(0; R) and let R — +o0.

Theorem 7.2 Suppose that K is any non-negative kernel of first type.

Then, Wk is a linear space. Also, for any duy and dus in Wi, Ik (du, dps)
is well-defined as a complex number and, under this bilinear form, Wy becomes
an inner product space
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Also, if du € Wy, then U?(” is finite almost everywhere with respect to all
dv € Wk .

Proof:
If duy € Wy and dus € Wy, then, by the last Proposition,

I (|dps +dpa|) < Ix(|dpa| + |dpsl)
= Ix(|dp]) + 20k (|dpsl, [dpa|) + Tk (|dpal)
1 1
< Ig(ldpal) +2(Ix (Jdpa ) ® (Ix (|dpal)) ® + Tk (|dps])
< —+o0o.

Therefore, Wy is a linear space.

By Fubini’s Theorem and from Ix (|du1], |duz]) < +o0, we, also, have that
Ui“ ! is finite almost everywhere with respect to dus and vice-versa and that
Tk (duy, dps) is well-defined as a complex number.

It is obvious that Ik (-, -) is a bilinear form and we, only, have to prove that
it is positive definite.

Now, take an arbitrary locally finite complex Borel measure du in R™ with
real values and with Ik (|du|) < 400 and consider its non-negative and non-
positive variations du™ and du~.

Then, we, also, have I (dut) < 400 and Ik (dp™) < 400 and, hence,

Ire(dp™) = 205 (dp™, dp™ ) + Tie (dpa™)

Lic(dut) = 2(Tie (dp)) * (L)) + T ()
0.

Tk (dp)

(A\VARAYS

If dp is a locally finite complex Borel measure in R™ with T (|dpu|) < 400
and duq, duo are its real and imaginary parts, then

Ix(dp) = Ix(dpa) + Ix(dpz) > 0.

By the standard argument, we can prove, now, that

(Isc(dppn, dpa))* < Tre(dpn ) T (dpaz)

for all duy and dpg in W
Now, let du be a locally finite complex Borel measure in R™ with Ik (|dp|) <
~+o00 and assume that

Ix(dp) = 0.

If K.(r) >0 for all » > 0 and K, = H o h,, then there exists some ¢y, with
H'(tg) > 0. We define

(H(t) — H'(to)(t — to) — H(to)) , ift>to
9 lftStO

[e=INIEN

Hi(t) = {
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and
Hy, = H—H; .
We consider, next,
Kl* :Hloh*, KQ* :HQOh*.
The corresponding kernels K7 and K5 are non-negative and of first type and
K, has the property that
Kl*(T) = 0

for all » > R = h™1(tp).
Now, for each i =1, 2,
I, (|dpl) < Ix(ldpl) < +oo.

Also,
Tie, (dp) + I, (dp) = Txc(dp)
and, since both terms in the left side are non-negative, we get
I, (dp) = 0.
Hence, we may assume that our kernel K has the property that, for some R,
K.(r) =0
for all r > R.
Consider, now, an arbitrary ¢ € D(R") and the function
¢
f - = -
K

Lemma 7.2 together with Corollary 0.1 easily give that f belongs to S(R™).
Theorem 0.18 implies that there is a ¢ € S(R™) so that g = f and, hence,

gxK = ¢.
Since K € L*(R™) and g € L'(R™) N L>°(R™), it is immediate that

Ix(lg)) < +o0.

Thus,
o) du(e)| = || K xg(a) du(z)|

Ik (dp,g)] < (Ix(duw))

Nl

Il
o

Nl

e
(Ix(9))

Therefore, dp is the zero measure.
In the case of R? and of kernels of first type and of variable sign the measures

considered are supported in compact sets.
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Definition 7.5 Assume that K is a kernel of first type and of variable sign.
We define

W?( = {dp:dup is a compactly supported complex Borel measure with
I (|dp)) < +oo and du(R?) = 0} .

Now, we may extend the results about non-negative kernels. For example,
here is the central result.

Theorem 7.3 Assume that K is a kernel of first type and of variable sign.
Then, WY is a linear space. Also, for any duy and dpg in WY, I (du1, dus)
is well-defined as a complex number and, under this bilinear form, WY becomes
an inner product space.
Moreover, if du € WY, then U;l(“ is finite almost everywhere with respect to
all dv e WY

Proof:
If duy and dus are in WY, we consider a large enough R so that the two
measures are supported in the disc B(0; R) and then consider the modified kernel

_ [ K(z,y) - K.2R), if|lz—y|<2R
Kr(w,y) = {07 if |z —y| > 2R .

The new kernel is non-negative and of first type with the property that it
vanishes for all large enough values of its argument.
We, also, have that, for all z € B(0; R),

Ul (z) = / K (1) dn(y) = / Kn(r,y) din(y) = US (2)
B(0;R) B(0;R)
and, thus,

Ic(dpn, dpis) = / U4 (2) dpa(a)
B(0:R)

/ U (2) dpss(z)
B(0;R)

= IKR(d:L"la dpz) -

Applying, now, Theorem 7.2 to the kernel K, we see that Ix(du1,dus) is
well-defined as a complex number, that

Ix(dpy) > 0

and that Ik (dp) = 0 if and only if dyy is the zero measure.
In fact, either by Lemma 7.3 or by Proposition 7.4, we have that

/ Ta(E)fRon(€) dm(z) |
R2

for all du € WY which are supported in B(0; R).

I (dp)

There is another special result for the logarithmic kernel in R2.
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Theorem 7.4 If K(x,y) = log ﬁ = h.(Jx — y|), then the space of all com-

plex Borel measures du in R2 which are supported in the unit disc B(0;1) and
satisfy In(|du|) < +oo becomes an inner product space under the bilinear form

In(dp, dpz).

Proof:
Consider the measure do on S' and its h-potential

- 1 log =, if 2| > 1
Uirta) = [ tor oty = { B

0, if |z <1.

Now, for every duy and dus with I, (Jdui]) < +oo and I (|dps|) < +oo, we
define the measures
dpi(R?)
21
Then, both dy; belong to Wg and, hence, Theorem 7.3 applies to them.
Now, observe that

dv; = du; — do

dpy (R?
I (dpy,dus) = I;L(dl/l,dyz)—k%)lh(da,dm)
2 2 2
L (R )Ih(dul,da) d’“(R ) dn2(B2) | 1o
27 27
= In(dvy,dis) + d’” Ul (2) dva(z)
R2
duz(Rz)/ AT
+HEE | U dn (@)

dui (R?) dm(RZ)/ do
T o - Uy’ (x) do()
= Ih(dl/l,dl/z).




Chapter 8

Capacity

8.1 Definitions

Let K be a kernel of either the first or the second type.
Remark: Whenever, in this chapter, K = G is a kernel of second type, we
shall understand that the set ) has a Green’s function in all its components
and that all sets to be considered are subsets of Q. Also, all measures are Borel
measures in €.

If the kernel is of first type, then all sets are subsets of R™ and all measures
are Borel measures in R™.

Definition 8.1 Let E be a compact set. By T'E we denote the family of all
non-negative Borel measures du which are supported in E and satisfy

|

everywhere in E. Therefore, by the Maximum Principle of potentials, Uf(“ <1
everywhere in R™, in case K is of first type, or in Q, in case K = G is of
second type.

Definition 8.2 We define the K -capacity of the compact E by

Ck(E) = sup du(E).
duert

We, also, define the inner K -capacity of the set A by
Ci(A) = sup{Ck(E): E is a compact subset of A} .
Finally, the outer K -capacity of a set A is defined by
C%(A) = inf{C%(O) : O is open with A C O} .
It is almost obvious that C% (A) < C%(A) for all A.

217



218 CHAPTER 8. CAPACITY

Definition 8.3 A set A is called K -capacitable if Ci-(A) = C%(A).
The proof of the next result is trivial.

Proposition 8.1 1. If E1 and FEs are compact sets with E1 C Fo, then
ri crie.

2. If By and Es are compact sets with E1 C Eg, then Ck(F1) < Ck(E2).
3. If Al Q AQ, then C}((Al) S C}((AQ) and C%(Al) S C%(AQ)

The proof of the next result is based on Proposition 8.1(3) and is, also,
trivial.

Proposition 8.2 All open sets O are K -capacitable:
Ck(0) = C%(0).
Proposition 8.3 FEvery compact set E is K -capacitable and
Ck(E) = Ck(E) = Ck(E).

Proof:
The equality C& (E) = Ck(FE) is clear and comes from Proposition 8.1(2).
From the definitions, the inequality Cx (E) < C%(E) is, also, clear and for
the rest of the proof we may assume that Cx (E) < +o0.
Consider the sets
E° = {z:d(z,E) <}

and
0% = {z:d(z,E) <4},

where ¢ is small enough so that E° C Q in case K = G,
The sets E° are compact, the sets O° are open and

EcC 0O Cc R

and
E° | E

as 6 ] 0.
Therefore, O (E?) is decreasing as § | 0 and let

Ck(E°) | a
as 0 | 0, where « is such that
Ckx(E) < a < 400.
Assume that Ck (E) < o and consider any 8 with

Ckx(F) < 8 < «a.
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Then, we can find non-negative Borel measures dyu’ supported in E? so that
B < du’(E)

and 5
U <1

everywhere in R®, in case K is of first type, or in Q, in case K = G*.
Deviding du’ by an appropriate positive number we may assume, if neces-
sary, that
du’(E°) < B+1 < 4o0.

Hence, there is some sequence of §’s tending to 0 so that
dp’ — dp

weakly on compact sets, where du is a non-negative Borel measure.
It is clear that du is supported in E and that

du(E) = limdp’(E°) > B > Ck(E)

as § — 0 through this sequence.
Because of the lower-semicontinuity of potentials in measure,

S5
Uk < lim inf UL <1

everywhere.
This is a contradiction to the definition of Ck (F) and, thus,

Ck(E%) | Ck(E)

as 0 | 0.
Now,

implying that

We may, now, write,

Definition 8.4 If A is K-capacitable, we define its K -capacity by
Cx(A) = Ck(4) = Ck(4) .

It can be proved that all Borel sets are K-capacitable and, even more, that
all “analytic” sets are K-capacitable. We shall not work in this direction and
we shall have only in mind that all compact and all open sets are K-capacitable.
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Lemma 8.1 Assume that C%(A) = 0 and du is any non-negative Borel mea-

sure supported in a compact set with U}i“ being bounded from above in the set
A. Then du(E) =0 for every compact E C A.

Proof:

It is clear that we may suppose that A is bounded.

Assume that du(E) > 0 for some compact £ C A and consider the restriction
dpg of dp in E.

Then Uf(“E is, also, bounded from above in the set A O F and, hence,

U]d(l"E S M
everywhere, for some M > 0. Now, define
1
dv = —dug .
v M HE
Then, dv € T'Z and
dv(E) > 0.

Therefore, '
Cx(4) > Ck(E) > dv(E) > 0.

Lemma 8.2 If all A, are Borel sets and Ci-(Ay,) =0 for all m, then
Ci(UF® A, = 0.

Proof:
Take an arbitrary non-negative Borel measure supported in a compact subset
of U™ A, with

|
everywhere.
By Lemma 8.1,
du(Am) = 0

for every m and, thus,
dp(Uy 2 A) = 0.
By the definition, _
Cic(Ur® A,,) = 0.

Proposition 8.4 Suppose that A = U:‘:X:’LA;C.
1. If K is a non-negative kernel, then

+oo
Ci(4) < D Ck(4) -
k=1

2. If K is of variable sign and D = diam(A), then

C5(A) = o
TR R D < 2 kA

where K, (D)™ = —min(0, K.(D)).
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Proof:
1. It is enough to assume that C% (Ay) < +oo for all k and, then, we take open
Ur € R™ so that Ay C Uy, and Ck (Uy) < C%(Ax) + 5%

For an arbitrary compact E C U;:;’CIU;C we take N so that E C UY_ Uy and,
then, write £ = U,QVZIE;C, where each Ej is a compact subset of Uy.

Now, we take du € T'E and observe that dug, € T'5* for every k. Therefore,

N

N +00 +o00
du(B) < Y dp(Bp) < > Cx(Ep) < > Cx(Ux) < Y Ch(Ax)+e.
k=1 k=1

k=1 k=1

This implies
“+oo
Cy(A) < Cr(UfSU) < D Ch(Ak) +e
k=1

and concludes the proof.
2. We repeat the same argument observing that, if du € T'%, then

Uss (z) < UM (z) — K,(D)du(E) < 1+ K. (D) du(E)

for every = € Ej.
The rest of the proof remains unchanged.

The proof of the next result is an immediate consequence of Proposition 8.4.

Theorem 8.1 Suppose that Ck(Ag) =0 for all k.
1. If K is a non-negative kernel then, CK(U;E?A;C) =0.
2. If K is of variable sign and U; > Ay, is bounded, then C (Uf2SAy) = 0.

Definition 8.5 We say that some property holds quasi-almost everywhere
or g-a.e. in a set A, if it holds everywhere in A except in a subset of A of zero
K -capacity.

8.2 Equilibrium measures
Theorem 8.2 Suppose E is a compact set. Then the extremal problem

vk (E) = inf Ik (du)

over all probability Borel measures (i.e. non-negative Borel measures with total
mass equal to 1) supported in E has a solution dug.
This satisfies

1. Up® < yx(E) everywhere,

2. U;”O = vk (F) quasi-almost everywhere in E.
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Proof:

Assume, first, that

Yk (E) < +oo.

Consider a sequence of probability Borel measures du.,,, supported in E so

that
IK(d/Lm) — ’)/K(E) .

There is some subsequence converging weakly in E to some probability Borel
measure dpg supported in F.

By the lower-semicontinuity of energy in measure,

vk (E) < Ix(dpo) < liminf Ix(dpm) = v (E) .
m——+o00

Thus, dug is a solution of the extremal problem.
Claim: U[d(“" > vk (F) g-a.e. in E.
To prove this, consider € > 0 and assume that the compact set

E¢ = {z € E:UM (z) <k (E) — €}

has positive K-capacity.
By definition, there is some non-negative Borel measure dr supported in E*¢
with

dr(E°) > 0
and
Ul <1
everywhere.
Define, now, the probability measure
1
do = d
77 ar(EB)”
supported in E€, satisfying
1
Ul < M =
K= dr(E°)

everywhere.
We apply, now, a variational argument, considering 0 < § < 1 and defining

dus = (1 —296)dpg + ddo .
Then dpus is a probability measure supported in £ and, hence,
1k (E) Tk (dpss)
(1= 6)2 I (dso) + 25(1 — 6) / U3 (1) do () + 8 I (dor)

e

IN

= yx(E) — 201k (dpo) +26 [ U (x) do(x)
Ee

6 (Iic(do) + Iic(dpo) — 2 / Ui (@) do(z))

€
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Thus,

U (z) da(a:)) .

€

0 < —26e+6° (IK(dU) + I (dpo) — 2/
This is, clearly, absurd for small § > 0 and, thus,
Ck(E°) = 0.

Since )
(ze BE:UM(z) <~y(K)} = UtX Ew |

Theorem 8.1 implies the claim.
Claim: U]d(“0 < vk (E) everywhere.
Consider an arbitrary € E and assume that

U (x) > () -
Take an arbitrary v; so that
Upo(z) > m > yx(E)
and, by lower-semicontinuity,
Uf(“ ° > 7

everywhere in some open neighborhood B(x;r,) of x.
The Borel set {z € E : Ui < yx(E)} has zero K-capacity and, by Lemma
8.1,
dpo({z € BE: UL <yx(E)}) = 0.

Then,
Iic(dpio) > dpo(E N B(; 7)) + 1 (B)dpo(E\ B(wira)) -
By Ix(dpo) = vk (E), it is implied that
dpo(EN B(x;14)) = 0.
Consider the open set
O = U{B(x;7;) : x € E and U™ () > vk (E)} .

If F' is any compact subset of O, then we can cover F' by finitely many balls
of the form B(x;ry) with € E and U}j(“o (x) > vk (E) and, hence, duo(F) = 0.
Since F' is arbitrary,
d/.to(O) =0.

Therefore, dyug is supported in the compact set E'\ O and

U}?to < vk (E)
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in this set. By the Maximum Principle of potentials, the claim is clear and,
together with the first claim, the proof of the theorem in case vk (F) < 400 is
complete.

Assume, now, that yx(F) = +oo.

It is, then, obvious that I'E contains only the zero measure and, hence,
Ck(E)=0.

Therefore, every probability Borel measure supported in E (for example,
any dd, with = € E) is a solution of the extremal problem.

Theorem 8.3 If E is a compact set and vk (F) < +o0o, then the solution of
the extremal problem of Theorem 8.2 is unique.

Proof:
If duo and dug are two solutions of the extremal problem, then Uf(“ ¢ =g (E)
and Uf(“o = vk (F) quasi-almost everywhere in E and Uf(”" < vk (F) and

Uld(” 0 < vk (E) everywhere.

By Lemma 8.2,
dup({x € B: U <4k (B)}) = 0,
implying
il = dys) = Ticdpo) =2 | U () dila) + i
Vi (E) — 27k (E) + 7k (E)
0.

By Theorems 7.1, 7.2 and 7.3, we get
dpo = dpg -
Definition 8.6 If E is any compact set, then the quantity
Yic(E) = inf Ixc(dp)

over all probability Borel measures which are supported in E, is called the K-
energy of E.

Definition 8.7 If E is a compact set with vk (E) < +oo, then the unique
probability Borel measure dugy with

Ix(dpo) = vk (E)
1s called the K-equilibrium measure of E.

Theorem 8.4 If E is compact, then vi(E) = +oo if and only if Cx(E) = 0.
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Proof:
Assume that Cx(E) > 0 and take a non-negative Borel measure du sup-
ported in E with du(E) > 0 and

|

everywhere.
Then dv = mdu is a probability Borel measure supported in F with

Ig(dv) = /EU?(V(I) dv(z) < < +o0.

du(E)

Thus, vk (F) < +oo.

Assume, conversely, that vx(E) < 400 and dpuyg is the K-equilibrium mea-
sure of F.

If 0 < v (F) < 400, then

W= Sm
is in I'Z and
1
du(FE) = > 0.
(&) Vi (E)

Therefore, Cx (E) > 0.
If i (E) < 0, then dug € T'E and

Ci(B) > duo(E) = 1.
Proposition 8.5 If K is a non-negative kernel, then
’yK(E) > 0

for every compact set E.
This is, also, true if K is the logarithmic kernel in R2 and E C B(0;1).

Proof:
Let vk (F) < 400 and consider the K-equilibrium measure dug of E.
Then, by Theorems 7.1, 7.2 and 7.4,

1k (E) = Ik(dpo) > 0.

Consider, now, for any compact set E, the three extremal problems
(1) v (E) = inf Ix (dp) over all probability Borel measures du supported in E,
(I1) A = inf du(R™) over all non-negative Borel measures du supported in a
compact set with Uf(“ >1 g-a.e inkE,
(III) Ck (E) = supdu(E) over all non-negative Borel measures du supported in
E with U}é“ <1 everywhere in E.
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Theorem 8.5 Suppose that E is a compact set with vk (E) > 0. Then, the
three extremal problems (I), (II) and (III) are equivalent in the sense

In case 0 < yx(E) < 400, the problem (I) has a unique solution, the K-
equilibrium measure duo of E, and (III) has, also, a unique solution, the measure
#(E) dpg. The same measure is, also, a solution of problem (II) whose solution,
though, may not be unique.

If vk (E) < 0, then the problem (I) has, again, the K -equilibrium measure
of E as its unique solution, but

and the problems (II) and (III) have no solution.

Proof:
1. Suppose that v (E) = +o0.

By Theorem 8.4, Cx(E) = 0. Considering the zero measure, we find that
A=0.
2. Now, let 0 < vy, (F) < 0.

Consider the K-equilibrium measure dpg of E, which is the unique solution
of problem (I), and define

1
d = ——— duo .
1241 'YK(E) Ko

Then, du; € I‘ﬁ and, thus,

Ck(E) > dp(E) = vKtE) .

On the other hand, let dv be any measure qualifying for problem (III).
By Lemma 8.1, dv({z € E : Ud(z) < 1}) = 0 and, hence,

L dv (g T) = A () dv(z v
— @) > [V dne) = [ U@ ae) > a).
Therefore,
1
Yk (E) > Ox(B)
and, hence,
! = Ck(FE)
w(®E) T

Furthermore, dy is a solution of problem (III).
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Suppose, now, that dv is another solution of problem (III). Then,

Ig(dpy —dv) = Ig(du)— Q/EU}?”(x) dv(z) + Ix(dv)

Ck(F)—2Ck(E)+ Ck(E)
0.

IN

By Theorems 7.1, 7.2 and 7.3, dv = du;.
The measure du; qualifies for problem (II) and, thus,

A < Cx(E).

Let dv be any measure qualifying for problem (II). Then, by Lemma 8.1,

Cx(B) < [ V@) dm@) = [ V@) dvle) < (R

Therefore,

and the proof is complete in case vx (E) > 0.

Now, assume that vx (E) < 0.

If we consider the K-equilibrium measure, djug, of E, then, for every a > 0,
the measure adygy belongs to I‘}E( and, thus,

Cr(E) > adu(E) = o.

Since « is arbitrary,
Ck (E) = 400

and the problem (IIT) cannot have a solution.
On the other hand, suppose that there is some dv qualifying for problem

(11).

Then, by Lemma 8.1,
L2 [ U@ dut) = [ U@ dvls) < (B |
E n

Since 0 < dv(R™) < +o00, this is impossible and, hence, there is no measure
qualifying for problem (II). Thus,

A = +00.

Example
Let £ = S'in R? and K,(r) = log™ 3,
By symmetry and uniqueness, the K-equilibrium measure of E must be

1
dﬂo = gd@’
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and )
Uo(e) = 5 | K(zy) doly) .
™ Js1
If |z| < 2, then
Ul (z) = log3+ = log do(y) = log3 —log™ |z .
K 21 Jgn lz =yl
Therefore,
Ik (dpo) = log3
and 1
Ck(E) = .
K (B) log 3
Consider the measures
1 1
i vi (E) Ho 2mlog 3 7
and .
d —
v log 3 0
Then,
3
Ul (z) = logt — =1
K (@) log 3 0g iz|

when |z| = 1.
Hence, dpy and dv are two solutions of problem (II).

Example

If A is a countable set, then C% (A) = 0 with respect to any kernel.

By Lemma 8.2, it is enough to consider the case A = {z(} and, since all
non-negative measures supported in {zo} are of the form

addy, | a>0,
we, then, have
U;dézo = aK(x,xq) .
This is bounded from above in {z} only if @« = 0 and, hence, the only

. T .
measure in F%O} is the zero measure.

This implies that
Crx({xo}) = 0.
Theorem 8.1 implies that Cx(A) = 0 for every countable A and every non-
negative K and, also, for every bounded and countable A and every K of variable
sign.

Example

If the compact set F has positive Lebesgue measure, then C'x (E) > 0 for all
kernels.

This is true because dm, restricted in F, defines a potential which is bounded
from above.
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8.3 Transfinite diameter

Theorem 8.6 If E is a compact set, define

M, = inf — K(

LS B YKy
and )

D,, = inf ——— K(x;,x;) .
w1 €F m(m — 1) Z (@i, ;)
1<i<j<m
Then,
T’IE)I—I‘:DO Mm - 77l1—1>r—r‘r100 Dm - ’YK (E) :

Proof:

We divide the proof into steps.
Step 1.

Since K is continuous in (R™ x R™)\ {(z,z) : x € R"}, if K is of first type,
orin (2 x Q) \ {(z,z) : x € Q}, if K = G is of second type, it is easy to see

that there exist z1,...,z,m+1 € E so that
Dy = 2 Z K(xz;,zj) .
(m+ 1)m 1<ilTom
Rewrite
m+1 m+1
Dy = m—l—l( Zle,xj +Z ZK%,%)-

1=2 j=i+1

Observe that the second sum in the last equality does not depend on z; and,
hence, 1 minimizes — ZmH K(z,x;).

Therefore,
m—+1

= Ky <

VAN
=

Similarly,

for all 7 and, thus,

for all m.
Step 2.
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If vk (E) < 400, consider the equilibrium measure dyg of E. Then, for all
T1y.e. s Tm € F,

inf lZK(az,gcj) < %Z/EK(%%) dpo(r) < vx(E)

zeEm

and, hence,
for all m.

This is, also, true in case vi (F) = +oc.
Step 8.

Consider x1,...,Z,, € F so that

1
Dy = ——— 3 K(xi,1

and define the probability Borel measure

Consider, also, the trunkated kernel
KN(xv y) = mln(K(x7 y)? N) .
Then,

Kn(9) (@) dvn() = =3 [ Ku(e,ay) don(o)
EJE mi3J/E

LSS K+ )

G=1 iy

IN

1 N
7m(m_1) ;K(x“x])—i-m .

Choose any subsequence {my} of m’s so that
1. Dy, — liminf,, 4o Dp,
2. dvmy, — dv weakly in

as k — 400, where dv is a Borel probability measure supported in E.
Then, by the the weak convergence dv,,, X dvm,, — dv X dv in E x E and
the continuity of Ky in F X F,

s i avty) = tim [ ] st dv @) dvn, )

k—+o00

IA

liminf D, .
m——+oo
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Letting N — 400, we find

vk (E) < Igx(dv) < liminf D,, .

m——+00

After these three steps we have

vk (E) < liminf D,, < limsupD,, < limsupM,, < vx(E)

m——+o0o m—-+oo m——+00

and

vk (E) < liminf D, < liminf M, < limsup M,, < vk(E) .

m—+o00 m——+o00 m——+o0o

The proof is, clearly, complete.

Proposition 8.6 If E is a compact set with v (E) < 400, x1,...,%, € E are
such that D,, = m Zi# K(z;,zj) and dvy, = > id&,;j, then

j=1m
dvpy, — dug
weakly in E, where dug is the K -equilibrium measure of E.

Proof:
Since D,,, — vk (E), in Step 3 of the proof of the Theorem 8.6 we proved
that, if dv is any limit point of dv,, in the weak sense in F, then,

vk (E) < Ig(dv) < liminf D,, = vx(E) .

m——+oo

Thus,
’}/K(E) = IK (du)

and, by the uniqueness of the K-equilibrium measure of E,
dv = duy .
Definition 8.8 If E is a compact set, then the number
dg(E) = e~ (E)
1s called the K-transfinite diameter of E.

Proposition 8.7 Let K be any kernel of first type, E and E' be two compact
sets and f : E — E' be surjective and a contraction.
Then, dx(E') < di(E).

Proof:
We have to prove that yx(F) < yx (E').
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Consider points z},...,z,, € E' so that the quantity D!, corresponding to
E',is
1
D = — Kz, 2
m m(m — 1) ; ( @ j)
Consider, also, points x1,...,x,, € F so that
flzy) = af .

Since f is a contraction and K depends upon the distance of its two argu-
ments,

1 1
D, < ——— K(z;,z;) < —— > K(al,2") = D!

We finish the proof, by letting m — +oc.

Example

If K is of first type, then rigid motions preserve K-transfinite diameter and
K-energy. It is, also, trivial to see through the definition that they preserve
K-capacity.

8.4 The Theorem of Evans

Theorem 8.7 (Evans) Suppose that E is a compact set with v (E) = +00
or, equivalently, Cx (E) = 0. Then, there exists a probability Borel measure du
supported in E so that

Uld(” = 400
identically in E.
Proof:
Consider points z1,..., T, € E so that
inf —iK(x,x ) > le
zeE M = J 2

and the probability Borel measure

1 m
i, = %;d% .

which is supported in F.
Since M,, — +oo, there is a sequence {my} so that

/ K(2,1) ditm, () > 2*
E
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for all x € E.
Now, construct the probability Borel measure
00 1
k=1
which is, also, supported in E.
Then,
J +o0 1 4
by,
URi(e) = 32 pUk ™ (@) = +o0
k=1
for all z € F.

Theorem 8.8 Suppose that du is a non-negative Borel measure supported in a
compact set and that
Uf(” = 400

identically in some set A.
Then, the bounded set A is K -capacitable and

Ck(A) = 0.

Proof:

Consider the open sets

Om = {z:UM(z)>m},

an arbitrary compact E C O,, and a non-negative Borel measure dv € I'Z.

Then,

1 dp 1 dv 1 n
a(E) < — [ Ul@) dv(e) = — [ UP() dule) < — du(R™) .
E m

m m Jrn

Hence, Cx(E) < L du(R™) and, thus,

1
< — ™.
Cx(On) < — du(R?)
Therefore,

, 1
0 < Ck(4) < CR(4) < Cx(Om) < - du(R™)
for all m, implying _
Cx(4) = Cx(4) = 0.

Thus, Theorem 8.7 appears as a partial converse to Theorem 8.8: if the
compact set A satisfies C (A) = 0, then it is the +oo-set of the K-potential of
a compactly supported non-negative Borel measure.

In section 9.7 this matter will be fully explored in the case K = h.
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8.5 Kernels of variable sign

As Theorem 8.5 shows, if E is a compact set and v (E) > 0, then Ck(E) =
#(E) . But, if yx(E) < 0, then Cx(E) = 4+o00. Proposition 8.5 shows that
the situation is simple when the kernel is non-negative and, especially, when the
dimension is n > 3.

To get around the complication arising in case of a kernel of variable sign
when the dimension is n = 2, we may use another definition of capacity.

Definition 8.9 If E is a compact set, the Robin-K -capacity of E is defined

by
Cxr(BE) = e B = qp(EB).

Observe that, if v (F) > 0, then
Cx.r(E) = ¢ Tx®
while, if 7 (E) < 0, then

OK7R(E) > 1 and OK(E) = 400 .

Therefore, the compact sets of zero K-capacity are the same as the compact
sets of zero Robin-K-capacity.

Also, if {F,,} is a sequence of compact sets, then Ck (FE,,) — 0 if and only
if CK,R(Em) — 0.

We may give the following definitions.

Definition 8.10 For every set A its inner Robin-K -capacity is defined by
C’}'(,R(A) = sup{Ck,r(E) : E is a compact subset of A}

and its outer Robin-K -capacity is defined by
Cir(A) = inf{C’}'QR(O) : O is an open set with O D A}

The inequality '
Cir(A) < Ck gr(A)

is obvious, while the proof of the next result is trivial and is based on the
definitions.

Proposition 8.8 1. If By and E5 are compact sets with Ei C FEo, then
Yk (E2) < vk (E1) and Ck r(E1) < Cr r(E2).

2. If A1 g AQ, then C}'(,R(Al) S C}(R(AQ) and C%7R(A1) S C?(,R(Ag).
From Proposition 8.8(2) we get

Proposition 8.9 For every open set O,

C;{,R(O) = C;){,R(O)'
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Proposition 8.10 For every compact set F,
Ckr(E) = Ck r(E) = Ck.r(E).

Proof:
From Proposition 8.8(1) we have

Ckr(E) = Ck.r(E)
and from Proposition 8.8(2),
Ckr(E) < Ckp(E) .
Assume, now, that Cx r(E) < +o0o0 and consider the compact sets
E° = {z:d(z,E) <}

and the open sets
0° = {z:d(z,E) <6},

where ¢ is small enough so that E° C Q in case K = G,

These satisfy
E C O C E°.

As § decreases v (E°) increases and let
vk (E°) 1T a

for some a < yx(E).
Suppose that o < vy (F) and consider the K-equilibrium measures dug of
E9.
Then, there is some sequence & so that
dug"‘ — du

weakly in FE, for some probability Borel measure du supported in E. From
Proposition 6.3,

vk (E) < Ix(dp) < liminf Ig(dudt) = a .
k—4oc0
We, thus, get a contradiction and, hence,

vk (E°) 1 vk (E) .
Therefore,
Ck.r(E°) | Ckr(E),
from which we, immediately, get that

Ci r(0%) | Ckr(E)

and, finally,
Ck.r(E) = Ckr(E) .
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Definition 8.11 The set A is called Robin-K -capacitable, if C}(,R(A) =
Ct% r(A) and we, then, define its Robin-K -capacity by

Cr.r(A) = Cir(A) = Ckg(4) .
The proof of the following is trivial.

Proposition 8.11 If O} (A) < +oo or, equivalently, if Oy (A) <1, then the
set A is K-capacitable if and only if it is Robin-K -capacitable and, in this case,

Ci.r(A) = ¢ TR0 .

If C%(A) = +oo or, equivalently, if C%,R(A) > 1, then the set A is K-
capacitable and Ck(A) = +00.



Chapter 9

The Classical Kernels

In this chapter we study the particular case of the so-called classical kernels:
the Newtonian and the logarithmic kernels and, also, the Green’s kernel related
to an open set with a Green’s function in all its components.

9.1 Extension through sets of zero capacity

Theorem 9.1 Suppose that Q@ C R™ is a bounded open set and E is a compact
subset of Q. Let K = h be the Newtonian or the logarithmic kernel or K = G*.

Then vk (E) = 400 or, equivalently Cx (E) = 0, if and only if every function
which is harmonic and bounded in Q\ E can be extended in E so that it becomes
harmonic in €.

Proof:
Suppose that vx (F) = +oo and consider an open set £2; with C'-boundary
so that
EC O CQ

and H$¥', the solution of the problem of Dirichlet in ; with the restriction of
u in 0€); as boundary function.

The third example in section 8.2 implies that 0F = E. Therefore, by The-
orem 8.7 and Proposition 6.1, there is a superharmonic function v in €y so
that

v >0

everywhere in Q; \ F and

lim  wv(z) = 400
Qi \Edz—y

for all y € E.
From Theorem 3.4, we have that FE is of zero harmonic measure with respect
to Q1 \ E as a subset of its boundary.

237
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Now, HS — u is harmonic and bounded in ©; \ E. Also, by Proposition 3.6
and Theorem 3.7,
lim (H —u) =0
Qi \Edz—y
for all y € 092;.
By Theorem 3.5,
u = Hf}l

identically in O \ E.
Therefore, the extension of u which is harmonic in € is

u, in Q\ E
H» inE.

Now, assume that yx (E) < 400 and let djip be the K-equilibrium measure of
FE and Ufj‘“ the corresponding K-potential. By Theorem 8.2 and Proposition
6.1, this is a bounded harmonic function in Q\ E. If there is a function u
harmonic in Q with v = Uf(“ ? everywhere in Q\ E, then the superharmonicity
of Uf(” °in © and the Minimum Principle for superharmonic functions imply
that u = U;l{“ ° everywhere in €.

Thus, —kpdug = AUId(“ ® = 0 in Q, contradicting that dug is a probability
Borel measure.

9.2 Sets of zero harmonic measure

Definition 9.1 A compact set E C R™ is said to be of zero harmonic mea-
sure, if, for every R with E C B(0; R), OF is of zero harmonic measure with
respect to the open set B(0; R) \ E.

Lemma 9.1 Suppose that Q@ C R™ is a bounded open set and E is a compact
subset of OQ. If E is of zero harmonic measure, then OE = E is of zero
harmonic measure with respect to €.

Proof:
Consider a large enough R so that Q C B(0; R) and an arbitrary xo € Q.
Then
d,uB(O?R)\E(E) =0.
o

If
B(0;R)\E
u € BBOR\

)

then, by the Minimum Principle for superharmonic functions, we get that « > 0
in B(0; R) \ E and, hence,
Q\E
u € CIDX; .

This implies that

duB(O:’R)\E(E) > duQ\E(E)

Zo — Zo
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and, thus,
d,uQ\E(E) =0.

Zo

Lemma 9.1 implies that a compact set £ C R™ is of zero harmonic measure
if and only if OF is of zero harmonic measure with respect to every bounded
open set 2 with 0F C 0.

Theorem 9.2 Suppose that E is a compact set in R™. Then E is of zero
harmonic measure if and only if Cp(E) = 0.

proof:
1. Let C,(F) = 0 or, equivalently, v, (E) = +o0.

We showed in the proof of Theorem 9.1 that, for every B(0; R) containing
E, OF is of zero harmonic measure with respect to B(0; R) \ E and, hence, that
E is of zero harmonic measure.

2. Suppose, conversely, that F is of zero harmonic measure.

If v, (FE) < 400, and dpyg is the h-equilibrium measure of E, then, for all R
with E C B(0; R), U is a bounded harmonic function in B(0; R) \ E. This
is true due to Theorem 8.2 and the superharmonicity of U ,‘f“ 0.

By Theorem 3.5,

Ui@) < M(R) = max Ui(y)

for all x € B(O; R) \ E.

If R — 400 and n = 2, then M(R) — —oo and we get a contradiction, since
Uff“" results to be identically —oo in R?\ E.

If R — 400 and n > 3, then M(R) — 0 and we get that

Ui =0
in R™\ E and, by the Minimum Principle for superharmonic functions, in R".
Therefore, dyg is the zero measure and we, again, arrive at a contradiction.
9.3 The set of irregular boundary points

Lemma 9.2 Suppose that Q) is a bounded open set, xg € Q and A > 0.
IfQ* = {z € Q: G (x) > A}, then Q* is an open connected set containing
T and

A (0 N o) = 0.
Moreover, the function
Q A
G, () =X, x e,

is the Green’s function of Q with respect to xg.
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Proof:
1. That Q" is open and contains zg is clear.

Suppose that Q* has a connected component O not containing xy. By defi-
nition, G;?o — hy, is the least harmonic majorant of —h,, in (2.

Consider the function

A= gy, ifxeO
u@) = G2 b, ifze\O.

This is, obviously, a majorant of —h,, in 2 and it is easy to see that it is
superharmonic in €. Therefore, u > Ggo — hy, everywhere in {2 and this is false
in O.

2. Now, let
Q/\
v e \leafz%man
and consider the function
vy = max(v,0) .

Then,
1. v; is subharmonic in Q*,
2. vy is bounded from above in Q*,
3. limgas, sy v1(z) =0, if y € 90\ (99> N Q) = 00 N Q and
4. limsupgrs,, vi(z) <1, ify € o0 N ON.
Hence, the function
Viz) = Ggg(x) — () , re,
is superharmonic in Q* with

liminf V(z) > 0

Qrsz—y
for all y € 90 and, by the Minimum Principle for superharmonic functions,
V>0

in Q.
If, now, we define

V(z) = G (z), 2eQ\Q,

then V' is superharmonic and non-negative in 2 and, hence, V — h,,, is a super-
harmonic majorant of —hg, in Q.
Therefore,

V > G
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in Q, implying that
in O* and, hence,

in Q*. Therefore,

o* A o*
dty, (027 N0Q) = Hxamﬁm(xo) =0.
3. Consider, now, a small 6 > 0 so that B(xg;d) C Q and the number M =

MmaXgeS(xg;d) Ggo (:E)
The set QM is, as we showed in part 1, connected and, hence, it is contained
in B(zo;0). Therefore G is bounded in €\ B(zo;d). For the same reason,

Gg; is bounded away from some neighborhood of z.
4. The function Ggo — A — hy, is a harmonic majorant of —h,, in Q* and, hence,

G2 -\ > G

in Q.
The function N
Gy — G2+

is harmonic in Q* and, by the continuity of Ggo at all points of 9Q* N €,

liminf (G2 () — G2 (x) + ) > 0

QX >z—y

for all y € 00> N Q.

From part 3, we have that this function is bounded in Q* and, from part 2,
that 0Q* N IQ is of zero harmonic measure as a subset of 9Q*. We, thus, get
by Theorem 3.5 that,

Q Qr
G -\ < G¥

in Q.

Theorem 9.3 If ) is a bounded open set, then the set of its irreqular boundary
points is of zero h-capacity and, hence, of zero harmonic measure with respect
to Q.

Proof:
Let g €  and consider an arbitrary A > 0 and the set

Q= {zeQ:G)(x) > )} .

If Ay = 0Q* NN, we shall prove that C},(Ay) = 0.

On the contrary, suppose y,(A4yx) < +oo and let dug be the h-equilibrium
measure of Aj.

Then,
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1. UM < 45,(Ay) everywhere and

2. U,ﬁf“o = ,(A)) quasi-almost everywhere in Ajy.

Now, consider some g with 0 < g < A\. By Lemma 9.2, Ggo — is the Green’s
function of Q* with respect to xg.
By Proposition 5.5, the function

Ry (%) — » ho(y) du(y) , =€ R™\ {ao},

is a subharmonic extension of G — in R\ {zo} and, by upper-semicontinuity,
for all z € Ay,

hao (2) — ho(y) dpsh (y) > limsup G (z) —p > A—p > 0.
1519123 O cx—z

Therefore,

IN

d—i 2 [ (= [ hew) 4 0) diole)

= U () - / U (y) du (y)
oOr

Every point of Q% N2 is a point of continuity of G;{j Hence, by Theorem
5.4, every such point is a regular boundary point of Q2#. Therefore, by Theorem
3.7, the function

Ut (z) — ” U (y) du(y), e ",

which is harmonic and bounded in 2#, has zero boundary limits at all points of
oW\ A,. Since A, is of zero harmonic measure with respect to the set Q#,

U;f“"(x)—/m U (y) du (y) = 0

for all x € Q.
Applying this to z = x(, we get a contradiction.
Therefore,
Crh(Ay) = 0.

By Theorem 5.4, the set of irregular boundary points of €2 is the union of
A for all m € N. Theorem 8.1 concludes the proof of the first statement.
"The set of irregular boundary points of 2 is a Borel set. By Theorem 9.2 and
Lemma 9.1, all its compact subsets are of zero harmonic measure with respect
to Q and, thus, the set itself is of zero harmonic measure with respect to €.
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9.4 The support of the equilibrium measure

Proposition 9.1 Suppose that E C R™ is a compact set with ~y,(F) < 400.

Then, the h-equilibrium measure dug of E is supported in the, so-called,
outer boundary of E; namely, the set 0O, where O is the unbounded connected
component of @ = R™\ E.

Proof:
Since
Ut = y(E)

quasi-almost everywhere in F, we get, by the last example in section 8.2, that
d
UM = m(E)

almost everywhere in F.

If O is a component of  different from O, then U,‘f“ ° is harmonic and
bounded in O’ and has boundary limits equal to 74 (E) in 90" except in a
subset of 90’ of zero harmonic measure. Therefore,

U = y(E)

everywhere in O’.
We conclude that
Ut = y(E)

almost everywhere, and, hence, everywhere in the interior of R™ \ O. This
implies that
—Kndpy = AU,?“O =0

in the interior of R™\ O.

Example.

Let E = B(xo; R).

Then, the h-equilibrium measure dug of B(zo; R) is supported in S(xo; R).
By the rotation invariance of vy, (B(zo; R)) = In(djuo) and the uniqueness of the
h-equilibrium measure, we get that dug must be rotation invariant and, hence,

1

is the normalized surface area measure of S(xo; R).
Thus,

w(BEi ) = Ui = [ ) )

. _ log%7 ifn=2
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Example.

Let E = B(xo;r, R) with 0 <r < R.

Then, the h-equilibrium measure dug of B(xg; R) is supported in S(zg; R)
and, exactly as before, we get that

Y (B(zo;r, R)) = h*(R) .

Proposition 9.2 Suppose that E is a compact set with v,(E) < +oo and let
the open Q C R™ contain E.
Then, y € OF is a regular boundary point of Q\ E if and only if

im UM (@) = w(E)

Q\E>z—y
where dug s the h-equilibrium measure of E.

Proof:

Since the notion of regularity has a local character, we may assume that 2
is equal to some large enough ball B(0; R).

Let V be the generalized solution of the Dirichlet problem in B(0; R) \ E
with boundary function

Y(E) , ify e OF
Upo(y), ify e S(0;R) .

If y € OF is a regular boundary point of B(0; R) \ E, then, by Theorem 3.7,
im (o, p)\ B2y V (2) = Y0 (E).

If, conversely, limp(o;r)\ Esz—y V (%) = Ya(£), then the function v, (E) —V
is a barrier at y with respect to B(0; R) \ E.

V and U;f’“’ are bounded and harmonic in B(0; R) \ E and they have the
same boundary limits at all points of S(0; R).

V has boundary limit equal to v, (E) at every y € OF, except at every irre-
gular y. But, by Theorem 9.3, the set of irregular boundary points of B(0; R)\ E
is of zero harmonic measure with respect to B(0; R) \ E.

U;Li“ ° has, also, boundary limit v,(E) at every y € OF, except at every
y € OF with U;f“o < Y,(E). But, by Theorem 8.2, all these y’s belong to a
Borel set of zero h-capacity and, hence, of zero harmonic measure with respect
to B(0; R) \ E.

By Theorem 3.5,

Ue = v

in B(0; R) \ E and the proof is, now, clear.

9.5 Capacity and conformal mapping

We shall, now, study, in the framework of potential theory, a fundamental sub-
ject of complex analysis, namely the existence of conformal mapping between
simply connected open sets.
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Lemma 9.3 If I is any compact linear segment in R2, then Cy,(I) > 0.

Proof:
If du is the linear Lebesgue measure on I, then we easily estimate

In(dp) < +o00.
Proposition 9.3 If E is any continuum in R2, then Cj,(E) > 0.

Proof:
Let a,b € E with a # b and consider the segment I = [a, b].
If
Pr:E — FE

is the orthogonal projection of E on the line containing I, then this function is
a contraction and E' = Pr(E) D I. From Proposition 8.7,

dh(E) > dh(E/) > dh(I) > 0.

The following is just an extension of the corresponding definition for subsets
of R2.

Definition 9.2 An open set ) C R2 is called simply-connected if it is connected
and R2\ Q is, also, connected.

It is clear that symmetry with respect to any circle preserves the property
of simple-connectedness.

Through the Kelvin Transform and in view of Proposition 9.3, the first part
of the next result is identical to the well known theorem of complex analysis.
The proof which is presented here is not the standard proof presented in the
elementary graduate courses of function theory. It is based on the existence of
the Green’s function and, thus, the proof is reduced to a maximization problem,
exactly as the standard proof.

Theorem 9.4 (The Riemann Mapping Theorem) Suppose that € is a simply-
connected open subset of R? with oo € Q and E is its (compact connected)
complement. Then, there is a conformal mapping of Q onto B(0;1), i.e. a
function
¢:Q — B(0;1),
which is one-to-one in Q, onto B(0;1) and holomorphic in Q, if and only if
Ch(E) > 0.
In this case we can arrange it so that, also, ¢p(o00) = 0 and, then necessarily,

|¢/(00)| = e ) = dy(E) = Chr(E)

and L
G (z) = log —— , x e,
|¢(2)]

1s the Green’s function of Q) with respect to co.
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Proof: 1. Suppose that
¢:Q — B(0;1)

is one-to-one, onto, conformal and that ¢(o0) = 0.

If E = {a} consists of only one point, then the Kelvin Transform ¢* of ¢ with
respect to any circle centered at a is bounded and holomorphic in R2. Both its
real and its imaginary parts are harmonic functions bounded in R? and, hence,
by the Theorem of Picard, ¢* and, therefore, ¢ is a constant function. Similarly,
if E is empty, then the restriction of ¢ in R? is bounded and holomorphic in
R? and, hence, is constant.

We conclude that E has more than one point and, since F is a continuum,
Proposition 9.3 implies that Cy(E) > 0.

2. Suppose, conversely, that Cj,(E) > 0 and consider the h-equilibrium measure
dpg of E and the h-potential

. 1
Ut (x) = /Elogm duo(y) zeR?.

After a translation, we may suppose that 0 € E.
By Theorem 8.2, the function

Ula) = w(E) = Vi#(a) = logla] +90(E) = [ og  duo(y)

is non-negative in 2\ {oo} .
Hence,

|z]

() / log dpo(y) > —logle| = —hoo(z)
E |$—y|

for all z € Q\{oo} and we observe that the left side of this inequality is harmonic
in Q\ {oo} and that its limit at oo is the finite number ~,(F). By Theorem 4.1,
it is a harmonic majorant of —hs, in Q. Therefore, 2 has a Green’s function
with respect to oo and, moreover,

G: < U

in Q.

We shall, in fact, prove that G2 = U in €.

Since, by Proposition 3.5, all points of OF are regular boundary points of €,
Proposition 9.2 implies that

. dpo _
dm Ui ) = 5 (E)

for every y in OF. We may observe that in this particular situation, where all
points of OF are regular boundary points of §2, the proof of Proposition 9.2
simplifies, as it does not need Theorem 9.3.
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Now, let u be any harmonic majorant of —h., in 2 and consider the function

||

|z —y|

V(z) = —ue) +m(E) - /E log dpoly) = eQ\ {oo} .

V' is harmonic in 2 and

V(z) < m(E)— U ()

for all z € 2\ {oo}. Hence,

limsupV(z) < 0
Qdx—y

for all y € OF. We conclude that
V <0
in Q. Therefore,

%(E)*[Elog |x|f|y dpio(y)

is the smallest harmonic majorant of —h., in €2 and, finally,

Go(x) = %(E)—/ log 12

E |z —yl

dpio(y)+heo (z) = n(E)=UM* (2) reN.

3. We, now, define

||

) = ()~ | o dioly),  weQ.

|z =yl

We have, already, seen that h is the smallest harmonic majorant of —h., in
Q and that G () = log|z| + h(z), = € Q.

Since €2 is simply connected, there is, by Theorem 1.4 through the Kelvin
Transform, a harmonic conjugate g of h in €.

Consider, also, the many-valued function

Fl(z) = arg(z) +g(x), zeQ\{oo},
and the single-valued
$(z) = e CL@-iIFL@) _ é ch@=is®) e 0\ foo}
which, by Theorem 4.1, is analytic in §2, since the right side is analytic in Q

with value 0 at oo.
4. We consider, for every A > 0, the open sets

Q= {z2eQ:G%(x) >N} .
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If v € Q and G'%(z) = A, then in any B(x;r) C Q\ {oo} there are points of
0*. Otherwise, by the Maximum-Minimum Principle, G}, would be constant
in B(z;r) and, by Theorem 1.10, in the connected 2\ {oo}. Hence, 2 belongs
to ON*.

Conversely, if x belongs to 9Q*, then = € Q. Otherwise, z € OF and x
would be a regular boundary point of €2, implying that limgs, . G2 (2) = 0.
But limgas,_,, G (2) > A, resulting to a contradiction. Thus,

OV = {2 eQ:GL(x)=\} = {z€Q:|p(x) =}

Since ¢’ is holomorphic in €, its zeros (the critical points of ¢) are at most
countably many. Therefore, the set of critical values,

{w: w = ¢(z) for some x € Q with ¢'(z) = 0} ,
is at most countable. Furthermore, the set
A = {A>0:e* = |w| for some critical value w of ¢}

is at most countable.

If A >0 and A ¢ A, then the function e=2* — |¢|? is a C°°-defining function
of Q* at all its boundary points.

Now, Q* is an open subset of 2 with C''-boundary, ¢ is holomorphic in Q
and ¢(9Q*) C S(0;e?).

By Theorem 0.7 applied through the Kelvin Transform, for every value y €
B(0;e~?) the total multiplicity of all solutions of the equation ¢(z) = y, z € Q*,
is equal to the multiplicity of the only solution, co, of ¢(x) = 0. Since

#/(00)] = Jim [ao@)] = ") = e 40,

this multiplicity is exactly 1. Hence, ¢ is a bijection of Q* onto B(0;e™*).

Considering a sequence of \’s in R™ \ A converging to 0+, we conclude that
¢ is a bijection of © onto B(0;1).
5. Suppose, now, that ¢ : Q@ — B(0;1) is another conformal mapping with
(o0) = 0.

We can prove that

i @) = 1

for all y € 99Q. In fact, let {x,} be some sequence in Q with z,, — y € 9Q
and ¢(z,) — wo for some wy € B(0;1). Take z¢ € 2 so that ¥ (zg) = wp and
consider a small disc B(zo;0) € Q. Since ¢ is one-to-one, wy & ¥ (S(wo;9))
and, by Theorem 0.7, every w which is close enough to wy can be written as
w = ¢(z) for some x € B(xg;d). But, eventually, all w,, = ¢(x,) are close to
wo while x,, ¢ B(xzo;d). This is impossible, since 9 is one-to-one.

Now, since % is holomorphic at co and 1(c0) = 0, we have that ¢'(c0) =
lim, o 29 (z) € C and, therefore, the function

log —log|z| , e,

1
¢ ()]
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is harmonic in €.
This implies that the function

1 1 1
 log = G2(2) —log ——,
[¢(z)] ()] |4 ()|
is harmonic in 2. Its boundary limits are all 0 and, hence, it is identically 0 in

Q.
Now, it is clear that

log re,

¢/ (00)] = e (B

and .
G (z) = log , z e
()]
Example
Consider the line segment I = [, 1].
If Q = R2\ I, then the conformal mapping ¢ : Q@ — B(0;1) is the inverse
mapping of
l 1
v = (vt ;) ~
Therefore,
) ) l 1 l 7]
— — ! — — — — = - =
Cunll) = dll) = |00 = Jim lao(@) = lmlys (vt )| = 5 = 7
and, thus,
4
() = log —

1

9.6 Capacity and Green’s function in R?2

We shall state and prove a characterization of all open subsets of R? which have
a Green’s function in each of their components.

We remember that the problem in R™ is completely solved, if n > 3, since,
in this case, all open sets have a Green’s function.

We, also, observe that, if the open set {2 has more than one components,
then it has a Green’s function in every one of its components. This is true
because, in this case, every component is disjoint from some ball.

Hence, it is no loss of generality to assume that the open set € is connected.
It is equivalent, through an application of the Kelvin transform, to consider the
case of a connected open set ) containing co.

Theorem 9.5 Suppose that the open connected set @ C R2 contains oo and let
E be the (compact) complement of Q.
Then, Q has a Green’s function if and only if Cp,(E) > 0.
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If Ch(E) > 0, then
GL(z) = Wm(E)-U (@), =z€Q,

where dug is the h-eqilibrium measure of E.

Proof:

If O = R2, then we, already, know that Q has no Green’s function and, also,
that E = () has zero logarithmic capacity.

Hence, we assume that there is at least one point not in 2 and, through a
translation, we may assume that 0 ¢ €.
1. Suppose, now, that Cy(E) > 0 or, equivalently, that

'Vh(E) < +00.

Consider the h-equilibrium measure dug of F and the h-potential

. 1
Ut (x) = /Elogm duo(y) zeR?.

By Theorem 8.2, the function

Ue) = w(B) - Ui (o) = toglel + m(E) ~ [ 1og " duoty)

is non-negative in Q \ {oo} .
Hence,

X
(E) - / log "L duo(y) > —logle] = —h(e)
E |$—y|

for all z € Q\ {oo} and we observe that the right side of this inequality is
harmonic in 2\ {oo} and that its limit at co is the finite number v, (E). By
Proposition 4.7, it is a harmonic majorant of —h, in €2 and, therefore, 2 has a
Green’s function with respect to oo and, moreover,

G: < U

in Q.
2. If Q is a regular set, then we repeat part 2 of the proof of Theorem 9.4 and
conclude that GSL, = U in Q.

In general, since F is capacitable, we may consider a sequence of open sets
Oy, so that E C Oy, C {z : d(z,E) < £}, Ch(On) L Ch(E) and Oppy1 € O,
for all m. We take, next, open sets N,, with Cl-boundary so that O,,,; C
Ny, € N, € Oy, and let ,,, = R2\ N,,,. Then, Cy(N,,) | Cx(E) and, by the

previous discussion,

G = (W) — U

everywhere in €2,,,, where dug ,, is the h-equilibrium measure of N,,.
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Since Q,, 1 €, Theorem 5.2 implies that G2 1 G everywhere in €.
Therefore,

GL(x) = m(E)— lm UM (2)

m——+00
for all x € Q.

If we fix an x € Q and, then, take an mg so that mio < %d(w, E), we have that
all measures dpg m, m > my, are supported in the compact set {z : d(z, E) <
1d(z, E)}. Taking any subsequence dpg,m, weakly converging in this compact
set to some probability Borel measure dv, we easily get that dv is supported in
FE. By Proposition 7.1,

In(dv) < lkim+inflh(d,uoymk) = liminfy,(Np,) = mm(E) .
— 400

k—+oco

By Theorem 8.2, I},(dv) = yn(E) = I (duo) and, by Theorem 8.3, dv = duy.
Hence, every weakly convergent subsequence of {djg.,} has dug as weak limit
and this implies that {dpo,m} converges weakly in {z : d(z, E) < 3d(z,E)} to
dﬂo.

Since the function h, is continuous in {z : d(z, ) < 3d(z, E)},

U (x) — U (a) .
Thus,
GL(x) = m(E) - U (x)

for every z € (.
3. Assume, conversely, that Cy(E) = 0.

If —hs has a harmonic majorant h in (2, then, for every R which is large
enough so that £ C B(0; R), we have that h(-)+log|-| is harmonic and bounded
from below in B(0; R) \ E and

h(y) +logly| > m(R)+logR

for all y € S(0; R), where m(R) = ming(o;g) h-
Since, by Theorem 9.2, F = F is of zero harmonic measure with respect to
B(0; R) \ E, we get from Theorem 3.5 that, for every € B(0; R) \ E,

h(z) +log|z| > m(R)+logR .
Now, since limpg_, 1 oo m(R) = |h(c0)|, letting R — 400, we get
h(z) = +oo .

We, thus, arrive at a contradiction and, hence, Q2 has no Green’s function.

9.7 DPolar sets and the Theorem of Evans

Definition 9.3 A set A C R™ is called locally polar if for every x € A there
is some B(xz;7) and a function u superharmonic in B(x;r) so that

u(z) = +oo, x € ANB(z;r) .
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Lemma 9.4 Suppose that u is superharmonic in B(xo; R) and let 0 < r < R.
Then, there exists a function U superharmonic in R™ so that

Ulx) = u(z), x € B(zg;r) .
If n > 3, we may also have U be bounded from below in R™.

Proof:
Take 71, Ry so that r < r1 < R; < R and cover the ring B(zg;r1, R1) by
finitely many open balls By, ..., By all of which are contained in B(z;r, R).
Then, the function v = min(up,,...,up,) is superharmonic in B(zg; R),
bounded in B(xg;71, R1) and satisfies

v(z) = u(x), x € B(xo;r) .

If M = supmem ’U(]}) and m = infzemv(@“), find a € R+ and
b € R so that ah.(r1) +b > M and ah.(R1) +b < m.

Now, it is easy to see that the function

v(z) if . € B(xo;71)
U(z) = < min(v(x),ah(z) +0b), ifx € B(xo;ri, Ry)
ah(x) + b, if ¢ B(xzo; R1)

concludes the proof.

Proposition 9.4 Let A C R"™ be locally polar and let xo ¢ A. Then, there
exists a function u superharmonic in R™ so that u(zo) < +o00 and

u(z) = 400, rEA.
If n > 3, we may also have u > 0 everywhere in R™.

Proof:

We, first, observe that A # R™. In fact, if we take an arbitrary = € A, a
ball B(z; R) and a u superharmonic in B(x; R) which is = +oo identically in
AN B(z; R), then u must be finite almost everywhere in B(z; R). Therefore
there is at least one point of this ball not belonging to A. (Continuing this
argument, we may, easily, show that A has zero Lebesgue measure.)

Fix ¢ ¢ A and for each x € A we consider a B(z; R,;) not containing x¢ and
a u, superharmonic in B(x; R,) so that u = +oo identically in A N B(x; R,).
We, then, take r, < R, and Lemma 9.4 provides us with a U, superharmonic
in R™ which is = 400 identically in A N B(z;7;) and with U,(z) < +o00. In
case n > 3, we may also suppose that U, > 0 everywhere in R™.

We may replace each B(x;r,) by a smaller open ball containing « and having
rational radius and rational center. We enumerate these countably many balls
and we have, now, constructed: a sequence {Bjy} of open balls covering A
and a sequence {Uy} of functions superharmonic in R™ with every Uy being
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identically 400 in A N By, and, in case n > 3, positive everywhere in R™. Also:
Ur(xg) < +00.
Case 1: n > 3.

For each k we take A\ > 0 so that Z;’i MUk (zg) < +00. Then, the function

+oo
u = Z /\kUk
k=1

is superharmonic and positive in R™ and is identically 400 in A.
Case 2: n = 2.

For each k& we set mj = minrem Up(z) and we find Ay > 0 so that

Zz:{ M (Uk(20) — my) < +00. Then, the function

+oo
u = Z)\k(Uk_mk)
k=1

is superharmonic in R™ and is identically +oo in A. The reason for both is that
the terms of the series are, eventually, non-negative in every large ball B(0; R).

Definition 9.4 Suppose that A C R™. The set A is called polar if there is a
function u superharmonic in R™ so that

u(z) = 400, reEA.

Thus, Proposition 9.4 says that a set A is polar if and only if it is locally
polar.

Observe that the Theorem of Evans implies that every compact £ C R™
with Cy(E) = 0 is polar.

Theorem 9.6 Suppose that A C R™.
1. If C(A) =0, then A is polar.
2. If n > 3, then the converse of 1 is, also, true.
If n =2, then the converse of 1 is true, provided that A is bounded.

Proof:

1. Suppose that C,(A) = 0 and let A be bounded. Consider a bounded open set
O C R™ with A C O and Cx(0) < € < 1. Now, take any compact exhaustion
{K(m)} of O. Tt is true that Cy(K(,,)) T Cn(O). From Theorem 8.5, we, also,

have that v, (K () = m 1 %.

For each m consider the h-equilibrium measure du, of K(,) which, after
Proposition 9.1, is supported in 0K(,,). Then, U;f“m = Yn(K(m)) identically in
the interior of K,,) and U;f“"" < V(K () everywhere in R™.

Replacing, if necessary, by a subsequence, assume that dy,, — du weakly in

the compact set O, where du is a probability Borel measure in O.
For an arbitrary = € O, take mqg so that z is in the interior of K.

Now, since h, is continuous in O \ int(K () and since all dpi,,, m > my, are
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supported in this compact set, we get U™ (z) = lim,, o0 U™ (z) =

Crn(0)*
Hence

1

U @) = Cn(0) =

, z€O0.

a | =

We, thus, find a decreasing sequence of bounded open sets {Oy} with A C
Oy and a sequence of probability Borel measures {dur}, where each duy is
supported in Oy and

Uik () > 2k reA.

Now, consider the probability Borel measure

+ool

dp = Zz—kduk.
k=1

It is obvious that
U ;f“ = 400

everywhere in A and A is polar.

If A is unbounded, for each = € A we consider a B(z;7) and, since ANB(x;r)
is bounded with zero h-capacity, we have that it is a polar set. A is, thus, locally
polar and, hence, polar.

2. Let A be bounded and let u be superharmonic in R™ so that © = +oo iden-
tically in A. By Theorem 2.17, there exists a compactly supported probability
measure dyu so that

U = too

everywhere in A.
For arbitrary k > 0, consider the bounded open set

O = {z:U™(x) >k}

and any compact £ C O with Cp,(E) > 0.
If dpg is the h-equilibrium measure of F, then

gy~ ) = /Supp(dﬂ) U @) due) = [ U@ duo@) > k.

Cr(4) < Ch(0) <

a4 =

and, since k is arbitrary, Cy(A) = 0.

If A is unbounded and n > 3, we consider, for each k € N, the polar sets
A = AN B(0; k) which, by the previous argument, have Cj,(Ay) = 0 and, then,
use Theorem 8.1.
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Theorem 9.7 Suppose that E C R™ is compact with Cp,(E) > 0 and z¢ € OF
is a non-regular boundary point of R™ \ E.

1. There is a function u superharmonic in R™ so that u(z) = v, (E) for every
z € FE and u < v, (E) everywhere in R™.

2. There is a function v superharmonic in R™ so that v(z) = v (E) for every
x € E\{zo}, v(zo) < (E) and v < y,(E) everywhere in R™.

Proof:
1. Let dug be the h-equilibrium measure of E. Then, U, ,Cll“ * < 4,(E) everywhere
in R* and the set A = {z € E : U () < y,(E)} is polar.
We take ug superharmonic in R™ so that ug > 0 in F and up = +o0 in A.
Then, the function v = min(Uff”o +ug, vn(E)) satisfies the properties in the
statement.
2. By Proposition 9.2, we have that

Upt(w9) < liminf Uy*(2) < liminf UpF*(z) < yu(E) .

xTx—xT0 EZxr—xo

Now, A\ {zo} is, also, polar and, by Proposition 9.4, there is a u; super-
harmonic in R™ with u; > 0in E, u; = 400 in A\ {zo} and u;(zg) < +o0.
Replacing, if necessary, u; by a small positive multiple of it, we may, also,
suppose that

UM (20) + ur (o) < Yu(E) .

The function we want is v = min(U* 4 uy, v, (E)).

9.8 The theorem of Wiener

The next result is a characterization of the regular boundary points of an open
set.
We remark that, if n > 3, then for every compact set £ C R™, we have

Y (E) > 0 and, hence, Cp,(E) = ﬁ If n =2 and 0 < p < 1, then, for every

compact set E C B(xo;p), we have v, (E) > vn(B(xo;p)) = h«(p) > 0 and,
again, Cp(F) = ﬁ

Theorem 9.8 (N. Wiener) Let Q be an open set, xo € IQNR™ and
Ep = {x ¢ Q:p" <o — x| <p*},

for all k € N, where p is any number with 0 < p < 1.
Then, xq is a reqular boundary point of Q if and only if

+oo +oo
S h(CuED) = 32

k=1 k=1
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Proof:
1. At first, we observe that, for every pair of p and p’ in (0, 1), the two equalities
T hu(pF)CH(ED) = +o00 and 312 hu(p*)Ch(EL) = +00 are equivalent.
We suppose that 0 < p/ < p < 1 and it is trivial to see that every Ezl
is contained in a finite number m(p, p’) of consecutive E!’s, where m(p,p’)
depends only upon p and p’. Proposition 8.4 implies that C’;L(E,’;,) is not more
than the sum of these consecutive Cj,(E!)’s. (In case n = 2 it may be necessary
to drop the first few k’s so that all ring domains are contained in the disc
B(0;3).) It is, also, trivial to see that the quantity h.(p’*) is comparable to the
correspoding h.(p')’s. This, of course, means that the quotients are bounded
both from above and from below by two constants depending only upon the
number m(p, p’). From all this it is obvious that

Zh Cu(EY) < Clp,p! Zh Hew(EY) .

(Since consecutive El’;/’s may have one common E} used to cover them, each
term of the series in the right side of the above inequality is counted at most
twice.)

It is also obvious that every EJ is contained in the union of at most two

’
consecutive Ef ’s and, hence

Zh MCL(ED) < C'(p,p Zh B,

where each term of the series in the right side of the above inequality is counted
at most m(p, p’) times.
2. Suppose that

+
8

ha (o)
r(EY)

= +OO
k=1
and consider the h-equilibrium measure dyy, of Ef and its h-potential
Ui (x) = | haly) dp(y), = €R™.
By
We know that
U (x) < a(EY)
for every x € R™ and we shall estimate U,il” * on every
Ap = {x:p" T <z — x| < p™)
If z € AP, then
ho(pFtt —pm) |, ifk<m—1

Uguk(x) < S m(ED) iftm—1<k<m+1
ho(pmtl —pF) | ifm+1<k.
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Moreover,
ha(p¥) <UD (@) .

Given an arbitrary € > 0 and an arbitrary N € N, there is a smallest M > N
so that

By the minimality of M,
M
ha(p* 1 h(pM 1
S e <t < LAl
n(ER) € (EYy) €

k=N

Therefore, we have arbitrarily large integers N and corresponding M > N
so that

M
E ha(pt) 1,
€ Ww(Ey) T €
k=N k
Define, now,
M
U=y b o
(E7)
k=N
Then,
o*)

€
kz]:\/ Y (E
Besides the parameters p, N, M we introduce, now, an integer [ € N having
in mind the following. If n = 2, then we fix p = % and [ =1 and N will depend
upon € in a manner that will be made precise in a moment. If n > 3, all these
parameters will depend upon € and we shall shortly see how.
If x € A,,, trivial estimates show that

h* k+1 _ m
Ulx) < € Z %]/:)p)+6 Z 1

N<k<M k<m—I N<k<M,m—1<k<m+l

+e h*(pm+1 - Pk)

P
N<k<M,m+l<k n(Ef)
_ e+ (1+e)(1+ %), ifn=2
= 2+ e+ (L4 e) (5= + ) gty » ifn >3
(1-pY)

If N > m+1+1, then in the estimate of U(x) only the third sum exists and,
hence,

(m+2) log 2 m+2 6 1 . _
U(x) < EZk N "/h(Ep)g S (1+E)T+ S Wlogm y lfn—Q,
B (1 + 6) (1pl(:):> PER) if n 2 3.



258 CHAPTER 9. THE CLASSICAL KERNELS

3. To prove that z( is a regular boundary point of Q we shall examine the
function

v = HE
in QN B(zo; p).

Since the function 1—|- —x¢| is superharmonic, we have that u < 1—|- —x|
in QN B(xo; p). Therefore, to prove that 1 —w is a barrier of Q at xq, it is enough
to prove that

liminf u(z) > 1.
Q3z—x0

We shall compare v with the function

We consider the case n = 2 first.
Then V(z) = 1 and we take N > ¢.

1. V(z) <14 e if x € B(zo; 5) \ {0} and

2. V(z) < %log = L < 2617\9}7@]', ifxe A, and m+2<N.

— o] [z —zol

Trivial estimates show that the function —2—V, which is harmonic in QN

1+10e
B(zo; 1), satisfies

1
V<i1-| -
Tr10e” = 1ol
there. Therefore,
1
V <
1+10e — "
in QN B(xop; %), implying that
1

lim inf > .
Jiminf u(z) = =5

Since € is arbitrary, we find

lim w(z) > 1.
Q>z—x0

Now, let n > 3.
We take | = [e %] and p =1 — €3.
We, again, have V(xg) = 1 and, for a constant C' depending only upon n,

1. V(z) <14 Ces, if 2 € B(zo; p) \ {zo} and

2. V(z) < Cexp(—(n—2)e3),if x € Ay, and m+1+1 < N.
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Now, the function V — 2Ce3 is harmonic in Q N B(zo; p) and satisfies
Vix) — 203 < 1-— |z — xo]

for every x € QN B(xo; p), provided that we take N > C'e~3 for some constant
C" depending only upon n.
Indeed, if |z — xo] < Ce3, then this inequality is immediate from 1. above.
If | — zo| > Ce3, then z € A,, for some m < C"e™3 IOg(CI; ) Therefore, the
already stated choice of N together with 2. finish the proofeof the inequality.
This, now, implies that

V(z) - 20t < u(a)
for every x € QN B(xo; p) and

liminf u(z) > 1— 2C€3 .
Q3z—x0

Since € is arbitrary, we find

lim w(z) > 1.
Q>z—x0

This proves that zg is a regular boundary point of Q2. 4. Consider, now, for

1
all n the particular value p = % and the sets By, = EZ.

“+o00 h*(z%k)
Suppose that Y

k=1 J(Ey) < T and let K > 2 be such that

X ()
> 5y <L
= m(Ex)

We define the bounded open set
~ 1 oo
Q = B(zo; 5) \{zo} \ U Zik B -

Since Q N B(zo; 77) = QN B(zo; 5% ), to prove that xo is not a regular
boundary point of it is enough to prove that it is not a regular boundary
point of Q.

For each k with v, (E)) < 400, let duy be the h-equilibrium measure of Fj,
and let f(z) =1 — 2|z — x| for all z € 9Q so that

1. 0< f<1in 09,
2. f(xo) =1 and

3. f=0i 00\ {zo} \ U= Ex.
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We define the function
400 1
V = max f——— U/
,Z;(aﬁmEk m(Bk) "
where we simply omit all terms with ~,(E)) < +o0.
V' is a superharmonic function which is harmonic in €2 and non-negative and

bounded from above in B(zo; %), since, for allm > 1 and all z € A,,, = Ar%n ,

h(52r — 57)
v s S SR ]
K<k,k<m-—2 K<km—1<k<m-+1
ha(gmer — ov)
+ Z xAomFT ok
K<k,m+2<k 7 (Ek)
< ) rEase Y 2
K <k,k<m—2 n(Ei) K<hmt2<k Y (Ek)
400 1
ha(5r7e)
< 3+ Z —270 < 400
= n(Ex)
Moreover,

Vi) < 3o D)
0) = .
= Mm(Er)

Now, let v be subharmonic and bounded from above in Q with

limsupv(z) < f(y)
59x—>y

for all y € Q.
Since all terms in the sum defining V' are non-negative in B(z¢; 1) and since
U ,‘f“ ¥ =~y (Ek) quasi-almost everywhere in Fy, it is clear that

limsupv(z) < V(y) < liminfV(x)
59;c—>y Q3z—y

for all y € 0\ {zo} except for a boundary subset of at most zero harmonic
measure with respect to 2. Theorem 3.5 implies that

v <V
in Q.

Therefore,

in Q.
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We assume that xg is a regular boundary point of Q and we shall arrive at
a contradiction.

From limg_ H})(m) f(xo) =1 we get 1 < liminfs_ 20 V(z). This,
immediately, implies
| < liminf— ! / V() dm(z)
iminf —————— x) dm(x) .
k——+o0 m(Ak \ Ek) Ap\Eg
By the superharmonicity of V,
) 1
lim ——— V(z) dm(z) = V(zo) .

k——+oco m(Ak) A

The last two relations together with the

1 1
iy V@ ) = e /A L, V@ i
= _ By ! x) dm(z
= (1 m(Ak)> m(Ar\ Er) /Ak\Ek V(z) dm(z)
imply that

lim inf m(Ey)
k—+oco m(Ag)

> 17V(£L’0) > 0.

By the definition of capacity,

n(Ek) < Ek /Ek /Ek —y|) dm(z)dm(y)
W /A [z = yl) dm(@)dm(y)

m Jay Ja, Pl = yl) dm(z)dm(y) , ifn >3
= lﬁkm(Ek)2 fAO fAU |33 - y|) dm(z)dm(y)

k lo; .
“!‘WTR(A()) N ifn=2.

hy(55)

2k
22knm(Ek)2 ’

IA

for some constant C' > 0 depending only upon n.
Therefore, for some other constant C’ depending only upon n,

, b (50)
m? = o

ha (&
This contradicts the convergence of the series Zziol %Egz; .




262 CHAPTER 9. THE CLASSICAL KERNELS

9.9 Thin Sets

Definition 9.5 A set E C R” is called thin at xo € R™, if either zq is not an
accumulation point of E or xq is an accumulation point of E and there exists a
superharmonic function u in R® so that u(zo) < liminf g 140)50—0, u(T).

Theorem 9.9 Suppose E C R™ and xg € R™. Let

1
E, = {z€E: <|I—$0|§2*k},

ok+1 =
for all k € N. Then, the following are equivalent:
1. E is thin at xq.

2. 3025 ha(5%)CR(By) < +oo.

Proof:

If zg is not an accumulation point of E, then F is, automatically, thin at
xo and the series in 2 converges, since, then, Fj is empty for all large k. We
assume, therefore, that z is an accumulation point of F.

Suppose that the series in 2 converges. For every k € N, we take open sets
Oy, so that

1 1
Ep C O C B(ﬂCo;Wap)
and
+oo 1
k=1

We know, from the proof of Theorem 9.6, that there exist probability Borel
measures duy supported in Oy so that

1
Ui (z) =
h ( ) Ch(Ok)
for every x € Oy. It is easy to see that
du 1
Uy (x0) < h*(m) :

We, now, take K > 2 and define the function

—+oo
Uy = Z Ch(Ok)Uguk .

k=K

Since K > 2, all terms in this series are non-negative in B(zo; %) and we, also,
have that the series converges at xg. Hence, wug is superharmonic in B(zo; %)
and

uo(z) > 1



9.9. THIN SETS 263

for every x € ENB(xo;0, 2%() Taking K large enough we, also, have ug(zg) < 1.
Thus,

ug(xg) < liminf  wo(z) .
0( 0) E\{zo}3z—20 0( )

Applying Lemma 9.4, we prove that E is thin at xg.
Now, suppose that F is thin at zy and take u superharmonic in R™ so that

u(xg) < liminf wu(z) .
( 0) E\{zo}3z—x0 ( )

Consider A so that

u(xg) < A < liminf  w(x
( 0) E\{zo}3z—20 ( )

and K large enough in order to have
u(z) > A

for every x € E N B(xo;0, QK%I)

Define
O = {zeR":u(z) > A}
and
1 1
Ok = OmB(xO, W’F) .
Assume that
+oo 1
S he(5p)CR(ER) = oo
k=1
and, hence,
+o0 1
Zh*(Qik)Ch(Ok) = +4o0o.
k=1

Take, for each k > K, compact sets Fy, C Oy so that

Consider the compact set
“+oo
F = {z}u |J F
k=K

and its complement = R™ \ F.
By Theorem 9.8, z( is a regular boundary point of Q.
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On the other hand, the superharmonic u is > X\ everywhere in F. If we
consider the function

A, ifmeaQﬁB(xo;QK%)7
flx) = ¢ m, if £ € QN S(zo; 5%)
28 (m — M|z — zo| + 2X —m , if 2 € QN B(zo; 5857, 55) »
where m = min ¢ g, 3 u(y), then f is a continuous boundary function of the

open set Qx = QN B(zo; 3¢ ) and
u > f

everywhere in 00k except at the point . Since {xg} is of zero harmonic
measure with respect to Qg , this implies that

u > H?K
everywhere in Q. Therefore,
— _ : Q o B
A = flzg) = QKlalcrEn_mO Hyx (z) < Ql}glxlgiou(x) = u(xo)

and we get a contradiction.



