
Proceedings

of the 15th Panhellenic Conference
on Mathematical Analysis

Heraklion, 27-29 May, 2016

The Organizing Committee

Published on the web: November 25, 2016



15th Panhellenic Conference on Mathematical Analysis 2

Contents

Preface 3

G. Adilov and I. Yesilce
The operations on B-convex sets and B-convex functions 4

V. Ala and Kh. Mamedov
Some spectral properties of one class of discontinuous Sturm-
Liouville operator 10

G. Andreolas and M. Anoussis
Compact multiplication operators on nest algebras 18

G. Andreolas and M. Anoussis
Topological radicals in nest algebras 24

G. Cleanthous, A. G. Georgiadis and M. Nielsen
Spaces of distributions with mixed Lebesgue norms 29

K. R. Mamedov and F. A. Cetinkaya
The main equation for a Sturm-Liouville operator with a
piecewise continuous coefficient 39

F. Özger
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Preface

The 15th Panhellenic Conference on Mathematical Analysis (http://fourier.
math.uoc.gr/pcma2016/) was held at the Department of Mathematics and Ap-
plied Mathematics of the University of Crete, Greece, from 27 to 29 May, 2016.
This is the central conference of Mathematical Analysis in Greece and takes
place every couple of years. The 16th Conference will be held at the University
of the Aegean (Samos).

The topics of the conference included:

1. Harmonic Analysis, Geometric Analysis, Complex Analysis, Real Analy-
sis, Ergodic Theory.

2. Functional Analysis, Operator Theory, Convex Analysis.

3. Differential Equations, Integral Equations, Stochastic Differential Equa-
tions, Dynamical Systems, Probability.

4. Numerical Analysis, Optimization, Control Theory, Special Functions.

In the Conference Proceedings (this volume) we have included the contribu-
tions of those participants who chose to submit a paper or a detailed description
of their presentation. We thank those participants for their contribution.

The Organizing Committee,

Nikos Frantzikinakis
Mihalis Kolountzakis
Themis Mitsis
Mihalis Papadimitrakis
Achilles Tertikas

http://fourier.math.uoc.gr/pcma2016/
http://fourier.math.uoc.gr/pcma2016/


The Operations on B-convex Sets and B-convex
Functions

Gabil Adilov and Ilknur Yesilce

November 22, 2016

Abstract

B-convex sets and functions were introduced and studied in [3, 4, 11,
12, 13]. In this paper, we examine some operations on B-convex functions
and B-convex sets.

AMS Subject Classification: 52A30, 52A41
Key Words: Abstract convexity, B-convexity, B-convex sets, B-convex func-

tions

1 Introduction

B-convexity, which is examined in this article, is one of the generalizations of
convexity ([3, 4, 11, 12, 13]). B-convexity concept is determined in [5], properties
of B-convex sets and functions are given in [1, 2, 5, 7], separation properties are
investigated in [6, 7].

B-convex functions are also studied in [8]. In this work, the operations on
B-convex sets and B-convex functions is examined.

For all r ∈ N the map x 7→ ϕr(x) = x2r+1 is a homeomorphism from R to
itself; x = (x1, ..., xn) 7→ Φr(x) = (ϕr(x1), ..., ϕr(xn)) is a homeomorphism from
Rn to itself. For a finite nonempty set A = {x1, ..., xm} ⊂ Rn, the r-convex hull
of A, denoted as Cor(A), is given by

Cor(A) =

{
Φ−1r

(
m∑

i=1

tiΦr(xi)

)
: ti ≥ 0,

m∑

i=1

ti = 1

}
.

The structure of B-convex sets, which has not yet defined, will involve the

order structure, with respect to the positive cone of Rn; denoted by
m∨
i=1
xi the

least upper bound of x1, ..., xm ∈ Rn, that is:

m∨
i=1
xi = (max {x1,1, ..., xm,1} , ...,max {x1,n, ..., xm,n})

where, xi,j denotes jth coordinate of the ith point.

1
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The limit hull of a finite set A is defined as the Kuratowski-Painleve upper
limit of the sequence of sets {Cor(A)}r∈N (The Kuratowski-Painleve upper limit

of the sequence of sets {An} is ∩
n
∪
k
An+k; it is also the set of points p for which

there exists an increasing sequence {nk}k∈N and points pnk
∈ Ank

such that
p = limk→∞ pnk

.)[9].

Definition 1.1 [5] The Kuratowski-Painleve upper limit of the sequence of sets
(Cor(A))r∈N, denoted by Co∞(A) where A is finite set, is called B-polytope of
A.

It can be shown that in Rn+ the upper-limit is in fact a limit and that elements
of Co∞(A) have a simple analytic description:

Theorem 1.1 [5] For all nonempty finite subsets A = {x1, ..., xm} ⊂ Rn+ we
have

Co∞(A) = Limr→∞Co
r(A) =

{
m∨
i=1
tixi : ti ∈ [0, 1], max

1≤i≤m
{ti} = 1

}
.

Definition 1.2 A subset U of Rn is B-convex if for all finite subset A ⊂ U the
B-polytope Co∞(A) is contained in U .

In Rn+, B-convex set is defined in a different way [5]:
A subset U of Rn+ is B-convex if and only if for all x1, x2 ∈ U and all λ ∈ [0, 1]

one has λx1 ∨ x2 ∈ U .
Now, we mention the following definitions which will be necessary in the

sequel.

Definition 1.3 [10] Let U ⊂ Rn and f : U → R
⋃ {±∞}. The set

{(x, µ) |x ∈ U, µ ∈ R, µ ≥ f (x)}

is called the epigraph of f and is denoted by epi (f).

Definition 1.4 [11] Let U ⊂ Rn and f : U → R
⋃ {±∞}. The set

{(x, µ) |x ∈ U, µ ∈ R, µ ≤ f (x)}

is called the hypograph of f and is denoted by hyp (f).

Thus, we can define B-convex functions.

Definition 1.5 [8] Let U ⊂ Rn. A function f : U → R
⋃ {±∞} is called a

B-convex function if epi (f) is a B-convex set.

The following theorem provides a sufficient and necessary condition for B-
convex functions in Rn+ [5, 8].

2

15th Panhellenic Conference on Mathematical Analysis 5



Theorem 1.2 Let U ⊂ Rn+, f : U → R+ ∪ {+∞}. The function f is B-convex
if and only if U is a B-convex set and for all x, y ∈ U and all λ ∈ [0, 1] the
following inequality holds:

f (λx ∨ y) ≤ λf (x) ∨ f (y) . (1)

For B-convex functions, we can give a large number of examples. For in-
stance, f : R2

++ → R+ ∪ {+∞}, f (z1, z2) = ln 1
z1z2

is a B-convex function.

Definition 1.6 Let U ⊂ Rn+. A function f : U → R+ ∪ {+∞} is called a
B-concave function if hyp+ (f) = {(x, µ) : x ∈ U, 0 ≤ µ ≤ f (x)} is a B-convex
set.

The following theorem holds (see also [5]).

Theorem 1.3 Let f : U ⊂ Rn+ → R+ ∪ {+∞}. The function f is B-concave
if and only if U is a B-convex set and for all x, y ∈ U and all λ ∈ [0, 1] the
following inequality holds:

f (λx ∨ y) ≥ λf (x) ∨ f (y) . (2)

2 Operation on B-convex Sets

Many properties, which are true for classic convexity, are also true for B-
convexity [5].

Theorem 2.1 [5]
(a) The empty set, Rn , as well as all the singletons are B-convex;
(b) if {Sλ : λ ∈ Λ} is an arbitrary family of B-convex sets then

⋂
λ Sλ is

B-convex;
(c) if {Sλ : λ ∈ Λ} is a family of B-convex sets such that ∀λ1, λ2 ∈ Λ,∃λ3 ∈ Λ

such that Sλ1

⋃
Sλ2 ⊂ Sλ3 then

⋃
λ Sλ is B-convex.

Given a set S there is, according to (a) above, a B-convex set which contains
S; by (b) the intersection of all such B-convex sets is B-convex; we call it the
B-convex hull of S and we write B[S] for the B-convex hull of S.

Theorem 2.2 [5] The following properties hold:
(a) B[∅] = ∅,B[Rn] = Rn, for all x ∈ Rn,B[{x}] = {x};
(b) For all S ⊂ Rn, S ⊂ B[S] and B [B[S]] = B[S];
(c) For all S1, S2 ⊂ Rn, if S1 ⊂ S2 then B[S1] ⊂ B[S2];
(d) For all S ⊂ Rn,B[S] =

⋃ {B[A] : A is a finite subset of S};
(e) A subset S ⊂ Rn is B-convex if and only if for all finite subset A of S,

B[A] ⊂ S.

3
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3 Operations on B-convex Functions

Theorem 3.1 (i) Let U ⊂ Rn+, f : U → R+ ∪ {+∞} be a B-convex function.
Multiplying f by a positive scalar, we obtain also B-convex function.
(ii) Let f : U ⊂ Rn+ → R+ ∪ {+∞} be a B-convex function. The restriction of
f to a B-convex subset of U is also a B-convex function.
(iii) If f : U ⊂ Rn+ → V ⊂ R+ ∪ {+∞} is a B-convex function and g : V ⊂
R+ ∪{+∞} → R+ ∪{+∞} is a non-decreasing B-convex function, then g ◦ f is
B-convex.
(iv) Suppose that f : U ⊂ R+ → V ⊂ R+ is a bijection. If f is increasing, then
f is B-convex if and only if f−1 is B-concave. If f is a decreasing bijection,
then f and f−1 are of the same type of B-convexity.

Proof. i) Let f be a B-convex function. From Theorem 1.2, f satisfies the
inequality (1). For c > 0, we have

cf (λx ∨ y) ≤ c [λf (x) ∨ f (y)] = λ (cf) (x) ∨ (cf) (y) .

Hence, cf is B-convex.
ii) Let f be a B-convex function. From Theorem 1.2, the inequality (1) holds

for all x, y ∈ U . Therefore, for every B-convex subset of U , the restriction of f
to this subset also satisfies (1), consequently it is B-convex function.

iii) When we use that f is B-convex and g is non-decreasing B-convex, we
deduce the following inequality

g (f (λx ∨ y)) ≤ g (λf (x) ∨ f (y)) ≤ λg (f (x)) ∨ g (f (y)) .

Namely, g ◦ f is a B-convex function.
iv) Let the bijection f be increasing and suppose that f is a B-convex func-

tion. In this case, for all x, y ∈ U and all λ ∈ [0, 1] we have the inequality
(1). Let IV and IU be the identity functions on V and U , respectively. From
f ◦ f−1 = IV , f

−1 ◦ f = IU and the inequality (1), for s, t ∈ V we obtain that

f
(
f−1 (λs ∨ t)

)
= λs∨ t = λf

(
f−1 (s)

)
∨ f

(
f−1 (t)

)
≥ f

(
λf−1 (s) ∨ f−1 (t)

)
.

Since f is increasing, f−1 is increasing; hence we get f−1 (λs ∨ t) ≥ λf−1 (s) ∨
f−1 (t). So, f−1 is B-concave.

To prove the sufficiency, suppose that f−1 is a B-concave function. Thus for
all s, t ∈ V and all λ ∈ [0, 1], the inequality (2) for f−1 holds. If we assume that
f−1 (s) = x, f−1 (t) = y, we have f (x) = s, f (y) = t. From increasing of f and
the inequality (2)

f−1 (λf (x) ∨ f (y)) ≥ λf−1 (f (x)) ∨ f−1 (f (y)) = λx ∨ y
f
(
f−1 (λf (x) ∨ f (y))

)
≥ f (λx ∨ y)

λf (x) ∨ f (y) ≥ f (λx ∨ y) .

Thereby, f is B-convex function.
Other hypothesis in iv) are proved similarly.
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Theorem 3.2 Let
{
fα
∣∣fα : U ⊂ Rn+ → R+ ∪ {+∞}

}
be a family of B-convex

functions. Then the function f defined by f (x) = sup {fα (x) |α} is B-convex.

Proof. epi (f) =
⋂
α
epi (fα), so epi (f), being the intersection of B-convex sets,

is B-convex [5]. Therefore, f is B-convex.

Theorem 3.3 If f : U ⊂ Rn+ → R+∪{+∞} and g : U ⊂ Rn+ → R+∪{+∞} are
both decreasing(increasing) and B-convex then h (x) = f (x) g (x) also exhibits
these two properties.

Proof. Since, decreasing(increasing) of h is clear, let us examine the B-
convexity of it. For x, y ∈ U , we begin by taking x 4 y (x 4 y ⇔ xi ≤
yi for all i ∈ {1, ..., n}). From B-convexity of f and g, for λ ∈ [0, 1] we obtain

h (λx ∨ y) = f (λx ∨ y) g (λx ∨ y) ≤ [λf (x) ∨ f (y)] [λg (x) ∨ g (y)] .

We should analyse the following four cases:
i) if λf (x) ∨ f (y) = λf (x), λg (x) ∨ g (y) = λg (x), then h (λx ∨ y) ≤

λ2f (x) g (x) ≤ λf (x) g (x) = λh (x) ≤ λh (x) ∨ h (y).
ii) if λf (x)∨f (y) = λf (x), λg (x)∨g (y) = g (y), then since g is decreasing,

we have h (λx ∨ y) ≤ λf (x) g (y) ≤ λf (x) g (x). Thus, from i), h satisfies the
required inequality.

iii) if λf (x)∨f (y) = f (y), λg (x)∨g (y) = λg (x), then using decreasing of f ,
we obtain that h (λx ∨ y) ≤ f (y)λg (x) ≤ λf (x) g (x) = λh (x) ≤ λh (x)∨h (y).

iv) if λf (x) ∨ f (y) = f (y), λg (x) ∨ g (y) = g (y), then h (λx ∨ y) ≤
f (y) g (y) = h (y) ≤ λh (x) ∨ h (y).

Thus h is a B-convex function. The case of x < y can be proven more easily.
Similarly, we can prove the B-convexity of h when f and g are increasing.

Remark 3.1 In the above theorem, the condition of decreasing(increasing) of
functions f and g at the same time is required. On the contrary, for example;
let f : R+ → R+, f (x) = x

3
2 and g : R++ → R+, g (x) = 1

x . The function f is
increasing, B-convex and the function g is decreasing, B-convex. In this case, if
we examine the function h (x) = f (x) g (x) = x

1
2 , h isn’t a B-convex function.

Acknowledgement 3.1 This work was supported by Akdeniz University, Mersin
University and TUBITAK (The Scientific and Technological Research Council
of Turkey).
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SOME SPECTRAL PROPERTIES OF ONE CLASS
DISCONTINOUS STURM-LIOUVILLE OPERATOR

Ala Volkan,1Mamedov Khanlar2
1;2Mersin University, Mersin, Turkey

e-mail: 1volkanala@mersin.edu.tr, 2hanlar@mersin.edu.tr

1:INTRODUCTION

The Sturm-Liouville theory plays and important role in solving many prob-
lems in mathematical physics. It is an active area of research in pure and ap-
plied mathematics. From past to present, there has been a growing interest in
Sturm-Louville problems with eigenparameter dependent boundary conditions
(Walter 1973; Fulton 1977; Mukhtarov and Demir 1999; Mukhtarov et al. 2010;
Alt¬n¬̧s¬k et al 2012; Zhang et al.2013; Aydemir 2014;Mukhtarov and Aydemir
2014), i.e.,
The eigenparameter appears not only in the di¤erential equations of the

Sturm- Liouville problems but also in the boundary conditions.
In this study we investigate the Stum-Liouville equation

`y := �y00(x) + q(x)y(x) = �y(x); (1)

to hold in �nite interval (�1; 1) except one inner point c 2 (�1; 1); subject
to the eigenparameter-dependent boundary conditions

L1(y) := �(�
0
1y(�1)� �02y0(�1))� (�1y(�1)� �2y0(�1)) = 0 (2)

L2(y) := �(�
0
1y(1)� �02y0(1))� (�1y(1)� �2y0(1)) = 0 (3)

and the eigenparamete dependent transmission conditions at the point of
discontinuity

L3(y) := 
3y(c+ 0)� 
4y(c� 0) = 0 (4)

L4(y) := 
2y
0(c+ 0)� 
1y0(c� 0) + (��1 + �2)y(c) = 0; (5)

Here q(x) is real-valued continous function on I = [�1; c)[(c; 1] and has �nite
limits q(c�0) := limx!c�0 q(x);�1; �

0
1; �1; �

0
1 and �i(i = 1; 2) are real numbers.

Boundary-value problems with transmission condiitons arise in the theory
of heat ans mass transferAdjoint and self-adjoint boundary value problems with
transmission conditions have been studied by Zettl (1968). Sturm-Liouville
problems with transmission conditions at one interior point have been studied
many authors ( Yang 2013; Aydemir 2014; Mukhtarov and Aydemir 2014; Zhang
2014).
It must be noted that some special cases of the considered problem (1)� (5)

arise after an application of the method of seperation of variables to the varied
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assortment of physical problems. For example, some boundary-value problems
with transmission conditions arise in heat and mass transfer problems ( see
for example, [4] Likov, A.V. and Mikhailov, Yu. A.: The Theory of Heat and
Mass Transfer, Gosenergoizdat,1963 (Russian)),vibrating string problems when
the string loaded additionally with point masses ( see for example. [15]).Also,
some problems with transmission conditions which arise in mechanics( thermal
conduction problem for a hin laminated plate) were studied in the article [14].
Similar problems for di¤erential equations with discontinuous coe¢ cients were
investigated by Raulov in monographs.[9,10] But, the considered discontinuous
problems in these works do not contain transmission conditions.

2.AN OPERATOR FORMULATION OF THE PROBLEM(1)-(5)
IN THE ADEQUATE HILBERT SPACE

In this section we introduce the special inner product in the Hilbert space
H := L2[�1; 1]�C3 and such a way that the problem (1)�(5) can be considered
as the eigenvalue problem of this operator.
Throughout this study, we shall assume that the coe¢ cients 
1; 
2 and �1

have the same sign (without losing the generality we shall assume that 
1; 
2
and �1 are positive)

�1 :=

���� �01 �1
�02 �2

���� > 0 and �2 :=

���� �01 �1
�02 �2

���� > 0
Let us introduce a new equ¬valent inner product on L2[�1; 1]� C3 by

(F;G) := 
1

cZ
�1

f(x)g(x)dx+ 
2

1Z
c

f(x)g(x)dx+

1
�1
f1g1 +


2
�2
f2g2 +

1

�1
f3g3

for

F :=

0BB@
f(x)
f1
f2
f3

1CCA 2 H;G :=

0BB@
g(x)
g1
g2
g3

1CCA 2 H;

which is connected with coe¢ cients of our problem. For a short exposition
we shall use the following notations:

B�1(y) : = �1y(�1)� �2y0(�1);
B0�1(y) : = �01y(�1)� �02y0(�1);
B1(y) : = �1y(1)� �2y0(1);
B01(y) : = �01y(1)� �02y0(1);
Tc(y) : = 
2y

0(c+ 0)� 
1y0(c� 0) + �2y(c);
T 0c(y) : = ��1y(c):

In the Hilbert space H we de�ne a linear operator A

2
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(A) :=

8>><>>:
F = (f(x); f1; f2; f3) : f is absolutely continuous in [�1; 1] ;

f 0 is absolutely continuous on both [�1; c) [ (c; 1] and has a finite limits,
f 0(c� 0) = limx!c�0 f

0(x); `f 2 L2[�1; 1];
f1 = B

0
�1(f); f2 = B

0
1(f); f3 = T

0
c(f)

9>>=>>;
and

AF = (`f;B�1(f);�B1(f); Tc(f)
Therefore, we can study the problem (1)� (5) in H by considering the oper-

ator equation
AF = �F;

where F = (f(x); B�1(f); B
0
1(f); T

0
c(f)) 2 
(A):

Naturally, by eigenvalues and eigenfunctions of the problem (1)�(5) coincide
with eigenvalues and �rst components of corresponding eigenelements of the
operator A; respectively.
Let F;G 2 
(A): By two partial integration we obtain

(AF;G) = (F;AG) + 
1W (f; g; c)� 
1W (f; g;�1)+

+
2W (f; g; 1)� 
2W (f; g; c) +

1
�1
(B�1(f)B

0
�1(f)�B0�1(f)B1(g))+

+

2
�2
(B01(f)B1(g)�B1(f)B01(g) +

1

�1
(Tc(f)T

0
c(g)� T 0c(f)Tc(g)); (6)

where, W (f; g;x) is denoted the Wronskians f(x)g0(x)� f 0(x)g(x):
It is easy to show that

B�1(f)B
0
�1(f)�B0�1(f)B1(g) = �1W (f; g;�1);

B01(f)B1(g)�B1(f)B01(g) = ��2W (f; g; 1);
Tc(f)T

0
c(g)� T 0c(f)Tc(g) = ��1
1W (f; g; c) + �1
2W (f; g; c):

Substituting into (6) we have

(AF;G) = (F;AG) (F;G 2 
(A)); (7)

Corollary 1 The linear operator A is symmetric.

Corollary 2 All eigenvalues of the problem (1)� (5) are real.

We can now assume that all eigenfunctions of the problem (1) � (5) are
real-valued.

Corollary 3 Let �1 and �2 be two di¤erent eigenvalues of the problem (1) �
(5): Then the corresponding eigenfunctions y1(x) and y2(x) of this problem is
orthogonal in the sense of

cZ
�1

y1(x)y2(x)dx+

1Z
c

y1(x)y2(x)dx+
1

�1
B0�1(y1)B

0
�1(y2)+

1

�2
B0�1(y1)B

0
1(y2)+

1

�1
T 0c(y1)T

0
c(y2) = 0

3
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3.FUNDAMENTAL SOLUTIONS

In this section we de�ned the fundemental solutions of the For next consid-
eration, we need to give the following Lemma.

Lemma 4 Let the real valued function q(x) be continious in [a; b] and f(�); g(�)
are given entire functions. Then for any � 2 C; the equation

`y := �y00(x) + q(x)y(x) = �y(x); x 2 [a; b]

has a unique solution y = y(x; �) satisfying the initial condiitons,

y(a) = f(�); y0(a) = g(�) (or y(b) = f(�); y0(b) = g(�))

for each �xed x 2 [a; b] ; y(x; �) is an entire function of �:
Let �1�(x) := �1(x; �) be the solution of equation (1) in the interval [�1; c)

satisfying the initial conditions

y(�1) = ��2 + ��02; y0(�1) = ��1 + ��01 (8)

Now we can de�ne the solution �2�(x) := �2(x; �) of equation (1) on the

interval (c; 1] in terms of �1(c� 0; �) and �01(c� 0; �) by the initial conditions

y(c) = 
4y(c� 0); (9)

y0(c) =

1

2
�01(c� 0; �)�

�
��1 + �2

2

�
�1(c� 0; �)

Analogically, we can de�ne the solutions �1�(x) and �2�(x) by initial con-

ditions
�2�(1) = �2 + ��

0
2; �

0
2�(1) = �1 + ��

0
1 (10)

and

�1�(c) = 
3y(c+ 0); (11)

�01�(c) =

2

1
�02(c+ 0; �) +

�
��1 + �2

1

�
�2(c+ 0; �)

respectively.Finally let us de�ne two �fundamental solutions�of equation (1)

on whole (�1; c) [ (0; 1] as

4
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�(x; �) =
�1(x; �); for x 2 [�1; c) ;
�2(x; �); for x 2 (c; 1] ;

�
(12)

�(x; �) =
�1(x; �) ,for x 2 [�1; c)
�2(x; �); for x 2 (c; 1]

�
(13)

It must note that each of these solutions satisfy both transmission conditions
(4) and (5). Moreover, �(x; �) satis�es one of the boundary conditions ( namely
the condition (2); but �(x; �) the other boundary condition (3):Let us consider
the Wronskians

!i(�) : =W�(�i; �i;x)

: = �i(x; �)�
0
i(x; �)� �0i(x; �)�i(x; �) (i = 1; 2)

which are independent of x and are entire functions. With a short calcula-

tions give us 
1!1(�) = 
2!2(�) and now we may introduce to the consideration
the characteristic function !(�) as

!(�) := 
1!1(�) = 
2!2(�)

Theorem 5 The eigenvalues of the problem (1)-(5) are consist of the zeros of
the functions

!(�) and �(�) :=

2

1
!(�) + (��1 + �2)�2�(c)�2�(c)

Lemma 6 Let � = s2:Then the following integral equations hold for k = 0 and
k = 1;

dk

dxk
�1�(x) = (��2 + s2�02)

dk

dxk
cos[s(x+ 1)]� 1


4s
(��1 + s2�01)

dk

dxk
sin[s(x+ 1)] +

+
1

s

xZ
c

dk

dxk
sin(s(x� y))q(y)�1�(y)dy

dk

dxk
�2�(x) = �1�(c)

dk

dxk
cos[s(x� c)] + 1


3s
[�01�(c)� s2�1�1�(c)]

dk

dxk
sin[s(x� c)] +

+
1

s

xZ
c

dk

dxk
sin[s(x� y)]q(y)�2�(y)dy]

Similarly that lemma can establish for �i(x; �) (i = 1; 2):

5
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4. RESOLVENT OPERATOR AND GREEN FUNCTION OF THE
PROBLEM (1)-(5)

Corollary 7 Let us assume that � 2 C is not an eigenvalue of the problem

(1) � (5): Then the functions �1(x; �); �1(x; �) are linearly independent in the
interval [�1; c], the functions �2(x; �); �2(x; �) are linearly independent in the
interval (c; 1]:

Corollary implies that for all � 2 C which is not an eigenvalue of the problem

(1)� (5) we can write thegeneral solution of the di¤erential equaiton (1) as

y(x; �) =

�
C1�1(x; �) + C2�2(x; �); x 2 [�1; c)
C3�1(x; �) + C4�2(x; �); x 2 (c; 1]

where Ci (i = 1; 4) are arbitrary constants. Then applying the method of
variation of constants, the following formula is obtained for y(x; �):

y(x; �) =
�1�(x)

! (�)

xZ
c

f(y)�1�(y)dy+
�1�(x)

! (�)

xZ
�1

f(y)�1�(y)dy+
�1�(x)


3! (�)

1Z
c

f(y)�2�(y)dy; x 2 [�1; c);

�2�(x)

! (�)

1Z
x

f(y)�2�(y)dy+
�2�(x)

! (�)

xZ
c

f(y)�2�(y)dy++
�2�(x)


4! (�)

cZ
1

f(y)�1�(y)dy; x 2 (c; 1]

Let

�(x; �) =
�1(x; �); for x 2 [�1; c) ;
�2(x; �); for x 2 (c; 1] ;

�
; �(x; �) =

�1(x; �) ,for x 2 [�1; c)
�2(x; �); for x 2 (c; 1]

�
Then we can rewrite the resolvent

y(x; �) =
�(x; �)

!i (�)

1Z
x

f(y)��(y)dy +
��(x)

!i (�)

xZ
�1

f(y)�(y)dy; i = 1; 2 (14)

Therefore the resolvent of the boundary value transmission problem is ob-
tained.We can �nd the Green function from the resolvent denoting below the
following;

G(x; y;�) =

(
�i�(x;�)�(x)

!i(�)
;�1 � y � x � 1; x 6= c; y 6= c;

�(x)�i�(x)
!i(�)

;�1 � y � x � 1; x 6= c; y 6= c; i = 1; 2:
(15)

6
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COMPACT MULTIPLICATION OPERATORS ON NEST

ALGEBRAS

G. ANDREOLAS AND M. ANOUSSIS

Abstract. LetN be a nest on a Hilbert space H and AlgN the corresponding

nest algebra. We obtain a characterization of the compact and weakly compact
multiplication operators defined on nest algebras. This characterization leads

to a description of the closed ideal generated by the compact elements of AlgN .

We also see that there is no non-zero weakly compact multiplication operator
on AlgN /AlgN ∩K(H).

1. INTRODUCTION

Let A be a Banach algebra. A multiplication operator Ma,b : A → A corre-
sponding to a, b ∈ A is given by Ma,b(x) = axb. An operator Φ : A → A is
called elementary if Φ =

∑m
i=1Mai,bi for some ai, bi ∈ A, i = 1, . . . ,m. Properties

of compact multiplication operators have been investigated since 1964 when Vala
published his work “On compact sets of compact operators” [12]. If X is a Banach
space, we shall denote by B(X ) the Banach algebra of all bounded operators on X
and by K(X ) the Banach algebra of all compact operators on X . Vala proved that
a non-zero multiplication operator Ma,b : B(X ) → B(X ) is compact if and only if
the operators a ∈ B(X ) and b ∈ B(X ) are both compact.

This concept was further investigated by Ylinen in [13] who proved a similar re-
sult for abstract C*-algebras. An element a of a Banach algebra A is called compact
if the multiplication operator Ma,a : A → A is compact. Ylinen characterized the
compact elements of a C*-algebra. In the sequel, these results were generalized to
various directions by several authors, such as Akemann and Wright [2], Fong and
Sourour [5], Mathieu [8] and Timoney [11]. From the description of the compact
elementary operators by Fong and Sourour, the following conjecture arose: If Φ is
a compact elementary operator on the Calkin algebra on a separable Hilbert space,
then Φ = 0. This conjecture was confirmed in [3] by Apostol and Fialkow and by
Magajna in [7]. In [8] Mathieu proves that if Φ is weakly compact, then Φ = 0
as well. The weak compactness of multiplication operators has been studied in a
Banach space setting by Saskmann - Tylli and Johnson - Schechtman in [10] and
[6] respectively.

In this work we characterize the compact and weakly compact multiplication
operators on nest algebras and show that there is not any non-zero weakly compact
multiplication operator on AlgN /AlgN ∩K(H). Complete proofs of the following
results will appear in [1].

Let us introduce some notation and definitions that will be used throughout.
Nest algebras form a class of non-selfadjoint operator algebras that generalize the
block upper triangular matrices to an infinite dimensional Hilbert space context.

2010 Mathematics Subject Classification. Primary 47L35, Secondary 47B07.
Key words and phrases. Nest algebra, compact multiplication operators, elementary operator,

weakly compact, Calkin algebra, Jacobson radical.
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2 G. ANDREOLAS AND M. ANOUSSIS

They were introduced by Ringrose in [9] and since then, they have been studied
by many authors. The monograph of Davidson [4] is recommended as a reference.
A nest N is a totally ordered family of closed subspaces of a Hilbert space H
containing {0} and H, which is closed under intersection and closed span. If H is a
Hilbert space and N a nest on H, then the nest algebra AlgN is the algebra of all
operators T such that T (N) ⊆ N for all N ∈ N . We shall usually denote both the
subspaces belonging to a nest and their corresponding orthogonal projections by
the same symbol. If (Nλ)λ∈Λ is a family of subspaces of a Hilbert space, we denote
by ∨{Nλ : λ ∈ Λ} their closed linear span and by ∧{Nλ : λ ∈ Λ} their intersection.
If N is a nest and N ∈ N , then N− = ∨{N ′ ∈ N : N ′ < N}. Similarly we define
N+ = ∧{N ′ ∈ N : N ′ > N}. If e, f are elements of a Hilbert space H, we denote
by e ⊗ f the rank one operator on H defined by (e ⊗ f)(h) = 〈h, e〉f. We shall
frequently use the fact that a rank one operator e ⊗ f belongs to a nest algebra,
AlgN , if and only if the exist an element N of N such that e ∈ N⊥− and f ∈ N ,
[4, Lemmas 2.8 and 3.7]. Throughout, we denote by N a nest acting on a Hilbert
space H and by K(N ) the ideal of compact operators of AlgN .

2. COMPACT MULTIPLICATION OPERATORS

Let H be a Hilbert space and a, b elements of B(H). Vala proved in [12] that
if a, b ∈ B(H) − {0}, then the map φ : B(H) → B(H), x 7→ axb is compact if
and only if the operators a and b are both compact. However, such a result does
not hold for nest algebras. Let N be a nest containing a projection P such that
dim(P ) = dim(P⊥) = ∞ and a ∈ AlgN be a non-compact operator such that
a = PaP⊥. Then, the multiplication operator

Ma,a : AlgN → AlgN ,
x 7→ axa

coincides with the multiplication operator M0,0, since

Ma,a(x) = axa = PaP⊥xPaP⊥ = 0,

for P⊥xP = 0.
Let a, b ∈ AlgN . We introduce the following projections:

Ra = ∨{P ∈ N : aP = 0}
and

Qb = ∧{P ∈ N : P⊥b = 0}.
Proposition 2.1. Let a, b ∈ AlgN . Then, Ma,b = 0 if and only if Qb ≤ Ra.

The next theorem gives a necessary and sufficient condition for a non-zero mul-
tiplication operator Ma,b : AlgN → AlgN , Ma,b(x) = axb to be compact.

Theorem 2.2. Let a, b ∈ AlgN such that Ma,b 6= 0. The multiplication operator
Ma,b : AlgN → AlgN is compact if and only if the operators P+aP+ and P⊥− bP

⊥
−

are both compact for all P ∈ N , Ra < P < Qb in the case that Ra+ 6= Qb or the
operators QbaQb and R⊥a bR

⊥
a are both compact in the case that Ra+ = Qb.

Remark 2.3. Consider the nest N = {{0}, H} and let a, b ∈ AlgN = B(H)
with a, b 6= 0. From Theorem 2.2 it follows that the multiplication operator Ma,b :
B(H)→ B(H) is compact if and only if the operators a and b are both compact. In
that case the result coincides with Vala’s Theorem.
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COMPACT MULTIPLICATION OPERATORS ON NEST ALGEBRAS 3

Let A be a C*-algebra and Φ an elementary operator on A. Timoney proved in
[11, Theorem 3.1] that Φ is compact if and only if Φ can be expressed as Φ(x) =∑m
i=1 aixbi for ai and bi compact elements of A (1 ≤ i ≤ m). The following example

shows that this fact does not hold in the class of nest algebras.

Example 2.4. Let H be a Hilbert space, {ei}i∈N an orthonormal sequence of H,
N = {[{ei : i ∈ N, i ≤ n}] : n ∈ N} ∪ {{0}, H} and b =

∑
n∈N

1
nen ⊗ en a compact

operator of AlgN . Then, the multiplication operator MI,b is compact (Theorem
2.2). We suppose that there exist compact operators ci, di ∈ B(H), i = 1, . . . , l such

that MI,b =
∑l
i=1Mci,di and we shall arrive at a contradiction. We consider the

following family of rank one operators,

{xr,s} r∈N
s∈N∪{0}
s<r

= {er ⊗ er−s} r∈N
s∈N∪{0}
s<r

∈ AlgN .

Then,

MI,b(xr,s) =
l∑

i=1

Mci,di(xr,s)

or

(2.1)
1

r
er ⊗ er−s =

l∑

i=1

d∗i (er)⊗ ci(er−s).

The relation (2.1) implies that

(2.2)
1

r
=

l∑

i=1

〈er, d∗i (er)〉〈er−s, ci(er−s)〉,

by taking the evaluations on er and then the inner product by er−s on each side
of (2.1). For all r ∈ N and i ∈ {1, . . . , l} we set Dr,i = 〈er, d∗i (er)〉 and Cr,i =
〈er, ci(er)〉. We denote the vectors (Dr,1, . . . , Dr,l) ∈ Cl and (Cr,1, . . . , Cr,l) ∈ Cl
by Dr and Cr respectively for all r ∈ N. Now, we can write equation (2.2) in the
form

(2.3)
1

r
=

l∑

i=1

Dr,iCr−s,i.

This implies

(2.4) 0 =
l∑

i=1

Dr,i (Cr−s,i − C1,i)

The sequence (Vn)n∈N = (span{C2 − C1, . . . , Cn − C1})n∈N of subspaces of Cl is
increasing and therefore there exists an n0 ∈ N such that Vn0

= Vn for all n ≥ n0.
Therefore, the following holds for all n ∈ N.

(2.5) 0 =

l∑

i=1

Dn0,i(Cn,i − C1,i).

Since the operators ci, i = 1, . . . , l are compact, the sequence (Cn)n∈N converges
to 0. Taking limits in equation (2.5) as n → ∞ we obtain 0 = − 1

n0
which is a

contradiction.
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4 G. ANDREOLAS AND M. ANOUSSIS

The set of compact elements of a nest algebra does not form an ideal in general.
However, we characterize the ideal generated by the compact elements.

Theorem 2.5. The ideal Jc, generated by the compact elements of the nest algebra
AlgN , is equal to K(N ) + Rad(N ), where Rad(N ) is an the Jacobson radical of
AlgN .

3. WEAKLY COMPACT MULTIPLICATION OPERATORS

The following lemma is instrumental in the proof of the main theorem (3.2) of
this section.

Lemma 3.1. Let a, b ∈ AlgN and (en)N, (fn)n∈N orthonormal sequences in H such
that en⊗fn ∈ AlgN for all n ∈ N. If there exists an ε > 0 such that ‖a(fn)‖ ≥ ε and
‖b∗(en)‖ ≥ ε for all n ∈ N, then there exists a strictly increasing sequence (kn)n∈N
such that the operator a

(∑
n∈N ekn ⊗ fkn

)
b =

∑
n∈N b

∗(ekn)⊗a(fkn) ∈ AlgN is not
compact and for any subsequence (knm

)m∈N the operator
∑
n∈N b

∗(eknm
)⊗a(fknm

) ∈
AlgN is non-compact as well.

Now, we proceed to the main theorem of this section. To do so, we introduce
the following projections:

Ua = ∨{P ∈ N : PaP is a compact operator}
and

Lb = ∧{P ∈ N : P⊥bP⊥ is a compact operator},
where a, b ∈ AlgN .

Theorem 3.2. Let a, b ∈ AlgN . The multiplication operator Ma,b : AlgN →
AlgN , x 7→ axb is weakly compact if and only if one of the following conditions is
satisfied:

(i) Ua > Lb.
(ii) Ua = Lb = S and the operators SaS and S⊥bS⊥ are both compact.
(iii) Ua = Lb = S, the operator SaS is compact, the operator S⊥bS⊥ is non-

compact and for any ε > 0, there exists a projection P ∈ N , P > S such
that ‖a(P − S)‖ < ε.

(iv) Ua = Lb = S, the operator S⊥bS⊥ is compact, the operator SaS is non-
compact and for any ε > 0, there exists a projection P ∈ N , P < S such
that ‖(S − P )b‖ < ε.

The next theorem provides an other characterization of weakly compact multi-
plication operators.

Theorem 3.3. Let a, b ∈ AlgN . The multiplication operator Ma,b : AlgN →
AlgN is weakly compact if and only if for all ε > 0 there exist two projections
P1, P2 ∈ N , with P1 ≤ P2, such that the operators P1aP1 and P⊥2 bP

⊥
2 are both

compact and ‖a(P2 − P1)‖ < ε or ‖(P2 − P1)b‖ < ε.

Corollary 3.4. Let N = {Pn}n∈N ∪ {{0}, H} be a nest consisting of a sequence
of finite rank projections that increase to the identity, and let a, b ∈ AlgN . The
multiplication operator Ma,b : AlgN → AlgN , x 7→ axb is weakly compact if and
only if either the operator a is compact or the operator b is compact.
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Remark 3.5. Let N be a nest as in Corollary 3.4 and a, b ∈ AlgN . From Theorem
2.2 and Corollary 3.4 it follows that the multiplication operator Ma,b : AlgN →
AlgN is weakly compact while being non-compact if and only if the operator a is
compact and the operator b is non-compact.

4. MULTIPLICATION OPERATORS ON AlgN /K(N )

In this section, we see that there is not any non-zero weakly compact multipli-
cation operator on AlgN .

Theorem 4.1. Let a, b ∈ AlgN and π : AlgN → AlgN /K(N ) be the quotient
map. The multiplication operator Mπ(a),π(b) : AlgN /K(N ) → AlgN /K(N ) is
weakly compact if and only if Mπ(a),π(b) = 0.

Remark 4.2. Let a, b ∈ AlgN . Then, the following are equivalent:

(i) The multiplication operator Mπ(a),π(b) : AlgN /K(N ) → AlgN /K(N ) is
compact.

(ii) The multiplication operator Mπ(a),π(b) : AlgN /K(N ) → AlgN /K(N ) is
weakly compact.

(iii) Mπ(a),π(b) = 0.
(iv) Ma,b(AlgN ) ⊆ K(H).
(v) The multiplication operator Ma,b is weakly compact.

Acknowledgements. The authors would like to thank Prof. V. Felouzis for
fruitful discussions.
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TOPOLOGICAL RADICALS IN NEST ALGEBRAS

G. ANDREOLAS AND M. ANOUSSIS

Abstract. Let N be a nest on a Hilbert space H and AlgN
the corresponding nest algebra. We determine the hypocompact
radical of AlgN . Other topological radicals are also characterized.

1. Introduction

Let A be a Banach algebra. The Jacobson radical of A is defined
as the intersection of the kernels of the algebraically irreducible rep-
resentations of A. A topologically irreducible representation of A is a
continuous homomorphism of A into the Banach algebra of bounded
linear operators on a Banach space X for which no nontrivial, closed
subspace of X is invariant. It has been shown in [5] that the intersec-
tion of the kernels of these representations is in a reasonable sense a
new radical that can be strictly smaller than the Jacobson radical.

The theory of topological radicals of Banach algebras originated with
Dixon [5] in order to study this new radical as well as other radicals
associated with various types of representations.

Shulman and Turovskii have further developed the theory of topo-
logical radicals in a series of papers [8, 9, 10, 11, 12, 13] and applied
it to the study of various problems of Operator Theory and Banach
algebras. They introduced many new topological radicals. Among
them there are the hypocompact radical, the hypofinte radical and the
scattered radical. These radicals are closely related to the theory of
elementary operators on Banach algebras [3, 10].

Let us recall Dixon’s definition of topological radicals.

Definition 1.1. A topological radical is a map R associating with each
Banach algebra A a closed ideal R(A) ⊆ A such that the following
hold.

(1) R(R(A)) = R(A).
(2) R(A/R(A)) = {0}, where {0} denotes the zero coset inA/R(A).
(3) If A, B are Banach algebras and φ : A → B is a continuous

epimorphism, then φ(R(A)) ⊆ R(B).
(4) If I is a closed ideal of A, then R(I) is a closed ideal of A and
R(I) ⊆ R(A) ∩ I.

1
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An element a of a Banach algebra A is said to be compact if the
map Ma,a : A → A, x 7→ axa is compact. Following Shulman and
Turovskii [12] we will call a Banach algebra A hypocompact if any
nonzero quotient A/J by a closed ideal J contains a nonzero compact
element. Shulman and Turovskii have proved that any Banach algebra
A has a largest hypocompact ideal [12, Corollary 3.10] which is denoted
by Rhc(A) and that the map A → Rhc(A) is a topological radical [12,
Theorem 3.13]. The ideal Rhc(A) is called the hypocompact radical of
A.

If X is a Banach space, we shall denote by B(X) the Banach algebra
of all bounded operators on X and by K(X) the Banach algebra of
all compact operators on X. Vala has shown in [14] that if X is a
Banach space, an element a ∈ B(X) is a compact element if and only
if a ∈ K(X). Since by [3, Lemma 8.2] the compact elements are always
contained in the hypocompact radical, we obtain K(X) ⊆ Rhc(B(X)).
It follows that if H is a separable Hilbert space, the hypocompact
radical of B(H) is K(H). Indeed, the ideal K(H) is the only proper
ideal of B(H) while the Calkin algebra B(H)/K(H) does not have any
non-zero compact element [6, section 5].

Shulman and Turovskii observe in [12, p. 298] that there exist Ba-
nach spaces X, such that the hypocompact radicalRhc(B(X)) of B(X))
contains all the weakly compact operators and contains strictly the
ideal of compact operators K(X).

Argyros and Haydon construct in [2] a Banach space X such that ev-
ery operator in B(X) is a scalar multiple of the identity plus a compact
operator. In that case, it follows that B(X)/K(X) is finite-dimensional
and hence Rhc((B(X)) = (B(X).

In this work we characterize the hypocompact radical of a nest alge-
bra. The detailed proofs of the results presented in this note, may be
found in [1].

Nest algebras form a class of non-selfadjoint operator algebras that
generalize the block upper triangular matrices to an infinite dimen-
sional Hilbert space context. They were introduced by Ringrose in [7]
and since then, they have been studied by many authors. The mono-
graph of Davidson [4] is recommended as a reference.

Ringrose characterized the Jacobson radical of a nest algebra in [7,
Theorem 5.3]. Moreover, it follows from [7, Theorem 4.9 and 5.3] that
the intersection of the kernels of the topologically irreducible represen-
tations of a nest algebra coincides with the Jacobson radical.

We introduce now some definitions and notations that we will use
in the sequel. A nest N is a totally ordered family of closed subspaces
of a Hilbert space H containing {0} and H, which is closed under
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intersection and closed span. If H is a Hilbert space and N a nest on
H, then the nest algebra AlgN is the algebra of all operators T ∈ B(H)
such that T (N) ⊆ N for all N ∈ N . We shall usually denote both
the subspaces belonging to a nest and their corresponding orthogonal
projections by the same symbol.

Throughout we denote by N a nest acting on a Hilbert space H. In
addition, all ideals are considered to be closed. The Jacobson radical of
the nest algebra AlgN will be denoted by Rad(AlgN ). The following
is [7, Theorem 5.4].

Theorem 1.2 (Ringrose’s Theorem). Let N be a nest on a Hilbert
space H and a ∈ AlgN . Then a ∈ Rad(AlgN ) if and only if the
following condition is satisfied: for every ε > 0, there exist m ∈ N and
P0, P1, ..., Pm ∈ N such that

{0} = P0 < P1 < P2 < ...Pm = H

and
‖(Pi − Pi−1)a(Pi − Pi−1)‖ < ε

∀i = 1, 2, ...m.

2. Main Result

Proposition 2.1. (AlgN ∩K(H)) + Rad(AlgN ) ⊆ Rhc(AlgN ).

Proof. If a ∈ AlgN ∩K(H) then it follows from the result of Vala
that Ma,a is compact, hence a is a compact element of AlgN . Since
by [3, Lemma 8.2] the compact elements are always contained in the
hypocompact radical, we obtain that a is in Rhc(A).

Let a ∈ Rad(AlgN ). Let ε > 0, m ∈ N and P0, P1, ..., Pm ∈ N such
that

{0} = P0 < P1 < P2 < ...Pm = H

and
‖(Pi − Pi−1)a(Pi − Pi−1)‖ < ε

∀i = 1, 2, ...m.
Write

a =
m∑

i=1

(Pi − Pi−1)a(Pi − Pi−1) +
m∑

i=1

(Pi − Pi−1)aP
⊥
i .

We have

(Pi − Pi−1)aP
⊥
i = Pi(Pi − Pi−1)aP

⊥
i .

We show that if b ∈ AlgN and P ∈ N , then PbP⊥ is a compact
element of AlgN .
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4 G. ANDREOLAS AND M. ANOUSSIS

The multiplication operator

MPbP⊥,P bP⊥ : AlgN → AlgN ,
satisfies

MPbP⊥,P bP⊥(x) = axa = PbP⊥xPbP⊥ = 0,

since P⊥xP = 0, ∀x ∈ AlgN and hence PbP⊥ is a compact element of
AlgN .

We have

‖
m∑

i=1

(Pi−Pi−1)a(Pi−Pi−1)‖ = sup
i=1,2,...,m

‖(Pi−Pi−1)a(Pi−Pi−1)‖ < ε.

Hence a is approximated by elements of Rhc(A) and since Rhc(A) is
closed it follows that a ∈ Rhc(A).

�
The characterization of the hypocompact radical of a nest algebra is

given in the following theorem:

Theorem 2.2. The hypocompact radical of AlgN is the ideal

AlgN ∩K(H) + Rad(AlgN ) .

The following definitions and results are taken from [13]. An element
a of a Banach algebra A is said to be finite rank if the map Ma,a : A →
A, x 7→ axa is finite rank. A Banach algebra A is called hypofinite
if any nonzero quotient A/J by a closed ideal J contains a nonzero
finite rank element. A Banach algebra A has a largest hypofinite ideal
which is denoted by Rhf (A) and the map A → Rhf (A) is a topological
radical [13, 2.3.6]. The ideal Rhf (A) is called the hypofinite radical
of A. A Banach algebra is called scattered if the spectrum of every
element a ∈ A is finite or countable. A Banach algebra A has a largest
scattered ideal denoted by Rsc(A) and the map A → Rsc(A) is a
topological radical [13, Theorems 8.10, 8.11]. The idealRsc(A) is called
the scattered radical of A.

Corollary 2.3. Rhf (AlgN ) = Rhc(AlgN ) = Rsc(AlgN ).
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SPACES OF DISTRIBUTIONS WITH MIXED LEBESGUE

NORMS

G. CLEANTHOUS, A. G. GEORGIADIS, AND M. NIELSEN

Abstract. We consider smoothness spaces of distributions on Rn with mixed
Lebesgue norms, where different level of integrability is used for every coor-

dinate. In this note we will state our recent results in this area and we will

present some new properties of mixed-norm Besov and Triebel-Lizorkin spaces.

1. Introduction

The theory of spaces of functions and distributions forms an integral part of
functional analysis. Here we aim to present some recent and some new properties
of smoothness spaces. Besov and Triebel-Lizorkin spaces form two closely related
families of smoothness spaces with numerous applications in approximation theory
and functional analysis, see [12, 27, 30]. The construction of the above mentioned
spaces is based on a dyadic decomposition of the frequency space, and their proven
usefulness for applications relies to a large degree on the fact that universal and
stable discrete decomposition systems exist for the two families of spaces.

The significance of these spaces can be partially understood by the fact that sev-
eral spaces of functional analysis, with their own history, are recovered for specific
values of the parameters in the definitions of Besov and Triebel-Lizorkin spaces.
Some examples are Lebesgue, Hardy, Sobolev and Lipschitz spaces.

The study of Besov and Triebel-Lizorkin spaces has been expanded significantly
since the introduction of the so called ϕ-transform by Frazier and Jawerth in their
seminal papers [10–12]. As solid bases for introduction in the study of these spaces
we refer the reader to the books of Peetre [27], Triebel [30] and the booklet of
Frazier, Jawerth and Weiss [13].

The influence of [10–12] on mathematical analysis has been impressive. Any
citation database will show a huge number of citations to the above papers. More-
over these papers have guided researchers with specialities in distribution spaces,
wavelets, and approximation theory. Some related works on Rn are [4–6, 22, 24].
For decompositions on other settings such as on the ball, on the sphere and the
interval, see for example [20,21,23,26,28].

In this paper we present some recent and some new results for Besov and Triebel-
Lizorkin spaces in a mixed-norm setting. The content of the article has been pre-
sented by the first named author during the fifteenth Panhellenic conference of

1991 Mathematics Subject Classification. 42B25, 42B35, 46F10, 46F25.
Key words and phrases. tempered distributions, mixed-norms, smoothness spaces, Besov

spaces, Triebel-Lizorkin spaces, inhomogeneous, homogeneous, embeddings.
Supported by the Danish Council for Independent Research — Natural Sciences, Grant 12-

124675, “Mathematical and Statistical Analysis of Spatial Data”.
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2 G. CLEANTHOUS, A. G. GEORGIADIS, AND M. NIELSEN

mathematical analysis which took place in Heraklion between 27 and 29 of May of
2016.

Recently, there has been significant interest in the study of inhomogeneous Besov
and Triebel-Lizorkin spaces with mixed Lebesgue norms, see [15–19].

In [7] we introduced and studied homogeneous mixed-norm Besov spaces Ḃs~pq,

for s ∈ R, ~p = (p1, . . . , pn) ∈ (0,∞)n and q ∈ (0,∞]. The homogeneous spaces
are defined over the class S ′/P of tempered distributions modulo the polynomials.

Homogeneous mixed-norm Triebel-Lizorkin spaces Ḟ s~pq, are introduced in the recent

preprint [14].

Here we present some first properties on Ḃs~pq spaces proven in [7] and we offer
some new results as well. Namely we will prove the connection between inhomoge-
neous and homogeneous mixed-norm Besov and Triebel-Lizorkin spaces.

Notation: Through the article, positive constants will denoted by c and they
may vary at every occurrence. The Fourier transform of a (proper) function f will

be stated by f̂(ξ) =
∫
Rn f(x)e−ix·ξdx. The set of positive integers will be denote

by N := {1, 2, . . . }. For two quasi-normed spaces X,Y we will denoted by X ↪→ Y
a continuous embedding.

2. Preliminaries

In this section we present some background needed for the development of mixed
norm Besov and Triebel-Lizorkin spaces.

2.1. Schwartz functions and distributions. Let us recall some basic facts about
Schwartz functions and distributions. We denote by S = S(Rn) the Schwartz space
of rapidly decreasing, infinitely differentiable functions on Rn. A function ϕ ∈ C∞
belongs to S, when for every k ∈ N ∪ {0} and every multi-index α ∈ (N ∪ {0})n,
(2.1) Pk,α(ϕ) := sup

x∈Rn

(1 + |x|)k|Dαϕ(x)| <∞.

The dual S ′ = S ′(Rn) of S is the space of tempered distributions.
We will further denote

S∞ := S∞(Rn) =
{
ψ ∈ S :

∫

Rn

xαψ(x)dx = 0, ∀α ∈ (N ∪ {0})n
}
.

We note that S∞ is a Fréchet space, because it is closed in S and its dual is
S ′∞ = S ′/P, where P the family of polynomials on Rn.

We will define inhomogeneous mixed-norm Besov spaces for elements of S ′ and
the homogeneous ones for tempered distributions modulo polynomials S ′/P.

2.2. Mixed norm Lebesgue spaces. In our setting, the integrability will be
measured in terms of the mixed Lebesgue norms which we present immediately.

Let ~p = (p1, . . . , pn) ∈ (0,∞)n and f : Rn → C. We say that f ∈ L~p = L~p(Rn)
if
(2.2)

‖f‖~p := ‖f‖L~p(Rn) :=



∫

R
· · ·
(∫

R

(∫

R
|f(x1, . . . , xn)|p1dx1

) p2
p1

dx2

) p3
p2

· · · dxn




1
pn

<∞,

The quasi-norm ‖ · ‖~p, is actually a norm when min(p1, . . . , pn) ≥ 1 and turns
(L~p, ‖ · ‖~p) into a Banach space. Note that when ~p = (p, . . . , p), then L~p coincides
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with Lp. More properties of L~p, can be found for example in [1–3, 9, 25, 29]. For
smoothness spaces with mixed Lebesgue norms we refer the reader to [15–17, 25]
and their references.

3. Inhomogeneous mixed-norm Besov and Triebel-Lizorkin spaces

Inhomogeneous mixed-norm Besov and Triebel-Lizorkin spaces have been exten-
sively studied the last years, see for example [15,18,19] and the references therein.
Let us recall their definitions.

Let a function φ0 ∈ S(Rn) satisfying

(3.3) supp φ̂0 ⊆ {ξ ∈ Rn : |ξ| ≤ 2},
and

(3.4) |φ̂0(ξ)| ≥ c > 0 if |ξ| ≤ 23/4.

Let also φ ∈ S(Rn) satisfying

(3.5) supp φ̂ ⊆ {ξ ∈ Rn : 1/2 ≤ |ξ| ≤ 2},
and

(3.6) |φ̂(ξ)| ≥ c > 0 if 2−3/4 ≤ |ξ| ≤ 23/4.

We set φν(x) := 2νnφ(2νx), ∀ν ∈ N.

Definition 3.1. Let s ∈ R, ~p = (p1, . . . , pn) ∈ (0,∞)n, q ∈ (0,∞] and φ0, φ as
above.

(i) The inhomogeneous mixed-norm Besov space Bs~pq, is the collection of all

f ∈ S ′ such that

(3.7) ‖f‖Bs
~pq

:=
( ∞∑

ν=0

(2νs‖φν ∗ f‖~p)q
)1/q

<∞,

with the `q-norm replaced by the supν if q =∞.
(ii) The inhomogeneous mixed-norm Triebel-Lizorkin space F s~pq, is the collection

of all f ∈ S ′ such that

(3.8) ‖f‖F s
~pq

:=
∣∣∣
∣∣∣
( ∞∑

ν=0

(2νs|φν ∗ f(·)|)q
)1/q∣∣∣

∣∣∣
~p
<∞,

with the `q-norm replaced by the supν if q =∞.

4. Homogeneous mixed-norm Besov spaces

In this section we present the extension of the classical homogeneous Besov spaces
(see Triebel [30], Peetre [27] and Frazier-Jawerth [10]), which we developed in [7]
using mixed-norms.

We will say that a test function ϕ ∈ S is admissible when it satisfies (3.5) and
(3.6). Furthermore, we set ϕν(x) := 2νnϕ(2νx), ∀ν ∈ Z. We present the following:

Definition 4.1. [7] For s ∈ R, ~p = (p1, . . . , pn) ∈ (0,∞)n, q ∈ (0,∞] and ϕ

admissible, we define the homogeneous mixed-norm Besov space Ḃs~pq, as the set of

all f ∈ S ′/P such that

(4.9) ‖f‖Ḃs
~pq

:=
(∑

ν∈Z
(2νs‖ϕν ∗ f‖~p)q

)1/q
<∞,
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with the `q-norm replaced by the supν if q =∞.

Remark 4.2. Several remarks regarding the homogeneous mixed-norm Besov spaces
defined above and some results proven in [7] are in order.

(α) By (3.6) we have that ‖f‖Ḃs
~pq

= 0⇔ f ∈ P, which is why we work over the

quotient S ′/P.

(β) When ~p = (p, . . . , p), then Ḃs~pq, coincides with Ḃspq, the standard homogeneous
Besov space.

(γ) Homogeneous mixed-norm Besov space Ḃs~pq is quasi-Banach for all s ∈
R, ~p = (p1, . . . , pn) ∈ (0,∞)n and q ∈ (0,∞]. The triangle inequality does not

hold in general in Ḃs~pq. Instead we have the sub-additivity

‖f + g‖r
Ḃs

~pq

≤ ‖f‖r
Ḃs

~pq

+ ‖g‖r
Ḃs

~pq

, where r := min(1, p1, . . . , pn, q).

Furthermore Ḃs~pq is a Banach space when ~p ∈ [1,∞)n, q ∈ [1,∞].

(δ) The quasi-norm in the definition of Ḃs~pq depends on the choice of the admissi-
ble function ϕ, but for different admissible functions, we get equivalent quasi-norms.
Therefore Ḃs~pq space is independent of the admissible function ϕ.

(ε) All the construction has been based on the dyadic decomposition of the fre-
quency space. We can use instead, any other number β > 1 in all the procedure of
Subsection 2.2, as well as in the Definition 4.1 of Besov spaces (replace 2νs by βνs)
and get the same spaces with equivalent norms.

(στ) Some embeddings between homogeneous mixed-norm Besov spaces, provided
in [7] are presented below:

(στ1) Let s ∈ R, ~p ∈ (0,∞)n and 0 < q < r ≤ ∞. Then we have the embedding

Ḃs~pq ↪→ Ḃs~pr,

coming from the well known embedding between the sequence spaces; `q ↪→ `r.
(στ2) Homogeneous mixed-norm Besov spaces and the classes S∞,S ′∞ are con-

nected in the following way:

Proposition 4.3. Let s ∈ R, ~p = (p1, · · · , pn) ∈ (0,∞)n and q ∈ (0,∞]. Then

S∞ ↪→ Ḃs~pq and Ḃs~pq ↪→ S ′∞.
(στ3) Spaces of different smoothness levels are connected as below:

Proposition 4.4. Let s, t ∈ R, ~p = (p1, · · · , pn), ~r = (r1, . . . , rn) ∈ (0,∞)n and
q ∈ (0,∞] be such that

t < s, p1 ≤ r1, . . . , pn ≤ rn, and s− 1

p1
− · · · − 1

pn
= t− 1

r1
− · · · − 1

rn
,

then
Ḃs~pq ↪→ Ḃt~rq.

Specifically we have the following relation between mixed and unmixed spaces:
Let s ∈ R, ~p = (p1, · · · , pn) ∈ (0,∞)n and q ∈ (0,∞]. We set pm := min(p1, . . . , pn)

and pM := max(p1, . . . , pn), then

Ḃtpmq ↪→ Ḃs~pq ↪→ ḂτpMq,

where

t = s−
( 1

p1
+ · · ·+ 1

pn

)
+

n

pm
and τ = s−

( 1

p1
+ · · ·+ 1

pn

)
+

n

pM
.
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4.1. Homogeneous mixed-norm Triebel-Lizorkin spaces. The development
of homogeneous mixed-norm Triebel-Lizorkin spaces has been obtained in [14]. Let
us present here only the definition of these spaces.

Definition 4.5. [14] For s ∈ R, ~p = (p1, . . . , pn) ∈ (0,∞)n, q ∈ (0,∞] and ϕ

admissible, we define the homogeneous mixed-norm Triebel-Lizorkin space Ḟ s~pq, as

the set of all f ∈ S ′/P such that

(4.10) ‖f‖Ḟ s
~pq

:=
∣∣∣
∣∣∣
(∑

ν∈Z
(2νs|ϕν ∗ f(·)|)q

)1/q∣∣∣
∣∣∣
~p
<∞,

with the `q-norm replaced by the supν if q =∞.

Note that the remarks we presented for the case of homogeneous mixed-norm
Besov spaces, apply for Ḟ s~pq spaces too.

5. Comparison of inhomogeneous and homogeneous spaces

In this section we give some new results, inspired by the unmixed case presented
in [13]. We give the relation connecting the inhomogeneous and homogeneous
mixed-norm Besov and Triebel-Lizorkin spaces, but let us first justify the title
“homogeneous” which we use for some of our spaces.

Let f ∈ S ′. We set fµ(x) := 2µnf(2µx) for every µ ∈ Z and x ∈ Rn. We will
show that

(5.11) ‖fµ‖Ḃs
~pq

= 2µN‖f‖Ḃs
~pq
, ∀s ∈ R, ~p = (p1, . . . , pn) ∈ (0,∞)n, q ∈ (0,∞],

where N is an exponent depending only on the parameters s, ~p, q.
Indeed, let ν, µ ∈ Z and x ∈ Rn. By changing variables we obtain that

(5.12) ϕν ∗ fµ(x) = 2µn
(
ϕν−µ ∗ f

)
(2µx).

Now the mixed Lebesgue norm of
(
ϕν−µ∗f

)
(2µx), by changing the variables 2µxj =:

yj , for every direction j = 1, . . . , n, equals to

(5.13) ‖(ϕν−µ ∗ f)(2µ·)‖~p = 2−µ
(

1
p1

+···+ 1
pn

)
‖ϕν−µ ∗ f‖~p.

From (5.12) and (5.13), it follows that

‖fµ‖Ḃs
~pq

=
(∑

ν∈Z
(2νs‖ϕν ∗ fµ‖~p)q

)1/q

=
(∑

ν∈Z

(
2νs2µn2−µ

(
1
p1

+···+ 1
pn

)
‖ϕν−µ ∗ f‖~p

)q)1/q

= 2µ
(
s+n−

(
1
p1

+···+ 1
pn

))(∑

ν∈Z

(
2(ν−µ)s‖ϕν−µ ∗ f‖~p

)q)1/q

= 2µ
(
s+n−

(
1
p1

+···+ 1
pn

))
‖f‖Ḃs

~pq
.

So (5.11) holds true for N := s+ n−
(

1
p1

+ · · ·+ 1
pn

)
. Note that (5.11) remains

true for the homogeneous mixed-norm Triebel-Lizorkin spaces as well (with the
same N) and does not hold for the inhomogeneous spaces.

The exponent N is called the homogeneous dimension of Ḃs~pq (or Ḟ s~pq) space.
Note that for the unmixed case the homogeneous dimension we derived turns to
N = s+ n

(
1− 1

p

)
as in [13].
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Now let us present the relation connecting the inhomogeneous and homogeneous
spaces with mixed-norms, inspired by the classical, unmixed, situation, see [13].

Theorem 5.1. Let s > 0, ~p = (p1, . . . , pn) with min(p1, . . . , pn) ≥ 1 and 0 < q ≤
∞. Then

(i) Bs~pq = L~p ∩ Ḃs~pq and (ii) F s~pq = L~p ∩ Ḟ s~pq.

Proof. (i) Let f ∈ Bs~pq. Let also φ0, φ ∈ S satisfying (3.3)-(3.6) be such that

∑

ν≥0
φ̂ν(ξ) = 1, for every ξ ∈ Rn.

Then

f =
∑

ν≥0
φν ∗ f (convergence in S ′).

Using the fact that min(p1, . . . , pn) ≥ 1 and hence ‖ · ‖~p turns to a norm, it follows
that

‖f‖L~p
=

∥∥∥
∑

ν≥0
φν ∗ f

∥∥∥
~p
≤
∑

ν≥0
‖φν ∗ f‖~p

≤
∑

ν≥0
2−νs sup

µ≥0
2µs‖φµ ∗ f‖~p

= cs sup
µ≥0

2µs‖φµ ∗ f‖~p ≤ c‖f‖Bs
~pq
,(5.14)

where for the last equality, we used the assumption s > 0.
Let now ϕ ∈ S satisfying (3.5) and (3.6). By Penedek-Panzone [3, Theorem 1.b,

p. 319] and by the fact that min(p1, . . . , pn) ≥ 1, we have the following behaviour
for the mixed-norms of convolution operators:

(5.15) ‖ϕν ∗ f‖~p ≤ ‖ϕν‖1‖f‖~p = c‖f‖~p, for every ν ∈ Z,

since we can easily observe that ‖ϕν‖1 = ‖ϕ‖1, for every ν ∈ Z and hence we get
immediately

‖f‖Ḃs
~pq

=
(∑

ν∈Z
(2νs‖ϕν ∗ f‖~p)q

)1/q

≤ c
(∑

ν≤0
(2νs‖ϕν ∗ f‖~p)q

)1/q
+ c
(∑

ν>0

(2νs‖ϕν ∗ f‖~p)q
)1/q

≤
(∑

ν≤0
2νsq

)1/q
‖f‖~p + c‖f‖Bs

~pq

≤ c(‖f‖~p + ‖f‖Bs
~pq

),(5.16)

where we used again the fact that s > 0. Combining (5.14) and (5.16) we have the
embedding

Bs~pq ↪→ L~p ∩ Ḃs~pq.
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For the other direction, note that (5.15) holds true for the functions φν , ν ≥ 0
as well. Then,

‖f‖Bs
~pq

=
(∑

ν≥0
(2νs‖φν ∗ f‖~p)q

)1/q

≤ c‖φ0 ∗ f‖~p + c
(∑

ν>0

(2νs‖φν ∗ f‖~p)q
)1/q

≤ c(‖f‖~p + ‖f‖Ḃs
~pq

),

which guarantees the embedding

L~p ∩ Ḃs~pq ↪→ Bs~pq.

(ii) We will follow [13]. Let f ∈ S ′ and φ0, φ ∈ S satisfying (3.3)-(3.6) be such

that {φ̂ν}ν≥0 to be a partition of unity. Then

(5.17) f =
∑

ν≥0
φν ∗ f (convergence in S ′).

We turn to estimate ∑

ν≥1
|φν ∗ f(x)|.

We distinguish the cases q ≥ 1 and q < 1.
Case α : 1 ≤ q ≤ ∞. By Hölder’s inequality, denoting by q′ the conjugate index

of q, we obtain

∑

ν≥1
|φν ∗ f(x)| ≤

(∑

ν≥1
2−νsq

′)1/q′(∑

ν≥1

(
2νs|φν ∗ f(x)|

)q)1/q

≤ cs,q

(∑

ν≥1

(
2νs|φν ∗ f(x)|

)q)1/q
,

thanks to the assumption s > 0.
Case β : 0 < q < 1. Using the q-triangle inequality and the fact that s > 0, we

derive
∑

ν≥1
|φν ∗ f(x)| ≤

∑

ν≥1
2νs|φν ∗ f(x)| ≤

(∑

ν≥1

(
2νs|φν ∗ f(x)|

)q)1/q
.

Since now min(p1, . . . , pn) ≥ 1, by assumption, relation (5.17) and the bounds
above lead us to

‖f‖~p ≤ c‖φ0 ∗ f‖~p + c
∣∣∣
∣∣∣
(∑

ν≥1
(2νs|φν ∗ f(·)|)q

)1/q∣∣∣
∣∣∣
~p

≤ c
∣∣∣
∣∣∣
(∑

ν≥0
(2νs|φν ∗ f(·)|)q

)1/q∣∣∣
∣∣∣
~p

= c‖f‖F s
~pq
.(5.18)

Let now ϕ ∈ S satisfying (3.5) and (3.6). Then,

‖f‖Ḟ s
~pq
≤ c

∣∣∣
∣∣∣
(∑

ν≤0
(2νs|ϕν ∗ f(·)|)q

)1/q∣∣∣
∣∣∣
~p

+ c
∣∣∣
∣∣∣
(∑

ν>0

(2νs|ϕν ∗ f(·)|)q
)1/q∣∣∣

∣∣∣
~p

=: c
(
Σ1 + Σ2

)
.(5.19)
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Of course it holds that

(5.20) Σ2 ≤ ‖f‖F s
~pq

and so we restrict our interest to Σ1. We consider separately the cases when q is
smaller than 1 or not.

Case α : 0 < q ≤ 1. By Hölder’s inequality, denoting by (1/q)′ the conjugate
index of 1/q, we obtain

∑

ν≤0

(
2νs|ϕν ∗ f(·)|

)q ≤
(∑

ν≤0
2(νsq/2)(1/q)

′)1/(1/q)′(∑

ν≤0
2νs/2|ϕν ∗ f(·)|

)q

≤ cs,q

(∑

ν≤0
2νs/2|ϕν ∗ f(·)|

)q
.

The last inequality gives us

Σ1 ≤ c
∣∣∣
∣∣∣
∑

ν≤0
2νs/2|ϕν ∗ f(·)|

∣∣∣
∣∣∣
~p
≤ c

∑

ν≤0
2νs/2‖ϕν ∗ f‖~p

≤ c
(∑

ν≤0
2νs/2

)
‖f‖~p ≤ c‖f‖~p,(5.21)

where for the second inequality we used the fact that ‖ · ‖~p is a norm under our
assumptions, for the third the inequality (5.15) and for the last the assumption
s > 0.

Case β : 1 < q ≤ ∞. By the identity |a+ b|1/q ≤ |a|1/q + |b|1/q, we derive

∑

ν≤0

(
2νs|ϕν ∗ f(·)|

)q ≤
(∑

ν≤0
2νs|ϕν ∗ f(·)|

)q
.

So with the same steps as before we get for this case too

(5.22) Σ1 ≤ c‖f‖~p.
Combining (5.18)-(5.22) we have that

‖f‖Ḟ s
~pq
≤ c‖f‖F s

~pq

which together with (5.18) offers the inclusion

F s~pq ↪→ L~p ∩ Ḟ s~pq.

The converse embedding comes straight from the expression (5.17) and the esti-
mation (5.15), indeed

‖f‖F s
~pq
≤ c‖φ0 ∗ f‖~p + c

∣∣∣
∣∣∣
(∑

ν>0

(2νs|φν ∗ f(·)|)q
)1/q∣∣∣

∣∣∣
~p

≤ c‖f‖~p + c‖f‖Ḟ s
~pq

and the proof is complete.
�
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The Main Equation for a Sturm-Liouville Operator with a  

Piecewise Continuous Coefficient 

Khanlar R. Mamedov
1
 and F. Ayca Cetinkaya

2
 
 

 

Abstract. We consider a boundary value problem for a Sturm-Liouville operator with a 

piecewise continuous coefficient: 

 

   2 ,       0 ,y q x y x y x          (1) 

 0 0,y        (2) 

       2

1 2 1 2 0y y y y                 (3) 

where    2 0, ,  q x L    is a complex parameter,  ,  1,2i i i    are real numbers and  

 
2

1,     0 ,

,  

x a
x

a x


 

 
 

 
 

as 0 1.   We derive the Gelfand-Levitan-Marchenko type main equation for boundary 

value problem (1)-(3) and we prove the uniqueness of its solution. We also give the 

uniqueness theorem for the solution of the inverse problem. The direct and inverse problem 

with respect to the Weyl function for the boundary value problem (1)-(3) is examined in [1].  

 

Keywords. Sturm-Liouville operator, inverse problem, main equation. 
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The study of the topological properties is fundamental in our study. We
will determine the multipliers and duals of certain sequence spaces. The
knowledge of the ��dual of a given sequence space X is essential for the
characterization of linear operators from X into a sequence space Y . This is
why we will focus on the ��dual of our sequence spaces to establish necessary
and su¢ cient conditions on the entries of an in�nite matrix A to be in the
class (X; Y ).
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Abstract

In this paper we study the asymptotic behavior of the positive
solutions of the systems of the two difference equations

xn+1 = a + byn−1e
−xn , yn+1 = c + dxn−1e

−yn ,

where the constants a, b, c, d are positive real numbers, and the initial
values x−1, x0, y−1, y0 are also positive real numbers.

Keywords: System of difference equations, equilibrium, boundedness, per-
sistence, attractivity, global asymptotic stability.
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1 Introduction

The mathematical modeling of a discrete problem very often leads to systems
of nonlinear difference equations. So there are many applications of such
systems in Economics, Biology, Biomathematics, Bioengineering, Population
Dynamics, Genetics and other sciences. Thus, an extended literature has
been developed regarding to difference equations and systems of difference
equations as we can see in [1-11] and the references cited therein.

Now, in this paper we study a system of nonlinear difference equations
which becomes from the following difference equation

xn+1 = a + bxn−1e
−xn

that has been studied in [6]. More detailed in this manuscript we investigate
the boundedness and the persistence of the positive solutions, the existence
of a unique positive equilibrium and the global asymptotic stability of the
equilibrium of the following system of difference equations

xn+1 = a + byn−1e
−xn , yn+1 = c + dxn−1e

−yn , (1.1)

where the constants a, b, c, d are positive real numbers and the initial values
x−1, x0, y−1, y0 are also positive real numbers.

2 Boundedness

Firstly, we study the boundedness and persistence of the solutions of system
(1.1).

Proposition 2.1 Let a, b, c, d be positive real numbers such that

p = bde−a−c < 1. (2.1)

Then every solution of (1.1) is positive, bounded and persists.

Proof Since the initial x−1, x0, y−1, y0 of (1.1) are positive, every solution
of (1.1) is positive.
Let (xn, yn) be an arbitrary solution of (1.1). From (1.1) it is obvious that

xn ≥ a, yn ≥ c, n = 1, 2, ... (2.2)

2
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Every solution of (1.1) persists.
Moreover from (1.1) and (2.2) it follows that for n = 2, 3, ...

xn+1 = a + b(c + dxn−3e
−yn−2)e−xn ≤ a + bce−a + pxn−3,

yn+1 = c + d(a + byn−3e
−xn−2)e−yn ≤ c + dae−c + pyn−3

(2.3)

We consider the system of difference equations

un+1 = a + bce−a + pun−3, vn+1 = c + dae−c + pvn−3, n = 2, 3, ... (2.4)

Let (un, vn) be a solution of (2.4) such that

u−1 = x−1, u0 = x0, u1 = x1, u2 = x2,
v−1 = y−1, v0 = y0, v1 = y1, v2 = y2.

(2.5)

From (2.4) and (2.5) we obtain

u3 = a + bce−a + px−1 > 0, v3 = c + dae−c + py−1 > 0

and working inductively it follows that

un > 0, vn > 0, n = 2, 3, ... .

Moreover, from (2.4) for n = 3, 4, ..., we have

un = λ1p
n
4 + λ2(−p)

n
4 + λ3p

n
4 cos(

nπ

2
) + λ4p

n
4 sin(

nπ

2
) +

a + bce−a

1 − p
, (2.6)

vn = µ1p
n
4 + µ2(−p)

n
4 + µ3p

n
4 cos(

nπ

2
) + µ4p

n
4 sin(

nπ

2
) +

c + dae−c

1 − p
, (2.7)

where λ1, λ2, λ3, λ4 (resp. µ1, µ2, µ3, µ4) are constants defined by
x−1, x0, x1, x2 (resp. y−1, y0, y1, y2).
Using (2.3), (2.4) and (2.5) we can prove by induction that

xn ≤ un, yn ≤ vn, n = −1, 0, ... (2.8)

Then from (2.2), (2.6), (2.7) and (2.8) we obtain that every solution of (1.1)
is bounded.
Hence, the proof is completed.

In the next proposition we prove the existence of invariant intervals for
the System (1.1).

3
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Proposition 2.2 Let a, b, c, d be positive numbers such that (2.1) hold. Con-
sider the intervals

I1 =
[
a,

a + bce−a

1 − p

]
, I2 =

[
c,

c + ade−c

1 − p

]
,

I3 =
[
a,

a + bce−a + ϵ

1 − p

]
, I4 =

[
c,

c + ade−c + ϵ

1 − p

]
,

where p is defined in relation (2.1) and ϵ is an arbitrary positive number.
Then, if (xn, yn) is a positive solution of (1.1) such that

x−1, x0 ∈ I1, y−1, y0 ∈ I2, (2.9)

we have
xn ∈ I1, yn ∈ I2, n = 1, 2, ... .

Moreover, if (xn, yn) is an arbitrary positive solution of (1.1), then there
exists an m ∈ N such that

xn ∈ I3, yn ∈ I4, n ≥ m. (2.10)

Proof (i) Let (xn, yn) be a positive solution of (1.1), such that (2.9) hold.
Then, from (1.1) we obtain

a ≤ x1 = a + by−1e
−x0 ≤ a + b

c + ade−c

1 − p
e−a =

a + bce−a

1 − p

c ≤ y1 = c + dx−1e
−y0 ≤ c + d

a + bce−a

1 − p
e−c =

c + ade−c

1 − p
.

and working inductively we can prove that

a ≤ xn ≤ a + bce−a

1 − p
, c ≤ yn ≤ c + ade−c

1 − p
, , n = 2, 3, ... .

This completes the proof of the first part of the proposition.

Let (xn, yn) be an arbitrary positive solution of (1.1). Then, from Propo-
sition 2.1, we obtain

lim sup
n→∞

xn = M < ∞, lim sup
n→∞

yn = L < ∞. (2.11)

Thus from (2.3) and (2.11) we get

M ≤ a + bce−a

1 − p
, L ≤ c + ade−c

1 − p
,

and so there exists an m ∈ IN such that (2.10) hold. This completes the
proof of the proposition.
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3 Attractivity

In this section we study the existence of a unique positive equilibrium for
system (1.1) and the attractivity of the unique positive equilibrium. Arguing
as in Theorem 1.6.5 of [1], in Theorems 1.11-1.16 of [2] and in Theorems
1.4.5-1.4.8 of [4] we state the following lemma.

Lemma 3.1 Let f, g, f : R+×R+ → R+, g : R+×R+ → R+ be continuous
functions, R+ = (0, ∞) and a1, b1, a2, b2 be positive numbers such that a1 <
b1, a2 < b2.

Suppose that

f : [a1, b1] × [a2, b2] → [a1, b1], g : [a1, b1] × [a2, b2] → [a2, b2].

In addition, assume that f(x, y) (resp. g(x, y)) is decreasing with respect to
x (resp. y) for every y (resp. x) and increasing with respect to y (resp. x)
for every x (resp. y). Finally suppose that, if the real numbers m,M, r,R
satisfy the system

M = f(m,R), m = f(M, r), R = g(M, r), r = g(m,R),

then m = M and r = R. Then the following system of difference equations

xn+1 = f(xn, yn−1), yn+1 = g(xn−1, yn) (3.1)

has a unique positive equilibrium (x̄, ȳ) and every positive solution (xn, yn)
of the system (3.1) which satisfies

xn0 ∈ [a1, b1], xn0+1 ∈ [a1, b1], yn0 ∈ [a2, b2], yn0+1 ∈ [a2, b2], n0 ∈ IN

tends to the unique positive equilibrium of (3.1).

Proposition 3.1 Let a, b, c, d be positive numbers. Assume that

θ1 = be−a < 1, θ2 = de−c < 1. (3.2)

Suppose also that

(1 + a)p + cθ1 < 1, (1 + c)p + aθ2 < 1 (3.3)

and

λ =
p(1 − p)2[

1 − (1 + a)p − cθ1

][
1 − (1 + c)p − aθ2

] < 1. (3.4)

Then the system (1.1) has a unique positive equilibrium (x, y) and every
solution of (1.1) tends to the unique positive equilibrium of (1.1) as n → ∞.

5
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Proof Let f : R+ ×R+ → R+, g : R+ ×R+ → R+ be continuous functions,
such that

f(x, y) = a + bye−x, g(x, y) = c + dxe−y.

Then, if x ∈ I3, y ∈ I4 from (3.2) we have

a ≤ f(x, y) ≤ a + b
c + ade−c + ϵ

1 − p
e−a =

a + cθ1 + ϵθ1

1 − p
<

a + cθ1 + ϵ

1 − p

c ≤ g(x, y) ≤ c + d
a + bce−a + ϵ

1 − p
e−c =

c + aθ2 + ϵθ2

1 − p
<

c + aθ2 + ϵ

1 − p
.

Therefore f, g are continuous functions such that f : I3 × I4 → I3, g :
I3 × I4 → I4.

Let now, m,M ∈ I3, r,R ∈ I4 be positive real numbers such that

M = a+bRe−m, m = a+bre−M , R = c+dMe−r, r = c+dme−R. (3.5)

Then, from (3.5), we have

m = a + bce−M + bdme−Re−M , r = c + dae−R + bdre−Me−R

and so

m =
a + bce−M

1 − bde−R−M
, r =

c + ade−R

1 − bde−R−M
. (3.6)

Then since M ≥ a,R ≥ c it holds

m ≤ a + bce−a

1 − p
=

a + cθ1

1 − p
, r ≤ c + ade−c

1 − p
=

c + aθ2

1 − p
. (3.7)

Furthermore, there exists a ξ, min{m,M} ≤ ξ ≤ max{m,M} such that

eM − em = eξ(M − m). (3.8)

From (3.5) and (3.8) and since M,m ≥ a we get

M − m = b(Re−m − re−M ) = be−m(R − r) + bre−m−M (eM − em) =
be−m(R − r) + bre−m−M+ξ(M − m) ≤
θ1(R − r) + rθ1(M − m).

(3.9)
Hence from (3.7) and (3.9) it follows that

M − m ≤ θ1(R − r) +
θ1(c + aθ2)

1 − p
(M − m). (3.10)

6
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Then since p = θ1θ2, from (3.10) we obtain

(M − m)
(1 − p − cθ1 − ap

1 − p

)
≤ θ1(R − r). (3.11)

Therefore from (3.3) and (3.11) we have

M − m ≤ θ1(1 − p)

1 − cθ1 − (a + 1)p
(R − r). (3.12)

Similarly, we have

R − r ≤ θ2(1 − p)

1 − aθ2 − (c + 1)p
(M − m). (3.13)

Relations (3.12) and (3.13) imply that

M − m ≤ λ(M − m). (3.14)

Therefore from (3.4) and (3.14) we have M = m and so from (3.5) r =
R. Consequently, from Lemma 3.1, System (1.1) has a unique positive
equilibrium (x, y) and every positive solution of System (1.1) tends to (x, y).
This completes the proof of the Statement (i). (ii) We define the functions

f : R+ × R+ → R+, g : R+ × R+ → R+ as follows

f(u, v) = a + bve−u, g(z, w) = c + dwe−z.

Then, if z, w ∈ J3, u, v ∈ J4 and arguing as in Statement (i) we have

f(u, v) ∈ J3, g(z, w) ∈ J4.

So f and g are continuous functions such that

f : J4 × J4 → J3, g : J3 × J3 → J4.

Let now, m,M ∈ J3, r,R ∈ J4 be real numbers such that

M = a+bRe−r, m = a+bre−R, R = c+dMe−m, r = c+dme−M . (3.15)

Moreover, there exists a ξ, min{r,R} ≤ ξ ≤ max{r,R} such that

ReR − rer = (1 + ξ)eξ(R − r). (3.16)

Then from (3.15) and (3.16) and since r,R ≥ c we get

M − m = b(Re−r − re−R) = be−r−R(ReR − rer) =
be−r−R+ξ(1 + ξ)(R − r) ≤ be−c(1 + ξ)(R − r).

(3.17)

7
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Moreover, from (3.15), we obtain

r = c + dae−M + bdre−Re−M , R = c + dae−m + bdRe−re−m

which implies that

r =
c + ade−M

1 − bde−R−M
≤ c + aζ2

1 − p
, R =

c + ade−m

1 − bde−r−m
≤ c + aζ2

1 − p
. (3.18)

Furthermore since ξ ≤ max{r,R} we have either ξ ≤ r or ξ ≤ R. Then from
(3.18) it follows that

ξ ≤ c + aζ2

1 − p
. (3.19)

Thus, from (3.17) and (3.19), we get

M − m ≤ ζ1(1 − p + c + aζ2)

1 − p
(R − r). (3.20)

Similarly, we obtain

R − r ≤ ζ2(1 − p + a + cζ1)

1 − p
(M − m). (3.21)

So, from (3.20) and (3.21) we have

M − m ≤ µ(M − m). (3.22)

Then, from (??), (3.15) and (3.22) it is obvious that M = m and R = r.
Therefore, from Lemma 3.1, System (??) has a unique positive equilibrium
(x, y) and every positive solution of System (??) tends to (x, y). This com-
pletes the proof of the proposition.

Proposition 3.2 Let a, b, c, d be positive numbers. Assume that (3.2), (3.3)
and (3.4) hold. Suppose also that

κ =
cθ1 + aθ2 + (a + c)p

1 − p
+

p(a + cθ1)(c + aθ2)

(1 − p)2
+ p < 1 (3.23)

Then the unique positive equilibrium (x̄, ȳ) of (1.1) is globally asymptotically
stable.

8
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Proof First we will prove that (x̄, ȳ) is locally asymptotically stable. The
linearized system of (1.1) about (x̄, ȳ) is the following:

xn+1 = −bȳe−x̄xn + be−x̄yn−1, yn+1 = de−ȳxn−1 − dx̄e−ȳyn . (3.24)

which is equivalent to the system

wn+1 = Awn, A =




α 0 0 β
0 γ δ 0
1 0 0 0
0 1 0 0


 , wn =




xn

yn

xn−1

yn−1


 ,

α = −bȳe−x̄, β = be−x̄ γ = −dx̄e−ȳ, δ = de−ȳ .

Then the characteristic equation of A is

λ4 − (α + γ)λ3 + αγλ2 − βδ = 0. (3.25)

Using Remark of 1.3.1 of [3] all the roots of Equation (3.25) are of modulus
less than 1, if

|α| + |γ| + |αγ| + |βδ| < 1. (3.26)

Since (x̄, ȳ) is an equilibrium for (1.1) we have that

x̄ = a + b(c + dx̄e−ȳ)e−x̄, ȳ = c + d(a + bȳe−x̄)e−ȳ.

Hence

x̄ =
a + bce−x̄

1 − bde−x̄−ȳ
≤ a + cθ1

1 − p
, ȳ =

c + ade−ȳ

1 − bde−x̄−ȳ
≤ c + aθ2

1 − p
. (3.27)

Then, since x̄ ≥ a, ȳ ≥ c, from (3.23) and (3.27), we get

|α| + |γ| + |αγ| + |βδ| =

bȳe−x̄ + dx̄e−ȳ + bdx̄ȳe−x̄−ȳ + bde−x̄−ȳ ≤ κ < 1

and so (3.26) is satisfied. Therefore (x̄, ȳ) is locally asymptotically stable.
So, since from Statement (i) of Proposition 3.1, every positive solution of
(1.1) tends to the unique positive equilibrium of (1.1), the proof is completed.

9
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4 Unbounded solutions

In this section we find unbounded solutions for the System (1.1).

Proposition 4.1 Suppose that

θ1 > 1, θ2 > 1, (4.1)

where θ1, θ2 are defined in (3.2). Then there exist unbounded solutions
(xn, yn) of (1.1) such that one of the following relations hold:

lim
n→∞x2n+1 = ∞, lim

n→∞x2n = a, lim
n→∞y2n+1 = ∞, lim

n→∞y2n = c (4.2)

lim
n→∞x2n+1 = a, lim

n→∞x2n = ∞, lim
n→∞y2n+1 = c, lim

n→∞y2n = ∞. (4.3)

Proof First we find solutions of (1.1) such that (4.2) are satisfied. Let
(xn, yn) be a solution of (??) with initial values x−1, x0, y−1, y0 which satisfy

x0 < m1, x−1 > M, y0 < m2, y−1 > M (4.4)

where

m1 = ln b, m2 = ln d, M = max
{
ln

( dm1

m2 − c

)
, ln

( bm2

m1 − a

)}
.

Then using (1.1) and (4.4) we have

x1 = a + by−1e
−x0 > a + by−1e

−m1 = a + y−1,

y1 = c + dx−1e
−y0 > c + dx−1e

−m2 = c + x−1,

x2 = a + by0e
−x1 < a + bm2e

−y−1 < a + bm2

(m1 − a

bm2

)
= m1,

y2 = c + dx0e
−y1 < c + dm1e

−x−1 < c + dm1

(m2 − c

dm1

)
= m2,

and working inductively we obtain

x2n+1 > a + y2n−1, y2n+1 > c + x2n−1, x2n < m1, y2n < m2, n = 1, 2, ...
(4.5)

Using (1.1) and (4.5) we can prove that (4.2) hold.
Let now (xn, yn) be a solution such that

x−1 < m1, x0 > M, y−1 < m2, y0 > M.

Then arguing as above we can show that relations (4.3) are satisfied. This
completes the proof of the proposition.

10
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A SURVEY ON THE OSCILLATION OF
DIFFERENTIAL AND DIFFERENCE EQUATIONS
WITH SEVERAL OSCILLATING COEFFICIENTS

IOANNIS P. STAVROULAKIS

Abstract. Consider the retarded di¤erence equation

�x(n) +

mX
i=1

pi(n)x(� i(n)) = 0, n 2 N0

and the (dual) advanced di¤erence equation

rx(n)�
mX
i=1

pi(n)x(�i(n)) = 0, n 2 N,

which represent the discrete analogues of the retarded d�¤erential equation

x0(t) +
mX
i=1

pi(t)x(� i(t)) = 0, t � 0,

and the (dual) advanced di¤erential equation

x0(t)�
mX
i=1

pi(t)x(�i(t)) = 0, t � 1,

A survey on the oscillation of all solutions to these equations is presented
in the case of several oscillating coe¢ cients

Keywords: Oscillating coe¢ cients, retarded argument, advanced argu-
ment, oscillatory solutions, nonoscillatory solutions.

2010 Mathematics Subject Classi�cation: 34K06, 34K11, 39A10,
39A21.

1. INTRODUCTION

Consider the retarded di¤erence equation

�x(n) +
mX
i=1

pi(n)x(� i(n)) = 0, n 2 N0, (ER)

and the (dual) advanced di¤erence equation

rx(n)�
mX
i=1

pi(n)x(�i(n)) = 0, n 2 N, (EA)

where m 2 N, fpi(n)g, 1 � i � m, are oscillating sequences of real numbers,
f� i(n)gn2N0 , 1 � i � m, are sequences of integers such that

� i(n) � n� 1 8n � 0, and lim
n!1

� i(n) =1, 1 � i � m; (1.1)

f�i(n)gn2N, 1 � i � m, are sequences of integers such that
�i(n) � n+ 1, n 2 N, 1 � i � m, (1.2)

1
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2 IOANNIS P. STAVROULAKIS

� denotes the forward di¤erence operator �x(n) = x(n+1)� x(n) and r denotes
the backward di¤erence operator rx(n) = x(n)� x(n� 1).
In the last few decades, the oscillatory behavior of all solutions of di¤erence

equations has been extensively studied when the coe¢ cients pi(n) are nonnegative.
However, for the general case when pi(n) are allowed to oscillate, it is di¢ cult
to study the oscillation of (ER) [(EA)], since the di¤erence �x(n) [rx(n)] of any
nonoscillatory solution of (ER) [(EA)] is always oscillatory. Therefore, the results
on oscillation of di¤erence and di¤erential equations with oscillating coe¢ cients are
relatively scarce. Thus, a small number of paper are dealing with this case. See,
for example, [1�6; 8; 9; 11�17] and the references cited therein.
Set

w = � min
n�0

1�i�m

� i(n).

(Clearly, w 2 N.)
By a solution of the retarded di¤erence equation (ER), we mean a sequence

of real numbers fx(n)gn��w which satis�es (ER) for all n 2 N0: It is clear that,
for each choice of real numbers c�w; c�w+1; : : : ; c�1; c0, there exists a unique
solution fx(n)gn��w of (ER) which satis�es the initial conditions x(�w) = c�w;

x(�w + 1) = c�w+1; : : : ; x(�1) = c�1; x(0) = c0. By a solution of the advanced
di¤erence equation (EA), we mean a sequence of real numbers fx(n)gn2N0 which
satis�es (EA) for all n 2 N.
A solution fx(n)gn��w [ fx(n)gn2N0 ] of the di¤erence equation (ER) [(EA)] is

called oscillatory, if the terms x(n) of the sequence are neither eventually positive
nor eventually negative. Otherwise, the solution is said to be nonoscillatory.
Strong interest in Eq.(ER) with several variable retarded arguments is motivated

by the fact that it represents a discrete analogue of the di¤erential equation with
several variable retarded arguments (see [6] and the references cited therein)

x0(t) +
mX
i=1

pi(t)x(� i(t)) = 0, t � 0, (1.3)

where, for every i 2 f1; : : : ;mg, pi is an oscillating continuous real-valued function
in the interval [0;1), and � i is a continuous real-valued function on [0;1) such
that

� i(t) � t, t � 0, and lim
t!1

� i(t) =1,

while, Eq.(EA) represents a discrete analogue of the advanced di¤erential equation
(see [6] and the references cited therein)

x0(t)�
mX
i=1

pi(t)x(�i(t)) = 0, t � 1, (1.4)

where, for every i 2 f1; : : : ;mg, pi is an oscillating continuous real-valued function
in the interval [1;1), and �i is a continuous real-valued function on [1;1) such
that

�i(t) � t, t � 1.
For m = 1, equations (ER) and (EA) take the forms

�x(n) + p(n)x(�(n)) = 0, n 2 N0, (ER1)

15th Panhellenic Conference on Mathematical Analysis 53



OSCILLATING COEFFICIENTS 3

and
rx(n)� p(n)x(�(n)) = 0, n 2 N, (EA1)

respectively. These equations represent the discrete analogues of the di¤erential
equations (see [6] and the references cited therein)

x0(t) + p(t)x(�(t)) = 0; t � 0; (1.5)

and
x0(t)� p(t)x(�(t)) = 0, t � 1, (1.6)

respectively, where �(t) � t; �(t) � t, and the coe¢ cient p is a continuous function
which is allowed to oscillate.
If � i(n) = n � ki and �i(n) = n + ki, where ki 2 N, 1 � i � m, then equations

(ER) and (EA) take the forms

�x(n) +

mX
i=1

pi(n)x(n� ki) = 0, n 2 N0, (E
0

R)

and

rx(n)�
mX
i=1

pi(n)x(n+ ki) = 0, n 2 N, (E
0

A)

respectively.
For m = 1, equations (E

0

R) and (E
0

A) take the forms

�x(n) + p(n)x(n� k) = 0, n 2 N0, (E
0

R1)

and
rx(n)� p(n)x(n+ k) = 0, n 2 N, (E

0

A1)

respectively. These equations represent the discrete analogues of the di¤erential
equations (see [9, 10] and the references cited therein)

x0(t) + p(t)x(t� �) = 0, t � 0, (1.7)

and
x0(t)� p(t)x(t+ �) = 0, t � 1, (1.8)

respectively, where � ; � are positive constants and the coe¢ cient p is a continuous
function which is allowed to oscillate.
In this paper, a survey on the ocillation of all solutions to the above equations

is presented especially in the case that the coe¢ cients oscillate.

2. OSCILLATION CRITERIA FOR DIFFERENTIAL EQUATIONS

In 1982, Ladas, S�cas and Stavroulakis [9] established the following theorems.

Theorem 2.1 ([9, Theorem 2.1]). Assume that p(t) > 0 (at least) on a sequence
of disjoint intervals

[
n2N

(�(n); t(n)) with t(n)� �(n) = 2� . If

lim sup
n!1

Z t(n)

t(n)��
p(s) ds > 1,

then all solutions of (1.7) oscillate.
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Theorem 2.2 ([9, Theorem 2.1]). Assume that p(t) > 0 (at least) on a
sequence of disjoint intervals

[
n2N

(�(n); t(n)) with t(n)� �(n) = 2�. If

lim sup
n!1

Z �(n)+�

�(n)

p(s) ds > 1,

then all solutions of (1.8) oscillate.

In 1984, Fukagai and Kusano [6] extended the above results to the di¤erential
equations (1.5) and (1.6) as follows.

Theorem 2.3 ([6, Theorem 4(i)]). Assume that �(t) � t for t � 0. If there
exists a sequence of numbers ft(n)gn2N such that limn!1 t(n) = 1, the intervals[
n2N

[� (� (t(n))) ; t(n)] are disjoint,

p(t) � 0 for t 2
[
n2N

[� (� (t(n))) ; t(n)] ,

and Z t(n)

�(t(n))

p(s) ds � 1,

then all solutions of (1.5) oscillate.

Theorem 2.4 ([6, Theorem 4(ii)]). Assume that �(t) � t for t � 1. If there
exists a sequence of numbers ft(n)gn2N such that limn!1 t(n) = 1, the intervals[
n2N

[t(n); � (� (t(n)))] are disjoint,

p(t) � 0 for t 2
[
n2N

[t(n); � (� (t(n)))] ,

and Z �(t(n))

t(n)

p(s) ds � 1,

then all solutions of (1.6) oscillate.

In the same paper [6], the authors also studied, the oscillating coe¢ cients case
and established the following theorems.

Theorem 2.5 ([6, Theorem 30 (i)]). Assume (1.4) and that there is a continuous
nondecreasing function ��(t) such that � i(t) � ��(t) � t for t � 0, 1 � i � m.
Supose moerover that there is a sequence ft(n)gn2N such that limn!1 t(n) = 1,
the intervals

[
n2N

[(��)
n
(t(n)) ; t(n)] are disjoint and

pi(t) � 0 for all t 2
[
n2N

[(��)
n
(t(n)) ; t(n)] , 1 � i � m.

If there is a constant c such thatZ t

��(t)

mX
i=1

pi(s) ds > c >
1

e
for all t 2

[
n2N

h
(��)

n�1
(t(n)) ; t(n)

i
,

then all solutions of (1.3) oscillate.
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Theorem 2.6 ([6, Theorem 30 (ii)]). Assume (1.6) and that there is a continu-
ous nondecreasing function ��(t) such that t � ��(t) � �i(t) for t � 0, 1 � i � m.
Supose moerover that there is a sequence ft(n)gn2N such that limn!1 t(n) = 1,
the intervals

[
n2N

[t(n); (��)
n
(t(n))] are disjoint and

pi(t) � 0 for all t 2
[
n2N

[t(n); (��)
n
(t(n))] , 1 � i � m.

If there is a constant c such thatZ ��(t)

t

mX
i=1

pi(s) ds > c >
1

e
for all t 2

[
n2N

h
t(n); (��)

n�1
(t(n))

i
,

then all solutions of (1.4) oscillate.

3. OSCILLATION CRITERIA FOR DIFFERENCE EQUATIONS

In 1992, Qian, Ladas and Yan [11] studied the di¤erence equation (E
0

R1) with
constant retarded argument and established the following theorem.

Theorem 3.1 ([12, Theorem 1]). Assume that there exist two sequences fr(m)g
and fs(m)g of positive integers such that s(m)� r(m) � 2k for m 2 N. If

p(n) � 0 for n 2
[
m2N

fr(m); r(m) + 1; : : : ; s(m)g

and

lim sup
m!1

s(m)X
i=s(m)�k

p+(i) > 1,

where p+(n) = max fp(n); 0g, then all solutions of (E0

R1) oscillate.

For equations (ER) and (EA) with oscillating coe¢ cients, in 2014 and in 2015,
Bohner, Chatzarakis and Stavroulakis [2, 3] established the following theorems.

Theorem 3.2 ([2, Theorem 2.4]). Assume (1.1) and that the sequences f� i(n)gn2N0
are increasing for all i 2 f1; : : : ;mg. Suppose also that for each i 2 f1; : : : ;mg there
exists a sequence fni(j)gj2N such that limj!1 ni(j) =1 and

pk(n) � 0, n 2 A =
m\
i=1

8<:[
j2N

[�(�(ni(j))); ni(j)] \ N

9=; 6= ;, 1 � k � m

where
�(n) = max

1�i�m
� i(n), n 2 N0.

If, moreover

lim sup
j!1

mX
i=1

n(j)X
q=�(n(j))

pi(q) > 1,

where n(j) = min fni(j) : 1 � i � mg, then all solutions of (ER) oscillate.
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Theorem 3.3 ([2, Theorem 3.4]). Assume (1.2) and that the sequences f�i(n)gn2N
are increasing for all i 2 f1; : : : ;mg. Suppose also that for each i 2 f1; : : : ;mg there
exists a sequence fni(j)gj2N such that limj!1 ni(j) =1 and

pk(n) � 0, n 2 B =
m\
i=1

8<:[
j2N

[ni(j); �(�(ni(j)))] \ N

9=; 6= ;, 1 � k � m,

where
�(n) = min

1�i�m
�i(n), n 2 N.

If, moreover

lim sup
j!1

mX
i=1

�(n(j))X
q=n(j)

pi(q) > 1,

where n(j) = max fni(j) : 1 � i � mg, then all solutions of (EA) oscillate.

Theorem 3.4 ([3, Theorem 2.1]). Assume (1.1) and that the sequences f� i(n)gn2N0
are increasing for all i 2 f1; : : : ;mg. Suppose also that for each i 2 f1; : : : ;mg there
exists a sequence fni(j)gj2N such that limj!1 ni(j) =1,

pk(n) � 0, n 2 C =
m\
i=1

8<:[
j2N

[� i(� i(ni(j))); ni(j)] \ N

9=; 6= ;, 1 � k � m

and

lim sup
n!1

mX
i=1

pi(n) > 0, for all n 2 C.

If, moreover

lim inf
j!1

mX
i=1

ni(j)�1X
q=� i(ni(j))

pi(q) >
1

e
,

then all solutions of (ER) oscillate.

Theorem 3.5 ([3, Theorem 3.1]). Assume (1.2) and that the sequences f�i(n)gn2N
are increasing for all i 2 f1; : : : ;mg. Suppose also that for each i 2 f1; : : : ;mg there
exists a sequence fni(j)gj2N such that limj!1 ni(j) =1,

pk(n) � 0, n 2 D =

m\
i=1

8<:[
j2N

[ni(j); �i(�i(ni(j)))] \ N

9=; 6= ;, 1 � k � m

and

lim sup
n!1

mX
i=1

pi(n) > 0 for all n 2 D.

If, moreover

lim inf
j!1

mX
i=1

�i(ni(j))X
q=ni(j)+1

pi(q) >
1

e
,

then all solutions of (EA) oscillate.

In 2014, Berezansky et al. [1] and in 2015, Chatzarakis et al. [4] astablished the
following theorems.
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Theorem 3.6 ([1, Theorem 8 and 4, Theorem 2.1]). Assume that (1.1) holds,
the sequences f� i(n)gn2N0 are increasing for all i 2 f1; : : : ;mg and the sequence �
is de�ned by (1.4). Suppose also that for each i 2 f1; : : : ;mg there exists a sequence
fni(j)gj2N such that limj!1 ni(j) =1,

pk(n) � 0, n 2 A =
m\
i=1

8<:[
j2N

[�(�(ni(j))); ni(j)] \ N

9=; 6= ;, 1 � k � m.

Set

� := lim inf
j!1

mX
i=1

n(j)�1X
q=�(n(j))

pi(q),

where n(j) = min fni(j) : 1 � i � mg.
If 0 < � � 1=2, and

lim sup
j!1

mX
i=1

n(j)X
q=�(n(j))

pi(q) > 1�
�2

4 (1� �) ,

or

lim sup
j!1

mX
i=1

n(j)X
q=�(n(j))

pi(q) > 1�
1

2

�
1� ��

p
1� 2�

�
,

then all solutions of (ER) oscillate.

Theorem 3.7 ([1, Theorem 9 and 4, Theorem 3.1]). Assume (1.2) holds, the
sequences f�i(n)gn2N are increasing for all i 2 f1; : : : ;mg and the swquence � is
de�ned by (1.7). Suppose also that for each i 2 f1; : : : ;mg there exists a sequence
fni(j)gj2N such that limj!1 ni(j) =1,

pk(n) � 0, n 2 B =
m\
i=1

8<:[
j2N

[ni(j), �(�(ni(j)))] \ N

9=; 6= ;, 1 � k � m.

Set

� := lim inf
j!1

mX
i=1

�(n(j))X
q=n(j)+1

pi(q),

where n(j) = max fni(j) : 1 � i � mg.
If 0 < � � 1=2, and

lim sup
j!1

mX
i=1

�(n(j))X
q=n(j)

pi(q) > 1�
�2

4 (1� �) ,

or

lim sup
j!1

mX
i=1

�(n(j))X
q=n(j)

pi(q) > 1�
1

2

�
1� ��

p
1� 2�

�
,

then all solutions of (EA) oscillate.

In 2015, Chatzarakis et al [5], established the following theorems.
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Theorem 3.8 ([5]) Assume that (1.1) holds, the sequences f� i(n)gn2N0 are
increasing for all i 2 f1; : : : ;mg and the sequence � is de�ned by (1.4). Sup-
pose also that for each i 2 f1; : : : ;mg there exists a sequence fni(j)gj2N such that
limj!1 ni(j) =1,

pk(n) > 0, n 2 A =
m\
i=1

8<:[
j2N

[�(�(ni(j))); ni(j)] \ N

9=; 6= ;, 1 � k � m

with
lim inf
n!1

fpk(n) : n 2 Ag > 0, 1 � k � m.
If, moreover 24 mY

i=1

0@ mX
`=1

lim inf
j!1

n(j)�1X
k=�`(n(j))

pi(k)

1A351=m > 1

e
,

where n(j) = min fni(j) : 1 � i � mg, then all solutions of (ER) oscillate.

Theorem 3.9 ([5]) Assume that (1.2) holds, the sequences f�i(n)gn2N are
increasing for all i 2 f1; : : : ;mg and the sequence � is de�ned by (1.7). Sup-
pose also that for each i 2 f1; : : : ;mg there exists a sequence fni(j)gj2N such that
limj!1 ni(j) =1,

pk(n) � 0, n 2 B =
m\
i=1

8<:[
j2N

[ni(j); �(�(ni(j)))] \ N

9=; 6= ;, 1 � k � m,

with
lim inf
n!1

fpk(n) : n 2 Bg > 0, 1 � k � m.
If, moreover 24 mY

i=1

0@ mX
`=1

lim inf
j!1

�`(n(j))X
k=n(j)+1

pi(k)

1A351=m > 1

e
,

where n(j) = max fni(j) : 1 � i � mg, then all solutions of (EA) oscillate.

Theorem 3.10 ([5]) Assume that (1.1) holds, the sequences f� i(n)gn2N0 are
increasing for all i 2 f1; : : : ;mg and the sequence � is de�ned by (1.4). Sup-
pose also that for each i 2 f1; : : : ;mg there exists a sequence fni(j)gj2N such that
limj!1 ni(j) =1,

pk(n) > 0, n 2 A =
m\
i=1

8<:[
j2N

[�(�(ni(j))); ni(j)] \ N

9=; 6= ;, 1 � k � m

with
lim inf
n!1

fpk(n) : n 2 Ag > 0, 1 � k � m.
If, moreover

1

m

mX
i=1

lim inf
j!1

n(j)�1X
k=� i(n(j))

pi(k)+
2

m

mX
i<`
i;`=1

0@lim inf
j!1

n(j)�1X
k=�`(n(j))

pi(k)� lim inf
j!1

n(j)�1X
k=� i(n(j))

p`(k)

1A1=2

>
1

e
,

where n(j) = min fni(j) : 1 � i � mg, then all solutions of (ER) oscillate.
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Theorem 3.11 ([5]) Assume that (1.2) holds, the sequences f�i(n)gn2N are
increasing for all i 2 f1; : : : ;mg and the sequence � is de�ned by (1.7). Sup-
pose also that for each i 2 f1; : : : ;mg there exists a sequence fni(j)gj2N such that
limj!1 ni(j) =1,

pk(n) � 0, n 2 B =
m\
i=1

8<:[
j2N

[ni(j); �(�(ni(j)))] \ N

9=; 6= ;, 1 � k � m,

with

lim inf
n!1

fpk(n) : n 2 Bg > 0, 1 � k � m.

If, moreover

1

m

mX
i=1

lim inf
j!1

�i(n(j))X
k=n(j)+1

pi(k)+
2

m

mX
i<`
i;`=1

0@lim inf
j!1

�`(n(j))X
k=n(j)+1

pi(k)� lim inf
j!1

�i(n(j))X
k=n(j)+1

p`(k)

1A1=2

>
1

e
,

where n(j) = max fni(j) : 1 � i � mg, then all solutions of (EA) oscillate.

A slight modi�cation in the proofs of Theorem 2.7, 2.8. 2.9 and 2.10 leads to
the following results about di¤erence inequalities.

Theorem 3.12 ([5]) Assume that all conditions of Theorem 2.1 or 2.9 hold.
Then
(i) the di¤erence inequality

�x(n) +
mX
i=1

pi(n)x(� i(n)) � 0, n 2 N0

has no eventually positive solutions;
(ii) the di¤erence inequality

�x(n) +
mX
i=1

pi(n)x(� i(n)) � 0, n 2 N0

has no eventually negative solutions.

Theorem 3.13 ([5]) Assume that all conditions of Theorem 2.8 or 2.10 hold.
Then
(i) the di¤erence inequality

rx(n)�
mX
i=1

pi(n)x(�i(n)) � 0, n 2 N

has no eventually positive solutions;
(ii) the di¤erence inequality

rx(n)�
mX
i=1

pi(n)x(�i(n)) � 0, n 2 N

has no eventually negative solutions.
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3.1. Special cases. In the case where pi, i = 1; 2; : : : ;m, are oscillating real con-
stants and � i are constant retarded arguments of the form � i(n) = n � ki; [�i are
constant advanced arguments of the form �i(n) = n + ki], ki 2 N, i = 1; 2; : : : ;m,
equation (ER) [(EA)] takes the form

�x(n) +
mX
i=1

pix(n� ki) = 0, n 2 N0

"
rx(n)�

mX
i=1

pix(n+ ki) = 0, n 2 N
#
. (E)

For this equation, as a consequence of Theorems 2.1 [2.8] and 2.9 [2.10], we have
the following corollary:

Corollary 3.1 ([5] cf. [10]) Assume that"
mY
i=1

pi

#1=m mX
i=1

ki

!
>
1

e
,

or

1

m

 
mX
i=1

p
piki

!2
>
1

e
.

Then all solutions of (E) oscillate.
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ABSTRACT  .   
 

A novel theoretical approach is applied to investigate the 

process of the formation and transformation of freak waves in a 

wave train. A semi-analytical nonlinear solution is derived to 

describe the propagation and evolution of wave components in a 

wave train and to investigate the formation and physics of  freak 

waves. The results show that the nonlinear transformation of 

wave components in a wave train leads to the formation of freak 

waves. The analysis indicates that the interaction of wave 

components in a wave train is one of the potential sources of the 

formation of freak waves.  
 

KEY WORDS:  Freak waves; evolution of nonlinear waves; 

wave instability; semi-analytical solution 

 

INTRODUCTION 

 

Freak waves are probably the most dangerous type of extreme 

waves. They are believed to be one of the causes of the failure 

of coastal and offshore structures as well as ship accidents. The 

mechanisms of the formation and physics of freak waves are 

still not fully recognised. A proper description of freak wave 

phenomenon is indispensable for the studies of the attack of 

extreme waves on maritime structures or their impact on ships.  

 

In the present study, a novel theoretical approach is applied to 

investigate the process of the formation and evolution of freak 

waves in a wave train. A theoretical model is described in 

Section 2. Results are presented in Section 3. Finally, in Section 

4 conclusions and recommendations are provided.  
 

THEORY 

 

The formation and transformation of freak waves in a wave train 

is considered. A right-hand Cartesian coordinate system is 

selected such that the x axis is horizontal and coincides with an 

undisturbed free surface and z points vertically upwards. It is 

assumed that: 

 The fluid is inviscid and incompressible. 

 The fluid motion is irrotational. 

 The bottom is impervious 

In accordance with the assumptions, a velocity vector, V(x, z, t), 

may be computed from a velocity potential  (x, z, t): 

),,( tzxV    (1) 

where  (
.
) is the two-dimensional vector differential operator. 

The fluid motion is governed by the continuity equation  
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and the Bernoulli equation 
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where  is the fluid mass density, P is the pressure and g is the 

acceleration due to gravity. 

The velocity potential,  (x,  z, t), satisfies the Laplace equation  
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with the following boundary conditions  
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(3d) 

In addition, the velocity potential must satisfy the boundary 

condition at infinity and the initial condition (Wehausen 1960). 

The boundary-value problem, (3), is solved by expanding the 

free-surface boundary conditions in a Taylor series, and then 

applying eigenfunction expansions and FFT (Sulisz and Paprota 

2004, 2008). Accordingly, the velocity potential, , and the 

free-surface elevation, , are sought in the following form 

)sincos(
cosh

)(cosh

1

0 
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h
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nnnn xbxa   (5a) 

where  

b

n
n

)1(2 



  (5c) 

in which 0 , 0 are known functions related with imposed 

initial conditions, An, Bn and an, bn are coefficients, b is the 

length of a sector over which the solution is assumed to be 

periodic.   

 

A time-stepping procedure and FFT are applied to determine the 

unknown coefficients of the eigenfunction expansions (Sulisz 

and Paprota 2004, 2008). The derived solution is very efficient. 

The application of eigenfunction expansions and FFT allows to 

predict the process of wave propagation and transformation in 

very large domains. 

  

RESULTS 
 

The derived model was applied to investigate the evolution of 

wave components in a modulated wave train and the formation 

of freak waves. The model is applied for N=6 and 8 waves in a 

modulated wave train segment and carrier waves of amplitude 

A, wave number k and period T.   

   

The results presented in Fig. 1-6 show that a train of basically 

sinusoidal waves may drastically change its form within a 

relatively short distance from its original position. Significant 

changes of wave profile leads to the formation of  freak waves.  

This process is accompanied by drastic changes of wave 

spectrum which evolves from a very narrow-banded spectrum to 

multi-peak spectrum and often retrieves its original shape in a 

fairly short period of time. 

 

The nonlinear transformation of wave components in a wave 

train leads to the formation of freak waves. The analysis shows 

that the interaction of wave components in a wave train is one of 

the potential sources of the formation of freak waves. 

  

 
Fig.1a. Free-surface elevation and corresponding Fourier amplitudes 

for N=6, Ak=0.1. 

 

 
 

Fig.1b. Free-surface elevation and corresponding Fourier amplitudes 

for N=6, Ak=0.1. 
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Fig.2a. Free-surface elevation and corresponding Fourier 

amplitudes for N=6, Ak=0.12. 
 

 
 

Fig.2b. Free-surface elevation and corresponding Fourier 

amplitudes for N=6, Ak=0.12. 
 

 
Fig.3a. Free-surface elevation and corresponding Fourier 

amplitudes for N=6, Ak=0.14. 
 

 
 

Fig.3. Free-surface elevation and corresponding Fourier 

amplitudes for N=6, Ak=0.14. 
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Fig.4a. Free-surface elevation and corresponding Fourier 

amplitudes for N=8, Ak=0.1. 
 

 
 

Fig.4b. Free-surface elevation and corresponding Fourier 

amplitudes for N=8, Ak=0.1. 
 

 
Fig.5a. Free-surface elevation and corresponding Fourier 

amplitudes for N=8, Ak=0.12. 
 

 
 

Fig.5b. Free-surface elevation and corresponding Fourier 

amplitudes for N=8, Ak=0.12. 
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Fig.6a. Free-surface elevation and corresponding Fourier 

amplitudes for N=8, Ak=0.14. 
 

 
 

Fig.6b. Free-surface elevation and corresponding Fourier 

amplitudes for N=8, Ak=0.14. 
 

 

 

 

CONCLUSIONS 

 

A novel theoretical approach is applied to investigate the 

process of the formation and transformation of freak waves in a 

wave train. A semi-analytical nonlinear solution is derived to 

describe the propagation and evolution of wave components in a 

wave train and to investigate the formation and physics of  freak 

waves.  

 

The results show that a train of basically sinusoidal waves may 

drastically change its form within a relatively short distance from 

its original position. A significant evolution of wave profile leads 

to a formation of  freak waves.  This process is accompanied by 

considerable change of wave spectrum which evolves from a 

very narrow-banded spectrum to a broad-banded or even multi-

peak spectrum and often retrieves its original shape in a fairly 

short period of time. 

 

The analysis indicates that the nonlinear Schrödinger equation or 

its modifications cannot predict wave evolution with sufficient 

accuracy. The solution of the nonlinear Schrödinger equation 

provides insight into the instability of weakly nonlinear waves, 

however, its practical applicability range is very limited. An 

analysis shows that the wave evolution is a very sensitive 

process and solutions derived by applying the Schrödinger 

equation cannot describe this process with sufficient accuracy  

 

This method has been shown to be an efficient technique in the 

modeling of the propagation and transformation of  nonlinear 

waves. The derived model is very efficient and allows to obtain 

a solution for large spatial and time domains. 
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Abstract

This work concerns improvements of certain weighted trace Hardy inequalities, by adding Hardy-Sobolev
type remainder terms. We obtain, as special limiting instances, critical Sobolev and Hardy type improvements.
We also show that the improvement is optimal in the sense that the remainder terms involve weights with
the best possible singularity for an Lp improvement to be valid.

Keywords: Hardy-Sobolev inequalities, Kato inequality, weighted trace Hardy inequality

1 Introduction

Sobolev spaces play a basic role in the study of differential equations especially for their embedding properties.
Regarding in particular the Hilbert space H1(U), on a domain U ⊆ Rn, most of the results assert its embedding
into certain weighted or non weighted Lebesgue spaces Lp(U) or Lp(∂U) for p ≥ 2.

The standard Hardy inequality on the whole space Rn, n ≥ 3, asserts that

(n− 2)2

4

∫

Rn

u2

|x|2 dx ≤
∫

Rn
|∇u|2 dx, ∀u ∈ C∞0 (Rn). (1)

It is well known that the constant (n− 2)2/4 is the best possible, but it is not achieved in the space of functions
for which the right hand side is finite.

By standard reflection arguments we deduce that inequality (1) still holds with the same optimal constant
on the upper half space

Rn+ = {x = (x′, xn) ∈ Rn : x′ ∈ Rn−1, xn > 0},
without the restriction u = 0 on the boundary ∂Rn+, that is

(n− 2)2

4

∫

Rn+

u2

|x|2 dx ≤
∫

Rn+
|∇u|2 dx, ∀u ∈ C∞0 (Rn).

Such an inequality does not give any information about the summability properties of the trace of the functions
u which do not vanish on the boundary ∂Rn+. Such summability properties can be deduced from the following
trace Hardy inequality (also known in the literature as Kato’s inequality)

Hn

∫

∂Rn+

u2(x′, 0)

|x′| dx′ ≤
∫

Rn+
|∇u|2 dx, ∀u ∈ C∞0 (Rn), (2)

where the constant

Hn = 2
Γ2(n4 )

Γ2(n−24 )

is the best possible and is not attained in the space of functions for which the right hand side is finite.
Despite the lack of extremals, it is well known that no extra terms can added in the left hand side of inequalites

(1), (2). Passing from the whole space to bounded domains containing the origin, inequalities (1), (2) are still
valid with the same optimal constants, as is easily seen by the scaling invariance. In this case several remainder
terms have been considered in the left hand side; see for instance [1], [3], [9] and the references therein.

1
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Hardy and Kato inequalities are ones of the well known mathematical formulations of the uncertainty principle
in Quantum Mechanics, in the relativistic and non relativistic case respectively. They are of fundamental
importance in many branches of mathematical analysis, geometry and mathematical physics. These inequalities
have been extensively studied and the relative literature is vast encompassing many generalizations and extensions
in several directions. Although classical, are of special interest and many modifications are still forthcoming. In
this work we are concerned with the following weighted version of Kato inequality [11]

H(n, α)

∫

∂Rn+

u2(x′, 0)

|x′|1−α dx′ ≤
∫

Rn+

xαn |∇u|2 dx, ∀u ∈ C∞0 (Rn). (3)

It can be shown that no Lp improvement is possible (see Appendix), in the sense that there are no positive
constant C, exponent p > 0, and nontrivial potential V ≥ 0 such that the following inequality is valid

C



∫

Rn+

V (x) |u(x)|p dx




2
p

≤
∫

Rn+

xαn |∇u|2 dx−H(n, α)

∫

∂Rn+

u2(x′, 0)

|x′|1−α dx′, ∀u ∈ C∞0 (Rn). (4)

Let now U be a bounded domain containing, as an interior point, the origin. If we restrict our attention to the
functions u ∈ C∞0 (U), inequality (3), still holds in Rn+ ∩ U, with the same optimal constant,

H(n, α)

∫

∂Rn+∩U

u2

|x′|1−α dx′ ≤
∫

U+

xαn |∇u|2 dx, ∀u ∈ C∞0 (U). (5)

Contrary to the case of the half space Rn+, inequality (5) can be refined by adding Lp norms of u; see e.g. [6],
[18]. In the present work we proceed with our investigation on such inequalities, considering lower bounds for
the trace Hardy difference functional

∫

U+

xαn |∇u|2 dx−H(n, α)

∫

∂Rn+∩U

u2(x′, 0)

|x′|1−α dx′, ∀u ∈ C∞0 (U).

Actually, we consider the best possible Lp remainder terms, involving superquadratic exponents of u with Hardy
type potentials of optimal singularity, covering the critical Sobolev exponent as well. For 0 < ρ ≤ 1, we set
X(ρ) = (1− ln ρ)−1. The result is stated as follows.

Theorem 1. Let α ∈ (−1, 1), n + α − 2 > 0, 0 ≤ θ ≤ 2 − α, and U be a bounded domain in Rn. Then there
exists a constant C > 0, depending only on n, α and θ, such that

H(n, α)

∫

∂Rn+∩U

u2(x′, 0)

|x′|1−α dx′ + C



∫

U+

Xp(θ) |u|2∗(θ)
|x|θ dx




2
2∗(θ)

≤
∫

U+

xαn |∇u|2 dx, ∀u ∈ C∞0 (U), (6)

where 2∗(θ) = 2(n−θ)
n+α−2 , p(θ) = 2n+α−2−θ

n+α−2 and X = X(|x|/D), with D = supx∈Rn+∩U |x|. Moreover, the logarith-

mic correction Xp(θ) cannot be replaced by a smaller power of X.

Under a suitable transformation, inequality (6) will turn out to be equivalent with the following inequality
(see [1], [9] for the endpoint cases θ = 0, θ = 2)

Cn,θ

(∫

U

Xp(θ)(|x|)
|x|n |υ|2∗(θ) dx

) 2
2∗(θ)

≤
∫

U

xαn |∇υ|2
|x|n−2+α dx, ∀υ ∈ C∞0 (U), (7)

where the logarithmic weight Xp(θ) is again optimal, in the sense that it cannot be replaced by a smaller power
of X. Notice also that in the unweighted case α = 0, (7) reads

Cn,θ

(∫

U

Xp(θ)(|x|)
|x|n |υ|2∗(θ) dx

) 2
2∗(θ)

≤
∫

U

|∇υ|2
|x|n−2 dx, ∀u ∈ C∞0 (U), (8)

2
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which may be seen as the limiting case, as γ → (n− 2)/2, of the Caffarelli-Konh-Nirenberg inequalities [4]

Cn,β,γ

(∫

U

|υ|p
|x|βp dx

) 2
p

≤
∫

U

|∇υ|2
|x|2γ dx, ∀υ ∈ C∞0 (U),

where γ < n−2
2 , γ ≤ β ≤ γ + 1, and p = 2n

n−2+2(β−γ) .

2 Preliminaries

We briefly outline here some known results, playing a fundamental role in our proof in the subsequent section.
A proof of (5) was given in [18, Theorem 1], where it has been identified the energetic solution ψ(x) of the
associated Euler-Lagrange equations




div(xαn∇ψ) = 0, in Rn+,

lim
xn→0+

xαn
∂ψ(x′, xn)

∂xn
= −H(n, α) ψ(x

′,0)
|x′|1−α , on ∂Rn+ \ {0}.

(9)

Although we consider the full parameter range α ∈ (−1, 1), we suppress the dependence of ψ on α, for the sake
of simplicity. Let us also recall the following uniform asymptotics for ψ ([18, Lemma 2]). Hereafter, for functions
f : Rn+ → R, g : Rn+ → R, we will write f ∼ g in Rn+, when there exist constants c1 > 0, c2 > 0, such that
c1 f(x) ≤ g(x) ≤ c2 f(x), ∀x ∈ Rn+.

Lemma. There holds
ψ ∼ |x| 2−α−n2 , in Rn+. (10)

Moreover, for α ∈ (−1, 0], there holds

|∇ψ| ∼ |x|−α+n
2 , in Rn+.

If α ∈ (0, 1), then there holds

|∇ψ| ∼ |x|α−n2 x−αn , in Rn+.

3 Hardy-Sobolev type remainder terms

In this section we give the proof of Theorem 1. Let us first fix some notation, that will be used within the proof.
We define the unit ball BR = {x ∈ Rn : |x| < R}, the upper half ball B+

R = {x ∈ Rn+ : |x| < R}, the unit

sphere Sn−1 = {x ∈ Rn : |x| = 1} and the upper half sphere Sn−1+ = {x ∈ Rn+ : |x| = 1}. We also abbreviate
U+ = Rn+ ∩ U. Moreover,

∫
Sn−1
+

udS denote the (n − 1)−dimensional Lebesgue integral of the function u over

Sn−1+ .

For any point (x′, xn) ∈ Sn−1+ we define ϕ = arccosxn, ϕ ∈ [0, π/2], so that cosϕ equals the distance of (x′, xn)
to ∂Rn+. We also follow the usual convention of denoting by C a general positive constant, possibly varying from
line to line. Relevant dependencies on parameters will be emphasized by using parentheses or subscripts. In
particular, we denote Cn,α =

∫
Sn−1
+

xαn dS and γn =
∫
Sn−1 1 dS.

We are now ready to give the

proof of Theorem 1. An essential role, in both parts of the proof, will play the function ψ, introduced in
Section (2). Notice first, that by standard approximation, it suffices to prove (6) for u ∈ C∞0 (U \ {0}). Indeed,
let ε > 0, and consider the functions uε = uηε, where u ∈ C∞0 (U) and ηε ∈ C∞c (Rn \{0}), ηε(x) = 1, for |x| ≥ ε
and |∇ηε| ≤ c/ε. Then, by the Lebesgue dominated theorem, we have

∫

∂Rn+∩U

u2ε
|x′|1−α dx′ →

∫

∂Rn+∩U

u2

|x′|1−α dx′ and

∫

U+

Xp(θ) |uε|2
∗(θ)

|x|θ dx→
∫

U+

Xp(θ) |u|2∗(θ)
|x|θ dx, as ε→ 0. (11)

Similarly we have ∫

U+

xαn η
2
ε |∇u|2 dx →

∫

U+

xαn |∇u|2 dx dy, as ε→ 0.

3
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Moreover, taking into account |∇ηε| ≤ c/ε, we get

∫

U+

xαn |∇ηε|2 u2 dx ≤ cεn−2+α → 0, as ε→ 0,

hence ∫

U+

xαn |∇uε|2 dx→
∫

U+

xαn |∇u|2 dx, as ε→ 0. (12)

By (11), (12) we conclude that it suffices to prove the result for u ∈ C∞0 (U \ {0}). We expand now the square
and integrate by parts to obtain

∫

U+

xαn |∇u−
∇ψ
ψ

u|2 dx =

∫

U+

xαn |∇u|2 dx+

∫

U+

xαn |∇ψ|2
(
u

ψ

)2

dx+

∫

U+

u2 div

(
xαn
∇ψ
ψ

)
dx

+

∫

∂Rn+∩U

lim
xn→0+

xαn
∂ψ(x′, xn)

∂xn

u2

ψ
dx′ =

∫

U+

xαn |∇u|2 dx−H(n, α)

∫

∂Rn+∩U

u2(x′, 0)

|x′|1−α dx′.

In the last equation we used equations (9). Notice also that on supp u, the function u/ψ is well defined. Actually
u/ψ ∈ C∞c (Rn+ ∩ U \ {0}). Therefore we have

∫

U+

xαn |∇u|2 dx−H(n, α)

∫

∂Rn+∩U

u2(x′, 0)

|x′|1−α dx′ =

∫

U+

xαn |∇(u/ψ)|2 ψ2 dx, (13)

hence, we have to show that there exists a constant C > 0, depending only on n, α, θ, such that for all u ∈
C∞0 (U \ {0}) there holds

C



∫

U+

Xp(θ) |u|2∗(θ)
|x|θ dx




2
2∗(θ)

≤
∫

U+

xαn ψ
2 |∇(u/ψ)|2 . (14)

Now, making the substitution u = υ ψ, taking into account (10), that is ψ ∼ |x|−n−2+α
2 in Rn+, and noting

that U ⊆ BD, we conclude that (14) will follow on its turn after showing the existence of a positive constant
C = C(n, α, θ), independent of D, such that for all υ ∈ C∞0 (BD), there holds

c



∫

B+
D

Xp(θ)

|x|n |υ|
2∗(θ) dx




2
2∗(θ)

≤
∫

B+
D

xαn
|x|n−2+α |∇υ|

2 dx. (15)

To this aim we consider the minimization problem

cn,α,θ = inf
υ∈C∞0 (BD)

υ 6≡0

I[υ], where I[υ] =

∫
B+
D

xαn
|x|n−2+α |∇υ|2 dx

(∫
B+
D

Xp(θ)( |x|D )
|x|n |υ|2∗(θ) dx

) 2
2∗(θ)

=
I1[υ]

I2[υ]
.

We point out that despite the presence of D, we do not incorporate the subscript D, in the notation of the above
infimum, since it is independent D, due to the scaling invariance. Actually, inspired by an idea of Adimurthi,
Filippas and Tertikas [1], we will relate the constant cn,α,θ with the weighted Hardy-Sobolev constant Sn,α,θ
defined by

Sn,α,θ = inf
υ∈C∞0 (B1)

υ 6≡0

J [υ], where J [υ] =

∫
B+

1
xαn |∇υ|2 dx

(∫
B+

1

|υ|2∗(θ)
|x|θ dx

) 2
2∗(θ)

=
J1[υ]

J2[υ]
. (16)

4
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We express J1[υ], J2[υ] in terms of polar coordinates, writing υ(x) = υ(r, ϑ), where

r = |x|, ϑ =
x

|x| ∈ Sn−1+ . (17)

Then we make the change of r−variable, setting

t = r2−n−α and υ(r, ϑ) = h(t, ϑ), (18)

to obtain

J1[υ] =

1∫

0

∫

Sn−1
+

rn−1+α cosα ϕ

(
υ2r +

1

r2
|∇ϑυ|2

)
dS dr

= (n− 2 + α)

∞∫

1

∫

Sn−1
+

cosα ϕ
(
h2t + (n− 2 + α)−2 t−2 |∇ϑh|2

)
dS dt. (19)

Transforming the denominator J2[υ], we have

J2[υ] =




1∫

0

∫

Sn−1
+

rn−1−θ |υ|2∗(θ) dS dr




2
2∗(θ)

=
1

(n− 2 + α)
2

2∗(θ)




∞∫

1

∫

Sn−1
+

t−p(θ) |h|2∗(θ) dS dt




2
2∗(θ)

.

Therefore we have

(n− 2 + α)−
2∗(θ)+2
2∗(θ) Sn,α,θ = inf

h∈C∞([1,∞)×Sn−1
+

)

h6≡0, h(1,·)=0

∞∫
1

∫

Sn−1
+

cosα ϕ
(
h2t + (n− 2 + α)−2 t−2 |∇ϑh|2

)
dS dt



∞∫
1

∫

Sn−1
+

t−p(θ) |h|2∗(θ) dS dt




2
2∗(θ)

. (20)

Similarly we will express the quotient I in terms of polar coordinates (17), and then we will make the change of
r variable, setting

t =
1

X( rD )
= 1− ln

( r
D

)
and υ(r, ϑ) = w(t, ϑ). (21)

Then, direct calculationsyield

I1[υ] =

D∫

0

∫

Sn−1
+

r cosα ϕ

(
υ2r +

1

r2
|∇θυ|2

)
dS dr =

∞∫

1

∫

Sn−1
+

cosα ϕ
(
w2
t + |∇θw|2

)
dS dt.

Similarly the denominator is transformed into

I2[υ] =




D∫

0

∫

Sn−1
+

Xp(θ)
(
|x|
D

)

r
|υ|2∗(θ) dS dr




2
2∗(θ)

=




∞∫

1

∫

Sn−1
+

t−p(θ) |w|2∗(θ) dS dt




2
2∗(θ)

.

Therefore we have

cn,α,θ = inf
w∈C∞([1,∞)×Sn−1

+
)

w 6≡0, w(1,·)=0

∞∫
1

∫

Sn−1
+

cosα ϕ
(
w2
t + |∇ϑw|2

)
dS dt



∞∫
1

∫

Sn−1
+

t−p(θ) |w|2∗(θ) dS dt




2
2∗(θ)

. (22)

5
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Comparing now the quotients (20), (22), we obtain that cn,α,θ ≥ τn,α,θ Sn,α,θ for some positive constant τn,α,θ.
This proves (15), which yields (6).

To complete the proof of the Theorem, it remains to verify that the weight Xp(θ), in the remainder term
cannot be replaced by a smaller power of X. For the sake of simplicity, let us abbreviate p = p(θ), q = 2∗(θ).

In order to verify the optimality of the power of X, we have to show that there are no constants 0 < ε <
p, c > 0, such that the following inequality is valid

H(n, α)

∫

∂Rn+∩U

u2(x′, 0)

|x′|1−α dx′ + c



∫

U+

Xp−ε

|x|θ |u|
q dx




2/q

≤
∫

U+

xαn |∇u|2 dx, ∀u ∈ C∞0 (U).

Note also that it suffices to prove the claim, only for the case 0 < ε < p− 1, since Xp−ε0 > Xp−ε, ∀ε0 > ε.
The result will follow after showing that there exists a sequence {uk} ⊂ C∞0 (U), such that

∫
U+

xαn |∇uk|2 dx − H(n, α)
∫

∂Rn+∩U

u2
k(x
′,0)

|x′|1−α dx′

(
∫
U+

Xp−ε
|x|θ |uk|q dx

)2/q

k→∞−−−−→ 0.

Let now υ ∈ C∞0 (U). In view of (13), the substitution u = υ ψ, transforms the numerator of the above quotient

into
∫
U+ x

α
n |∇υk|2 ψ2 dx. Moreover (10), that is ψ ∼ |x| 2−n−α2 in Rn+, it suffices to fix a sequence {υk} ⊂ C∞0 (U)

such that

Q[υk] =
N [υk]

D[υk]
:=

∫
U+

xαn |∇υk|2
|x|n+α−2 dx

(∫
U+

Xp−ε |υk|q
|x|n dx

)2/q −→ 0, as k →∞. (23)

The domain U contains a ball Br centered at the origin and without loss of generality we may assume r = 1. Let

us also abbreviate V (x) = Xp−ε

|x|n , w(x) =
xαn

|x|n+α−2 and define the space D1,2
0 (B1, w(x)dx) as the completion of

C∞0 (B1) with respect to the norm ||υ|| = (
∫
B+

1
|∇υ|2 w(x) dx)1/2. Then, by a standard approximation, it suffices

to fix a sequence {υk} ⊂ D1,2
0 (B1, w(x)dx) with

∫
B+

1
V (x) |υk|q dx < ∞, such that Q[υk]→ 0, as k →∞.

To this end, we choose δ such that 0 < ε < δ < p− 1, which eventually will be sent to ε, we set Rm = e1−m

so that
1

m
≤ X(|x|) ≤ 1⇔ Rm ≤ |x| ≤ 1, m = 1, 2, 3, . . .

and define the radial functions fm as follows

fm(x) =

{
X

δ
q− 1

2 (|x|), Rm ≤ |x| ≤ 1,

m
3
2− δqX(|x|), |x| ≤ Rm,

whence ∇fm(x) =





(
δ
q − 1

2

)
X

δ
q+

1
2 (|x|) x

|x|2 , Rm < |x| ≤ 1,

m
3
2− δq X2 x

|x|2 , |x| < Rm.

We have

N [fm] =

(
δ

q
− 1

2

)2 ∫

B+
1 \B+

Rm

xαnX
2δ
q +1(|x|)
|x|n+α dx + m3− 2δ

q

∫

B+
Rm

xαnX
4(|x|)

|x|n+α dx =: N1[fm] +N2[fm]

and

Dq/2[fm] =

∫

B+
1 \B+

Rm

Xδ−ε+1

|x|n dx + m3q/2−δ
∫

B+
Rm

Xp−ε+q

|x|n dx =: D1[fm] +D2[fm].

We next estimate the terms D1, D2, N1, N2, using polar coordinates (17), then making the change of variable

t = X(r), thus dt =
X2(r)

r
dr
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to get

N1[fm] =

(
δ

q
− 1

2

)2 ∫

Sn−1
+

xαn dS

1∫

Rm

X
2δ
q +1(r)

r
dr = Cn,α

(
δ

q
− 1

2

)2
1∫

1/m

t
2δ
q −1 dt

= Cn,α
(
δ

q
− 1

2

)2
q(1−m−2δ/q)

2δ
= Cn,α (δ + 1− p)2 1−m−2δ/q

2qδ
,

N2[fm] = m3− 2δ
q

∫

Sn−1
+

xαn dS

Rm∫

0

X4(r)

r
dr = Cn,αm3− 2δ

q

1/m∫

0

t2 dt =
Cn,αm−2δ/q

3
,

and

D1[fm] =

∫

Sn−1
+

1 dS

1∫

Rm

Xδ−ε+1(r)

r
dr = γn

1∫

1/m

tδ−ε−1 dt =
γn (1−mε−δ)

δ − ε ,

D2[fm] = m3q/2−δ
∫

Sn−1
+

1 dS

Rm∫

0

Xp−ε+q(r)
r

dr = γnm
3q/2−δ

1/m∫

0

tp−ε+q−2 dt =
γnm

ε−δ

3(p− 1)− ε .

We conclude that

J [fm] =
Cn,α
γ
2/q
n

(δ + 1− p)2 1−m−2δ/q

2qδ + m−2δ/q

3(
1−mε−δ
δ−ε + mε−δ

3(p−1)−ε

)2/q .

We then take a sequence δk ↘ ε and choose mk sufficiently large so that mε−δk
k < 1/2. It follows that

Q[fmk ] → 0, as k → ∞. The boundary conditions can be fixed by considering a function η ∈ C∞0 (U), which
is constant, not zero, in a neighbourhood of the origin. It is then straightforward to verify that the sequence
υk = fmk η, satisfies Q[υk]→ 0, as k →∞, that is the condition (23).

Notice that once we have proven the optimality of the exponent of the weight X2, for the special case θ = 2−α,
in Theorem 1, then the optimality of Xp(θ) in the remaining cases can be deduced via Hölder inequality, as follows
(cf. [14]): Let us suppose, towards contradiction, that there exists a constant c > 0, such that the following
inequality holds

c



∫

U+

Xp−ε

|x|θ |u|
2∗(θ) dx




2
2∗(θ)

≤
∫

U+

xαn |∇u|2 dx−H(n, α)

∫

∂Rn+∩U

u2(x′, 0)

|x′|1−α dx′, ∀u ∈ C∞0 (U). (24)

In the left hand side, we will employ the Hölder’s inequality with conjugate exponents q = 2∗(θ)
2 , q′ = q

q−1 . We
choose 0 < δ < 1 and noting that p = q + 1 we obtain

∫

U+

X2−ε(1−δ)/q

|x|2−α u2 dx ≤



∫

U+

X1+εδq′/q

|x|(2−α− θq )q′
dx




1/q′ 

∫

U+

Xp−ε

|x|θ |u|
2∗(θ) dx




1/q

. (25)

By (24) and (25), we conclude that there exists a positive constant C such that

C

∫

U+

X2−ε(1−δ)/q

|x|2−α u2 dx ≤
∫

U+

xαn |∇u|2 dx−H(n, α)

∫

∂Rn+∩U

u2(x′, 0)

|x′|1−α dx′, ∀u ∈ C∞0 (U).

7

15th Panhellenic Conference on Mathematical Analysis 74



This inequality contradicts to the assertion for the case θ = 2− α, that the weight X2 in the inequality

C

∫

U+

X2

|x|2−α u
2 dx ≤

∫

U+

xαn |∇u|2 dx−H(n, α)

∫

∂Rn+∩U

u2(x′, 0)

|x′|1−α dx′,

cannot be replaced by a smaller power of X.

Remarks and further developments Although the optimal constants in Theorem 1 are not determined,
explicit bounds, in terms of the sharp Hardy-Sobolev constants Sn,α,θ in (16), can be deduced from our proof. In
the unweighted case a = 0, the infimum (16) remains the same even if is just taken over functions with radially
symmetry ([2], [10], [12], [17]), which allow us to obtain the value of the best constant in (8); we refer to the
works [1], [9] where the optimal constants for the endpoint cases θ = 0, θ = 2, respectively have been determined.

Modifications of (5) with trace remainder terms (cf. [7], [8], [19]) can be also considered as we shall show
in a forthcoming work, yielding as an application, inequalities which are translated, via the so called harmonic
extension [5] (see also [13], [15], [16]), into refined versions of fractional Hardy inequalities on bounded domains,
improving and extending some earlier results.

Let us finally note that the method to prove our results, based on symmetry and homogeneity arguments, can
be well suited to handle more general weighted trace Hardy inequalities involving distances to linear subspaces
of several codimensions.

Appendix

Let us show here that (3) cannot be improved in the sense that there are no positive constant C, exponent p > 0,
and nontrivial potential V ≥ 0 such that the following inequality is valid

C

(∫

Rn+
V (x) |u(x)|p dx

) 2
p

≤
∫

Rn+

xαn |∇u|2 dx−H(n, α)

∫

∂Rn+

u2(x′, 0)

|x′|1−α dx′,

for all u ∈ C∞0 (Rn). It suffices to show that there exist functions uε

∫
Rn+
xαn |∇uε|2 dx−H(n, α)

∫
∂Rn+

u2
ε(x
′,0)

|x′|1−α dx′

(∫
Rn+
V (x) |uε|p dx

) 2
p

−→ 0, as ε −→ 0. (26)

To this end we consider for ε > 0 the function

uε(x) =

{
ψ(x) |x|ε/2, |x| ≤ 1,

ψ(x) |x|−ε/2, |x| ≥ 1,

where ψ is introduced in Section 2. Now we make integration by parts in the domains Rn+ ∩B1, Rn+ ∩ (BR \B1),
where R > 1, then send R → ∞ taking into account that ∇uε(x) · x = 2−n−α−ε

2 uε(x), the relations (9), (10)
jointly with the estimate

∫

Rn+∩∂BR
xαn uε

(
∇uε(x) · x|x|

)
dS =

2− n− α− ε
2R

∫

Rn+∩∂BR
xαn u

2
ε dS ≤ c(n, α)R−ε

R→∞−→ 0,

to obtain
∫

Rn+
xαn |∇uε|2 dx = H(n, α)

∫

∂Rn+

u2ε(x
′, 0)

|x′|1−α dx′ − ε2

2

∫

Rn+

xαnu
2
ε

|x|2 dx+ ε

∫

∂B1∩Rn+
xαn ψ

2 dS.

Here dS stands for the (n− 1)−dimensional Lebesgue measure over the corresponding spheres ∂BR = {x ∈ Rn :
|x| = R} or ∂B1 = {x ∈ Rn : |x| = 1}. Then, letting ε→ 0, we obtain (26).

8

15th Panhellenic Conference on Mathematical Analysis 75



References

[1] Adimurthi, S. Filippas, A. Tertikas, On the best constant of Hardy Sobolev inequalities, Nonlinear Anal.
(70) (2009), 2826-2833.
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