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Motivation

Questions from physics

» How does long range order (crystalline structure) arise out of
simple pairwise interactions?

FIGURE 1. Left: the Lennard-Jones potential (3). Right: a minimizer for the variational
problem (2), computed numerically in [14], with N = 100 and d = 2. The particles scem
to arrange themselves on an hexagonal lattice, and to form a large cluster having the
shape of an hexagon.

Generating good node sets

» Distribute points on a set A according to a given distribution
with good local properties.



wN ={X{,..., Xy} C A

Distributing points on a set: metrics

» Separation:
6(wn) == min |x; — x;|
i#]
» Covering:
A) = in|x —x;
plwn, A) max ml_ln\x X
» Maximizing separation §(wy): N-point best-packing

problem on A.
» Minimizing covering radius p(wpy,A):  N-point
best-covering problem on A.
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Best-Packing vs. Best-Covering

Two Trivial Problems: For A=[0,1] C R solve

Best-packing (maximize min separation) of 5 points on A

0 .25 5 .75 1

Best-covering (minimize largest gap on A) for 5 points on A
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Challenge Question: Same problems for N = 5 points, but [0, 1] is
replaced by the unit sphere S> ¢ R3 ?
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200 points in near best-packing on S?
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200 points in near best-covering on S?
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Discrete energy

Let (A, ]| - ||) be an infinite compact separable normed linear space.
K a symmetric and lower semi-continuous kernel on A x A.

K-energy of wy = {xy,...,xy} C A is
N
Ex(wn) = > K(xix) =Y K(x;,x)
i=1 j=1 i
J#

Minimal N-point K-energy of the set A is
5;((A7 N) = inf{EK(wN) Twy C A, Hwy = N}
If Ex(wpy) = Ek(A, N), then wy, is called N-point K-equilibrium

configuration for A or a set of optimal K-energy points.
In general, wy, is not unique.
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Continuous Energy Problem

M(A) is set of all probability measures with support on A.
K(x,y) symmetric, nonnegative, and I.s.c. kernel on A x A.

Continuous energy of u € M(A) is defined by

il = [ [ K(x.y) duduty).

AXA
Wiener constant is defined as
Wi(A) := min{l[u] : 1 € M(A)}.
Equilibrium measure is a measure ua € M(A) such that

Ik[pa] = Wk(A).

If Wk(A) = oo, (i.e. capg(A) :=1/Wk(A) = 0), then every pn € M(A)
is an equilibrium measure.



Existence: Weak* convergence of measures

We say that a sequence of measures (u,) in M(A) converges
weak-star to a measure p € M(A) if for all f € C(A)

Jim /fdu,,:/fdp,

and we write i, — .

Proposition

If 1 — pin M(A) and g is |.s.c on A, then

/Qdus I;,rgg)gf/gdun.
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Existence of Equilibrium Measure

K(x,y) symmetric, |.s.c. on A x A, where A is compact,

K-potential

Us) = [ K(x.y)du(y), e M(A

Principle of Descent

If
Hn € M(A)a Hn L> s

then
Ui(x) < Iinm infU"(x), x € A
— 00

and

Il < liminf /[zp].

Ui and Ik[y] are I.s.c. on M(A), so Ix[x] attains its min on M(A).



Fundamental Theorem (Frostman, Choquet, Fekete, Szegb,...)
With K as above,

am e = Wk(A)

Moreover, if (wy ) is any sequence of N-point K-energy minimizing
configurations on A, then every weak* limit measure A as N — oo of
the normalized counting measures

. 1
v(wpy) == N Z Ox
XEwy

is an equilibrium measure for the continuous energy problem on A;
i.e., /K[)\] = WK(A)
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Proof of Fundamental Theorem

Step 1: Show that %\% is increasing with N. Set

which is called the K-transfinite diameter of A.
Step 2: Show that 7x(A) < Wk(A).

Step 3: Prove that 7«(A) > Wk(A) and that any weak* limit measure
of normalized counting measures associated with a sequence of
optimal N-point K-energy configurations is an equilibrium measure
for the continuous problem.
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Uniqueness of equilibrium measures

Let 1 and v be two finite positive Borel measures on A. Their mutual
K-energy is

V)i = / / K(x.y) du(x)dy).

AxA
If © and v are finite signed measures we write 4 = u™ — p~ and
v=v" — v~ and set
() = (b v )+ (v )k = (e — (0 vk
whenever well-defined.
Definition
A kernel K on A x Ais strictly positive definite if for any finite

signed measure v for which (v, v) is well-defined, we have
(v,v)k > 0 with equality iff v = 0.
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Uniqueness of equilibrium measures

Lemma

Let K be symmetric, |.s.c. and strictly positive definite on A x A. If
w1, p2 € M(A) have finite K-energies, then

(b < (] + )

with equality iff uy = po.

Theorem

If K is as above and Wk (A) < oo that is, cap,(A) > 0, then the
equilibrium measure 4 is unique.




One (lucky) way to find equilibrium measure:

Corollary

Let K be symmetric, I.s.c. and strictly positive definite on A x A. If
p € M(A) is a measure such that Uj(x) is identically constant on A,

then u = pa.




