DISCRETE MINIMAL ENERGY PROBLEMS

E. B. Saff
Center for Constructive Approximation
Vanderbilt University

University of Crete, Heraklion May, 2017
Discretizing Surfaces

E. B. Saff
Center for Constructive Approximation
Vanderbilt University

University of Crete, Heraklion May, 2017
DISCRETE MINIMAL ENERGY PROBLEMS

Discretizing Surfaces
Beyond Potential Theory

E. B. Saff
Center for Constructive Approximation
Vanderbilt University

University of Crete, Heraklion May, 2017
DISCRETE MINIMAL ENERGY PROBLEMS

Discretizing Surfaces
Beyond Potential Theory
Poppy-Seed Bagel Theorems

E. B. Saff
Center for Constructive Approximation
Vanderbilt University

University of Crete, Heraklion May, 2017
Motivation

Questions from physics

▶ How does long range order (crystalline structure) arise out of simple pairwise interactions?

Generating good node sets

▶ Distribute points on a set A according to a given distribution with good local properties.

Figure 1 from X. Blanc, M. Lewin 2015
\[\omega_N = \{x_1, \ldots, x_N\} \subset A \]

Distributing points on a set: metrics

- **Separation:**
 \[\delta(\omega_N) := \min_{i \neq j} |x_i - x_j| \]

- **Covering:**
 \[\rho(\omega_N, A) := \max_{x \in A} \min_{i} |x - x_i| \]

- Maximizing separation \(\delta(\omega_N) \): **N-point best-packing** problem on \(A \).

- Minimizing covering radius \(\rho(\omega_N, A) \): **N-point best-covering** problem on \(A \).
Best-Packing vs. Best-Covering

Two Trivial Problems:

For $A = [0, 1] \subseteq \mathbb{R}$ solve

Best-packing (maximize min separation)

- - -

Best-covering (minimize largest gap on A)

--x--x--x--x--x--x--

Challenge Question:

Same problems for $N = 5$ points, but $[0, 1]$ is replaced by the unit sphere $S^2 \subseteq \mathbb{R}^3$?
Best-Packing vs. Best-Covering

Two Trivial Problems: For $A = [0, 1] \subset \mathbb{R}$ solve

Best-packing (maximize min separation) of 5 points on A
Best-Packing vs. Best-Covering

Two Trivial Problems: For $A = [0, 1] \subset \mathbb{R}$ solve

Best-packing (maximize min separation) of 5 points on A

- 0 .25 .5 .75 1
Two Trivial Problems: For $A = [0, 1] \subset \mathbb{R}$ solve

Best-packing (maximize min separation) of 5 points on A

```
0  .25  .5  .75  1
```

Best-covering (minimize largest gap on A) for 5 points on A
Best-Packing vs. Best-Covering

Two Trivial Problems: For $A = [0, 1] \subset \mathbb{R}$ solve

Best-packing (maximize min separation) of 5 points on A

- - - - -
0 0.25 0.5 0.75 1

Best-covering (minimize largest gap on A) for 5 points on A

---x---x---x---x---x---
0.1 0.3 0.5 0.7 0.9
Best-Packing vs. Best-Covering

Two Trivial Problems: For $A = [0, 1] \subset \mathbb{R}$ solve

Best-packing (maximize min separation) of 5 points on A

![Diagram of points on a line segment]

Best-covering (minimize largest gap on A) for 5 points on A

![Diagram of points on a line segment with gaps]

Challenge Question: Same problems for $N = 5$ points, but $[0, 1]$ is replaced by the unit sphere $S^2 \subset \mathbb{R}^3$?
Best-packing on S^2

200 points in near best-packing on S^2
Best-covering on S^2

200 points in near best-covering on S^2
Let \((A, \| \cdot \|)\) be an infinite compact separable normed linear space. \(K\) a symmetric and lower semi-continuous kernel on \(A \times A\). \(K\)-energy of \(\omega_N = \{x_1, \ldots, x_N\} \subset A\) is

\[
E_K(\omega_N) := \sum_{i=1}^{N} \sum_{j=1, j \neq i}^{N} K(x_i, x_j) = \sum_{i \neq j} K(x_i, x_j)
\]
Discrete energy

Let \((A, \| \cdot \|)\) be an infinite compact separable normed linear space. \(K\) a symmetric and lower semi-continuous kernel on \(A \times A\). \(K\)-energy of \(\omega_N = \{x_1, \ldots, x_N\} \subset A\) is

\[
E_K(\omega_N) := \sum_{i=1}^{N} \sum_{j=1, j \neq i}^{N} K(x_i, x_j) = \sum_{i \neq j}^{N} K(x_i, x_j)
\]

Minimal \(N\)-point \(K\)-energy of the set \(A\) is

\[
\mathcal{E}_K(A, N) := \inf\{E_K(\omega_N) : \omega_N \subset A, \#\omega_N = N\}.
\]
Discrete energy

Let \((A, \| \cdot \|)\) be an infinite compact separable normed linear space.
\(K\) a \textit{symmetric} and \textit{lower semi-continuous kernel} on \(A \times A\).
\(K\)-energy of \(\omega_N = \{x_1, \ldots, x_N\} \subset A\) is

\[
E_K(\omega_N) := \sum_{i=1}^{N} \sum_{j=1, j \neq i}^{N} K(x_i, x_j) = \sum_{i \neq j} K(x_i, x_j)
\]

Minimal \(N\)-point \(K\)-energy of the set \(A\) is

\[
\mathcal{E}_K(A, N) := \inf \{ E_K(\omega_N) : \omega_N \subset A, \#\omega_N = N \}.
\]

If \(E_K(\omega^*_N) = \mathcal{E}_K(A, N)\), then \(\omega^*_N\) is called \(N\)-point \(K\)-equilibrium configuration for \(A\) or a set of optimal \(K\)-energy points.

In general, \(\omega^*_N\) is not unique.
Continuous Energy Problem

$\mathcal{M}(A)$ is set of all probability measures with support on A. $K(x, y)$ symmetric, nonnegative, and l.s.c. kernel on $A \times A$.
Continuous Energy Problem

\[\mathcal{M}(A) \] is set of all probability measures with support on \(A \).
\[K(x, y) \] symmetric, nonnegative, and l.s.c. kernel on \(A \times A \).

Continuous energy of \(\mu \in \mathcal{M}(A) \) is defined by

\[
I_K[\mu] := \int\int_{A \times A} K(x, y) \, d\mu(x) \, d\mu(y).
\]
Continuous Energy Problem

\(\mathcal{M}(A) \) is set of all probability measures with support on \(A \).
\(K(x, y) \) symmetric, nonnegative, and l.s.c. kernel on \(A \times A \).

Continuous energy of \(\mu \in \mathcal{M}(A) \) is defined by

\[
I_K[\mu] := \int \int_{A \times A} K(x, y) \, d\mu(x) \, d\mu(y).
\]

Wiener constant is defined as

\[
W_K(A) := \min\{I_K[\mu] : \mu \in \mathcal{M}(A)\}.
\]
Continuous Energy Problem

\(\mathcal{M}(A) \) is set of all probability measures with support on \(A \).

\(K(x, y) \) symmetric, nonnegative, and l.s.c. kernel on \(A \times A \).

Continuous energy of \(\mu \in \mathcal{M}(A) \) is defined by

\[
I_K[\mu] := \int \int_{A \times A} K(x, y) \, d\mu(x)d\mu(y).
\]

Wiener constant is defined as

\[
W_K(A) := \min\{I_K[\mu] : \mu \in \mathcal{M}(A)\}.
\]

Equilibrium measure is a measure \(\mu_A \in \mathcal{M}(A) \) such that

\[
\]
Continuous Energy Problem

\(\mathcal{M}(A) \) is set of all probability measures with support on \(A \).
\(K(x, y) \) symmetric, nonnegative, and l.s.c. kernel on \(A \times A \).

Continuous energy of \(\mu \in \mathcal{M}(A) \) is defined by

\[
I_K[\mu] := \int \int_{A \times A} K(x, y) \, d\mu(x) \, d\mu(y).
\]

Wiener constant is defined as

\[
W_K(A) := \min \{ I_K[\mu] : \mu \in \mathcal{M}(A) \}.
\]

Equilibrium measure is a measure \(\mu_A \in \mathcal{M}(A) \) such that

\[
\]

If \(W_K(A) = \infty \), (i.e. \(\text{cap}_K(A) := 1/W_K(A) = 0 \)), then every \(\mu \in \mathcal{M}(A) \) is an equilibrium measure.
We say that a sequence of measures \((\mu_n)\) in \(\mathcal{M}(A)\) converges \textbf{weak-star} to a measure \(\mu \in \mathcal{M}(A)\) if for all \(f \in C(A)\)

\[
\lim_{n \to \infty} \int f \, d\mu_n = \int f \, d\mu,
\]

and we write \(\mu_n \xrightarrow{\ast} \mu\).

Proposition

If \(\mu_n \xrightarrow{\ast} \mu\) in \(\mathcal{M}(A)\) and \(g\) is l.s.c on \(A\), then

\[
\int g \, d\mu \leq \liminf_{n \to \infty} \int g \, d\mu_n.
\]
Existence of Equilibrium Measure

$K(x, y)$ symmetric, l.s.c. on $A \times A$, where A is compact,

K-potential

$$U_K^\mu(x) := \int K(x, y) d\mu(y), \quad \mu \in \mathcal{M}(A)$$

Principle of Descent

If

$$\mu_n \in \mathcal{M}(A), \quad \mu_n \overset{*}{\rightarrow} \mu,$$

then

$$U_K^\mu(x) \leq \liminf_{n \rightarrow \infty} U_K^{\mu_n}(x), \quad x \in A$$

and

$$I_K[\mu] \leq \liminf_{n \rightarrow \infty} I[\mu_n].$$

U_K^μ and $I_K[\mu]$ are l.s.c. on $\mathcal{M}(A)$, so $I_K[\mu]$ attains its min on $\mathcal{M}(A)$.
Connection between discrete and continuous energy

Fundamental Theorem (Frostman, Choquet, Fekete, Szegő,...)

With K as above,

$$\lim_{N \to \infty} \frac{\varepsilon_K(A, N)}{N^2} = W_K(A).$$

Moreover, if (ω^*_N) is any sequence of N-point K-energy minimizing configurations on A, then every weak* limit measure λ as $N \to \infty$ of the normalized counting measures

$$\nu(\omega^*_N) := \frac{1}{N} \sum_{x \in \omega^*_N} \delta_x$$

is an equilibrium measure for the continuous energy problem on A; i.e., $I_K[\lambda] = W_K(A)$.
Proof of Fundamental Theorem

Step 1: Show that \(\frac{E_K(A, N)}{N(N-1)} \) is increasing with \(N \). Set

\[
\tau_K(A) := \lim_{N \to \infty} \frac{E_s(A, N)}{N^2},
\]

which is called the **\(K \)-transfinite diameter** of \(A \).

Step 2: Show that \(\tau_K(A) \leq W_K(A) \).

Step 3: Prove that \(\tau_K(A) \geq W_K(A) \) and that any weak* limit measure of normalized counting measures associated with a sequence of optimal \(N \)-point \(K \)-energy configurations is an equilibrium measure for the continuous problem.
Uniqueness of equilibrium measures

Let \(\mu \) and \(\nu \) be two finite positive Borel measures on \(A \). Their mutual \(K \)-energy is

\[
\langle \mu, \nu \rangle_K := \iint_{A \times A} K(x, y) \, d\mu(x) \, d\nu(y).
\]

If \(\mu \) and \(\nu \) are finite signed measures we write \(\mu = \mu^+ - \mu^- \) and \(\nu = \nu^+ - \nu^- \) and set

\[
\langle \mu, \nu \rangle_K := \langle \mu^+, \nu^+ \rangle_K + \langle \mu^-, \nu^- \rangle_K - \langle \mu^+, \nu^- \rangle_K - \langle \mu^-, \nu^+ \rangle_K
\]

whenever well-defined.

Definition

A kernel \(K \) on \(A \times A \) is strictly positive definite if for any finite signed measure \(\nu \) for which \(\langle \nu, \nu \rangle_K \) is well-defined, we have \(\langle \nu, \nu \rangle_K \geq 0 \) with equality iff \(\nu = 0 \).
Uniqueness of equilibrium measures

Lemma

Let K be symmetric, l.s.c. and **strictly positive definite** on $A \times A$. If $\mu_1, \mu_2 \in \mathcal{M}(A)$ have finite K-energies, then

$$\langle \mu_1, \mu_2 \rangle_K \leq \frac{1}{2} (I_K[\mu_1] + I_K[\mu_2])$$

with equality iff $\mu_1 = \mu_2$.

Theorem

If K is as above and $W_K(A) < \infty$ that is, $\text{cap}_K(A) > 0$, then the equilibrium measure μ_A is unique.
One (lucky) way to find equilibrium measure:

Corollary

Let K be symmetric, l.s.c. and **strictly positive definite** on $A \times A$. If $\mu \in \mathcal{M}(A)$ is a measure such that $U_K^\mu(x)$ is identically constant on A, then $\mu = \mu_A$.