


DISCRETE MINIMAL ENERGY PROBLEMS

Discretizing Surfaces
Beyond Potential Theory

Poppy-Seed Bagel Theorems

E. B. Saff
Center for Constructive Approximation

Vanderbilt University

University of Crete, Heraklion May, 2017



DISCRETE MINIMAL ENERGY PROBLEMS

Discretizing Surfaces

Beyond Potential Theory
Poppy-Seed Bagel Theorems

E. B. Saff
Center for Constructive Approximation

Vanderbilt University

University of Crete, Heraklion May, 2017



DISCRETE MINIMAL ENERGY PROBLEMS

Discretizing Surfaces
Beyond Potential Theory

Poppy-Seed Bagel Theorems

E. B. Saff
Center for Constructive Approximation

Vanderbilt University

University of Crete, Heraklion May, 2017



DISCRETE MINIMAL ENERGY PROBLEMS

Discretizing Surfaces
Beyond Potential Theory

Poppy-Seed Bagel Theorems

E. B. Saff
Center for Constructive Approximation

Vanderbilt University

University of Crete, Heraklion May, 2017



Motivation

Questions from physics

I How does long range order (crystalline structure) arise out of
simple pairwise interactions?

Generating good node sets

I Distribute points on a set A according to a given distribution
with good local properties.

Figure 1 from X. Blanc, M. Lewin 2015



ωN = {x1, . . . ,xN} ⊂ A

Distributing points on a set: metrics

I Separation:
δ(ωN) := min

i 6=j
|xi − xj |

I Covering:
ρ(ωN ,A) := max

x∈A
min
i
|x− xi |

I Maximizing separation δ(ωN): N-point best-packing
problem on A.

I Minimizing covering radius ρ(ωN ,A): N-point
best-covering problem on A.



Best-Packing vs. Best-Covering

Two Trivial Problems: For A = [0,1] ⊂ R solve

Best-packing (maximize min separation) of 5 points on A

•———•———-•———-•———-•
0 .25 .5 .75 1

Best-covering (minimize largest gap on A) for 5 points on A

—-x——–x——–x——–x——–x—-
.1 .3 .5 . 7 .9

Challenge Question: Same problems for N = 5 points, but [0,1] is
replaced by the unit sphere S2 ⊂ R3 ?
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Best-packing on S2

200 points in near best-packing on S2



Best-covering on S2

200 points in near best-covering on S2



Discrete energy

Let (A, || · ||) be an infinite compact separable normed linear space.
K a symmetric and lower semi-continuous kernel on A× A.
K -energy of ωN = {x1, . . . , xN} ⊂ A is

EK (ωN) :=
N∑

i=1

N∑
j=1
j 6=i

K (xi , xj ) =
∑
i 6=j

K (xi , xj )

Minimal N-point K -energy of the set A is

EK (A,N) := inf{EK (ωN) : ωN ⊂ A, #ωN = N}.

If EK (ω∗N) = EK (A,N), then ω∗N is called N-point K -equilibrium
configuration for A or a set of optimal K -energy points.
In general, ω∗N is not unique.
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Continuous Energy Problem

M(A) is set of all probability measures with support on A.
K (x , y) symmetric, nonnegative, and l.s.c. kernel on A× A.

Continuous energy of µ ∈M(A) is defined by

IK [µ] :=

∫∫
A×A

K (x , y) dµ(x)dµ(y).

Wiener constant is defined as

WK (A) := min{IK [µ] : µ ∈M(A)}.

Equilibrium measure is a measure µA ∈M(A) such that

IK [µA] = WK (A).

If WK (A) =∞, (i.e. capK (A) := 1/WK (A) = 0 ), then every µ ∈M(A)
is an equilibrium measure.
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Existence: Weak∗ convergence of measures

We say that a sequence of measures (µn) inM(A) converges
weak-star to a measure µ ∈M(A) if for all f ∈ C(A)

lim
n→∞

∫
f dµn =

∫
f dµ,

and we write µn
∗−→ µ.

Proposition

If µn
∗−→ µ inM(A) and g is l.s.c on A, then∫

g dµ ≤ lim inf
n→∞

∫
g dµn.



Existence of Equilibrium Measure

K (x , y) symmetric, l.s.c. on A× A, where A is compact,

K -potential

Uµ
K (x) :=

∫
K (x , y)dµ(y), µ ∈M(A)

Principle of Descent

If
µn ∈M(A), µn

∗−→ µ,

then
Uµ

K (x) ≤ lim inf
n→∞

Uµn
K (x), x ∈ A

and
IK [µ] ≤ lim inf

n→∞
I[µn].

Uµ
K and IK [µ] are l.s.c. onM(A), so IK [µ] attains its min onM(A).



Connection between discrete and continuous energy

Fundamental Theorem (Frostman, Choquet, Fekete, Szegő,...)

With K as above,

lim
N→∞

EK (A,N)

N2 = WK (A).

Moreover, if (ω∗N) is any sequence of N-point K -energy minimizing
configurations on A, then every weak∗ limit measure λ as N →∞ of
the normalized counting measures

ν(ω∗N) :=
1
N

∑
x∈ω∗

N

δx

is an equilibrium measure for the continuous energy problem on A;
i.e., IK [λ] = WK (A).



Proof of Fundamental Theorem

Step 1: Show that EK (A,N)
N(N−1) is increasing with N. Set

τK (A) := lim
N→∞

Es(A,N)

N2 ,

which is called the K -transfinite diameter of A.

Step 2: Show that τK (A) ≤WK (A).

Step 3: Prove that τK (A) ≥WK (A) and that any weak∗ limit measure
of normalized counting measures associated with a sequence of
optimal N-point K -energy configurations is an equilibrium measure
for the continuous problem.



Uniqueness of equilibrium measures

Let µ and ν be two finite positive Borel measures on A. Their mutual
K -energy is

〈µ, ν〉K :=

∫∫
A×A

K (x , y) dµ(x)dν(y).

If µ and ν are finite signed measures we write µ = µ+ − µ− and
ν = ν+ − ν− and set

〈µ, ν〉K := 〈µ+, ν+〉K + 〈µ−, ν−〉K − 〈µ+, ν−〉K − 〈µ−, ν+〉K

whenever well-defined.

Definition
A kernel K on A× A is strictly positive definite if for any finite
signed measure ν for which 〈ν, ν〉K is well-defined, we have
〈ν, ν〉K ≥ 0 with equality iff ν = 0.



Uniqueness of equilibrium measures

Lemma
Let K be symmetric, l.s.c. and strictly positive definite on A× A. If
µ1, µ2 ∈M(A) have finite K -energies, then

〈µ1, µ2〉K ≤
1
2

(IK [µ1] + IK [µ2])

with equality iff µ1 = µ2.

Theorem
If K is as above and WK (A) <∞ that is, capK (A) > 0, then the
equilibrium measure µA is unique.



One (lucky) way to find equilibrium measure:

Corollary

Let K be symmetric, l.s.c. and strictly positive definite on A× A. If
µ ∈M(A) is a measure such that Uµ

K (x) is identically constant on A,
then µ = µA.


