

E. B. Saff Center for Constructive Approximation Vanderbilt University

Discretizing Surfaces

E. B. Saff Center for Constructive Approximation Vanderbilt University

Discretizing Surfaces Beyond Potential Theory

E. B. Saff Center for Constructive Approximation Vanderbilt University

Discretizing Surfaces Beyond Potential Theory Poppy-Seed Bagel Theorems

E. B. Saff Center for Constructive Approximation Vanderbilt University

Motivation

Questions from physics

How does long range order (crystalline structure) arise out of simple pairwise interactions?

FIGURE 1. Left: the Lennard-Jones potential (3). Right: a minimizer for the variational problem (2), computed numerically in [14], with N = 100 and d = 2. The particles seem to arrange themselves on an hexagonal lattice, and to form a large cluster having the shape of an hexagon.

Generating good node sets

 Distribute points on a set A according to a given distribution with good local properties.

$$\omega_N = \{\mathbf{x}_1, \ldots, \mathbf{x}_N\} \subset A$$

Distributing points on a set: metrics

Separation:

$$\delta(\omega_N) := \min_{i \neq j} |\mathbf{x}_i - \mathbf{x}_j|$$

Covering:

$$\rho(\omega_N, A) := \max_{\mathbf{x} \in A} \min_i |\mathbf{x} - \mathbf{x}_i|$$

- Maximizing separation δ(ω_N): N-point best-packing problem on A.
- Minimizing covering radius ρ(ω_N, A): N-point best-covering problem on A.

Two Trivial Problems: For $A = [0, 1] \subset \mathbb{R}$ solve

Best-packing (maximize min separation) of 5 points on A

Two Trivial Problems: For $A = [0, 1] \subset \mathbb{R}$ solve

Two Trivial Problems: For $A = [0, 1] \subset \mathbb{R}$ solve

Best-packing (maximize min separation) of 5 points on A

Best-covering (minimize largest gap on A) for 5 points on A

Two Trivial Problems: For $A = [0, 1] \subset \mathbb{R}$ solve

Best-covering (minimize largest gap on *A*) for 5 points on *A*

Two Trivial Problems: For $A = [0, 1] \subset \mathbb{R}$ solve

Challenge Question: Same problems for N = 5 points, but [0, 1] is replaced by the unit sphere $\mathbb{S}^2 \subset \mathbb{R}^3$?

Best-packing on S²

200 points in near best-packing on \mathbb{S}^2

Best-covering on S²

200 points in near best-covering on \mathbb{S}^2

Discrete energy

Let $(A, || \cdot ||)$ be an infinite compact separable normed linear space. *K* a **symmetric** and **lower semi-continuous kernel** on $A \times A$. *K*-energy of $\omega_N = \{x_1, \ldots, x_N\} \subset A$ is

$$E_{\mathcal{K}}(\omega_{\mathcal{N}}) := \sum_{i=1}^{\mathcal{N}} \sum_{\substack{j=1\ j
eq i}}^{\mathcal{N}} \mathcal{K}(x_i, x_j) = \sum_{i
eq j} \mathcal{K}(x_i, x_j)$$

Discrete energy

Let $(A, || \cdot ||)$ be an infinite compact separable normed linear space. *K* a **symmetric** and **lower semi-continuous kernel** on $A \times A$. *K*-energy of $\omega_N = \{x_1, \ldots, x_N\} \subset A$ is

$$egin{aligned} \mathcal{E}_{\mathcal{K}}(\omega_{\mathcal{N}}) &:= \sum_{i=1}^{\mathcal{N}} \sum_{\substack{j=1\j
eq i}}^{\mathcal{N}} \mathcal{K}(x_i,x_j) = \sum_{i
eq j} \mathcal{K}(x_i,x_j) \end{aligned}$$

Minimal *N*-point *K*-energy of the set *A* is

 $\mathcal{E}_{\mathcal{K}}(\mathcal{A},\mathcal{N}):=\inf\{\mathcal{E}_{\mathcal{K}}(\omega_{\mathcal{N}}):\omega_{\mathcal{N}}\subset\mathcal{A},\ \#\omega_{\mathcal{N}}=\mathcal{N}\}.$

Discrete energy

Let $(A, || \cdot ||)$ be an infinite compact separable normed linear space. *K* a **symmetric** and **lower semi-continuous kernel** on $A \times A$. *K*-energy of $\omega_N = \{x_1, \ldots, x_N\} \subset A$ is

$$egin{aligned} \mathcal{E}_{\mathcal{K}}(\omega_{\mathcal{N}}) &:= \sum_{i=1}^{\mathcal{N}} \sum_{\substack{j=1\ j
eq i}}^{\mathcal{N}} \mathcal{K}(x_i,x_j) = \sum_{i
eq j} \mathcal{K}(x_i,x_j) \end{aligned}$$

Minimal *N*-point *K*-energy of the set *A* is

 $\mathcal{E}_{\mathcal{K}}(\mathcal{A},\mathcal{N}) := \inf\{\mathcal{E}_{\mathcal{K}}(\omega_{\mathcal{N}}) : \omega_{\mathcal{N}} \subset \mathcal{A}, \ \#\omega_{\mathcal{N}} = \mathcal{N}\}.$

If $E_{\mathcal{K}}(\omega_N^*) = \mathcal{E}_{\mathcal{K}}(A, N)$, then ω_N^* is called *N*-point *K*-equilibrium configuration for *A* or a set of optimal *K*-energy points. In general, ω_N^* is not unique.

 $\mathcal{M}(A)$ is set of all probability measures with support on *A*. $\mathcal{K}(x, y)$ symmetric, nonnegative, and *l.s.c.* kernel on $A \times A$.

 $\mathcal{M}(A)$ is set of all probability measures with support on A. K(x, y) symmetric, nonnegative, and l.s.c. kernel on $A \times A$. Continuous energy of $\mu \in \mathcal{M}(A)$ is defined by

$$I_{K}[\mu] := \iint_{A imes A} K(x, y) d\mu(x) d\mu(y).$$

 $\mathcal{M}(A)$ is set of all probability measures with support on *A*. K(x, y) symmetric, nonnegative, and l.s.c. kernel on $A \times A$. *Continuous energy* of $\mu \in \mathcal{M}(A)$ is defined by

$$I_{\kappa}[\mu] := \iint_{A \times A} K(x, y) d\mu(x) d\mu(y).$$

Wiener constant is defined as

$$W_{\mathcal{K}}(A) := \min\{I_{\mathcal{K}}[\mu] : \mu \in \mathcal{M}(A)\}.$$

 $\mathcal{M}(A)$ is set of all probability measures with support on *A*. K(x, y) symmetric, nonnegative, and *l.s.c.* kernel on $A \times A$. *Continuous energy* of $\mu \in \mathcal{M}(A)$ is defined by

$$I_{\kappa}[\mu] := \iint_{A \times A} K(x, y) d\mu(x) d\mu(y).$$

Wiener constant is defined as

$$W_{\mathcal{K}}(\mathcal{A}) := \min\{I_{\mathcal{K}}[\mu] : \mu \in \mathcal{M}(\mathcal{A})\}.$$

Equilibrium measure is a measure $\mu_A \in \mathcal{M}(A)$ such that

 $I_{\mathcal{K}}[\mu_{\mathcal{A}}] = W_{\mathcal{K}}(\mathcal{A}).$

 $\mathcal{M}(A)$ is set of all probability measures with support on *A*. K(x, y) symmetric, nonnegative, and *l.s.c.* kernel on $A \times A$. *Continuous energy* of $\mu \in \mathcal{M}(A)$ is defined by

$$I_{\kappa}[\mu] := \iint_{A \times A} K(x, y) d\mu(x) d\mu(y).$$

Wiener constant is defined as

$$W_{\mathcal{K}}(\mathcal{A}) := \min\{I_{\mathcal{K}}[\mu] : \mu \in \mathcal{M}(\mathcal{A})\}.$$

Equilibrium measure is a measure $\mu_A \in \mathcal{M}(A)$ such that

 $I_{\mathcal{K}}[\mu_{\mathcal{A}}] = W_{\mathcal{K}}(\mathcal{A}).$

If $W_{\mathcal{K}}(A) = \infty$, (i.e. $\operatorname{cap}_{\mathcal{K}}(A) := 1/W_{\mathcal{K}}(A) = 0$), then every $\mu \in \mathcal{M}(A)$ is an equilibrium measure.

Existence: Weak* convergence of measures

We say that a sequence of measures (μ_n) in $\mathcal{M}(A)$ converges **weak-star** to a measure $\mu \in \mathcal{M}(A)$ if for all $f \in C(A)$

$$\lim_{n\to\infty}\int f\,d\mu_n=\int f\,d\mu,$$

and we write $\mu_n \xrightarrow{*} \mu$.

Proposition

If $\mu_n \xrightarrow{*} \mu$ in $\mathcal{M}(A)$ and g is l.s.c on A, then

$$\int g\,d\mu\leq \liminf_{n o\infty}\int g\,d\mu_n.$$

Existence of Equilibrium Measure

K(x, y) symmetric, l.s.c. on $A \times A$, where A is compact, K-potential

$$U^{\mu}_{K}(x) := \int K(x,y) d\mu(y), \ \mu \in \mathcal{M}(A)$$

Principle of Descent

lf

$$\mu_n \in \mathcal{M}(A), \ \mu_n \xrightarrow{*} \mu,$$

then

$$U_{\mathcal{K}}^{\mu}(x) \leq \liminf_{n \to \infty} U_{\mathcal{K}}^{\mu_n}(x), \ x \in A$$

and

 $I_{\mathcal{K}}[\mu] \leq \liminf_{n \to \infty} I[\mu_n].$

 $U_{\mathcal{K}}^{\mu}$ and $I_{\mathcal{K}}[\mu]$ are l.s.c. on $\mathcal{M}(A)$, so $I_{\mathcal{K}}[\mu]$ attains its min on $\mathcal{M}(A)$.

Connection between discrete and continuous energy

Fundamental Theorem (Frostman, Choquet, Fekete, Szegő,...)

With K as above,

$$\lim_{N\to\infty}\frac{\mathcal{E}_{\mathcal{K}}(\mathcal{A},\mathcal{N})}{\mathcal{N}^2}=W_{\mathcal{K}}(\mathcal{A}).$$

Moreover, if (ω_N^*) is any sequence of *N*-point *K*-energy minimizing configurations on *A*, then every weak* limit measure λ as $N \to \infty$ of the normalized counting measures

$$\nu(\omega_N^*) := \frac{1}{N} \sum_{\mathbf{x} \in \omega_N^*} \delta_{\mathbf{x}}$$

is an equilibrium measure for the continuous energy problem on *A*; i.e., $I_{\mathcal{K}}[\lambda] = W_{\mathcal{K}}(\mathcal{A})$.

Proof of Fundamental Theorem

Step 1: Show that $\frac{\mathcal{E}_{\mathcal{K}}(A,N)}{N(N-1)}$ is **increasing** with *N*. Set

$$au_{\mathcal{K}}(\mathcal{A}) := \lim_{\mathcal{N} o \infty} rac{\mathcal{E}_{\mathcal{S}}(\mathcal{A},\mathcal{N})}{\mathcal{N}^2},$$

which is called the K-transfinite diameter of A.

Step 2: Show that $\tau_{\mathcal{K}}(\mathcal{A}) \leq W_{\mathcal{K}}(\mathcal{A})$.

Step 3: Prove that $\tau_{K}(A) \ge W_{K}(A)$ and that any weak* limit measure of normalized counting measures associated with a sequence of optimal *N*-point *K*-energy configurations is an equilibrium measure for the continuous problem.

 $\mathcal{O} \land \mathcal{O}$

Uniqueness of equilibrium measures

Let μ and ν be two finite positive Borel measures on *A*. Their **mutual** *K*-energy is

$$\langle \mu, \nu \rangle_{\mathcal{K}} := \iint_{A \times A} \mathcal{K}(x, y) \, d\mu(x) d\nu(y).$$

If μ and ν are finite *signed* measures we write $\mu = \mu^+ - \mu^-$ and $\nu = \nu^+ - \nu^-$ and set

$$\langle \mu, \nu \rangle_{\mathcal{K}} := \langle \mu^+, \nu^+ \rangle_{\mathcal{K}} + \langle \mu^-, \nu^- \rangle_{\mathcal{K}} - \langle \mu^+, \nu^- \rangle_{\mathcal{K}} - \langle \mu^-, \nu^+ \rangle_{\mathcal{K}}$$

whenever well-defined.

Definition

A kernel *K* on *A* × *A* is **strictly positive definite** if for any finite signed measure ν for which $\langle \nu, \nu \rangle_K$ is well-defined, we have $\langle \nu, \nu \rangle_K \ge 0$ with equality iff $\nu = 0$.

Uniqueness of equilibrium measures

Lemma

Let *K* be symmetric, l.s.c. and **strictly positive definite** on $A \times A$. If $\mu_1, \mu_2 \in \mathcal{M}(A)$ have finite *K*-energies, then

$$\langle \mu_1, \mu_2 \rangle_{\mathcal{K}} \leq \frac{1}{2} \left(I_{\mathcal{K}}[\mu_1] + I_{\mathcal{K}}[\mu_2] \right)$$

with equality iff $\mu_1 = \mu_2$.

Theorem

If *K* is as above and $W_K(A) < \infty$ that is, $\operatorname{cap}_K(A) > 0$, then the equilibrium measure μ_A is unique.

One (lucky) way to find equilibrium measure:

Corollary

Let *K* be symmetric, l.s.c. and **strictly positive definite** on $A \times A$. If $\mu \in \mathcal{M}(A)$ is a measure such that $U_{K}^{\mu}(x)$ is identically constant on *A*, then $\mu = \mu_{A}$.