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Abstract. Nearly twenty years ago Isaacs and the first author of this paper wrote a series of
articles [4], [2], [3] about what were called “stabilizer limits” of group characters, following the
terminology of Berger [1]. The second author, in her thesis [5], needed one of the results of those
articles in a new situation which was not treated earlier. Eventually she was able, by complicated
and delicate arguments, to reduce her proof to a special case where [2, Theorem 8.4] could be
applied. But this approach was extremely awkward. In the present paper we use arguments similar
to those in the earlier articles to prove a Main Theorem from which the exact Theorem A needed
in [5] easily follows.

Introduction. To explain the precise content of our theorems requires a lot of notation and
terminology. We start with the family T of all ordered triples (G,N,ψ), consisting of a finite
group G, a normal subgroup N of G, and an irreducible complex character ψ of N . Fix a triple
T = (G,N,ψ) in T. This T determines several other objects, such as the stabilizer G(ψ) of the
character ψ in the group G, the image G(ψ)/N of that stabilizer in the factor group G/N , and
the character ψG of G induced by ψ. We define the center Z(T ) of T to be the center Z(ψG) of
this induced character, and the central character of T to be the unique linear character ζ(T ) of
Z(T ) such that ψG restricts to a multiple of ζ(T ) on Z(T ). Then Z(T ) is a normal subgroup of G
contained in N , and ζ(T ) is a G-invariant linear character of Z(T ) lying under ψ.

By a subtriple of T we mean any triple T ′ = (G′, N ′, ψ′), consisting of a subgroup G′ of G, the
intersection N ′ = G′ ∩N of that subgroup with N , and an irreducible complex character ψ′ of N ′

lying under the irreducible character ψ of N . Any such T ′ also lies in T. Furthermore, inclusion
G′ ↪→ G induces a natural embedding of the factor group G′/N ′ into G/N . It is easy to see that
the intersection G′ ∩ Z(T ) is contained in Z(T ′), and that both ζ(T ) and ζ(T ′) restrict to the same
linear character of this intersection. In general there is no useful relation between the stabilizers
G′(ψ′) and G(ψ), or even between their images G′(ψ′)/N ′ and G(ψ)/N . Notice that any subtriple
T ′′ of the subtriple T ′ is also a subtriple of T . So is any conjugate (T ′)τ = ((G′)τ , (N ′)τ , (ψ′)τ ) of
T ′ by any τ ∈ G(ψ).

Fix a subtriple T ′ = (G′, N ′, ψ′) of T . We say that T ′ is a linear reduction of T if there exist
some normal subgroup L of G contained in N , and some complex linear character λ of L lying
under ψ, such that G′ is the stabilizer G(λ) of λ in G, and ψ′ is the unique irreducible character
of the stabilizer N ′ = G′ ∩N = N(λ) lying over λ and inducing ψ. We say that T ′ is a multilinear
reduction of T if there is some finite chain T0, T1, . . . , Tn of subtriples of T , starting with T0 = T and
ending with Tn = T ′, such that each Ti, for i = 1, 2, . . . , n, is a linear reduction of its predecessor
Ti−1. In that case we call T0, T1, . . . , Tn a linear reducing chain from T to T ′. We say that T ′ is a
linear limit of T if it is a multilinear reduction of T such that the only possible linear reduction of
T ′ is T ′ itself. Each of the classes of linear reductions, of multilinear reductions, or of linear limits
of T is closed under conjugation by elements of N . If T ′ belongs to any of these classes, then the
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natural embedding of G′/N ′ into G/N sends G′(ψ′)/N ′ isomorphically onto G(ψ)/N , the center
Z(T ) is a subgroup of Z(T ′), and the central character ζ(T ) is the restriction of ζ(T ′) to Z(T ).

We say that the subtriple T ′ covers T modulo Z(T ) if the subgroup G′ Z(T ) is equal to G. In this
case the natural embedding is an isomorphism of the factor group G′/N ′ onto G/N . Furthermore,
the intersection G′ ∩ Z(T ) is exactly Z(T ′), so that inclusion G′ ↪→ G induces an isomorphism of
G′/Z(T ′) onto G/Z(T ). The character ψ′ is now the restriction of ψ to N ′, and the stabilizer G(ψ)
is the product G′(ψ′) Z(T ). It follows that the natural isomorphism of G′/N ′ onto G/N sends the
subgroup G′(ψ′)/N ′ onto G(ψ)/N .

After all these definitions we can finally state our

Main Theorem. If T ′ and T ′′ are two linear limits of some triple T ∈ T, then there exists a
finite chain T0, T1, . . . , Tn of subtriples Ti of T , starting with T0 = T ′ and ending with Tn = T ′′,
such that, for each i = 1, 2, . . . , n, either Ti is an N -conjugate of Ti−1, or Ti covers Ti−1 modulo
Z(Ti−1), or Ti−1 covers Ti module Z(Ti).

Suppose that the factor group N̄(T ′) = N ′/Z(T ′) is nilpotent, for some linear limit T ′ =
(G′, N ′, ψ′) of T . Then the Hall-Higman argument tells us that N̄(T ′) is abelian, and that commu-
tation σ, τ 7→ [σ, τ ] = σ−1τ−1στ in N ′ induces a non-singular, strongly alternating, G′-invariant,
bilinear form c̄′ from N̄(T ′)× N̄(T ′) to the multiplicative group C× of the complex numbers, send-
ing σ Z(T ′), τ Z(T ′) to ζ(T ′)([σ, τ ]), for any σ, τ ∈ N ′. This bilinear form, and the natural action
of the factor group G′/N ′ on the abelian group N̄(T ′) = N ′/Z(T ′), turn N̄(T ′) into a symplectic
G′/N ′-group.

Since N̄(T ′) is symplectic, the irreducible character ψ′ of N ′ lying over ζ(T ′) is zero outside
Z(T ′), and a multiple of ζ(T ′) on Z(T ′). Because ζ(T ′) is G′-invariant, so is ψ′. Hence the natural
embedding sends G′/N ′ = G′(ψ′)/N ′ isomorphically onto G(ψ)/N . We use this isomorphism to
transfer the action of G′/N ′ on N̄(T ′) to one of G(ψ)/N on that group. In this way N̄(T ′) becomes
a symplectic G(ψ)/N -group

The above Main Theorem implies that the factor group N̄(T ′′) = N ′′/Z(T ′′), for any other linear
limit T ′′ = (G′′, N ′′, ψ′′) of T , is isomorphic to N̄(T ′), and hence is nilpotent. So N̄(T ′) is also a
symplectic G(ψ)/N -group. For us the most important consequence of the Main Theorem is

Theorem A. If some linear limit T ′ = (G′, N ′, ψ′) of a triple T = (G,N,ψ) ∈ T has a nilpotent
factor group N̄(T ′) = N ′/Z(T ′), then N̄(T ′) is naturally a symplectic G(ψ)/N -group. So is N̄(T ′′) =
N ′′/Z(T ′′), for any other linear limit T ′′ = (G′′, N ′′, ψ′′) of T . Furthermore, N̄(T ′) and N̄(T ′′) are
isomorphic as symplectic G(ψ)/N -groups.

This is exactly the theorem needed in [5].

The first section of this paper gives most of the notation we use for groups and characters,
along with a few specialized remarks about centers and central products of characters. The second,
third, and fourth sections discuss, respectively, the triples in T, their linear reductions, and their
multilinear reductions. Some of the results about multilinear reductions at the end of the fourth
section are rather startling. For example, there is actually a canonical linear reducing chain from
any T ∈ T to any given multilinear reduction T ′ of T (see the remarks following Proposition 4.11).
Furthermore, Proposition 4.10 says that any such T ′ is also a multilinear reduction of any subtriple
T̃ of T such that T ′ is a subtriple of T̃ .

The fifth section below is a detailed study of covering triples and the related correspondences of
subgroups, characters, triples, linear and multilinear reductions, and linear limits. The above Main
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Theorem is proved as Theorem 6.4 in the sixth section, while Theorem A is proved as Theorem
7.15 in the seventh and final section of the paper.

1. Groups and characters

Unless otherwise specified, any group we use will be multiplicative. We write the indentity
element of a group G as 1 = 1G, the center of G as Z(G), the conjugate of an element σ ∈ G by
an element τ ∈ G as στ = τ−1στ , and the commutator of σ with τ as [σ, τ ] = σ−1τ−1στ . The
expressions H ⊆ G, H ≤ G or H E G mean that H is, respectively, a subset, a subgroup or a
normal subgroup of G. To say, in addition, that H is properly contained in G, we write H ⊂ G,
H < G or H / G, respectively. If H,K ≤ G, then the normalizer of H in K is denoted by either
NK(H) or N(H in K), and the centralizer of H in K by either CK(H) or C(H in K). We write
CoreK(H) for the K-core

(1.1) CoreK(H) =
⋂
τ∈K

Hτ

of H, the largest subgroup of H normalized by K. As usual, the “commutator” [H,K] is the
subgroup of G generated by all the commutators [σ, τ ] for σ ∈ H and τ ∈ K, and not the set
of those commutators. We always write the commutator subgroup of G as [G,G], reserving the
notation G′ for other uses.

For the rest of this section G will be a fixed, but arbitrary, group of finite order. We write
that order as |G|, and the index of any subgroup H ≤ G in G as [G : H]. By a character ψ of
G we always mean a non-zero complex character, considered as a function from G to the field C
of all complex numbers. Such a ψ determines G as its domain Dom(ψ) of definition. We write
〈ψ, φ〉 = 〈ψ, φ〉G for the usual inner product of two characters ψ, φ of G. We denote by Irr(G) the
finite set of all irreducible characters of G, and by 1̂ = 1̂G the trivial character, sending each σ ∈ G
to 1 = 1C. Then 1̂ is the identity element in the finite group Lin(G) of all linear characters of G,
i. e., of all homomorphisms of G into the multiplicative group C× of the complex field C. Of course,
Lin(G) is also a subset of Irr(G).

If H is a subgroup of G, then we write ψH for the character of H restricted from a given character
ψ of G, and φG for the character of G induced by a given character φ of H. Conjugation by any
τ ∈ G sends H to the conjugate subgroup Hτ = τ−1Hτ of G. It also sends any character φ of H
to the conjugate character φτ of Hτ , defined by

(1.2a) φτ (στ ) = φ(σ) ∈ C
for any σ ∈ H. In this way the group G acts by conjugation on the family of all characters of
subgroups of G. We denote by K(φ) the stabilizer

(1.2b) K(φ) = {τ ∈ K | φτ = φ }
of any character φ of H in any subgroup K ≤ G. Notice that K(φ) is contained in NK(H), since
any τ ∈ K fixing φ must normalize H = Dom(φ). More generally, we write K(φ1, φ2, . . . , φm) for
the common stabilizer

(1.2c) K(φ1, φ2, . . . , φm) = K(φ1) ∩K(φ2) ∩ · · · ∩K(φm)

in K of any characters φ1, φ2, . . . , φm of subgroups H1,H2, . . . ,Hm, respectively, of G.

We’re going to use several properties of the kernel and center of an arbitrary character ψ of G.
For the benefit of the reader (and perhaps of ourselves) we recall those properties here. We first
choose some complex matrix representation A : σ 7→ A(σ) of G affording the character ψ. Then A is
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a homomorphism of the group G into the group GLn(C) of all non-singular n×n complex matrices,
where n is the degree ψ(1) of ψ. The kernel Ker(ψ) of ψ is just the kernel of this homomorphism,
the normal subgroup of G consisting of all σ ∈ G such that A(σ) is the identity matrix I ∈ GLn(C).
The center Z(ψ) of ψ is the larger normal subgroup of G consisting of all σ ∈ G such that A(σ) is the
product ζ(ψ)(σ)I for some ζ(ψ)(σ) ∈ C×. The resulting function ζ(ψ) : Z(ψ) → C× is a G-invariant
linear character of Z(ψ) lying under ψ. We call ζ(ψ) the central character for ψ. Of course, the
objects Ker(ψ), Z(ψ) and ζ(ψ) depend only on ψ, and not on the choice of the representation A
affording ψ.

One obvious consequence of the above definitions is that ζ(ψ) and ψ have the same kernel

(1.3) Ker(ζ(ψ)) = Ker(ψ).

It follows that the factor group Z(ψ)/Ker(ψ) is cyclic as well as central in G/Ker(ψ). Another
immediate consequence is that

(1.4) ψ(στ) = ψ(τσ) = ψ(σ)ζ(ψ)(τ) ∈ C

for any σ ∈ G and τ ∈ Z(ψ). Since each matrix A(σ), for σ ∈ G, is diagonalizable, a third useful
consequence can be stated as

Proposition 1.5. A subgroup L of G is contained in Z(ψ) if and only if the restriction ψL is a
multiple ψ(1)λ of a single linear character λ ∈ Lin(L). In that case λ is the restriction (ζ(ψ))L of
ζ(ψ). Hence Kerλ ≤ Ker(ζ(ψ)) = Ker(ψ).

We now apply the above considerations when ψ is the character φG of G induced by some
character φ of some subgroup H ≤ G. We may choose the representation A affording ψ to be
induced from a matrix representation B of H affording φ. Then A sends an element σ ∈ G to
z times an identity matrix, for some z ∈ C×, if and only if right multiplication by σ sends each
coset Hτ , for τ ∈ G, onto itself Hτσ = Hτ , and B sends the corresponding element τστ−1 ∈ H
to z times an identity matrix. This just says that Z(φG) consists of all elements σ in the G-core
CoreG(Z(φ)) =

⋂
τ∈G Z(φ)τ of Z(φ) such that (ζ(φ))τ (σ) has the same value z for all τ ∈ G. Then

ζ(φG)(σ) is that common value z. From this discussion we conclude that Ker(φG) is the G-core

(1.6a) Ker(φG) = CoreG(Ker(φ)) =
⋂
τ∈G

Ker(φ)τ =
⋂
τ∈G

Ker(φτ ) ≤ Ker(φ)

of Ker(φ), that Z(φG) is a subgroup

(1.6b) Z(φG) ≤ Z(φ)

of Z(φ), and that ζ(φG) is the restriction

(1.6c) ζ(φG) = (ζ(φ))Z(φG)

of ζ(φ) ∈ Lin(Z(φ)) to that subgroup. Another consequence is

Proposition 1.7. The center Z(φG) is the largest normal subgroup L of G contained in H such
that φL is a multiple φ(1)λ of some G-invariant λ ∈ Lin(L). Any such λ is the restriction (ζ(φG))L
of ζ(φG) to the corresponding L. Hence Ker(λ) ≤ Ker(ζ(φG)) = Ker(φG) ≤ Ker(φ).

Proof. Since φG is a character of G, its center Z(φG) is a normal subgroup of G, and its central
character ζ(φG) ∈ Lin(Z(φG)) is G-invariant. We know from (1.6b,c) that ζ(φG) is the restriction of
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ζ(φ) to the subgroup Z(φG) of Z(φ) ≤ H. So

φZ(φG) = (φZ(φ))Z(φG) = (φ(1)ζ(φ))Z(φG) = φ(1)ζ(φG).

Suppose that L is any normal subgroup of G contained in H such that φ restricts to a multiple
φL = φ(1)λ of some G-invariant λ ∈ Lin(L). Then L = Lτ ≤ Hτ and (φτ )L = φ(1)λτ = φ(1)λ,
for any τ ∈ G. It follows that the induced character φG restricts to (φG)L = φG(1)λ on L. So
Proposition 1.5 for ψ = φG tells us that L ≤ Z(φG) and λ = (ζ(φG))L. This, (1.3), and (1.6a) imply
that Ker(λ) ≤ Ker(ζ(φG)) = Ker(φG) ≤ Ker(φ). Thus the present proposition holds. �

Let H be any subgroup of G. We say that an irreducible character φ ∈ Irr(H) lies under
an irreducible character ψ ∈ Irr(G) if φ is a constituent of the restriction ψH of ψ to H. By
the Frobenius Reciprocity Law this happens if and only if ψ lies over φ, in the sense that ψ
is an irreducible constituent of the induction φG of φ to G. We indicate that φ lies under ψ (or,
equivalently, that ψ lies over φ) by writing φ ≤ ψ. We denote by Irr(G | φ ) the set of all irreducible
characters of G lying over a fixed φ ∈ Irr(H), and by Irr(ψ | H ) the set of all φ ∈ Irr(H) lying
under a fixed ψ ∈ Irr(G). We write Lin(G | φ ) and Lin(ψ | H ) for the subsets

(1.8) Lin(G | φ ) = Lin(G) ∩ Irr(G | φ ) and Lin(ψ | H ) = Lin(H) ∩ Irr(ψ | H )

of all linear characters in those two sets. Notice that Lin(G | φ ) is empty unless φ is a linear
character, in which case Lin(G | φ ) consists of all extensions, if any, of φ to linear characters of G.

If K is a normal subgroup of G, then Clifford theory tells us that Irr(ψ | K ) is a single G-
conjugacy class in Irr(K), for any fixed ψ ∈ Irr(G). It also tells us that induction from G(θ) to G
is bijection of Irr(G(θ) | θ ) onto Irr(G | θ ), for any fixed θ ∈ Irr(K). If ψ ∈ Irr(G | θ ), then ψθ
will denote the unique character in Irr(G(θ) | θ ) from which ψ = (ψθ)G is induced. We call ψθ the
θ-Clifford correspondent of ψ. The Clifford correspondent ψθ can also be characterized as the only
irreducible character of G(θ) lying both over θ and under ψ. Furthermore, its restriction (ψθ)K to
K is a multiple mθ of θ, for some strictly positive integer m.

Suppose that a subgroup H ≤ G stabilizes a linear character κ of some subgroup K ≤ G.
Then H normalizes K, so that the product HK = KH is a subgroup of G. Furthermore, κ
restricts to an H-invariant linear character κH∩K of H ∩K E H. Clifford theory tells us that any
φ ∈ Irr(H | κH∩K ) restricts to a multiple φ(1)κH∩K of κH∩K on H ∩K. In view of Proposition
1.5, it follows that any complex matrix representation A of H affording φ sends any σ ∈ H ∩K to
κ(σ)I. Because κ ∈ Lin(K) is H-invariant, we conclude that the map

(1.9a) στ 7→ κ(τ)A(σ),

for σ ∈ H and τ ∈ K, is a well defined irreducible representation of HK. We denote by φ ∗ κ the
irreducible character of HK afforded by this representation. Then

(1.9b) (φ ∗ κ)(στ) = φ(σ)κ(τ) ∈ C,

for any σ ∈ H and τ ∈ K.

When κ is faithful, the subgroup K is cyclic and central in HK, which is the central product
H ∗K of H and K with H ∩K amalgamated. In that case φ ∗ κ is the central product of the two
characters φ and κ. The case of general κ can be reduced to that of faithful κ by passing to the
factor group HK/Ker(κ). Like central products, the product φ ∗ κ satisfies

Proposition 1.10. If K ≤ G and H ≤ G(κ), for some κ ∈ Lin(K), then the map φ 7→ φ ∗ κ is a
bijection of Irr(H | κH∩K ) onto Irr(HK | κ ). The inverse bijection is restriction from HK to H.
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Proof. It is clear from (1.9b) that φ ∗ κ, for any φ ∈ Irr(H | κH∩K ), restricts to φ on H and to
φ(1)κ on K. So φ ∗ κ lies in Irr(HK | κ ) and determines φ.

On the other hand, any ψ ∈ Irr(HK | κ ) restricts to a multiple ψ(1)κ of the HK-invariant
linear character κ on K. In view of (1.4) and Proposition 1.5, this implies that ψ restricts to some
ψH ∈ Irr(H | κH∩K ) such that ψH ∗ κ = ψ. Thus the proposition holds. �

2. Triples

Recall from the introduction that T is the family of all triples T = (G,N,ψ) such that G is a
finite group, N is a normal subgroup of G, and ψ is an irreducible character of N . We call G, N ,
and ψ the ambient group, normal subgroup, and character, respectively, in the triple T . As in the
introduction, we define the kernel Ker(T ) of T , the center Z(T ) of T , and the central character
ζ(T ) for T to be the corresponding objects

Ker(T ) = Ker(ψG) = CoreG(Ker(ψ)) ≤ Ker(ψ) ≤ N,(2.1a)

Z(T ) = Z(ψG) ≤ Z(ψ) ≤ N, and(2.1b)

ζ(T ) = ζ(ψG) = (ζ(ψ))Z(T )(2.1c)

for the character ψG of G induced by ψ ∈ Irr(N). So both Ker(T ) and Z(T ) are normal subgroups
of G contained in N , while the linear character ζ(T ) of Z(T ) is G-invariant with the same kernel

(2.2) Ker(ζ(T )) = Ker(ζ(ψG)) = Ker(ψG) = Ker(T )

as T . Hence the factor group Z(T )/Ker(T ) is cyclic and central in G/Ker(T ).

For the rest of this paper we fix a an arbitrary triple T = (G,N,ψ) ∈ T, as well as the objects
G, N and ψ in T . A different characterization of Z(T ) is given in

Proposition 2.3. The center Z(T ) is the largest normal subgroup L of G contained in N such
that ψ ∈ Irr(N) lies over some G-invariant linear character λ of L. Any such λ is the restriction
(ζ(T ))L of ζ(T ) to the corresponding L. Furthermore, the restriction ψL of ψ to L is a multiple
ψ(1)λ of λ. Hence Ker(λ) ≤ Ker(ζ(T )) = Ker(T ) ≤ Ker(ψ).

Proof. If λ is a G-invariant linear character of some normal subgroup L E G contained in N , then
Clifford theory for L E N implies that ψ ∈ Irr(N) lies over λ if and only if ψL = ψ(1)λ. The
proposition follows immediately from this, (2.1), and Proposition 1.7. �

We shall often encounter a situation where L and M are normal subgroups of G, contained in
N , such that [L,M ] ≤ Z(T ). In symbols, this just says that

(2.4a) L,M E G, L,M ≤ N, and [L,M ] ≤ Z(T ).

When this happens we may compose commutation with the linear character ζ(T ) of Z(T ) to obtain
a function c = cT from the cartesian product L×M to C×, sending (ρ, σ) ∈ L×M to

(2.4b) c(ρ, σ) = ζ(T )([ρ, σ]) ∈ C×,

for any ρ ∈ L and σ ∈M . The commutator identities [πρ, σ] = [π, σ]ρ[ρ, σ] and [ρ, στ ] = [ρ, τ ][ρ, σ]τ ,
together with the G-invariance of the linear character ζ(T ), imply that c is bilinear, in the sense
that

(2.4c) c(πρ, σ) = c(π, σ)c(ρ, σ) ∈ C× and c(ρ, στ) = c(ρ, σ)c(ρ, τ) ∈ C×,
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for any π, ρ ∈ L and σ, τ ∈ M . The G-invariance of ζ(T ) also implies that c is G-invariant, in the
sense that

(2.4d) c(ρτ , στ ) = c(ρ, σ) ∈ C×,

for all ρ ∈ L, σ ∈M and τ ∈ G.

Proposition 2.5. In the above situation both c(Z(T ) ∩ L,M) and c(L,Z(T ) ∩M) are 1. Hence
c induces a G-invariant bilinear function c̄ from (LZ(T )/Z(T ))× (M Z(T )/Z(T )) to C×, sending
the cosets ρZ(T ) ∈ LZ(T )/Z(T ) and σ Z(T ) ∈M Z(T )/Z(T ) to

(2.6) c̄(ρZ(T ), σ Z(T )) = c(ρ, σ) = ζ(T )([ρ, σ]) ∈ C×,

for any ρ ∈ L and σ ∈M .

Proof. If ρ ∈ Z(T ) ∩ L and σ ∈ M , then [ρ, σ] = ρ−1ρσ,where both ρ−1 and ρσ lie in Z(T ) E G.
Since ζ(T ) ∈ Lin(Z(T )) is G-invariant, we have

c(ρ, σ) = ζ(T )([ρ, σ]) = ζ(T )(ρ−1ρσ) = ζ(T )(ρ−1)ζ(T )(ρσ) = ζ(T )(ρ)−1ζ(T )(ρ) = 1.

So c(Z(T ) ∩ L,M) = 1. The proof that c(L,Z(T ) ∩M) = 1 is similar. Thus the first statement
of the proposition holds. The remaining statement follows immediately from the first one and
(2.4c,d). �

As in the introduction, we define a subtriple of T to be any triple T ′ = (G′, N ′, ψ′), such that

(2.7) G′ ≤ G, N ′ = G′ ∩N, and ψ′ ∈ Irr(ψ | N ′ ).

Of course, any such T ′ also lies in T. We denote by ST(T ) the finite family of all subtriples of T .
We often write T ′ ≤ T , instead of T ′ ∈ ST(T ), to say that T ′ is a subtriple of T .

For the rest of this section we fix the above subtriple T ′ = (G′, N ′, ψ′) of T . Since N ′ is the
intersection G′ ∩ N of G′ ≤ G with N E G, there is a natural monomorphism eTT ′ of the factor
group G′/N ′ into G/N , sending the coset σN ′ ∈ G′/N ′ to the coset

(2.8) eTT ′(σN
′) = σN ∈ G/N,

for any σ ∈ G′. We call eTT ′ the natural embedding of G′/N ′ in G/N .

It is obvious from the above definition that any subtriple T ′′ = (G′′, N ′′, ψ′′) of T ′ is also a
subtriple of T . Furthermore, the natural embedding of G′′/N ′′ into G/N is the composition

(2.9) eTT ′′ = eTT ′ ◦ eT
′

T ′′ : G
′′/N ′′ → G/N

of that of G′/N ′ in G/N with that of G′′/N ′′ in G′/N ′.

The center and central character of the subtriple T ′ ≤ T are related to those of T by

Proposition 2.10. The intersection Z = G′ ∩ Z(T ) is a normal subgroup of G′ contained in N ′.
The restriction ζ = (ζ(T ))Z is a G′-invariant linear character of Z lying under ψ′ ∈ Irr(N ′). Hence
Z is the intersection Z(T ′) ∩ Z(T ), and the restriction (ζ(T ′))Z is also equal to ζ.

Proof. Because Z(T ) is a normal subgroup of G contained in N , its intersection with G′ ≤ G is a
normal subgroup Z of G′ contained in N ′ = G′ ∩N . The G-invariant linear character ζ(T ) of Z(T )
restricts to a G′-invariant linear character ζ = (ζ(T ))Z of Z. We know from Proposition 2.3 that
ψ ∈ Irr(N) restricts to a multiple ψ(1)ζ(T ) of ζ(T ). So its restriction ψN ′ to N ′ restricts to the
same multiple ψ(1)ζ of ζ. It follows that the irreducible constituent ψ′ of ψN ′ also restricts to a
multiple ψ′(1)ζ of the linear character ζ. Now all the hypotheses of Proposition 2.3 hold with T ′,
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Z, and ζ in place of T , L, and λ, respectively. That proposition tells us that Z ≤ Z(T ′), and that
(ζ(T ′))Z = ζ. Thus the present proposition holds. �

Conjugation by any τ ∈ G(ψ) leaves invariant both N E G and ψ ∈ Irr(N). So it sends
N ′ = G′ ∩N to (N ′)τ = (G′)τ ∩N , and ψ′ ∈ Irr(ψ | N ′ ) to (ψ′)τ ∈ Irr(ψ | (N ′)τ ). Hence it sends
the subtriple T ′ = (G′, N ′, ψ′) of T to the conjugate subtriple

(2.11) (T ′)τ = ((G′)τ , (N ′)τ , (ψ′)τ ) ≤ T.

Evidently this conjugation is an action of the group G(ψ) on the set ST(T ) of all subtriples of T .

Conjugation by τ sends the character (ψ′)G
′

of G′ induced by ψ′ to the character ((ψ′)τ )(G
′)τ

of (G′)τ induced by (ψ′)τ . It follows that it sends the kernel Ker(T ′), the center Z(T ′), and the
central character ζ(T ′) of (ψ′)G

′
to the kernel

(2.12a) Ker((T ′)τ ) = Ker(T ′)τ ,

the center

(2.12b) Z((T ′)τ ) = Z(T ′)τ ,

and the central character

(2.12c) ζ((T ′)τ ) = (ζ(T ′))τ ,

respectively, of ((ψ′)τ )(G
′)τ

. Conjugation by τ also induces an isomorphism of the factor group
G′/N ′ onto (G′)τ/(N ′)τ , sending any coset σ̄ ∈ G′/N ′ to the coset σ̄τ ∈ (G′)τ/(N ′)τ . The natural
embeddings (2.8) of G′/N ′ and (G′)τ/(N ′)τ in G/N carry this isomorphism into conjugation by
τN ∈ G/N , in the sense that

(2.12d) eT(T ′)τ (σ̄τ ) = eTT ′(σ̄)τN ∈ G/N,

for any σ̄ ∈ G′/N ′. When τ lies in the subgroup N of G(ψ), its image τN = 1G/N centralizes G/N .
In that case conjugation by τ carries eTT ′ to eT(T ′)τ .

3. Linear reductions

Suppose that L and λ satisfy

(3.1) L E G, L ≤ N, and λ ∈ Lin(ψ | L ).

Then the stabilizer G(λ) of λ in G is a subgroup of G, the stabilizerN(λ) of λ inN is the intersection
G(λ) ∩ N , and the λ-Clifford correspondent ψλ of ψ ∈ Irr(N | λ ) is an irreducible character of
N(λ) lying under ψ. Hence

(3.2) T (λ) = (G(λ), N(λ), ψλ)

is a subtriple of T . We call T (λ) the λ-linear reduction of T . Notice that

(3.3) L ≤ Z(T (λ)) and λ = (ζ(T (λ)))L.

This follows immediately from Proposition 2.3 for T (λ), since L is a normal subgroup of G(λ)
contained in N(λ), and λ is a G(λ)-invariant linear character of L lying under ψλ.

We say that an arbitrary subtriple T ′ of T is a linear reduction of T if it is equal to T (λ) for
some L and λ satisfying (3.1). We denote by LR(T ) the finite family of all linear reductions of T .
Note that T lies in LR(T ), since we may choose L = Z(T ) and λ = ζ(T ) in (3.1), in which case
T (λ) is just T .
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A different way of looking at the conditions (3.1) is given in

Proposition 3.4. If L E G and L ≤ N , then Lin(ψ | L ) is non-empty if and only if [L,L] ≤
Ker(T ). This happens if and ony if LZ(T )/Z(T ) is an abelian normal subgroup of G/Z(T ) con-
tained in N/Z(T ).

Proof. The subgroup [L,L], like L, is normal in G and contained in N . If [L,L] ≤ Ker(T ), then
[L,L] ≤ Ker(ψ) by (2.1a). So any character of L lying under ψ is linear. Hence Lin(ψ | L ) is the
non-empty set Irr(ψ | L ) when [L,L] ≤ Ker(T ).

Conversely, suppose we have some character λ ∈ Lin(ψ | L ). Then [L,L] ≤ Ker(λ). Because
[L,L] is normal in G, it follows that [L,L] ≤ CoreG(Ker(λ)) = Ker(λG). But Ker(λG) ≤ Ker(ψG) =
Ker(T ), since ψ ∈ Irr(N | λ ) is an irreducible constituent of λN . Hence [L,L] ≤ Ker(T ) when
Lin(ψ | L ) is not empty, and the first statement of the proposition is proved. The remaining
statement is an immediate consequence of the first one. �

Assume that L and λ satisfy (3.1). Since both L and Z(T ) are normal subgroups of G contained
in N , so are LZ(T ) and L∩Z(T ). The restriction λL∩Z(T ) ∈ Lin(L∩Z(T )) lies under λ ≤ ψ. Since
ψZ(T ) = ψ(1)ζ(T ) by Proposition 2.3, this implies that λL∩Z(T ) = (ζ(T ))L∩Z(T ). The G-invariant
character ζ(T ) is also L-invariant. So we may apply (1.9), with H = L, K = Z(T ), φ = λ, and
κ = ζ(T ), to obtain a linear character λ ∗ ζ(T ) of LZ(T ) with the value

(3.5) (λ ∗ ζ(T ))(στ) = λ(σ)ζ(T )(τ) ∈ C×,

for any σ ∈ L and τ ∈ Z(T ). Evidently λ ∗ ζ(T ) extends λ. So its domain LZ(T ) is a subgroup
of G(λ). In particular, Z(T ) ≤ LZ(T ) is contained in the ambient group G(λ) of T (λ) ≤ T . By
Proposition 2.10 this implies that

(3.6) Z(T ) ≤ Z(T (λ)) and ζ(T ) = (ζ(T (λ)))Z(T ).

Another consequence of the existence of λ ∗ ζ(T ) is

Proposition 3.7. Any linear reduction of T has the form T (κ), for some K and κ satisfying

(3.8) K E G, Z(T ) ≤ K ≤ N, and κ ∈ Lin(ψ | K ).

Furthermore, the restriction κZ(T ) is ζ(T ), for any such K and κ.

Proof. By definition our linear reduction is T (λ) for some L and λ satisfying (3.1). As we saw
above, the product K = LZ(T ) is a normal subgroup of G contained in N . Because ψ ∈ Irr(N)
lies over λ ∈ Lin(L), and restricts to ψ(1)ζ(T ) on Z(T ), it lies over κ = λ ∗ ζ(T ) ∈ Lin(K). It follows
that K and κ satisfy (3.8). In particular, they satisfy the equivalent of (3.1), so that the linear
reduction T (κ) of T is defined.

Since G normalizes L = Dom(λ), and stabilizes ζ(T ), it follows from (3.5) that G(κ) = G(λ ∗
ζ(T )) = G(λ). Similarly, N(κ) = N(λ). So the irreducible character ψκ of N(κ) lying under ψ and
over κ = λ ∗ ζ(T ) must equal the unique irreducible character ψλ of N(λ) lying under ψ and over
λ ≤ λ ∗ ζ(T ). Therefore T (κ) = (G(κ), N(κ), ψκ) is equal to T (λ) = (G(λ), N(λ), ψλ), and the first
statement in the proposition is proved.

Now let K and κ be any objects satisfying (3.8). The subgroup K of G(κ) is contained in N(κ),
and its G(κ)-invariant linear character κ lies under ψκ. So Proposition 2.3, for the triple T (κ), tells
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us that K ≤ Z(T (κ)) and κ = (ζ(T (κ)))K . Since Z(T ) ≤ K by hypothesis, this and (3.6), with κ in
place of λ, imply that

κZ(T ) = ((ζ(T (κ)))K)Z(T ) = (ζ(T (κ)))Z(T ) = ζ(T ).

Hence the remaining statement in the proposition holds. �

We say that a linear reduction of T is proper if it is not equal to T . We say that T is linearly
reducible if it has some proper linear reduction, and linearly irreducible otherwise.

Proposition 3.9. If L and λ satisfy (3.1), then T (λ) is a proper linear reduction of T if and
only if G(λ) < G. This happens if and only if Z(T ) does not contain L. Thus T is linearly
irreducible if and only if Z(T ) contains every normal subgroup L of G satisfying both L ≤ N and
[L,L] ≤ Ker(T ).

Proof. Suppose that G(λ) = G. Then N(λ) = G(λ)∩N = N , and ψλ must be the unique character
ψ ∈ Irr(ψ | N ). Hence T (λ) = T in this case. Since T (λ) 6= T when G(λ) < G, this proves the
first statement of the proposition.

By definition L is a normal subgroup of G contained in N , and λ is a linear character of L lying
under ψ ∈ Irr(N). Proposition 2.3 implies that G stabilizes λ if and only if L is a subgroup of
Z(T ). The second statement of the proposition follows from this and the first statement.

The triple L is linearly irreducible if and only if it is equal to T (λ) whenever L and λ satisfy
(3.1). By the second statement of the proposition this happens if and only if Z(T ) contains L,
for all such L and λ. In view of Proposition 3.4 this is equivalent to the final statement of the
proposition. �

We can restate the above proposition in terms of factor groups modulo Ker(T ).

Proposition 3.10. The arbitrary triple T = (G,N,ψ) ∈ T is linearly irreducible if and only
if the cylic central subgroup Z(T )/Ker(T ) of G/Ker(T ) is the largest abelian normal subgroup
of G/Ker(T ) contained in N/Ker(T ). In that case Z(T )/Ker(T ) is the center Z(N/Ker(T )) of
N/Ker(T ).

Proof. As we noted after (2.2), the subgroup Z(T )/Ker(T ) is always cyclic and central inG/Ker(T ).
It is also contained in N/Ker(T ) by (2.1b). The normal subgroups L̄ of G/Ker(T ) contained in
N/Ker(T ) are just the images L̄ = LKer(T )/Ker(T ) of the normal subgroups L of G contained
in N . Clearly L̄ is abelian if and only if any corresponding L satisfies [L,L] ≤ Ker(T ). The
first statement of the proposition follows from these remarks and Proposition 3.9. The remaining
statement is an immediate consequence of the first one. �

An elementary exercise in Clifford theory gives us

Proposition 3.11. If L and λ satisfy (3.1), and if κ is the restriction λK of λ ∈ Lin(L) to
some normal subgroup K of G contained in L, then the κ-linear reduction T (κ) of T is defined.
Furthermore, the λ-linear reduction T (κ, λ) = [T (κ)](λ) of T (κ) is defined and equal to T (λ).

Proof. The normal subgroup K of G is contained in N , since it is contained in L ≤ N . Its linear
character κ = λK lies under ψ ∈ Irr(N), because λ does. Hence (3.1) holds with K and κ in place
of L and λ, respectively. So the κ-linear reduction T (κ) = (G(κ), N(κ), ψκ) is defined.
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Clearly L fixes the restriction κ of its character λ to its normal subgroup K. Hence L is a
normal subgroup of G(κ) contained in N(κ). Because λ extends κ, and lies under ψ, it lies under
the unique irreducible constituent ψκ of ψN(κ) lying over κ. Thus (3.1) holds with T (κ) in place of
T . Hence the λ-linear reduction T (κ, λ) = [T (κ)](λ) = (G(κ, λ), N(κ, λ), (ψκ)λ) is defined.

Since K is a normal subgroup of G, any element of G fixing λ must fix the restriction κ = λK .
Hence G(κ, λ) = G(λ). It follows that N(κ, λ) = G(κ, λ) ∩N = G(λ) ∩N = N(λ). So (ψκ)λ is an
irreducible character of N(λ) lying over λ and under ψκ ≤ ψ. Thus it must be the unique irreducible
character ψλ of N(λ) lying over λ and under ψ. Therefore T (κ, λ) is T (λ) = (G(λ), N(λ), ψλ), and
the proposition is proved. �

4. Multilinear reductions

As in the introduction, we say that that a subtriple T ′ ≤ T is a multilinear reduction of T if
there is some finite chain T0, T1, . . . , Tn of subtriples Ti ≤ T , starting with T0 = T and ending with
Tn = T ′, such that each Ti, for i = 1, 2, . . . , n, is a linear reduction of its predecessor Ti−1. In that
case we call T0, T1, . . . , Tn a linear reducing chain from T to T ′. We write MLR(T ) for the finite
family of all multilinear reductions of T . Of course, the set LR(T ) of all linear reductions of T is
a subset of MLR(T ). In particular, T ∈ LR(T ) lies in MLR(T ). It follows immediately from (3.6)
that

(4.1) Z(T ) ≤ Z(T ′) and ζ(T ) = (ζ(T ′))Z(T )

for any T ′ ∈ MLR(T ).

Another concept defined in the introduction is that of a linear limit of T . This is any multilinear
reduction T ′ of T such that T ′ is linearly irreducible. We denote by LL(T ) the family of all
linear limits of T . Evidently LL(T ) is a non-empty subset of MLR(T ). Furthermore, LL(T ′) is a
non-empty subset of LL(T ), for any T ′ ∈ MLR(T ).

Let T ′ = (G′, N ′, ψ′) be an arbitrary subtriple of T = (G,N,ψ). Any linear reduction of T ′ has
the form T ′(λ′), for some normal subgroup L′ of G′ contained in N ′, and some linear character λ′

of L′ lying under ψ′ ∈ Irr(N ′). Conjugation by any τ ∈ G(ψ) sends L′ to some normal subgroup
(L′)τ of (G′)τ contained in (N ′)τ . It also sends λ′ to some linear character (λ′)τ of (L′)τ lying
under (ψ′)τ ∈ Irr((N ′)τ ). Since (G′)τ ((λ′)τ ) = G′(λ′)τ and ((ψ′)τ )(λ′)τ = ((ψ′)λ′)τ , it follows from
(2.11) and (3.2) that (T ′)τ ((λ′)τ ) is the conjugate subtriple

(4.2) (T ′)τ ((λ′)τ ) = T ′(λ′)τ

of T .

Since the conjugate T τ = (Gτ , N τ , ψτ ) is equal to T = (G,N,ψ), for any τ ∈ G(ψ), the above
equation, together with the definitions of linear reductions, multilinear reductions, and linear limits,
implies immediately that

Proposition 4.3. If T ′ ∈ ST(T ) and τ ∈ G(ψ), then conjugation by τ sends the subsets LR(T ′),
MLR(T ′) and LL(T ′) of ST(T ) onto

LR(T ′)τ = LR((T ′)τ ), MLR(T ′)τ = MLR((T ′)τ ) and LL(T ′)τ = LL((T ′)τ ),

respectively. In particular, LR(T ), MLR(T ) and LL(T ) are G(ψ)-invariant subsets of ST(T ).

A little exercise in Clifford theory will give us
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Proposition 4.4. If T ′ = (G′, N ′, ψ′) is a multilinear reduction of T (in particular, if T ′ is a
linear limit of T ), then G′(ψ′)N = G(ψ). Hence the natural embedding eTT ′ of G′/N ′ into G/N
sends G′(ψ′)/N ′ ≤ G′/N ′ isomorphically onto G(ψ)/N ≤ G/N .

Proof. Notice that the two statements in the proposition are equivalent to each other, since the
monomorphism eTT ′ of G′/N ′ into G/N in (2.8) sends G(ψ′)/N ′ onto G(ψ′)N/N . Furthermore, the
definition of multilinear reductions as repeated linear reductions, together with the transitivity (2.9)
of natural embeddings, implies that the proposition will hold in general if it holds in the special
case where T ′ is a linear reduction of T . So all we have to prove is the equality G′(ψ′)N = G(ψ)
in that case.

Since T ′ is a linear reduction of T , there exist some L and λ satisfying (3.1) such that T ′ = T (λ).
Then G′ is G(λ), and ψ′ is ψλ. It follows that

G′(ψ′) = G′(ψλ) = G(λ, ψλ).

By definition the Clifford correspondent ψλ induces the character ψ of N . Since the subgroup
G(λ, ψλ) of G fixes ψλ and normalizes N E G, it fixes ψ = (ψλ)N . Hence G(λ, ψλ) ≤ G(λ, ψ). The
opposite inclusion comes from the observation that G(λ, ψ) fixes both λ and ψ, and therefore fixes
the unique λ-Clifford correspondent ψλ of ψ. Thus we have

G′(ψ′) = G(λ, ψλ) = G(λ, ψ).

Since L is a normal subgroup of G, conjugation by any element τ ∈ G(ψ) leaves invariant the set
Irr(ψ | L ) of all irreducible characters of L lying under ψ ∈ Irr(N). Clifford theory for L E N tells
us that Irr(ψ | L ) is a single N -conjugacy class. Because λ lies in Irr(ψ | L ) by (3.1), it follows
that G(ψ) is the product G′(ψ′)N of the stabilizer G′(ψ′) = G(λ, ψ) of λ in G(ψ) with N . As we
saw above, this is enough to prove the proposition. �

Any multilinear reduction induces several correspondences of characters.

Proposition 4.5. If T ′ = (G′, N ′, ψ′) is a multilinear reduction of T , and if H is a subgroup of
G containing N , then H ′ = G′ ∩H is a subgroup of G′ containing N ′. Induction from H ′ to H is
a bijection of Irr(H ′ | ψ′ ) onto Irr(H | ψ ). The inverse bijection sends any θ ∈ Irr(H | ψ ) to the
unique character θT ′ in Irr(H ′ | ζ(T ′) ) lying under θ.

Proof. The subtriple T ′ of T satisfies N ′ = G′ ∩N by (2.7). The first statement of the proposition
is an immediate consequence of this.

We first prove the remaining statements of the proposition when T ′ is a linear reduction of T .
In this case there exist some L and λ satisfying (3.1) such that T ′ = T (λ) = (G(λ), N(λ), ψλ).
It follows that H ′ = G(λ) ∩ H = H(λ). So Clifford theory for L E H and λ ∈ Irr(L) tells us
that induction is a bijection of Irr(H ′ | λ ) onto Irr(H | λ ), and that the inverse bijection sends
any θ ∈ Irr(H | λ ) to the unique θλ ∈ Irr(H ′ | λ ) lying under θ. Since L ≤ N ′ ≤ H ′, while
ψ′ = ψλ ∈ Irr(N ′) lies over λ and induces ψ ∈ Irr(N), this bijection sends the subset Irr(H ′ | ψ′ )
of Irr(H ′ | λ ) into Irr(H | ψ ) ⊆ Irr(H | λ ).

We know from (3.3) for T ′ = T (λ) that λ is the restriction of ζ(T ′) ∈ Lin(Z(T ′)) to L ≤ Z(T ′). So
any character θ′ ∈ Irr(H ′ | ζ(T ′) ) lying under θ lies over λ, and thus must be θλ by Clifford theory.
Because θ lies over ψ ∈ Irr(N | λ ), its Clifford correspondent θ′ = θλ lies over ψ′ = ψλ. Hence θ′

must be the unique element of Irr(H ′ | ψ′ ) inducing θ. Thus the remaining two statements of the
proposition hold when T ′ is a linear reduction of T .



DADE AND LOUKAKI, LINEAR LIMITS 13

A general T ′ is the last member T ′ = Tn in some linear reducing chain T0 = T, T1, . . . , Tn. Let
Ti = (Gi, Ni, ψi) and Hi = Gi ∩ H, for i = 0, 1, . . . , n. Since Ti is a linear reduction of Ti−1, for
each i = 1, 2, . . . , n, the above arguments tell us that induction is a bijection of Irr(Hi | ψi ) onto
Irr(Hi−1 | ψi−1 ), and that the inverse bijection sends any θi−1 ∈ Irr(Hi−1 | ψi−1 ) to the unique
θi ∈ Irr(Hi | ζ(Ti) ) lying under θi−1. Composing these inductive bijections we see that induction
is a bijection of Irr(H ′ | ψ′ ) = Irr(Hn | ψn ) onto Irr(H | ψ ) = Irr(H0 | ψ0 ). Furthermore, the
inverse bijection sends any θ ∈ Irr(H | ψ ) to some θT ′ ∈ Irr(H ′ | ζ(T ′) ) lying under θ.

To complete the proof of the proposition we must show that any θ′ ∈ Irr(H ′ | ζ(T ′) ) lying under
θ belongs to Irr(H ′ | ψ′ ) and induces θ. Since H ′ = Hn ≤ Hn−1 ≤ · · · ≤ H0 = H, we may choose
characters θi ∈ Irr(Hi), for i = 0, 1, . . . , n, such that θ′ = θn ≤ θn−1 ≤ · · · ≤ θ0 = θ. It follows from
(3.6) that ζ(T ) = ζ(T0) ≤ ζ(T1) ≤ · · · ≤ ζ(Tn) = ζ(T ′) ≤ θ′. Hence θi lies in Irr(Hi | ζ(Ti) ) and under
θi−1, for each i = 1, 2, . . . , n. By induction on i this implies that θi lies in Irr(Hi | ψi ) and induces
θi−1, for each i = 1, 2, . . . , n. Hence θ′ = θn lies in Irr(H ′ | ψ′ ) = Irr(Hn | ψn ) and induces θ = θ0.
As we noted above, this completes the proof of the proposition. �

We call the character θT ′ ∈ Irr(H ′ | ψ′ ) defined in the preceding proposition the T ′-correspondent
of a given character θ ∈ Irr(H | ψ ).

Suppose that T ′ is a proper multilinear reduction of T , i. e., a multilinear reduction not equal
to T . Then we may fix some L and λ satisfying (3.1) such that T (λ) is a proper linear reduction
of T , and T ′ is a multilinear reduction of T (λ). In symbols, this says that

(4.6) T (λ) < T and T ′ ∈ MLR(T (λ)).

We know from (3.3) that L ≤ Z(T (λ)) and λ = (ζ(T (λ)))L. Since T ′ is a multilinear reduction of
T (λ), we know from (4.1) that Z(T (λ)) ≤ Z(T ′) and ζ(T (λ)) = (ζ(T ′))Z(T (λ)). Hence

(4.7) L ≤ Z(T ′) and λ = (ζ(T ′))L.

The multilinear reduction T ′ is actually determined by its central character ζ(T ′).

Proposition 4.8. The ambient group G′ in any multilinear reduction T ′ = (G′, N ′, ψ′) of T =
(G,N,ψ) is the stabilizer G(ζ(T ′)) of the central character ζ(T ′) for T ′. The normal subgroup N ′ in
T ′ is N(ζ(T ′)). The character ψ′ in T ′ is the unique irreducible character of N ′ lying both under
ψ ∈ Irr(N) and over ζ(T ′). In this way T and ζ(T ′) determine T ′ completely.

Proof. We prove this by induction on the finite index [G : G′] of G′ in G. If this index is 1, then
G′ = G and T ′ = T . In this case the proposition is trivial, since ψ′ = ψ lies over ζ(T ′) = ζ(T ). So
we may assume that [G : G′] > 1, and that the proposition holds for all strictly smaller values of
this index.

Now we may fix L and λ satisfying (3.1) such that (4.6) holds. The stabilizer G(ζ(T ′)) of ζ(T ′) in
G normalizes L E G and fixes λ = (ζ(T ′))L. Hence it is contained in G(λ). So G(ζ(T ′)) is equal to
[G(λ)](ζ(T ′)). Since T ′ is a multilinear reduction of T (λ), and G(λ) < G, the induction hypothesis
tells us that [G(λ)](ζ(T ′)) = G′. Thus G′ is G(ζ(T ′)). It follows that N ′ = G′ ∩N is N(ζ(T ′)).

We may choose the subgroupH in Proposition 4.5 to beN . ThenH ′ = G′∩H = N ′. Furthermore
ψ and ψ′ are the only characters in Irr(N | ψ ) and Irr(N ′ | ψ′ ), respectively. So that proposition
tells us that ψ′ is the unique character in Irr(N ′) lying both over ζ(T ′) and under ψ. This completes
the proof of the proposition. �
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We are not really going to need the rest of the results in this section, but they are too remarkable
to omit. We start with

Lemma 4.9. Suppose that T ′ = (G′, N ′, ψ′) is a subtriple of T = (G,N,ψ), that L is a normal
subgroup of G contained in Z(T ′), and that λ is the restriction of ζ(T ′) to L. Then the linear
reduction T (λ) is defined, and has T ′ as a subtriple.

Proof. The normal subgroup N ′ in T ′ ≤ T is contained in the normal subgroup N in T . So
L ≤ Z(T ′) ≤ N ′ ≤ N . The character ψ′ in T ′ ≤ T lies under the character ψ in T . Hence
λ ≤ ζ(T ′) ≤ ψ′ ≤ ψ. Thus L and λ satisfy the conditions (3.1), and the linear reduction T (λ) =
(G(λ), N(λ), ψλ) is defined.

The ambient group G′ in T ′ fixes the central character ζ(T ′) of that subtriple. Furthermore,
G′ ≤ G normalizes L E G. So G′ fixes the restriction λ of ζ(T ′) to L. Hence G′ ≤ G(λ). It follows
that N ′ = G′ ∩ N = G′ ∩ G(λ) ∩ N = G′ ∩ N(λ). Thus N ′ ≤ N(λ) ≤ N . Since the character
ψ′ ∈ Irr(N ′) lies under ψ ∈ Irr(N), there is some character φ ∈ Irr(N(λ)) such that ψ′ ≤ φ ≤ ψ.
Then φ lies over λ ≤ ψ′, and so must be the λ-Clifford correspondent ψλ of ψ. Therefore T ′ is a
subtriple of T (λ), and the lemma is proved. �

One striking consequence of the above lemma is

Proposition 4.10. If T ′ is a multilinear reduction of T , and is also a subtriple of some subtriple
T̃ ≤ T , then T ′ is a multilinear reduction of T̃ .

Proof. As usual, we set T = (G,N,ψ), T ′ = (G′, N ′, ψ′) and T̃ = (G̃, Ñ , ψ̃). We shall prove the
proposition by induction on the finite index [G : G′]. If [G : G′] = 1, then G′ = G and T ′ = T .
Since T ′ ≤ T̃ ≤ T , this forces T̃ to equal T . So the proposition holds trivially when [G : G′] = 1.

From now on we assume that [G : G′] > 1, and that the proposition holds for all strictly smaller
values of [G : G′]. We may choose L and λ satisfying (3.1) such that (4.6) holds. We know
from (4.7) that λ is the restriction of ζ(T ′) ∈ Lin(Z(T ′)) to L ≤ Z(T ′). Since T ′ ≤ T̃ , we have
L ≤ N ′ ≤ Ñ and λ ≤ ψ′ ≤ ψ̃. Furthermore, L E G is normal in G̃ ≤ G. Thus the linear reduction
T̃ (λ) = (G̃(λ), Ñ(λ), ψ̃λ) is defined. Lemma 4.9, with T̃ in place of T , tells us that T ′ is a subtriple
of T̃ (λ). Evidently G̃(λ) is a subgroup of G(λ). Hence Ñ(λ) is a subgroup of N(λ). The λ-Clifford
correspondent ψ̃λ of ψ̃ ≤ ψ must lie under the λ-Clifford correspondent ψλ of ψ. Therefore T̃ (λ)
is a subtriple of T (λ). Now all the hypotheses of the proposition are satisfied with T̃ (λ) and T (λ)
in place of T̃ and T , respectively. Since [G(λ) : G′] < [G : G′], we know by induction that T ′ is a
multilinear reduction of T̃ (λ). Therefore T ′ is a multilinear reduction of T̃ , and the proposition is
proved. �

When T ′ is a proper multilinear reduction of T there is a considerable choice of L and λ satisfying
(3.1) and (4.6). Surprisingly, a canonical choice is possible.

Proposition 4.11. Suppose that a multilinear reduction T ′ of T = (G,N,ψ) is not equal to T .
Let K be the G-core of Z(T ′), and κ be the restriction to K of ζ(T ′) ∈ Lin(Z(T ′)). Then the linear
reduction T (κ) of T is defined and proper, and has T ′ as a multilinear reduction.

Proof. Set T ′ = (G′, N ′, ψ′). Clearly K = CoreG(Z(T ′)) is a normal subgroup of G contained in
Z(T ′). So Lemma 4.9 tells us that T (κ) is defined and has T ′ as a subtriple. Proposition 4.10 for
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T̃ = T (κ) now says that T ′ is a multilinear reduction of T (κ). So the only problem is to show that
T (κ) is a proper linear reduction of T , i.e., that G(κ) < G.

Since T ′ is not equal to T , there are some L and λ satisfying (3.1) such that (4.6) holds. Then
L ≤ Z(T ′) by (4.7). Since L is a normal subgroup of G, this implies that L ≤ K = CoreG(Z(T ′)).
The restriction λ of ζ(T ′) in (4.7) is also a restriction of κ = (ζ(T ′))K . Because L is normal in G,
this implies that G(κ) ≤ G(λ) < G. So T (κ) < T , and the proposition is proved. �

Obviously the above proposition can be compounded to obtain a canonical linear reducing chain
from T to any multilinear reduction T ′ of T . If T ′ = T , then this chain consists only of T0 = T .
Otherwise we let T1 be the canonical linear reduction T (κ) in the proposition. Then T ′ is a
multilinear reduction of T1. If T ′ = T1 we stop. Otherwise we take T2 to be the canonical linear
reduction obtained by applying the proposition with T1 in place of T . We continue in this manner
until we arrive at T ′. This must happen eventually, because T ′ ≤ · · · < T2 < T1 < T0 = T by
construction, and our groups are all finite.

5. Covers

As in the introduction, we say that a subtriple T̃ = (G̃, Ñ , ψ̃) of our arbitrary triple T =
(G,N,ψ) ∈ T covers T modulo Z(T ) if the subgroup G̃ ≤ G covers the factor group G/Z(T ), in
the usual sense that

(5.1) G = G̃Z(T ).

In that case the subgroup G̃ completely determines the subtriple T̃ .

Proposition 5.2. There is a one to one correspondence between all subgroups G̃ ≤ G covering
G/Z(T ) and all subtriples T̃ ≤ T covering T modulo Z(T ). Here two such G̃ and T̃ correspond if
and only if

(5.3) T̃ = (G̃, G̃ ∩N,ψG̃∩N ).

Proof. Suppose that G̃ is a subgroup of G covering G/Z(T ). Since Z(T ) ≤ N E G, it follows from
(5.1) that G̃∩N is a normal subgroup of G̃ such that N = (G̃∩N) Z(T ). Because ζ(T ) ∈ Lin(Z(T ))
is G-invariant, we may apply Proposition 1.10 with H = G̃ ∩ N , K = Z(T ), and κ = ζ(T ) to
conclude that ψ ∈ Irr( (G̃ ∩ N) Z(T ) | ζ(T ) ) restricts to an irreducible character ψG̃∩N of G̃ ∩ N .
Hence the right side of (5.3) is a subtriple covering T modulo Z(T ).

Let T̃ = (G̃, Ñ , ψ̃) be any subtriple covering T modulo Z(T ). By the definition of subtriples
G̃ is a subgroup of G, while Ñ is the intersection G̃ ∩ N , and ψ̃ ∈ Irr(Ñ) lies under ψ ∈ Irr(N).
Furthermore, G̃ covers G/Z(T ). As we saw in the preceding paragraph, this implies that ψÑ is an
irreducible character of Ñ . So ψÑ must equal its irreducible constituent ψ̃. Therefore T̃ satisfies
(5.3), and the proposition is proved. �

For the rest of this section we fix a subtriple T̃ = (G̃, Ñ , ψ̃) covering T modulo Z(T ), as well as
the objects G̃ ≤ G, Ñ = G̃∩N and ψ̃ = ψÑ in this subtriple. Since Z(T ) ≤ N E G, it follows from
(5.1) that G = G̃N . Hence the natural embedding eT

T̃
of G̃/Ñ in G/N is an isomorphism

(5.4a) eT
T̃

: G̃/Ñ ∼−→ G̃N/N = G/N



DADE AND LOUKAKI, LINEAR LIMITS 16

of groups. Since ψ̃ ∈ Irr(Ñ) is the restriction ψÑ of ψ ∈ Irr(N), this implies that the character ψG

of G induced by ψ restricts to the character

(5.4b) ψ̃G̃ = (ψG)G̃

of G̃ induced by ψ̃. It follows that the kernel Ker(T̃ ) of ψ̃G̃ is the intersection

(5.4c) Ker(T̃ ) = G̃ ∩Ker(T )

of G̃ with the kernel Ker(T ) of ψG, that the center Z(T̃ ) of ψ̃G̃ is the intersection

(5.4d) Z(T̃ ) = G̃ ∩ Z(T )

of G̃ with the center Z(T ) of ψG, and that the central character ζ(T̃ ) of ψ̃G̃ is the restriction

(5.4e) ζ(T̃ ) = (ζ(T ))Z(T̃ )

to Z(T̃ ) of the central character ζ(T ) of ψG. Hence the factor group G/Ker(T ) is the central product
of its subgroup G̃Ker(T )/Ker(T ) ' G̃/Ker(T̃ ) with Z(T )/Ker(T ) ≤ Z(G/Ker(T )). This has a
number of consequences, which we shall describe in terms of G instead of G/Ker(T ).

The equations (5.1) and (5.4d) imply that inclusion G̃ ↪→ G induces an isomorphism

(5.5a) iT
T̃

: G̃/Z(T̃ ) ∼−→ G/Z(T )

of factor groups, sending any coset σ̄ ∈ G̃/Z(T̃ ) to its product

(5.5b) iT
T̃
(σ̄) = σ̄ Z(T ) ∈ G/Z(T )

with Z(T ). In order to exploit this isomorphism we define ZG(T ) to be the family

(5.6) ZG(T ) = {H | Z(T ) ≤ H ≤ G }

of all subgroups of G containing Z(T ). Of course, this family is defined for any triple T ∈ T, so
that ZG(T̃ ) is the family of all subgroups of G̃ containing Z(T̃ ). The subgroups of the factor group
G/Z(T ) are just the H/Z(T ) for H ∈ ZG(T ). Under the isomorphism iT

T̃
these correspond one to

one to the subgroups H̃/Z(T̃ ) of G̃/Z(T ), for H̃ ∈ ZG(T̃ ). The resulting bijection of ZG(T̃ ) onto
ZG(T ) sends any H̃ ∈ ZG(T̃ ) to

(5.7a) H = H̃ Z(T ) ∈ ZG(T )

The inverse bijection sends any H ∈ ZG(T ) to

(5.7b) H̃ = G̃ ∩H ∈ ZG(T̃ ).

Clearly the latter bijection sends G ∈ ZG(T ) to G̃ ∈ ZG(T̃ ), and N ∈ ZG(T ) to Ñ = G̃ ∩ N ∈
ZG(T̃ ). In view of (5.4d) it also sends Z(T ) ∈ ZG(T ) to Z(T̃ ) = G̃ ∩ Z(T ) ∈ ZG(T̃ ).

If H̃ ∈ ZG(T̃ ) corresponds to H = H̃ Z(T ) ∈ ZG(T ), then we may apply Proposition 1.10 with
Z(T ) and its G-invariant linear character ζ(T ) in place of K and κ, respectively. Since ζ(T̃ ) is the
restriction (5.4e) of ζ(T ) to Z(T̃ ) = H̃ ∩ Z(T ), that proposition gives us a bijection of Irr(H | ζ(T ) )
onto Irr( H̃ | ζ(T̃ ) ), sending any φ ∈ Irr(H | ζ(T ) ) to its restriction

(5.8a) φ̃ = φH̃ ∈ Irr( H̃ | ζ(T̃ ) ).

The inverse bijection sends any φ̃ ∈ Irr( H̃ | ζ(T̃ ) ) to the character

(5.8b) φ = φ̃ ∗ ζ(T ) ∈ Irr(H | ζ(T ) ),
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whose value at στ ∈ H̃ Z(T ) = H is

(5.8c) (φ̃ ∗ ζ(T ))(στ) = φ̃(σ)ζ(T )(τ) ∈ C,

for any σ ∈ H̃ and τ ∈ Z(T ). It follows from (5.3) that the former bijection for H = N sends
ψ ∈ Irr(N | ζ(T ) ) to ψ̃ = ψÑ ∈ Irr( Ñ | ζ(T̃ ) ). That same bijection for H = Z(T ) sends ζ(T ) in
Irr( Z(T ) | ζ(T ) ) to ζ(T̃ ) = (ζ(T ))Z(T̃ ) ∈ Irr( Z(T̃ ) | ζ(T̃ ) ) by (5.4e).

Characters which correspond in (5.8) have stabilizers which correspond in (5.7).

Proposition 5.9. Suppose that H ∈ ZG(T ) corresponds to H̃ ∈ ZG(T̃ ) in (5.7), and that φ ∈
Irr(H | ζ(T ) ) corresponds to φ̃ ∈ Irr( H̃ | ζ(T̃ ) ) in (5.8). Then the stabilizer G(φ) belongs to ZG(T ),
and corresponds to G̃(φ̃) = G̃ ∩G(φ) ∈ ZG(T̃ ) in (5.7).

Proof. The stabilizer G(φ) is a subgroup of G containing the domain H of φ. Hence it contains
Z(T ) ≤ H. Therefore G(φ) belongs to ZG(T ).

Any element σ ∈ G̃∩G(φ) normalizes both G̃ and H = Dom(φ), and so normalizes H̃ = G̃∩H.
Because σ fixes φ ∈ Irr(H), and normalizes H̃ ≤ H, it fixes the restriction φ̃ = φH̃ . Thus any
σ ∈ G̃ ∩G(φ) lies in G̃(φ̃).

Conversely, any element τ ∈ G̃(φ̃) belongs to G̃ and normalizes H̃ = Dom(φ̃). So it normalizes
the product H = H̃ Z(T ) of H̃ with Z(T ) E G. Because τ fixes both φ̃ and the G-invariant character
ζ(T ), it fixes φ = φ̃ ∗ ζ(T ) by (5.8c). Thus any τ ∈ G̃(φ̃) lies in G̃ ∩ G(φ), and the proposition is
proved. �

We may apply the preceding proposition with H = N ∈ ZG(T ) and φ = ψ ∈ Irr(N | ζ(T ) ).
Then H̃ = G̃ ∩ N = Ñ and φ̃ = ψÑ = ψ̃. So the above proposition tells us that G(ψ) ∈ ZG(T )
corresponds in (5.7) to G̃(ψ̃) ∈ ZG(T̃ ). In this case (5.7a) is

(5.10a) G(ψ) = G̃(ψ̃) Z(T ).

Since Z(T ) ≤ N ≤ G(ψ), it follows that

(5.10b) G(ψ) = G̃(ψ̃)N.

We define ZST(T ) to be the family of all subtriples T ′ = (G′, N ′, ψ′) of T such that

(5.11a) Z(T ) ≤ G′.

Because N contains Z(T ), this inclusion implies that

(5.11b) Z(T ) ≤ G′ ∩N = N ′.

In view of Proposition 2.10 it also implies that

(5.11c) Z(T ) ≤ Z(T ′) and ζ(T ) = (ζ(T ′))Z(T ).

Since ψ′ restricts to a multiple ψ′(1)ζ(T ′) of the linear character ζ(T ′) on Z(T ′), it follows that

(5.11d) (ψ′)Z(T ) = ψ′(1)ζ(T ).

Of course the above definition applies with any triple in T in place of T . In particular, ZST(T̃ )
is the family of all subtriples T̃ ′ of T̃ such that the ambient group G̃′ in T̃ ′ contains Z(T̃ ).
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Proposition 5.12. There is a one to one correspondence between all subtriples T ′ ∈ ZST(T ) and
all subtriples T̃ ′ ∈ ZST(T̃ ). Here two such T ′ = (G′, N ′, ψ′) and T̃ ′ = (G̃′, Ñ ′, ψ̃′) correspond if and
only if the subgroups G′, N ′ ∈ ZG(T ) correspond respectively to G̃′, Ñ ′ ∈ ZG(T̃ ) in (5.7), while the
character ψ′ ∈ Irr(N ′ | ζ(T ) ) corresponds to ψ̃′ ∈ Irr( Ñ ′ | ζ(T̃ ) ) in (5.8).

Proof. If T ′ = (G′, N ′, ψ′) lies in ZST(T ), then (5.11a) implies that G′ ≤ G belongs to the family
ZG(T ) in (5.6). So G′ corresponds to G̃ ∩ G′ ∈ ZG(T̃ ) in (5.7). Similarly, (5.11b) implies that
N ′ E G′ belongs to ZG(T ), and corresponds to G̃ ∩N ′ E G̃ ∩G′ in (5.7). The character ψ′ lies in
Irr(N ′ | ζ(T ) ) by (5.11d), and corresponds to (ψ′)G̃∩N ′ ∈ Irr( G̃ ∩ N ′ | ζ(T̃ ) ) in (5.8). Hence the
triple T̃ ′ = (G̃ ∩G′, G̃ ∩N ′, ψG̃∩N ′) lies in T.

Evidently G̃ ∩ G′ is a subgroup of G̃. Because Ñ is G̃ ∩ N , and N ′ is G′ ∩ N , the intersection
(G̃∩G′)∩ Ñ is equal to G̃∩N ′. Since ψ′ ∈ Irr(N ′) lies under ψ ∈ Irr(N), its restriction (ψ′)G̃∩N ′ ∈
Irr(G̃∩N ′) lies under ψ̃ = ψÑ ∈ Irr(Ñ). Therefore T̃ ′ is a subtriple of T̃ = (G̃, Ñ , ψ̃). This subtriple
belongs to ZST(T̃ ), since its ambient group G̃ ∩ G′ ∈ ZG(T̃ ) contains Z(T̃ ) = G̃ ∩ Z(T ) by (5.4d)
and (5.11a). Furthermore, it corresponds to T ′ in the sense of the present proposition. Thus any
triple T ′ ∈ ZST(T ) corresponds, in the present proposition, to a unique triple T̃ ′ ∈ ZST(T̃ ).

Now let T̃ ′ = (G̃′, Ñ ′, ψ̃′) be an arbitrary triple in ZST(T̃ ). Since G̃′ ≤ G̃ contains Z(T̃ ), it lies
in ZG(T̃ ), and corresponds to G̃′ Z(T ) ∈ ZG(T ) in (5.7). The normal subgroup Ñ ′ E G̃′ contains
Z(T̃ ) by (5.11b) for T̃ ′ ∈ ZST(T̃ ). Hence it lies in ZG(T̃ ), and corresponds to the normal subgroup
Ñ ′ Z(T ) E G̃′ Z(T ) in (5.7). The character ψ̃′ lies in Irr( Ñ ′ | ζ(T̃ ) ) by (5.11d) for T̃ ′ ∈ ZST(T̃ ). It
corresponds to ψ̃′∗ζ(T ) ∈ Irr( Ñ ′ Z(T ) | ζ(T ) ) in (5.8). So the triple T ′ = (G̃′ Z(T ), Ñ ′ Z(T ), ψ′∗ζ(T ))
lies in T.

The product G̃′ Z(T ) is a subgroup of G. Because Ñ ∈ ZG(T̃ ) corresponds to N = Ñ Z(T ) in
(5.7), the intersection Ñ ′ = G̃′ ∩ Ñ E G̃′ has G̃′ Z(T ) ∩N as its correspondent Ñ ′ Z(T ). Since ψ̃′

lies under ψ̃, it is clear from (5.8c) that ψ̃′ ∗ ζ(T ) lies under the correspondent ψ = ψ̃ ∗ ζ(T ) of ψ̃.
Thus T ′ is a subtriple of T . This subtriple lies in ZST(T ), since its ambient group G̃′ Z(T ) contains
Z(T ). By construction it corresponds to T ′ in the sense of the present proposition. Therefore any
triple T̃ ′ ∈ ZST(T̃ ) corresponds, in the present proposition, to a unique triple T ′ ∈ ZST(T ), and
the proof of the proposition is complete. �

Notice that the correspondence in the above proposition satisfies

Lemma 5.13. If T ′ ∈ ZST(T ) corresponds to T̃ ′ ∈ ZST(T̃ ) in Proposition 5.12, then T̃ ′ is a
subtriple covering T ′ modulo Z(T ′). Furthermore, Z(T ′) lies in ZG(T ), and corresponds to Z(T̃ ′) ∈
ZG(T̃ ) in (5.7). Finally, ζ(T ′) lies in Irr( Z(T ′) | ζ(T ) ), and corresponds to ζ(T̃ ′) ∈ Irr( Z(T̃ ′) | ζ(T̃ ) )
in (5.8).

Proof. Let T ′ be (G′, N ′, ψ′), and T̃ ′ be (G̃′, Ñ ′, ψ̃′). The correspondent G̃′ = G̃ ∩G′ of G′ in (5.7)
is a subgroup of G′. The correspondent Ñ ′ = G̃ ∩N ′ of N ′ = G′ ∩N is the intersection G̃′ ∩ Ñ of
G̃′ = G̃∩G′ with Ñ = G̃∩N . The correspondent ψ̃′ = (ψ′)Ñ ′ ∈ Irr(Ñ ′) of ψ′ ∈ Irr(N ′) in (5.8) lies
under ψ′. Hence T̃ ′ is a subtriple of T ′. Evidently G̃′ covers its correspondent G′ = G̃′ Z(T ) modulo
Z(T ). Because Z(T ) ≤ Z(T ′) by (5.11c), this implies that G̃′ covers G′ modulo Z(T ′). Therefore
the subtriple T̃ ′ covers T ′ modulo Z(T ′).
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We know from (5.11c) that the subgroup Z(T ′) of G′ ≤ G contains Z(T ), and hence belongs to
the family ZG(T ) in (5.6). The equation (5.4d), for the subtriple T̃ ′ covering T ′ modulo Z(T ′),
implies that

Z(T̃ ′) = G̃′ ∩ Z(T ′) = (G̃ ∩G′) ∩ Z(T ′) = G̃ ∩ Z(T ′).

Thus Z(T ′) ∈ ZG(T ) corresponds to Z(T̃ ′) ∈ ZG(T̃ ) in (5.7).

By (5.11c) the linear character ζ(T ′) extends ζ(T ), and hence lies in Irr( Z(T ′) | ζ(T ) ). Since T̃ ′

covers T ′ modulo Z(T ′), we know from (5.4e) that ζ(T̃ ′) is the restriction (ζ(T ′))Z(T̃ ′), which is the

correspondent in Irr( Z(T̃ ′) | ζ(T̃ ) ) of ζ(T ′) in (5.8). Therefore the lemma holds. �

Now we can show that the correpondence of subtriples in Proposition 5.12 preserves linear
reductions.

Proposition 5.14. If T ′ ∈ ZST(T ) corresponds to T̃ ′ ∈ ZST(T̃ ) in Proposition 5.12, then any
linear reduction of T ′ lies in ZST(T ) and corresponds to some linear reduction of T̃ ′. Similarly,
any linear reduction of T̃ ′ lies in ZST(T̃ ) and corresponds to some linear reduction of T ′.

Proof. Let T ′ be (G′, N, ψ′), and T̃ ′ be (G̃′, Ñ ′, ψ̃′). By (3.2) and Proposition 3.7 any linear reduc-
tion of T ′ has the form

T ′(λ′) = (G′(λ′), N ′(λ′), (ψ′)λ′),
for some L′ and λ′ satisfying

L′ E G′, Z(T ′) ≤ L′ ≤ N ′ and ζ(T ′) ≤ λ′ ∈ Lin(ψ′ | L′ ).
The stabilizer G′(λ′) contains the domain L′ of λ′. So it contains Z(T ′) ≤ L′. Since Z(T ) ≤ Z(T ′)
by (5.11c), this implies that Z(T ) ≤ G′(λ′). Hence the subtriple T ′(λ′) of both T ′ and T lies in
ZST(T ).

All the subgroups G′, N ′ and Z(T ′) of G contain Z(T ) by (5.11). So they all lie in ZG(T ). Since T ′

corresponds to T̃ ′ in Proposition 5.12, the subgroups G′ andN ′ correspond to G̃′ = G̃∩G′ ∈ ZST(T̃ )
and Ñ ′ = G̃ ∩ N ′ ∈ ZST(T̃ ), respectively, in (5.7). Furthermore, Z(T ′) corresponds to Z(T̃ ′) =
G̃∩Z(T ′) by Lemma 5.13. It follows that the normal subgroup L′ of G′ satisfying Z(T ′) ≤ L′ ≤ N ′

lies in ZG(T ), and corresponds in (5.7) to a normal subgroup L̃′ = G̃∩L′ ∈ ZG(T̃ ) of G̃′ satisfying
Z(T̃ ′) ≤ L̃′ ≤ Ñ ′.

The linear character λ′ of L′ extends ζ(T ′), and hence extends ζ(T ) = (ζ(T ′))Z(T ) (see (5.11c)).
So λ′ belongs to Irr(L′ | ζ(T ) ). Its correspondent in (5.8) is its restriction to a linear character
λ̃′ = (λ′)L̃′ ∈ Irr( L̃′ | ζ(T̃ ) ) of L̃′. The restriction λ̃′ lies under the correspondent ψ̃′ = (ψ′)Ñ ′ of
ψ′ ∈ Irr(N ′), since λ′ lies under ψ′. Thus L̃′ and λ̃′ satisfy the equivalent of (3.1) for the triple T̃ ′.
Hence the linear reduction

T̃ ′(λ̃′) = (G̃′(λ̃′), Ñ ′(λ̃′), (ψ̃′)λ̃′)

of T̃ ′ is defined.

Proposition 5.9 for H = L′ and φ = λ′ tells us that G(λ′) belongs to ZG(T ) and corresponds
to G̃(λ̃′) ∈ ZG(T̃ ) in (5.8). Since G′ and N ′ correspond to G̃′ and Ñ ′, respectively, it follows
that G′(λ′) = G′ ∩ G(λ′) corresponds to G̃′(λ̃′) = G̃′ ∩ G̃(λ̃′), and that N ′(λ′) = N ′ ∩ G(λ′)
corresponds to Ñ ′(λ̃′) = Ñ ′ ∩ G̃(λ̃′). Because (ψ′)λ′ ∈ Irr(N ′(λ′)) lies over λ′ ∈ Lin(L′ | ζ(T ) )
and under ψ′ ∈ Irr(N ′ | ζ(T ) ), it belongs to Irr(N ′ | ζ(T ) ), and corresponds in (5.8) to the unique
irreducible character (ψ̃′)λ̃′ of G̃′(λ̃′) lying over the correspondent λ̃′ ∈ Irr( L̃′ | ζ(T̃ ) ) of λ′, and
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under the correspondent ψ̃′ ∈ Irr( Ñ ′ | ζ(T̃ ) ) of ψ′. We conclude that T ′(λ′) ∈ ZST(T ) corresponds
to T̃ ′(λ̃′) ∈ ZST(T̃ ) in Proposition 5.12. Thus the first statement of the present proposition is
proved. The remaining statement is proved similarly, using the fact that all our correspondences
are one to one. �

Our correspondences send multilinear reductions to multilinear reductions.

Proposition 5.15. Any multilinear reduction of T lies in ZST(T ), and corresponds in Proposition
5.12 to some multilinear reduction of T̃ . Similarly, any multilinear reduction of T̃ lies in ZST(T̃ ),
and corresponds to some multilinear reduction of T .

Proof. By definition any multilinear reduction T ′ of T is the last triple T ′ = Tn in a finite linear
reducing chain T0 = T, T1, . . . , Tn of subtriples of T , where each Ti, for i = 1, 2, . . . , n, is a linear
reduction of its predecessor Ti−1. The initial triple T0 = T in this chain lies in ZST(T ), and
its correspondent T̃0 in Proposition 5.12 is precisely T̃ . Suppose that Ti−1 lies in ZST(T ), for
some i = 1, 2, . . . , n, and corresponds to T̃i−1 ∈ ZST(T̃ ). Then Proposition 5.14 says that the
linear reduction Ti of Ti−1 lies in ZST(T ), and corresponds to a linear reduction T̃i ∈ ZST(T̃ ) of
T̃i−1. By induction we deduce that all the Ti, for i = 0, 1, . . . , n, lie in ZST(T ), and that their
correspondents T̃i in ZST(T̃ ) form a linear reducing chain T̃0 = T̃ , T̃1, . . . , T̃n, whose last triple T̃n
is the correspondent T̃ ′ of T ′ = Tn ∈ ZST(T ). Thus T̃ ′ is a multilinear reduction of T ′, and the
first statement of the proposition is proved. The other statement is proved similarly. �

Finally, our correspondences send linear limits to linear limits. Since this is the result we shall
need in the next section, and its proof has involved many steps, we state it as

Theorem 5.16. Suppose T̃ is a subtriple covering some T ∈ T modulo Z(T ). Then the linear
limits of T lie in ZST(T ), and correspond one to one in Proposition 5.12 to the linear limits of T̃ .
If T ′ ∈ LL(T ) corresponds to T̃ ′ ∈ LL(T̃ ) in this fashion, then T̃ ′ is a subtriple covering T ′ modulo
Z(T ′).

Proof. Any linear limit T ′ of T is a multilinear reduction of T . Proposition 5.15 tells us that
T ′ lies in ZST(T ), and that its correspondent T̃ ′ ∈ ZST(T̃ ) in Proposition 5.12 is a multilinear
reduction of T̃ . By Proposition 5.14 any linear reduction T̃ ′′ of T̃ ′ lies in ZST(T̃ ), and corresponds
in Proposition 5.12 to some linear reduction T ′′ of T ′. Any such T ′′ must equal the linear limit T ′

of T . Hence any linear reduction T̃ ′′ of T̃ ′ must equal T̃ ′. So T̃ ′ is a linear limit of T̃ .

The above argument shows that any linear limit of T lies in ZST(T ), and corresponds in Propo-
sition 5.12 to some linear limit of T̃ . A similar argument shows that any linear limit of T̃ lies in
ZST(T̃ ), and corresponds to some linear limit of T . Thus the linear limits of T correspond one to
one to those of T̃ in Proposition 5.12. The remaining statement in the theorem is a special case of
the first statement in Lemma 5.13. �

6. Equivalence

We say that two subtriples T ′ and T ′′ of our arbitrary triple T = (G,N,ψ) ∈ T are equivalent
(and write T ′ ∼ T ′′) if there is some finite chain T0, T1, . . . , Tn of subtriples Tj ≤ T , starting with
T0 = T ′ and ending with Tn = T ′′, such that, for each j = 1, 2, . . . , n, at least one of the following
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conditions is satisfied:

(Tj−1)τ = Tj , for some τ ∈ N , or(6.1a)

Tj−1 is a subtriple covering Tj modulo Z(Tj), or(6.1b)

Tj is a subtriple covering Tj−1 modulo Z(Tj−1).(6.1c)

We call any such chain an equivalence chain from T ′ to T ′′. Clearly ∼ is an equivalence relation
among subtriples of T .

The notion of equivalent subtriples depends upon T , since each member Tj in the above equiva-
lence chain must be a subtriple of T , and the conjugation in (6.1a) is by an element τ of the normal
subgroup N in T . We sometimes speak of T -equivalence and T -equivalence chains to emphasize
this dependence. We do so in

Proposition 6.2. If T̃ = (G̃, Ñ , ψ̃) is any subtriple of T , then any T̃ -equivalent subtriples T ′ and
T ′′ of T̃ are also T -equivalent subtriples of T .

Proof. There is some T̃ -equivalence chain T0, T1, . . . , Tn from T ′ to T ′′. To prove the proposition we
need only show that these Tj also form a T -equivalence chain from T ′ to T ′′. Each Tj is a subtriple
of T , since Tj ≤ T̃ and T̃ ≤ T . The chain starts with T0 = T ′, and ends with Tn = T ′′. For each
j = 1, 2, . . . , n, one of the conditions (6.1) holds with T̃ in place of T . Since Ñ is a subgroup of
N , the condition (6.1a) for T̃ implies the same condition for T . The other two conditions (6.1b)
and (6.1c) do not depend on T . So T0, T1, . . . , Tn is a T -equivalence chain from T ′ to T ′′, and the
proposition is proved. �

As a general rule, however, we only speak of equivalence and equivalence chains, with T being
understood, as in

Proposition 6.3. If two subtriples T ′ and T ′′ of T are equivalent, then any linear limit T̃ ′ of T ′

is equivalent to some linear limit T̃ ′′ of T ′′.

Proof. We use induction on the length n ≥ 0 of an equivalence chain T0, T1, . . . , Tn from T ′ to T ′′.
If n = 0, then T ′ = T0 = Tn = T ′′, and the proposition is trivial. So we may assume that n > 0,
and that the proposition holds with Tn−1 in place of T ′′ = Tn. Then any linear limit T̃ ′ of T ′ is
equivalent to some linear limit T̃n−1 of Tn−1.

One of the three conditions (6.1) holds with j = n. If (6.1a) holds, then (Tn−1)τ = Tn, for some
τ ∈ N . Proposition 4.3 tells us that conjugation by τ sends T̃n−1 ∈ LL(Tn−1) to some linear limit
T̃ ′′ = (T̃n−1)τ of T ′′ = Tn. If (6.1b) holds, then the subtriple Tn−1 covers Tn modulo Z(Tn). In
that case Theorem 5.16 says that T̃n−1 ∈ LL(Tn−1) is a subtriple covering some linear limit T̃ ′′ of
T ′′ = Tn modulo Z(T̃ ′′). That theorem also applies when (6.1c) holds, i. e., when the subtriple
Tn covers Tn−1 modulo Z(Tn−1). In that case it says that some linear limit T̃ ′′ of T ′′ = Tn is a
subtriple covering T̃n−1 ∈ LL(Tn−1) modulo Z(T̃n−1). In each of the three cases T̃n−1 is equivalent
to a linear limit T̃ ′′ of T ′′. So T̃ ′ ∼ T̃n−1 is equivalent to T̃ ′′, and the proposition is proved. �

In the language of the present section the Main Theorem in the introduction can be stated as

Theorem 6.4. All linear limits of any triple T = (G,N,ψ) ∈ T are equivalent.

Proof. We prove this theorem by induction on the order |G| of the finite group G. If |G| = 1, then
the only possible linear limit of T is T itself. In this case the theorem is trivial. So we may assume
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that |G| > 1, and that the theorem holds for all strictly smaller values of |G|. We may also assume
that the theorem does not hold for T . We divide the rest of the proof into a number of steps, all
based on these assumptions. These steps will lead to a contradiction, thus proving the theorem.

Step 1. T /∈ LL(T ).

Proof. If T ∈ LL(T ), then the only possible linear reduction of T is T itself. So T is the only
member of LL(T ). Thus the theorem holds trivially in this case, contradicting our assumptions.
This contradiction proves the present step. �

Let L be the family of all subgroups L satisfying

(6.5a) L E G, Z(T ) < L ≤ N, and Lin(ψ | L ) 6= ∅,
where ∅ is the usual empty set. For each L ∈ L we define LL(T | L ) to be the non-empty subset

(6.5b) LL(T | L ) =
⋃

λ∈Lin(ψ|L)

LL(T (λ))

of LL(T ). Then we have

Step 2. LL(T ) =
⋃
L∈L LL(T | L ).

Proof. We only need show that any T ′ ∈ LL(T ) belongs to the subset LL(T | L ) ⊆ LL(T ), for some
L ∈ L. The linear limit T ′ of T is different from T by Step 1. It follows that there is some finite
linear reducing chain T0, T1, . . . , Tn, from T = T0 to T ′ = Tn, such that n > 0, and each Ti, for
i = 1, 2, . . . , n, is a proper linear reduction of Ti−1. In particular, T ′ is a linear limit of the proper
linear reduction T1 of T . By Propositions 3.9 and 3.7 there exist some L satisfying (6.5a), and
some λ ∈ Lin(ψ | L ), such that T1 = T (λ). Then T ′ ∈ LL(T (λ)) belongs to the subset LL(T | L )
in (6.5b), and the present step is proved. �

Our induction hypothesis will give

Step 3. If L ∈ L, then any T ′, T ′′ ∈ LL(T | L ) are equivalent.

Proof. By (6.5b) any triples T ′ and T ′′ in LL(T | L ) are linear limits of T (λ′) and T (λ′′), re-
spectively, for some λ′, λ′′ ∈ Lin(ψ | L ). Since ψ is an irreducible character of N , Clifford
theory for L E N tells us that λ′′ = (λ′)τ , for some τ ∈ N . So (T ′)τ is a linear limit of
T (λ′′) = T ((λ′)τ ) = T (λ′)τ . By Proposition 3.9 the inclusion Z(T ) < L in (6.5a) implies that T (λ′′)
is a proper linear reduction of T . Hence the ambient group G(λ′′) in T (λ′′) has order |G(λ′′)| < |G|,
by that same proposition. Our induction hypothesis tells us that the two linear limits (T ′)τ and
T ′′ of T (λ′′) are T (λ′′)-equivalent. Proposition 6.2 implies that they are T -equivalent. Therefore
T ′ ∼ (T ′)τ ∼ T ′′, and this step is proved. �

Another useful observation is

Step 4. If L,K ∈ L satisfy K ≤ L, then LL(T | L ) ⊆ LL(T | K ).

Proof. By (6.5b) any T ′ ∈ LL(T | L ) is a linear limit of T (λ), for some λ ∈ Lin(ψ | L ). Then
κ = λK lies in Lin(ψ | K ), so that T (κ) is defined. Proposition 3.11 tells us that T (λ) is also the
linear reduction [T (κ)](λ) of T (κ). Hence its linear limit T ′ is also a linear limit of T (κ), and so
lies in LL(T | K ). Thus the present step holds. �



DADE AND LOUKAKI, LINEAR LIMITS 23

As a consequence of the preceding two steps we have

Step 5. If Z(T ) < L ∩ M , for some L,M ∈ L, then T ′ ∼ T ′′, for any T ′ ∈ LL(T | L ) and
T ′′ ∈ LL(T |M ).

Proof. The intersection K = L ∩M is a normal subgroup of G contained in N , since both L and
M are such subgroups. Any character in the non-empty set Lin(ψ | L ) restricts to a character
in Lin(ψ | K ). Since Z(T ) < K by assumption, we conclude that K belongs to L. Now Step 4,
for both K ≤ L and K ≤ M , implies that both T ′ ∈ LL(T | L ) and T ′′ ∈ LL(T | M ) belong to
LL(T | K ). So T ′ ∼ T ′′ by Step 3, and the present step is proved. �

Since the theorem is false for T , there exist two linear limits T ′ and T ′′ of T such that

(6.6a) T ′ 6∼ T ′′.

In view of Step 2 there are two subgroups L,M satisfying

(6.6b) L,M ∈ L, T ′ ∈ LL(T | L ), and T ′′ ∈ LL(T |M ).

Then (6.5b) gives us two linear characters λ, µ such that

(6.6c) λ ∈ Lin(ψ | L ), µ ∈ Lin(ψ |M ), T ′ ∈ LL(T (λ)), and T ′′ ∈ LL(T (µ)).

For the rest of the proof of the theorem we fix T ′, T ′′, L, M , λ, and µ with these properties.

Step 6. The intersection L ∩M is Z(T ). Both λ ∈ Lin(L) and µ ∈ Lin(M) restrict to ζ(T ) on
Z(T ).

Proof. Suppose the L∩M 6= Z(T ). The subgroup L ∈ L contains Z(T ) by (6.5a). So do M and the
intersection L∩M . Hence Z(T ) < L∩M . By Step 5 this implies that T ′ ∈ LL(T | L ) is equivalent
to T ′′ ∈ LL(T | M ), contradicting (6.6a). This contradiction proves the first statement in this
step. The other statement follows immediately from the last statement in Proposition 3.7. �

By (6.5a) both L and M are normal subgroups of G contained in N . Hence their commutator
[L,M ] is contained in their intersection L ∩M , which we have just seen to be Z(T ). So L and M
satisfy (2.4a), and (2.4b) defines a G-invariant, bilinear function c from L×M to C×.

Step 7. The perpendicular subgroup

L⊥ = {σ ∈M | c(L, σ) = 1 }
to L with respect to the form c is a normal subgroup of G contained in M ≤ N . It is also the
stabilizer M(λ) of λ ∈ Lin(L) in M .

The similar perpendicular subgroup M⊥ to M with respect to c is a normal subgroup of G
contained in L ≤ N , and equals the stabilizer L(µ) of µ in L.

Proof. The bilinearity (2.4c) of c implies that L⊥ is a subgroup of M ≤ N . This subgroup is normal
in G, since L and M are normal subgroups of G, and c is G-invariant by (2.4d).

The commutator [ρ, σ] = ρ−1σ−1ρσ is equal to ρ−1ρσ, for any ρ ∈ L and σ ∈M . Both ρ and ρσ

lie in L E G. Furthermore, λ ∈ Lin(L) extends ζ(T ) by Step 6. It follows that

c(ρ, σ) = ζ(T )([ρ, σ]) = λ(ρ−1ρσ) = λ(ρ)−1λσ
−1

(ρ).

Hence c(ρ, σ) = 1, for all ρ ∈ L, if and only if λσ
−1

= λ. This just says that L⊥ is equal to M(λ).
Thus the first paragraph of this step is proved. The other paragraph is proved similarly. �
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Now we can construct two new members of L.

Step 8. The two products LM(λ) and L(µ)M belong to L.

Proof. The subgroup L ∈ L is normal in G and contained in N by (6.5a). The subgroupM(λ) = L⊥

is normal in G and contained in N by Step 7. Hence their product LM(λ) = M(λ)L is a normal
subgroup of G contained in N . The strict inclusion Z(T ) < L in (6.5a) implies that Z(T ) < LM(λ).

We must show that Lin(ψ | LM(λ) ) is not empty. In view of Proposition 3.4 this happens if
and only if [LM(λ), LM(λ)] is contained in Ker(T ). Because L and M(λ) are normal subgroups of
G, we have

[LM(λ), LM(λ)] = [L,L][L,M(λ)][M(λ),M(λ)].
The factor [L,L] is contained in Ker(T ) by Proposition 3.4, since Lin(ψ | L ) has an element λ. The
linear character ζ(T ) sends the factor [L,M(λ)] to c(L,M(λ)), which is 1 sinceM(λ) = L⊥ by Step 7.
Hence [L,M(λ)] is contained in Ker(T ) = Ker(ζ(T )). Finally, the factor [M(λ),M(λ)] is contained
in [M,M ], which is a subgroup of Ker(T ) by Proposition 3.4, since µ lies in Lin(ψ | M ). Thus
each factor in the above product is contained in Ker(T ), and the proof that Lin(ψ | LM(λ) ) 6= ∅
is complete.

The above arguments show that LM(λ) satisfies all the conditions for L in (6.5a), and hence
belongs to L. The proof that L(µ)M ∈ L is similar. �

At this point things simplify drastically.

Step 9. Both M(λ) and L(µ) are equal to Z(T ).

Proof. Clearly Z(T ) = L ∩ M is contained in M , and fixes λ ∈ Lin(L). Hence Z(T ) ≤ M(λ).
If Z(T ) < M(λ), then Z(T ) < M ∩ LM(λ). Because LM(λ) ∈ L by Step 8, there is some
T ′′′ ∈ LL(T | M(λ)L ). Step 5 now tells us that T ′′ ∈ LL(T | M ) is equivalent to T ′′′. That
step also tells us that T ′′′ is equivalent to T ′ ∈ LL(T | L ), since Z(T ) < L = M(λ)L ∩ L. Hence
T ′′ ∼ T ′′′ ∼ T ′, contradicting (6.6a). This contradiction proves that M(λ) = Z(T ). The proof that
L(µ) = Z(T ) is similar. �

Now we can construct some covering subtriples.

Step 10. Both G(µ)L and G(λ)M are equal

(6.7a) G(µ)L = G = G(λ)M

to G. Hence G(λ, µ)L is G(λ), and

(6.7b) T̃ ′ = (G(λ, µ), N(λ, µ), (ψλ)N(λ,µ))

is a subtriple covering T (λ) modulo Z(T (λ)). Similarly, G(µ) is G(λ, µ)M , and

(6.7c) T̃ ′′ = (G(λ, µ), N(λ, µ), (ψµ)N(λ,µ))

is a subtriple covering T (µ) modulo Z(T (µ)).

Proof. Steps 7 and 9 imply that Z(T ) = L(µ) = M⊥, and Z(T ) = M(λ) = L⊥. Since c is bilinear, it
follows that the factor groups L/Z(T ) and M/Z(T ) are abelian, and that c induces a non-singular
bilinear pairing c̄ of (L/Z(T ))×(M/Z(T )) into C×. So L/Z(T ) and M/Z(T ) are dual finite abelian
groups. In particular, they have the same order

[L : Z(T )] = [M : Z(T )].
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The linear character µ of M extends ζ(T ) ∈ Lin(Z(T )) by Step 6. Since M/Z(T ) is abelian,
it follows that Lin(M | ζ(T ) ) = Irr(M | ζ(T ) ) consists of [M : Z(T )] distinct extensions of ζ(T )

to linear characters of M . Because G normalizes M , and leaves ζ(T ) invariant, it permutes these
extensions among themselves by conjugation. So does the subgroup L ≤ G. The L-orbit of
µ ∈ Lin(M | ζ(T ) ) under this action has order

[L : L(µ)] = [L : Z(T )] = [M : Z(T )] =
∣∣Lin(M | ζ(T ) )

∣∣,
since L(µ) = Z(T ) by Step 9. Hence this L-orbit is all of Lin(M | ζ(T ) ). In particular, this L-orbit
is also the G-orbit of µ. This implies the first equation in (6.7a). The other equation there is proved
similarly. Thus the first statement of this step holds.

The subgroup L ≤ G fixes its own character λ, and so is contained in G(λ). This and the first
equation in (6.7a) imply that G(λ) is the product G(λ, µ)L of G(λ, µ) = G(λ)∩G(µ) with L. The
λ-Clifford correspondent ψλ ∈ Irr(N(λ) | λ ) restricts to a multiple of λ ∈ Lin(L). So Proposition
2.3, with T (λ) = (G(λ), N(λ), ψλ) in place of T , tells us that L ≤ Z(T (λ)). Hence

G(λ) = G(λ, µ)L = G(λ, µ) Z(T (λ)).

Now we may apply Proposition 5.2, with T (λ) and G(λ, µ) in place of T and G̃, respectively, to
obtain the second statement of the present step. The final statement is proved similarly. �

Step 11. The two irreducible characters (ψλ)N(λ,µ) and (ψµ)N(λ,µ) of N(λ, µ) are equal. Hence
the two subtriples T̃ ′ and T̃ ′′ in Step 10 are equal, and the two linear reductions T (λ) and T (µ) are
equivalent.

Proof. Since N(µ) contains M = Dom(µ) ≤ N , it follows from the second equation in (6.7a) that

N = N ∩G(λ)M = (N ∩G(λ))M = N(λ)N(µ).

SoN(λ)N(µ) is the onlyN(λ), N(µ)-double coset inN , and the intersectionN(λ)∩N(µ) isN(λ, µ).
Because both ψλ ∈ Irr(N(λ)) and ψµ ∈ Irr(N(µ)) induce ψ ∈ Irr(N), Mackey’s Formula gives the
inner products

1 = 〈ψ,ψ〉 =
〈
(ψλ)N , (ψµ)N

〉
=

〈
(ψλ)N(λ,µ), (ψµ)N(λ,µ)

〉
.

But the characters (ψλ)N(λ,µ) and (ψµ)N(λ,µ) in the two triples (6.7b) and (6.7c) are both irreducible
characters of N(λ, µ). So the fact that their inner product is 1 forces them to be equal.

The two triples T̃ ′ and T̃ ′′ already have the same ambient groups and normal subgroups. We
have just shown that they have the same characters. Hence they are equal. In view of Step 10, this
implies that the same subtriple T̃ ′ = T̃ ′′ covers both T (λ) and T (µ) modulo their centers. So T (λ)
is equivalent to T (µ), and the present step is proved. �

We can finally finish the proof of Theorem 6.4. By Proposition 6.3 the equivalence T (λ) ∼ T (µ)
in Step 11 implies that the linear limit T ′′ of T (µ) in (6.6c) is equivalent to some linear limit T ′′′ of
T (λ). This T ′′′ ∈ LL(T (λ)) belongs to the set LL(T | L ) in (6.5b). So does T ′ by (6.6b). Therefore
T ′′′ ∼ T ′ by Step 3. Thus we have equivalences T ′′ ∼ T ′′′ ∼ T ′, which contradict (6.6a). This
contradiction completes the proof of Theorem 6.4. �
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7. Symplectic limits

We’re going to examine consequences of various restrictions on the normal section

(7.1) N̄(T ) = N/Z(T )

of our arbitrary triple T = (G,N,ψ) ∈ T, especially when T is linearly irreducible. Many of these
consequences are standard steps in the Hall-Higman reduction. This is certainly true for

Proposition 7.2. If N̄(T ) is nilpotent, and T is linearly irreducible, then N̄(T ) is abelian.

Proof. Let M be the inverse image in N of the center Z(N̄(T )) of the nilpotent group N̄(T ) =
N/Z(T ). Then M is a normal subgroup of G such that

Z(T ) ≤M ≤ N and M/Z(T ) = Z(N/Z(T )).

Because M/Z(T ) is central in N/Z(T ), the commutator [N,M ] is contained in Z(T ). So the
conditions (2.4a) are satisfied with L = N . Hence (2.4b) defines a G-invariant, bilinear function c
from N ×M to C×. The perpendicular subgroup M⊥ = { ρ ∈ N | c(ρ,M) = 1 } to M with respect
to this function is a normal subgroup of G contained in N . Since c is bilinear, the factor group
N/M⊥ is abelian. So we can prove the proposition by showing that

M⊥ = Z(T ).

Suppose this is false. Proposition 2.5 tells us that Z(T ) = Z(T ) ∩N ≤M⊥. Hence Z(T ) < M⊥.
So M⊥/Z(T ) is a non-trivial normal subgroup of the nilpotent group N/Z(T ). It follows that
M⊥/Z(T ) has a non-trivial intersection with M/Z(T ) = Z(N/Z(T )). We conclude that L =
M⊥∩M is a normal subgroup of G such that Z(T ) < L ≤ N . Furthermore, [L,L] ≤ [N,M ] ≤ Z(T ),
and ζ(T )([L,L]) = c(L,L) ≤ c(M⊥,M) = 1. Thus [L,L] is contained in Ker(ζ(T )) = Ker(T ) (see
(2.2)). Since Z(T ) < L, the last statement in Proposition 3.9 tells us that T is linearly reducible,
contrary to our hypotheses. This contradiction proves the proposition. �

From now on we assume that N̄(T ) is abelian. The group G acts on its normal section N̄(T ) =
N/Z(T ) by conjugation. Since N̄(T ) is abelian, this induces an action of the factor group G/N as
automorphisms of N̄(T ), with the coset τN ∈ G/N , for any τ ∈ G, sending any coset σ̄ ∈ N̄(T ) =
N/Z(T ) to

(7.3) σ̄τN = σ̄τ ∈ N̄(T ).

The commutator [N,N ] is contained in Z(T ), because [N/Z(T ), N/Z(T )] = 1. Hence the conditions
(2.4a) hold with L = M = N . So (2.4b) defines a G-invariant, bilinear function c = cT from N ×N
to C×, sending any ρ, σ ∈ N to

(7.4a) c(ρ, σ) = ζ(T )([ρ, σ]) ∈ C×.

As in (2.6), this induces a G/N -invariant, bilinear function c̄ = c̄T from N̄(T )×N̄(T ) to C×, sending
the cosets ρZ(T ), σ Z(T ) ∈ N̄(T ) = N/Z(T ) to

(7.4b) c̄(ρZ(T ), σ Z(T )) = ζ(T )([ρ, σ]) ∈ C×,

for any ρ, σ ∈ N . This last bilinear function is clearly strongly alternating, in the sense that

(7.4c) c̄(ρ̄, ρ̄) = 1,

for any ρ̄ ∈ N̄(T ). It follows that it is alternating, in the sense that

(7.4d) c̄(σ̄, ρ̄) = c̄(ρ̄, σ̄)−1,
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for all ρ̄, σ̄ ∈ N̄(T ).

Let H be any finite group. We need a short name for the situation consisting of a finite abelian
H-group A, together with an H-invariant, strongly alternating, bilinear function b : A× A → C×.
Since b behaves much like an alternating bilinear form on a vector space, we shall call such an A
and b a formed abelian H-group. Usually we just speak of “the formed abelian H-group A,” with
the bilinear form b = bA for A being understood. Notice that N̄(T ) is a formed abelian G/N -group,
with the action (7.3) and the bilinear form c̄ in (7.4b), whenever N̄(T ) is abelian.

The terminology associated with an arbitrary formed abelian H-group A is adapted from that
for bilinear forms on a vector space. Because the bilinear form b for A is alternating, the left and
right perpendicular subgroups B⊥ to any subgroup B ≤ A coincide

(7.5a) B⊥ = { ρ ∈ A | b(ρ,B) = 1 } = {σ ∈ A | b(B, σ) = 1 }.

The H-invariance of b implies that B⊥ is an H-invariant subgroup of A whenever B is one. In
particular, the radical

(7.5b) rad(A) = A⊥

of A is an H-invariant subgroup of A.

The form b is non-singular if rad(A) = 1. In this case A and b behave like a vector space with
a symplectic form. So we say that A is symplectic if b is non-singular, and define a symplectic
H-group to be a symplectic formed abelian H-group. When A is symplectic, its bilinear form
b : A × A → C× is a duality of the finite abelian group A with itself. Hence b induces a duality
between any subgroup B of A and the factor group A/B⊥. In particular, these two finite groups
have the same order

(7.6a) |B| = [A : B⊥].

It follows that B⊥⊥ = (B⊥)⊥ has the same index [A : B⊥⊥] = [A : B] in A as its subgroup B.
Therefore

(7.6b) B⊥⊥ = B

when A is symplectic.

A subgroup B of an arbitrary formed abelian H-group A is isotropic if b(B,B) = 1, i. e., if
B ≤ B⊥. We say that A is H-anisotropic if 1 is the only H-invariant isotropic subgroup of A.
Since rad(A) is always an H-invariant isotropic subgroup, any H-anisotropic A is a symplectic
H-group. Furthermore, any H-invariant subgroup B of A is also an H-anisotropic formed abelian
H-group, with the restriction of b as its bilinear form. The intersection B ∩B⊥ in A is the radical
rad(B) = 1 of B. Since b is non-singular, this and (7.6a) imply that A is the perpendicular direct
product

(7.7a) A = B ×B⊥

of its two H-anisotropic subgroups B and B⊥. By induction it follows that A is a direct product

(7.7b) A = B1 ×B2 × · · · ×Bk

of pairwise orthogonal simple H-subgroups B1, B2, . . . , Bk, for some integer k ≥ 0. Notice that each
simple H-subgroup Bi is an elementary pi-group, for some prime pi. So the Sylow p-subgroups of
A are all elementary abelian p-groups when A is anisotropic.

The importance of anisotropy for our formed abelian G/N -group N̄(T ) is explained by the next
step in the Hall-Higman analysis.
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Proposition 7.8. If N̄(T ) is abelian, then the G/N -invariant isotropic subgroups of N̄(T ) =
N/Z(T ) are precisely the images LZ(T )/Z(T ) of the normal subgroups L of G contained in N
such that [L,L] ≤ Ker(T ). Hence T is linearly irreducible if and only if N̄(T ) is G/N -anisotropic.

Proof. The G/N -invariant subgroups of N̄(T ) = N/Z(T ) are just the images L̄ = LZ(T )/Z(T ) of
the normal subgroups L of G contained in N . It follows from (7.4b) that c̄(L̄, L̄) = ζ(T )([L,L]),
for any such L̄ and L. Hence L̄ is isotropic if and only if [L,L] is contained in Ker(ζ(T )). This
last group is Ker(T ) by (2.2). Thus the first statement of the proposition holds. It implies the
remaining statement by Proposition 3.9. �

When T is linearly irreducible, its G/N -anisotropic formed abelian G/N -group N̄(T ) is symplec-
tic. So the following Hall-Higman result applies in that case.

Proposition 7.9. If N̄(T ) is a symplectic G/N -group, then ψ vanishes on N − Z(T ), and is a
multiple of ζ(T ) on Z(T ). Hence ψ is the only character in Irr(N | ζ(T ) ), and G(ψ) is all of G.

Proof. Suppose that ρ ∈ N − Z(T ). Then ρZ(T ) does not lie in the radical 1 of the symplectic
G/N -group N̄(T ) = N/Z(T ). In view of (7.4b), this gives us some σ ∈ N such that ζ(T )([ρ, σ]) =
c̄(ρZ(T ), σ Z(T )) 6= 1. Because ζ(T ) = (ζ(ψ))Z(T ) by (2.1c), it follows from (1.4) that

ψ(ρ) = ψ(ρσ) = ψ(ρ[ρ, σ]) = ψ(ρ)ζ(ψ)([ρ, σ]) = ψ(ρ)ζ(T )([ρ, σ]) ∈ C.

Since ζ(T )([ρ, σ]) 6= 1, this forces ψ(ρ) to be 0 for all ρ ∈ N − Z(T ).

Proposition 2.3 tells us that ψ is a multiple ψ(1)ζ(T ) of the G-invariant character ζ(T ) on Z(T ).
We have just seen that ψ vanishes on N −Z(T ). Hence the induced character (ζ(T ))N is a multiple
([N : Z(T )]/ψ(1))ψ of ψ. This implies the rest of the proposition. �

In practice we apply the above considerations to various subtriples of T , rather than to T itself.
Suppose that N̄(T ′) is abelian, for some subtriple T ′ = (G′, N ′, ψ′) of T . The natural embedding
eTT ′ in (2.8) sends the factor group G′/N′ isomorphically onto the subgroup

(7.10a) ETT ′ = eTT ′(G
′/N ′) = G′N/N

of G/N . We use this isomorphism to translate the action (7.3) of G′/N ′ on N̄(T ′) to one of ETT ′ .
Under this translated action, the coset τN = eTT ′(τN

′) ∈ ETT ′ sends any σ̄ ∈ N̄(T ′) to

(7.10b) σ̄τN = σ̄τN
′
= σ̄τ ∈ N̄(T ′),

for any τ ∈ G′. Evidently the G′/N ′-invariant function c̄ = c̄T ′ : N̄(T ′) × N̄(T ′) → C× is also
ETT ′-invariant. Thus N̄(T ′), with the bilinear form c̄, is a formed abelian ETT ′-group.

Suppose that A and A′ are formed abelian H-groups, with associated bilinear forms bA and bA′ ,
for some finite group H. By an isomorphism i of A onto A′ as formed abelian H-groups we mean
an isomorphism i of the group A onto A′ which preserves the actions of H on those two groups, in
the sense that

(7.11a) i(στ ) = i(σ)τ ∈ A′,
for any σ ∈ A and τ ∈ H, and also preserves bilinear forms, in the sense that

(7.11b) bA′(i(ρ), i(σ)) = bA(ρ, σ) ∈ C×,

for any ρ, σ ∈ A. If such an i exists, we say that the formed abelian H-groups A and A′ are
isomorphic. Clearly being isomorphic is an equivalence relation among formed abelian H-groups.
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We’re going to show that equivalence among subtriples T ′ of T implies isomorphism between
their associated formed abelian ETT ′-groups. We first treat the case of N -conjugate subtriples.

Lemma 7.12. If τ ∈ N , then the section N̄(T ′) is abelian, for some subtriple T ′ = (G′, N ′, ψ′)
of T , if and only if N̄((T ′)τ ) is abelian. In that case both G′/N ′ and (G′)τ/(N ′)τ have the same
image E = ETT ′ = ET(T ′)τ in G/N . Furthermore, conjugation by τ is an isomorphism of N̄(T ′) onto
N̄((T ′)τ ) as formed abelian E-groups.

Proof. Conjugation by τ ∈ N ≤ G(ψ) sends the normal subgroup N ′ in T ′ to the normal subgroup
(N ′)τ in (T ′)τ . It sends Z(T ′) onto Z((T ′)τ ) = Z(T ′)τ by (2.12b). Hence it sends the factor group
N̄(T ′) = N ′/Z(T ′) isomorphically onto N̄((T ′)τ ) = (N ′)τ/Z((T ′)τ ). In particular, N̄(T ′) is abelian
if and only if N̄((T ′)τ ) is abelian.

Suppose that N̄(T ′) and N̄((T ′)τ ) are abelian. Since τ lies in N , we have

ET(T ′)τ = (G′)τN/N = (G′N)τ/N = G′N/N = ETT ′ .

Thus E = ETT ′ = ET(T ′)τ acts on both N̄(T ′) and N̄((T ′)τ ) via (7.10b). Any element of E = G′N/N

has the form σN , for some σ ∈ G′. Because τ lies in N E G, the conjugate (σN)τ = στN is the
same element σN of E. It follows that

(ρ̄σN )τ = ρ̄στ = ρ̄τσ
τ

= (ρ̄τ )σ
τN = (ρ̄τ )σN ,

for any ρ̄ ∈ N̄(T ′). So conjugation by τ is an isomorphism of the group N̄(T ′) onto N̄((T ′)τ ),
preserving the actions of E on these two abelian groups.

In view of (2.12c), (7.10b), and (7.4b) we have

c̄(T ′)τ ((ρZ(T ′))τ , (σ Z(T ′))τ ) = c̄(T ′)τ (ρτ Z((T ′)τ ), στ Z((T ′)τ )) = ζ((T ′)τ )([ρτ , στ ]) =

(ζ(T ′))τ ([ρ, σ]τ ) = ζ(T ′)([ρ, σ]) = c̄T ′(ρZ(T ′), σ Z(T ′)),

for any ρ, σ ∈ N ′. Therefore the E-isomorphism σ̄ 7→ σ̄τ of N̄(T ′) onto N̄((T ′)τ ) preserves bilinear
forms, and the lemma is proved. �

Next we consider covering subtriples.

Lemma 7.13. If a subtriple T ′ = (G′, N ′, ψ′) covers a subtriple T ′′ = (G′′, N ′′, ψ′′) of T , then
N̄(T ′) is abelian if and only if N̄(T ′′) is abelian. In that case, G′/N ′ and G′′/N ′′ have the same
image E = ETT ′ = ETT ′′ in G/N . Furthermore inclusion G′ ↪→ G′′ induces an isomorphism i of
N̄(T ′) onto N̄(T ′′) as formed abelian E-groups.

Proof. We may apply all the results in §5 with the present T ′ and T ′′ in place of the T̃ and
T there. In particular, (5.5a) tells us that inclusion G′ ↪→ G′′ induces an isomorphism iT

′′
T ′ of

G′/Z(T ′) onto G′′/Z(T ′′) = G′ Z(T ′′)/Z(T ′′). This isomorphism sends N̄(T ′) = N ′/Z(T ′) onto
N̄(T ′′) = N ′′/Z(T ′′) = N ′ Z(T ′′)/Z(T ′′), since N ′′ ∈ ZG(T ′′) corresponds to N ′ = G′ ∩N ′′ in (5.7).
Hence N̄(T ′) is abelian if and only if N̄(T ′′) is abelian.

Now assume that N̄(T ′) and N̄(T ′′) are abelian. By (5.1) we have G′′ = G′ Z(T ′′). Since Z(T ′′) ≤
N ′′ = G′′ ∩N , it follows that ETT ′′ = G′′N/N = G′ Z(T ′′)N/N = G′N/N = ETT ′ .

We have already seen that the isomorphism iT
′′

T ′ : σ̄ 7→ σ̄ Z(T ′′) of G′/Z(T ′) onto G′′/Z(T ′′)
restricts to an isomorphism i of N̄(T ′) onto N̄(T ′′). Any element σ̄ of E = ETT ′ = G′N/N has the
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form σN , for some σ ∈ G′. Since σ also lies in G′′, and hence normalizes Z(T ′′) E G′′, it follows
from (7.10b) that

i(ρ̄σ̄) = i(ρ̄σ) = ρ̄σ Z(T ′′) = (ρ̄Z(T ′′))σ = i(σ̄)σ̄,

for any ρ̄ ∈ N̄(T ′). Thus the isomorphism i of N̄(T ′) onto N̄(T ′′) preserves the actions of E on these
two abelian groups.

We know from (5.4e) that ζ(T ′) is the restriction of ζ(T ′′) to Z(T ′) ≤ Z(T ′′). It follows from this
and (7.4b) that

c̄T ′(ρZ(T ′), σ Z(T ′)) = ζ(T ′)([ρ, σ]) = ζ(T ′′)([ρ, σ]) = c̄T ′′(i(ρZ(T ′)), i(σ Z(T ′))),

for any ρ, σ ∈ N ′. Therefore i preserves bilinear forms, and the lemma is proved. �

Putting the above two lemmas together, we obtain

Theorem 7.14. If N̄(T ′) is abelian, for some subtriple T ′ of T , then so is N̄(T ′′), for any subtriple
T ′′ equivalent to T ′. In that case both ETT ′ and ETT ′′ are the same subgroup E of G/N . Furthermore,
the two formed abelian E-groups N̄(T ′) and N̄(T ′′) are isomorphic.

Proof. By Lemma 7.12 this theorem is true when T ′′ is N -conjugate to T ′. By Lemma 7.13 it is
true when T ′ covers T ′′, or when T ′′ covers T ′. An arbitrary triple T ′′ equivalent to T ′ is obtained
from T ′ in a finite series of equivalences, each of which is in one of these three cases. Since the
theorem holds at each step in this process, and its conclusions are clearly transitive, this is enough
to prove it in general. �

Now we can prove Theorem A of the introduction, in the form of

Theorem 7.15. If N̄(T ′) is nilpotent, for some linear limit T ′ of T = (G,N,ψ) ∈ T, then it is
naturally a G(ψ)/N -anisotropic symplectic G(ψ)/N -group. So is N̄(T ′′), for any other linear limit
T ′′ of T . Furthermore, N̄(T ′) is isomorphic to N̄(T ′′) as symplectic G(ψ)/N -groups.

Proof. Since the linear limit T ′ is linearly irreducible, and N̄(T ′) is nilpotent, Propositions 7.2 and
7.8 tell us that N̄(T ′) is abelian and G′/N ′-anisotropic. So it is a symplectic G′/N ′-group. Now
Proposition 7.9 says that G′ = G′(ψ′). In view of Proposition 4.4, this implies that G(ψ)/N =
G′(ψ′)N/N is the image ETT ′ = G′N/N of G′/N ′ in G/N . So N̄(T ′) is a G(ψ)/N -anisotropic
symplectic G(ψ)/N -group, with the action (7.10b) of G(ψ)/N = ETT ′ on N̄(T ′).

By Theorem 6.4 any linear limit T ′′ of T is equivalent to T ′. The rest of the present theorem
follows from this and Theorem 7.14. �

When N̄(T ) is symplectic it is easy to classify the multilinear reductions of T .

Proposition 7.16. If N̄(T ) is symplectic, for some T = (G,N,ψ) ∈ T, then the map f : T ′ 7→
(Z(T ′), ζ(T ′)) is a bijection of the set MLR(T ) of all multilinear reductions of T onto the set
L = L(T ) of all ordered pairs (L, λ) satisfying

L E G, Z(T ) ≤ L ≤ N and λ ∈ Lin(L | ζ(T ) ).

If (L, λ) ∈ L, then the linear reduction T (λ) of T is defined. The resulting map g : (L, λ) 7→ T (λ)
from L to MLR(T ) is the inverse bijection to f . Hence any multilinear reduction of T is a linear
reduction of T .
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Proof. Suppose that T ′ = (G′, N ′, ψ′) is a multilinear reduction of T . We have Z(T ) ≤ Z(T ′) ≤
N ′ ≤ N by (4.1). Because N/Z(T ) = N̄(T ) is abelian, this implies that N normalizes Z(T ′).
Propositions 4.4 and 7.9 tell us that G′(ψ′)N = G(ψ) = G. Since G′(ψ′) normalizes Z(T ′) E G′, we
conclude that Z(T ′) is a normal subgroup of G such that Z(T ) ≤ Z(T ′) ≤ N . The linear character
ζ(T ′) of Z(T ′) extends ζ(T ) ∈ Lin(Z(T )) by (4.1). Therefore (Z(T ′), ζ(T ′)) belongs to L. So the
function f : MLR(T ) → L in the proposition is defined.

If (L, λ) belongs to L, then there is some φ ∈ Irr(N) lying over λ ∈ Lin(L). Since φ lies over
ζ(T ) ≤ λ, it must be the unique character ψ ∈ Irr(N | ζ(T ) ) in Proposition 7.9. Hence λ ≤ ψ,
and the linear reduction T (λ) is defined. Thus the function g : L → MLR(T ) in the proposition is
defined.

When T ′ = (G′, N ′, ψ′) belongs to MLR(T ), Proposition 4.8 tells us that G′ = G(ζ(T ′)) and
N ′ = N(ζ(T ′)). It also tells us that ψ′ is the unique character in Irr(N(ζ(T ′)) | ζ(T ′) ) lying under
ψ. Since we know that Z(T ′) is a normal subgroup of N , and that ζ(T ′) ∈ Lin(Z(T ′)) lies under
ψ ∈ Irr(N), this just says that ψ′ is the ζ(T ′)-Clifford correspondent ψζ(T ′) of ψ. Hence T ′ is
T (ζ(T ′)) = (G(ζ(T ′)), N(ζ(T ′)), ψζ(T ′)). We conclude that the composite function g ◦f is the identity
map of MLR(T ) onto itself.

Now fix (L, λ) ∈ L. As in Step 7 of the proof of Theorem 6.4, the form c : N ×N → C× in (7.4a)
satisfies

c(ρ, σ) = ζ(T )([ρ, σ]) = λ(ρ)λσ
−1

(ρ)

for any ρ ∈ L and σ ∈ N . It follows that the stabilizer N(λ) is precisely the perpendicular subgroup
L⊥ to L with respect to c.

The commutator [N(λ),Z(T (λ))] is contained in Ker(ζ(T (λ))), since ζ(T (λ)) ∈ Lin(Z(T (λ)) is
N(λ)-invariant. Because ζ(T (λ)) extends ζ(T ), it follows that

c(N(λ),Z(T (λ))) = ζ(T )([N(λ),Z(T (λ))]) = ζ(T (λ))([N(λ),Z(T (λ))]) = 1.

So Z(T (λ)) is contained in N(λ)⊥ = L⊥⊥. But L⊥⊥ is the inverse image in N of the double
perpendicular subgroup L̄⊥⊥ to L̄ = L/Z(T ) under the form c̄ : (N/Z(T )) × (N/Z(T )) → C×

induced by c. Since L̄⊥⊥ = L̄, by (7.6b) for the symplectic G/N -group N̄(T ) = N/Z(T ), we
conclude that Z(T (λ)) ≤ L⊥⊥ = L. The opposite inclusion holds by (3.3). Therefore Z(T (λ)) is
equal to L. Because λ ∈ Lin(L) is the restriction of ζ(T (λ)) ∈ Z(T (λ)) in (3.3), this implies that
ζ(T (λ)) = λ. Hence the composite map f ◦g sends (L, λ) to itself, and the proposition is proved. �

Corollary 7.17. If (L, λ) lies in L, then the normal subgroup N(λ) in T (λ) is the perpendicular
subgroup L⊥ to L with respect to the form c : N ×N → C× in (7.4a).

Proof. This was shown in the course of the above proof. �

The linear limits of T can also be described in the situation of the preceding proposition.

Proposition 7.18. If (K,κ) and (L, λ) belong to the set L in Proposition 7.16, then T (κ) is a
linear reduction of T (λ) if and only if L ≤ K and λ = κL. Hence T (λ) is a linear limit of T if and
only if L̄ = L/Z(T ) is maximal among all G/N -invariant isotropic subgroups of N̄(T ) = N/Z(T ).

Proof. If T (κ) is a linear reduction of T (λ), then (4.1) tells us that Z(T (λ)) ≤ Z(T (κ)) and ζ(T (λ)) =
(ζ(T (κ)))Z(T (λ)). In view of Proposition 7.16 this just says that L ≤ K and λ = κL.
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On the other hand, if L ≤ K and λ = κL, then T (κ) is the linear reduction [T (λ)](κ) of T (λ) by
Proposition 3.11. So the first statement in the present proposition is proved.

Since L is a normal subgroup of G contained in N , and λ ∈ Lin(L) lies under ψ ∈ Irr(N),
Propositions 3.4 and 7.8 tell us that L̄ = L/Z(T ) is a G/N -invariant isotropic subgroup of N̄(T ) =
N/Z(T ). If L̄ is maximal among such subgroups, then K̄ = K/Z(T ), which is also G/N -invariant
and isotropic, must equal L̄. This forces K to equal L, and κ ∈ Lin(K) to equal λ = κL. So
T (κ) = T (λ). In view of Proposition 7.16, this implies that T (λ) is linearly irreducible. So T (λ) is
a linear limit of T whenever L̄ is maximal.

Suppose that there is some G/N -invariant isotropic subgroup M̄ of N̄(T ) such that L̄ < M̄ . Then
M̄ = M/Z(T ), where M is a normal subgroup of G satisfying Z(T ) ≤ L < M ≤ N . Furthermore,
[M,M ] is contained in Ker(T ) by Proposition 7.8. Because Ker(T ) = Ker(ζ(T )) and ζ(T ) = λZ(T ),
we conclude that [M,M ] ≤ Ker(λ). So λ ∈ Lin(L | ζ(T ) ) can be extended to some character
µ ∈ Lin(M | ζ(T ) ). Then (M,µ) lies in L, and T (µ) is a linear reduction of T (λ). This linear
reduction is proper, since M = Z(T (µ)) strictly contains L = Z(T (λ)). Therefore T (λ) is linearly
reducible when L̄ is not maximal, and the remaining statement in the proposition is proved. �

Let A be a formed abelian H-group, for some finite group H, and B be an isotropic H-invariant
subgroup of A. Then B⊥ is an H-invariant subgroup of A containing B, and the factor group
B⊥/B is naturally an H-group. The bilinear form b : A × A → C× for A induces a bilinear form
b̄ : (B⊥/B)× (B⊥/B) → C×, sending the cosets ρB, σB ∈ B⊥/B to

(7.19) b̄(ρB, σB) = b(ρ, σ) ∈ C×,

for any ρ, σ ∈ B⊥. This induced form b̄ is strongly alternating and H-invariant, since b has these
properties. So it turns B⊥/B into a formed abelian H-group. Whenever we treat B⊥/B as a
formed abelian H-group, it is this induced bilinear form we have in mind.

Any subgroup of B⊥/B is the factor group C/B, for some subgroup C of B⊥ containing B. The
inclusions

B ≤ B⊥⊥ ≤ C⊥ ≤ B⊥,

in A, and the above definition of b̄, imply that the perpendicular subgroup (C/B)⊥ to C/B in
B⊥/B is the image

(7.20a) (C/B)⊥ = C⊥/B

of the perpendicular subgroup C⊥ to C in A. In particular, the radical of B⊥/B is the image

(7.20b) rad(B⊥/B) = (B⊥/B)⊥ = B⊥⊥/B

of B⊥⊥. When A is symplectic this last image is 1 by (7.6b). Hence B⊥/B is naturally a symplectic
H-group, for any H-invariant isotropic subgroup B of any symplectic H-group A.

We apply the above remarks whenA is the symplecticG/N -group N̄(T ) = N/Z(T ) in Proposition
7.16, and B is its G/N -invariant isotropic subgroup L̄ = L/Z(T ) in Proposition 7.8, for some
(L, λ) ∈ L. The normal subgroup N(λ) in T (λ) is L⊥ by Corollary 7.17. Hence its image in N̄(T )
is

(7.21a) N(λ)/Z(T ) = L⊥/Z(T ) = (L/Z(T ))⊥ = L̄⊥.

Since L is Z(T (λ)) by Proposition 7.16, the factor group N̄(T (λ)) is

(7.21b) N̄(T (λ)) = N(λ)/Z(T (λ)) = L⊥/L.
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We conclude that there is a natural isomorphism i = iT (λ) of the group N̄(T (λ)) onto L̄⊥/L̄, sending
σ Z(T (λ)) = σL ∈ N̄(T (λ)) to

(7.21c) i(σL) = (σ Z(T ))L̄ ∈ L̄⊥/L̄ = (L⊥/Z(T ))/(L/Z(T )),

for any σ ∈ N(λ) = L⊥. Because L̄⊥/L̄ is an abelian group, so is the isomorphic group N̄(T (λ)).
Hence N̄(T (λ)) is naturally a formed abelian G(λ)/N(λ)-group. By Propositions 4.4 and 7.9 the
embedding G(λ) ↪→ G induces an isomorphism of G(λ)/N(λ) onto G(ψ)/N = G/N . We use this
isomorphism to carry the conjugation action of G(λ)/N(λ) on N̄(T (λ)) to an action of G/N on
N̄(T (λ)). In this way N̄(T (λ)) becomes a formed abelian G/N -group.

Proposition 7.22. If (L, λ) belongs to the set L in Proposition 7.16, then the map i in (7.21c)
is an isomorphism of N̄(T (λ)) onto L̄⊥/L̄ as formed abelian G/N -groups. Hence N̄(T (λ)) is a
symplectic G(λ)/N(λ)-group, as well as a symplectic G/N -group.

Proof. The natural alternating form c̄T (λ) on N̄(T (λ))× N̄(T (λ)) is defined by (7.4b) with T (λ) in
place of T . Because ζ(T (λ)) = λ extends ζ(T ), we have

c̄T (λ)(ρL, σL) = ζ(T (λ))([ρ, σ]) = ζ(T )([ρ, σ]) = c̄T (ρZ(T ), σ Z(T ))

for all ρ, σ ∈ N(λ). So the isomorphism i in (7.21c) sends c̄T (λ) to the form ¯̄c on (L̄⊥/L̄)× (L̄⊥/L̄)
induced by c̄ = c̄T as in (7.19).

If τ ∈ G(λ) and σ ∈ L⊥, then the element (σL)τN of the G/N -group N̄(T (λ)) = L⊥/L is στL
by definition. The isomorphism i carries this to

(στ Z(T ))L̄ = (σ Z(T ))τ L̄ = ((σ Z(T ))L̄)τ = i(σL)τ .

So i preserves actions of G/N as well as biliear forms, and thus is an isomorphism of formed abelian
G/N -groups.

We know that L̄⊥/L̄ is a symplectic G/N -group, since N̄(T ) is one. Hence the isomorphic abelian
G/N -group N̄(T (λ)) is symplectic. It follows that N̄(T (λ)) is a symplectic G(λ)/N(λ)-group. So
the proposition is proved. �

References

[1] T. Berger, Primitive solvable groups, J. Algebra 33 (1975), 9–21.
[2] E. Dade, Stabilizer limits of characters of nilpotent normal subgroups, J. Algebra 102 (1986), 376–422.
[3] E. Dade, Elementary stabilizer limits of irreducible group characters, J. Algebra 112 (1988), 290–305.
[4] I. M. Isaacs, Character stabilizer limits relative to a normal nilpotent subgroup, J. Algebra 102 (1986), 367–375.
[5] M. Loukaki, Normal subgroups of odd order monomial paqb-groups, Thesis, University of Illinois at Urbana-

Champaign, 2001.

Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 W. Green St., Ur-
bana, IL 61801, USA

E-mail address: dade@math.uiuc.edu

School of Mathematics, Georgia Institute of Technology, 686 Cherry Street NW, Atlanta, GA
30332-0160, USA

E-mail address: loukaki@math.gatech.edu


