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Abstract

A finite group G is called monomial if every irreducible character of G is induced from a linear
character of some subgroup of G. One of the main questions regarding monomial groups is whether
or not a normal subgroup N of a monomial group G is itself monomial. In the case that G is a
group of even order, it has been proved (Dade, van der Waall) that N need not be monomial. Here
we show that, if G is a monomial group of order p®q®, where p and ¢ are distinct odd primes, then
any normal subgroup N of G is also monomial.

iii



to my parents Anna and Giannis,
and

to my teacher, Everett C. Dade,
without whom none of this would have been done,
and everything would have been written faster.

v



Acknowledgments

First and foremost I would like to thank my advisor Prof. Everett C. Dade not only for his endless
patience, his continued support and encouragement, his creativity and his humor, but also for all
those afternoon meetings in his office, where I saw how mathematics can become pure art. Thank
you. This would have been only a dream without your help.

I would also like to thank the members of my committee that went through the trouble of
reading this thesis, and Prof. Marty Isaacs for his sincere interest in this work. I also thank my
first math teacher Manolis Mpelivanis, Prof. George Akrivis for his faith in me, and Prof. Giannis
Antoniadis for introducing me to Representation Theory.

Special thanks go to my parents Anna and Giannis and my sister Marianthi for always being
there, and to Michalis for the verses at Daily Grind and the “sweet and sour” evenings.

I'm grateful to all my friends that made my stay in Urbana memorable, especially Sasa (yia
o), George (v katt “evdiagpeporv kar drackedaoTiko”), Michalino (yia Tis kovBevTes oTo
kagevero), Daniella (for Mr. Maxx), Leonida (vt Tao pabnuata xopov), Tina (yia To Tevvis),
Niko (yvia T Bpadia pe maoTiToro), Edith (for the hours in the library), Nader (for the “Jazz”),
and Anne who kept her confidence in me, long after I had lost mine.

Finally I wish to acknowledge the University of Illinois for the financial support (Fellowships),
and the National Science Foundation that partially supported the writing of this thesis by grants
DMS 96-00106 and DMS 99-70030. Of course, the correctness of the results in this thesis is the
responsibility of the author and not of the National Science Foundation.



Table of Contents

Chapter 1 Introduction . . . . . ... ... ..ttt 1
1.1 The problem . . . . . . . . e 1

1.2 Notation . . . . . . . . . o e 4
1.3 The general ideas in the proof . . . . . . . . . . .. ... 6
Chapter 2 Preliminaries . . . . . . . . . . . . 0 0 i i e e e e e e e e 10
2.1 Glauberman correspondence . . . . . . . .. ... 10
2.2 GIOUPS .+« v v o e e e e e e 10
2.3 Character extensions . . . . . . . . . .. Lo 13
Chapter 3 A Key Theorem . . .. . . .. ittt iieeeeen. 16
Chapter 4 Changing Characters . . . . . . . . . i v i ittt i v v v, 21
4.1 A “petite” change . . . . .. . 21
4.2 A “multiple” change . . . . . . . . . . .. 28
Chapter 5 Triangular Sets . . . .. . . ... i i ie e, 34
5.1 The correspondence . . . . . . . . ... e e 34
5.2 Triangular-sets: existence and properties . . . . . . . . .. ... ... ... 35
5.3 From towers to triangles . . . . . .. .. L L L 50
5.4 From triangles to towers . . . . . . . .. L L L e 70
5.5 The groups Py;: something stable in all that mess . . . . . ... ... ... ...... 74
5.6 The groups Q3,1 - - - - - . . . . 80
5.7 When w-split groups are involved . . . . . . . . . ... L 83
Chapter 6 The Group G' =G(ad,) -« v v v v v i i i i i i it i it 86
6.1 7'-Hall subgroups of G': the group Q . . . . v v v v v i 86
6.2 The irreducible characters ﬂAZi—l of @21‘_1. ........................ 102
6.3 m-Hall subgroups of N (P, @gi,l in G;(ad;_5)): the groups Poj oo 104
6.4 Triangular sets for G’ =G(ad,) . . . . .. ... 110
6.4.1 From G to G' . . . . . 110

6.4.2 From G/ to G . . . . . e 113
Chapter 7 The New Characters x;/ of G; ... ... ... ... ... ....... 124

vi



Chapter 8 The 7, 7' Symmetry and the Hall System {A/B} .. .......... 132

8.1 Thegroup P . . . . . . . e 132
8.2 The Hall system {A,B} of G . . . . . ... ... . ... ... ... .. 133
8.3 “Shifting ” properties . . . . . . . . L 137
Chapter 9 Normal Subgroups . . . . . ¢ .t i o v v v v v v b et e e et e e e e 141
9.1 Normal 7/-subgroups inside Q1 . . . . . . . . . ... 141
9.2 Normal m-subgroups inside Py . . . . . . . . . . L 157
9.3 Kernels . . . . . 166
9.3.1 Imside Q1 . . . . .« o o e 166

9.3.2 Inside Po . . . . . . . e e e 175
Chapter 10 Linear Limits . . . . . . . . .. ittt ii.. 178
10.1 Basic properties . . . . . . . . . e 178
10.2 Linear limits of characters of p-groups . . . . . . . . .. ... ... L. 184
10.3 Linear limits, character towers and triangular sets . . . . . . . . ... ... .. ... 192
10.3.1 “A(f1)”-invariant linear reductions . . . . . . . ... ..o 192

10.3.2 “B(awg)”-invariant linear reductions . . . . . . .. ... oL 199
Chapter 11 Main Theorem . . . . . . . . . . . 00 i ittt i i i v vt v v 207
11.1 An outline of the proof . . . . . . . . . . ... 207
11.2 Conclusions for the smaller systems . . . . . . .. ... ... .. .. ... .. 216
11.3 Thet =1 case . . . . . . o i i i e 223
11.4 Thet =2case . . . . .« 0 o i i i i e 226
11.5 The general case . . . . . . . . . . . L 233
11.6 Corollaries . . . . . . . . L L e 238
References . . . . . . o o o i e e e e e e e e e e e e e 240

vii



viil



Chapter 1

Introduction

1.1 The problem

Around 1930, Taketa (see [20]) introduced the notion of a monomial finite group, i.e., a group for
which every irreducible character is induced from a linear character of some subgroup. He also
proved that any monomial group is solvable. As any supersolvable group is monomial, Taketa’s
theorem places the class of monomial groups between the classes of solvable and of supersolvable
groups.

In 1967, Dornhoff (in [6]) proved that every normal Hall subgroup of a monomial group is
monomial. Furthermore, he asked whether or not every normal subgroup of a monomial group
is monomial, a question that arises very naturally after his result on normal Hall subgroups. A
negative answer to Dornhoff’s question was found independently by both Dade [2] and van der
Waall [21] in 1973. But their counterexamples have even order. Furthermore, the prime 2 plays
an important role in their construction, so that the examples can’t be modified to give an answer
to Dornhoff’s question in the case of an odd order group. Thus Dornhoff’s question remains open
in the case of odd order monomial groups. In the 1980’s Dade and Isaacs, among others, tried to
solve the remaining part of the problem. They produced many beautiful theorems suggesting that
the following conjecture might be true:

Conjecture 1.1. Let G be a monomial group of odd order. Assume that N is a normal subgroup
of G. Then N is also monomial.

Among their results of that period, the following are the most useful for this thesis.

Theorem 1.2 (Isaacs). [Problem 6.11 in [12]] Assume that G is a monomial group and that A
is any normal subgroup of G. Let \ be a linear character of A. We write G(\) for the stabilizer
of X\ in G. Assume that x is any irreducible character of G that lies over A. Let x» be its Clifford
correspondent, i.e., the unique irreducible character of G(X\) that lies above A and induces x in G.
Then x is monomial.

Theorem 1.3 (Dade). [Theorem 3.2 in [1]] Let G be a p-solvable group for some odd prime p.
Assume that U is a Z,(G)-module that affords a nondegenerate alternating G-invariant Z,-bilinear
form. Let H be a subgroup of G that has p-power index in G. Then U is Z,(G)-hyperbolic if and
only if U is Z,(H)-hyperbolic.

(For the definition of hyperbolic modules, see Section 1.2.)
Based on this theorem Dade was able to prove
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Theorem 1.4 (Dade). [Theorem (0) in [1]] Let G be a p-solvable group for some odd prime p, and
let N be a normal subgroup of G. Assume that x € Irr(G) is a monomial character of G that has
p-power degree. Then every irreducible constituent of the restriction xn of x to N is monomial.

Dade’s Theorem (Theorem 1.4) is a very powerful result as it manages to handle monomial
characters individually. That is, he doesn’t assume that G is monomial or that there are any
monomial characters in Irr(G) except the specific prime-power degree character that is analyzed.
Unfortunately, if we have characters with degrees that are divisible by more than one prime, then
we can’t hope to prove something similar to Theorem 1.4, as Dade has given counterexamples (in
[1]) where his theorem fails when two odd primes divide x(1).

But if we have enough monomial characters so that we have the freedom to replace, in some
sense, the “bad”ones with “good” ones, we can do more. We can actually prove that a big enough
section inside any normal subgroup N of a monomial p%¢’-group G is nilpotent, provided that p
and ¢ are odd primes. What we show is

Main Theorem 1. Let G be a finite p®q®-monomial group, for some odd primes p and q. Assume
that N is a normal subgroup of G and that x is an irreducible character of N. Then there exists a
faithful linear limit x* of x, such that the domain Dom(x™*) of x* is a nilpotent group.

(For the definition of “faithful linear limits”, see Section 10.1.)
As corollaries of the Main Theorem 1 we have

Main Theorem 2. Let G be an odd order monomial p®q®-group. If N is a normal subgroup of G,
then N is monomial.

and

Main Theorem 3. Let G be an odd order monomial p®q®-group and let x € Irr(G). Then there
exists a faithful linear limit x* of x such that x*(1) =1, i.e., X* is a linear character.

What is the desired property a “good” character has? We can control its degree. If this degree
has the right properties then nilpotent subgroups appear, as the following result shows:

Theorem 1.5. Assume that G is a p, q-group, where p and q are distinct odd primes, and that N, M
are normal subgroups of G. Let M = P x S and N = P x ), where P is a p-group, and S,Q are
q-groups with S < Q. Assume that the center Z(P) of P is maximal among the abelian G-invariant
subgroups of P. Let x,a, and ¢ be irreducible characters of G, P,S and Z(P) respectively that
satisfy

x € Irr(Gla x B) and o € Irr(P|(),
¢ is a faithful G-invariant character of Z(P),
G(B) =G,
X is a monomial character of G with x(1), = (1),

where x (1), denotes the g-part of the integer x(1). Then @ centralizes P.

The above theorem, that appears as Theorem 11.76 in this thesis, is heavily based on Theorem
1.3, and the work done in Dade’s paper [1].

The way we use in this thesis to approach these “good” characters is by constructing a character
of known degree in a subgroup of G that extends to its own stabilizer in G. So the key tool for the
proof of Theorem 1 is the following result (that appears as Theorem 4.17 in Chapter 4):
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Theorem 1.6. Let P be a p-subgroup, for some prime p, of a finite odd order group G. Let Q1,Q
be q-subgroups of G, for some prime q # p, with Q1 < Q. Assume that P normalizes (Q1, while
Q normalizes the product P - Q1. Assume further that (31 is an irreducible character of Q1. Then
there exist irreducible characters 37 of Q1 and ¥ of Q(BY) such that

P(B1) = P(67),
QA1) < Q(BY) and
BV|Q1 = .
Therefore 3 is an extension of BY to Q(5Y).
A possible generalization of Theorem 1.6 to the case where Q1 and @ are arbitrary p’-subgroups

of G would give a generalization of the Main Theorem 1. In this way the original problem (Con-
jecture 1.1) can be transformed to the following question:

Question 1.7. Does Theorem 1.6 hold if its second sentence is replaced by “Let Qq,Q be p'-
subgroups of G”7?

Note: Shortly after this thesis was submitted E. C. Dade found a counterexample to the
above question. His example is not a counterexample for Conjecture 1.1. Nevertheless, it suggests
strongly that a generalization of Theorem 1.6 requires some new ideas.



1.2 Notation

Let G be a finite group with M, N, K, K1, ..., K; subgroups of G, for some t > 1, and g, h elements
of G. Assume further that M normalizes N. Let x be a (complex) irreducible character of M, (we
assume that all the characters we use in this text are over the field C of the complex numbers)
and X an irreducible C-representation of GG that affords y. Assume further that ¢1,...,¢; are
irreducible characters of K1, ..., K}, respectively. Let p be a prime number, and 7 a set of primes.

The list that follows describes the notation we will be using for the rest of this thesis.

Ly : the field of p elements Z/pZ

Z(G): the center of G

SyL,(G) : the set of all Sylow p-subgroups of G
Hall,(G) : the set of all Hall w-subgroups of G
0,(G) : the largest normal p-subgroup of G
O(G) : the Frattini subgroup of G

" the h-conjugate h~'gh of g

K" the h-conjugate group h ' Kh of K
N<G: N is a subgroup of G

NG : N is a normal subgroup of G

N(M in G) = Ng(M) :
N(K in M) = Ny (K) :
N(Ky,...,Kyin M) :

C(M in G) = Cg(M) :
C(K in M) = Cy(K) :
C(Ky,..., K, in M) :

the normalizer of M in G
the normalizer of K in M

the normalizer of all K, fori=1,...,tin M, i.e.,
¢
the intersection ﬂ N(K;in M)
i=1
the centralizer of M in G
the centralizer of K in M

the centralizer of all K;, fori=1,...,tin M, i.e.,

t
the intersection ﬂ C(K;in M)
i=1

M x N the semidirect product of M and N when M acts on N

KxN the semidirect product of K and N when N acts on K

[M, N] the commutator subgroup of M, N

Irr(G) the set of all complex irreducible characters of G

Lin(Q) the set of all linear complex characters of G

Ker(x) the Kernel of y, i.e., Ker(x) = {m € M|x(m) = x(1)}

X7 : the g-conjugate of y, i.e., x? is a character of MY defined as
x9(m?) := x(m) for all m € M

& the induced character on G



[x, ¥ : the inner product of y, ¢ € Irr(M), i.e.
vl = (1/1G) > x(g)(g™)

geG
It (N) the set of all M-invariant irreducible characters of N
I (G) - the set of all x € Irr(G) such that x lies above
at least one character 6 € Irr™ (V)
Irr(Glx) : the set of all irreducible characters of G that lie above x
G(x) : the stabilizer of y in G, i.e., the set of all elements g of G

that satisfy x9 = x
t
G(d1,...,¢1) = the stabilizer of ¢;, for i = 1,...,t, in G, i.e., the set m G(¢:)
i=1

K(x): the stabilizer of x in K

t
K(p1,...,0¢): the stabilizer of ¢;, for i =1,...,¢, in K, i.e., the set ﬂ K ()

i=1
det(X(9)) : the determinant of the matrix X(g) for some g € G
det(x) : the linear character of G defined as
(det(x))(g) = det(X(g)) for all g € G
o(x) : the determinantal order of Y, i.e., the order of the linear character

det(x) as an element of the group Lin(G)

[r] : the integral part of a real number r, i.e., the largest integer t such that ¢t < r.

Assume that Gg <Gy < --- <G, is a series of normal subgroups of G, for some integer n > 0.
Assume further that y; is an irreducible character of G;, for alli = 0,1, ..., n, such that x; € Irr(G;)
lies above x;—1 € Irr(G;—1), whenever ¢ = 1,...,n. Then we call the set {x;}}, a character tower
for the series {G;}7 .

If T is a finite-dimensional Z,(G)-module that affords a G-invariant symplectic form < -,- >,
then we will use the terminology introduced in [1]. So, if S is a Z,(G)-submodule of T', then S= is
the perpendicular subspace of S, i.e., St := {t € T| < S,t >= 0}. Furthermore, S is isotropic
if S < St. T is anisotropic if it contains no non-trivial isotropic Z,(G)-submodules, and is
hyperbolic if it contains some self-perpendicular Z,(G)-submodule S, i.e., S is a Z4(G)-submodule
satisfying S = S+.

If U;, for i = 1,...,n, are F(G)-submodules of an F'(G)-module S, where F is a field and n a
positive integer, we write

Uy +Us: for the internal direct sum of U; and Us, and
Z U : for the internal direct sum of the U;, for allt=1,...,n.
1<i<n



1.3 The general ideas in the proof

As this thesis turned out to be much longer and complicated than expected, the author would like
to apologize to the reader for all the mysterious groups that appear suddenly, and for no apparent
reason, in the chapters that follow. We will attempt in this section to give the main ideas of the
proof, trying to avoid, as much as possible, the technical parts.

Assume that G is a finite monomial group. Assume further that G has order p¢® for some
distinct odd primes p and g. Let N be a normal subgroup of GG. Fix an irreducible character 1 of
N. If A is any normal subgroup of G contained in N, and X is a linear character of A lying under 1,
then Isaacs observation (Theorem 1.2), implies that we may pass from G to the stabilizer G’ = G(\)
of X in G without losing the monomiality of those irreducible characters of G’ that lie above . This
way we reduce the order of the group G, possibly loosing some of the monomial characters, but still
keeping track of those that lie above v. (This reduction procedure, that is described in Chapter 10,
produces a “linear limit”.) What we prove by induction is that, by applying this procedure many
times, and choosing the A and A carefully, (see Section 10.3 for an explanation of “careful”), we
can reduce G, N and v to G’, N’ and ¢/, respectively that satisfy

G' <G, and N =NNG <N, while ¢ € Irr(N'),
N'/Ker(¢)') is nilpotent,
W) =, (1.8)

all ¥’ € Irr(G’|¢') are monomial.

This is equivalent to our Main Theorem 1. It is proved using induction on the order of N. Note
that (1.8) easily implies that the character v is monomial, since 1 is induced from ¢’, and the
unique character 1)’/ Ker(¢)') of the factor group N’/ Ker(y)') that inflates to ¢/’ is monomial as an
irreducible character of a nilpotent group.

First notice that if N is a nilpotent group, (1.8) holds trivially with N in the place of N'. (We
don’t even need to apply Clifford’s theorem to any normal subgroup A and any linear character
A € Irr(A).) Now suppose that N is not nilpotent. Because G is solvable, there exists a normal
subgroup L of G such that L < N, while N/L is either a p- or a g-group. We may assume that
N/L is a g-group, and that p divides |L|. Let p € Irr(L) be an irreducible character of L lying
under ¢ € Irr(N). We apply the reductions described above with L and p in the place of N and
1, i.e., we reduce G using linear characters of normal subgroups of G that are contained inside L
(again choosing these linear characters carefully). Every time G gets reduced N and L are also
reduced. Furthermore, the fixed character ¥ of N also gets reduced, at every step, to a Clifford
correspondent. So does the character p € Irr(L). According to the inductive hypothesis applied
to L, at some point these reductions lead us to groups G” and L”, and to an irreducible character
w” € Irr(L") that induces p while L”/ Ker(p”) is nilpotent. Of course if we reduce the group G”
more, using normal subgroups A of G” contained in L” and their linear characters A € Lin(A), the
above properties remain valid. So we continue reducing until there is no normal subgroup A < L”
and linear character A € Irr(A) lying under p” with G”(\) < G”. At the end of this procedure
we reach groups L' and G, and a character u' € Irr(L'), that satisfy the equivalent of (1.8) for L.
In addition to those, the group N gets reduced to N’ = G’ N N, and its irreducible character 1 is
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reduced to ¢’ € Irr(N’). Therefore we have

G'<G, and L' = LNG' < L, while y/ € Trr(L'),
N' =NNG <N and ¢’ € Irr(N'|i),
L'/ Ker(y') is nilpotent, (1.9)

(W)t = u,
all x € Irr(G'|y’) are monomial,
for any A < G’ contained in L', and any A € Lin(A) that lies under i/, we get G'(\) = G-

It is easy to see (after all, these reductions are just repeated applications of Clifford theory) that
1" induces v, and lies above p'.

The fact L' = L/ Ker(y) is nilpotent implies that the factor groups L/ Ker(y')9 are all nilpotent,
whenever g € G'. Let K' = (| ¢ Ker(y')? and Ly = L'/K’. Then L, is also nilpotent. Therefore
L splits as the direct product L; = P; X Q1 of its p- and ¢-Sylow subgroups P; and ()1, respectively.
If iy is the unique irreducible character of the factor group L; that inflates to ' € Trr(L’), then py
also decomposes as pu; = o X 3, where v € Irr(Py) and § € Irr(Q1). At this point we can say more
for P, and Q. If A; is any normal subgroup of G; = G'/K’ contained in Ly, then Ay = A'/K’,
where A’ is a normal subgroup of G'. If, in addition, A; € Lin(A;) lies under pq, then A; inflates to
a unique character ' € Lin(A’) that lies under p/. As L' was as reduced as possible, the character
X' is G'-invariant. It also lies under p’. Hence Ker(\') = Ker(s/,,). So

Ker(\) = ﬂ Ker(\)¢ < ﬂ Ker(1/)? = K'.
geG’ geG!

Therefore A1 is a faithful linear character of A;, and is Gi-invariant. Thus every characteristic
abelian subgroup of P; is cyclic and is contained in the center of P;. Similarly for ();. In particular
the center Z(P;) of P; is cyclic, and affords a faithful Gi-invariant linear character that lies under
a. Similarly the center Z(Q1) is cyclic, and affords a faithful Gi-invariant linear character lying
under 4. Furthermore, P; (and similarly Q1) is of a very specific type. Either it is cyclic or it is the
central product of an extra special p-group of exponent p with the cyclic p-group Z(P;). Similarly
for the g-group Q1. Then clearly the characters o and (8 are Gi-invariant and faithful. Hence
w1 = ax B is Gy invariant. We conclude that the character ' is G’-invariant. So Ker(y') = K’ is a
normal subgroup of G'. Thus G; = G’/ Ker('). Furthermore, because ¢’ € Irr(N’) lies above p/,
the group K’ is contained in the kernel of ¢’ € Trr(N’). Therefore there exists a unique irreducible
character v of the factor group Ny = N’/K’ that inflates to ¢’ € Irr(IN'). Note that Z(P) is
maximal among the abelian normal subgroups of G; contained in P;. This makes the factor group
Py /Z(Pr) naturally a symplectic space (see (10.20) for the definition of the symplectic form). It is
actually a symplectic Z,(G1/L1)-module. A picture of the situation is

G

Ny (3 (1.10)

| |

Ly =P x @ pr=axf

Note that every character of G that lies above p is still monomial. Furthermore the factor group
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Ny /L is a g-group.

We could continue the reductions with normal subgroups of G’ that lie inside N’. But it turns out
that it is not needed. The group N’ and the character v’ already achieved when doing the reductions
for L, satisfy (1.8). Indeed K’ = Ker(x') < Ker(¢)'), while any character of G’ lying above 1’ is
monomial, because ¢ lies above p/. Therefore if we could prove that Ny = N'/K’' = N’/ Ker(y') is
nilpotent, then we would have that N’/ Ker(¢') is also nilpotent. This would prove the inductive
step for (1.8). Actually, that is what we prove.

Let @ be a ¢g-Sylow subgroup of Ni. Then Nj is the semidirect product Ny = P; x Q. We prove
that @ centralizes P;, using Theorem 1.5. Observe that the situation for the groups G, Ny and L
looks similar to that described in Theorem 1.5. Indeed, the center Z(P;) of P; is maximal among
the Gi-invariant abelian subgroups of P;, while the characters o and (3 are Gi-invariant. There is
one ingredient missing from the hypothesis of the above theorem. That is, a monomial character
x1 of G1 lying above 1 and satisfying x1(1), = 5(1). We do know that every character of G above
(1 is monomial, but there is no reason for one of those monomial characters to have the desired
degree. And that is the obstacle.

If the irreducible character 8 of ()1 extends to G, then the product of this extended character
with any p-special character of GG; lying above «, is an irreducible character of (G; that lies above
u1 and whose degree has the g-part equal to 5(1). Of course there is no reason for the character
B € Irr(Q1) to extend.

A way to resolve this problem is to replace the character 8 with a new character 8 that extends.
Actually Theorem 1.6 offers a way to replace characters. But now another problem appears. If
we replace 8 in Q1 with a new character ¥ of the same group (1, then we can get an irreducible
character of G lying above o x ¥ with the correct degree, but which may not (and most probably
is not) monomial. After all the only characters we know to be monomial in G; are those lying
above 1. Since the only source of monomial characters is back in G, we must change the original
character p € Irr(L).

Suppose we could find a p” € Irr(L) so that, when we reduce G as above, using Isaacs observation
as much as possible for subgroups of L, we end up with a system

NY vy (1.11)

1=P xQ pi = aq x oy
having same properties as (1.10), plus

14

e the character 8” extends to a g-Sylow subgroup Q" of GY, and thus pf extends to Q" - LY,
e the symplectic space P, /Z(P;) is isomorphic to P /Z(FPY}), and

e this isomorphism carries the commutator [P,/Z(Py), Q| into [P /Z(P}),Q"], where Q" is a
g-Sylow subgroup of Ny.

The fact that 8” extends implies, as we saw, that the ¢g-Sylow subgroup Q" of N} centralizes P} .
Hence [P} /Z(P}),Q"] = 1. We conclude that the group [P;/Z(P1),Q], which is isomorphic to a
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subgroup of [Py /Z(P}),Q"], is also trivial. Hence @ centralizes P;. So the inductive step would
be complete, provided that we could find such a character p”.

The “miracle” is that such a character u” does exist. To find it, we had to introduce the notion
of triangular sets and go through all the complicated machinery described in Chapters 5, 6 and
7. The reason is that we have a replacement theorem (Theorem 1.6) that works under special
hypotheses. The character p doesn’t satisfy these hypotheses. The character 3 does satisfy them,
but, for the reasons explained above, if we change 3 we don’t get monomial characters. So instead
of u we change a character p* corresponding to p in a certain subgroup L* of L. Both p* and L*
satisfy the hypotheses of Theorem 1.6, so that we can replace p* with another p*" € Irr(L*) that
extends to a ¢-Sylow subgroup of G(p*) - L*. In addition, p* and L* are picked in such a way that
we can get back from the new character u™* of L* to a corresponding new character p” of L.

In Chapters 9 and 10 we show that this new character retains its extendibility properties
throughout our reductions.

In Chapter 11 we put all the pieces together to prove the Main Theorem 1.



Chapter 2

Preliminaries

2.1 Glauberman correspondence

Let A and G be two finite groups with orders that are relatively prime. In the case that A is
a solvable group, Glauberman [8] constructed a ‘natural’ bijection between the set Irr”(G) of A-
invariant irreducible characters of G, and the set Irr(C(A in G)) of irreducible characters of the
fixed points C(A in G) of A in G. Two well known facts (see Chapter 13 (page 299) in [12]) about
the Glauberman correspondence are

Lemma 2.1. Suppose that A, G are finite groups such that (|A],|G|) = 1 and that A acts on G. Let
a group S act on the semidirect product AG, leaving both A and G invariant. If x is an A-invariant
irreducible character of G, and x* is its A-Glauberman correspondent in Irr(Cg(A)), then for any
element s € S, the Glauberman correspondent (x*)* of x* equals (x*)*.

Lemma 2.1 obviously implies

Corollary 2.2. In the situation of Lemma 2.1, let T' be a subgroup of S. Then x is fized by T if
and only if its Glauberman correspondent x* is also fived by T'.

2.2 Groups

Proposition 2.3. Assume Q, P are two finite groups with coprime orders, and that Q) acts as
automorphisms of P. Assume further that P is the product P = Py - Py, of its normal subgroup Py
and some subgroup Py of P. If both P and Py are Q-invariant, then

N@Qin P)=C(Qin P)=C(Q in P;)-C(Q in P).
Proof. As Q and P have coprime orders, and @) acts on P, we obviously have that
N(Q@in P)=C(Qin P)>C(Qin P)-C(Q in P).

Hence it remains to show that C(Q in P) < C(Q in P;) - C(Q in P»).

As P} < P, we have C(Q in P)/C(Q in P1) = C(Q in P/P;), by Glauberman’s Lemma, 13.8
in [12]. The natural isomorphism of P/P; = (PyP)/P; onto P»/(P1 N P,) preserves the action
of Q So it sends C(Q in P/Pl) = C(Q in P) . Pl/Pl onto O(Q in PQ/(Pl N PQ)) = C(Q in PQ) .
(PLNPy)/(PiNP). So C(Q in P») covers C(Q in P) modulo C(Q in P)N P, = C(Q in P;). We
conclude that C(Q in P) = C(Q in P,) - C(Q in P;). Hence the proposition holds. O
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As an easy consequence of Proposition 2.3 we have

Corollary 2.4. Assume Q, P are two finite groups with coprime orders, and that (Q acts as auto-
morphisms of P. For everyi=1,...,n, let P; be a Q-invariant sugroup of P. Assume further that
Pj normalizes P;, whenever 1 <i < j < n, while P is the product P = Py - P, ... P,. Then

NQinP)=C(QinP)=C(Qin P)-C(Qin P)-----C(Q in P,).
The following theorem is a multiple application of Clifford’s Theorem:

Theorem 2.5. Let G be a finite group. Assume that 1 Gy <--- <Gy, <G is a series of normal
subgroups of G. Assume further that we have fized a character tower {x;}i", for the above series,
i.e., xi € Irr(Gy) for i = 1,...,m, such that x; lies above x;_1, whenever i = 2,...,m. For any
i =1,...,m we write G = Gi(x1,X2,---,Xm) for the stabilizer of x1,x2,...,Xm in Gi, and
G™ = G(x1,.-.,Xm) for the corresponding stabilizer in G. Then GT* = Gy and G = GI" NGy, =
G™ NGy <G, whenever 1 < k < ¢ < m. Furthermore, there exist unique characters xi"*, for
i=1,...,m, such that

X1 = x1, while xj* € Irr(G}") lies over x1*, ..., xi"1
and induces x; € Irr(G;), for alli=1,...,m. (2.6)

Furthermore, these characters satisfy
(1) G™ = G(x{", x5, -, X)), and

(2) If Gy, < H < G and H™ = G™NH, then for any ¢ € Irr(H|xy,) and x € Irr(G|¢), there exist
unique characters ™ € Irr(H™|x ") and x™ € Irr(G™|¢™) that induce ¢™ and x, respectively.
Conversely, if ™ € Trr(H™|X™) and x™ € Irr(G™|¢™), then (¢"™)H € Irr(H|x,,) while
(™)< € Ire (Gl (6™)"7).

Proof. Since G; < Gj and x; € Irr(Gj|x;), whenever 1 <i < j < m, we obviously have

G:n == Gi(Xl:X?a o 7Xm) = Gi(Xl:X?a .. 7Xi—1) = Gi(Xla cee 7Xi)7 (27)

for any ¢+ = 1,2,...,m. Thus G}' = G{" NG = G™ N Gy, for all k with 1 < k <. It is also clear
that G7' = G1.

To prove the rest of the theorem we will use induction on m. First assume that m = 1. Because
G} = G1(x1) = G4, the only possible choice of x} satisfying (2.6) for m =i =1 is

xi = x1 € Irr(GY). (2.8)

Observe that, in this case, G(x1) = G(x1) = G!. Furthermore, if G; < H < G, then Clifford’s
Theorem provides a bijection between the irreducible characters ¢ of H lying above x1, and the
irreducible characters ¢! of H' = H(x1) that lie above x1. Any two such characters ¢ and ¢
correspond if and only if ¢! induces ¢. Note also that, since Clifford’s theory respects multiplicities,
any character x € Irr(G) that lies above ¢ corresponds to some y! € Irr(G!) that lies above
¢! € Trr(H'), and vice versa. So (1) and (2) hold for m = 1.

Now assume that the theorem holds for all m with m < n, and some integer n > 2. We will
prove it is also true when m = n. So assume that 1 <G, <---<G,,_1 <G, <G is a normal series
of G, while {x;}I" is a character tower for that series. The inductive hypothesis, applied to the
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normal series 1 <G 9--- <IG,,—1 <G of G and its character tower {x;}> ,1 , implies the existence
of unique irreducible characters X” Lof G7~ = G(x1,..., xn_1) that satisfy the conclusions of the
theorem, for m =n — 1. Let G ! = G, (Xl, ooy Xn-1) = G" 1N G,. Then we clearly have

G;L - Gi(X17 v 7X’n) - Gi(X17 cee )Xn—l) == G?_la (29)

foralli=1,...,n

The character x, € Irr(G,,) lies above x,—1, while the series 1 <G; J--- 9 Gp-1 G, is a
normal series of G,. Hence (2) of the theorem for m = n — 1 implies that there exists a unique
irreducible character x7~! € Trr(GP~1), that lies above x"~] and induces x,, € Irr(G,,). We set

XP =Xt e Tr(GPY) = Ier(GT), (2.10)

for all ¢ = 1,...,n. Clearly the characters x}' satisfy (2.6), for m = n and all i = 1,2,...,n.
(Note that x7 = x1.) Furthermore, these characters are unique among those that satisfy (2.6) for
m = n. Indeed, assume that {¢'}' | is a character tower for {G}'}7_,, so that ¢} € Irr(G}') induces
xi € Irr(Gy), for all i = 1,...,n. As G? = G~ for all such 4, the uniqueness of the characters
X7~ o 1 achieved from the mductwe argument, implies that 9] = x!'~ 1= = X7, whenever i =
1,. ,n — 1 In addition, the character x; was picked as the unique character of G} that induces
Xn and lies above XZj' Thus x;. = . This proves that there exist unique characters {xJ'}",

that satisfy (2.6), for m = n.

To prove that (1) also holds for the characters {x['}!",, first observe that G(x1,...,Xn-1) =
Gr =GP, x"D), by (1) for m =n — 1. Hence

G"=G(X1, - Xn—1.Xn) = GOG X0 Xn)- (2.11)

Furthermore, G(x}™',...,x""]) normalizes both G"~1 and Gﬁfl, and fixes the character Y]

As 77! is the unique character of G"~! that lies above Xn—l and induces x5, we conclude that

GO XD () = GO X (X1, This, along with (2.11) and (2.10), implies

G" =GO oD =G LX) = GO, (2.12)

So (1) holds for the inductive step.

Assume now that H is any subgroup of G with G,, < H < @G, while ¢, x are irreducible
characters of H and G, respectively, so that x lies above ¢ and ¢ above x,. Then they both
lie above x,—1 as well. Hence the inductive hypothesis implies that there exist unique characters
o™ 1 € Ter(H™ ' x"~]) and x"~! € Tir(G™!¢"!) that induce ¢ € Trr(H) and x € Trr(G),
respectively. Observe also that the inductive hypothesis for (2) guarantees that the characters
X"~ ! and ¢! lie above ! € Irr(G7 1), since both x and ¢ lie above x,,, and 7! is the unique
character of G~1 that induces x; and lies above x]~ 1. Because G~ ! is a normal subgroup of
both H"~! and G"~!, Clifford’s Theorem 1mphes the existence of unique irreducible characters
X" € Irr(Gn=Y(xn~ 1)) and ¢" € Irr(H" 1(x"~1) that that lie above x»~! and induce x"~! and
¢"~ 1, respectively. Hence x" induces y, and qb" induces ¢. Furthermore, Clifford’s Theorem implies
that x™ lies above ¢", because Y™ ! lies above ¢"~1. In addition, G"~1(x?71) = G" 1(x") = G,
by (2.12) and the fact that x? := x"~!. So H® = H" }(x"»~!). We conclude that x™ and ¢" satisfy
(2) for the inductive step. Furthermore they are unique with that property. Indeed, assume that
n e Irr(H”]Xn) and ¢ € Irr(G™|n) induce ¢ € Irr(H) and x € Irr(G), respectively. Then n""" and
¢G are irreducible characters of H" ! and G*~ L (since H™ < Hl1<HandGr<Grl< G),
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that induce ¢ and y, repsectively. Also ¥C" ' lies above n2" ", and nfI"~" above X"~1, because
Xn = xﬁ_l lies above this last character, and 7 lies above x;:. Hence the inductive hypothesis forces

A1 — gn=1 and @' = "1, Therefore, ¢ € Irr(G™) = Irr(G™(x")) induces x" ! and lies
above x? = x"~!, while n € Irr(H") induces ¢" ! and lies above "~ !. In conclusion, 1,7 are the
x2~L-Clifford correspondents of ¢"~! and x"~!, respectively. So n = ¢™ and 1 = x*. Thus ¢" and
1™ are unique.

Conversely, if ¢" € Irr(H"|x") then Clifford’s Theorem implies that (¢™)7" " is an irreduible
character of H" 1. since H" = H" !(x"). Furthermore, ((;5”)H%1 lies above xﬁj, as x = xn !
lies above XZ:%- This, along with the inductive argument, implies that ¢™ induces an irreducible
character of H lying above x,,. Similarly we can work with any character x € Irr(G"|¢") to show
that it induces irreducibly to a character of G lying above (¢")". Hence (2) for the inductive step
is proved. Therefore Theorem 2.5 holds. Il

2.3 Character extensions

The following is a well known and useful result:

Theorem 2.13. Assume that N is a normal subgroup of G such that (|N|,|G/N|) = 1. Let x be
a G-invariant irreducible character of N. Then there exists a unique extension x° of x to G such
that (o(x®),|G/N|) = 1. This is called the canonical extension of x, and has the additional property
that it is the unique extension of x to G such that o(x) = o(x°).

Proof. The proof follows easily from Lemma 6.24 and Theorem 11.32 of [12], as both o(x) and x(1)
divide |N|, and thus are coprime to |G : N]|. O

In the situation of the preceding theorem we can describe all the irreducible constituents of x&,
as the next result shows.

Theorem 2.14 (Gallagher). Assume that N is a normal subgroup of G. Let x € Irr(N) be a
G-invariant character of N that extends to an irreducible character i of G. Then there is a one—
to—one correspondence between the irreducible characters v of G lying above x and the irreducible
characters A of G/N. Two such v and X correspond if and only if v = X - 1. The latter product is
defined as

(A=) (g) = AgN) - ¥(9),
for any g € G.

Proof. The proof follows immediately from Theorem 2.13 and Corollary 6.17 in [12]. O

Note that, under the addition hypothesis (|N|,|G/N|) = 1, we could have used the unique
canonical extension x¢ in the place of ¥ in Theorem 2.14.

Lemma 2.15. Assume that G is a finite group, H is a normal subgroup of G, and N is a normal
subgroup of H. Assume further that 0 is an irreducible character of N, and that its stabilizer H(0)
in H is the product H(0) = N - A of N with a subgroup A of H, such that (|A|,|N|) = 1.

Then 0 has a canonical extension 6° to H(). Furthermore, any irreducible character V., of H ()
lying above 0 is of the form V., = ~-0° where v € Irr(A) and the product is defined as (y-6°)(s-t) =
~(t) - 0°(st) for any s € N and any t € A. As for the stabilizer G(v,0) of v and 6 in G, we have:

G(v,0) = N(Ain G(6,¥,)) = N(A in G(0, 1)),
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where \Ilf is the irreducible character of H induced by V..

Proof. Theorem 2.13 above implies that 6 has a unique canonical extension to H(6). This, along
with Gallagher’s Theorem 2.14, implies all but the last statement of the lemma.

As G(v,0) fixes v and 6, it normalizes A and N respectively. Hence it normalizes the product
H(0) = NA. The canonical extension, 0¢, of § to H(0) is fixed by G(v,0), as the latter fixes 0
and normalizes H(6). Therefore G(v,0) fixes the product v -6° = ¥.,. So G(v,#6) is a subgroup of
N(Ain G(6,¥,)). Because H is a normal subgroup of G, any subgroup of G that fixes ¥, also fixes
the induced character U, Hence N(A in G(6,¥,)) is a subgroup of N(A in G(, ¥!)). Therefore

G(7,0) < N(Ain G(6,¥,)) < N(A in G(9, ¥]T)).

For the other inclusions we note that any element g € N(A in G(6, ¥1T)) fixes 6 and ¥!7, normalizes
H(#), and fixes the unique Clifford correspondent ¥, € Irr(H(6)|0) of \I/f . Furthermore, g fixes
0¢ € Irr(H(0)), because it fixes § and normalizes H (). As g normalizes A, and fixes the product
character W, =~ - 0¢, it also fixes 7. Hence g € G(v,6). So N(A in G(0, %)) < G(v,0), and the
proof of the lemma is complete. O

Proposition 2.16. Let G be finite group of odd order such that G = N - K, where N is a normal
subgroup of G and (|G/N|,|N|) = 1. Let H = NN K and let § be any irreducible K-invariant
character of H that induces a G-invariant irreducible character 8~ of N. Then 6V has a unique
canonical extension, (V)¢ to G such that (|G/N|,o((0N)¢)) = 1, while § has a unique canonical
extension, 0°, to K such that (|K/H|,0(0°)) = 1. Furthermore, 6¢ induces

(06)G — (QN)e'

Proof. Let 7 be the set of primes that divide |[N|. Then |K/H| = |G/N| is a 7’-number, and thus is
coprime to |H|. As 0 € Irr(H) is K-invariant, Theorem 2.13 implies that 6 has a unique extension
6¢ to K, with

o(0) = o(6°). (2.17)

According to Corollary 4.3 in [15], induction defines a bijection Irr(K|0) — Irr(G|0V). There-
fore,
x = (69)¢ e Irr(G|oV). (2.18)

But 0V extends to G, as it is G-invariant and (|N|,|G/N|) = 1. Let ¥ = (6V)¢ € Irr(G) be the
unique extension of 6V such that o(¥) = o(#"V) is a m-number (see Theorem 2.13). Since x lies
above 0%, Theorem 2.14 implies that

X=p-Y,
for some p € Irr(G/N). We compute the degree deg(x) in two ways. First

deg(x) = deg(u) - deg(W) = deg(p) - deg(6™) = deg(u) - [N : H| - deg(0).
As x = (6°)¢ we also have that
deg(x) = |G : K| - deg(0°) = |G : K| - deg(0) = [N : H] - deg(6).
We conclude that deg(u) = 1. Thus p € Lin(G/N). Therefore
det(x) = p¥@ det(W). (2.19)
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We can now compute o(x) in two ways. First, o(¥) = o(#") and ¥(1) = #V (1) are m-numbers.
Since p € Irr(G/N), we get that o(u) is a 7’-number. Therefore, (2.19) implies that the 7’-number
o(p) divides o(x).

On the other hand, (2.18) and Lemma 2.2 in [16] imply that

o(x) = o((6°)9) divides 2 - 0(6°).

As G has odd order, we get that o(x) divides 0(0°). In view of (2.17), we have 0(6¢) = o(f), while
o(6) ‘ |H|. We conclude that o(x) is a m-number.
Hence the only way the 7’-number o(u) can divide o(), is if o(u) = 1. So u =1, and

(099 =x =T = (V)"
as desired. 0

Lemma 2.20. Let G be any finite group, and H be any subgroup of G. If0 € Irr(G) and ¥ € Irr(H)
then:
(O - ©)% =6 (T9).

Proof. See Exercise 5.3 in [12]. O
As a corollary of Lemma 2.20 we can prove

Corollary 2.21. Let G = H x M be a finite group, and S be an H-invariant subgroup of M. Let
a, 0 be irreducible characters of H and H x S respectively. Then « -6 is a character of HS defined
as (a-0)(z-y) = ax)-0(z-y), whenever x € H and y € S. Furthermore,

(- 0)% =09,
where (a-09)(z - y) = a(z) - 0%(x - y), whenever x € H and y € M.

Proof. Using the isomorphism H 2 HS/S, we regard « as a character of HS, defined as a(z-y) =
a(z), for all z € H and y € S. It is obvious that the product « - 6 is a character of HS.
Furthermore, as H =~ HM /M = G /M, we can define an irreducible character o’ € Irr(G) as

o (x-m) = a(z), (2.22)

for all x € H and m € M. Thus the restriction o/|gg of o' to HS is a € Irr(HS), i.e.,

s = a.
Therefore
(a-0)% = (o|ms - 0)°
=a 0% by Lemma 2.20
=a-0% by (2.22).
This completes the proof of the corollary. O
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Chapter 3

A Key Theorem

One of the main ideas of this thesis is the way an irreducible character of a finite group G may
correspond to an irreducible character of a subgroup of G. The most common such example is the
Clifford correspondence. Other interesting and fruitful examples are the Glauberman correspon-
dence and the Isaacs correspondence, that coincide when applied to groups we are dealing with in
this thesis, groups of odd order. According to these correspondences, whenever an odd group A
acts on an odd group G, with (|A|, |G|) = 1, there is ‘natural’ bijection between the set Irr(G) of
A-invariant irreducible characters of G, and the set Irr(C(A in G)) of irreducible characters of the
fixed points C'(A in G) of A in G.

The Glauberman-Isaacs correspondence can be easily generalized to involve a normal series of
subgroups of G and not only G. That is, if G1 <G> - - - <G, = G is a normal series of G, and A acts
coprimely on Gy, for alli =1,...,n, (both A and G are assumed of odd order), then we still have a
bijection between the set of towers {x;}7_; of A-invariant characters for the series of G, and the set
of towers of irreducible characters of the normal series C(A in G1)<C(A in G3)<---<C(A in Gy,)
of C(A in G).

However, whether we use the Glauberman-Isaacs correspondence on a single group G or on
a normal series of GG, the condition that wants the acting group A to normalize every group G;
involved in the series can’t be avoided. The solution to this problem is given by E.C.Dade in [5].
Here we only state the results needed from that paper. The easy case, where the series is replaced
by a single group, is done in Theorem 3.1, while the general case is described in Theorem 3.13.

Using the notation introduced in Section 1.2, we write Irr(G) for the A-invariant characters
of G, whenever A acts on G. In addition, if A acts on a subgroup B of G, we write Irr‘g(G) for the
irreducible characters of GG that lie above at least one A-invariant character of B. Furthermore, if
M is a subgroup of G and p € Irr(M) we denote by Irr(G|u) the set of irreducible characters of G
that lie above p, and by Irra(G|u) the intersection

Irrp (Glp) == Irr'a(G) N Irr (G p).

If x € Irr(G|p), we write m(u in x) for the multiplicity that p appears as a constituent of the
restriction x|as of x in m, i.e., m(p in x) = [x|ar, p-

Theorem 3.1. Assume that G is a finite group of odd order, and that B is a normal subgroup of
G. Let A, H be subgroups of G such that (|Al,|B|) = 1, while B is contained in H. Assume further
that the subgroup AB = A x B is normal in G. Then there is a one to one correspondence

Y e Iy (H) — Yeay € Ir(N(A in H)),
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between the set Irr’y(H) of all characters ¢ € Trr(H) such that 1 lies above at least one irreducible A-
invariant character of B, and the set Irr(N (A in H)) of all irreducible characters of the normalizer
N(Ain H) of A in H. We call the correspondence 1 < 14y an A-correspondence, and say that
the characters ¢ and 14y are A-correspondents of each other.

If H = B, then the above A-correspondence coincides with the Glauberman-Isaacs correspon-
dence between Irr(B) and Irr(C(A in B)).

Furthermore, for any subgroup K of G that normalizes both A and H, the stabilizer, K (1), of
any P € Irrg(H) in K equals the corresponding stabilizer, K(14)), of ¥4y in K.

Proof. The A-correspondence is done in Theorem 17.4 in [5], with A, B, H here in the place of
K, L, H there. (Observe that, in that theorem, the A-correspondence is described in a more general
setting.)

Theorem 17.29 in [5] implies that A-correspondence and Glauberman correspondence coincide
when H = B.

The last part of the theorem follows easily from Proposition 17.10 in [5]. g

Before we continue to the general case, we note that the group H in Theorem 3.1 doesn’t need
to be normal subgroup of G. Furthermore, the A-correspondence described in the above theorem
depends only on A and H and not on the choice of B (see Proposition 17.13 in [5]).

Theorem 17.4 in [5] not only provides the character correspondence we describe in Theorem
3.1, but also gives a specific algorithm we can use to obtain this correspondence. It tells us that

Theorem 3.2. Assume that A, B, H and G satisfy the hypotheses of Theorem 3.1. Assume further
that v is an irreducible character of H that lies above at least one irreducible A-invariant character
of B, i.e., Y € Irrg(H). Then there exists some sequence My, My, ..., M, of subgroups of G
satisfying

nzl, MQZBZMlzzMn:L (33&)

M;_1/M; is abelian, (3.3¢)

foralli=1,2,...,n. Any such sequence of subgroups determines a unique sequence of characters
0o, 01, ...,0, such that

0o = € Irg(H) = Irrgly (N(AMp in H)) (3.4a)

and

Ifi=1,2,...,n, then 0; is the unique character in Irrﬁi(N(AMi in H))
such that m(0; in 0;_1) is odd. (3.4Db)
The character 6,, € Trr{ (N(A in H)) = Irr(N (A in H)) is independent of the choice of the sequence

Mo, My, ..., My, satisfying (3.3). Furthermore, 0, is the A-correspondent ¢4y € Irr(N(A in H))
of ¥, as used in Theorem 3.1.

It is clear from the above construction that the A-correspondence is preserved under epimorphic
images. So we have

Proposition 3.5. Assume that A, B, H and G satisfy the hypotheses of Theorem 3.1. Let p be an
epimorphism of G onto some group G'. If A", B’ and H' are the images under p of A, B and H,
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respectively, then A, B', H' and G’ satisfy the hypotheses of Theorem 3.1. Furthermore, p maps
N(Ain H) onto N(A" in H'). Assume further that ¢' € Irr(H') and ¥ = ¢’ o pg € Irr(H). Then
NS Irrgl,(H’) if and only if ¢ € Irrg(H). In that case Y4y = wEA’) °pN(Ain ) € IIT(N(A in H)).

Proof. Clearly the groups G’, A’, B’ and H’ satisfy the hypotheses in Theorem 3.1.

Let X be any subgroup of G and X’ = p(X) be its image under p in G'. Then p restricts to
an epimorphism pyx of X onto X’. This induces an injection ¢/ — ¢’ o px of Irr(X’) into Irr(X).
For any ¢’ € Trr(H') the above injection determines the irreducible character 1) € Irr(H) satisfying
1 =1’ o pg. We remark here that any ¢ € Irr(H) with Ker(pg) < Ker(¢) corresponds, under the
above injection, to a character ¢’ € Irr(H'), satisfying ¢ = ¢’ o py.

Evidently if ¢’ lies over a character ¢/ € Irr(B’) then v lies over the corresponding character
¢ = ¢ opp € Irr(B). In addition, if A" = p(A) fixes ¢', then A fixes ¢. Hence if ¢’ € Irr’él/ (H')
then ¢ € Trra(H). Conversely assume that ¢ € Irra(H) satisfies Ker(pg) < Ker(¢). Then v
has a corresponding character ' € Irr(H') satisfying ¢ = 1/ o pyy. Because ¢ € Irrh(H), there
exists an irreducible A-invariant character ¢ € Irr*(B) of B that lies under 1. Then Ker(¢) >
Ker(y)) N B > Ker pN B.. Hence ¢ has a corresponding character ¢’ € Irr(B’) satisfying ¢ = ¢’ o pp.
Furthermore, 1)’ lies above ¢, because 1) lies above ¢. In addition, A’ fixes ¢’ because A fixes ¢.
Hence ¢ € Trr‘y, (H'). In conclusion, ¢/ € Irry, (H) if and only if ¢ € Trrf (H).

If ¢/ € Irrg/,(H "), then Theorem 3.1 applies. So ¢’ has an A’-correspondent irreducible char-
acter 1/JE any i N (A" in H"). To complete the proof of the proposition it suffices to show that
p(N(Ain H)) = N(A" in H') while 9)4) = sz,) O PN(A in H)-

Let M be any subgroup of B such that M <H and [M, A] < M. Then M' = p(M) is a subgroup
of B’ such that M’ <9 H' and [M’, A’] < M'. We claim that

p(N(AM in H)) = N(A'M' in H'). (3.6)

Clearly p(N(AM in H)) < N(A'M'in H'). Thus to prove (3.6) it is enough to show that any
t' € N(AM' in H') is in the image of N(AM in H). Since t' € H' = p(H) there exists a t € H with
p(t) =t If K =Ker(p), then t normalizes AM K, since ' normalizes A’M’' = p(AM). In addition,
t normalizes AB <@G. Hence t normalizes the intersection ABNAMK = A(BNAMK). The group
A normalizes B N AM K, since it normalizes B, M and K. In addition, (|A|,|B N AMK]|) = 1,
because (|A[, |B]) = 1. Hence ABNAMK = A(BNAMK) = Ax (BNAMK), and the BN AMK-
conjugates of A are the only subgroups of order |A| in A(BN AMK). It follows that there is some
element s € BN AMK such that A" = A. But ts € H normalizes M < H. Thus (AM)"* = AM.
So ts € N(AM in H) has image p(ts) = t'p(s) € N(A’M’ in H'). In addition, the image p(s) of
s € AMK is an element of p(AMK) = A'M' = p(AM) and thus lies in p(N(AM in H)). We
conclude that ' = p(ts)p(s)~! lies in p(N(AM in H)). Therefore (3.6) holds.

Observe that (3.6) for M = 1, implies that p(N(A in H)) = N(A"in H'). Furthermore,
it My, M, ..., M, are any subgroups of G satisfying (3.3), their images M/ = p(M;), for i =
0,1,...,n, satisfy the equivalent of (3.3) for G', H', B" and A’. According to Theorem 3.2, the
character ¢/ € Irrgll(H’ ) determines characters 6;,...,6, such that 6, = ¢’ and ¢, , for any
¢t = 1,...,n, is the unique character in Irrﬁ,(N(A’Mi’ in H')) such that m(¢, in 0;_,) is odd.
Since p sends N(AM; in H) onto N(A'M] in IZ{’), by (3.6), it follows that 6; = 0} o pn(an;, in H)
lies in Irrf/[i(N(AMi in H)), for each ¢ = 0,1,...,n. Furthermore, 6y = ¢’ o py = ¢ and
m(0; in 0,_1) =m(0} in 0,_,) is odd, for each i = 1,...,n. Theorem 3.2 then implies

Pa) = On = 0 0 PN(AM, in H) = ¢EA’) ©PN(Ain H)-
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Hence Proposition 3.5 holds. U
Proposition (3.5) easily implies

Corollary 3.7. Assume that A, B, H and G satisfy the hypotheses of Theorem 3.1. Let p be an
isomorphism of G onto some group G'. If A, B' and H' are the isomorphic images, under p, of
A, B and H respectively, then A’', B', H' and G’ satisfy the hypotheses of Theorem 3.1. Furthermore,
N(A" in H') is the isomorphic image under p of N(A in H). In addition, for any v € Irr(H) there
exists a ' € Trr(H') such that ¥ = ' o pg. Then ¢’ € Irr‘gll(H’) if and only if ¢ € Trg(H). In
that case P4y = wEA’) © PN(A in H)-

Proposition 17.12 in [5] implies

Proposition 3.8. If the group A in Theorem 3.1 centralizes B, then Trrg(H) = Trr(H)
= Irr(N(A in H)) and the A-correspondence is the identity map of these equal sets onto them-
selves.

From Proposition 17.14 in [5] we obtain

Proposition 3.9. Let A, B, H,G be as in Theorem 3.1. Let A’ be a subgroup of A such that
N(Ain H) = N(A' in H), and thus N(A in B) = N(A' in B). Then Irr'y(H) = Irr'y (H) and

Yy = Yan,
for any ¢ € Irry(H) = Ty (H).

In the special case where the A-correspondence is the Glauberman correspondence (that is the
case H = B), Proposition 3.9 translates to

Corollary 3.10. Assume that A acts coprimely on B, where A and B are both finite groups of odd
order. If A’ is a subgroup of A satisfying C(A in B) = C(A’ in B) then the A-Glauberman and the
A’-Glauberman correspondences coincide.

In the special case that H = AB, Theorem 17.36 in [5] describes clearly the A-correspondence
of Theorem 3.1. So we get

Theorem 3.11. Assume that A, B, G satisfy the hypotheses of Theorem 3.1, with the additional
condition that H = AB. Assume further that x € Irr(H) is of the form x = «- 3¢, where o € Trr(A)
and (3 is the canonical extension to H of an irreducible A-invariant character 3 € Irr®(B). Then
x € Irr5(H). Furthermore, N(A in H) = A x C(A in B), where C(A in B) is the centralizer of A
in B. In addition, the A-correspondent x4y € Irr(N(A in H)) of x, is of the form

X(A) = @ X7,
where v € Irr(C(A in B)) is the A-Glauberman correspondent of § € Trr(B).

Proof. See Theorem 17.36 in [5]. O

The next proposition shows that the A-correspondence is compatible with Clifford correspon-
dence.
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Proposition 3.12. Let A, B, H and G be as in Theorem 3.1 and let M be an A-invariant normal
subgroup of G contained in B. Assume further that p is an A-invariant irreducible character of
M, and let G(n), H(p) and B(p) be the stabilizers of p in G, H and B respectively. Let ji 4y €
Irr(N(A in M)) be the A-correspondent of u, (note this is the A-Glauberman correspondent of u). If
Y € Trr'g(H) lies above i, that is, 1 € Trra(H|u), then the u-Clifford correspondent v, € Trr(H (1))
of 1 lies in Irrg(u) (H(p)|p). Furthermore, the A-correspondent ¥, 4y € Irr(N(A in H(p))) of ¥y
is the pa)-Clifford correspondent of the A-correspondent 14y € Irr(N(A in H)) of 9.

Proof. See Propositions 17.19 17.20, 17.22, 17.23 and Theorem 17.24 in [5]. Il
We conclude with a generalization of Theorem 3.1.

Theorem 3.13. Let A, B,G be as in Theorem 3.1. Assume further that Gp = B 1Gy <--- <
Gn-1<4G, <G is a series of normal subgroups of G. Then the groups N(A in Gy) = N(A in B) <
N(AinGy)<---<dN(Ain G,) < N(Ain G), form a series of normal subgroups of N(A in G).
Let g, 1, ...,%n be a tower of irreducible characters for the chain Gy <Gy < --- I Gp_1 < Gy,
while g € Trrd(B). Then ; € Irré(Gi), foralli=1,2,...,n. Let ¢; 4) € Ir(N(A in G;)) be the
A-correspondent of 1¥; € Irrg(Gi), foralli=0,1,...,n. Then the ¥; 4y form a character tower for
the chain N(Ain Go) = N(Ain B)IN(Ain G;)<---IN(A in G,,). This way we get a bijection
between character towers {i;}1- for the series {G;}I_, with ¥g € Irrd(B), and character towers
{%i,a)}izg for the series {N(A in G;)}i_y. In addition, this correspondence respects restrictions
and inductions, i.e.,

(a) w7 = ipr if and only if iy (™ Y = iy g, while

(b) %‘+1‘GZ_ =1 if and only if ¢i+1,(A)‘N(A inG;) %’,(A),

foranyi=1,...,n—1.
Furthermore, for any subgroup K of G that normalizes A, the stabilizer, K(1;), of ¥; in K
equals the corresponding stabilizer, K (; (a)), of Vi ay in K, for alli=0,1,...,n.

Proof. See Theorem 17.15 and Propositions 17.16 and 17.17 in [5]. O
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Chapter 4

Changing Characters

4.1 A “petite” change

Assume that G, Q1,2 and P are finite groups that satisfy

Hypothesis 4.1. )1, Q2 are g-subgroups of G, for some odd prime q, with Q1 < Q2. Furthermore,
P is a p-group, for some prime p with 2 # p # q, that normalizes QQ1, while P - Q1 is normalized

by Q2.

Let (81 be an irreducible character of ()1. Our main goal in this section is to show how we can
change the character, 51 € Irr(Q1), to a new one, 8} € Irr(Q1), so that

(1) P(B1) = P(BY) and Q2(B1) < Q=2(57), while
(2) BY can be extended to Q2(57).

The following diagram describes that situation:

Q2
/|
P Q(B) (Br)° (4.2)
N
Q1 pr —— By

Most of the work towards that direction is done in

Lemma 4.3. Let QQ be a q-group acting on a p-group P, with p # q odd primes. Let T be a
finite-dimensional right Zq,(Q % P)-module such that the action of P on T is faithful. Then there
exists an element T € T such that its stabilizer (QP)(7) in Q X P equals Q.

Proof. We will prove a series of claims under the

Inductive Assumption 4.4. Q, P,T are chosen among all the triplets satisfying the hypothesis,
but not the conclusion, of Lemma 4.3, so as to minimize first the order |QP| of the semidirect
product Q x P, and then the Zq-dimension dimg T of T

These claims will lead to a contradiction, thus proving the lemma.
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Claim 4.5. T is an indecomposable Z,(QP)-module.

Proof. Suppose not. Let T' = T} +T5 be a direct decomposition of T, where T}, T, are nontrivial
Z¢(QP)-submodules of T. For i = 1,2 let K; be the kernel of the action of P on T;. Hence T;
is a Z¢(Q x P/K;)-module such that P/K; acts faithfully on it. As dimg (7;) is strictly smaller
than dimgz, T, the minimality in Inductive Assumption 4.4 provides an element 7; € T; such that
(Q x P/K;)(1;) = Q. If we take as 7 the sum, 7 = 7| + 72, then 7 is an element of 7" fixed by Q, as
Q fixes each one of the 7; for ¢ = 1,2. Furthermore for the stabilizer of 7 in P we have

P(r) =N P(m) = Ni_, K.

Since P acts faithfully on T" the last intersection is trivial. Therefore (QP)(7) = @, which contra-
dicts Inductive Assumption 4.4. Hence 7' is an indecomposable Z,(QP)-module. O

Claim 4.6. The restriction Tp of T to P is a multiple of an irreducible Q-invariant Zy(P)-module.

Proof. Claim 4.5 and Clifford’s Theorem imply that T}, can be written as a direct sum of its Z,(P)-
homogeneous components, i.e.,
Tp=U+Us+:---+U,,

where U = Uy 2 mV = mVo Uy = mV22,... U. 2 mV?. Here V = V7 ... V9 are the
distinct conjugates of a simple Z,(P)-submodule, V', of T), and 1 = oy,..., 0, are representatives
for the cosets in @ - P of the stabilizer,(QP)y, of the isomorphism class of V' in QP. We may pick
o1,...,0 to be representatives of the cosets in ) of the stabilizer, (), of that isomorphism class
in Q. Note that Qv = Qu as U = mV, where Qp is the stabilizer in @ of U under multiplication
in T. If Tp is not homogeneous, then r > 1 and Qy = Qv < Q. For ¢ = 1,...,r let .f(\l be the
kernel of the action of P on U;. Then for every i = 1,...,r the stabilizer Qy, of U; in ) equals the
os-conjugate, Q7 , of Qu = Qv. For the corresponding kernels we similarly have f(\l = I/(\lai

As U is a faithful Zq(P/ I/(\l)—module and Qu < @, the minimality in Inductive Assumption 4.4
implies that there exists an element p € U such that

(Qu x (P/K1))(1) = Qu-

For every i = 1,...,r we can define an element p; = po; of U;. Then Qu, fixes p; as Qu fixes p.
Furthermore if z is any element of P fixing y; then 2% 7' is an element of P fixing p. Therefore
2% € K, 1, which implies that x € K Thus

(Qu, x (P/K:))(1i) = Qu,

foreveryi=1,...,r.

Let 7 be the sum of the u; for ¢ = 1,...,r. Then 7 is an element of T fixed by @, since
multiplication by any element in ) permutes the U; and the p; among themselves. The stabilizer
P(7) of 7 in P equals the intersection of the stabilizers of u; in P for ¢ = 1,...,7. Since (Qu, X
(P/f(\l))(;rz) = Qu, for every such i, the latter equals the intersection of K; for i =1,...,r. The
faithful action of P on T implies that

Hence T has an element 7 with (QP)(7) = Q, contradicting Inductive Assumption 4.4. This
contradiction proves Claim 4.6. O
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Claim 4.7. There are no Q-invariant subgroup, H < P, and Z,(QH)-submodule, S, of Tou such
that T is the Z,(QP)-module ST induced from S, i.e.,

T = Z SO’Z',

1<i<n

where the o; are representatives for the cosets Ho; of H in P.

Proof. Suppose Claim 4.7 is false. We choose H to have maximal order among all those ()-invariant
subgroups of P that contradict Claim 4.7. Hence Ty has a Z4(QH)-submodule, S, such that
SQP = 7. If H is not normal in P then its normalizer, Np(H), in P satisfies H < Np(H) < P.
Since H is Q-invariant, Np(H) is also Q-invariant. Hence S@Nr(H) is a Z,(QNp(H))-submodule
of Tonp(m)- Furthermore SONP(H) induces T. Thus N p(H) is among the Q-invariant subgroups
of P that contradict Claim 4.7 with |Np(H)| > |H|. So the maximality of |H| implies that H is
normal in P.

Let 1 =7q,..., 7 be coset representatives of H in P, and let 7,,, denote the image of r,, in P/H
form=1,...,k. Then 1 = 71,75,...,7 are the distinct elements of P/H. As Q acts on P/H, it
has to divide the 7,,, for m = 1,..., k, into orbits, Ry, Ry, ..., R, for some I € {1,...,k}. We may
choose Ry to be equal to {71} = {1}. For every i = 2,...,l, we pick some element 7;; € R;. Then
R, = {fgfl };jfl where k; = |R;| and g runs over a set Q; of coset representatives of the stabilizer,
Cqo(Ti1), in Q. For every i = 2,...,1 the stabilizer Cq(7;,1) acts by conjugation on H and on r; 1 H,
where ;1 € P has image 7,1 € P/H. Furthermore, H acts transitively by right multiplication
on 1,1 H and (xh)¢ = z°h¢ for all x € r,1H,h € H,c € Cg(r;,1). Hence Glauberman’s Lemma
(13.8 in [12]) provides an element ¢;1 € ;1 H that is fixed by Cq(7;1). So Co(ti1) > Co(7iq).
Furthermore, the opposite inclusion, Cq(t;1) < Cq(74,1), also holds as 7;1 = t;1.H. Hence,

Co(tin) = Cq(Tin).

In this way we can pick a t;1 € ;1 H, for every i = 1,...,1, such that Cg(t;1) = Cq(ri1). We can
even assume that ¢1 1 = 1. Let ¢; ; denote the g;-conjugate, tg,jp of t;1 for every j = 1,...,k;. Hence
the set of all ¢; j, for ¢ = 1,...1 and for j = 1,...,k;, is a complete set of coset representatives
of H in P. Furthermore the Q-orbit R; corresponds to a Q-orbit R; = {t;1,...  tiy,; }, for every
i=1,...,1.

Let Kg be the kernel of the action of H on S. As |H/Kg| < |P|, the minimality in Inductive
Assumption 4.4 implies that there exists p € S such that its stabilizer, (Qx H/Kg)(u), in Qx H/Kg
equals @, or equivalently (QH)(u) = QKg. We note here that Kg < H. Indeed, if H acts
trivially on S, then T is induced from a trivial module and thus contains both trivial and non—
trivial irreducible P-submodules, contradicting Claim 4.5. We also have that p # 0 since Q =
(@ x H/Kgs)(1) < QH/Kg. We denote by ut; ; the t; j-translation of y, for every ¢ = 1,...,1 and
for every j =1,...,k;. Then put; ; is an element of St; ; such that

(@ H) (i) = QK

Since S9P = T we get that

T =89 = Z Z Stij =S+ Z Z St j. (4.8a)

1<i<I 1< <k 2<i<I 1<j<k;
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Let 7 be the element of T" defined by

Lk !
T=—p Yy Y phig=—pt Yy Y plige (4.8b)

=2 j=1 =2 ti,]'GRi

We claim that 7 satisfies the condition in Lemma 4.3, i.e., that (QP)(7) = Q. This will contradict
Inductive Assumption 4.4, and thus prove Claim 4.7. Indeed, R; = {ti1,...,tik, } is a Q-orbit
for every i = 2,...,l. Also p and —p are Q-invariant as (QH)(—p) = (QH)(n) = QK. Hence
Ztm R, Mtij is Q-invariant. Thus 7 is a Q-invariant element of T'.

If z € H(7) then, since H < P, we get that (ut; j)z = Mx(ti,j)fltm is an element of St ;, for all
i=2,...,0and j = 1,...,k;, while (—p)z is an element of S. Since 7z = 7, it follows from (4.8)
that (—p)x = —p and (ut; ;) = pt; j for every i = 2,...,1 and for every j =1,...,k;. Hence x is
an element of:

Ik

Lok Ik
H(w) 0 (Y (Y Plte) ) = (V) Hleti) = () () K5

i=2j=1 i=1j5=1 i=1j=1

As H acts faithfully on T, we get that ﬂi:l ﬂf;l Kg” = 1. Hence H(7) = 1.

Now let z € P\H. We claim that 72 # 7. Indeed any = € P permutes the St; ; among
themselves. If x fixes 7, then it also permutes among themselves the summands —u and put; ;, for
i # 1, of 7. Since Sx # S we have (—p)x = pt; j for some i =2,...,1 and some j =1,...,k;. But
as ¢ € P\H we have that = ht for some coset representative t = t;, j, of H in P withigp =2,...,1
and some element h € H. Hence ut; ; = (—p)x = (—p)ht € St, which implies that t; ; = ¢ and
(—p)h = p. This last equation leads to a contradiction as h has odd order (|P] is odd) and p # —p
(as S < T has odd order). Therefore 7% # 7 whenever x € P\H. Hence P(r) = H(7) = 1 and
(QP)(1) = Q, contradicting Inductive Assumption 4.4. This contradiction proves Claim 4.7. [

Claim 4.9. FEvery normal abelian subgroup A of QP contained in P is cyclic.

Proof. Let A be a normal subgroup of QP contained in P, and let T4 be the restriction of Tp to
A. According to Claim 4.6, and Clifford’s Theorem (11.1 in CR), we have that T4 can be written
as a direct sum of its Z4(A)-homogeneous components, i.e.,

Ta=Wi+Wy+--- 4 Wi

Furthermore, P acts transitively on the W; for all ¢ = 1,...,s, while Q permute the W, among
themselves (as T is a Z,(QP)-module). Hence Glauberman’s lemma implies that @ fixes some
Zg¢(A)-homogeneous component, W, of T4. Thus W is a Zq(QA)-submodule of T4. Even more,
Clifford’s Theorem implies that W®F = T. This, along with Claim 4.7, implies that W = T.
Hence Ty = eV where V is an irreducible P-invariant Z,(A)-submodule of T'. As P acts faithfully
on T, the Z4(A)-module V is also faithful. If A is abelian, the existence of a faithful irreducible
Zg¢(A)-module implies that A is cyclic. Therefore, the claim is proved. O

The g-group Q acts on the ¢g-group T, fixing the trivial element 0 of T'. Hence the group Q fixes
at least g elements of T. So @ fixes some 7 with

Te€T and 7 #0. (4.10)
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Hence, to complete the proof of Lemma 4.3, by contradicting the Inductive Assumption 4.4, is
enough to show that P(7) =1

By Claim 4.9 every characteristic abelian subgroup of P is cyclic. Since p is odd, Theorem
4.9 in section 5.4 of [9] implies that either P is cyclic or P is the central product E ® C, of an
extra—special p-group E of exponent p and a cyclic group C.

If P is cyclic then Z(P) = P. According to Claim 4.6, the Z,(P)-module Tp is a multiple of
an irreducible Q-invariant Z,(P)-module V, i.e., Tp = mV. Hence Z(P) acts fix point free on
T as it acts fix point free on V (or else V' wouldn’t be simple). This implies that no element of
P = Z(P)—{1} could fix 7. Hence P(7) = 1. So (QP)(7) = @, contradicting Inductive Assumption
4.4. Therefore, P can’t be cyclic.

Hence, P = E® C, where E = ;(P) is an extra special of exponent p and C' = Z(P) is cyclic.
So,

P=EoC=MW(P)o Z(P). (4.11)

Therefore the factor group P = P/Z(P) is an elementary abelian p-group. Furthermore it affords
a bilinear form ¢ : P x P — Z(FE) defined, for every z,7 € P, as ¢(Z,y) = |x,y], where x,y are any
elements of P having images Z, i respectively, in P. With respect to that form P is a symplectic
Z,(Q)-module.

Claim 4.12. The symplectic Z,(Q)-module P is anisotropic.

Proof. Assume not. Then there is an isotropic non—zero Z,(Q)-submodule A of P. Hence c(a, b) = 0
for every a,b € A, as A C AL. Therefore, by the definition of the symplectic form ¢, we get that
the inverse image A of A in P is an abelian subgroup of P containing Z(P). Since A is a Z,(Q)-
submodule of P, the abelian group A is a normal subgroup of QP contained in P. Hence by Claim
4.9 , A is cyclic and properly contains the Z(P). Therefore there exists an element a € A \ Z(P)
such that a is a generator of Z(P). On the other hand according to (4.11) a = w - ¢ where
w € Q(P)and c € C = Z(P). Hence a? = wP-cP = ¢P. Since aP is a generator of the cyclic p-group
Z(P) and ¢ € Z(P), this last equation leads to a contradiction. This proves the claim. O

Now we can complete the proof of Lemma 4.3. If (QP)(7) # @ then there exists a Q-invariant
subgroup D = P(7) # 1 of P such that (QP)(7) = QD. Hence the center Z(D) of D is a non—
trivial Q-invariant abelian subgroup of P. Therefore its image Z(D) = Z(D)Z(P)/Z(P) in P is
an isotropic Z,(Q)-submodule of P. Since P is anisotropic, Z(D) = 1, i.e., Z(D) is contained in
Z(P).

As we saw in the first case, Z(P) acts fix point free on 7. This implies that no element of
Z(P) — {1} could fix 7. Hence Z(D) = 1, contradicting the fact that Z(P) # 1. So (QP)(1) = Q,
contradicting Inductive Assumption 4.4. This final contradiction completes the proof of Lemma
4.3. O

In terms of characters, Lemma 4.3 implies

Corollary 4.13. Let Q be a g-group acting on a p-group P with p # q odd primes. Suppose that
the semi—direct product QQ x P acts on a g-group Q1 such that the action of P on Q1 is faithful.
Then there exists a linear character A of Q1 whose kernel Ker(\) contains the Frattini subgroup
®(Q1) and whose stabilizer (QP)(N) in Q x P is Q.

Proof. Let T be the factor group T := Q1/®(Q1). Then T is a Zy(QP)-module. We write T
for its dual Z,(QP)-module, i.e., T* = Homgz, (T, Z,). Then P acts faithfully on both, T" and T™.
Furthermore, according to Lemma 4.3 there is an element 7 € T* whose stabilizer in QP equals Q.
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Since the linear characters of T' can be considered as the elements of T composed with some faithful
linear character of Z,, we conclude that there is a linear character \* € Lin(T") whose stabilizer
in QP is Q. Let X\ be the linear character of ()1 to which \* inflates. Then ®(Q;) < Ker(A).
Furthermore, (QP)(A) = (QP)(A*) = @, and the corollary follows. O

The following straightforward lemma is necessary for the rest of the chapter, and gives a stronger
result than Corollary 4.13.

Lemma 4.14. Let P be a p-subgroup of a finite group G and let Q1 < Q2 be q-subgroups of G, for
some distinct odd primes p and q. If P normalizes Q1, and Qs normalizes their product Q1 P, then
Q2P is also a subgroup of G with Q2 € Syl (Q2P), P € Syl,(Q2P) and Q1P 1 Q2P. Furthermore,
Q2 is the product Q2 = [Q1, PIN(P in Q2), where [Q1,P] < Q2P and [Q1,P] N N(P in Q2) =
C(P in [@Q1, P]) < ©([Q1, P]).

Proof. That the product, Q2P = Q2(Q1P), is a subgroup of G is clear as ()2 normalizes the
semidirect product 1 x P. That same product Q1P is a normal subgroup of Q2P = Q2(Q1P).
We obviously have that Q2 € Syl (Q2P) and P € Syl (Q2P).

By Frattini’s argument for the Sylow p-subgroup P of Q1P < Q2P we get

QQP = leN(P in QQP) (415&)

The normalizer, N(P in Q2P), of P in Q2P contains P. So it is equal to PN (P in ()2). Hence
(4.15a) can be written as Q2P = Q1 N(P in Q2)P. Since Q1N (P in Q2) < Q2 and Q2 NP =1, we
conclude that

Q2 = Q1N(P in Q2). (4.15b)

Because (|@Q1],|P|) = 1, and P acts on @1, we can write Q1 as the product Q1 = [Q1, PN (P in Q).
The commutator subgroup [Q1, P| is a characteristic subgroup of Q1P and thus is also a normal
subgroup of Q9, as Q2 normalizes Q1 P. Therefore, (4.15b) implies

QQ = [Ql,P]N(P in QQ)

That [Q1, P)N N(P in Q2) = C(P in [Q1, P]) is obvious as (|Q1],|P]) = 1. Also the factor group
K :=[Q1, P]/®([Q1, P]) is abelian and thus K = [K, P] x C(P in K). As [Q1, P, P| = [Q1, P] (by
Theorem 3.6 in section 3.5 in [9]), we get that K = [K, P] and C(P in K) = 1. This implies that
C(P in (@1, P)) < B(Q1. ). 0

As an easy consequence of Corollary 4.13 and Lemma 4.14 we have:

Proposition 4.16. Let Q be a q-group acting on a p-group P with p # q odd primes. Suppose that
the semi—direct product Q X P acts on a q-group Q1 such that the action of P on Q1 is faithful.
Then there exists a linear character X of Q1 such that C(P in Q1) < Ker(\) and (QP)(\) = Q.

Proof. As P acts on 1 we can write Q1 as the product Q1 = [@Q1,P] - C(P in @Q1). It is clear
that the product QC(P in Q1) forms a group. Furthermore, QC(P in (1) normalizes P and
the semidirect product (QC(P in Q1)) x P acts on [Q1, P], while the action of P on [Q1, P] is
faithful. Then according to Corollary 4.13 there exists a linear character \; of [@Q1, P] such that
(QC(P in @1)P)(M1) = QC(P in Q1), while ®([Q1, P]) < Ker(A1).

As we have seen in Lemma 4.14

(@1, PINC(P in Q1) = C(P in [@1, P]) < @([Q1, P]).
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Since A is a linear character of [Q)1, P| that is trivial on ®([Q1, P]) and C(P in @1)-invariant, the
above inclusion implies that A1 has a unique extension to a linear character A of ()1 trivial on
C(P in @1). Furthermore, (QP)(\) = (QP)(A\1) = Q, and the proposition follows. O

We are now ready to show how our first change works:

Theorem 4.17. Let Q1 1 Q2 = Q < G and P satisfy Hypothesis 4.1. Assume further that (1 is
an irreducible character of Q1. Then there exist irreducible characters 37 of Q1 and % of Qa(5Y)
such that

P(61) = P(By),
QA1) < Q(BY) and
Ban = Br-

Therefore 3 is an extension of By to Q(5Y).

Proof. Let P((31) be the stabilizer of 31 in P and P; be the normalizer of P(3;) in P. Let Py denote
the factor group P;/P((31). We write C; for the centralizer, C; = C'(P(f1) in Q1), of P(1) in Q.
Then it is clear that P; acts on Cj.

The Glauberman-Isaacs correspondence (Theorem 13.1 in [12]), applied to the groups P(3;) and
@1, provides an irreducible character 6 of C; corresponding to the irreducible character (31 of Q).
As P; normalizes both P(f31) and Q1 we get that (P1)(0) = (P1)(81) = P(51). If (P1)(6) < P(6)

then N(P(81) in P(0)) = (P1)(0) > (P1)(0) = P(1). Therefore
P(0) = (P1)(0) = P(Br).

Since P(f1) centralizes C1 = C(P(1) in Q1), we have P(81) < C(Cyin P1) < (P1)(0) = P(B1).
Hence C(Cy in P;) = P(B;1) and Py acts faithfully on Cj.

Let Cy := N(P(f1) in @) be the normalizer of P(f3;) in . Then C; is a normal subgroup of
Cy as @1 < Q2. Furthermore, C normalizes N(P((31) in PQ1) as Q2 normalizes the product PQ).
As PiC; = N(P(p1) in PQ1) we conclude that Cy normalizes the product P;C,. Hence Frattini’s
argument implies that Co = N (P in C)Cy. Let C4 := N(P; in Cy). Then Ch normalizes P; and
the semidirect product C% x Py acts on €. Furthermore, the action of P; on Cj is faithful. By
Proposition 4.16, there exists a linear character A € Lin(Cy) such that C(Py in C;) < Ker(\) and
(CaP1)(A) = Cs.

The last equation implies that P;(\) = P(f1). Thus P(51) = P1(A\) < P(X\). We actually have
that

PO\ = P(31).

Indeed, if P(#1) < P(\), then P(B1) would be a proper subgroup of N(P(f5;) in P(A)). Thus
P(f1) < N(P(p1) in P(X)) = N(P(p1) in P)(A) = Pi(A) = P(61).

Since Cy = C4Cy and CY fixes \j, we conclude that Cy also fixes A;. Furthermore, for the
intersection Cy N CY% we get

Cin Cé =C1N N(Pl in CQ) = C(Pl in Cl) < C(Fl in Cl) < Ker()\).

Therefore A can be extended to Cy. Furthermore, according to Theorem 6.26 in [12] and the fact
that CoP((31) fixes A\, we get that A can be extended to CyP(/31).
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Let 87 € Irr(Q1) be the Glauberman-Issacs P([)-correspondent to A\. Then as CyP; normalizes
both P(f31) and @1, Corollary 2.2 implies that

(CoP1)(BY) = (C2P1)(N) = C2P(B1).
Hence P(BY) > Pi(5Y) = P(\) = P(f1). If P(BY) > P(f1) then

P(p1) < N(P(p1) in P(B7)) = P1(BY) = P(B).
Thus P(5Y) = P(\) = P(f1) and

(C2(PQ1))(BY) = C2P(61)Q1-

Since Cs fixes B} and normalizes P(f1) we have Co < N(P(51) in Q(5Y)) < N(P(f1) in Q) = Ch.
Hence Cy = N(P(1) in Q(5Y)). Furthermore, P(51)Q1 = (P1Q1)(5Y) as P(8Y) = P(/1). Hence
the group P(f81)Q1 = (PQ1)(6Y) is a normal subgroup of P(31)Q(4Y) as  normalizes the product
P1Q1. So we can apply the Main Theorem in [17] to the groups P(31)Q(57), P(f1)Q1 and Q1. We
conclude that 5 extends to P(51)Q(5Y) as its P(f1)-Glauberman correspondent A can be extended
to P(81)Ca = P(B1)N(P(B1) in Q(BY)). We write ¥ for the extension of 8} to Q(5Y).

To complete the proof of the theorem it remains to show that Q(51) < Q(8Y). The group
(PQ1)(B1) = P(f1)Q1 is a normal subgroup of P(81)Q(31), as @ normalizes P; Q. Hence Frattini’s
argument implies that

Q(B1) = Q1N (P(B1) in Q(B1))-

Therefore Q(81) < Q1 N(P(f1) in Q) = Q1C5. But we have already seen that P(f;)Q; is a normal
subgroup of P(31)Q(8Y). Hence the Frattini argument implies that

Q(BY) = QN(P(B1) in Q(BY)) = Q1Ca.
Thus Q(51) < Q(BY) and the theorem follows. O

4.2 A “multiple” change

In the previous section we saw how we can make a change of a character whenever we have only
two g-groups, Q1 and )2 involved. The natural question that follows from that restricted case is
whether or not we can prove a similar theorem when a chain of ¢g-groups, @1 <Q2<- - - <Qp <Qn+1,
is involved. What we will show is that, eventhought we can not do a character replacement as in
the two group case, we can still find new linear characters having enough of the desired properties.

So assume that, along with the series @1 < Q2 < -+ 1 Qp < Qpy1 = @ of normal sub-
groups of Qn1+1 = @, where Q41 is a g-subgroup of a finite group G, we also have p-subgroups
P, P,,...,P,_1,P, of G, such that P; normalizes the groups P; and (); whenever 1 < j <1i < n,
while @); normalizes the semidirect product P; x ); whenever 1 < j < i < n 4+ 1. Assume further
that K; = C(Q; in P;) for all i = 1,...,n. Then, as we will see by the end of the section, we can
find a chain of linear characters, 5,35, ..., 3;, of Q1,Q2,...,Qy respectively, such that

(1) P(BY) = K; and Qp41(8)) = Qn+1 while
(2) (% can be extended to Qn4+1(5Y) = Q.
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The equivalent of the diagram 4.2 in this case is:

Q= Qunt1=Q(3) (B)°
/
P,
.
Qn B
/
Py
.
Qn-1 1 (4.18)
- i
P | |
N 5
Q2 By
/
P
AN
Q1 By

We will prove in this section that such a generalization is possible when the primes p, ¢ are odd.
We first need some lemmas:

Lemma 4.19. Assume Q1,Q2 are two g-subgroups of a finite group G, for some odd prime q.
Assume further that Q1 < Q9 and that A is a normal subgroup of Q1 normalized by Q2 as well. Let
P be a p-subgroup of G, where 2 # p # q, such that

(a) P normalizes A and Q1, and
(b) Q2 normalizes Q1P

If P denotes the centralizer, C(Q1/A in P), of Q1/A in P, then Q2 normalizes the semidirect
product P x A. Thus QZP s a group with QlP and A as normal subgroups. The factor group
Q2P/A=Qy(Px A)/A equals the semidirect product (Q2/A) x ((PA)/A), of its q-subgroup Q2 /A
and its normal p-subgroup (PA)/A = P.

Proof. Since Q2 normalizes Q1 P, the prodlﬁQgP = Q2 - (Q1P) is a group. Note that A I QoP.
We will use bars to denote the image in PQy = (PQ2)/A of any subgroup of PQy containing
A. Then P = C(Q, in P), is a normal subgroup of P, as the latter normalizes both A and Q.

Furthermore, PQ; = P x Q, and P is the centralizer in P of Q,. It follows that P = (PA)/A is the
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maximal normal p-subgroup of ml._Therefore, @, normalizes P as it normalizes PQ,. Hence Q

normalizes the inverse image PA of P in PQy. So ISQQ = (ﬁA)QZ is a group and thus a subgroup
of PQ)y. Furthermore, as Q1 < Q2 and ()2 normalizes PA we get that Qo normalizes their product
Ql(PA) QlP Therefore QlP < QQP

As Q2 normalizes PA we get that Q2/A normalizes PA/A. Therefore (Q2/A) x (PA/A) is a
group. Clearly Qo(PA)/A = (Q2/A) x (PA/A), and the lemma follows. O

Lemma 4.20. Assume that Q1,Q2,G and P satisfy Hypothesis 4.1. Let K := C(Q in P) be the
kernel of the P-action on Q1. Then Q2 = [Q1,P]- N(P in Q2) and Q1 = [Q1,P] - C(P in Q).
Furthermore, there exist linear characters A1 € Lin(Q1) and Ay € Lin(Q2) that satisfy the following
three conditions:

(1) Aal@r = A
(2) (Q2-P)(M) =Q2- K
(3) C(P in Q1) < Ker(\1) and N(P in Q2) < Ker(Xs).

Therefore, M1(s-u) = A(s) = Mljg,,p(5) and Aa(s-t) = Ai(s), for all s € [Q1, P],u € C(P in Q1)
andt € N(P in Q2).

Proof. Since ()2 normalizes the semidirect product @7 x P and @)1 < @2, Lemma 4.14 implies

Q2 = Q1N(P in Q2) = [Q1, P] - N(P in Q2), (4.21)

where [Q1, P] < Q2P,(and thus [Q1, P] <Q2). Also N(P in Q2) N Q1 = C(P in Q1). Furthermore,
as the p-group P normalizes the ¢-group ()1, we have

Q1 =[Q1,P]-C(P in Qy). (4.22)

Let Cy = N(P in @2). Then C normalizes P, while their semidirect product Cy X P normalizes
Q1.

Case 1: Assume that K = 1.

Since K = 1, the p-group P acts faithfully on ;. Therefore, in view of Proposition 4.16, there
exist a linear character A\; € Lin(Q1) suct that (CoP)(A1) = Cy, and C(P in Q1) < Ker(\y).

Since Q2 = Q1C> (according to (4.21)) and C5 fixes A1, we conclude that A\ is Q2 invariant.
Furthermore, the fact that Q1 N Cy = C(P in Q1) < Ker()\1), implies that A; extends canonicaly
to a linear character A2 of Q2 such that N (P in QQ2) < Ker(\2). This along with (4.21) and (4.22)
imply that

M (s 1) = Aa(s) = Mljgu.pi(5),
while
Aa(s-t) = Aa(s) = Ai(s),
for all s € [@Q1,P],u € C(Pin Q1) and t € N(P in Q2).
This completes the proof of Lemma 4.20 when K = C(Q; in P) = 1.
Case 2: Assume that 1 < K < P.

In this case we work with the group P’ = P/K in the place of P. Note that in view of (4.22), we
have

K =C(Q1 in P)=C(|Q1,P] in P).
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As K = Op(PQ1) and PQ1 < PQ2 we have that K is a normal subgroup of PQ),. Hence K is a
Q2-invariant subgroup of P. Therefore the hypothesis of Lemma 4.20 are satisfied for P’ in the
place of P, as P’ normalizes Q1 while Q2 normalizes their product Q x P’.

Hence the previous case provides linear characters A\; € Lin(Q1) and Ag € Lin(Q2) such that Ao is
an extension of A\ to (J2. Furthermore,

(Q2- P')(M) = Q2 (4.23a)

while
C(P"in Q1) < Ker()\1) and N(P" in Q3) < Ker(\2). (4.23b)

Even more, A\i(s-u) = Ai(s) and Ao(s - t) = Ai(s), for all s € [Q1,P],u € C(P" in Q1) and
te N(P/ in Qg)
We observe that (4.23a) implies

(Q2-P)(\1) =Q2- K,

as K centralizes Q1. Furthermore, we note that [Q1, P'| = [@1, P] while N(P in Q2) < N(P’ in Q2)
and C(Pin Q1) < C(P'in @Q1). Hence in view of (4.23b) we have N(P in Q2) < Ker(\2) and
C(P in Q1) < Ker(A1). Therefore the lemma follows. O

Theorem 4.24. Assume G is a finite group of order p®q® for distinct odd primes p and q, and
non—negative integers a and b. Let Q1 Q2 J---1Q, IQnt+1 = Q be a series of normal subgroups
of a q-subgroup Q < G, and let Py, Ps, ..., Py_1, P, be p-subgroups of G such that the following
hold:

(1) P; normalizes the groups P; and Q; whenever 1 < j <1i < n, while
(2) Q; normalizes the semidirect product Pj x Q; whenever 1 < j <i<n+1.

Let K; denote the kernel of the P;-action on Q;, i.e., K; = C(Q; in P;) for everyi=1,...n. Then
there exist linear characters B; of Q;, for alli=1,...,n+ 1, such that:

(a) the restriction Bilq, of Bi to Q; equals B; if 1 < j<i<n+1, and
(b) the stabilizer (QP;)(5;) of Bi in QP; equals QK; if 1 < i <n.
Thus Bpy1 is an extension to Q = Qny1 of B1, B2, ..., On.

Proof. For the proof we will use induction on n. The case n = 1 is done in Lemma 4.20.

We assume that the proposition holds for all n with 1 < n < k and some k > 2. We will prove
it also holds for n = k. Since ); normalizes Py X Qq, for alli =1,...,k+ 1, while Q1 <@Q;, Lemma
4.14 implies that @); is the product

Qi = Ql . N(Pl in Ql), (425&)
of its normal subgroup @1 with N(P; in Q;), where
Q1N N(Pl in Ql) < C(Pl in Ql) (4251:))

As P; normalizes the groups @Q;, @1, it also normalizes the factor group @1}1 = Q;/Q1, whenever
1<i<k.
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We define:
Pi1 =C(Q;; in Py). (4.26)
Note that P171 = C(Ql/Ql in Pl) = P.
If we apply Lemma 4.19 to the groups Q; = Q1-N(P; in Q;),Q1,Q and P;, forsomei =1,...,k,
in the place of Q1, A, Q2 and P respectively, we conclude that

() normalizes the semidirect product P; 1 X Q1. (4.27)

Furthermore, the group P;; normalizes 1, as P; does. Since FP; normalizes both P; and Q; for all
J =1,...,1 we have that P;; normalizes both P; and Q; as well. Therefore P;; normalizes both
the factor group @;; and the centralizer C(Q;, in P;) = P, for all such j. Hence the product

Pr=Pi1-Po1---Poi=P-P1--- Py (4.28)

is a p-subgroup of G that normalizes Q1. Thus P; X Q1 is a group. In view of (4.27), the group
P1 x Q1 is normalized by @ = Qiy1. Let C1 := C(Q1 in Py) be the centralizer of @)1 in P;. Then
Lemma 4.20 implies that there exists a linear character p; € Lin(Q1) that can be extended to a
linear character p§ € Lin(Q), with the following properties:

Q) = Q, (4.292)
Pi(p1) = C1 = C(Q1 in Py) (4.29b)

and
C(Py in Q1) < Ker(uy). (4.29c¢)

Furthermore, for the extension character u§, we have:

ilg, = o, (4.300)
while
pi(s - t) = pa(s) (4.30b)
for all s € Q1 and t € N(P; in Qp41). Clearly for all i = 1,...,k we have that u§|g, € Lin(Q;).
Furthermore (4.30b), along with (4.25a), implies
15l (s - ti) = pa(s), (4.30c)
for all s € @1 and t; € N(P; in Q;).

We will use our inductive argument on the groups

Q2/Q1 9Q3/Q1 < 4 Qp41/Q1 = Q/Q1.

Note that the above groups form a series of normal subgroups of the g-group Q/Q1, as Q2 <
Q3 <--- 4Q = Qp41 is a normal series of Q. Furthermore the group P; normalizes Q;/Q1,
whenever 1 < j < i < k, as P; normalizes both P; and @;. Thus P; x Q;/Q1 is a group. Also
Qi/Q1 normalizes the semidirect product P; x (Q;/Q1), whenever 1 < j < i < k+1, as Q;
normalizes the semidirect product P; x @;. Hence by induction, there exist linear characters

A3 € Irr(Q2/Q1), - -, A € Irr(Qr/Q1), and Ay, in Trr(Q/Q1) such that
ArvilQisor =N (4.31)
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and
(Q/Q1-P)(N) =Q/Q1-C(Qi/Q1in ;) =Q/Q1- P, (4.32)

foralli=2,... k.
Let \; € Lin(Q;) be the linear character of @); inflated from A} € Lin(Q;/@1). Then (4.31) and
(4.32) imply:

Mt = N, (4.33a)
Q1 < Ker(\), (4.33b)
and
QN) = Q, (4.33c)
forallt =2,...,k+ 1. Furthermore,
Pi(\i) = Pia (4.33d)

foralli=2,...,k.
As Aj41 is a linear character of Qp11 and Q1 < Qp41, the restriction Ay := Ay41]g,, is a linear
character of Q1. Furthermore, (4.33b) implies

A1 =1g, and thus Q(\) = Q. (4.34)

Since Q; = Q1 - N(P; in Q) for every i = 1,...,k + 1, (see (4.25a)), equations (4.33a) and
(4.34) imply
/\i(s . ti) = )\Z(tz) = )\k—i-l(ti)a (435)

for all s € Q1 and t; € N(P; in Q;).
Using the equation (4.25a), we define for all i = 1,..., k + 1,

Bi(s - ti) = pa(s) - Ai(ts), (4.36)
whenever s € 1 and t; € N(P; in Q;) < N(P; in Qk41). According to (4.30c) and (4.35), we can
rewrite the characters (3; as

Bi = 1ilqi - i = pilQs - Me+1lQi = (11 - A1) @,
Hence
Bilg, = B, (4.37)

whenever 1 < j < ¢ < k+ 1. Therefore, 8;41 is an extension of §; to Q.

As @ fixes ;1 by (4.29a), and fixes \; by (4.33c), it also fixes 3;, in view of (4.36). Furthermore,
(4.36) implies that P;(5;) = Pi(u1) N Pi(\;) for alli =1,..., k. In view of (4.29b) and (4.33d) we
conclude that

Pi(6;) = C(Qq in P;) N Py 5.

But P;; = C(Qi/Q1 in P;) by (4.26). Hence

This completes the proof of the inductive step for n = k. Thus Proposition 4.24 follows. O
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Chapter 5

Triangular Sets

5.1 The correspondence
Assume we have the following situation:
Hypothesis 5.1. Let G be an odd order group and m any set of primes. Let
1=Gy4G,14--- 4G, 4G (5.2)

be a series of normal subgroups of G, for some arbitrary integer m > 0, such that G;/G;—1, for
1=1,2,...,m, is a ' -group when i is odd and a w-group when i is even.

Recall the definition given in Chapter 1

Definition 5.3. Let y; be an irreducible character of G;, for all ¢ = 0,1,...,m, such that x; lies
over xj for all k =0,1,...,4. Any such collection of irreducible characters {x;} is said to be a
character tower for the series {G;}7™.

Suppose further that there exist w- and n’-groups P, and Q2;_1 respectively, along with irre-
ducible characters ao, and f2;_1, such that

Py=1and ag =1,
Q1 = G1 and 1 = x1,

Py, € Hall(Gar(az,...,a2—2,01,...,B2-1)),
agy € Irr(Po,) lies above the Q2,_1-Glauberman correspondent of ao,_2,

Q2i—1 € Hall (Gai—1 (2, . . ., a2i—2, 1, - . ., B2i—3)),
B2i—1 € Irr(Q2;—1) lies above the P»;_9-Glauberman correspondent of (B2;_3

(5.4)

for all odd 2¢ — 1 and even 2r with 1 < 2i—1<mand 1 < 2r < m.
Depending on the parity of m the collection of groups and characters appearing in (5.4) consists
of

{P07P27"'7Pm717Q17Q37"'7Qm|a07"'>amflaﬁ17"'7ﬁm} it m is Odd7 and
{POaP27"'aPmaQ17Q37'"7Qm71|a0a"'7am>ﬁla'"7ﬂm71} if m is even.
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By convention we will write, for both cases, the collection of groups and characters as
{Par, Qai—1|a2r, B2i—1} where 1 < 2i — 1 < m and 0 < 2r < m. We also write {Q2;—1|52i—1}
for the 7’-subset of the above collection and similarly, { Py, |ag,} for the m-subset.

Definition 5.5. Any set of groups and characters that satisfies (5.4) will be called a triangular
set for the normal series (5.2).

At this point it is not clear at all that such a collection of groups and characters exists. Even
worse, it is not at all obvious that (5.4) is well defined. For all we know, the group C'(Py; in Q2;—1),
which is the support of the Ps;-Glauberman correspondent of (35,1, need not be a subgroup of
Q2i+1. Thus, to ask for the character (2,11 € Irr(Q2;+1) to lie above a character of C'(Py; in Q2;—1)
seems out of place. (Of course the same problem appears for the m-groups C(Q2,—1 in Pa,_2) and
the character ay,). But in fact these collections of groups and characters do exist, as we will see
in Section 5.2. Furthermore, we will prove in the rest of this chapter not only that triangular sets
exist but also that they correspond uniquely, up to conjugation, to character towers. In particular
we will prove

Theorem 5.6. Assume that Hypothesis 5.1 holds. Then there is a one—to—one correspondence
between G-conjugacy classes of character towers of (5.2) and G-conjugacy classes of triangular
sets for (5.2).

5.2 Triangular-sets: existence and properties

Assume that a finite group G and a normal series (5.2) are given so that Hypothesis 5.1 is satisfied.
Recall (see Chapter 1) that for any real number x, we denote by [z] the greatest integer n such
that n < z. If we write

l=[(m+1)/2],textand (5.7a)
k=[m/2], (5.7b)

then 20 — 1 is the greatest odd integer in the set {1,...,m} while 2k is the greatest even integer in

the same set. Furthermore,
kE<I<k+1, (5.8)

where for m even we get k = [, while for m odd we have k = [—1. Then it is easy to construct, in a
recursive way, a collection of groups and characters Q2;—1, Par, B2;—1 and s, so that the following
holds:

Py=1and o =1, (5.9a)

Q1 =Gy and B = X1, (5.9b)

Py, € Hall (Gar(ag, ..., a20—2, 51, ..., B2r—1)), (5.9¢)
agy € Irr(Poy), (5.9d)

Q2i—1 € Hall,/ (Goi—1(aa, ... ,a2i—2,B1, ..., 32i-3)), (5.9¢)
Boi—1 € Irr(Q2i—1), (5.9f)

whenever 2 <i<[land 1 <r <k.
Notice that (5.9) is a part of (5.4). So to prove existence of triangular sets we need to show that
the characters (2,1 and aw, that appear in (5.9) can be chosen to satisfy the additional conditions
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required in (5.4). Before we prove this, let us see what conclusions we can draw from (5.9). The
first obvious remark is that, according to (5.9¢) and (5.9c), we have:

(Q2;_1 normalizes the groups Ps,..., Py _9,Q1,...,Q2 3, (5.10a)

while
P;, normalizes the groups Py, Pa, ..., Poyr_9,Q1,...,Q2_1, (5.10b)

whenever 2 <i<[land 1 <r <k.
Since Ps, normalizes QQ2,_1, the group

Q2r—12r = C(Pa in Qor—1) = N(P2, in Q2r—1) (5.11)

is defined whenever 1 < r < k (note that the group Qg,—1 is defined for all such r as k < I).
Furthermore, (5.9) implies two lemata that lead to the existence of triangular sets. We start with

Lemma 5.12. For every ¢ with 1 <i <[ —1 we have

Q2i-1,2i = Q2i+1 N G2i_1.

Hence (Q2i—1,2; ©s a normal subgroup of QQ2i41.

Note that this lemma gives us no information about the group Q2x—1,2x in the case of an even
m = 2l = 2k, as the group QQax+1 is not defined in that case.

Proof. The group Go;—1 is a normal subgroup of Go;11 whenever 1 < ¢ < [. Hence the definition
(5.9¢) of Q2i4+1 implies that

Q2i+1 N Goi—1 € Hall (Goi—1(0, ..., a2i, B1, - -, B2i-1))- (5.13)

In particular, whenever 1 < ¢ < [ the character B2;_3 is defined, and we have

Q2i+1 N Goim1 < Goi1(ag, ..., 02,01, .., 02i-1) < Gai—1(ag, ..., a2i-2,01,...,(2i-3).

Furthermore, Q2,41 normalizes Q2;—1 (according to (5.10a)). Also Q2;—1 is a 7’-Hall subgroup of
the group Ga;—1(ag,...,a2—2,01,...,32i—3). So the intersection Q2;+1 N Ga;—1 is a 7'-subgroup
of Goi—1(ag,...,a0i-2,01,...,02—3), and normalizes the 7'-Hall subgroup Q2;—1 of that group.
Therefore Q2,11 N Goi—1 < @Q2i—1 whenever 1 < ¢ < [. But the last inclusion is still valid when
1 =1, as Q1 = G1 and therefore Q3N G < Q1. Hence, Q2;+1 N Goi—1 < Q2;—1 whenever 1 < ¢ < [.
As Q241 normalizes the group Py; by (5.10a), we conclude that Q2,41 N Go;—1 is a subgroup of
N(Py; in Q2i—1) = Q2;-1,2i, i.e., that

Q2i+1 NG2i—1 < Q2i-1,2i

whenever 1 <34 <.
To prove the opposite inclusion we remark that, as (Q2;—1,2; centralizes P;, it fixes the character

ag;. It also fixes the character [a;—1 € Irr(Q2;—1), as it is a subgroup of Q9;—1. This, along with
the definition of Q2;—1 (see (5.9¢)), implies that

Q2i—1,2i < Goi—1(2, ..., 2i—2, i, 1, - . ., B2i—3, B2i—1).
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But the group Q2,11 N Ga;—1 is a m'-Hall subgroup of Ggi_l(ag, e, 04, 1, ,ﬁgi_l), by (5.13).
Hence the fact that Q211 NGa;—1 is contained in the 7'-group Q2;—1 2; implies that Q2,41 NGai—1 =
Q2i—1,2i- As G2;—1 is a normal subgroup of Gg;41 we conclude that Q2;41 N G2i—1 I Q2i41, and the
lemma, follows. O

Note that Lemma 5.12 resolves the problem discussed in Section 5.1, at least for the 7’-groups.
Indeed, the character (2,1 is fixed by the m-group P, by (5.9c). Thus we can define (2,12, €
Irr(Q2r—1,2r) to be the Py.-Glauberman correspondent of fo,—1 € Irr(Q2,—1) whenever 1 <1 < k.
Hence, in view of Lemma 5.12, and starting with $; = x1, it makes sense to pick the character
B2i—1 so that it lies above B2;_32;—2 whenever 2 <14 <.

Similarly we can work with the m-groups. So we can define the group

Pyioip1 = C(Q2it1 in Poy) = N(Qait1 in Py;), (5.14)

whenever 1 < i < [. (Note that Q241 normalizes P;, by (5.10a)). Furthermore, in a symmetric
way to that we used for the n’-groups we can prove

Lemma 5.15. For everyr with 1 <r <k —1
Payori1 = Poryo N Goy.
Hence Poyary1 1s a normal subgroup of Poria.

Note that, as in the case of the m’-groups, we get no information about the groups Py 9911 =
Py, 91,11 that appear in the case where m = 2/ — 1 = 2k 4 1 is odd.

As the character ay; is fixed by Q2i+1 (see (5.9¢)), we can define ag; 2i+1 € Irr(P;2i41) to be
the Q2i+1-Glauberman correspondent of aw; € Irr(Py;) whenever 1 < ¢ < [. Hence, in view of
Lemma 5.15, and starting with ap = 1, we can pick the character ag, € Irr(Ps,) so that it lies
above agy_2 2,1 whenever 1 < r < k. (Observe that, since ap = 1, the only requirement for the
character ag is to be an irreducible character of P»).

This completes the proof of the existence of triangular sets, as the groups and characters we
just constructed satisfy (5.4). Indeed, we have proved

Proposition 5.16. Assume that Hypothesis (5.1) holds for the group G. Then there exists a
triangular set { Py, Qait1|ar, B2ix1} for the normal series (5.2), so as to satisfy the following
conditions, whenever 1 <r <k and 2 <1i<I:

Py=1and ag =1, (5.17a)

Q1 =Gy and By := x1 € Irr(Q1) = Irr(Gy), (5.17b)
Py, € Hall (Gor (a2, . ..,a20—2, 01, .., B2r—1)), (5.17¢)
agr € Irr(Por|aor—2.2r—1), (5.17d)

Q2i—1 € Hall/ (Gai—1 (v, ... 92,51, ..., (2i-3)), (5.17e)
Bai—1 € Irr(Q2i—1|B2i-3,2i-2): (5.17f)

where oor_9 2,1 15 the Qr—1-Glauberman correspondent of aor—o and similarly Ba;—32i—2 is the
Py;_o-Glauberman correspondent of (Bo;_3.

From now on, and until the end of this section, we assume that the set { Py, Q2it1|a2r, f2it1}
is a triangular set for (5.2), and therefore satisfies (5.17).
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An attempt to give a diagram that describes the relations in (5.17) produces the following

“Double Staircases” of groups and characters:

(Qa1—1,21 ) Q211

Qa—321-2 — Q-3

Q56 — Qs

Q34 — Q3
Q2 — Q1
and
(Bor—1,21 ~—> )Bar—1
Bai—321-2 > P23
Py

B5.6 <P—6> Bs

B3,4 B B3

38

(5.18a)

(5.18b)



and similarly for the m-groups and their characters

)Py,

(Pog 2k+1

Py _2ok—1 — Pog_2

P6,7 P6 (519&)
Pys — Py
Py — P
and
(Qvop ok1 ~— )vap
Aok —22k—1 > (22
Qak—1
Q7

Q45 < Oy
5

Q23 05 %)
where the groups and characters in parentheses are those extra groups and characters that appear
in the case of an even m (for the n’-group Q2,19 and its character 8y—1 9;) or an odd m (for the
m-group Py op+1 and its character agp or41) respectively. Observe, that every group appearing in
(5.18a) or (5.19a) is contained in all other groups that lie above or to its right. Furthermore, any
character appearing in (5.18b) or (5.19b) is a Glauberman correspondent of the character that lies
on its right.

We can actually expand these staircases into the following “Double Triangles” (5.20) and (5.21)
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of groups and characters (which is the reason behind the name triangular).

(Qar—1,21 ) Q211

(Qai—321 — )Q21-321—2 — Q-3

(5.20a)
(@52 )Q5.20—2 —— Qs 21-4 — ... —— Q5
(Q3,2 )Q3,21—2 —— Q321—4 Q3.4 Q3
(Q1,2 )Qi21—2 — Qio—4 — ... — Q14 — Q12 — Q1
and
(Bar—1,21 ~—> )B21-1
(Bar—3.21 + )Bai-321-2 NV Bai—3
‘ 91—2
(5.20b)
Bs,21 ~—> )B5,21— B5,21— B
(Bs,2 )B5.21—2 By P21 p B
(B30 ~— )B3.21—2 Pors B3,21—2 ‘PQZ_; PG‘ B3,4 ‘P4 B3

Broi—4 <5— ... ~—=> P14 = P12 = 4
Py Ps Py Py
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for the m’-groups and their characters, and similarly for the m-groups:

(Pogok41 — ) Pay
(Pog—2,2k+1 — )Pok—2.2k—1 — Pop—2
(5.21a)
(Ps 2k41 )Ps ok—1 —— Ps o3 — ... —— Fs
(Py2k+1 VPiok—1 —— Piop—3 — ... — Pys — P4
(P2 2k41 VPook—1 —— Pogpg — ... — Poy — Po3 —— P»
and
(ko1 ~— )Ovap
(Q2k—2,2k4+1 +> )O2k—22k—1 ——> Q2—2
‘ Qar-1
(5.21b)
(C6,2k41 ~—— )062k—1 ~—=—> Q6 2%k—3 a6
2%k—1 Qar—3 Q7
(g ok41 ~— )Uk—1 ~——— Q42k—3 ays ay

Q2k—1 Qan—3z  Qr Qs

(2 2k41 ~—> )X22k—1 ~———> Q223 ~——> ... +—> Q25 > (23 ~— (2
Q2k-1 Q2k—3 7 Qs 3
where, as before, | = [(m+1)/2] and k = [m/2]. Furthermore, the n’-groups Q2;_1 2 and characters
B2i—1,21 in parentheses exist only when m is even, and the m-groups Ps, 21.+1 and characters as; or11
only when m is odd.

Before we give the long list of the groups, the characters and their properties that are involved
in the above diagrams, we remark again that the groups and characters that appear in the first two
diagonals of the above “Double Triangle” diagrams form the “Double Staircase” diagrams. The
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rest of the groups that appear in the above diagrams are defined as

Q2i-1.2j := N (P, Pait2,..., Poj in Qoi-1), (5.22a)

and
Porosi1 := N(Qar41,Q2r43, - - ., Qas1 in Po,), (5.22b)

for all 4,j, 7, s with 1 <i<[,i<j <k, 1<r<kandr<s<I[—1. Note that, in view of (5.10a)
and (5.10b), the products Po; - Pajyo- - - Poj and Qor41 - Q2,43 - - - Q2s4+1 form groups, for all 4, 5,7, s
as above. This, along with (5.22), implies that

Q2i-1,2j = N(Pai, Pajya, ..., Poj in Q2i—1)
= C(Pgi, P22‘+2, e ,ng in Q2i—1) = C(sz . P2i+2 ce P2j n QQi_l), (523&)

and

Porosi1 = N(Qors1, Q2r43, - - ., Qasy1 In Poy)
=C(Q2r11,Q2r13,- .-, Qasy1 in Poy) = C(Q2r41 - Q2r43 -+ Q2541 in Poy), (5.23b)

whenever 1 < <[, i< j<k 1<r<kandr <s<I[—1. Furthermore, the way the groups
Q2i—1,2j and Pay 9441 are defined, along with (5.10), implies that

(Q2i—1 normalizes the groups Qa;—1.2; and P 2jy1, (5.24a)
whenever 1 <t < j <i—1<1[—1. Similarly,
P>, normalizes the groups Qo412 and Po;2;_1, (5.24b)

whenever 1 <t < j<r<k.

Looking at the diagrams (5.20a) and (5.21a), we seee that what (5.10) and (5.24) say is that
any group on the main diagonal of these diagrams, that is QQ2;_1 or Ps,, normalizes all the other
groups that lie below or to its right. They also say that Q2;—1 normalizes all the groups in (5.21a)
which are below or to the right of Pa;_2 91, while Ps, normalizes all the groups in (5.20a) which
are below or to the right of Q2,1 2.

Furthermore, in the case that j > i and s > r (with 4, j, s, 7 as in (5.23)), the groups Q2;—1,2j—2
and P, 9,1 satisfy the equations (5.23a) and (5.23b), respectively. Hence

Q2i—12j = N(P2j in N(Py;, Poita, ..., Paj_oin Q2i—1)) = N (P in Qoi—12j-2).
But P; normalizes QQ2;—1,2j—2 by (5.24b). Therefore
Q2i—1,2j = N(P2j in Q2i—1,2j—2) = C(Poj in Q2i—1,2j—2), (5.25a)
and similarly for the m-groups
Porosi1 = N(Q2s41 In Paros—1) = C(Qas41 in Poras—1), (5.25Db)

whenever 1 <i <[, i<j<k, 1<r<kandr<s<l|l-—1.
According to (5.17e) and (5.17c), the groups Q2;—1 and Py, were chosen to be 7’-Hall and 7-Hall
subgroups of specific “stabilizer”-subgroups of G;_1 and Go,, respectively. A similar characteriza-
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tion for the groups Q2;—1,2; and P, 9541 is described and proved in
Proposition 5.26. For every i,j with 1 < i < j <l —1 the following holds

Q2i—1,2j = Q2j+1 N G2i—1 and therefore (5.27a)
Q2i—1,2; € Hall (Goi—1(aa, ..., a2, 01,...,02j-1)) (5.27Db)
= Hall/ (Gai—1(2, ..., 25,01, - .., B2j—1, B2j+1))-

Similarly, for all r,s with 1 <r < s <k —1 we have

Py 951 = Posio N Gop and therefore (5.28a)
P2r,25+1 € HaHTr(GQT(a2a -e o5 (g, 617 o 7625—}—1)) (528b)
= Hall;(Gar(av2, . .., 025, 02542, B1, . - -, B2s11))-

Note that the extra groups Q2;—1,2 (when m = 21 = 2k), and Py, 2+1 (When m = 21—1 = 2k+1)
are not covered in Proposition 5.26.

Proof. The definition of Q2541 in (5.9¢), along with the fact that Gg;—1 is a normal subgroup of
Goj+1 whenever 1 <1 < j <[ —1, implies that

Q2j+] N Goi—q € Hallﬂ/(Ggi_l(ag, ceey O24, 0O, ... ,ﬂgj_l)). (529)

But Q241 also fixes B2;41. Hence
Q2j+1 N G2i—1 € Hall (Goi—1(az, ..., a5, B, ..., B2j—1, B2j41))- (5.30)

In particular, Q2j+l N Ggi,1 is a W’—subgroup of GQZ‘,l(OtQ, e, (959, ,31, PN ,521;3). Further-
more, (241 fixes (2;_1, and so normalizes (J2;—1 But the latter is a 7'-Hall subgroup of the
group Ggi_l(ag, e, 959, ﬂl, cen ,ﬁgi_g). Therefore Q2j+1 N GQi_l < Q2i—1- As Q2j+1 normalizes
the groups P, ..., P, by (5.10a), we conclude that Q2411 N G2;—1 is a subgroup of Q2125 =
N (P, ..., Py in Q2;—1). Hence for all ¢,j with 1 <4 < j <1 —1 we have

Q2j+1 N G2i—1 < Q21,25 (5.31)

To prove the opposite inclusion, and complete the proof of (5.27), we will use induction on j.
According to Lemma 5.12 we have QQ2;—1,2; = Q2i+1 N G2;—1, for all ¢ with 1 <7 <1 —1. Hence the
proposition holds in the case that ¢ = j.

Suppose that, for some fixed r =i+ 1,...,l — 1 and for all j with 1 < ¢ < j < r, we have
Q2i-1,25 < Q2j+1 N G2;—1 (and thus equality as the other inclusion is proved). Then according to
(5.25a), we have Q2i—12, = C(Por in Q2i—12-—2). By our supposition Q21 2,—2 is a subgroup of
erfl. Hence Q2i71,2r § C(PQT in Qgrfl). But C(PQT in Qgrfl) = QQT,LQT, by (523&) Therefore
Q2i-1,2r < Q2r—1,2-- Furthermore, Q2,-12, < Q2,41, by Lemma 5.12. Hence Q2;—12, < Q2r41.
This proves the inductive argument in the case that j = r. Hence Q2;—12; < Q241 N G2i—1
whenever 1 < ¢ < j <[ —1. This, along with (5.29), (5.30) and (5.31), completes the proof of
(5.27).

The proof for (5.28) is similar, so we omit it. As a final remark, we observe that the only tools
we used for the proof of Proposition 5.26 are the definitions of the groups Q2;—1, Py, in (5.17¢) and
(5.17c), and the definitions of the groups Q2;—1,2; and Pay2.41 in (5.22). O
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Proposition 5.26 implies

Corollary 5.32. Foralli,j,r,s with1 <1< j<l—1and1<r<s<k—1 we have
Q2i-1 N Q2j41 = Q2125 and Por N Pasio = Porosy1.

Therefore

Q2i—1,2j = N(Ppj in Q2;—12j—2) = C(P2j in Q2;-1,2j—2)
= N(PQZ', e ,ng n Qgifl) = C(PQi, e ,ng in infl)
= C(Poi - Poito- -+ Poj in Q2i—1) = Q2i—1 N Q2j+1, (5.33)

and

Pyrosi1 = N(Q2s41 in Popos—1) = C(Qas41 in Poyras—1)
= N(Q2r+1,---,Q2s41 In Poy) = C(Q2r41, - - ., Q2s+1 in Poy)
= C(Q2r41 - Q2r43 - Qas+1 In Pop) = Por N Pagta, (5.34)

where, by convention, we write Q2;—12i—2 = Q2i—1 and Pay2,—1 = P.. Furthermore, for any t,t
with1 <t <jandr <t <s, wherei,j,r, s are as above, we have

Q2i-1,2§ L Q212 Q21 and Poyosi1 I Poygsp1 I Posyo. (5.35)
Similarly for the extra groups Qo121 and Pa; op41 we have

Q2i—1,20 I Qo212 when m = 2k and thus k =1,

(5.36)
P opy1 I Poyropy1 when m =20 —1 and thus k=11,

whenever 1 <i<t<landl<r <t <k.

Proof. The first part follows easily from Proposition 5.26 and the two sets of inclusions Q2;—1,2; <
Q2i—1 < Gi—1 and Poy 2541 < P < Ga,. The multiple equations (5.33) and (5.34) are a collection
of (5.23a), (5.25a), (5.23b) and (5.25b). Also (5.35) follows directly from Proposition 5.26, since
Gai—1 < Goi—1 and Ga, < Gop whenever 1 < ¢ <t <l—1land1l <7 <t <k—1. It remains
to show that (5.36) also holds for the extra groups (whenever these exist) Qo;—19 and Pa; 2p41.
Indeed, in the case that m = 2k is even (and so k = [) the groups Q2;_1 2 are well defined (see
(5.22a)) for all @ = 1,...,l. Furthermore, (5.25a) implies that Q2;—12 = N(Py in Q2i—12-2) for
alli=1,...,1—1. Since Q2;—1,21—2 I Q21—1,21—2 I Q21—1 whenever 1 <i <t <[—1, we easily have
that

Q2i—1,20 = N(Poy in Q2i—1,21—2) IN(Poy in Qoy—1,21—2) = Qar—1,20 I N(Poy in Qo1—1) = Q21—1,25

for all such 4 and ¢. This proves (5.36) for the ’-groups. The proof for the m-groups (that occurs
when m = 2] — 1 = 2k + 1) is similar. So we omit it. O

The following proposition covers the extra groups that Proposition 5.26 left out.
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Proposition 5.37. For every ¢,r with 1 <i <[l and 1 <1 < k we have

Q2i—1,21 € Hall (Goi—1 (a2, ..., 01, 1, - .., Bar—1)) if m =2k =21,

5.38
Por o1 € Hallr (Gop(aa, ..., aor, B1, - ., Port1)) ifm=20-1=2k+1. (5.38)

Proof. Assume that m = 2k = 2l is even. Then for all i« = 1,...,1 the groups Q2i—12 =
C(Py, ..., Py in Qo;—1) are well defined (see (5.22a)). By (5.17e) we have that Qg1 is a 7'
Hall subgroup of Goj_1(ag,...,a9-2,01,...,025-3). Thus Qg_; is also a «'-Hall subgroup of

Goj—1(agy ... a2, 01,...,P21-1), as Qg1 fixes fg_1. Furthermore, according to (5.28) for r =
s = k—1, we get Py_99-1 = Pap_s9r—1 € Hallz(Gy—2(2,...,a2-2,01,...,02-1)). Thus
Py_99;—1 is also a m-Hall subgroup of Goj_i(aa,...,ay—2,01,...,02-1), since Goj_1/Go_2 is a

w’—group. Since PQZ_2721_1 == C(le_l in PQl_Q), we have

Go—1(og, ..., 99,081, ..., Ba—1) = Qa—1 X Py_2291.

This implies that Qo _1(ag;) is a 7’-Hall subgroup of Go_1(awa, ..., a9, a9, 1, ..., By_1). Fur-
thermore, Qo_1(ag) < N(Pyin Qo—1) = C(Py in Qu—1) < Q-1(ag). Hence Q12 =
N(Py in Qg_1) is a «'-Hall subgroup of Goi_1(ag,...,as,B1,...,0-1). Thus (5.38) holds for
i=1. Also forany i =1,...,] — 1 we have

Q2i-1,21 = N(Pa in Q2i—1,21-2) ( by (5.25a))
= N(Py in Qu-1NG2i-1) ( by (5.27a))
= N(Py in Qu-1) N G2
= Qa—1,21 N G2—1. (5.39)

ThiS7 along with the facts that Ggi_l ﬂGQl,1 and QQI,LQZ S Haﬂﬁl(Gglfl(Oég, NN O DIR ﬂl, . ,ﬁgl,l)),
implies that
Q2i—1,21 € Hall (Gai—1(az, ..., a9, 1, -, B21-1))

whenever 1 <+ <[. Hence (5.38) holds in the case m = 2k = 2l.
Similarly we can work with the m-groups in the case of an odd m = 2 — 1. O

As a straight forward consequence of (5.39) and (5.27a) we have

Remark 5.40. For every ¢ = 1,...,[ and every j,s with 1 <1 < j < s < k the following holds:
Q2i-1,2s = Q2j-1,2s N G2i—1.

Regarding the possible products of the groups Q2;—1,2; and P, 2541 we have

Proposition 5.41. For every t,r withi=2,....,0l andr =1,... k, we have
Gor(az,...,q0r—2,01,...,2r—1) = Por X Qop_1, (5.42a)
Gor(ag, ..., 000, B1, ..., Bor—1) = Por X Q2r—1,2r, (5.42b)
Gai—1(aa, ..., 0i2,01,...,02i-3) = Pai_2 ¥ Q2;1, (5.42c)
Gai—1(oo, ..., 0i-2,01,...,02i-1) = Pai—22i-1 X Qa2i—1. (5.42d)
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Furthermore

Gor(Qg, ..., 025-2,01,. ., B2s-1) = Pors—1 X Q2r—1,25-2, (5.43a)
Gor(Q2, ..., 028, 1, -+, P2s—1) = Poras—1 X Q2r—1,2s, (5.43b)
Goi—1(o,...,ai—2,01,...,02j—1) = Pai—22j—1 X Q2i—1,2j—2, (5.43c)
Gar—1(az, ..., 20,01, -+, Bov—1) = Par—220-1 X Q21-1,20, (5.43d)

whenever 1 <i < j<I, 1<r<s<kandl<t<v<k.

Note that, according to (5.8), we have & < [ < k + 1. Hence all the above groups are well
defined.

Proof. Clearly (5.17a) and (5.17b), along with the fact that G2/G1 is a m-group, imply
Q1=G1 € HallW/(Gl) N Haﬂﬂl(Gg (,61)) N HallW/(Gg(ao, ﬁ1>) (5.44)

In addition, for all i = 2,...,k the factor group Gg;/G2i—1 is a m-group. Furthermore, in view of
(5.17e) the group Q2;—1 is a w’-Hall subgroup of Ga;_1 (2, ..., a2-2,01,- .., 2—3). Hence Q2;_1 is
also a 7’-Hall subgroup of Gy;(ag, ..., a2-2,01,...,32i—3). As Q2,1 obviously fixes the character
B2i—1 € Irr(Q2;—1), we conclude that

Q2i—1 € Hall/ (Goi—1(a, ..., a2i—2, 51, ..., P2i—3))
NHall (Goi—1(ae, ..., 002,01, ..., 52-1))

5.4ba
NHall (Gai(o, - .., a2i—2, b1, ..., 2i-3)) ( )
NHall (Gai(, ..., a2i-2, 51, ..., F2i-1)),
whenever 1 < ¢ < k, while
_1 €Hall/ (Go_1(aa,...,a_9,81,..., 02—
Qa1 (Ga—1(o 21-2, F1 Bai—3)) (5.45b)

NHall (Go—1(ae, ..., a-2,01,...,02-1)).

Note that we need to include as a special case the group (J9;_1, since it is not covered when
m =2l — 1 is odd.

Similarly for the m-groups we have

Py, € Hall(Gor(ag, ..., a2, —2,01,...,062,-1))
N Hall (Gar (a2, ..., a2, f1,- .., Por—1))

5.46a
N Hall; (Gory1(a, ..., 0p—2, 81, .., B2r—1)) ( )
N Hall:(Gorq1 (2, ..., a2, B1, ..., Bor—1)),
whenever 1 < r <[ — 1, while
Py, € Hall; (Gog(aa, . .., aok—2, 51, .., Por—1)) (5.46b)

NHall; (G2, (oo, ..., a0, 01, .., B2k-1)).
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Furthermore, (5.27) and (5.38), along with the fact that Gg;/Gai—1 is a m-group, imply that

Q2i—1,2j—2 € Hall (Gai—1 (o2, ..., 252, b1, ..., F2j—3))
N Hallr (Goi—1(ag, ..., a05—2, f1, ..., F2j-1))

5.47a
N Hall/ (Gai(az, . .., 052,81, ..., 52j-3)) ( )
N Hall (Goi(ae, . .., azj—2, 01, .., B2i-1)),
whenever 1 < ¢ < j <[, while for all £t with 1 <t <[ we have
_191 € Hall/ (Got—1(aa, ..., aop, B, . . ., Boy—
Qa2t—1,2 (Gor—1(a2 a1, 1 Bar-1)) (5.47D)
N Hall (Gat (e, . .., a0, B, - -, Boi—1)).
Similarly, (5.28), (5.38) and the fact that Ga,+1/Goy is a n'-group imply that
P2T723_1 c Hallw(Ggr(ag, v, (0259, 51, A ,,325_1))
N Hall; (Gar (g, ..., a0s, 081, - .., Bos—
(Gor(az 255 1 B2s—1)) (5.48)
NHall (Gorq1 (2, ..., 0052, 51, .., P2s-1))
N Hanﬂ(G2r+1(a27 ..., (g, 61a e 7ﬁ2371))7
whenever 1 < r < s < k, while for all ¢/ with 1 <t < k we have
Popr oy € Hall, (Gop (2, - - -, gy B, - - -
ot 2it1 (Gap (a2 aog, B1 Bok+1)) (5.48D)

N Hallﬂ(GQt’-i-l(OQa <y G2k, ﬂla oo 7ﬂ2k+1))'

Furthermore, P», normalizes Q2,—1, while Q2;_1 normalizes P5;_5. Therefore (5.44), (5.45) and
(5.46) imply that
Por X Qor—1 = Gar(a,...,020—2,51,...,B2r1),

and
Poi_9 x Q2i—1 = Gai—1(2, ..., 00i—2, 01, ..., 2-3),

forall t = 2,...,l and r = 1,...,k. For the same range of ¢ and r equations (5.11) and (5.14)
imply that Qo,_12, centralizes P», while P»;_5 9,1 centralizes (Q2;—1. As these groups are m-and
7/-Hall subgroups of the correct groups (see (5.46), (5.45), (5.48) and (5.47)) equations (5.42b) and
(5.42d) follow.

We can work similarly for the rest of the proposition. We only remark here that, whenever
1<r<s<k 1<i<j<landl <t <wv <k, equations (5.23a) and (5.23b) imply
that QQT_LQS_Q and QQT_LQS centralize Py, (and thus P27»725_1), while PQZ‘_QVQj_l and Pgt_g,gy_l
centralize Q2;—1 and @21, respectively. This, along with (5.48) and (5.47), implies the rest of the
proposition. O

What about the characters that appear in the diagrams (5.20b) and (5.21b)? We have already
seen, in (5.17f) and (5.17d), that [2;_1 and ag, are irreducible characters of Q9;—1 and P, re-
spectively. Furthermore, according to (5.17c¢), for every i = 1,...,[ the character f;_1 is fixed by
the m-groups Py, Pait2, ..., Por, and thus is also fixed by their product (note that their product
forms a group according to (5.10b)). Similarly whenever r = 1,...,k, using (5.17e), we see that
the character ao, is fixed by the groups Qoy41, Q2r+3, - - ., Q2—1, and therefore is also fixed by their
product. Hence, we can naturally make the
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Definition 5.49. (1) We write ﬁgi_lgj € II'I'(QQZ'_LQ]') for the Po; - Pojyo-- -sz—Glauberman
correspondent of (g;_1 € Irr(Q2;—1) and

(2) we write agp 2541 € Irr(Pay2541) for the Qop11 - Q2r43 - - - Q2s+1-Glauberman correspondent of
agy € Irr(Pay),
whenever 1 <i<[,1<j<k, 1<r<kandr<s<I[l-1.

We remark that C(PQZ - Pojio--- ng in Qgi_l) = QQZ‘_LQj, by (5.23&). Hence the ﬁzi_l,gj are
well defined irreducible characters of (Q2;_12;. Similarly we see that the characters g, 2441 are also
well defined.

As we did with the corresponding groups, starting from the above basic properties we will
describe the relations these characters satisfy. Towards that direction we state and prove

Proposition 5.50. The following holds:
Boi—1,25 € Irr(Qai—1,25) is the Paj-Glauberman correspondent of
Boi—12j—2 € Irr™ (Qoi_1,2j-2), and lies above Bai_32j, B2i—52j,- -+ P25, (5.51)

whenever 1 < i <1 and i < j < k. By convention we write B2;—12i—2 := [P2i—1 when j =1i.
Similarly,

a2p.2541 € Irr(Por2sy1) 15 the Qasy1-Glauberman correspondent of

2251 € IerQS“(Pgr’gS,l), and lies over agr—22s41,-..,022s41, (H.52)

whenever 1 <r <k andr < s <[ —1. By convention we write ccay2r—1 := 3, when r = s.
Therefore,

Boi—1 € Irr(Q2i—1|f2i-3,2i—2, B2i—5,2i—2, - - -, B1,2i-2), (5.53)
and
agy € Irr(Por|agr—2,2r—1, @2r—4.2r—1, - - -, ®2.2r-1), (5.54)
whenever it =1,...., 0l andr=1,... k.

Proof. In view of Definition 5.49, it is easy to see that B2;_1 2; is the P5;-Glauberman correspondent
of Bai—1,2j—2 (as the latter is the Pa; - Pajio - - Paj_o-Glauberman correspondent of fa;—1), for all
1,7 with 1 <7 <[ and ¢ < j < k. We also remark that the same argument implies that (2;_1 2;
is the Pyt - Poyio--- Pyj-Glauberman correspondent of (Bg;_192;—2, for any ¢ with 1 < i <t < j.
Furthermore, the same definition tells us that faj_12; is the P5;-Glauberman correspondent of
ﬁgjfl,gjfg = ﬁgjfl, for all j = 1, ce ,k‘.

Thus to prove (5.51) it suffices to show that B2;_12; lies over B2;_39;,..., 01,25, for all ¢, j with
1 <i<landi<j<k. Forthis we will use induction on ¢. For ¢ = 1, it holds vacuously, since
the character (32;_32; doesn’t exist. The first interesting case appears when ¢ = 2. According to
(5.17f) the character (3 lies above ;2. Therefore, for any j = 2,...,k, the Py - - - P»j-Glauberman
correspondent 33 92; of (B3 lies above the P - -- P;-Glauberman correspondent 31 25 of (1 2.

For the inductive step the argument is similar. If ¢ > 3 and B2;_32; lies above [(32;_52j, ..., 51,25
forall j =¢—1,...,k then 521_3721'_2 lies above ,821'_5721'_2, e ﬁLQi_Q. According to (5.17f), the
character (2;_1 was picked to lie above (2;_392;,—2. Therefore the Py; - P2 -+ Po;-Glauberman
correspondent [32;_12; of B2;_1 lies above the Py; - Pyjio - - - Poj-Glauberman correspondent (2;_3 2;
of 521‘_3721'_2, for any j with j = i, - .,k. Hence, ﬁgi_ng lies above 52i—372j,ﬁ2i—572j7 ce ,ﬂng
whenever j =4,...,k. This completes the inductive argument on i, thus proving (5.51).
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As [y;_1 lies above [(2;_32i—2 (by (5.17f)), (5.53) is an immediate consequence of (5.51).
The proof of (5.52) and (5.54) is similar. O

Looking at the “character triangles ” (5.21b) and (5.20b), we can translate Proposition 5.50 as
follows:

Every horizontal line in the triangles (5.21b) and (5.20b) (with the characters in parenthesis
included) is formed by taking a character that is a Glauberman correspondent of the previous one.
Also the vertical lines in these two triangles are formed by characters that are lying one above the
other. We can say even more:

Proposition 5.55. For every i,j,t with 1 < i <t <l andt < j < k, the group Q21,2
fizes the character (o;i—12;. Hence [a;—12; is the unique character in Irr(Q2i—12;5) lying under
Bor—1,25 € Irr(Qai—1,25). In addition, for every i,j with 1 < i < j < I, the group Qoj—1 fizes
the character (oi—12j—2. Hence [a;—12j—2 is the unique character in Irr(Qoi—1.2j—2) lying under
Baj—1 € Irr(Qaj—1).

Similarly, for every r,s,t with1 <r <t <k andt <s <1—1, the group P 2s4+1 fizes the
character aars41. Therefore, aoy o511 15 the unique character of Poros11 that lies under aog2s41 €
Irr(Pot2541). In addition, for every r,s with 1 < r < s < k, the group Py, fizes the character
aop2s—1. Hence agyas—1 is the unique character in Irr(Poy0s—1) lying under ags € Irr(Payg).

Proof. Because of symmetry it suffices to prove the proposition for the g-groups Q2;—1,2; and the
characters (32;_1,2;, for fixed 4,¢, j in the range of the proposition.

If1<i<t<landt<j<k, then equations (5.35) and (5.36) imply that QQ2,_12; is a normal
subgroup of Q2;—12;. Equation (5.35) also implies that Q2;—12; I Q2j—1, whenever 1 <i < j <.
Therefore, according to Clifford’s Theorem, it is enough to prove that Qat—1,2;(2i—1,25) = Q2t—1,2j
and Q2j—1(52i—1,2j—2) = Q2j—1, in order to complete the proof of Proposition 5.55.

In view of (5.17e) the group Q2¢—1 fixes fF2;—1. According to (5.10a), the group Q2;—1 normalizes
the groups P, ..., Py—o. Hence its subgroup Qai—12; = C(Pa,. .., Ps; in QQ2;—1) normalizes the

groups P, ..., Py_o, centralizes Py, ..., Ps;, and fixes (B2;_1. Therefore Qo;—12; fixes B2;_1 2,
which is the Py, ..., Py;-Glauberman correspondent of B2;—1 by (5.51). So Q2i—1,2j(f2i—1,25) =
Q2t-1,2j

Similarly (5.17¢) and (5.10a) imply that Qg1 fixes (2,1 and normalizes Ps;, ..., P2j_2, when-
ever 1 <i < j <. Hence Q251 fixes (B2;—1,2j—2. So Q2j—1(F2i—1,2j—2) = Q2j—1 and the proposition
follows. O
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5.3 From towers to triangles

We are now ready to prove one direction of the correspondence in Theorem 5.6. In particular, we will
prove that for any character tower of (5.2) there is a corresponding G(x1, - .., Xm)-conjugacy class
of triangular sets for (5.2). The explicit relation between the character towers and the triangular
sets is described in Theorem (5.88) below. Before we give the inductive proof of that theorem, we
will demonstrate, for clarity, how the correspondence works in the special cases where m = 1,2, 3.

We begin with a lemma that is an easy application of Theorems 3.11 and 3.13.

Lemma 5.56. Let G be a finite group of odd order, and w be any set of primes. Suppose that
N, K1, Ky, ..., K, are normal subgroups of G, for some r > 1, such that N <K; I Ky <--- 4 K,.
Assume further that N = Ax B, where B is a normal 7' -subgroup of G, and A is any w-subgroup of
N. Let x € Irr(N) be a w-factorable character of N. Assume that x = a-(3¢ is the decomposition of x
to its m- and 7' -special parts respectively, where (3¢ is the canonical extension to N of an irreducible
A-invariant character 3 € IrrA(B). Let K;(x) be the stabilizer of x in K;, fori =1,...,r, and
C = C(A in B) be the centralizer of A in B.

Then there is a one-to-one correspondence between the character towers {x, x1,...,Xxr} of the
series N I Ky 4 Ko Q--- 4K, starting with x, and the character towers {a x v,¥1,...,V,.} of
the series N(Ain N)=Cx A<IN(Ain K;1(x)) <N(Ain Ka(x)) <---<N(A in K, (x)), starting
with a x v € Irr(C x A), where v € Irr(C) is the A-Glauberman correspondent of 3 € Irr(B).
Furthermore, for any subgroup M of N(A in G) we have

M(Xlea"'vX’r‘):M(ax/y’\:[lla"w\PT)-

Proof. Let

{X7X1a"' 7X7"}7 (557)
be a character tower of the normal series N < K7 < Ko < --- < K., starting with y. According to
Clifford’s theorem, for every i = 1,...,r there exists a unique irreducible character x; € Irr(K;(x))
that induces x; € Irr(K;) and lies above x € Irr(N). Furthermore, the characters

{6xT X (5.58)

form a tower for the normal series N < K;(yx) <--- < K,(x). Hence (5.57) corresponds to (5.58).
Clifford’s Theorem also implies that this correspondence between (5.57) and (5.58) is invariant
under any subgroup of G(x). So, in particular,

G(X?Xl?"'?XT):G(X7XT7"'7X:)' (5'59)

To complete the proof of the lemma we only need to observe that Theorem 3.13 can be applied to
the tower (5.58) and the normal series N = A x B < K;(x) <--- < K,(x). Note also that, in view
of Theorem 3.11, the A-correspondent of the irreducible character x = a- 3¢ € Irr(N) is ofthe form
X(4) = @ X v € Irr(A x C), where v € Irr(C) is the A-Glauberman correspondent of 3 € Irr(B).
Hence the character tower (5.58) has a unique A-correspondent character tower

{axy,¥y,...,9,} (5.60)

of the series
AxCAN(Ain Ki(x) 2~ IN(A in Kr(x)).
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This way we have created a correspondence, that is the combination of a Clifford and an A-
correspondence, between the tower (5.57) and the (5.60).

Furthermore, as = is the A-Glauberman correspondent of 3 and B is normal in GG, we have that
M(B) = M(), for any group M with M < N(A in G). Also M () = M(5°) as N < G. Hence we
conclude that

M(x) = M{a- §) = M(a, 8) = M(a x 7). (5.61)

Furthermore, Theorem 3.13 implies that for all M with M < N(A in G) we have

M(x, X5, sx0) = M(axv,¥y,...,9,), (5.62)
as M normalizes N, K1, ..., K,. Therefore we have
M(X, X155 Xr) = M(OXGXT5 -5 X7) by (5.59)
=MO)0GXT -5 X0)
= M(x)(a x v, ¥1,...,9;) by (5.62)
=M(axy)(axvy,¥y,...,0,) by (5.61)
=M(axy,¥y,...,¥,).
This completes the proof of the lemma. O

Definition 5.63. For the rest of this thesis, the correspondence between towers

{X:a'ﬂ67Xlu"'7XT}H{aX’Y)\Illv"')\I’T}

that is described in Lemma 5.56, will be called a cA-correspondence (Clifford-A). We call the
tower {a X v, ¥y,..., U, } the cA-correspondent of {x = a- % x1,...,Xxr}. Similarly, we call ¥;
the cA-correspondent of x;, foralli=1,...,r.

We can now look at the cases m = 1,2,3. If m = 1 then the normal series (5.2) consists of
the groups 1 = Gy < G1 < G. So any character tower {1 = xo, x1}, of this series determines the
triangular set {1 = Py, Q1 = G1|1 = o, 1 = x1}. Furthermore, assume that

1=Gy<G1<---<4G, 4G (5.64)

is a normal series of GG, for some n > m = 1, that extends the series 1 = Gy < G1 < G. Assume
further that we have an extension of the character tower {1 = xo, x1} to a character tower {1 =
X0, X1s---5Xn} for the series (5.64), so that Hypothesis 5.1 holds. As x1 = (1, we have that
Gi(x1) = Gi(B1) for all i = 1,...,n. Hence we can define the groups

Giq = Gi(41) = Gi(x1) = N(Q1 in Gi(x1)), (5.65a)

where the last equality holds as @)1 = G1 < G. By convention, whenever we have a series as in
(5.64), we will write
Go =G. (5.65b)

With this notation, we can also write G 1 for the stabilizer G(x1) = G(81). Therefore the series
1=Gp14G119---<1Gp1 9Goo 1,5 (5.66)

is a normal series of G 1. Furthermore, for any ¢« = 1,2,...,n, Clifford’s theorem applied to
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the groups G1 < G; and the characters x1,x; implies the existence of a unique character x;1 €
Irr(G;(x1)) that lies above x; and induces s, i.e,

Xi1 € Irr(Gi(x1)) is the x;-Clifford correspondent of x; € Irr(Gi|x1)- (5.67)

Note that x11 = x1. We write xo,1 = 1. Then it is clear that x;1 lies above xj 1 whenever
1 < k <i < n. This way we have created a tower {1 = Xx0,X1,1 = X1,X2,1,---,Xn,1} for the
series (5.66), fully determined by the character tower {1 = xo, X1, .., Xn}. Furthermore, Clifford’s
theorem implies that for any subgroup M of G = N(Q; in G) we have

M(x1,x25 -5 Xk) = M(X1,1,X2,15 -+, Xk,1)5 (5.68)

for any k£ = 1,2,...,n. Therefore, in the case where m = 1, in addition to the correspondence
between towers and triangular sets for (5.2), we proved that any tower of (5.64) determines a
unique tower of (5.66). This is a property that, as we will see in Theorem 5.88, carries over to
every m. By convention, we write this first correspondence as a ¢Q-correspondence (even though
it is a Clifford correspondence). Table 5.1 describes exactly the above relations.

G = Goo Goo,l = G(Xl)
Gn Xn Gn,l = Gn(Xl) Xn,1
G3 X3 Gs1 = G3(x1) X3,1
—>
cQ1
Gs X2 Ga2,1 = Ga(x1) X2,1
G1 =@ x1 =51 Gi1=G1 =01 X1,1=Xx1 =5
Go=1 Xo =1 Go1 =1 Xo0,1 =1

Table 5.1: The c():-correspondence.

The first interesting case appears when m = 2. Here the normal series (5.2) consists of the
groups 1 = Gop < G1 I Gy. Let

{1 = xo0,x1, x2} (5.69)

be a character tower of that series. We have already seen (from the case m = 1) that the subtower
{1 = x0,x1} of (5.69), determines the triangular set {Py = 1,Q1 = Gi|lag = 1,61 = x1}. We
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expand this set by picking the m-group P, to be any w-Hall subgroup of Ga(x1) = G2(51). (Note
that to get a triangular set for the series 1 = Gy < G1 < G, it is enough to expand the existing
set, {Py = 1,Q1 = Gilag = 1,81 = x1}, by a m-group P» along with its irreducible character asg,
so that (5.17) will be valid for this new set.) Before we see how to chose the desired irreducible
character ag € Irr(P,), we observe the following: as G2/Gy is a m-group and P5 € Hall (G2(x1)),
we have that P, covers G2(1) = G2(x1) modulo G;. Hence,

G271 = GQ(Xl) = Gg(ﬁl) = PQ X Gl = P2 X Ql. (5.70)

In view of the work we did in the case m = 1, we have that, for every n with n > 2, the character
tower {xo = 1,x1 = B1,X2,---,Xn} Of the normal series (5.64), extending the tower (5.69), has a
unique @;-correspondent character tower {xo1 = 1,x1,1 = 51, X2,15-- -, Xn,1}, of the series (5.66)
(see Table 5.1).

Furthermore, equation (5.70) permits us to apply Lemma 2.15 to the groups G11 = G1 = Q1,
G2,1 = G2(x1), Goo,1 and the character x; = 31 in the place of the groups NV, H, G and the character
0, respectively. (Note that in this case H () = H). Thus we conclude that xy; = ; has a unique
canonical extension { € Irr(G2,1). As x2,1 € Irr(Go,1) lies above x1 = 41, Lemma 2.15 also implies
that there is a unique character aig € Irr(P;) such that

X2,1 = az - (1, (5.71a)
while
Goo(a2,01) = N(P2 in Goo,1(B1, X2,1))- (5.71b)
But
Goo1(81) = Goog = G(B1) = G(x1)- (5.71c)

Furthermore, (5.68) for k = 2 implies that

Goo(X1,X2) = Goo(X1,1:X2,1) = Goo(X1, X2,1)-
Therefore, (5.71b) and (5.71c) imply
G(ag,81) = N(P2 in Geo1(x2,1)) = N(P2 in Geo,1(x2))
= N(P2 in Goo(X1,X2,1)) = N(P2 in Goo(x1,x2)) = N(P2 in G(x1,x2)). (5.71d)

Hence, by intersecting both sides with G;, we get
Gi(az,81) = N(Py in Gi1(x2,1)) = N(P2 in Gi1(x2)) = N(P2 in Gi(x1, x2)), (5.71e)

whenever i = 0,1,...,n,00. As P, was picked to be a m-Hall subgroup of G2(31), we obviously
have that the set {Py = 1, Po, Q1]|ag = 1, a2, f1} is a triangular set for the series 1 = G IG1 IGo.
Hence (5.43d) for t = u = 1 and (5.42b) for r = 1 imply

Ga(az, B1) = Pa x Q1.2,
Gi(ag, 1) =1 x Q12 = Q12

Furthermore, we have a correspondence similar to the one described in Table 5.1. Indeed, in view
of (5.70) and (5.71a), the normal series G2 1 G311 <--- <Gy 1 IGoo 1 , along with the m-factorable
character x21, satisfies the hypotheses of Lemma 5.56. Hence, there is a cP>-correspondence
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between the character towers of the above series and those of the series G2 2 <IG321- - -Gy, 2 4G o 2,
where
GZ"Q = N(PQ in Gi,l(XQ,l)) (572)

for all ¢ = 2,...,n,00. Thus, the tower {x21,X31,---,Xn,1} has a cPs-correspondent tower
{x2,2: X322, Xn2}, where x;2 € Irr(G,2), for all i = 2,...,n. Furthermore, for any M with
M < N(P>in Go,1) = N(P, in G(x1)), we have

M(x2,1,--,Xk1) = M(x22,- -+ Xk,2), (5.73)

whenever 2 < k < n. The same lemma describes G2 as well as x22. So we get that

Go2 =Py x Q12,

(5.74)
X2,2 = a2 X (312,

where Q12 = N(Py in Q1) = C(P2 in Q1) (see (5.11)), and 12 € Irr(Q1,2) is the P>-Glauberman
correspondent of 3; € Irr™2(Q;) (see Definition 5.49).

We observe that the earlier definition of G;2 (see (5.72)), works also for i =1, as G11 < Ga1
fixes X2,1- SO, Gl’g = N(P2 in Gl,l) == QLQ while the character ,81 = X1,1 S Il"I“(Gl) = II‘I‘(GLl) has
as a unique Py-Glauberman correspondent the character 31 2 € Irr(Q1,2). This, combined with the
former cP,-correspondence, provides a correspondence (that we also write as a ¢Ps-correspondence)
between the character towers of the series (5.66) and those of the series

Go2=1dG12:=N(PinG11) = Q121G - QG2 G2, (5.75)

described in the Table 5.2. We remark here that, for every group M with M < N(P; in G), the P»-
Glauberman correspondence between Irr!” 2(Q1) and Irr(Qq2), (with the character x1 = x11 = /1
in the former set corresponding to the character x12 = f1,2), is M-invariant. Hence

M(x1) = M(x1,2)- (5.76)
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G = Goon Goo,2 := N(P2 in Goo,1(x2,1))

Gn,1 Xn,1 Gn2 = N(Pz in Gp,1(x2,1)) Xn,2
Gs,1 X3,1 G3,2 := N(P: in G3,1(x2,1)) X3,2
«—
CP2
Go1 =P x Q1 X2,1 = az - 37 G2 =P X Q1,2 X2,2 = a2 X 1,2
Gii1=G1=Q@Q1 X1 =x1 =5 Gi2:=Q1,2 B1,2
Go1 =1 xo,1 =1 Go2 =1 Xo,2 =1

Table 5.2: The cP»-correspondence

According to (5.71e), we have that
Gip = N(P; in Gii(x21)) = N(P2 in Gi(x1, x2)) = Gi(az, B1), (5.77)

whenever ¢ = 1,...,n,00. This, along with Tables 5.1 and 5.2, implies a cQ1, cP>-correspondence
described in the diagram that follows:
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G=Gx Goo,1 = G(61) Goo2 = G(a2, B1)

Gn Xn Gn,l = Gn(ﬁl) Xn,1 Gn,Q - Gn(a27 ﬁl) Xn,2
Gs X3 Gs,1 = G3(B1) X3,1 G3,2 = G3(az, B1) X3,2
—> «—
c@Q cPs
G2 X2 G221 =P x Q1 X2,1 = a2 - 3] Goo=PFPo x Q1,2 X2,2 = a2 X B1,2
Gi=@Q1 X1 Gi1=@Q1 X1,1 =x1=5 Gi1,2 =Q1,2 B1,2
Go=1 xo =1 Go1=1 x0,1 =1 Gop2 =1 x0,2 =1

Table 5.3: The c¢Q)1, cP>-correspondence

Furthermore, for any group M with M < N(P» in G) we have

M(x1,x2, - Xk) = M(X1, X215+ -5 Xk,1) by (5.68)
=M(x1)(x2,1, - Xk,1)
= M(x1)(X2,2 - -+ Xk,2) by (5.73)
= M(x1,2)(x2,2, - -+ Xk,2) by (5.76)
= M(X1,2,X2,2 - - - » Xk;2)-

Hence
M(XD X2y 7Xk) - M(Xl,lv X2,17 ce. )Xk,l) - M(XLQ) X2,2) DRI Xk:,Q)a (578)

whenever 1 < k < n.
The case m = 3 is quite similar to m = 2, so we will only describe the main steps. We first pick

the #’-group, @3, as any
Q3 € Hall» (Gg,g) = Haﬂﬂ/(Gg(az,ﬁl)). (5.79)

Therefore we get that
Gs2 = Gs(az,p1) = Q3 x P2. (5.80a)

Even more, (5.80a) and (5.71e) for i = 3 imply:
G2 = G3(a2, 1) = Q3 x Py = N(Py in G3(x1,X2))- (5.80b)

To pick the character f3 € Irr(Q3), we follow the same steps as we did for the character aa. So
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we apply Lemma 2.15 to the groups P», (3 X P> = (32, G2 and the character as in the place of
the groups N, H, G and the character 6 respectively. Thus we conclude that that there is a unique
character 3 € Irr(Q3) such that

X3.2 = as - 33, (5.81a)

where of € Irr(Gs2) is the canonical extension of ap € Irr(P) to Q3 X P» = G32. We also have
that
Goo2(B3) = N(Q3 in Goo2(x3,2)), (5.81b)

and thus, in view of (5.77),

G(B1,02,03) = N(Q3 in Goo2(X3:2))
= N(Q3 in G(B1,02)(x3,2)) = N(Q3 in N(P; in G(x1,x2))(x3.2)). (5.81c)

But (5.78), applied twice (with & = 2 and M = N (P, in G) for the first equality, and k¥ = 3 and
M = N(P» in G) for the second one), implies that

N(P in G(x1,x2))(x3,2) = N(P2 in G(x1,2: x2,2))(x3,2) = N(P2 in G(x1,x2))(X3)-

Hence we conclude that

G(B1, a2, 83) = N(Q3 in Geo2(X3,2))
= N(Q?) in N(PZ in G(X17X27X3)) = N(P27Q3 in G(X17X27X3))7 (5823)

and thus
Gi(B1,02,03) = N(Q3 in Gia(x3,2)) = N(P2, Q3 in Gi(x1, X2, X3)), (5.82b)

forall2=0,1,...,n,cc.

Note that {Py, P2, Q1,Q3|1, a2, 81, B3} is a triangular set. Indeed, as x32 = af - O3 lies above
X2,2 = a2 X B12 (see (5.74)), we conclude that 3 lies above the P,-Glauberman correspondent (31 o
of B1. This, along with (5.79) and the fact that {Pp, P2, Q1]1, a2, 1} is a triangular set, implies
that {Py, P2, Q1, Q3]1, aa, 51, B3} satisfies (5.17), and thus is a triangular set.

To expand Table 5.3 by one more step (that will be a c¢Qs-correspondence) we will apply (as we
did for the cP-correspondence), Lemma 5.56 to the last normal series of G 2 that the above table
reaches. Notice that the normal series G32 IGy2 <--- G2 IG 2 , along with the 7-factorable
character x3 2, satisfies the hypotheses of Lemma 5.56. Hence there is a cQ)3-correspondence between
the character towers of the above series and those of the series G33 I Gy3 <--- Gy 3 G 3,
where

Gi3 = N(Q3 in G;2(x3,2)), (5.83)

for all i = 3,...,n,00. Assume that the tower {x33,x43,...,Xn,3} is the cQ3-correspondent of the
tower {x3.2,X4,2,---,Xn,2}, where x; 3 € Irr(G; 3) for all i = 3,...,n. Furthermore, for any M with
M < N(Q3 in Geo2) = N(Q3 in N(P» in G(x1,x2))) we have

M(x32, -3 Xk2) = M(X33,- - Xk3) (5.84)

whenever 3 < k < n. Furthermore,
G33 = P23 X Q3,

(5.85)
X33 = Q23 X [33,

57



where P53 = N(Q3in P»), and ag3 € Irr(P3) is the @3-Glauberman correspondent of ay €
Irr®s (Py).

We expand the definition of the G; 3 to all i = 1,...,n, 00, that is, we write

Gi3 = N(Q3 in Gi2(x3,2))

for all such 7. Then

G23=N(Q3 in Go2(x32)) = N(Q3in Ga2) = N(Q3 in P x Q12) = Pa3 x Q1.2,

where the last equation holds, as according to (5.33), we have Q12 = @3 N Q1. Furthermore, the
character 22 = g X (12 corresponds to the character x23 := an3 x 12 € Irr(N(Q3 in Gap2)),
through the ()3-Glauberman correspondent s of as 3.

Also,
Gi13=N(Q3in G12) = N(Q3 in Q12) = Q12 = G12,

and thus we take x1,3 1= x1,2 = (1,2

This, combined with the former c@Qs-correspondence, provides a correspondence (that we also
write as c@s-correspondence) between the character towers of those of the series (5.75) and the
series

Goz=19G13=Q129G23=Po3x Q121G 3G 3. (5.86)

We remark here that, for every group M with M < N(P, @3 in G), the Q3-Glauberman
correspondence between Irr@?(Py) and Irr(Py3) is M-invariant. In particular we have M (ag) =
M (a2,3), and thus

M(x1,2,x2,2) = M(x1,3,X2,3)-
Therefore, in view of (5.78), we get

M (x1,x2) = M(x1,2, x2.2) = M(X1,3,X2.3), (5.87)

So, for any M with M < N(P,, Q3 in G), we have

X1,15X2,25 - - - > Xn,2) by (5.78)
X115, X2,2) (X3,25 -+ + 5 Xn,2)

M(X17X27'”7Xn) (
(
(X1, x2)(X32,- -+ Xn,2) by (5.87)
(
(
(

X1, X2) (X33 -+ Xn,3) by (5.84), since M(x1,x2) < N(Q3 in G 2).
X1,3,X2,3)(X3,35- - -5 Xn,3) by (5.87)
X1,3,X2,3 - - - 7Xn,3)'

[
SSEEEEE

58



The following table gives a clear picture of the situation when m = 3:

Xn,l

X2, = o2 - 31

X0,1 = 1

Goo,3 = G(B1, a2, B3)

Gn,B = Gn(ﬁl, a2, 53)

G333 =DP3 x Qs

G = Goo GOO’l = G(/Bl)
Gn Xn Gn,l = Gn(ﬁl)
G3 X3 Gs31 = Gs(ﬁl)
«—>
CQl
G2 X2 G2,1 =P x Ql
G = Ql X1 = 51 G1,1 = Ql
Go =1 Xo =1 Goa1 =1
Goo,2 = G(f1,02)
Gn,Q = G(Bl, (XQ) Xn,2
G3o=PxQ3 X3,2 =5 - (3
“— “—>
cPs cQ3

Ga2=P>x Q1,2 X2,2 = a2 X P12

G12 = Q1,2 B1,2

Goo =1 Xo,2 =1

Ga3=PFPo3 X Q1.2

Gi13=Q1,2

Go,g =1

Table 5.4: The cQ1, cQs, cP>-correspondence.
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Xn,3

X3,3 =23 X 33

X2,3 = @23 X B1,2

Bi,2

Xxo0,3 =1



We stop here with the individual cases m = 1,2, 3, hoping that it has become clear how the
mechanism that produces triangular sets from character towers works. We only remark that the
role of the - and 7/-groups is interchanged at every step. So the w-groups play the protagonistic
role when m is even, and the 7’-groups when m is odd. This role consists of two acts:

1) to pick the group and its character (here Lemma 2.15 is used), and

2) to create the new cP- or cQ-correspondence (for this we use Lemma 5.56).
We are ready to state and prove the inductive step of the above mechanism.

Theorem 5.88. Assume that Hypothesis 5.1 holds. Then every character tower { x;}i", of (5.2)

determines a G (X0s X1, - - - Xm)-conjugacy class of triangular sets
{Po, s Pors Q1 ., Qau—1|s - - ok, By - Bor1} (5.89)
for (5.2), where k = [m/2] and l = [(m + 1)/2], such that
1)Any subtower {1 = x0,X1,---,Xs} of the original character tower, for some s = 1,...,m,
determines a Gs(Xo0, X1, - - - Xs)-congugacy class of triangular sets

{Po, - Pafsy2), Qs - -+ Qaf(s41)/21-1105 - - s Qa2 By -+ B2[(s+1) /2] —1 )

that are subsets of (5.89).

2)For any
extension of (5.2) to a normal series of G that satisfies Hypothesis 5.1, and any extension of
{xi}™ to a character tower {x;}I'_, of this series, there is a unique cPa, ..., cPy, cQ1, ..., cQa—_1-
correspondent character tower {1 = X0,m, X1,ms - - - s Xmym; - - - » Xnm } 0Of the normal series 1 = Gy, <

Gin 4 AGmm - AGpm I Goom, for all n with 1 <m <n. Here

Gim = Gi(ag, ..., 00k, 1, .., Pa—1)
= N(POa cee 7P2ka Qla cee aQQl—l in Gi(le cee 7Xm))7 (591)

where 1 =0,1,...,n,00.
3)For every M with M < N(Py,..., Py, Q1,...,Q—1 in G) we have

M(X17 cee 7Xn) = M(X1,87 cee 7Xn,5)~

4) For everyi=1,2,...,m and s =i+ 1,...,m, these groups and characters follow the rules
Gii-1 =P, x Qi1 and  Xii-1 = ;- Bf_1,
Gii =P x Qi1 and Xii = 0 X Bi—1, (5.92)
Gis = Pioj(s+1)/21-1 X Qi—12[s/2)  and Xiys = Q4 2(s4+1)/2]—1 X Bi—1,2[s/2]5

whenever 1 is even, and

Gii—1=Pi—1 xQ; and  Xii—1 = 051 - [,
Gii=Pi—1; x Q; and Xii = i—14 X B, (5.93)
Gis = Pi_12((s41)/21-1 X Qio[sj27  and Xiys = 0—12((s+1)/2]-1 X Bi2[s/2)s
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when i is odd. (Here [3{_, is the canonical extension of fi—1 € Irr(Qi—1) to G;i—1 and similarly,

af_q is the canonical extension of aj—1 € Irr(P;—1) to Gii—1.)

Proof. We will use induction on m. We have already seen that the theorem holds when m = 1
(also when m = 2 and m = 3).

So assume that the theorem holds for all m = 1,...,t and some integer t > 0. We will prove it
also holds when m =t + 1. So assume that the normal series

1=Gp<G19--- 4G <G 1G (5.94)

is fixed. Along with that we fix a character tower

{1 :XOaXb-"?XtaXtJrl} (595)

for (5.94). As the triangular sets have different form depending on whether ¢ is even or odd, we
split the proof in two symmetric cases.

Case 1: t is odd The series 1 = Gy <G <--- <Gy <G is also a normal series of GG, while the irre-

ducible characters {x;}!_, form a character tower for this series. Hence the inductive hypoth-
esis implies the existence of a Gy(x1, ..., xt)-conjugacy class of triangular sets that is deter-
mined by the last character tower. Let {Py,..., Por, Q1,...,Qa—1|ao, ..., a2k, B1,..., Ba—1}
be a representative of this conjugacy class. As ¢ is odd we have that [ = [(t+1)/2] = (t+1)/2
while k = [t/2] = (t — 1)/2. So 2l — 1 =t while 2k = t — 1. Therefore the above triangular
set has the form {FPy,..., P—1,Q1,...,Q¢lao, ..., ou—1, 51, ..., [}
Hence, to prove that the character tower (5.95) determines a Gy11(x1, - - -, Xt Xt+1)-conjugacy
class of triangular sets that respect subtowers, it is enough to prove the existence of a mw-group
P;+1 unique up to conjugations by any element of Gy4+1(x1,---, Xt Xt+1), and an irreducible
character ayy1 € Irr(P;41) such that the set

{P()v"’ 7Pt—17Pt+17Q17" . 7Qt‘a07’ . '7at—17at+17ﬂ17" . 7/815}

is a triangular set depending on the tower (5.95).

Let
1=Go4G19---4G 4G 9--- 4G, 4G, (5.96)

be an extension of (5.94) to a normal series of G so that Hypothesis 5.1 holds, for some
n > t+ 1. Assume further that

{1 = X0, X155 Xts Xt+15 -+ -5 Xn T (5.97)

is a character tower for (5.96) that extends the character tower (5.95). For any n with
n > t, our inductive hypothesis implies that the character tower (5.97) of (5.96) has a
cQ1,cPs, ..., cP;_1, cQ-correspondent character tower

{1 = XO,t7X17t7-~-7Xt,t7--~7Xn,t}a (598)

of the normal series 1 = Go; I G1; <--- <Gy <+ Gy I Goo t, Where

Gig = Gi(og, ..., ae-1, 81, ..., Bt)
=N(Po,...,P-1,Q1,...,Qt in Gi(x1, ..., x¢))- (5.99)
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For every M < N(Py,...,Pi_1,Q1,...,Q¢ in G) we also have

M(Xla"'axn) :M(Xl,tv"'7Xn,t)' (5100)

Furthermore, (5.92) and (5.93) for ¢ = t imply that Gy = Pi—1,4 x Qy, while x¢ ¢ = ap—14 X ;.
(Note that ay—1+ € Irr(Pi_1,) is the Q-Glauberman correspondent of ;1 € Iert(Pt_l)).
The following diagram describes the situation.
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Gn,l - Gn(/Bl)

Gitr1,1 = G (6r)

Gt,l - Gt(ﬁl)

Gi—1,1 = Gi—1(01)

Gz = Gs(ph)
G221 =P, x Q1
Gii=Q:
Got =1
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Xn,1

Xt+1,1

Xt—1,1

X2,1 =

Xo0,1

az - fB7

1 =5

=1



GOO,Q = G(ﬁh OZQ)

G'”«72 = G(/Bh OQ)

Git12 = G(B1, a2)

Gt,2 = G(ﬂh Oéz)

Gi—12 = G(f1,2)

G32=P, x Q3

Ga2=P> x Q1,2

Gi12=Q1,2

Go,g =1

Xn,2

Xt+1,2

Xt—1,2

X3,2 = Oé; : ﬂa

X2,2 = a2 X /31,2

Bi,2

Xxo,2 =1

Goo,3 = G(Bla a2, /33)

Gn,3 - Gn(ﬁh a2, /33)

Giv1,3 = Gir1(fr, az, B3)

Gt,3 = Gi(P1, a2, 03)

Gi—1,3 = Gi—1(01, a2, B3)

cQs

G333 = P23 x Q3

Gas=PFPo3 X Q1,2

Gi3=0Q1,2

Goﬁg =1
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Xn,3

Xt+1,3

Xt—1,3

X3,3 = Q23 X ﬂ3

X2,3 = Q23 X ﬂ1,2

B1,2

Xo0,3 =1



Goo,t—l = G(az, e ,at_l,ﬁl, e 75t—2)

Gn,t71 :Gn(ag,...,atfl,ﬁl,...,ﬁtfg) Xn,t—1
Gt+1,t71 = GtJrl(OQ7 ey Olp—1, ﬂl, cee 7ﬁt72) Xt+1,t—1
Gii-1=Pi_1 X Q4 Xtt—1 = ;1 B
Gio10—1 = Pi—1 X Q2,41 Xt—1,t—1 = t—1 X Bi—2,4—1
cPy,cQs,cPs,...,cPi_1
G3i—1=Pat_2 X Q3,t—1 X3,4—1 = Q2,4—2 X B31-1
Got-1=Pot—o X Q1,-1 X2,6—1 = Q2t—2 X B1,t-1
Gl,tfl = Ql,t—l X1,t—1 = ﬂl,tfl
Got-1=1 Xo0,t—1 =1
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Goo,t = G(Oéz, .. '7at*17ﬁ17 cee 7ﬁt*27/8t)

Gnt =Gnl(az,...,ai—1,01,...,Bt—2, Bt) Xn,t

Gt+1,t = Gt+1(a2, e, 01, ﬂl, . 7ﬂt72, ﬂt) Xt+1,t
Gt,t = Ptfl,t X Qt Xt,t = Og—1,¢ X ﬁt

Gi1t=Pio1t X Qe—24—1 Xt—1, = Qt—1,¢ X Pr—2t—1
Q:
Gsit=Poy X Q3,41 X3,6 = Q2,¢ X [B34-1
Got=Poy X Q1,6—1 X2,6 = 2.t X B1,4-1
Gl,t = Ql,tfl X1,t = ﬂl,tfl
GO,t =1 Xo0,t = 1

Table 5.5: The cQ1,cQs,...,cQ, cPs,cPy,...,cP;_1-correspondence
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We pick P;11 to be any m-Hall subgroup of Gyy1 = Geyi1(az, ..., -1, 51,...,B). The factor
group Giy1,4/Gey is a m-group, while Q; is a 7'-Hall subgroup of Gi; normalized by Giy1
(see (5.99)). Thus Piy; also normalizes ()¢, which implies that

Gt+1,t = Pt+1 X Qt- (5.101)

Furthermore, @); is a normal subgroup of G ¢ (as Gt IGoot), while its irreducible character
Bt is Goo -invariant. Therefore we can apply Lemma 2.15 to the groups Goot, Gi41,, Q¢ and
the character x¢1, in the place of the groups G, H, N and the character 6, respectively. (Note
that in this case H(#) = H). Hence we conclude that 8, has a unique canonical extension
B¢ € Irr(Gi41,¢). Furthermore, since x¢+1¢ lies above 3;, the same lemma implies the existence
of a unique irreducible character «y41 € Irr(P;y1) such that

Xt+1,t = i1 B, (5.102)

Whlle Goo,t(ﬁta at—l—l) = N(Pt+1 in Gn,t(Xt+1,t))- But Goo,t ﬁxes ,Bt. SO

Gm’t(at+1) = N(Pt+1 in Gn,t(Xt+1,t)>- (5103)

As X414 lies above x;p = ay—1,¢ X (¢, equation (5.102) obviously implies that oy lies above
o1, which is the @;-Glauberman correspondent of o;—1. This, along with the fact that
P,11 was picked as a w-Hall subgroup of Gyy1(ag,...,—1,51,...,0), implies that the new
m-group and its character satisfy (5.17c¢) and (5.17d) respectively. As we already know that
the set {Py,..., Pi—1,Q1,...,Q¢|lag,...,c4—1,01,..., 0} is a triangular set, we conclude that

{P@, v 7Pt—17 Pt+1, Ql, e ,Qt‘ao, ey Olt—hat-i—hﬂl, e ,,3,5} (5104)

is a triangular set for (5.94). Furthermore, it is clear, from the way it is constructed, that it is
related to the character tower (5.95) and that it respects subtowers. Note also that the only
choice for P;;1 was that of the Hall m-subgroup of Gy41+. Hence P;4 is uniquely determined
up to conjugation by an element of

GtJrLt = N(PQ,PQ, e ,Ptfl,Ql, e ,Qt in Gt+1(X1,. . .,Xt)).

So P;1 is uniquely determined by an element of Gy41(x1,- - -, x¢)- This, along with the induc-
tive hypothesis and the fact that Gyy1(x1,...,xt) = Ge(x1, ..., x¢t—1) implies that the trian-
gular set (5.104) is unquely determined up to conjugation by an element of Gyy1(x1, ..., Xt)-
Hence the first part of Theorem 5.88 is verified for the inductive step in the case where t is
odd. Furthermore, as (5.104) is a triangular set, Proposition 5.41 implies that

Gt+1(a27 sy Q1 61) L) ﬁt) = Pt+1 X Qt,t+1 by (542b)7
Gj(ag, ey O, 51, ey 615) = Pi,t X Qi—l,t—l—l if 4 is even, by (54.3b), (5105)
Gj(ag, ey O, 51, ey ﬂt) = Pz'—l,t X Qi,t—f—l if 71s Odd, by (5.43(1),

forall j=1,...,t

To complete the proof of the theorem (at least when ¢ is odd), it is enough to show that
the character tower (5.97) determines a character tower {1 = X041, - s Xt-+1,6415- - - s Xnjt+1}
for the series 1 = Goi41 I Grpp1 - I Giyr41 - LG < Goopr1, Where Gy
and x; (41 satisfy (5.91), (5.92) and (5.93). In that direction we first observe that, for every
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i=1,...,n,00, we have
Git(Xt+1,) = Gig(xt+1)- (5.106)

Indeed, in view of (5.100) for M = G, and n = t, we get G 1(x1,---,Xt) = Git(X1,t>- -5 Xt,t)-
Hence Gt = Gii(X1,--->xt) = Gig(X1,t5- -5 Xt,t)> a8 Gip < Gi(x1,---,x¢) by (5.99). So, if
we apply again (5.100) for M = G;; and n =t + 1, we have

Git(Xt+1) = Git(X1s - Xts Xe1) = Git(X1,ty - - -5 Xt Xe41,8)
=Gt X)) (Xer1,t) = Gie(Xea1,0)-

Thus (5.106) holds. Hence we conclude that

N(Pyy1 in Gig(Xev1,)) = N(Prg1 in Gig(Xe41))-

This, along with (5.103), implies that

Gi,t(at+1) = N(P;y1 in Gi,t(Xt+1))7 (5.107)

whenever ¢ = 1,...,n,00. Thus if we define G; 141 := Gj +(ou+1), equations (5.99) and (5.107)
imply

Giir1 = Gi(oa, ..., 41,0041, B1, .-, Br)
= Gi(oug1) = N(Pey1 in Gigt(xe41))
= N(Po, Py, ..., Pi—1,P11,Q1,...,Q¢ in Gi(x1,. .., Xx¢+1)). (5.108)

We also get (using (5.108) and (5.106))
Gigr1 = N(Pry1 in Gig(xe+1)) = N(Pigr in Gip(Xet14)), (5.109)

foralli=1,...,n,00. Note that (5.108) proves that (5.91) holds for the inductive step. Also
(5.105), along with (5.101) and the inductive hypothesis (for those i with i = 1,...,t), implies
that the groups G; ¢ satisfy (5.92) and (5.93) whenever 1 <i<t+1landi<s<t+1. In
particular we have
G141 = Prp1 X Qe

Gj7t+1 = Pj,t X Qj_Lt_A,_l lf] is even (5110)

Giitr1=Pj_1t X Qj11 if j is odd,
forall j =1,...,t.

To get the desired character tower for the series (5.96) (the correspondent of the tower (5.97)),
we first use the inductive argument to reach the character tower (5.98). So it is enough to
get a tower for (5.96) that corresponds to this latter tower. For this we split (5.98) in two
pieces: the tail that consists of x; ¢ for all ¢ = 1,...,¢, and the top that consists of the rest,
i.e., the characters x;; where i =t +1,...,n.

For the top part, we apply Lemma 5.56 to the normal subgroups Giy1,...,Gn of G and
the character x;41+ = au41-ff. This way the character tower {x¢41+,...,Xn,} of the normal
series Giy1¢ <--- Gy has a unique cP;ii-correspondent character tower of the series

G141 = N(Pev1 in Gegre(xe1,6)) Do D Grppr = N(Pev1 in Goe(Xer1t))-
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We write
X141, -5 Xt 1 (5.111)

for this cP;4i-correspondent tower. Note that Lemma 5.56 also determines the character
Xt+1,t+1 as
Xt+1041 = Qg1 X PBrir € Iir(Gryn ), (5.112)

where (141 € Irt(Qt441) = Irr(C(Pi4q in Q1)) is the Pryq-Glauberman correspondent of
0O € Trrt+ (Q¢). Furthermore, according to the same lemma we have that

S(Xt+1,t5 -5 Xnt) = SOX+1,6415 - -+ Xnyt+1) (5.113)

for any subgroup S of N(Pj41 in Gooy).

As far as the tail of (5.98) is concerned, we observe the following: In view of (5.92) and (5.93)

Xtt = Q11 X S
Xjt = Qi X Bj—14—1 if j is even (5.114)

Xjt = j—1t X Bji—1 if jis odd,
whenever j =1,...,t — 1. We define

Xt,t+1 = 0—1,t X Brq1
Xjt+1 = Q¢ X /Bj—l,t+1 lfj is even (5115)

Xjt+1 = a1t X Bjer1 if jisodd,

where B¢ :11,08j+1 and (8141 are the P;yi-Glauberman correspondents of 3, 3;:—1 and
Bj—1,1—1 respectively, for all j = 1,...,¢ — 1. Note that all these characters are well defined
characters of Qy¢+1,Qj¢+1 and Q;—1,+1, and form a tower by Proposition 5.50 (as (5.104)
is a triangular set). Furthermore, (5.110) implies that x;:+1 and x;:4+1 are characters of
Gji+1 and Gyyyqq respectively, for all j = 1,...,t — 1. Thus {1 = X041, X1,641,- - - Xt,t+1}
is a character tower of the normal series Go+1 < G141 < -+ L Gppp1. Also we pass from
the x;: to the x;:11 through a P 1-Glauberman correspondence. Thus any subgroup of
G that normalizes the groups Gy, ..., Gy, along with the Py, leaves this correspondence
invariant. But any group 7' with T' < N(Ps, ..., P—1, Piy1,Q1,. .., Q¢ in G) normalizes the
former groups (as G+ is a direct product (see Table 5.5) of groups that 7" normalizes). Hence
for any such group T and any j = 1,...,t we have

T(xjt) = T(Xja+1)- (5.116)

Furthermore, Xt ¢+1 = q—1,¢ X Bt t+1, while xy41,041 = a1 X Bri1 (by (5.112)). As oy lies
above ay_1+ (by (5.17d)), we conlcude that x;41 41 lies above x¢t+1. Hence we have formed
the tower {1 = X041, -+, Xt,t+15 Xt+1,t+1, - - - » Xn,t+1} Of (5.96), that corresponds to the tower
(5.98). This, along with the inductive argument that provides the Ps,..., P._1,Q1,..., Q¢
correspondence between (5.95) and (5.98), implies the desired correspondence between (5.95)
and the tower {1 = X044+1,-- s Xtb41) Xtt1,6415 - - - » Xnt+1)- Furthermore, (5.102), (5.112)
and (5.115), along with the inductive argument, imply that (5.92) and (5.93) hold for all
i=1,...,t+1lands=i+1,...,t+ 1.
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Also for every M with M < N(Pa,...,Pi—1,Piy1,Q1,...,Q: in G) we get that
M(le ... 7Xt) S N(Pt+l in Goo,t)a

(see (5.99) for a characterization of G ). Therefore, for all such M we have

M(Xla--~aXn)
X155 Xe) (X155 Xn)

X1 - s Xt) (X1its - - 5 Xnt) by (5.100)

X1 - 7Xt)(Xt+1,t, s Xn,t)(Xl,h e 7Xt7t)

(

M(
(
(
(X5 s X)Xt 1,441y - o Xt 1) (X0t - -+ XE2) by (5.113) for S = M (x1,.-.,Xxt)
(
(
(
(

X1ts - Xtot) Xt1,6415 -+ o> Xmot+1) (X1, - - - X2t) Dy (5.100)

X1ts - Xtot) (Xt1,6415 -+ -5 Xnyt+1)

X115« > Xtt1) X1,6415 - - - Xmst+1) by (5.116) for T = M
X141y - - aXn,t+1)-

I [
iiiiiii

This implies that part 3) of the theorem also holds for m = ¢ + 1. Hence the inductive step
for m =t + 1 is verified in the case of an odd ¢.

Case 2: t is even The proof is similar to that of an odd ¢. So we will skip it. We only remark
that we need to interchange the role of the m-groups with that of the n’-groups. So in this
case for the inductive step we pick the 7’-group Q11 and its character 31, as in the previous
one we were picking the m-group P;y1 and its character ay41. We continue similarly, proving
that the inductive step holds also in the case of an even ¢.

This completes the inductive argument and thus proving Theorem 5.88. O
The following remark is a straightforward consequence of the recursive proof of Theorem 5.88

Remark 5.117. Let {x;m}l~, be the unique cPs, ..., cPy, cQ1,...,cQz—_1-correspondent of the
character tower (5.97). Then its subtower {x;m}_, is the unique cPs,...,cPay, cQ1,. .., cQa—1-
correspondent of the subtower {1 = xo, x1,.-.,x¢} of (5.97), whenever t = 0,1,...,n. Also, if
M < N(PQ,...,ng,Ql,...,le_l in G) we have

M(Xla cee 7Xk’) = M(Xl,sa s 7Xk‘,8)-

5.4 From triangles to towers

In order to complete the proof of Theorem 5.6 it suffices to prove

Theorem 5.118. Assume that Hypothesis 5.1 holds. Then every triangular set for (5.2) determines
a character tower of (5.2), so that the tower is related to this triangular set via Theorem (5.88).

Proof. We will use induction on the lengh m of the series (5.2). If m = 1, then the theorem
obviously holds, as we take x1 = (.

So assume that the theorem holds for m = 1,...,¢ and some integer t > 0. We will prove it
also holds for m =t + 1. Let

1:G0§]G1§]"'§1Gt§]Gt+1§]G:GOO (5.119&)
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be a fixed normal series of GG that satisfies Hypothesis 5.1. Assume further that

{Poi, Q2i—1|azi, B2i—1} (5.119b)

is an arbitary, but fixed, triangular set for (5.119a). We split the proof in two symmetric cases,
according to the type of (5.119b).

Case 1: t is odd. In this case the triangular set (5.119b) has the form

{PO = I,PQ, e ,Pt+1,Q1, e ,Qt‘ao = 1,0&2, N ,Oét+1,ﬁl,. .. ,ﬂt} (5120)

Note that its subset
{Ph=1,Po,....,P_1,Q1,...,Qtlag =1,0a0,..., 041,01, .., 0} (5.121a)
is a triangular set for the series
1=Gp 4G9+ 4G 4G =G (5.121b)
Hence by the inductive hypothesis there exists a character tower

{x0sx1, - xe} (5.121c)

of (5.121b) that determines and is determined by the set (5.121a). Hence, in view of part 2)
of Theorem 5.88 (for m =t and n = t+1), there is a cQ1,cP, ..., cP;,_1, cQ-correspondence
between the character towers of the series (5.119a) and the character towers of the series

1= G(Lt, GLt, ey Gt,t ﬂ Gt+1,t S‘ Goo,ta (5122)

where G = Gi(ag,...,x—1,01,...,0) (see (5.91)), for all t =0,1,...,t + 1, cc.

Let ¥ € Irr(Gry1|xt) be any irreducible character of Gyy1 lying above x; € Irr(Gy). Then the
characters 1 = xo, x1,.- ., Xt, ¥ form a tower for the series (5.119a). Let

X0,ts X1ty - -5 Xt t> \I,ta

be its unique cQq,cPs,...,cP_1, cQi-correspondent tower. So x;¢ € Irr(Giy) for all i =
0,1,...,t and Uy € Irr(Gey1e).

We remark that the above is actually a cQ1,cPs, ..., cP;_1, cQ¢correspondence between the
set Irr(Gy41|x¢) of irreducible characters ¥ of Gy lying above x; and the set Irr(Gyy1¢|xt.t)
of irreducible characters W; of Gi41, lying above x; ;. This is clear in view of Remark 5.117,
as the tower {Xxo¢, X1,¢,.--, Xt} 1S the unique cQq,cPs, ..., cP_1,cQs-correspondent of the
tower (5.121c). So for any ¥; € Irr(Gii1lxee) the tower {xo¢, Xits---,Xtt ¥t, } has as
a cQi,cPs,...,cP;_1,cQs-correspondent a tower of the form 1 = xo, x1,...,Xx¢, ¥ for some
U € Irr(Gegalxe)-

Furthermore, according to part 4) of Theorem 5.88 (for i = ¢ odd) we get that Gt = Pi_1,: X Q¢
while x¢+ = a4—1,+ % 3. Since (5.120) is a triangular set, equation (5.42a) (for r = (¢t +1)/2)
implies that

Gt+1,t = Gp1(o2, ..., 041, 01, 0t) = Py X Q.

Even more, according to Theorem 2.13 the P,y i-invariant irreducible character §; of (); has a
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unique canonical extension ff € Irr(Py11 X Q). As ayqq € Irr(Piy1), the character aytq - 5 is
an irreducible character of Gyy1+ = Piq1 X Q¢ (see Theorem 2.14). Also, according to (5.17d)
(for r = (t +1)/2)), the character oy4 lies above the ;1. Hence the irreducible character
oy Bf of Pry1 X Q¢ = Gyq1,¢ lies above the irreducible character ay—1; x 8y = Xt of Pi—14 X
Qt = Git. Let xeq1 € Irr(Geqi|xt) be the unique cQ1,cPs, ..., cPi_1, cQs-correspondent of

a1 - Bf € Irr(Gryat|xet). So the character tower {xo.¢, X1,t,- -, Xt,t» Qe+1 - G} of the series
(5.122) has as a unique c¢Q1,cPs, ..., cP;_1, cQ¢-correspondent the tower
{X07X17"‘7Xtvxt+1} (5123)

of the series (5.119a). Furthermore, the steps we followed to pick the character x;y; (which
are exactly the opposite of what we used to pick Py11 at the inductive step of Theorem 5.88)
make it clear that the tower (5.123) determines the triangular set (5.120) in the way described
in Theorem 5.88.

This completes the proof of the inductive step in the case of an odd ¢.
Case 2: t is even. The proof is symmetric to that of an odd m, so we omit it.
This completes the proof of the theorem when m = ¢ + 1, thus proving Theorem 5.118. O
Furthermore, Theorems 5.88 and 5.118, along with Corollary 3.7, imply

Remark 5.124. Assume that the normal series 1 = Gg < --- 1 Gy, <G for G, along with the
character tower {x; € Irr(G;)}7, is fixed. Then conjugation by any g € G(x1,...,Xm) leads to a
new choice of the Py;, Q2;—1, ag; and [2;_; satisfying the same conditions (for the same G; and x;)
as the original choices.

The above remark, along with Theorems 5.88 and 5.118, easily implies Theorem 5.6.
The recursive way Theorems 5.88 and 5.118 were proved easily implies

Remark 5.125. Assume that the normal series 1 = Gg < --- 1 Gy, QG for G, along with the
character tower {x; € Irr(G;)}I",, is fixed. Let {Pgr,Qgi_1|a27,,ﬂ2i_1}fi07i:1 be a representative
of the unique Gp,(x1,--.,Xm)-conjugacy class of triangular sets that corresponds to the above
character tower according to Theorem 5.6. Then {x; ?;61 is a character tower of the normal series

1=Gp<---<4G,,—19G of G. Furthermore, the reduced set { Pa,, Q2;—1|cay, 521'71}7[“(1:71,077;1:)1/2],[m/2}7 isa
representative of the unique Gp,—1(x1, . - ., Xm—1)-conjugacy class of triangular sets that corresponds
to the character tower {x;}7;".

Corollary 5.126. Assume that Hypothesis 5.1 holds. Let {1 = xo, X1,---,Xm} be a tower of (5.2)
and let { Pa, Qaj—1|ooe, Baj—1}, fort =0,1,... k and j =1,...,1, be its unique (up to conjugation)
correspondent triangular set. Then

QQj—l S Hallw’ (N(P27 cee 7P2j—27 Q17 ey QQj—3 in G?j—l(Xh o 7X2j—2))7

forall 5 =1,...,1, while, for allt =1,...,k, we also get that

Qoi—1 € Hall (N (Py, ..., Por—2,Q1, ..., Q2—1 in Gor(x1,-- -, Xx20-1))-

Similarly, for the m-groups we have

Py € Hally (N (Po, ..., Pot—2,Q1,...,Q2—1 in Got(x1,...,X2t-1)),
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forallt=0,1,...,k, while, for all j =0,1,...,l —1, we also get that

P2j € Hauﬂ(N(P27 “e 7P2jaQ17 cee 7Q2j—1 in G2j+1(X17 cee )X?j))

Proof. Theorem 5.88 describes completely the relations between a character tower and its corre-
sponding triangular set. Thus in view of (5.93) (for ¢ = 2j — 1) we have that Qg;—1 is a n'-
Hall subgroup of Ggj_1,2j—2, whenever j = 1,...,l. Furthermore (5.92) (for i = 2¢) implies that
Q2t—1 € Hall/(Ga9t—1), for all t = 1,..., k. But, according to (5.91), for all such j and ¢ we have

Goj—12j—2=N(Ps,..., Poj_2,Q1,...,Q2j—3 in Goj_1(x1,---,X2j-2))s

while
Gotat—1 = N(P2, ..., Pat—2,Q1,. .., Qar—1 in Gar(X1,- -+ X2t-1))-
Hence Corollary 5.126 follows for the n’-groups. The proof for the m-groups Py is similar. O
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5.5 The groups P;;: something stable in all that mess

For this section we continue working under the assumptions of Hypothesis 5.1. So G is a finite
group, while its arbitary (but fixed) normal series (5.2) satisfies Hypothesis 5.1. We also fix a
character tower

1=X0,X1s-+>Xm (5.128a)

of that series, along with its uniquely determined (up to conjugation) triangular set

{P07P27 vy Pog, Q- 7Q2l—1|a0aa2a ey Qog, P, - 762l—1}7 (5128b)

where k and [ are defined as in (5.7) (i.e., 2l — 1 and 2k are the greatest odd and even, respectively,
integers in the set {1,...,m}). For the normal series (5.2) and its character tower (5.128a), Theorem
2.5 can be applied. So for any i = 1,...,m we write

G} = Gi(x1: X2 -+ > Xi—1)

and
Gl =G =G(X1:---, Xm) (5.129a)

for the stabilizers of x1,x2,...,Xi—1 and x1,X2,-..,Xm in G; and G, respectively. As G; < G; for
all j with 0 <14 <5 < m, the group G; fixes the characters x; for all such j. Hence

G: :Gi(Xla"'axi—l) :Gi(le"-’Xm)' (5129b)

Then, in view of Theorem 2.5, we have that G5 = Go = 1,G] = G1 and G} = G; N G; 4G},

whenever 0 < j <4 < m. Furthermore, there exist unique characters x;, for ¢ = 1,...,m, such
that

x; € Irr(G;) lies over x7,...,x;_; and induces x;, (5.130a)

Gi = GilX1: X3, -+ Xi—1) = GiXT: X2, - -, Xom)- (5.130b)

We note here that, according to the same theorem,
G] = G1 and x] = x1 € Irr(GY) = Irr(Gy). (5.130c)

According to (5.10b), for each ¢ = 1,...,k the group P»; normalizes all the previously chosen
m-groups Ps, Py, ..., Py;_o. Hence the product:

Pyi=Py- Py Py (5.131)

is a group. We also define Py := 1, therefore Pj; is defined for all ¢ = 0,1,...,k. As will become
clear, these groups play the most important role in the construction we did in the previous section.
The reason is that they are the only groups that remain unchanged when we change the 7’-parts
(groups and characters ) of the triangular set (5.128b). The way we defined the groups Pj; uses the
individual Py for all t with 1 < ¢ < 4. But, as the proposition that follows shows, we could have
picked the groups P;; using only the groups G3,.

Proposition 5.132. The group Pj; is a w-Hall subgroup of G5; whenever i = 0,1,..., k. It is
also a w-Hall subgroup of Gy, y for alli = 0,1,...,1 — 1. Furthermore Py. = P, N G5, and thus
Py <P, whenever 1 <r <i<k.

To prove Proposition 5.132 we need the following lemma:;:
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Lemma 5.133. Ifj =2,...,m,00, and s are such that 2 < 2s < j, then

G; = N(P2> cee 7P2s—27Q17Q37 . '7Q28—1 in G;) ’ G;s—l
=N(Py,..., P2, Q1,Q3,...,Q2-1 in G}) - G3,.

Proof. We will use induction on s. For s = 1 the group N(P,..., Pys—2,Q1,...,Q2s—1 in G;")
equals N(Q; in G;‘) = Gj, while the normalizer N(Pay ..., Pos,Q1,...,Q25—1 in G;‘) equals the
group N(F%,Q1 in G}) = N(P in Gj). According to (5.17b) and (5.17c), we have that P, €
Hallz(G2(x1)) = Hallz(G%). Therefore, for any j > 2, the Frattini argument implies that G} =
N(P, in G}) - G5, as G5 is a normal subgroup of Gj. Thus Lemma 5.133 holds when s = 1 and
j=2,...,m,00.

Assume now that Lemma 5.133 holds for all s = 1,2,...,t — 1, where 2 < 2t < j. We
will prove that it also holds when s = ¢. By induction, for s = ¢ — 1, we get that G} =

N(P2, ..., Pay—2,Q1,Qs3,...,Qa—3 in G}) - G3,_,. But
N(P2, ..., Pot—2,Q1,Q3,...,Qat—3 In G3_1) IN(P, ..., Po—2,Q1,Q3,...,Q2—3 in G).

Furthermore, Corollary 5.126 implies that the group N(P,..., Py_2,Q1,Q3,...,Q2—3 in G5,_,)
has QQ9;_1 as a 7’-Hall subgroup. Hence, by the Frattini argument, we have

NPy Pot—2,Q1,Q3,...,Qa-3 in G}) =
N(Pyy..., Po—2,Q1,Q3,...,Qat—3,Q2—1 in Gj) - N(Po, ..., Poy2,Q1,Q3,...,Qu-3 in G3_,).

Therefore,
G5 =N(Pyy..., Po2, Q1. Qarg in G7) - Gy
=N(Pay...,Py2,Q1,...,Q2-_3,Q2_1 in G;)-N(Pg, coy P9, Q1. .., Qo3 in G5, _1)-G5,_,.
By induction, N(Py, ..., Py_2,Q1,Q3,...,Q2—3 in G5,_) - G5,_5 = G5,_,. Hence,
G5 = N(Ps.., Por2,Q1, Q. ., Qar-3, Qou1 in G7) - Giy_y. (5.134)

This proves the first equality in Lemma 5.133 for s = t¢.

It remains to show that G} = N(Py, ..., Py,Q1,Q3,...Q2—1 in G;‘) - G3,. By Corollary
5.126, the group P is a m-Hall subgroup of N(Ps,..., Py_2,Q1,Q3,...,Q2u_1 in G3,). Since
N(PQ, . ,Pgtfg, Ql; ey Qgtfl in G;t)ﬁN(PQ, PN ,Pgtfg, Ql, ceey Qgtfl in G;), Frattini’s argument
implies that

NP2, ..., Pat—2,Q1,...,Qa—1 in G;) -
NPy Por, Q1. s Q1 in GY) - N(P, ..., Poy—2,Q1,. .., Q-1 in G%).

The above equation, along with (5.134), implies

G
J
=N(Py,..., Po, Qu1y. .o, Qou—1 in G}) - N(Pay oo, Poy—2,Q1, ..., Q1 In G3y) - Gy

=N(Py,..., P, Q1,Q3,...,Q21 in G}) - G5;.
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This proves the remaining equality in Lemma 5.133 for s = ¢. Hence the inductive proof of that
lemma, is complete. O

Proof of Proposition 5.152. We will use induction on i. For ¢ = 0 it is trivially true as Py = 1 = G,
while G7 is a 7’-group. If i = 1, then Py = P». By (5.17¢) and (5.17b) the latter group is a w-Hall
subgroup of Ga(x1) = G5. Furthermore, as G5/G% is a n'-group, Py is also a w-Hall subgroup of
G3. The rest of the proposition holds trivially for i = 1.

Now we assume that Proposition 5.132 holds for all ¢« = 1,2,...,t — 1, where 1 < t < k.
We will prove that it holds for ¢ = ¢t. We have Pj,_, € Hall(G%,_,) by induction, and Py €
HaHﬂ-(N(PQ, ey Pgt,Q, Qg, PN ,Qgtfl in G;t)) by Corollary 5.126. Since P2*t—2 == P2 ce Pgt,Q, it
follows that the group Py, = Py, 5 - Po; is a m-subgroup of G3,. So there exists a m-Hall subgroup,
Pas, of G5, with

Py < Par. (5.135)

Since G5;_5 is a normal subgroup of G3;, we conclude that Py N G5,_5 is a m-Hall subgroup of
G3,_o. But Pj,_, is a m-Hall subgroup of G3,_, such that Py, o, < Py,NG5,_5 < Py NG5,_5. Hence

P2*t—2 = P2*t N GSt—Q =Par N th—z-

Furthermore, as G5,_,/G%,_, is a 7'-group, Ps,_, is not only a w-Hall subgroup of G%,_,, but also
of G3,_, (note that G5, ; exists for all t =1,...,k). Hence

P2*t—2 — PQ*t ﬂ G;t—l — P2t ﬂ G;t—l € Hallﬂ(G;t_l) (5136)

Since G%5,/G%,_; is a m-group, and P is a m-Hall subroup of G5, we have that G5, = Poy - G5,_;.
Furthermore, G5, = N(P,..., Py—2,Q1,...,Q2-1 in G3;) - G3,_; according to Lemma 5.133.
Hence, the m-Hall subgroup Pa of N(P,..., Pa—2,Q1,... Q-1 in G3;) also covers G3,/G3, 4.
As P}, 5 < G%,_5 < G3,_,, we conclude that

* e * _ p* *
PQt ’ G2t—1 - G2t - PQt ’ G2t—1 - P2t tM2t—1-

This, along with (5.136) and (5.135), implies that P, = Py. Thus P, is a m-Hall subgroup of
5~ If t < 1 —1 then the group G%, , is defined and G%,,,/G3, is a n'-group. We conclude
that Py, € Hall(G%;, ) for all such t. The rest of Proposition 5.132 for i = ¢ follows easily, as
5 1G5, and Py, < Pj,, whenever 1 < r <t < k. Hence, the inductive proof of the proposition

is complete. O

Along with the groups Pj; we have irreducible characters o3, that correspond uniquely to the
irreducible characters ag; of Py;, for all i = 1,..., k. To prove that these characters exist and show
how their correspondence with the ag; works, we will use the following lemma:

Lemma 5.137. If1 <i <t <k then
N(Q2i—1 in Pyj_g - Poj- - Poy) = Pyj-- - Poy. (5.138)

Proof. According to (5.10b), the group P»j normalizes Qg;—1 for all j > 4. Hence the product
Py; - -+ Py is contained in the normalizer N(Qgi_l in Py _o--- Pgt). So, N(Qgi_l in Py _o--- PQt) =
N(Q2i—1 in Pyi_3) - Py;--- Pay,. By (5.34), we have N(Q2i—1 in Po—2) = Pai_02i—1 = Pai_o N P;.
Therefore N(Q2i—1 in Py;_9) is a subgroup of Py; < Py; - - - Py;. This completes the proof of Lemma
5.137. O
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Proposition 5.139. For all i,t with 1 <i <t < k we have
N(QlaQ?n---yQQi—l n P2*t) :PQi“’PQt. (5140)
Proof. The proof is a multiple application of Lemma 5.137.

N(Qh Q37 Q57 R QQi—l in PQ*t)

= N(Q3,Q5,...,Q211in Py) since Q < G,
= N(Qs,...,Q2-1in N(Qs in P},))

=N(Qs5,...,Q2—11n Py--- Py) in view of Lemma 5.137,
=N(Q7,...,Q2—11n N(Qs in Py--- Py))

= N(Qai—1 in Py_o--- Py)
= Py - Py in view of Lemma 5.137.

O

In particular, we have a way to recover the P»; from the products Pj; and the g¢-groups
Q3,...,Q2_1, whenever i = 1,... k. Indeed, (5.140) implies:

N(Q1,Qs, ..., Q21 in Py;) = Py (5.141)

Lemma 5.142. If 1 < j <1 <k, then the product Q2j41 - Paj - Pajio--- P is a subgroup of G
having Q2541 as a Hall 7' -subgroup, and Py - Pyjio--- Py as a Hall w-subgroup. Both the mw-group
Py and the product Q241 - Pj are normal subgroups of Qo1 - Paj - Pajio- -+ Po;. Furthermore,
N(Q2j+1 in Poj - Pojyo--- Po;) = Pojyo--- Py Hence Theorem 3.1 gives us a one to one Qaj41-
correspondence

* *
Q9951 Q(—>2j+1 Q95 95+1

between all characters 0431.’2%1 € Irr(Pyjqa - - - Poi) and all characters agmjfl € Irr(Poj-Pojia - Pay)
lying over some character a§j,2j71 € IerQHl(ng). This correspondence is invariant under conju-
gation by elements of any subgroup K < G normalizing both Q2541 and Paj - Pyjio--- Po;. Fur-
thermore, if a5, 9, 1 € Irr(Paj - - - Pas) is any character of Paj - - - Py lying under 5, 951 and above
O 9i-1, for some s with 1 < j < s < i <k, then its Qaji1-correspondent a5, 5;.q lies under the
Q2j+1-correspondent o, 51 Of 0395 4.

Proof. We only need to show that Qoj11- Pj- Pajyo--- P is a group having P; and Q241 - Poj as
normal subgroups, while Py;--- Pog < Pyj--- Po; whenever 1 < j < s <4 < k. The rest is an easy
application of Theorem 3.13 and (5.140).

By (5.10a) the group Q2,41 normalizes the group P»j. Furthermore, (5.10b) implies that the
groups Pyjio, Paji4, ..., Py normalize both P and (241, while Pog normalizes Py for all s,t with
j <t <s <. Hence, the products Q2541 FPo; and Poj 1o - - - P, form groups. Even more, the latter
group normalizes the former one for every s = j +1,...,i. Hence Q211 - Poj - Pojio--- Po; forms
a group having P»; and (241 - P»; as normal subgroups. It is also clear that the product group
Py - -- Py is a normal subgroup of Py; - - - P; whenever j < s <. O
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Theorem 5.143. For any i = 2,3,...,k we may form a chain

* * * * *
Q241 Q9.3 Q2.5 Q94,2i—3 S Q991 (5.144)
"t Qs Qs P Qr Qaims 7T Qa0
of the Qaj11-correspondences in Lemma 5.142. The composite Q3,Qs, . . ., Q2—1-correspondence is

one to one between all characters o, o; 4 € Irr(Py;) and all characters o, € Irr(Ps;) having the
following property:

Property 5.145. There exist characters aj;, € Irr(Pz*j), for j =1,2,...,1— 1, such that each
;1 18 Qojy1-invariant and lies under of; o 4.

This Q3,Qs5, ... ,Qo_1-correspondence is invariant under conjugation by elements of any sub-
group K < G normalizing all the subgroups Q3,Qs, ..., Q21 and Py;.

Proof. 1t follows immediately from Lemma 5.142 that the composite correspondence is one to
one between all characters in Irr(P;) and some characters in Irr(Ps;). It is also clear that this
correspondence is invariant under conjugation by elements of N(Q3, @s, ..., Q2i—1, P5; in G). Thus
it remains to show that the image of the composite correspondence is exactly the subset of all
;1 € Irr(P3;) having Property 5.145.

We will first show that any 1 € Irr(Ps;) which is the @3,Qs, ..., Q2—1-correspondent of
some a3, o, 1 € Irr(F%;) must satisfy Property 5.145. This can be done by induction on 4. Assume
that i = 2. Let aj, € Irr(P)) be the Q3-correspondent of some aj 5 € Irr(Py). In this case,
Lemma 5.142 (for j = 1 and i = 2), describes this Q3-correspondence as one between all characters
o) 5 € Irr(Py) and all characters o ; € Irr(Py) lying over some character a3, € Irr93 (). As
Py, = P35, we obviously have that o} ; lies above the Qs-invariant character a3 ; of Py. Thus o},
satisfies Property 5.145. This implies the ¢ = 2 case.

Assume that is true for all i = 2,...,t — 1, for some t with 2 < ¢t < k. We will prove it also
holds when 7 = t.

Let a3, € Irr(P3;) be the Qs,...,Qz—1-correspondent of some a3, 9, € Irr(Py). Then,
according to Lemma 5.142, the character o3, o,y of P has as a (Qa;—1-correspondent a character
Qs 013 Of Par—o - Py, that lies above some character a3, 54, 3 € It @21 (Py; o). Let Q5 91 €
Irr(P3;_5) be the Q3,Qs, . . ., Q2r—3-correspondent of a3, 5 9,3 € Irr(P—2), that we get by multiple
applications of Lemma 5.142. As a3, 4, 3 lies under a3, 9, 3, we get that the Qs,..., Qar—3-
correspondent a3, 5 of a3, 5o, 5 lies under the Q3, ..., Qat—3-correspondent a3, ; of a3, o, 5 (see
Theorem 3.13). Furthermore, Q2;—1 fixes a§t7272t73 and normalizes the groups Qs,..., (23, as
well as the product group P - - - Py;—o. Hence it also fixes the Qs, ..., Qg—3-correspondent a3, o
of a3;_9 9, 3. In conclusion, the character a3, o, is Qg¢—1-invariant and lies under a3, ;. Thus a3, 4
satisfies Property 5.145 for j =t — 1.

As a§t72’1 is the Qs3, ..., Q2—3-correspondent of 92923, the inductive hypothesis applies.
Hence for every j = 1,...,¢—2, there exists a character a3, € Irr(PQ*j) that is Q2,4 1-invariant and
lies under o5;, 9. The existence of these characters aj;,, along with a3, ,,, implies that o5
satisfies Property 5.145. This completes the inductive proof that an o3, | € Irr(Py;) which is the
Q3,Qs, ..., Q9_1-correspondent of some Q5 9i-1 € Irr(Py;) must satisfy Property 5.145.

Now assume that a character a3, ; € Irr(Py;) satisfying Property 5.145 is fixed, for some i =
2,3, ..., k. We want to construct some character O‘;i,%—l € Irr(Py;) having O‘;i,l asits Qs, ..., Q2_1-
correspondent. To do this, we will find characters a3; o, for every ¢ = 1,...,i — 1, to form the
chain (5.144). So it suffices to show that for every ¢ with 1 < ¢ < i — 1 we can apply Lemma
5.142 to get a Qaiy1-correspondent ;5,1 Of &%, 4, 4. This is done in a recursive way. So, for
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t = 1 we observe that Property 5.145 implies that a3, lies above the @s-invariant character
asy € Irr(P2) = Irr(Py). Hence, according to Lemma 5.142, the character a3, € Irr(Py - -+ Py;)
has a Qs-correspondent character a3, 3 € Irr(Py - - P;). Furthermore, as o3, lies under a3, o,
and above o3 ;, for every s = 2,...,i— 1, (by Property 5.145), the same lemma implies that the
Qs-correspondent a3, 3 € Irr(Py- - Pas) of ajsy € Irr(Py - - - Pag) is defined and lies under o 5.
Even more, the character oz;s’l is Qast1-invariant and Qo541 normalizes both Q)3 and the product
group Py - -+ Py, for all s = 2,...,4—1. Hence the Q3-correspondent character a3, 3 of a3, ; is also
25+ 1-invariant.

We can now do the case t = 2. Indeed, the previous comment for s = 2 implies that a3, 3 €
Irr(Py - - - Py;) lies above the @s-invariant character ajs € Irr(Py). Thus we can apply Lemma 5.142
again to get a (J5-correspondent character as; 5 € Irr(Pg - - - Pa;). Note that the Q5-correspondent
Q5 € Irr(Ps - - - Pas) of Q55 € Irr(Py - - - Pag) is defined whenever s = 3,...,7— 1. This correspon-
dent lies under a3, 5 5, as a5, 5 lies under a3, 5 5. Furthermore o, 5 is Qos41-invariant, while Qgs41
normalizes both @5 and the product Py - - - Pys. Therefore the Qs-correspondent a3, 5 of a3, 5 is also
Q2s+1-invariant. So for s = 3 we have that ag; 5 € Irr(Fs - - - Py;) lies over the Q7-invariant character
ag 5 € Irr(FPs). Hence we can apply Lemma 5.142 again and thus get the desired correspondence
for t = 3. We continue similarly. At the ¢-step we have the character Q011 € Irr(Pyy - - - Po;) lying
over the Qati1-invariant character a3, o,y € Irr(FP), while for all s = ¢,...,4 — 1 the character
Qg op—1 € T (Pat -+ Pas) is Qas1-invariant and lies under ag, g9, 1.

At the last step for t = i — 1 we end up with the character 0431-,21»_3 € Irr(Pyi—o - Po;) lying
over the Qg;—1-invariant character aj; 59, 3 € Irr(Py;—2). So the final application of Lemma
5.142 will provide a (QJ2;—1-correspondent character a3, o; € Irr(Py;) of a3; 5,3, that is actually a
Q3,Qs5, . .., Q2i—1-correspondent of ;.

This completes the proof of Theorem 5.143. O

Remark 5.146. The chain Q3,Q5,..., Q21 is empty when ¢ = 1. In that case we define the
Q3,Qs, . .., Q2;—1-correspondence to be the identity correspondence between Irr(Py;) = Irr(Py) and
the equal set Irr(Pj;) = Irr(Fy).

Now we can make the

Definition 5.147. For each ¢ = 1,2,...,k we define a3, € Irr(Ps;) to be the Q3,Qs, ... Q2i—1-
correspondent of the character ag; € Irr(Py;).

So
ay = ag (5.148)

by convention. Furthermore Theorem 5.143 obviously implies

Proposition 5.149. If a subgroup K < G normalizes all the subgroups Qs3,Q@s, ..., Q21 and P3;,
for somei=1,2,...,k, then a3, and ag; have the same stabilizer K(os;) = K(ow;), in K.

Corollary 5.150.
Qaj+1(a3;) = Qajr1(a2i) = Q241 (5.151a)

and
Pys(ay;) = Pos(agi) = Pos. (5.151b)

whenever 1 <i<j<landl <i<s<k.

Proof. According to (5.10), the groups Q241 and P, normalize P, ..., P; and @3,...Q2—1, for
all j,s with 1 <¢ < j<land 1l <i <s < k. Thus they also normalize the groups Fs,..., P;;.
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Hence Proposition 5.149, along with the fact that Q2j4+1 and Pag fix aw; (see (5.17c,e)), implies
Corollary 5.150. O

The next proposition shows how the characters a3, are related.

Lemma 5.152. If i =2,3,...,k, then of;_, is the only character in Irr(Ps;_,) lying under of; €
Irr(Ps;).

Proof. Let i = 2,3,...,k be fixed. We first show that a3, , lies under af,. By (5.17d), the
character ag; € Irr(P»;) lies over the character ag;—22;—1 € Irr(Pai—22,—1), where Poj_99;1 =
C(Qgifl in Pgi,Q) (by (514)) and Q22 .2i—1 is the Qgi,l—Glauberman Correspondent of a9;—2 (see
(5.49)). According to Theorem 3.13, the Q2;_1-correspondent 0451-?21»_3 € Trr(Poj—o - Py;) of ag; =
5 951 (see Lemma 5.142 for j = i — 1), lies over the Q2;—1-Glauberman correspondent ag;_o €
Irr(Pyi—2) of agi—2.2i—1. It follows that o}, which is the @3, @5, . . ., Q2;—3-correspondent of 55 053
lies over the @3, Qs, ..., Q2—3-correspondent of; o of a2 (see Theorem 3.13).

Since Pj;_, is a normal subgroup of Pj;, Clifford’s Theorem implies that we can prove the lemma
by showing that a3, , is Py-invariant. But Py, = Py, o - P»;, and Py;_, fixes its own character,
while Py;(as;_4) = Pa; by (5.151b). We conclude that a3, o is Ps;-invariant. Thus the lemma
holds. O

By induction the above lemma implies
Proposition 5.153. If 1 < j < i < k, then agj 1s the only character in Irr(PQ*j) lying under

al, € Irr(Fy;).

5.6 The groups 5,
We can define groups @3, _; similar to the P»;. Indeed, in view of (5.10a) the product

Q31 =Q1 Q3 Q2i-1, (5.154)

is a group whenever 1 < i <.

The groups @3, _; are defined symmetrically to the Pj;, and satisfy results similar to those the
Pj; satisfy. The following proposition is analogous to Proposition 5.132 for the groups @5;_;. Its
proof is similar.

Proposition 5.155. The group Q5;_, is a ©'-Hall subgroup of G5;_; whenever 1 < i <, while for
i=1,...,k we have, in addition, that Q5,_, € Hall/(G%;). Furthermore, Q3._, = Q5,_1 NG5, _,
and thus Q5,1 1 Q5,_,, for all r,i with 1 <r <¢ <.

Proof. The proof is done by induction, and is totally symmetric to the proof of Proposition 5.132
for the n’-groups in the place of the m-groups. So we omit it. O

Of course by 7, 7’-symmetry, we can define irreducible characters 5, ; of @5, ; as we did for
the characters a3, € Irr(P5;). So

Definition 5.156. For every i = 1,...,1, we define 35, ; € Irr(Q%,_;) to be the P, Py, ..., Py_o-
correspondent of the character Bo;—1 € Irr(Q2;—1). By convention

B = b1
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Results similar to Theorem 5.143 and Propositions 5.149 and 5.153 hold for the 3*-characters.
According to Propositions 5.132 and 5.155 we get

Corollary 5.157. Ifi=1,....,k and j =1,...,1 then
G5 = Py; - Q%4 and st—l = P2*j—2 : Q;j—la
where Py =1 by convention. In particular
G = Pop - Q1

Similar to the equations (5.138), (5.140) and (5.141) that the groups Py; satisfy, the following
equations are satisfied by the groups @3, ;:

N(Py in Q-1 Q2it1 -+ Q2rt1) = Qi1+ Q2t+1, (5.158a)
N(P, Py, ..oy P in Q511) = Qaiv1 -+ Qai41 (5.158b)

and
N(Py,..., Py in Q% 11) = Q2i41, (5.158¢)

for all 7,¢t with 1 < <t <.

The proof of (5.158a) is similar to that of (5.138), using (5.33) in the place of (5.34).
The equation (5.158b) follows by repeated applications of equation (5.158a) (as (5.140) followed
from (5.138)), while (5.158¢) is a special case (when ¢ = 7) of (5.158b).

In the proposition that follows we rewrite (5.141) and (5.158¢) in a slightly different way.

Proposition 5.159. For allt=1,...,k we have
N(Q3;—1 in Py;) = P (5.160)

Ifi=1,2,...,1—1 then
N(P3; in Q3;41) = Q2i1- (5.161)

Proof. We use induction on ¢ to prove (5.160) and (5.161) simultaneously. As Q] = Qi is a
normal subgroup of G, it is clear that N(Q7 in Py) = Py = P». Hence (5.160) is true for i = 1.
Furthermore, (5.158¢) for ¢ = 1 coincides with (5.161) for ¢ = 1. Thus the proposition holds for
1= 1.

Assume the proposition is true for all 7 with 1 < i < ¢, for some t = 2,...,l—1, (note that either
k=1lork=10-1). We will prove it also holds for ¢ = ¢, i.e., we will show that N(Q%,_; in P3,) = Pa
and N(Pj; in Q3;,) = Q2t41. According to (5.141) we have that

Py = N(Q1,Q3,...,Q2u—1in P3) < N(Q3_; in P3,).

Hence the right side of (5.160) for ¢ = ¢, is contained in the left side. For the other inclusion, we ob-
serve that, by induction, Q3 = N(P5 in Q3),Qs5 = N(Pf in Q%),..., Q-1 = N(P}_, in Q5,_;).
In view of Propositions 5.132 and 5.155, Py, = P35, NG5, and Q5. = @5,_; N G5,._,. Hence
N(Q%,_, in P3,) normalizes both Pj. (as it is a subgroup of Ps,) and Q%,._; (as it normalizes
the group Q%,_;) whenever 1 < r < ¢. Hence, N(Q%,_,; in P;;) also normalizes the groups
Q3= N(Py in Q3),...,Q2-1 = N(P5;_5 in Q%,_;). So the left side in (5.160) for i = ¢ is contained
in the right, and the inductive step for the first equation is complete.
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The proof for (5.161) is similar. Indeed, according to (5.158¢c) we get:

Q?H—l = N(P27P47 s 7P2t in Q;t—i—l) < N(P2*t in Q;t—&-l)'

Thus the right side of (5.161) for ¢ = t, is contained in the left side.

For the other inclusion, we observe that (5.160) holds for all ¢ with 1 < ¢ < ¢t. Hence, P, =
N(Q7 in P3),Py = N(Q3 in Pf),..., Py = N(Q5,_; in Ps,). Furthermore, Propositions 5.132 and
5.155 imply that N(Ps; in @3, ;) normalizes the groups P, and Q3._; whenever 1 <r <. So it
also normalizes the groups P, Py, ..., Py. Hence N(Pj, in Q3 ) < N(P,..., Py in Q3,, ). This
completes the proof of Proposition 5.159 for all ¢ with 1 <¢ <[ —1.

It remains to show that, in the case where k = [, equation (5.160) holds for i = k. But even in
this case the same argument we gave in the inductive proof of (5.160) works, as (5.161) is valid for
alli=1,2,...,1 — 1=k — 1. Hence Proposition 5.159 holds in all cases. Il

We close this section noticing that we have some freedom in the choice of Pj; and Q3,_,, i.e.,

Remark 5.162. As we have see in Remark 5.124, conjugation by any g € G* leads to a new choice
of the P, Q2i—1, ag; and [g;—1 satisfying the same conditions (for the same G; and x;) as the
original choices. This conjugation replaces each Pj; or ()5, ; by its g-conjugate. In particular,
we can choose g € G* so that (Py;)? and (Q3,_,)Y are any given m-Hall and n’-Hall subgroups,
respectively, of G7,.
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5.7 When 7-split groups are involved

In this section we are interested in the special case where m-split groups appear in the normal series
(5.2). In particular, we will see that the triangular sets, in this case, have a very simple form. What
we mean for a group to be m-split is given in

Definition 5.163. A finite group H is called m-split if it is the direct product
H=H,x Hy

of a w-group H,, and a n’-group H,.

Obviously, H; and H,s are the unique m-and n’-Hall subgroups of H. Also, if S is any subgroup
of H, then S is also m-split. Furthermore, if y € Irr(H) is an irreducible character of H, then x
also m-splits as

X = Xz X Xa's
where x, € Irr(H) and x, € Irr(H,/) are the m-and 7’-parts to which xy decomposes.

Assume now that the normal series (5.2), in addition to its usual properties described in Hy-
pothesis 5.1, contains some 7-split group G;, for some ¢ = 1,...,m. Clearly, if GG; is w-split then
G is also m-split for all j = 1,...,7. Let s be the largest integer, with 1 < s < m, such that Gy is
m-split. Note that s is necessarily bigger than 0 as Gy is a 7’-group and thus a w-split group. Let

{x0, X155 Xm } (5.164)

be a fixed but arbitrary character tower for (5.2). Then
Gi = Gi,w X Gwr/, (5.165&)
Xi = Xi,m X X! (5165b)

whenever 0 < i < s. Furthermore, the groups G} and G* defined in Section 5.5 (see (5.129a) and
(5.129b)), and their characters x; (see (5.130a)), satisfy

G;k = G;’:ﬂ' X G’?JT’ = Gi,w(Xla ce >Xi—1) X Gi,ﬂ"(Xl: cee >Xi—1)7 (51663‘)
Xi = X X Xin's (5.166b)

whenever 0 < i < s.
Let

{Por, Q2i—1]aay, ﬂ2i—1}’:io,i:1v (5.167)

be a representative of the conjugacy class of triangular sets of (5.2) that corresponds to the tower
(5.164), by Theorem 5.6. All the groups, their characters, and their properties, that were introduced
and proved in the previous sections with respect to a given triangular set, (like Q2;—1.2,, Por 2i—1, s,
etc.), are applied to the set (5.167). Furthermore, we write

ls:==[(s+1)/2] and ks := [s/2], (5.168)

for the greatest integers less than (s 4+ 1)/2 and s/2, respectively. (This agrees with the definition
that was given in (5.7).

In the situations where (5.165) occurs, the first n groups in the triangular set (5.167) are unique
and satisfy
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Theorem 5.169. Assume that (5.165) holds. Then

Py = P, = G, = Gorn (X1, -+ 5 X2r—1), (5.170a
Qi1 = Q%1 = G5;_1 v = Gaim12(X1, - -1 X2i-2), (5.170b
o = Pop X Q2p—1 = Gorar—1 = Goror, (5.170c
G5i_1 = Pai—o X Q2i—1 = G2i—1,2i—2 = G2i—1,2i—1, (5.170d

* *
Q2r = Qgr = X2r >
*
Boi-1 = X2i—1,7"
%
Xor = X2r2r = 02r X B2r713
*
X2i—1 = X2i-12i—1 = Q2;—2 X [2;_1.
whenever 1 <r <k, and 1 <1 <lI;.

Furthermore, the groups Py <Py <--- < Py and Q1 < Q3 < --- Q9 1, form a normal series
for Poy, and Qo,—1, respectively. In addition, Pay, centralizes Qo;,—1. Thus

Popotr1 = Por and Q2125 = Q2i—1, (5.171)

Q2rot41 = Q2r and Pai—1,25 = Pai—1, (5.172)

whenever 1l <r <t<lg—1and 1l <i<j<k;.
Proof. Corollary 5.157, along with (5.166a), implies that G5, = G3, . x G5, ., = Py, - Q5, | and

27,7’

Goi1 =G5 12 X Gy =Py 5+ Q5 1, whenever 1 <r < ks and 1 <7 <I;. Note that the last
such group is G}, wich satisfies

Gl =Gl X Gl = Piy - Q. (5.173)
Hence
PQ*'/‘ = GQT’,W(Xl? cee 7X27”*1) = G;T,ﬂ' = G;T-I—l,ﬂ" (5174)
Q;i—l = Gzi_Lﬂ-/(Xl, ceey X2i—2) = G;i—l,ﬂl = G;i,ﬂ/,while (5175)
Py =G5 and Q3 =G5y 1, (5.176)

for all r,i with 1 <r <ls and 1 < ¢ < k,. This, along with Proposition 5.159, implies

Py = N<Q§r71 in PQ*T) - N<G;r,7r’ in szr) - G;T,ﬂ'/ - P2*7“7
Q2i-1 = N(P2*i—2 in Qgi—l) = N(Ggi—l,w in G;i—l,ﬂ/) = Ggi—l,w’ = in—lv

whenever 1 <r < ks and 1 <i <I,. Hence (5.170a,b) holds.

Furthermore, the fact that the groups P35, Py, ..., Py, form a normal series for P (see Propo-
sition 5.132), implies that P, < Py < --- < Py, is a normal series for Pp,. Similarly, the 7'-
groups (Q2;—1 form a normal series Q1 < Q3 < -+ < Qg1 for Qg 1. According to (5.173) the
w-Hall subgroup Poy, of G centralizes the n'-Hall subgroup Q9,1 of that same group. Hence
Py, centralizes Q2;—1, for all r = 1,... ks and i« = 1,...,ls. Thus (see (5.33) and (5.34)),
Q2i—125 = C(Pa, ..., Pojin Q2i—1) = Q2i—1 and Poroip1 = C(Qor41,- .., Q241 in Poy) = Py,
forall1<i<j<ksand 1 <r <t <[, — 1. Furthermore, the P;,..., P;-Clifford correspondent
B2i—1,25 of B2;—1 coincides with f2;_1. Similarly we get that g, 211 = ag,. Hence the last part of
the theorem holds.
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To prove (5.170c,d) it suffices to notice that, according to (5.92) and (5.93),

Goror—1 = Pop X Qor_1,
G27’72r = P2r X Q2r—1727’7
Goi—1,2i—2 = Poj—2 X Q2;—1,

Goi—12i-1 = Pri—22i—1 X Q2i—1,

for all r = 1, .. .,ks and ¢ = 1, ce ,ls. But QQT_LQT = QQT_l and Pgi_ggi_l = PQZ‘_Q, by (5.171).
Thus all the above products are direct, and we get

* * *
Gorar—1 = Gorar = Por X Qop—1 = Py, x Q3,1 = G5,.

So (5.170c) holds. The proof for (5.170d) is analogous.

Notice that (5.170c,d) clearly imply that the groups P, and (Q2;—1, as characteristic sub-
groups of G3. and G3,_,, respectively, are normal subgroups of G* = G(xi,...,xm), for all
r=1,...,ksandi =1,...,l5. This is actually the reason that the group Go, 2,, defined as Ga, 2, =
N(Po,...,Por,Q1,...,Q2—1 in Gor(x1,-..,X2r)) in (5.91), coincides with Ga,(x1, ..., x2r) = G5,,
for all r = 1,...,ks. (Similarly we work for the group Ga;—12i—1). In addition, this implies that
the cP,...,cPor,cQ1,. .., cQar—1-correspondent xo, 2, of x2, is nothing else but a multiple Clifford
correspondent, and thus coincides with x3,., i.e., X2r2» = X5,. Similarly, x2;—1,2;—1 = x5,_;- But, ac-
cording to (592) and (593), we have that X2r2r = 02r X ﬁQT,LQr and X2i—1,2i—1 = 024—22;—1 X ﬁgifl.
Hence

*
Xor = X2r2r = Q2p X Bor_12, = Q2r X Bor_1,

*
X2i—1 = X2i—1,2i—1 = 2i—22i—1 X P2i—1 = aj—2 X (21,

whenever 1 < r < kg and 1 < i < [;. This, along with (5.166b), implies (5.170f,g,h) and one
equality in (5.170e), namely ag, = X3, .-

It remains to show that a3, = ag,. But of,. € Irr(Fs,) is the Qs,. .., Q2,—1-correspondent
of ag, € Irr(Poy), while Py, = Pa, centralizes the 7/-groups @s,...,Qar—1, for all = 1,... k.
Thus this correspondence is trivial, i.e., o, = ooy, for all such r. This completes the proof of the
theorem. O

The following is a straight forward application of Theorem 5.169.

Corollary 5.177. Assume that G; and x; satisfy (5.165), for alli =1,...,s. In addition, assume
that G fizes x; for alli=1,...,s — 1. Then the triangular set (5.167) satisfies

P27" = P2*7~ = GQr,ﬂ'a
QQ’i*l = Q;i—l = GQiﬂT”
Q2r = X2r,m
B2i-1 = X2i—1,7,
Xor = Qor X o1,

X2i—1 = Q2i—2 X P21

whenever 1 <r <k and 1 <1 <l;.
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Chapter 6

The Group G’ = G(o3))

Assume that a finite odd group G is given, along with a normal series (5.2) and a fixed triangular
set for this series. We have already seen in Section 5.5 how to define the characters a3, of the
product groups Pj; whenever 1 < ¢ < k. In this chapter we analyze the group G’ := G(o3,) with
ultimate purpose to reach triangular sets for this group.

~

6.1 7'-Hall subgroups of G': the group @

The following remark is an easy consequence of Proposition 5.153 and the fact that G’ normalizes
P2*z = P2*k N Go;.
Remark 6.1. G’ = G(od,) = G(a3,a},...,ak,)

Proposition 6.2. For everyi=1,...,k we have
G'(B1,...,P2i—1) < G'(Bai—12k) and (6.3a)
G'(Bry- -, Paic1) < G'(x1,- -5 x20) < G'(xa, -5 x2i1)- (6.3b)
In addition
G'(Br,. .-, Pa1) < G'(x1,- .-, x20-1)- (6.3c)
Proof. Let T; = G'(B1,...,B2—-1) for some fixed i € {1,...,k}. In view of Remark 6.1 we
have that T; fixes o3,...,a35,, and thus normalizes the groups Py, Pjf,...,P;. Furthermore,
it normalizes the 7’-groups Q1,Qs3,...,Q2_1 and therefore also normalizes the product group

Py Pop, = N(Q1,Q3,...Q2—1 in Pj;) (see (5.140)). As T; fixes B2;—1 € Irr(Q2;—1) and normal-
izes Po;- - Pay, it also fixes the Py;- - Pyp-Glauberman correspondent f(o;_j 9r € Irr(Q2i—1,2k) of
B2i—1 (see Definition 5.49). This implies (6.3a).

We will use induction on i to prove (6.3b). If i = 1, then obviously 71 = G'(81) = G'(x1),
as 1 = x1. Also, 71 normalizes P, = Py and fixes ap = a5. Hence it also normalizes P - 1 =
G2(B1) (see (5.70)), and thus fixes the canonical extension ({ of 51 to Q1. Therefore it fixes
the character x21 = ag - Bf (see (5.71a)). According to (5.68) we have T1(x1, x2) = T1(Xx1,1, X2,1)-
But Tl(Xl) = T1 = Tl(XQJ), while X171 = X1- Hence Tl(XQ) = Tl(Xl,XQ) = Tl(XLl,XZl) = Tl.
Therefore, T fixes x2 and (6.3b) is proved for i = 1.

Assume (6.3b) is true for i = ¢t —1 and some ¢t = 2,3,..., k. We will prove it also holds for i = ¢.
The inductive hypothesis implies that

T, = G'(B1, 33, ..., Bor—1) < G'(B1, B3, .-, Par—3) < G'(X1, X3, - - -, X2t—2)-
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Thus it suffices to show that T} fixes x2:—1 and xo2;. By (5.92) and (5.93) we have

X2t—1,2t—1 = Q2t—22t—1 X P21

e
X2t,2t—1 = Q2 * Bat—1-

We have already seen that 7; normalizes Py, o and P53, and fixes their characters a3, , and a3;.
Also it normalizes Q1,...,Q2—3,Q2:—1, and thus normalizes Py;_o = N(Q1,...,Q2—3 in Py,_,)
and Py = N(Q1,...,Q2—11n P3), (see (5.141)). Hence T; also fixes the Q1,Qs,...,Q2—_3-
correspondent a9 € Irr(Pai_2) of o, 5, as well as the Q1, ..., Q2t—1-correspondent gy € Irr(Py;)
of a3, (see Proposition 5.149). As T; also normalizes (Q2:—1, it fixes the Q2:—1-Glauberman corre-
spondent ags—22t—1 € Irr(Pyy—22¢—1) of agp—o € Irr(Py;—2). So T fixes the characters ag, g2 and
Q2t—22t—1-

Also T; fixes (o1 and normalizes Pa;-Qor—1 = Garot—1 (see (5.92)). Hence it fixes the canonical
extension (5, _; € Irr(Gatai—1) of Bar—1 to Garoi—1. Therefore, T; fixes aot—22¢—1, For—1, a2 and
B%_1, and thus fixes x2:—1,2¢—1 and x2¢2:—1. This, along with the inductive hypothesis on T3,
implies that

Ti(X15 X35 -+ > X26—25 X20—1,20—1, X2¢,20—1) = 1. (6.4)

We note that T; normalizes all the w-groups Ps, Py, ..., Pot_4, Po;_o. This is clear, as for every
Jj=1,...,t =1 we have P3; = N(Q1,...,Q2j—1 in Py3;) (by (5.141)). Hence we conclude that T; <
N(Q1,Qs3,...,Q2—1,P2,Py,..., Py_o in G). Therefore Theorem 5.88 (part 3 for n = 2t and n
2t — 2 respectively) implies that T3(x1, ..., x2t) = Te(X1,20=1, - - -, X2t,2e—1) and Tp(x1, ..., X2t—2) =
Ty (X1,26—15 - - - » X2t—2,2i—1). Hence

Ti(x1s- - x2t) = Tr(X1,2t=15 - - - X2t,2t—1)

=Ti(X1,2t=15 - - > X2t—2,2e—1) (X2t —1,20—15 X2t.2t—1)
=Ti(x1,- - x2t—2)(X2t—1,20—1, X2t,2¢—1)
=T;. by (6.4)

So Ty < G'(x1,---5Xx2t)- This proves the inductive step for i = ¢, and thus (6.3b) for every
i=1,...,k.

It remains to show (6.3c). Observe that this additional case is not covered by (6.3b) only when
m is odd, since for m even we have k = [. The arguments for this last step are similar to those
we used at the inductive step. Indeed, 1} fixes a3, , and thus fixes its )1, ..., QJ2j_3-correspondent
ag—g € Irr(Py_3). It also fixes the Qg—1-Glauberman correspondent ag—99;—1 of ag_2. Hence
T fixes agi_021—1 X Ba—1 = Xxai—1,21—1 (see (5.93)). Therefore, T; = Ti(x1,- -, X2k> X21—1,21—1)-
Furthermore, T} < N(Q1,...,Q2-1, P2, ..., Py_9 in G). Therefore, Part 3 of Theorem 5.88 implies
that

Ti(x1,- -y x2-1) = Ti(x1,20-15 - - - s X21-1,21-1)
=Ti(x1,21—15 - - > X21—2,21—1) (X21—1,21—1)
=Ti(x1,-- > x20—2)(X21-1,21-1)

-

So T; < G'(x1,---,x21—1). This proves (6.3c) and completes the proof of the proposition. O

Our next goal is to show that the smallest group in (6.3b) has 7-index in the largest one. The
following lemma helps in this direction.
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Lemma 6.5. If T < N(Q1,...,Q2—1 in G’), for some i with 1 <i <1, then

T(xt1,---sx2i-1) ST (Br,- .., P2i-1)-

Proof. We will use induction on 4. If ¢ = 1, then the lemma is obviously true, as x; = (1, so that
T(x1) = T(p1) for any T < G. Assume that the lemma holds for all i = 1,...,¢ — 1, and some
t=2,3,...,1. We will prove it also holds for i = ¢.

Let T be a subgroup of N(Q1,...,Q2—1 in G'). Then, according to the inductive hypothesis,
T(x1s---yx2t—-1) < T(x1,---,x2t-3) < T(P1,-..,02—3). Furthermore, in view of Remark 6.1, the
group 7' fixes the characters a3, aj,. .., a3, and normalizes the groups Py, Py,..., Pj.. Hence T
normalizes the groups Po; = N(Q1,...,Q2—1 in Pj;) (see (5.141)), as well as the product groups
Py Pop, = N(Q1,...,Q2—1in Py;) (see (5.140)), whenever 1 < i < t. So we get that T' <
N(Q1,...,Q2—1,Ps,...,Py_9 in G), which, in view of Theorem 5.88 (Part 3), implies that

T(x1,--5x2t-1) = T(X1,26—15 - s X20—1,20—1)-

Hence T'(x1, - - -, X2t—1) fixes x2:—1,2¢:—1. But the last character equals a2 2¢—1 X F2¢—1, (see (5.93)).

Hence T'(x1, ..., x2t—1) fixes Bo;—1. Therefore T'(x1,...,x2t—1) < T(b1,- .., B2t—3, Por—1)-
This completes the proof of the inductive argument, and thus that of Lemma 6.5. ]

Theorem 6.6. There exists a ©'-Hall subgroup Q of G’ such that, for everyi=1,...,1, we have

Q(Xl; . 7X2i—1) S Hallﬂ/(G'(xh R 7X2i—1)) and (67&)
Qx1,- -, x2i-1) < Q(B1, ..+, f2i-1)- (6.7b)

Furthermore, whenever 1 <i <1 —1 we have
Q(X1,---,X2i—1) normalizes Q2i41. (6.7¢)

Proof. As
G'(x15--ox2-1) <G (X1, x2-3) < - < G'(x1) <G,

it is obvious that we can pick a 7’-Hall subgroup Q of G’ that satisfies (6.7a) for all i = 1,...,1.
We will modify Q, using induction on ¢, so that the rest of the theorem also holds.

If i« = 1, then we obviously have that (6.7b) holds, as x; = (1. Thus it suffices to show that
we can modify Q so that (6.7a) holds for all « = 1,...,1 while (6.7c) holds for i« = 1. According to
Remark 6.1 and (5.148), the group G’ fixes a5 = aa. Hence G'(f1) < G(ag, f1). Therefore, G'(31)
normalizes G3(ag, 41), and thus Q(f51) normalizes G(aq, 31). According to (5.93), the semidirect
product Q3 x P; equals G3(ag, 81). As the n’-group Q(31) normalizes Q3 x P, it has to normalize a
P>-conjugate of Q3. Hence Q(/31)?2 normalizes @3, for some o9 € P». But P; fixes a, (as P, < Pjy)
as well as #1 = x1. It also fixes the characters xo,...,x2i—1 as Po < Go < --- < G9_1. Therefore,
P, < G'(x1,---,X2i—1) whenever 1 < i <. Hence Q(x1,---,X2i-1)"% = Q%2(x1,- .-, X2i—1) and, in
addition, Q72 and Q%2(x1,..., x2i—1) are w'-Hall subgroups of G’ and G’'(x1, . .., x2i—1) respectively
(as Q@ and Q(x1,-..,x2i—1) are, and P, < G'(x1,...,Xx2i—1)). Furthermore Q72(x1) normalizes Q3.
Hence the group Q72 satisfies (6.7a) for every i =1,...,1 as well as (6.7b) and (6.7¢c) for i = 1. So
we can replace Q by Q%2 and assume that (6.7a) holds for every ¢ = 1, ..., while (6.7b) and (6.7c)
hold for i =1

The same type of argument as the one we gave for ¢ = 1 will make the inductive step work.
So, assume that Q has been modified so that it satisfies (6.7a) for all i = 1,...,[, and in addition,
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satisfies the rest of the theorem for all ¢ <¢ — 1, for some t = 2,...,l — 1. We will show that there
is a G'-conjugate of Q that satisfies (6.7a) for all i = 1,...,[ and the rest of Theorem 6.6 whenever
1< <t

According to the inductive hypothesis Q(x1,...,x2t-1) < Q(x1,---5,X2t-3) < -+ < Q(x1)
while, Q(x1,...,Xx2i—1) normalizes the group Q9,41 for all ¢ = 1,...,t — 1. So Q(x1,---,X2t-1)
normalizes the groups Q1,...,Q2—3,Q2—1. Hence Lemma 6.5 implies that Q(x1,...,x2—1) <
Q(f1, ..., Por—3,P2r—1). This, along with the inductive hypothesis, implies that

QX155 x2i-1) < Q(Brs -+, P2i1), (6.8)

whenever 1 < i <.

The group Q(x1, ..., x2t—1) fixes the characters a3, and normalizes the groups QQ2;—1 and Py; for
alli =1,...,t. Hence Proposition 5.149 implies that Q(x1, ..., x2t—1) also fixes the Qs, ..., Q2i_1-
correspondent ag; € Irr(Py;) of ab; € Irr(Pj;) for all such i¢. This, along with (6.8), implies
that Q(x1, ..., x2—1) < Q(B1,.-.,P2—1,Q9,...,09). Hence Q(x1,..., x2:—1) normalizes the group
Go11(P1y - -+ Por—1, a2, ..., a2), (as Gor1 < G). According to (5.93) and (5.91) the latter group
equals Gory12t = Por X Qai+1. Hence the 7'-group Q(xi,...,x2t—1) normalizes Py X Qai11,
and thus normalizes a Py;-conjugate of (Qo;11. Thus there exists an element ¢ € Py such that
Q(X1,- -, x2t—1)° normalizes Qa¢41. But Py is a subgroup of Gigs41 2¢, where the latter group equals
N(Q1,...,Q2-1,Ps, ..., Py in Gorr1(x1,--.,x2t)) (see (5.91)). Therefore, Py fixes the characters
X1,---, X2t Furthermore, Po; < Goryr1 < Gopgo < --+ < G917 which implies that Py, also fixes
the characters xoi11,X2t42;---,X21—1- Hence Q%(x1,...,x2i-1) = Q(X1,---,X2i—1)7, whenever
1 <i <1 As Py also fixes al;, we get that Poy < G'(x1,...,x2i-1). So, @7 and Q7 (x1,- -, X2i—1)
are m'-Hall subgroups of G’ and G'(x1, ..., x2i—1) respectively, (as Q and Q(x1, ..., x2i—1) are) for
all =1,...,1. Hence (6.7a) holds for the group Q% and alli =1,...,1.

Furthermore, Py fixes the characters (31, ..., B2—1, by (5.17¢c). So for the o-conjugate Q7 of Q
we get that Q7(01,...,02i-1) = Q(B1,...,F2-1)° whenever i = 1,...,t. Hence in view of (6.8) we
get

Q7(X1, > x2i-1) = QX15---» x20-1)7 < Q(B1,..., P2i-1) = Q7(B1,- .-, B2i-1),

whenever 1 <4 < ¢. Thus (6.7b) holds for Q% and all i = 1,...,¢t. As far as (6.7c) is concerned,
we note that o was picked so that Q%(x1,...,Xx2t—1) normalizes QQ;+1. Also for every i with
1 < i < t, the inductive hypothesis, along with the fact that P, normalizes Q2;+1, implies that
Q7(X1y--+5X2i-1) = Q(X1,---,X2i—1)7 normalizes Q2;+1. Hence Q7 also satisfies (6.7¢) for all
i =1,...,t. This completes the inductive proof. So there exists a n’-Hall subgroup Q of G’ that
satisfies (6.7a) for i = 1,...,l, as well as (6.7b) and (6.7c) fori =1,...,1 — 1.

To complete the proof of the theorem it suffices to show that Q satisfies (6.7b) for i = [.
The group Q we have picked so far satisfies that extra condition. Indeed, Q(x1,-..,x2-3) <
Q(f1,...,P2-3), by (6.7b) for i =1 —1. So Q(x1,.-.,Xx2—3) normalizes the groups Q1,...,Q2_3.
It also normalizes Q9;—1 by (6.7¢) for ¢ = | — 1. Hence Lemma 6.5 with T' = Q(x1,..., X2-3),
implies that Q(x1,...,x2-1) < Q(01,...,02-1). This completes the proof of the theorem. O

The following fact was proved in the ¢ = 1 case of Theorem 6.6. We state it here separately as
we will use it again later.

Remark 6.9. The group G'(31) normalizes G3(az, 31).

As an easy consequence of Proposition 6.2 and Theorem 6.6 we get
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Corollary 6.10. For everyi=1,...,k we have

Ha‘uﬂ’(G/(ﬂl) ey BQi—l)) g Hauﬂ"(G/(le cee )XQi)) g Hauﬂ"(G,(Xl) sy X2i—1))7

while

Hall.(G'(61, - - -, Bau-1)) € Hallo (G'(x1, - - -5 X21-1))-
Proof. We only need to note that in view of (6.3b) we have

G'(x1,---,x2i-1) > G'(x1,- -, x21) = G'(B1, ..., B2iz1).

The rest follows from (6.7a), (6.7b) and (6.3c). O

A similar statement to that of Corollary 6.10 holds for G'(f2i—1,2x) and G'(f1, ..., B2i—1). To
prove it we start with the following general lemma.

Lemma 6.11. Assume that P is a w-subgroup of a finite group G, and that S1,S and T are 7'-
subgroups of G such that T normalizes P, that S normalizes the semidirect product T X P, and that
S1 is a subgroup of S normalizing T. Then there exists t € P so that the following three conditions
are satisfied:

(i) St normalizes T,
(ii) 81 < St and
(11i) t centralizes Sy.

Proof. As the 7’-group S normalizes the product 7 x P, it will normalize one of the 7'-Hall
subgroups of that product. Therefore there exists s € P such that S° normalizes 7. Thus S°7

forms a 7’-Hall subgroup of S*7 x P. As S; normalizes 7, the product §;7 is a 7’-subgroup of
ST x P =< 8,7,P >. So there is some x € P such that the 7’-Hall subgroup (S*7)* of S*7 x P,
contains S17. Hence 7 < $17 < 8%T%. As T is a w’-Hall subgroup of 7 x P, it follows that

T =8"T"N(T x P).
Now, the group 7% clearly normalizes the intersection S**7% N (7 x P) = 7. Hence
T ="T.
Even more, §1 < $17 < S%FT*. So
S <S¥*FT NS xP)=8%*.

Hence if we take t = sz, then (i) and (ii) are both satisfied. To see that ¢ also centralizes S;
we observe that S and its subgroup S; normalize the unique w-Hall subgroup P of 7 x P. So
the commutator [t,S1] is contained in P. Furthermore, if a € S; then at € 8§, as S < S. So
ala' € §;S' = S'. But ala’ = [a,t] € P. Hence [a,t] € S*NP = 1, and the lemma follows. [

We can now prove
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Theorem 6.12. There exists a ©'-Hall subgroup Q of G' such that for everyi=1,...,k we have

T< Q(ﬁQi_l’Qk) S Haﬂﬂ/(G/(ﬁQi_l’gk)) (6.13&)

Q(Bai—1.9k) < G (B, P2iz1), (6.13b)

where T 1= Q12 = Qar—12t 1 case of an even m, or T = Qg_1 in case of an odd m.
Furthermore, for everyi=1,...,1 —1 we have

Q(Pai—1,2k) normalizes Q2i41. (6.13c)

Proof. Note that the group Q in this theorem need not be the same as the group @ in Theorem
6.6.

Assume that m is even. Then the group Qor—12k fixes agy as Qogp—12r = C(Por in Qox—1).
Thus Proposition 5.149 implies that QQo;—1 2% fixes a3,. Hence in the case of an even m we have
T = Qop—12k < G'. As we clearly have that Qop_12k fixes (or_12k, we conclude that T =
Qak—1.2k < G'(Bak—1,2k). If m is odd, then Corollary 5.150 implies that Qg _; fixes o, as it fixes
asgr (see (5.17e)). Hence, in the case of an odd m, we have that T = Q91 < G'. Furthermore,
Proposition 5.55 implies that T' = (Q9;—1 fixes Ba;—1,2k. Therefore, in the case of an odd m, and thus
in every case, we get that 7' < G'(f2x—1,2k). In view of Table 5.20a we also get that, independent
of the type of T', we have

Qror < Q328 <+ < Qop—12k < T. (6.14)

Furthermore, G'(32i—1,2x) normalizes Q2;_1 2k, and thus normalizes Qo,y—1 2t = Q2i—1,2k N G2r—1
for all » = 1,...,7 and all ¢ = 1,...,k (see Remark 5.40). Hence G'((2i_12x) fixes the unique
character fa,_1 % of Qor—125 that lies under fa;_1 2x (see Proposition 5.55). Hence G'(82i—12k) <
G’ (B2r—1,2k) whenever 1 < < < k. This implies that we have the following series of subgroups

T < G (Bok—1,2k) < G (Pok—son) < < G(Brar) <G, (6.15)

that is independent of the type of T. So it is clear that there exists a 7’-Hall subgroup Q of G’
that satisfies (6.13a) for all i = 1,...,k. As in the proof of Theorem 6.6, we will use induction on
1 to modify Q so that the rest of the theorem also holds.

For i = 1 we note that G’(f1 2,) normalizes the groups P, and Q. Hence it fixes the Pj,-
Glauberman correspondent 1 of 3 2x. Thus G'(812x) < G'(61). In addition, we have seen (see
Remark 6.9), that G'(31) normalizes G3(az, 31). So Q(01,2x) normalizes Gs(a, £1) = Q3x P2. Even
more, T is a subgroup of Q(/31 2;) and normalizes @3, as Q2;—1 and Q91 do. Hence Lemma 6.11,
with S = Q(B12k), S1 =T, 7T = Q3 and P = P, implies that there exists some o € C(T in P»)
such that Q(8; 2x)” normalizes Q3. As 0 € C(T in P»), we get that o also centralizes Q2,1 25 for
all i =1,...,k (see (6.14)). Hence o fixes the characters f;_; 21 € Irr(Q2i—12x) for all such i.. As
ceP <G = G(Oézk), we get that o € G/(ﬁ2i—1,2k)- This implies that Q(ﬁgi_lgk)a = Qa(ﬂgi_lzk),
and that Q(B2—12x)° € Hall/(G'(B2i—1,2x)) for all i = 1,..., k. Thus we can now work with Q7
in the place of Q@ and conclude that this 7’-Hall subgroup of G’ not only satisfies (6.13a) for every
i=1,...,k, but also the rest of the theorem for : = 1.

We will work similarly for the inductive step. So assume that Q has been modified so that it
satisfies (6.13a) for all i = 1,..., k and, in addition, satisfies the rest of the theorem for all i <t¢—1
and some ¢t = 1,...,1 — 1. We will show that there is a G'(f2x_1,2x)-conjugate of Q that satisfies
(6.13a) for i = 1,...,k and the rest of Theorem 6.12 whenever 1 < i < ¢. The argument here is
very similar to the one we gave for the proof of Theorem 6.6. The only important difference is
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that P is not in general a subgroup of G’(f2;—1,2x). So we can’t just conjugate Q by an arbitary
element of Py, or else (6.13a) need not hold for that conjugate. But Lemma 6.11 will solve this
difficulty as o can be picked from C(T" in Py).
In view of (6.15) and the inductive hypothesis (as Q satisfies (6.13a) for all i = 1,...,k) we
have that
T < Q(far—12k) < Q(Por—32k) < -+ < Q(Br,2)-

Therefore, Q21 25) normalizes Q2,41 for alli =1,...,t—1, as Q(f2i—1,2x) does. In view of Re-
mark 6.1, the group Q fixes the characters a3, o}, . . ., a3, and normalizes the groups Py, Pf, ..., Py;.
Hence Q(f2:—1,2¢) normalizes the groups P»; (see (5.141)) as well as the product groups Pa; - - - Pay,
(see (5.140)) whenever 1 <7 <.

Since Q(fai—1,2k) fixes the characters fa;_1 o and normalizes the groups Q2;—1 and Ps; - - - Pay,
we conclude that it also fixes the Py;--- Pop-Glauberman correspondent (33,1 € Irr(Q2;—1) of
ﬁ2171,2k € II‘I"(QQl',l’Qk), whenever 1 < 1 <t. Hence Q(ﬁ?tfl,Zk) < G/(,Bl, ce ,ﬁgt_l). Therefore, in
view of (6.3b), we get that

Q(Bot—1,2k) < G'(Bry- .., Par—1) < G'(X15-- -5 X2t)- (6.16)

This, along with the inductive hypothesis and (6.3b), implies that

Q(Bai—1,2t) < G'(Brs ..., B2ic1) < G'(xa,-- -, x24)s (6.17)

foralli=1,...,t.

If we collect all the groups that Q(f2:—1 2,) normalizes, and the characters it fixes, we have

Q(Bat—1,2k) S N(Po,..., Por,Q1,...,Qo—1 in G(x1,...,X2t))-

Hence Q(f2—1,25) normalizes the group N(Pa,..., P, Q1,...,Q2—1 in Gosr1(X1,---,x2¢)). In
view of (5.91) and (5.93), the latter group is Gaty1,2t = Par X Q241. Furthermore, T' normal-
izes Qa2r+1. (Note here that, at the last case where t = [ — 1, the last 7’-group is Q2141 = Qo1—1. We
still have that T normalizes Q9;11 as, if m is even, then Q211 = Qo;_1 = Qo1 is normalized by
Qak—1,2k = T, while if m is odd, then clearly T' = (QQ9;—; normalizes Q21 = Q2—1.) The inductive
hypothesis implies that T < Q(fai—1,2x). Also Q(B2¢—12k) normalizes Po; % Q24+1, while its sub-
group 7" normalizes Q2¢+1. Therefore Lemma 6.11 applies and provides an element s € C(T" in Py;)
such that Q(f2—12,)° normalizes Qa11. As s € C(T in Py), the inclusions (6.14) imply that s
centralizes Qg;—1,9k for all i =1,..., k. Hence s € G(ad,, f2i—1,2k). Thus

T < Q(fai-12k)° = Q°(B2i—1,2k) and
Q(B2i—1,2¢)° € Hall (G’ (Bai—1,2k)),

whenever 1 < i < k. So Q° satisfies (6.13a) for all such 1.

Also Q°(B2¢—1,2) normalizes Qa¢41, while for all i = 1,...,¢—1 the group P; normalizes Q2;1.
So Q(f2i—1,2¢)° normalizes Qo411 as Q(fai—1,2) does and s € Py;. Hence Q° satisfies (6.13c) for all
i=1,...,t.

Furthermore, as Py; fixes the characters 31,..., 821, we get
Q*(Bri-1.2k) = Q(B2i—1,2k)° < Q(B1, -+, B2i-1)’ = by (6.17)
Q*(B1, - -+, Bai-1), as s € Py,
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whenever 1 < ¢ < ¢t. Thus QF also satisfies (6.13b) for all such ¢. This completes the proof of
the inductive step, and thus provides a Q € Hall(G") satisfying both (6.13a) and (6.13b), for all
i=1,...,k, along with (6.13c), for all i =1,...,1 — 1.

To complete the proof of the theorem is enough to check that (6.13b) also holds for i = k (as
k <1< k+1). The argument is exactly the same one we used at the inductive step to prove (6.16).
So we omit it. O

An obvious consequence of Proposition 6.2 and Theorem 6.12 is
Corollary 6.18. Foralli=1,...,k we have
Hall, (G'(B1, . . ., B2i—1)) C Hall/ (G'(B2i—1.9k))-
We can now introduce the group @

Theorem 6.19. There exists a ©’-subgroup @ of G' = G(ad,) such that

Q € Hall,(G'), (6.20a)

Q(B2i-1.2%) € Hall (G'(Bai-1,2¢)) N Hally (G’ (1, - - -, X2i-1))0
Hallﬂ/(G/(Xl, e XQZ')) N Hallﬂ/(G/(ﬁl, e ,ﬁgi_l)), (620b)

~

@(527;—1,%) = Q(x1s- - x2i-1) = Q(x15 -, X2) = Q(B1, - - ., Bai1) and (6.20¢)

~

Q(Xh"'vX?i—l) S Q(OJQ,...,OCQZ‘), (620(1)

foralli=1,... k. In addition, for all i with 1 <i <[ —1 we get

~

Q(P2i—1,2k) normalizes Q2it1. (6.21)

Proof. Let Q be any 7'-group satisfying the conditions in Theorem 6.12. We will show that @ =0
is the desired group.

Clearly Q satisfies (6.20a) and (6.21), for all i = 1,...,1 — 1, as Q is a x'-Hall subgroup of G’
that satisfies (6.13c). Furthermore, (6.13b) and (6.3a) imply that

@(52171,%) <QBr,. .., Pai1) < @(52171,%)-

So @(ﬁgi,mk) = @(51,...,ﬁ2¢_1) whenever 1 < ¢ < k. This, along with (6.13a) and Corollary
6.18, implies that

~ ~

Q(Bai—12k) = Q(B1, - - -, P2i—1) € Hallw (G'(Bai—1,2¢)) N Hally (G (B, - . ., Bai—1))

for all i = 1,..., k. Which, in view of Corollary 6.10, implies that the group @ satisfies (6.20b).
According to (6.3b) we also get that

~ o~

Q(B2i—1.2k) = Q(B1, ..., P2i—1) < Qx1y -5 x21) < Q(X1s -+ X2i1)s

as @ is a subgroup of G’. Since @(ﬁ%,l’gk) is a 7'-Hall subgroup of both G'(x1,...,x2;) and
G'(x1,---,Xx2i—1) we have equality everywhere, and (6.20c) follows.

It remains to show that (6.20d) also holds for CAQ It follows from (6.20c) that @(ﬂgi,l,%)
normalizes the groups @1, ...,Q2—1 and fixes the characters o3, ..., a3, (by Remark 6.1), for all
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t=1,...,k. Soit fixes the @3, ..., QJ2j_1-correspondent cy; of a’Q‘j, forall j =1,...,:. This implies
(6.20d). Thus Theorem 6.19 holds. O

Corollary 6.22. Assume @ satisfies the conditions in Theorem 6.19, and that

t € G'(Bar—1,26) N G' (X1, .-+, X2k) N G'(B1, - - -, Bag—1). (6.23a)

In addition, assume that
t e N(QQk.ﬁrl in G), (623b)

ifm=2l—1=2k+1 is odd. Then @t also satisfies the conditions in Theorem 6.19.

Proof. Obviously Q' is a 7/-Hall subgroup of G/, as t € G'. The fact that B2i—1,2k is the unique
character of Qg;_1 9 that lies under fay_1 o, implies that ¢ € G'(Bag—_12k) fixes [o;_1 2k, for all
i =1,...,k. Hence Q\t(ﬁgi_mk) = @(ﬁgi_mk)t, for all such 7. Furthermore, the definition of ¢
implies that

t € G'(Baic126) NG (X1, -y x20-1) NG (X1, -+, x20) NG (B, - .., Poiz1),

foralli=1,...,k As @(ﬂgi,l,gk) satisfies (6.20b), we conclude that @t(ﬁ%,l,gk) = @(,821',1,2]4)26
also satisfies (6.20b).

Even more, as t fixes the various characters (2;_1 2k, Xj, 32i—1, for all i« = 1,...,k and j =
1,...,2k, while (6.20c) holds for Q, we get

~

Q' (Bai1.2) = Q(Bai—198)' = Qlx1, - > x2i-1)t = Q4 (X1, - -+ X2i-1),

~

Q' (Bai—1.2t) = Q(Bai—1.26)' = Qx1s -, x20)' = Q' (x1, -+ x20)s
Q' (Boi1.2%) = Q(Bai121)' = Q(B1, - -, Boi1)! = Q4B - - -, Boi)-

Thus Q' satisfies (6.20¢c).

Also t fixes ad;, for all i = 1,...,k, as t € G' = G(a};,). Furthermore it normalizes the groups
Qs,...,Q2_1, as it fixes [1,..., P21, for all such 7. Hence ¢t fixes the Qs, ..., Q2;_1-correspondent
aw; of a5, Hence

Q' (X1, > x2i-1) = Q(x1, -+ x2i-1)" < Qaa, ..., a9) = Q' (az, ..., a).

Thus (6.20d) holds for the Q.
By hypothesis ¢t normalizes Qaop 11 = le,lf,\ in the case of an odd m = 2] —1 Thus ¢ normalizes
Q2i+1, whenever 1 < i < k. Hence (6.21), for @, implies that Q*(82;—1,2t) = Q(B2i—1,2¢)" normalizes
biv1 = Qaip1, for all i = 1,...,1 — 1. So Q" satisfies (6.21). This completes the proof of the
corollary. O

From now on, we write @ for a 7’-group that satisfies all the conditions of Theorem 6.19, for a
fixed system character tower—triangular set. An easy observation that follows from Theorem 6.19
is

Corollary 6.24. Assume that the normal series 1 = Go Q-+ I Gopy1 I G for G is fized (so
m = 2k + 1 is odd). Assume also that a character tower {x; € Trr(G;)}2*5Y for that series and its
corresponding triangular set

{ P2, Qait1]ai, Baiv1} g (6.25a)
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are fired. Then the reduced set
{Pai, Q2i—1, Py = 1|a;, Bi—1, 00 = 1}, (6.25b)

s a representative of the unique conjugacy class of triangular sets that corresponds to the character
tower {x; € Irr(G;) ?io of the normal series 1 = Gog<---<Gop JIG of G. Furthermore, if the group
@\ is picked so as to satisfy the conditions in Theorem 6.19 for the fixed character tower {Xi}?igl
and its associate triangular set, then the same group satisfies the conditions in Theorem 6.19 for

the smaller character tower {x;}?*, and the reduced triangular set (6.25b).

Proof. The first part of the corollary follows immediately from Remark 5.125. As far as the group @
is concerned, first observe that the triangular sets in (6.25) share the group Py, and its irreducible
character of,. Thus they also share the group G’ = G(«3;). Hence if Q was picked to satisfy
the conditions in Theorem 6.19 for the set (6.25a), then Q satisfies both (6.20) and (6.21) for all
i =1,...,k. But the conditions a g-group should satisfy to be the @—group for the reduced set
(6.25b), are (6.20) for i = 1,...,k and (6.21) for i =1,...,k — 1 (since in the reduced case [ = k).
Clearly Q satisfies those. Hence Corollary 6.24 follows. O

-~

The following proposition describes the relation between @(ﬂl, e Paim1) = Q(Pai—1,2k) and
Q2i+1,2k- Note that Qg1 2k fixes agy, normalizes Q1, ..., Q21 (see (5.17¢e)) and is a subgroup of
Q2j+1,2k < Q2541 whenever 1 < j < k — 1. Hence Proposition 5.149 implies

Remark 6.26.
Q12K < Qait12k < Qair1(ady,) < G’

whenever 1 <7 <k — 1.
We can now prove

Proposition 6.27. For alli=1,...,k —1 we have

~ ~

Q(B2i—1,2k) N G2ix1 = Q(B1, ..., B2i—1) N Gaip1 =

~ ~

Q(x1,- -+ x2i-1) N Gait1 = Q(X1,-- -, X2:) N G2ip1 = Q2i41,2k-

Proof. Since Ggi4+1 is a normal subgroup of G, it follows from (6.20c) and (6.20b) that

-~ ~

Q(B2i—1,2k) N Goir1 = Q(X1,-- -, x2i) N Goi41 € Hall (Goipr (agy, X1, - - -5 X2i)),

whenever i = 1,...,k — 1. In view of (6.20c) and (6.21) the group @\(ﬁgi_mk) = @(ﬁl, ooy P2im1)
normalizes the groups Q1,Q@s,...,Q2+1. Furthermore, as (6.20d) implies, it also normalizes the
groups Po, Py, ..., P>;. Hence

~

Q(le cee 7X2i) N G2i+1 S N(PQ) ey P2i) Q?n DRI Q2i+l in G2i+1(a§k)X1v cee 7X22'))‘

Therefore

~

Q(X1s---,Xx2) NGoiq1 € Hally (N (P, ..., Py, Q3, .. ., Q2i—1 in Gojp1(ady, X1+ -5 X2:)))-
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According to (5.91) and (5.93) we have

N(Po, ..., P, Q3,...,Q-1in Gaip1(05, X1, -+, X2i)) =
N(Pay ..., P2, Q3,...,Q2 -1 1n Gait1(x1,- ., x2i))(05)
= Goiy1(az, ..., a0, B1, ..., Poic1)(ady) = (Poi ¥ Q2it1)(ady,).

In view of (5.33) and Remark 6.26 we get
Q2it1(asy,) < N(Pyj, in Qoi11) = C(Paiga ... Pop in Qoiq1) = Q2iy1.2k < Qait1(asy).

Also, Pyi(aj)) = Pai, as Py; < Py and o € Irr(P;,). Hence

~

QX1 -+, x2i) NGaiqp1 € Hall (Po; X Q2;41,2k)-

Because @(Xl, ..., X2i) normalizes both Q2,41 and Pj, it also normalizes N (Fy; in Q2i4+1). The
latter equals QQ2;4121 and is a n'-Hall subgroup of Py; x Q2;+1,25. From this and the preceding
statement we conclude that

~ ~

Q(x1,-- - x2i-1) N Gair1 = Q(x1, - - -, X20) N G2ip1 = Q2i41,2k-

This and (6.20c) imply the proposition. O

Definition 6.28. For every i = 1,...,[ we define
Qoi—1 = QN Gai_1.

Let G, denote the group G, = Gs(c3,,) for every s =0,...,m. So G} IG5, <--- 1G], is a
normal series of G’, as G is a normal subgroup of G. Thus Theorem 6.19 implies that
Q2i—1 € Hall/ (Gh;_,), (6.29a)
Q2i—1(B2j-1,2) € Hallo (G (B2j—1,26))N
Hallﬂ/(G’Qi_l(Xl, Coox2i)) N Hallﬂ/(G’%_l(Xl, .. x2j—1)) N Hall lzi_1(51, oy P25-1)), (6.29b)
and  Qoi—1(X1s- -, X2j-1) = Q2im1(X1s -+ -, X25) = Qoi—1(B1, .-, B2j—1) = Qai—1(Baj—1.20),

(6.29¢)
whenever 1 <1,j < k. Also, foralli=1,...,kand all j =1,...,l — 1 we have
Q2i—1(B2;-1,2) normalizes Qo 1. (6.30)
Furthermore, for all i = 1,...,k — 1, Proposition 6.27 implies that
@2i+1(52¢-1,2k) = Q2i+1,2k- (6.31)
As @27;_1()(1, cooX2j41) < @22‘_1()(1, ..., X2j—1), equation (6.29c) implies that
@2i71(62j+1,2k:) < @2#1(523'—1,219), (6.32)
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whenever 1 <7 <k and 1 < j < k. Furthermore, for alli=1,...,k — 1 we have that

Qoi1(Boi—1.2) = Q(Bai_19%) N Gaiy

= Q(B2i—1,2k) N G2i41 N Gai1
= Q2it1,2k N G2i—1 by Proposition 6.27

= Q2i—12k-

In addition, (6.32) for i = k and j = k — 1 implies that @gk,l(ﬂQk,Lgk) < @gk,l(ﬁ%,g,gk). The
latter group equals Qax—1 2k, according to (6.31) for i = k — 1. Hence Q\Qk_l(,ﬁgk_LQk) < Qok—1,2k-
We obviously have that Qor—_12r is a subgroup of G5, (f2k—1), (as Qag—12k fixes o). But
@Qk_l(ﬁQk_l,zk) is a n’-Hall subgroup of G | (fak—1) (see (6.29) for i« = j = k). Therefore,

Qo—1(Bok—12k) = Qo126 So we conclude that
Qoi—1(Pai—1,2) = Q2i—1,2k, (6.33)

for all i = 1,..., k. We remark here that the the group @1 is an old familiar, as @1 € Hall» (GY),
while G} = Gi(ad;) = Qi(ad,) = Q1,2x. Hence

Q1= Qior = G, (6.34)
We also have

Proposition 6.35.

Q2i—1 € Hall (N(Py, in Gai_1(ad;_5))) = Hall (N (P}, in Gai(ad;_5))) and
Qai—1(P2i—1.2%) € Hall (N (Pjy in Goi—1(ab;_o, Bai1.9%))) = Hally (N (Pyy in Goi(@b;_o, Boi19%)))
foralli=1,--- k.

Proof. Let H be any subgroup of N (P, in Ga;—1(a3;,_,)). Then H normalizes Py and thus
[Py, H] < Py, Also, [P, H] < [Py, Goi—1] < Goi—1, as Py, normalizes Gg;—1 for all i =1,--- k.
This, along with the fact that Ga;—1/Ga;—2 is a w'-group, implies that

[Pop, H] < Py, N Gaiy = Py, N Gaip = Py,

W conclude that H centralizes the factor group Py, /Ps;_,. If, in addition, H is a n'-subgroup,
then it fixes all the irreducible characters of Py, lying above o3;_,, as it fixes a3, _, and centralizes
P,/ Py;_5 (see Problem 13.13 in [12]). Thus H fixes o3, , and so is contained in G4, _; = Ga;—1(ad;).
Furthermore,

GY; 1 = Gai1(a3y,) = Goi—1(as, ..., asy) < N(Pyy in Gai—1(a;_5)).

Applying the above argument to any H € Hall/(N(Py, in Go;—1(0%;_5))), we see that H <
i1 < N(Pyp. in Gai—1(0%,;_5)). So we get that

Hall,rz(N(P;k in Ggi,l(agi_Q))) = Hallﬂ/(G’%_l).
Similarly, applying the same arguments to any H € Hall/ (N (Py, in Gai—1(03;_5))(B2i—12k)), We
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see that H < GY,;_1(Bai—1,2k) < N(Py, in Goi—1(%;_5))(B2i—1,2¢)- So we have that
Hally/ (N (Pyy, in Goi—1(ag;—2))(Boi-1,2k)) = Hauﬂ’(G/Qi—l(ﬁ%—l,Zk))’

This, along with (6.29a) and (6.29b), implies that @gi_l and @21-_1(@1_17%) are m'-Hall subgroups of
N(Py,. in Goi—1(a3;_5)) and N(Py, in Ga;—1(0%;_o, F2i—12k)), respectively. The rest of the propo-
sition is obvious, as Gg;/Ga;—1 is a m-group. |

Lemma 6.36. Let T be any subgroup of N(Py, in G). Then T normalizes Psy; for alli =0,1,... k.
Furthermore,

N(Q1,Q3,...,Quu—1in TPy;) = N(Q1,Q3,...,Q2—1in TPy;_5)PoPoii... Py, (6.37a)

whenever 1 <t <i <k, and

N(Q1,Q3,...,Qa—1in TPy_5) = N(Qo—1 in N(Q1,Q3,...,Q2u—3in TPy _,)Py_2), (6.37b)

forallt=2,3,... k.

Proof. We first observe that, as T normalizes both P, and Ga;, it also normalizes Py; = P, N G,
forall t =0,1,...,k. Thus T'P;; is a group.

Let i = 1,...,k be fixed. We will first prove (6.37a) using induction on ¢. In the case that
t = 1, we clearly have that N(Q; in TPy;) = TP}, = N(Q; in T)Pj;, as 1 is a normal subgroup
of G. Thus (6.37a) holds (for all i = 1,...,k) when ¢ = 1.

Now assume that (6.37a) holds for all values of ¢ with t < s (for our fixed 7), for some s =
2,...,i. We will prove that it also holds for ¢t = s. By the inductive hypothesis for t = s —
1 we have N(Q1,...,Q2s—3 in TP}) = N(Q1,...,Q2—3 in TPy, ,)Pos_2Ps, ... P;. Furthermore,
N(Ql, ey Qos-3,Q95_1 In TPQ*Z) = N(Q2371 in N(Ql, ey Qog—3 in TP2*Z)) This, along with the
inductive hypothesis, implies that

N(Q1,...,Q2-3,Qas—1 in TPy;) =
N(Qgsfl in N(Ql, ceey Qgsfg in TP;S_ZL)PQS,QPQS e sz) (638)
According to (5.10b) the groups Pas, Posyo, ..., P normalize QQos—1. Furthermore, Pss_o nor-

malizes the groups Q1,...,Q2s—3. Therefore we get that N(Q1,...,Q2—3in TPy, ,)Pas_2 =
N(Q1,...,Q2s—3in TP;, ,Pas o). Hence, in view of (6.38), we get

N(Q1,...,Q25-3,Q2s—1 in TP3;) = N(Qa2s—1 in N(Q1,...,Q2s—3 in TPy, ,)Pas_oPss...Py;) =
N(Q2s—1in N(Q1,...,Qas—3 In TPy,_;)Pos_2)Pag... Py =
N(Q1,...,Q25-3,Q2s—1 In TPy, _5)Pos ... Pay.

This completes the proof for the inductive step, and therefore for (6.37a).

For the second equation of the lemma note that, according to (5.10b), the group Py;—2 normalizes
the 7’-groups Q1,Qs3, ..., Q2 _3 whenever t = 2, ..., k. Therefore we have that

N(Ql, e ,tafg n TPQ*t_2) = N(Ql, ceey Qgtfg in TP;t_Zl)PQt,Q.
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So

N(Q1,...,Q2-3,Q2—1 in TPy _,)
= N(Q2-1in N(Q1,...,Q23In TP 5)) = N(Qa—1 in N(Q1,...,Q2 3 in TP 4)Psy 2).

This completes the proof of (6.37b). Hence Lemma 6.36 is proved. O

If the T' that appears in Lemma 6.36 fixes (32;_1 2, for some ¢ = 1,..., k, then we can prove

Lemma 6.39. If T is any subgroup of N(Py, in G(B2i—12k)), for some i = 1,....k, then T
normalizes Py; o, and N(Q1,Q3,...,Qu—1 in T'P5;_,) fizes B1,03,...,0o—1, forallt =1,... 4.

Proof. We have already seen in Lemma 6.36, that T" normalizes Py;_,. So T'Py;_, is a group.
To prove the rest of the lemma, i.e., that

N(Q1,Q3,...,Qu—1inTPy;_5) <G(B1,. .., 2-1), (6.40)

for all t =1,...,4, we will use induction on ¢.

For ¢ = 1 it is enough to show that TP}, , = N(Q; in T'P};_,) fixes ;. According to Remark
5.55, the irreducible character (32;_1 2% is the only character of QQ2;_1 2% lying under 39;_1 o, for all
j = 1,...,i. Therefore, T fixes B2;_12k, as it fixes (32;_1 2x and normalizes Q2;_12r = Q2i—1,2c N
Gaj—1. Hence, T fixes (3 a1, and normalizes (1 as well as Py;.. So it fixes the unique Py -Glauberman
correspondent (1 € Irr(Q1) of By 2;. Furthermore, P, fixes (1, according to (5.17c) and the
definition (5.131) of Pj;_,. Hence, T'Py; , fixes 31, and (6.40) is proved for ¢t = 1.

We assume that (6.40) holds for t = 1,...,s — 1, and some s = 2,...,i. We will prove it
also holds for t = s. We need to show that N(Q1,Qs,...,Q2s—1 in TPy, ,) fixes the characters
081,03, - .., 02s—1. By induction for ¢t = s — 1 we have that

N(Q1,Q3,...,Q25—31In TPy;_5) <G(B1,B3,...,2s—3).

AS N(Ql, Qg, Ce ,Qgs_g, Q2s—1 n TP;Z_2) S N(Ql, Qg, ey Q25_3 in TP2*2'—2)? we conclude that
N(Q1,Q3,...,Q2—1 in TPy;_,) fixes (1,03, ...,025—3. Hence it is enough to show it fixes Fas_1.
By (6.37a), we have

N(Q17 Q37 U] QQS—l in TPQ*'L—Z) = N(Q17 Q37 v 7Q28—1 in TP2*3_2>P25 te P2i—27

where, by convention, we assume that, in the case s = i, we have Pss--- Pog_o = 1. So in that case
the equation holds trivially.

According to (5.17c), the groups Pa, ..., Pa;—9 fix f2s_1. Hence it is enough to show that the
group N(Q1,Qs, ..., Q21 in TPy, ,) fixes Bas_1.

As N(Q1,Qs3,...,Q2—1 in TP, _,) normalizes both Py, and Q1,...,Q2s—1, it normalizes the
product group Pag--- Pop, = N(Q1,...,Q2—1 in Pj) (see (5.140)). Therefore it also normalizes
QQS_LQk = N(PQS <+ Py in QZs—l)‘ Let 0 € N(Ql, Q3,...,Q2—1 in TP2*572). Then 0 = 7 - pos_o
where 7 € T and pas—2 € Py, 5. As7 € T and T < G(Boi—126) < G(B2s—1,26), we have
that 7 normalizes (Q2s—12;. Since o also normalizes (Q2s—12k, s0 does pas_o. Hence pas_o €
N(QQS_LQk in P2*s—2) = C(QQs—l,ka in P2*s—2)' So P2s—2 fixes ﬁ2s—1,2k' As T fixes ﬁ25—1,2kz, we con-
clude that o does as well. Therefore, N(Q1,Q3,...,Q2s—1 in TP5,_,) fixes Ba5_1 2, and normalizes
both Qos_1 and Pss - - - Pyi. Hence it also fixes the Pog - - - Pyp-Glauberman correspondent Bos_1 of
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Bos—1,2k € Irr(Q25—1,2k). So

N(Ql) Q?n DRI QQS—l in TP2*1_2) S GZZ'(/BL .. 51628—1)7
which completes the inductive proof of (6.40) for all ¢ = 1,...,7. Thus Lemma 6.39 holds. O

Lemma 6.41. If P is any m-subgroup of N (P, in G(03;_o, B2i—1.2k)), for somei=1,....k, then
P normalizes P3,, for allt =0,1,..., k. Furthermore,

N(Q1,Q3,...,Qa—1InP-Py o) Poro=N(Q1,Q3,...,Q2-3InP Py ,)Po_o, (6.42)

whenever 2 <t <1.

Proof. As P normalizes Py, it also normalizes Py, = Pj; N Go for allt =0,1,... k.

To prove (6.42) we will first do the case ¢ = 2 of the equation, even though it follows from
the general case, just to show the argument (which is nothing else but a Frattini argument) in its
easiest form. According to Lemma 6.39, for P in the place of T, and for ¢ and i there both equal
to 1, he character ; is fixed by P. Obviously P fixes ap = o3, as 7 > t = 2 and P fixes o5, , .
Therefore it normalizes Gg(aw, £1) = Q3 X P». Hence P(Q3 x P) is a group, with Q3 X P» as a
normal subgroup. Furthermore, all the 7/-Hall subgroups of Q3 x P, are the Py-conjugates of Q3.
So the group PP, permutes these conjugates among themselves with Py < PP, acting transitively.
Therefore, a Frattini type argument implies that

PPQ = N(Qg in PPQ)PQ = N(Ql, Qg in PPQ*)PQ (643)

Clearly N(Q1 in PPJ)P, = PP, as ()1 is normal in G and Py = 1. Thus (6.42) is proved for t = 2.

In the general case, with ¢ > 3, we can apply Lemma 6.39 with the present ¢ — 1 as both
i and t there. We get that N(Q1,Q3,...,Q2—3inP - PJ,_,) fixes (1,...,02—3. It also fixes
ab,...,a% o, as P < G(o3;_,) and Py, do. In view of Proposition 5.149, we conclude that
N(Ql, Qg, ey Qgtfg inP - PQ*t—4) fixes a2, ...,09t—9. Therefore N(Ql, Qg, cee ,tafg inP - P2*t—4)
normalizes Gai—1(01, ..., P21—3, 2, ...,a_2), which equals Q21 X Py_o by (5.91) and (5.93).
Therefore, N(Q1,Q3,...,Qau—3in P - Py _,) (Qar—1 X Py_2) is a group with Qa1 X Py_2 as a
normal subgroup. As all the 7’-Hall subgroups of Qo;_1 X Py;_o are Py;_s-conjugates of Qg9;_1, the
group N(Q1,Q@3,...,Qa—3 in P-Ps,_,)- Py_o permutes these conjugates among themselves, while
its subgroup Ps;_9 acts transitively on them. So a Frattini type argument implies that

N(Q1,Q3,...,Qo-3InP-Py_ ) Poo=
N(Qat—1in N(Q1,Q3,...,Q2—3inP-Py_y) - Po_2)- Poyo.

According to (6.37b) this last group equals N (Q1,Q3, - ,Q2—1 in P-Pj, ) Po_o. This completes
the proof of Lemma 6.42. O

Proposition 6.44. For all i = 1,... k, the group P3;(52i—12k) is the unique normal w-Hall sub-
group of the normalizer N (Pj;, in Go;i(0%,;_o, B2i—1,2k))-

Proof. Let Py; be any m-Hall subgroup of N(Py, in Gai(a;_q, F2i—1,2k)), for some fixed i =1,. .., k.
P3;(B2i—1,2k) is a m-subgroup of N(Pj, in Goi(03;_o, F2i—12k)), as it is contained in Gg; N Py, and
fixes a3, ,. Furthermore, Py;(32;—12¢) is a normal m-subgroup of N (P, in Go;i(0a3;_o, B2i—1,2k)),
and thus is contained in every m-Hall subgroup of the latter group. Hence

Ps;(B2i-1,2k) < Pai. (6.45)
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The group P»; fixes fai—12k € Irr(C (P, ..., Por in Q2;—1)), and is contained in Pj;. So we
get that Py; < P;i(ﬁ%—l,Qk) < Pa;. According to (5.10b) the m-group P»; normalizes the 7/-groups
Q1,-.,Q2i-1. S0 Py < N(Q1,Q3,...,Q2-1in Pg;) < N(Q1,Q3,...,Q2 -1 in Po;-Py;_,). Lemma
6.39, for T'= Po; and t = i, implies that

Py < N(Q1,Q3,...,Q2—11n Poj - Py;_o) < Goi(f1, ..., P2i—1)- (6.46a)

Furthermore, Po; Py;_, fixes a3, , and normalizes Pz*j for all j = 1,--- k. Hence it also fixes
the unique character aj; of Pj; lying under o3, 5, whenever 1 < j < 4 — 1. As the group
N(Q1,Q3,...,Q2—1 in Py - Py, ,) normalizes Q1,Q3,...,Q2—_1, it also normalizes the groups
Py = N(Q;j_1 in P2*j)7 for all j =1,2,...,7i — 1, as well as P;. Hence, according to Proposition
5.149, we get N(Q1,Q3, -, Qai—1 in Po; - P3;_5)(agj) = N(Q1,Q3, -+ , Q2i—1 in Pa; - P3;_5)(a3;).
This implies that

N(Ql, Qg, cee ,ng;l in PQZ' . P2*z’—2) ﬁXQS 042]' (6.46b)
for all j = 1,...,74 — 1. Similarly we can see that for all j and ¢t with 1 < j < ¢t < ¢ we have
N(Q1,Qs, ..., Q-1 in Poi - P _o)(azj) = N(Q1,Q@s, ..., Q-1 in Pa - P3_5)(c;). Hence

N(Q1,Q3,- -+, Qa1 in Po; - P3y_s) fixes gy, (6.47)

whenever 1 < j <t <.
The inclusions (6.46a), along with (6.46b), (5.91) and (5.92), imply that

Py < N(Q1,Q3,...,Q2—11n Poj - Py;_5) < Gai(aa, ... a2i—2,01,...02i-1) = Pai X Q2_1.

Since N(Q1,Q3, ..., Q2i—1 in Poj - P3;_,) is a m-group, and Py; is a m-Hall subgroup of Po; X Q2i—1,
it follows that
Py = N(Q1,Q3,- -+ ,Q2i—1 in Po; - Py;_5). (6.48)

To finish the proof of Proposition 6.44, we only need to show, according to (6.45), that Py; < Pj;.
We actually have the stronger equality

To prove (6.49) we will use Lemma 6.41 with Py; in the place of P. Indeed,

Py = Poi Py 9Py 4+ Py

= N(Q1,Q3,...,Q2i—1in Py - P3;_o)Paj 2Py P (by (6.48) )
N(Q1,Qs,...,Q2—3in Po;- Po;_y)Poi_oPoi_yg-+ Py (by (6.42) for t = i)
N(Q1,Q3,...,Q2i—3 in Py - Po;_4)Poj_4Poj_¢--- PaPai_3
=N(Q1,Q3,...,Q2—51n Poj - Py;_)Poi_¢Pai—g- - PoaPoj_oPs_4 (by (6.42) for t =i —1)
== N(Q1,Q3,Q5 in Py - P{)PyPoPo; 2P 4--- BRPs

= N(Ql, Qg in PQi . PQ*)P4P2P22‘,QP22‘,4 e P8P6 (by (642) for t = 3)
= N(Q1,Q3 in Po; - Py )PoPoi_oPoi_y--- PRPsPy
= PoiPaPoi—2Poi—4--- PsPy (by (6.42) for t = 2)
= 732@'P2*z‘—2-
Hence (6.49) holds, and Proposition 6.44 is proved. O
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We finish this section with a complete characterization of N(Py, in Ga;(ad;_o, B2i—1.2k))-
Theorem 6.50. For everyi=1,...,k we have
N(P3;, in Goj(as;_o, B2i—1,2k)) = Pai(B2i—1,2k) X Q2i—1(B2i—1,2k) = Pa;(B2i—1,26) X Q2i—1,2k-

Proof. This follows easily from Proposition 6.35, Proposition 6.44 and equation (6.33). O

6.2 The irreducible characters Bgi_l of @%_1.

We are now able to define irreducible characters Bgi,l of @gi,l, foralli=1,---,k, closely related
to the f2;—1 € Irr(Q2i—1). In fact, we will prove

Proposition 6.51. For everyi =1,...,k we write 327;_1 for the character Bgzjﬁk of @gi_l induced
by Boi_1.2k € Irr(Qai_19%). Then Boi—y lies in Trr(Qai—1|Bai1.01), while B1 = By 2.

Proof. Let i = 1,...,k be fixed. For any subgroup H of G containing ()2;_1 2%, we write ﬁQILl ok
for the induced character (ﬂgFl,Qk)H of H. We will first prove that, for all j = 1,...,4, we have

32:712(,52"71’%) € Trr(Qoi—1(Boj—1,2k) | Boim1,28, Boi—s.2ks - - - » B1,2k)- (6.52)
For the proof of (6.52) we will use induction on i — 5 =0,...,7 — 1.

We treat the case where ¢ = 1 separately. Let ¢ = j = 1. Then, according to (6.34), we have
that Q1 = Q1,2¢. Therefore

B = Brow = B, (6.53)
is an irreducible character of @1 = Q1,2k- So equation (6.52), as well as Proposition 6.51, holds

trivially when i = j = 1.
For any ¢ > 1 the equalities (6.31) and (6.33), imply that

Qoi—12k = @21’—1(521'71,216) = @%—1(521'73,21@)- (6.54)

This, along with the inclusion in (6.32), implies that we can form a series

Qror < Q32r < - < Qoi—32k < Qoi—12k = @2171(522‘—1,%) =
Q2i1(Bai—sk) < Q2i1(Bai_son) < --- < @21;1(51,%) < Qo1 (6.55)

of subgroups of @gi,l. Even more, (6.30), along with the fact that @Qi,l < G’ normalizes Py,
implies that R
Q2i—1(B2j-3,2¢) normalizes Q2; 121 = N(Py, in Q25-1), (6.56)

for any j = 2,...,1. R R
Ifi—j =0,1ie.,i=j, then Q-1(82j—12k) = Q2i—1(P2i—1,2k) = Q2i—1,2¢ by (6.54). Thus

ﬁii;;f“*’%) = Bai—1.2k € Irr(Qoi—1,2¢) = TIrr(Q2i—1(B2j-1,2¢)). Furthermore, (a; 121 lies above

B2i—3,2k, - - - » 1,2k, a8 We can see in Diagram (5.20b). Hence (6.52) holds in the case that i —j = 0.

As Qoi—1(Boi—3k) = Q2i—121 by (6.54), we also get that a9 = 552_1'[,1226%3’%)- Hence (6.52)
also holds for j =4 — 1.
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For the inductive step it is enough to prove that, if (6.52) holds for some j = 2,...,7 — 1, then
it also holds for j — 1 (as we induct on 7 — 7). So assume that (6.52) holds for j. It suffices to show

that ~
Q2i-1(B25—3,2k)

i1k € Irr(@2i—1(52j73,2k)|ﬁ2i71,2k7521'73,2% o Brok)-
It follows from (6 55) that Qa;j_1.2k < QQ/L 1(B2j—1,2k) < Qm l(ﬁgj 3.2k ), where QQ2;_1 2, is a normal
subgroup of QQZ 1(B2j—3,2k), by (6.56). We clearly have that QQZ 1(B2j—1,2¢) equals the group

Qgi,l(ﬁgj_ggk)(ﬂgj_l,gk) Furthermore, by the inductive hypothesis we know that 65221 12,52’ 1.2k)

is an irreducible character of QQZ 1(B2-1 Qk) that lies above f(;_1 2x. So Clifford’s theory can be
applied to the normal group Qg;_1 2 of QZZ 1(B2j— 3%) the character faj_19r € Irr(Q2j-12k),

the stabilizer le 1(B2j—1,2¢) of that character in QQZ 1(B2j—3,2k), and the irreducible character

2%2:1 12(,52] 12k) of sz‘fl(ﬁgj_ljgk) that lies above (3;_1 2. Therefore we conclude that ﬁgij{‘;’;k =

( 32:'1712(52]'71,%))@%,1([32%3,2,6) is an irreducible character of Q\Qi_l(ﬁgj_g,zk). Furthermore, it lies

above (32;_1 ok, and thus also lies above (82;_3 2k, . . ., 31,2k. This completes the proof of the inductive
step. hence (6.52) holds for all i =1,...,kand j =1,...,1

To complete the proof of the proposition, we note that, for any fixed ¢ = 1,...,k, equation
(6.52) for j = 1, implies that ﬁgml 12,;61 2%) € Irr(@zi,l(ﬂlvgkﬂﬁl’%). Furthermore, Q\gi,l normalizes
Qior = N(Py;, in Q1). Thus Clifford’s theory, applied to the groups Q2; < Q\Ql‘_l, implies that

Qa2i—1(Br2) - . . ~ .
i1 2k induces an irreducible character of Q2;—1 , i.e.,

Bai1 = Bﬁ‘ﬁ{;k = ( gﬁfgfl’%))%“l € Irr(Q2i—1]P2i-1,2k)-

Hence Proposition 6.51 is proved. O

The way Bgi,l is picked implies

Corollary 6.57. Ifi = 1,...,k, then any subgroup of G that normalizes @21‘_1 and fizes Bai—1 2k
also fizes B2;—1. Furthermore, any subgroup of G that fizes B2;—1 and Ba;—321 also fizes Boi_1 2k

Proof. The first statement is obvious, since Fo;_1 = BQQZ-Q_iII.

The character (2;_1 is obtained from (32;_1 ox using a series of characters

B Bsz 1(B2i—1,2k) ﬁQm 1(B2i—3,2k) /3Q2z 1(B2i—5,2k)

2i—1,2k = M2;—12k 2i—1,2k 1 2i—1,2k )
Q2i—1(Bai—7,21) Q2i-1(B12k) 4Qoi—1 _B'
2i—1,2k sy P21 2k y M2i—1,2k — M2i—1,

each obtained from the preceding one using Clifford theory for the characters

B2i—52k B2i—72k» - - - » 332k 1,2k

in that order. Since G(f2;—32k) fixes the characters 51 ok, 83,2k, - - - , 32i—3 2k, Clifford theory implies
the rest of the proof. O

103



6.3 m-Hall subgroups of N(F;,, Q1 in Goi(as; 5)): the groups P

The following two general lemmas, along with Lemmas 6.11 and 6.44, will help us pick “nice” 7-Hall
subgroups P; of N(Py, Qg, 1 in GY,).

Lemma 6.58. Assume H is a finite mw-separable group. Let N = N1 > No>---> N, be a series
of mormal 7'-subgroups of H, for some integer r > 1. Let 0; be an irreducible character of Nj,
for each i = 1,--- 7, such that 0; € Irr(N;|0;11,0i42, - ,0,). Then H(01) > H(61,62) > -+ >
H(b1,...,0,) and the index |H(01) : H(01,...,0,)| is the 7’ -number |[N : N(61,...,6,)|. Hence any
m-Hall subgroup P of H(61,...,0,) is also a w-Hall subgroup of H(61,...,0;), for eachi=1,... 7.

Proof. For every i = 1,...,r — 1 the group H(01,...,0;) has as normal subgroups the groups
N; > Niy1, and fixes the character 6; € Irr(V;). Hence it permutes among themselves all the
irreducible characters of N;y; that lie under 6;. But this set of irreducible characters is precisely
the N;-conjugacy class of 6,41 by Clifford’s theory. So

H(01,...,0;) = H(01,...,0;,0;11)N;.

Therefore,
|H(01,...,0;): H(01,...,0;,0i11)] = [N; : Ni(0iy1)|.

A similar argument with N in the place of H shows that |[N(0y,...,0;) : N(01,...,0;,0;41)| = |N; :
N;(0;+1)|.- Hence

| (917"'>9) (917" 91?91+1)|_‘N(917"->9) (917"-701'791'-1-1”7

for all i =1,...,r — 1. This implies that
|H(01)H(01a ‘_H|H917> (917791791+1)|:

H|Nel,..., N(Or,....0,051) = IN(01) : N(0y.....0,)].

Thus the lemma holds. O
The following is similar to Lemma 6.11.

Lemma 6.59. Assume a finite group N is the semidirect product N = Px H of its m-Hall subgroup
P with its normal 7' -Hall subgroup H. Assume Jurther that Pisa subgroup of P, and that P is
any w-group of automorphisms of N that normalizes P. Then there exists t € H such that the
following conditions are satisfied:

(i) P normalizes P!
(ii) P < Pt
(iii) t centralizes P.

Proof. Since P normalizes N, we can form the external semi-direct product product NP = N x P.
Furthermore, as P normalizes P, the 7- group PP is a subgroup of NP, and thus normalizes N.

104



Hence PP normalizes a 7Hall subgroup P! of N, for some t € H. Therefore P, as well as ]5,
normalizes P!. But P is a subgroup of N. so the only way it can normalize the Hall subgroup P!
is to be contained in P'. Or, equivalently, (]B)t_1 < P. Thus s71st™' € P whenever s € P. But
P < P normalizes H. Hence s—'s'' = [s,t71] is also an element of H. As HN P = 1, we conclude
that [s,t7!] = 1, for all s € P. This implies that t~!, and thus ¢, centralizes P. So the lemma
holds. O

Lemma 6.60. Let Py; be a n-Hall subgroup of N(P;k,@%_l in Ga;(as;_5)), wherei =1,--- k.
Then

N(Psy, Qaic1 in Gai(ad;_s)) = Pai % Qai1. (6.61)
Furthermore,
N(Py,, in Goi(03i_o, 81, Baic1)) = N(Q2i—1 in N(Pyy, in Goi(ad;_y, Bai—1.24))), (6.62)
whenever i =1,... k.

Proof. According to Proposition 6.35 the group Q\Qi,l is a 7’-Hall subgroup of N (Py, in Ga;(a;_5)).
Hence R ~ ~
N(Pyy,, Q2i—1 in Goi(az; o)) = Poi X Q2i-1.

For the second part of the lemma note that, for i = 1 we obviously have N (P;, in Ga(ag, Bl)) =
N(@l in N(Py, in Ga(og, B1,2¢))), as oy = 1 and By = B1,2k, by Proposition 6.51.

For any ¢, with 1 < ¢ < 4, the group N(Q\Qi_l in N(Py,. in Goi(ad;_o, F2i—1,2k))) normalizes
Qat—1 = Qoi-1NGay1 and fixes Bat—1,2k> as Par—1 21 1s the unique character of Qz;—1,2¢ = Q2i—1,2xM
Go¢—1 that lies under fBo;—1 k. So N(Q2i—1 in N(Pyy in Goi(ad, o, f2i—12k))) fixes the characters
B, B3, ..., Ba_1 by Corollary 6.57. Hence

N(Qg_1 in N(P}, in Goi(0i o, Boi19k))) < N(Pyy, in Goi(b;_o, B, - - Baic1))-

For the other inclusion, we use Corollary 6.57 again, but in a recursive way. We saw above that
the group N(PZ*k in ng(ﬁl)) = N(P;k in Ggi(af‘),ﬁl)) fixes ﬂl,?lv Hence, N(PZ*IC in Ggi(ﬂl,ﬁg))
normalizes the group @3(61,%). In view of (6.31) the last group equals Q32,. Thus Corollary
6.57 implies that N(P;, in GQ(,@l,Bg)) fixes (391, as it fixes B3 and B1,2k, and normalizes Q3 2.
Similarly, we get that N(Pj, in Gai(B1, B3, 35)) normalizes @5(53,%) = @s5,2k, and fixes both (3 o1,
and 35. Thus it also fixes 35 ok, by Corollary 6.57.

We continue in this way. So after i — 1 steps we have that N(Fy, in Ggi(Bl, Bs, ... ,Bgi,g)) fixes
B2i—3,2r. Hence the group N (P, in Gg(ﬁhﬁi’n ..., P2i—1)) normalizes Q2i—1(f2i—32k) = Q2i—3.2k,
by (6.31), and fixes both (2;_3 21, and [(2;_1. Therefore Corollary 6.57 implies that it fixes B2;_1 2,
i.e.,

N(Py,, in Goi(ab;_o, 81,83, -, B2i-1)) < N(Qai1 in N (P, in Goi(ab;_o, Bai1k)))-

This completes the proof of the lemma. O

Let ¢ = 1,...,k. According to Theorem 6.50 the group N(Py, in Ga;(ad; o, f2i—1,2k)) equals
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P5(Bai-1,2k) X Qi—1(Bai—1.2k). This, along with (6.61) and (6.62), implies that

N(Pyy, in Goi(a;_g, 81, , Baiz1))

= N(Q2i—1 in N(P3, in Gai(a3i_s, Boi121))) by (6.62)
= N(Qo;_1 in Py;(B2i—1,2k) » @zi—l(ﬂzi—mk) by Theorem 6.50
= N(Qoi1 in P3i(Bai—1,2k)) X @2z’—1(ﬂ2i71,2k) as @22‘—1(52171,%) < Qai 1
= N(Q2i-1 in P5;(Bai-1,2)) X Qaim1,2%- by (6.33).
Hence
N(Py, in Gai(adi_y, B, . Baic1)) = N(Qai—1 in P5(Boi12k)) X Q2i—1,2, (6.63)

foralli=1,...,k.

The followmg proposition implies the existence of a “good” family of groups Pgl, that permit
us to use Theorem 4.24 on the groups ng 1, Q and PQz, fori=1,...,k.

Proposition 6.64. There exist m-groups ﬁgi, fori=1,...,k, such that the following conditions
are satisfied:

Py; € Hally (N (Pjy,, Q21 in Goi(ad;_»))), (6.652)
Poi(B1, B35 -, Paic1) = N(Qai—1 in Py;(Boi—1,1))

€ Hall, (N (P}, Qai_1 in Goi (a5, B1, 35, ..., B2i1))), (6.65b)

and Py; normalizes §2j, (6.65¢)

foralli=1,2,....k and all j =1,2,...,i. Furthermore, any such Py satisfy

ﬁ?i(ﬁly /335 e 5/327;71) - ﬁZi(ﬁAZj*l? 52j+15 e 5/327;71) - ﬁZi(@Zi*l)
€ Hall, (N (Ps, Q21 in Goi(ab;_o, Baj—1, Bajits-- - Pai1)))  (6.66)

whenever 1 < j <i<k.

Proof. In view of (6.63) the only Hall m-subgroup of N (Fs;, @gi_l in Ga;(as;_, Bi, Bs, ... ,Bgi_l))
is N(@Q}\_l in P2*i(52i—1,2k’))- As N(P2*k7 @21_1 in q%(a;iiw Bl: 33, cen 7321’—1)) is a Subgroup of
N(P},, Q2i—1 in Gai(ad;_,)), we can certainly find P»; satisfying (6.65a,b) for i = 1,2,..., k. We
shall modify these Py; so as to obtain new subgroups satisfying (6.65¢) as well as (6.65a,b).

We first note that, whenever 1 <t < i < k, the subgroup Ps; normalizes Py, while P5;(82i—1 2)
fixes ﬁgt_sz b}LPrOpOSitiOH 5.55. As QQtfl == @2@;1 mGQtfl, we get that N(Q\Qz;l in Pg*i(ﬁ%—l,Qk:))
normalizes N(Qa—1 in P3,(f2:—1,2x)). By (6.65b) this is equivalent to

Pyi(B1, B3, ..., B2i—1) normalizes Py (31, 33, . .., Bor_1) (6.67)

whenever 1 <t <i<k.

By (6.61) we have N(P;k,@%_l in Goi(as,_5)) = ]52,~ X @27;_1, for each 7 = 1,...,k. Also
N(Py,, QQi_l in Gg;(a;_5)) normalizes both Py, = P}, N G (by Proposition 5.132) and Qgt_l =
@gi,l N Goi—1 (by Definition 6.28), whenever 1 < t < i < k. So it fixes the unique character
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a5 EAIrr(PQ*tfz) lying under o3;_, (see PropoAsition 5.153). Hence it normalizes Ga:(ad;,_5). So
N(PQ*k, (Q2i—1 in Go;(ad;_5)) normalizes N(Psy, Q2t—1 in Ga(as_,)), 1€,

]522' X @Qi_l normalizes ﬁzt X @215—17 (668)
whenever 1 <t <17 <k.

We are going to modify the Py; so that they satisfy
.f)Qi(B17 Bg, e ,Bgifl) normalizes ﬁgt (669)

whenever 1 <t <i <k, as well as (6.65a,b). For this we will use reverse induction on ¢, starting
with ¢ = k and working down. The group Py, requires no modification, since the only possible i
satisfying k < i < k is ¢ = k, and the subgroup ng(ﬂl,ﬁg, ey Pop 1) certainly normalizes Py,
For the inductive step assume that ng, Pop_o, ..., Pasya, for some integer s = 1,2,...,k — 1,
have already been modified so that (6.69) holds Whenever s <t <1i<k,and (6.65a,b) hold for all
1=1,2,..., k. We want to modify Py s0 that (6.65a,b) still hold for 7 = s, while (6.69) with t = s
holds for all i = s,s+1,...,k.

According to (6.67) the product

Tis1 = Por(B1s - -, Bok—1) - Por—2(B1, -, Bor—3) - - Parsa(Bu, - - ., Boi1)

forms a 7-group, whenever 1 <t < k—1. Each factor sz(ﬁl, . ,,321 1) fori=s+1,5s+2,...,k, in
this product is contained in sz X ng 1, and hence normalizes PQS X QQS 1 by (6.68). That factor
also normalizes Pgs(ﬁl,ﬂg, .. .,Bgs 1) by (6.67). Thus T4 acts on Pgs X Qgs 1 and normalizes
the subgroup Pgs(ﬁl 53, ceey ﬁgs 1) of Pys. Therefore we can apply Lemma 6.59 to the groups
T5+1,P28(,31, .. 528 1) and ]325 X @23—1 to get an element t € @25_1 such that

(Py,)t € Hally (Pas X Qas_1) is normalized by Ty (6.70a)

and o

Pos(Bi,- .. Pas—1) < (Pas)'. (6.70b)
Obviously the group (Py)! satisfies (6.65a) for i = s, as Qas_1 < N(P;k,égs,l in Gas(ad, 5)).
Furthermore, as Pos(f1, . .., f2s—1) satisfies (6.65b) for i = s, the inclusion (6.70b) implies that

(Pos)! (B1y- -+, B2s—1) = Pos(Br,- - -, Pas—1). (6.71)
Therefore, (]32£)t satisfies (6.65a,b) for i = s. In addition, (6.70a) implies that Poi(B, ... ,BgiN_l)
normalizes (P»s)! whenever i = s+ 1,..., k. Hence we can work with (P,)! in the place of Pss.

The new group ﬁzi satisfies (6.69) whenever s <t <1i < k.

At this point we have shown that we can find the groups Py; that satisfy (6.65a,b) as well as
(6.69) whenever 1 < t < 4 < k. These groups can be modified further to satisfy, in addition,
(6.65c). Indeed, according to (6.68), we get that Py, < Py X ng 3 normalizes ng 9 X ng 3 while
ng(,é’l, .. ,ﬂzk 1) normalizes P2 by (6.69). Therefore, Lemma 6.11, with 7’ in the place of ,
implies that there exists top_3 € ng 3 such that

Dlek—3 . D
P,.”" normalizes Pyj,_»o
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and
. R Y
Por(B1, - .., Bog—1) < P2,

In view of (6.65b) (for Py, ) this inclusion implies that

Por(B1, -+, Pok1) = ﬁzt;ikfg’(@l, ey Bog—1).

The above equation permits us to work with ﬁ;ik’S in the place of Pyj.. Then Py, satisfies (6.65a,b)
and (6.69), and normalizes Paj,_o.

Now the product ngng o forms a group that normahzes the umque 7'-Hall subgroup ng 5
of sz 4 X ng 5, and has Tj_ Lasa subgroup Furthermore, PQkPQk 9 X ng 5. normalizes Pyj_4 X

Qok_5, while T,_; normalizes Pyy,_4, as ng(ﬁl, ..., Par_1) and Py, g(ﬁl, ey B 3) do by (6.69).
Hence Lemma 6.11, with 7’ in the place of 7, implies that we can find an element top_5 € ng 5

such that o N
(Pay Pop—2)'2*=5 normalizes Poj_4

and
Ston—s Stok—
Ty < Pzif;k SPQIik—;‘
Also to9_5 centralizes Tk 1, and thus centralizes both ng(ﬁl, vy Bop 1) and Py 2(31, . ,B%,g).

Therefore Pog(B1, . .., Bor—1) and Poy_o(B1, . .., Por_3) are subgroups of P;zk_s nd P b2k * respec-
tively. So, in view of (6.65b), we get that

Por(Br, -+, Pog—1) = 1552’“‘5(31, ces Bor—1)

and B R R P X
Poj—o(Br,..., Bon—sz) = Py 3 (B1,- .., Bok—s).

Hence we can replace Py, and Paj_o by P f26-5 and P b2k *~, respectively. Then (6.65a,b) and (6 69)

are satisfied by the newly modified groups ng and ng 9. Furthermore, ng normalizes both ng 9
and sz 4, while ng o normalizes Poj_4.

_ We continue similarly. At every step the product ﬁgkﬁgk_g'“ﬁgt of the modified groups
Pgl, for 2 < t<i< k, contains T;. Even more, T; is a subgroup that normalizes Ps;_o while
PQk-PQk- 9. Pgt X QQt 3 normalizes P2t 9 X Qgt 3. So Lemma 6.11 1mphes the existence of an
element tgt 3 € Qgt 3 such that, if we replace P and Pgt by PQik % and Pth 3 respectlvely, the

new groups satisfy (6.65a,b) and (6.69) for i = k,k—1,. —1, while Py; normalizes PQJ whenever
E>i>j>t—1.

This process stops when we reach ¢ = 2. This proves that we can pick the groups ]5% to satisfy
(6.65a,b,c). The additional property (6.66) follows from (6.65b) and Lemma 6.58. This completes
the proof of Proposition 6.64. Il

A useful property of the groups Py, is given in

Corollary 6.72. For everyi=1,...,k we have that
Poi(Boi—1) = Pai(B1, ..., Bai1) = C(Qoi—1 in Py;) and (6.73a)

Poi(fBai1) = C(Qai_1 in PJ). (6.73b)
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Proof. According to (6.66) and (6.65b) we get that
Poi(Bai1) = Pai(B1,. .., Boi1) = N(Qoi1 in Py(Boi_19%))-

In view of Corollary 6.57, the group N(@Qi_l in Py, (f2i—1,2k)) fixes (a1, as it normalizes @gi_l
and fixes B9;_1 25. Thus

Poi(fB2i-1) = N(Qg1 in Py, (Bai—1,2k)) < N(Qi—1 in P(Bai-1))- (6.74)

But QQZ 1 < Q < G = G(ozzk) Thus @Qi_l normalizes Pj;, as @ does. We conclude that
QQZ 1 normalizes N (le 1 in Pm(ﬁgZ 1)). As the latter p-group also normalizes the p’-group @gi_l,
we get that le 1 centralizes N (ng 1 in PQZ(ﬂgZ 1)) Hence @2, 1 also centralizes 1521-(321-_1) <

(le 1 in P;Z(ﬁgl 1)) Therefore, sz(ﬁzl 1) < C’(le 1 in Pgl) As the other inclusion is obvious,

we conclude that sz(ﬁgz 1) = (le 1 in Pgl) Hence (6.73a) holds
Furthermore, the fact that QQZ 1 normalizes PQ,L(/BQZ 1) implies that N (Qg, 1 in PQZ(,BQZ 1)) =

(le_l in le(ﬂgl_l)). Hence we have that

Poi(Bai1) = N(Qgi1 in Pzz(ﬂm 1,2k))
@ (B

< N(Q2i-1 in Py;(f2i-1)) by (6.74)
= C(Q2i-1 in P3y(fai-1))

< C(Q2i—1 in Py;)

= C(Q2i—1 in Py;(Bai—1.2%)) as Boi—1,26 € Irr(Q2;—1,2%)

and Q2i—12¢ < Qai—1
< N(Qzi—1 in P3;(B2i-12k))
= Poi(Boi_1)-

So ]522-(62,-_1) =C (@27;_1 in Pj;), and (6.73b) holds. This completes the proof of the corollary. O
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6.4 Triangular sets for G' = G(a3),)

For the following two sections we are going to keep fixed the groups Fs;, along with their characters
a’,;. Even though these groups and characters come from a specific triangular set of (5.2), we will
forget this triangular set and treat the Pj; independently. Furthermore, we make the following
assumption

m = 2k is even. (6.75)

We have already seen that the groups G, defined as G, = G4(aj,) = G' N G5 whenever
1 < s <m =2k, form a series

1=G)dG Q- 4Gy, <G, <G (6.76)

This is a series of normal subgroups of G’, as the series (5.2) is such for G.

6.4.1 From G to &

The goal of this section is to create a triangular set for the series (6.76), related to the triangular
set {Q2i—1, Pai|B2i—1, agi}le. We remark that the latter is a triangular set for normal series

1=Go<dG1 4+ AGo—1 1G9, <G, (6.77)

that is, (5.2) for m = 2k. As we will see, these two triangular sets are so close related that one
determines the other uniquely, up to conjugation.

To create such a set, we first need to give groups and characters that satisfy (5.17) for the
series (6.76). For the n’-groups and characters we pick the groups Qo;_1 o5 for every i = 1,... k,
along with their irreducible characters (2;_12;. In view of Remark 6.26, we have that (2;_1 o
is a subgroup of G’, and thus a subgroup of G, ; = G' N Gai—1 (as Qai—12t < Goi—1), for all
i=1,..., k. We define

Qb_1 = Qai—1,2k and B3 = Boi—1,2k, (6.78a)
and
Py =1 and Py; == P3;(B2i1.2k), (6.78b)

whenever ¢ = 1,..., k. Note that
Lemma 6.79. For everyi=1,...,k we have
Py; = P5(831) = P3;(Bai-121) =

N(sz‘—l,% in Py;) = N(lez‘q in Py;) = C(QQi—l,Qk in P2*z) = C(Q/Zifl in Py;) =
C(Q1 2k, Q325 - - - Q2i—1,2k In Pyy).

Furthermore,
Py, is the unique m-Hall subgroup of N(Pyy, in Goi(ad;_o, B2i—1.2k))-

Proof. Let i = 1,...,k be fixed. Obviously Ps;(82i—12k) < N(Q2i—12k in P5;). Also Qo122 =
C (P, ..., Py in Q2;—1) normalizes Ps, ..., Py_o, as it is a subgroup of Q9;—1 (see (5.17e)), and
centralizes Py;. Hence the 7'-group (QQ2;_1 2; normalizes the m-group Ps;. Therefore

N(Q2i—12k in Py;) = C(Q2i—1 2k in Py;) < Poi(Bi—1,2k)-
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So
Py = P5i(B2i—1.2k) = N(Q2i—1,2k in P3;) = C(Qai—1,2% in P5y).

The fact that C(Q%_; in Py;) = C(Q12k, @32k, - - - Q2i—1,2k in Py;) follows easily from the fact
(see (5.40)) that Q2121 is a subgroup (actually normal) of Q2;_1 2 Whenever 1 <t <.
The rest of the lemma follows from (6.78a) and Proposition 6.44. O

What about irreducible characters o, of Pj;? Well, there is a straightforward way to pick those
characters. To see this, note that Q% _; = Q2i—1 2% fixes the character ab; of P5;. Indeed, Q2;—1,2
fixes a}; (as it is a subgroup of G’) and normalizes Pj; = Go; N Pj,. Hence it fixes the unique
character o3, of Pj; that lies under o3, (see Proposition 5.153). As Pj, = C(Q2i—12k in Py;) =
C(Q%;_4 in Py;), we can make the

Definition 6.80. For every i = 1,...,k, the character of, € Irr(P};) is the @), ;-Glauberman
correspondent of o, € Irr(Py;). We also set af, := 1 € Irr(F}).

Now we can show

Theorem 6.81. The set

{Q), -, Qo 1y Py Py P81+ B, Qs Oy - oy Oy} (6.82)
given by (6.78) and Definition 6.80, is a triangular set for (6.76).

Proof. 1t is enough to check that (6.82) satisfies (5.17). It obviously satisfies (5.17a). According to
(6.34) we have that Q] = Q1,2r = G). Hence (5.17b) holds for the set (6.82).

By Lemma 6.79 the group Pj, centralizes Q% _; = Q2;_12k, for all ¢ = 1,..., k. Therefore the
group that we would write as Q5; _; 5; (see (5.11)) is @; ; itself. Furthermore, the P;,-Glauberman
correspondent of 3}, , is the same character 35, ;, whenever 1 < i < k. Therefore the character
that we would write as (3; ; ,; (see Definition 5.22) is nothing else but the character 3, ;. Ac-
cording to (5.40) and (5.51) the groups Q% _; = Q2;—1,2x and their characters 3}, ; = (2;_1 21 line
up. That is, we have a series of normal subgroups

! / ! !
Q19Q39-- Qo3 IQ9,

along with their characters
/817 ﬂéa L 7/8516—37 /Bék—l

that lie one under the other. Actually, by Proposition 5.55 the unique character of Q’ijl that lies
under By, ; is fy; 1, whenever 1 < j < i < k. Hence the characters B, ; satisfy (5.17f) in the
definition of a triangular set.

The group Pj; o; 1, defined as Py, 5, = C(Q5;, in Py;) (see (5.14)), satisfies

P2/i,2i+1 = C(Q2i41,2¢ in Py) = C(Q2iv1,2k in C(Q2i—12r in Py;)) =
C(Qaiy12r in Py;) = C(Qy 4 in Pyy),

whenever 1 < i <k — 1. But Q%;,; = Q24+1,2¢ normalizes Py;, and fixes its irreducible character
o3, as it fixes aj,. Hence the @5, -Glauberman correspondent of ag; is the @5, -Glauberman
correspondent of a3, as o, is the Q5;_;-Glauberman correspondent of o3, and Q%; _; 1Q%; ;. This
implies that the character af; 5,1 € Irr(Py; 5;11), defined as the @y, ;-Glauberman correspondent
of ab; (see Definition 5.49), is the @5, ;-Glauberman correspondent of a3; € Irr(Ps;), for all i =
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1,...,k — 1. Furthermore, a5, , is the Q5 -Glauberman correspondent of a3; . As a3, lies
above aj; we conclude that the same holds for their @Q5; ;-Glauberman correspondents. Thus
Qi yo € Irr(Py; o) lies above ag, ;1 € Irr(Py; ;1) whenever 1 < < k — 1. We obviously have
that aj € Trr(P;) lies above 1 = ag ; € Trr(Fy). Hence the characters ay,; satisfy (5.17d).

To complete the proof of the theorem, it remains to show that the set (6.82) also satisfies (5.17¢)
and (5.17e).

According to (6.29b), (6.29c) and (6.31) we get that

Qb1 = Qai—12k = Q2i—1(Ba2i—3,2k) € Hall (Gaoi—1(ly, Bai—s2k)), (6.83)
for all ¢+ = 1,...,k. Furthermore, as Q5_; = Q2_1,2; fixes af, it also fixes as; for all j =
1,...,k, by Remark 6.1. In view of Proposition 5.55, it also fixes ﬁéj—1 = [oj_1,2k for all j =
1,...,i—1. Thus @ ; normalizes the groups Q; ; and fixes aj;. This implies that Q5 ; also
fixes the (; ;-Glauberman correspondent aj; of aj; whenever 1 < j < i — 1. Hence @3 _; <
Goi—1(ady, B, ... By_s, 0, ..., 0 o). (We actually have even more as Q5;_; fixes o, and 35,
for all =1,...,k, but we don’t need it here.) This, along with (6.83) and the fact that

Gai—1(as, 0/27 e 70/21'_27517 <o ﬁéi_g) < G2i(a;k7ﬁéi—3> = G2i(a§k762i73,2k)7

implies that

Q,%—l € Hauw’(G%fl(O‘;k» 0/2> - ,0/21‘—2, 51, e 7ﬁéi—3)) =
Hall, (Gl2i—1(0/27 cee 0/21—2a Bia cee 7551—3))7 (6.84)

whenever i = 1,..., k. Hence (5.17¢) holds for the 7’-groups @5, ;.

As for the m-groups, we first note that, in view of Lemma 6.79, for every ¢ = 1,..., k the group
P}, centralizes Q| = Q12k,...,Q%_1 = Q2i—1,2k, and thus fixes their characters f1,...,085_;. It
also fixes the characters o3, ..., a5, ,, as P}, < Pj.. Therefore it also fixes the Q’ijl-Glauberman
correspondent O/Qj of as;, forall j =1,...,i. Hence

P2/i = P;i(ﬂéz?l) < G2i(a§k7 0/27 e 704/21'727@; e ,ﬂéifl) <
N(Py), in G2i(0‘§i—275§i—1))- (6.85)

Proposition 6.44 implies that Pj, = Py;(082i—1,2k) is the unique m-Hall subgroup of the group
N(Py,. in Gai(ad;_o, P2i—12k)). This, along with (6.85), implies that Pj; is a m-Hall subgroup of
Gaoi(0y, oy, .. Oy o, 1, ..., B5_1), whenever 1 < i < k. As Gy(0d,) = GY;, we conclude that
(5.17e) holds for the groups Py;. Hence Theorem 6.81 is proved.

O

For the triangular set (6.82) we can define, as it was described in Section 5.5, the groups (P,)* :=
P} - Pj--- Py along with their irreducible characters (a’;)* (see Definition 5.147), whenever 1 <
1 < k. Then it is easy to show that

Proposition 6.86.
(Péz)* = Py,

for everyi=1,... k.

Proof. In view of (6.78), it is clear that P}, < Py; for all i = 1,...,k. As P;; < Py;, whenever
1 < j <, we conclude that (Pj;)* is a subgroup of Pj;, whenever 1 <i < k.
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For the other inclusion, note that, according to Lemma 6.79, Py, = C(Q2i—1,2x in Pj;). But Py;
is a subgroup of Pj; and centralizes Q2;_1 25 (see (5.23a)). Hence Po; < C(Q2i—1,2k in P};) = Py;
whenever 1 < i < k. Therefore,

Pji= Py Puee-Po < Py Ploe- Pl = (Pl
Hence Pj; = (Pj;)*. O

6.4.2 From G’ to G

Now assume that a triangular set for G’ is given. It would be nice if we could pass to a triangular
set of G in a “reverse ” way to that described in the previous section. This would not only show
a path to pass from triangular sets of G to G’ and vice versa, but also, as Theorem 5.6 suggests,
a path to pass from character towers of (6.77) to character towers of (6.76) and vice versa. We
couldn’t hope that this would work with every triangular set of G’, as, after all, the triangular set
that we got in the previous section has a very specific type. That type we try to reproduce in
Property 6.89 that follows. In addition, we need an extra asumption for the set of primes 7. We
assume that

7w = {p} consists of one prime only. (6.87)

So the various m-Hall subgroups become p-Sylow subgroups, while the n’-Hall become p/-Hall.
Now assume that

{Q2i_1, P3| 851, 0/21‘}5:1 (6.88a)
is a triangular set for (6.76), while Q' is any p’-subgroup of G’ satisfying
QIZifl g QI < GI(O/Qv ) O/2k7 517 s 7ﬂék—1)7 (688b)

whenever 1 < ¢ < k. Note that @}, _, works for Q. Furthermore, we assume that the set (6.88a)
satisfies the following property

Property 6.89. For everyi=1,...,k we have

Py = N(Qj;_y in P5;) = C(Qy;_y in P5;) = P3i(B5;_1)- (6.90a)
In addition,
Pl is the unique p-Sylow subgroup of N(Py, in Goi(ad, o, 8% 1)). (6.90b)
Furthermore,
ab; € Trr(Py;) is the QY;_1-Glauberman correspondent of ab; € Irr(Py;). (6.90c)

We remark that, as the p’-group @Y, normalizes the p-group Pj; = P, N Ga;, we necessarily

have that
N(Qyi—y in P3;) = C(Qy_y in P3;) = Py(By1),
for all i = 1,..., k. Thus equation (6.90a) is equivalent to Py, = Py;(35_1).

Lets see some of the conditions Property 6.89 implies for the triangular set (6.88a). Recall
that, for all ¢ = 1,...,k, the groups Q5 ;o are defined as Q, ;o = C(P4;,..., Py in QY 1) =
C(Py;--- Py in QY_4) (see (5.23a)). Furthermore, for all i = 1, ..., k, the character Bh;_1 o5 1s the
Py, - - Py-Glauberman correspondent of 35, | o, by Definition 5.49. 7
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Lemma 6.91. For every ¢ = 1,...,k we have that Q,Qi—l,zk = QY,_, while ﬁéi—l,ka = B 4.
Therefore we get
Q1 4Q59 - A Qyy < Q'while

6.92
ﬂ%,l € Irr(Q’Qj,1|ﬂ§j,3) whenever 2 < j <k . (6:92)

Furthermore, whenever 1 < j <1i < k we get
Q,Qi—l(ﬁéj—l) = QIQi—lv (6.93a)

while

Q) = G| = Gy(ad,) = N(Py. in Gy) = C(Py, in Gy), (6.93b)
Py =P; = P, (6.93c)
PQIZ' = P;i(ﬁéz‘—l) = PQ*i(ﬁi, S »551*—1) = C(Q,b B Q/%—l in PQ*’L) (6'93(1)

Proof. According to Property 6.89 the group Pj; centralizes ), ;, for each i = 1,...,k.. As
bi—12i = C(Py in Qy_4) (see (5.23a)), we conclude that Qy;_; 5, = @Q3;_;. But, according to

(5.35), the group @3; 4 5; is a normal subgroup of @, | whenever 1 <4 < k—1. Thus Qy; ;<9Qy;,,
for all such ¢ and the first part of (6.92) is proved.

A.s P2’.Z- centralizes Q,; and/Q’QjT1 <Ry, We/ conclude th.at Py, centralizes (Q5;_; whenever
1 <j <i<k Thus Py = C(Qy_, in P3;) = C(Q,...,Q%_ in Py;). Even more, as Qy;_; o; =
C(Pyy ..., Py in Q1) (see (5.23a)), we get that Q5; 1 5, = Q5; 1 whenever 1 < j <i < k. Thus
B;19; = P;_1. This, along with (5.51), implies that 3;; ; lies above 3;; 3 whenever 2 < j < k.
Hence the rest of (6.92) holds.

Furthermore, as 5§j_1’2k = 55];1’ Proposition 5.55, for the ¢, j,¢ there equal to i,k,j here,
implies that Q5; 1 o1 (8;_1) = Q%;_1 o5~ Equation (6.93a) holds, as Q5;_; o = Q%;_;-

The set (6.88a) is a triangular set of (6.76). Hence, (see (5.17b)),

Q/1 = Gll = Gl(OC;k)-

Therefore, Q) = N(Py;, in G1) = C(Py, in G1), as the p-group P, normalizes the p’-group Gi.
So (6.93b) holds. Furthermore, we get that P, = Pj centralizes @)j. This implies that P) =
C(Q in P}) = Pf = P,. Thus (6.93c) holds.

It remains to show that (6.93d) holds. As Pj; centralizes Q1,...,Q%5,_,, and is a subgroup of
P, we obviously have that Py, < C(QY,..., Q% _, in Py;) < Py(B1,-..,05%_1) < Py;(85_,). But
P3(85,_1) = Py;. This completes the proof of the lemma. O

For each i = 1,...,k, let (Pj,)* be the product group (Py;)* = Py--- Pj,, and (af,)* its irre-
ducible character that we get (see Definition 5.147) from the triangular set (6.88a). Then

Lemma 6.94. For everyt=1,...,k,
(Péz)* = P2*i’

Proof. We will use induction on i. Equation (6.93c) verifies the i = 1 case. Assume the lemma
is true for all ¢ = 1,...,n — 1, where n = 2,3,...,k. We will prove it also holds for i = n. The
group @4, ; normalizes Py; for all @ = 1,...,k (as it normalizes Pj,). Thus Q5, ; X Py, is a
group. Furthermore, the semi-direct product @, _; X Pj, _, is a normal subgroup of Q%,,_; x Py
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as Q5,_1 X P35 = Gop—1N(Qh,_1 X Ps,). Hence Frattini’s argument implies that

P2*n = N(Q/Qn—l in P2*n) : P2*n—2'

*

According to the inductive hypothesis Py, o = (Pj,_5)*.
that Pj, = N(Q),,_; in P;,). So we conclude that

Even more, in view of (6.90a) we get

P2*n = N(QIanl in PZ*n) ' P2*n72 = Pén(‘Péan)* = (PZ/n)*
This completes the proof of the inductive step. Thus Lemma 6.94 holds. ]

We can now prove

Theorem 6.95. Assume that the triangular set (6.88a) for the series (6.76) satisfies Property 6.89,
while (6.88b) holds for a subgroup Q' of G'. Then there exists a collection of groups and characters

{P[:l)laQg’iflaPQVi’aS?ﬁgiflaag’i}?:l? (696)
with the following properties:
Q'normalizes Q%;_1, (6.97a)
leel =Qy_1(a5,) = N(N(Q1,Q3,...,Q5_1 in Py) in Qg ;) =
C(N(Q7, an .., Q51 in P2*k) in Qy_,) = N(Pikk in Q3;_4), (6'97b)
By, € Irr(Q%;,_) is the N(QY,Q%, ..., Q% _; in Py.)-Glauberman correspondent of 35; 1,
(6.97¢)

Py =N(QY,Q%,...,Q3_1 in Py;) = N(Q1,Q%,...,Q3_ in Py), (6.97d)
ay = ay € Irr(Py), while for i > 1
asy; € Irr(Py;) is the QF, . .., Q5;,_1-correspondent of oy, (6.97e)
QY : =Gy, while fori > 2
Qgi*l S Haupl (Gzz_l(ag, ceey Oégl'727 611/, “e e 7,312173)), (697f)
Py :=1 and o := 1, while fori>1
PQVl S Sylp(GQi(a67 Oég, B ag’i727 ﬁija R 7/82Vi71))7 (697g)

Pyj=Fy - Py - P Py o N(Q],Q3,...,Q 1 in Py), (6.97h)
Py, =Py P/ Py, (6.971)
whenever 1 <i < j < k. In (6.97e), the QY,...,Q%,_,-correspondent refers to the correspondence

described in Lemma 5.142 and Theorem 5.143.
To prove the above theorem we will need the following easy lemma

Lemma 6.98. Assume that T, S, Ty are p-subgroups of a finite group H such that T normalizes S
while To < T NS. Assume further that To = N(T in S). Then Ty = S.

Proof. The group T'S is a p-group and thus nilpotent. Hence, if T' is a proper subgroup of T'S,
then we should have that N(7 in T'S) > T.

But N(T'inTS) =T -N(T'inS) =T -Ty. As Ty < T we conclude that N(T'in T'S) = T.
Hence T'=T'S and thus S < T'. Therefore we have that S = N(T in S) = Tp. O
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Proof of Theorem 6.95. We define Py := 1 and af := 1, so that the trivial part of (6.97g) holds.
We will prove theorem using induction on 7. Assume that ¢ = 1. For @} we take Q] = G;. Hence
the first part of (6.97f) holds. According to (6.93b) we have that

Q) = Qf(az) = N(Pg, in QF) = C(Py, in Q).

As Q) = G1 < G we get that N(QY in Py, ) = Pj, and that Q" normalizes Q7. Hence QY satisfies
(6.97a,b). Furthermore, 3] is fixed by Py, by (6.93d). So we take ] € Irr"2k(Q1) to be the
Py, -Glauberman correspondent of 8] € Irr(Q}). Thus 57 satisfies (6.97c).

Let Py := N(QY in Py). Then, as Qf = G; <G and Py = P; (see (6.93c)), we have

Py = P} =P},

So (6.971) holds. We also define o := a4. Thus P¥ and of satisfy (6.97d,e).

Let P be a p-Sylow subgroup of G2(47). Then G2(8Y) = PxG1 = PxQY, as G2/G is a p-group.
Furthermore, Pj;, normalizes G2(0Y), as it fixes 37. Also, Py = G N Py, is a subgroup of Ga(fY).
Therefore Lemma 6.59 implies that we can pick P so that is normalized by Py, , while Py = Py < P.
So Py < PN Pj,.. The group N(Py, in P) fixes the P} -Glauberman correspondent 8y of 3] (as P
does), and normalizes Py,. Thus it also fixes 3]. Hence Py < N(Py, in P) < N(Py,. in Go(5)).
According to (6.90b), the group P is a p-Sylow subgroup of N(Pj, in G2(/3])). Thus Lemma 6.98
can be applied to the groups Py, , P and Py = P, in the place of T', S and Ty, respectively. Therefore
we get that P = Py = Py. As Py := Py, we conclude that Py € Syl,(G2(67)). Hence (6.97g) holds.

We complete the proof of the i = 1 case by observing that N(Q7 in P;) = P5; as Q7 = G1 JG.
Thus

Fy - N( lllinP;j):]-‘P;j:P;ju

whenever 1 < j < k. Hence (6.97h) holds.

Now assume Theorem 6.95 holds for all ¢ = 1,...,t — 1, for some t = 2,..., k. We will prove it
also holds for ¢« = t. To simplify this proof, we give separately the next steps that depend heavily
on the inductive hypothesis,

Step 1. Assume that the set {QY,_,, Py;|05;,_1,05;}°_,, for some s =1,...,k, satisfies (6.97c,d,e)
foralli=1,...,s. Let T < N(Py,QY,Q%,...,Q%_; in G(as,, b, ...,a5,,01,...,05_1)). Then

T <G(ag,...,a55, 07, ..., 05_1)-

Proof. The group T' normalizes Py, for all r = 1,...,s, as it normalizes Pj;,. It also normalizes
Q5,_, for all such r. Therefore, it normalizes N(QY,...,Q%5,_; in P5.). But, according to (6.97d),
this last group equals P3. whenever 1 < r < s. Hence T normalizes P;. and @%5,_,. But T also
fixes a3, as it fixes o) (see Remark 6.1). Therefore (6.97¢), along with Proposition 5.149, implies
that T' fixes oy, forallr =1,...,s.

Furthermore, T fixes (5. _;, as it fixes its N(QY,...,Q%,_, in P, )-Glauberman correspondent
B5,_1 (see (6.97c)) and normalizes Py, QY,...,Q%,_;, whenever 1 <7 <'s. Therefore

T <G(ag,...,a5,07, ..., 05_1),

and Step 1 is complete. O

The second step is
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Step 2. Assume that the set {QY,_,, Py;|05;,_1,05;}3_,, for some s =1,...,k, satisfies (6.97b,c,e)
foralli=1,...,s. Let T < N(Py, in G(ah,...,a8,,07,...,05_1)). Then

T S N(PQ*k- 1n G(agsya/27 st 70/237611 A 7ﬂés—1))'

Proof. The group T normalizes Py, for all 7 = 1,...,s (even for all r = s+ 1,...,k, but this we
will not need). As T also normalizes the groups Q%,_;, and fixes the characters o4, it has to fix
(by Proposition 5.149) the Q%, ..., Q%,_;-correspondent a3, of af, (see (6.97¢)) forall r =2,...,s.
It also fixes a5 = ab.

Furthermore, T normalizes Q%,_;, as (6.97b) implies that Q5,_; = N (P, in Q%,_,), whenever
1 <r < s. The group Pj, satisfies (6.90a) for ¢ = r. Hence Pj. = N(Q),_; in Pj.). Therefore,
T normalizes Pj., as it normalizes both @), ; and Pj.. This, along with the fact that T fixes
a’,., implies that T fixes the Q),_;-Glauberman correspondent o, (see (6.90c)) of 3., for all
r=1,...,s.

Even more, as T fixes (45, ; and normalizes @5, _,, it must fix the N(QY,...,Q%,._; in Py, )-
Glauberman correspondent 35, _; of 85 _; (see (6.97c)). Hence

T < N(Pj, in G(aby, oy, ... s, Brye ey B 1))

The last step is

Step 3. The group S := N(QY,...,Q%_3 in Pj.) is a subgroup of G(od, ..., a5 _o,087,...,0%_3).

Proof. For every » = 1,...,t — 1, the group S = N(QY,...,Q%_5 in P}, ) normalizes Pj;. =
N(QY,...,Q5._,in Py.). Also S fixes a3,, as it is a subgroup of Pj,. Therefore S fixes the
Q%,...,Q5,_ -correspondent o, € Irr(Py,) of a5,., (see (6.97e)), for all ¥ =2,...,t — 1, as well as
af = o5,

Furthermore, (6.97c) for ¢ = ¢t — 1 implies that S fixes 85, 5. Similarly, the inductive hypothesis
for (6.97c) implies that N(QY,...,Q%._; in Py,) fixes 55, forall r = 1,...,t —2. But Sis a
subgroup of N(QY,...,Q%,._; in Pj;) for all such r. Hence S fixes 35._; whenever 1 <r <t —1.

Therefore S < G(od,...,ak,_o,087,...,05_3), and Step 3 is proved. O

We can now continue with the proof of the theorem. The fact that (6.88a) is a triangular set
for (6.76) implies that

QIQS—I < GZSfl(a;kv 0/2’ SER) O/Qt—Q? HEER 0/25—2> ﬁia cee 7ﬁét—3’ s 7ﬁés—3) <

G2371(a§k7 O/Qa cee 70/275—27 ﬁia s aﬂét—?))a

for all s = t,...,k. Also the inductive hypothesis, 6.97a, for ¢ < ¢t — 1 implies that Q5,_; < Q'
normalizes the groups QY,...,Q%5,_5. Hence for all s =¢,..., k we have that

QIQS—I S N(Q?v cee 7Q5t—3 in G2S*1(a§k7 0/27 e 70/215—25 ﬁi? ceey ﬁét—?)) S
N(P2*k7 Qlf’ s 7Qgt—3 in G2s71(04§t—27 O/27 oo aa/Qt—Qa ﬁia s 7ﬂét—3))v
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and
Q < N(QT,..., Q%5 in G(a3y, g, ..,y 9, 815+, Py _3) <
N(PQ*ka QT? R Qgt—fﬂ in G(agt—% 0/27 cee 7a/2t—2>ﬁia e 7/Bét—3))‘

This, along with Step 1, with the present t—1 in the place of s there, and the fact that Go;—1 IGas_1,
implies that both @5, ; and Q" normalize the group Go—1(04, ..., a%,_o,0Y,..., % _3) and fix the
characters a4, ..., a8, o, 07, ..., 3% _3. In particular, for s =t we get

QIQt—l < G2t—1(a57 s 7O‘5t—27 61V7 cee 7ﬁ12/t—3)7 (6993)
as Q4 _; < Goi—1. Furthermore,

Q' normalizes Gor—1(0%, ..., ab_o, 87, .., By _3). (6.99b)

Let Q be a p/-Hall subgroup of Go—1(04, ..., ok, 5, 0Y,..., 0% _3). Since Py,_, satisfies (6.97g)
for i =t — 1, and since o, 5 € Irr(P3,_5), we have that

PZthQ € Sylp(GQt—Q(agv s 7agt727 ﬂly) LR 62yt73))'
As Got—1/Gap—o is a p'-group and Gor—a(ad, ..., ak,_5, 07, ..., 3% _3) normalizes P§,_,, we get
GQtfl(ag, o e ,a;t_Q, ﬁi’, ey BIQJt—,?)) == Q X P2Vt_2 (6100)

This, along with (6.99), the fact that Q%5,_; < Q' (see (6.88b)), and Lemma 6.59, implies that we
can pick a conjugate Q%,_; := Q° of Q, so that

@31 € Hally (Gor—1(0, ... a9, 87, -, By3)),
Q' normalizes Q%,_; and (6.101)

!
Qa1 < Q31

It is obvious from the definition of @Q%, ; that it satisfies (6.97a,f) for ¢ = ¢. Furthermore,
(6.100) holds for Q = Q¥,_;, i.e.,

GQt_l(Oég, cee ’agt—% ﬁlya s 7/82Vt—3) = Qgt—l X PZVt—Q‘ (6102)
This, along with Step 3, implies that N(QY,..., Q% _5 in P, ) normalizes Q%,_; x P% _,. Hence
the product N(QY,...,Q%_3in Pj.) - Q5,1 P, is a group having Q%,_; x Pj,_, as a normal

subgroup. Furthermore, (6.97d) for ¢ =t — 1 implies that Pj, o < N(QY,...,Q%_5 in Pj;,). Hence
N(QY,...,Q% _5in Py) is a p-Sylow subgroup of N(QY,...,Q% _5in Pj) - Q% _1Ps_,. Thus
Frattini’s argument for the p’-Hall subgroup Q¥%, ; of the normal subgroup Q%,_; x P%_, implies
that

N(QY,... Q%3 in Py) = Py o N(Q3_y in N(QF,...,Q5_5 in Py)) =
PQVt—Q ' N(Qqa ceey QlQIt—B’ Qgt—l in PQ*k:)

118



This, along with (6.97h) for i =t — 1 and j = k, implies that
Py =Py Py 4 NQF,...,Q%_3in Py) =
Py Py g Py o N(QY, ..., Q% 3,Q% 1 in Py).

Therefore, intersecting both sides of the above equation with Ga;, we get

PQ*j =Py Py o N(QY,...,Q5_5,Q5_41 in PQ*j)a (6.103)
whenever t < j < k. Hence (6.97h) holds for i =t and j =i,0+ 1,..., k.

To prove (6.97b) for i = ¢, we first note that, according to the definition of Q%, ; (see (6.101)),
we have Qb,_; < Q%,_;. Hence Q4_; < Q%,_,(ad;), as Q4 < G' = G(o3,,). Furthermore, Q%,_,
normalizes QY,...,Q%5,_3, Q5 ;. Hence

N(Py, in @y1) < N(N(QY, ..., @y In Py) in @y 1) = C(N(QY, ..., @y in Poy) in @y y),

where the last equality holds as the p-group N(QY, ..., Q%,_; in Py, ) normalizes the p’-group Q%,_;.

Thus we have , . .
Qa1 < QQt—l(%k) < N(sz m QQt—l) <

N(N(QTa s ant—l in PQ*k) in Qgt—l) = (6-104)
C(N(QY, ..., Q%1 in Py) in Qy_4).

Let T = C(N(QY,...,Q%_; in Py) in Q% _;). Then T normalizes the groups Py, ..., Py, o,
as Q% does (it fixes their characters of;). Hence, T', in view of (6.103) for j = k, also normalizes
Pj,.. Therefore, T < N(Pj, in Q%,_;). This , in view of (6.101), implies that

T < N(PQ*IC in GQt_l(&g, s 704575—27/81/7 s 7/82Vt—3))'

The set {Q%;,_1, Py;|85_1, 04, ';;} satisfies (6.97b,c,e) (according to the inductive hypothesis). So
Step 2 for s =t — 1, implies that T satisfies

T S N(Pz*k ln G2t71(a§t_2, O/z, “ e ?a/Qt—27 /61, ey Bét_?))) (6105)

Equation (6.103) for j = k, along with (6.971) for ¢ = ¢t — 1, implies that

PQ*k,‘ ~ N(Qlll) ceey Qgtfl in P2*k)

P2*t—2 P;t—QmN(Qlljv"'ngt—l in P2*k)

Therefore T' centralizes Py /Py, o, as it centralizes N(QY,..., Q% _5 in Ps;). Also T fixes a3, _, €
Irr(P5,_5), and is a p’-group. Hence (see Exercise 13.13 in [12]), T fixes every irreducible character
of Pj, that lies above a3, 5. Thus T fixes of,. This, along with (6.105), implies that

T = C(N(Qlf? SR Qgtfl in P2*k) in Qgtfl) < GQt—l(a;kv 0/27 s 70/21572761’ SRR 6ét71)‘

But Q4 _, is a p/-Hall subgroup of Gai—1(cd, ..., 0y o, B1,...,05_1), as (6.88a) is a tri-
angular set for (6.76). Furthermore, (6.104) implies that the p’-group Q% _; is contained in
C(N(QY,...,Q5_,in Py) in Q%_,). Thus C(N(QY,...,Q%_, in P.) in Q%,_,) = Q5,_;. This,

119



along with (6.104), implies that

Qb1 = Q%1 (ag),) = N(Pyj in Q3,_1) =
N(N(QT,...,Q% 1 in Py) in Q5,_4) = (6.106)
C(N(QT> ceey Qgt—l in P2*k) in Qgt—l)'

So (6.97b) holds for i = ¢t. Hence we have shown that the group Q%,_; satisfies (6.97a,b,f,h) for
i=t<j<k.

As Q5 = C(N(QY,...,Q%_, in P}) in Q%_,) we can define 35, ; € Irr(Q%,_;) to be the
N(QY,...,Q%_, in Py )-Glauberman correspondent of 35, ; € Irr(Q%_;). Thus g5,_, satisfies
(6.97c) for i =t.

To complete the inductive step it remains to prove that we can pick a p-group P,;, along with
its irreducible character o, so that (6.97d,e,g,i) hold for ¢ = ¢. In view of (6.106) we have that
QY1 = Qb,_1(a3)). Hence N(QY,...,Q%_, in P3,) normalizes Q5,_, . This, along with the fact
that Py, = N(Q5,_, in P5;) by (6.90b), implies that

N(QY,...,Q5_1 in P3;) = N(Qy_q in N(QY,...,Q5_ in P3)) =
N(Q{,...,Q%_1in N(QIQt—l in Py)) = N(QY,...,Qy_; in P2/t)~

Let
My :=N(QY,...,Q5 1 in Py)=N(QY,...,Q%_1 in P},) and (6.107)
M:= N(Qlllv'")Qgt—l in PZ*k)
Note that M N Gar = My, as Py, N Goy = P,

In view of Step 3, the group M fixes the characters af,..., 08, 5,87, ...,35_3 as it is a sub-
group of N(QY,..., Q% _5 in P;,).Furthermore, the definition of 33, ; (as the M-correspondent of
B5,_1) implies that M also fixes 3%, ;. Hence M normalizes G (a4, ..., ok, 5,07, ..., 0% _4), while
My = M N Gy is a subgroup of Gy(ad,..., a8, 5, 07,...,05_1). Let P be a p-Sylow subgroup
of Gor(aly, ... a5, o, 07,...,0%_1), chosen so that P contains M. It is clear from the fact that
Gat/Gat—1 is a p-group, and the definition of @4, _; (see (6.101)), that

GQt(agv s 7agt72’ ﬂly) e ﬁgtfl) =P x Qgtfl' (6108)

Therefore Lemma 6.11 implies that there exists a %, ;-conjugate of P that is normalized by M
and contains My. So we may replace P by this conjugate and assume that My < M N P.
We can show the following

Claim 6.109. N(M in P) = M,.
Proof. Tt is obvious that My < N(M in P). For the other inclusion we first note that N (M in P)
normalizes Py, ..., Py,_, (since P does) and M. Hence N(M in P) normalizes Py, = Py --- P3,_, -
M (see (6.103)). Hence
N(M in P) < N(Py, in P)

< N(Py, in Gor(ag, .. a9, 07, - B35 B3-1)) (6.110)

< N(QT? ce 7Q5t—17 PQ*k in th(ag, s ’O‘Zt—% Bi/a ce 752yt—3))(ﬁgt—1)

< N(Qllja te 7Q5t—17 P2*k: in GQt(QSt—z, O/Qy e 0/216—2’ /ﬁiv ce ’ﬂét—S))(ﬂgt—l)’

where the last inclusion holds according to Step 2 for s =¢ — 1.
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Also N(M in P) fixes the M-Glauberman correspondent 35, ; of 85, ;, as it fixes 8, ;. This,
along with (6.110), implies that

N(M in P) < N( va tet 7Q5t—1?P2*k in G2t(a;t—27ﬁét—l))' (6'111)

But Pj, satisfies (6.90b) for ¢ = ¢. Therefore My = N(QY,...,Q%_; in Pj,) is a p-Sylow subgroup
of N(QY,...,Q%_1, Py, in Goy(0,_o,85_1)). As My is contained in N (M in P), inclusion (6.111)
implies that My = N(M in P). Hence the claim follows. O

The groups M, My and P satisfy the hypothesis of Lemma 6.98, in the place of T,7Ty and S
respectively. So we conclude that My = P. Therefore, My is a p-Sylow subgroup of the group
Go(ah,...,a8_o,07,...,0%_1). If we define Py, := My, then it is clear that Py, satisfies (6.97g)
for i = t. It also satisfies (6.97d) for i = t, as (6.107) shows. Equation (6.97i) for i = ¢ follows
clearly from (6.97h) for i = j = t, (that we have already proved in (6.103)) and (6.97d) for i = t.

To complete the inductive step, it remains to show that we can pick a character of, € Irr(P3))
that satisfies (6.97¢e) for ¢ = t. That is, it suffices to show that the character a3, hasa Q%, ..., Q5,_;-
correspondent. Looking at Lemma 5.142 and Theorem 5.143, where this correspondence is de-
scribed, we observe that it is enought to prove the following for every 4, j with 2 < j < < ¢:

1] ngfl Py _o+ Py -+ Py; is a group containing ngfl Py and Py 5 as normal subgroups.
2 ] N(QY,_, in Py, ,-Py,---Py) =Py, PY.

[3 ] a3, satisfies Property 5.145, i.e., there exist characters a3 € Irr(F%;), for s =1,...,¢, such
that a3, ; = a3, and, if s <1, then a3, ; is Q5 -invariant and lies under a5, o ;.

Part [1] is clear as, according to (6.97e,f), for every s = j + 1,...,i the group PJ, normalizes
Py g,..., Py,_y and ng—lv while ng—l normalizes Py;_,. This remark also implies that the
product Py - -+ Py; normalizes Q3;_;. Hence

N(Q5;_1 in Py;_o - P3- Py;) > Pyio -+ Py (6.112)
But

N(ng—l in P2Vj—2)

N(Q5,_1 in N(Q7F,...,Q%;_5in P5;_5)) by (6.97d) for j — 1 as i there
N(@QY,. .., ngf?ﬂ ngq in P2*j72)
N(QT: AR ngf'\’n ng,1 in P2*j)

<
= Py by (6.97d) for j as i there
This, along with (6.112), implies that N(Q%;_; in Py o - Py, Py;) = Py -+ Py;. So [2] follows.
Part [3] holds if we take the characters a3, in the place of a3, ; for s = 1,...,t. We only need
to verify that Q3, ., leaves a3, invariant for every s = 1,...,¢ — 1. This is clear as Q5  fixes a5,
and normalizes the groups Q%,...,Q%5,_; (see (6.97f) with s — 1 as the i there). So it has to fix
the Q%, ..., QY,_,-correspondent oj, (see (6.97¢) with s as the ¢ there) of af,. Hence [3] follows.

This proves that Lemma 5.142 and Theorem 5.143 can be applied. Therefore there exists a unique
character of, € Irr(P%) that is the Q%,...,Q%,_,-correspondent of «f,. Thus (6.97¢) holds for
1 =t.

This completes the proof of the inductive step for ¢ = t. Hence Theorem 6.95 holds. O

A useful consequence of Theorem 6.95 is
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Corollary 6.113. For everyt=1,...,k we have

Py Pojg-- Py, = N(QY, @3, ..., Q1 in Pyp). (6.114)

Therefore By;_y € Irr(QY,_,) ts the Py, --- Py -Glauberman correspondent of 35, ; € Irr(Q;_,) =
Ire(C(Pg; - - P in Q3;_4)).

Proof. For every j =1i,...,k, the group Py; normalizes Q7,Q%, ..., Q% (see (6.97d)). This, along
with (6.97i) and (6.97d), implies that

PQVi'”PQUkSN(Qllja-”ngifl inPQ*k):N(Qlljw--quifl inP;z"Pé/i+2”'P2Vk)
N(QY,..., Q5,1 in Py;) - Py o+ Py = Py - Py oo+ Py

Thus (6.114) holds. The rest of the corollary is an obvious consequence of (6.114), (6.97b) and
(6.97c). O

We have done all the neccesary work towards the proof of the main theorem of this section
which is a “mirror” of Theorem 6.81. That is

Theorem 6.115. The set (6.96), constructed in Theorem 6.95, forms a triangular set for (6.77).
Furthermore, the pair (6.88a, 6.96) satisfies (6.78) and Definition 6.80, i.e.,

Q21 = Q%10 and By;_1 = P31 ops (6.116a)
Py" = P3; = (Py;)" and Py; = Py (By;_1 o1); (6.116Db)
g, = ag;, (6.116c)

oy is the Q5;_1-Glauberman correspondent of as; € Irr(Py:"), (6.116d)

where Py;" = (Py)* = Py --- Py and oy := (ak;)*, whenever 1 <i < k.

Proof. The Properties (6.97j, g, f) of that the set (6.96) imply immediately parts (5.17a,b,c,e) of
the definition of a triangular set.

Let af; 54; 1 denote the irreducible character of Py 55, = C(Qy,_; in P3;_,) that is the
Q¥;_,-Glauberman correspondent of ab; , € Irr@i-1(P% ), whenever i = 2,.... k. As Qb ,
normalizes Py, the Q5;,_;-Glauberman correspondence coincides with the @5, ;-correspondence
between Irr@%i-1(PY_,) and Irr(Py; g9, 1) = Irr(C(Q3;_1 in P3;_,)), by Theorem 3.13. This, along
with (6.97e), implies that a5, 99,1 18 the Qf, ..., Q5 3,Q% ;-correspondent of aj; 5. (Note
that in the case of aj 5 we only have a (QQ%-correspondence.) Since a4, is also the QF, ..., Q%_;-
correspondent of aj;, while a3, lies above a3, 5, we conclude that ay; € Irr(Py;) lies above af; 54, 1,
whenever 1 <+ < k. This proves that the set (6.96) satisfies (5.17d).

We will work similarly to prove (5.17f), using Corollary 6.113. For every ¢ = 2,...,k —
1, the character 551'—3,%—2 € Irr(Qgi_&gi_Q) = Iir(C(Py,_, in Q%;_3)) is defined as the Pj;_,-
Glauberman correspondent of 35, 5 in Irr(Q%,_5). The Py, 5, Py, ..., Py, -Glauberman correspon-
dent of 35, _4 € Irr(Q%;_3) = Irr(C(Py;_o, Py, ..., Py in Q%;_3)) is the character 3Y;_5, by Corollary
6.113. Hence 5, 3,; 5 is the Py, ..., Pj}-Glauberman correspondent of fy; 3. Furthermore, 33; ,
is the Py, ..., Py -Glauberman correspondent of 85, ;. As (35, 4 lies under 3),_,, by Lemma 6.91,
we conclude that 35, 5, 5 also lies under y; ;. This completes the proof of (5.17f), showing that
the set (6.96) is a triangular set for (6.77). Hence all the notation and the properties described in
Chapter 5 can be applied to this triangular set.
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According to (5.33), the group Qy;_; 5, equals C(Py; - Py ,--- Py, in Qy;_;). This, along with
Corollary 6.113 and (6.97b), implies

Qgifl,Zk =C(Py; - P2V¢+2 Py in Q3 1) = C(N(QY,...,Q%_1 in P3) in Q3, 1) = QIQi—l'

Furthermore, according to the Definition 5.49, the character 62”1-_1’% € Irr(Qgi_L%) is the P;; -
Py 4o - Py, -Glauberman correspondent of 33, ;. Therefore it coincides with ﬁéi_l, as the latter is
also the Pj; - -- P} -Glauberman correspondent of 55, ,, by Corollary 6.113. Hence (6.116a) holds.

If P,>" denotes the product of the P”-groups, i.e., Py;" := PY--- P then in view of (6.97i) we
get that P,;" = Py;, for all i = 1,... k. This, along with Proposition 6.86, implies the first part
of (6.116b). The second part follows easily from the first and the facts that Pj, = Ps;(35;_1) (see
(6.93d)) while By, | = B3;_; 5, (see (6.116a)).

The character ay;” € Irr(P,;") = Irr(Py;) is constructed as the Q¥, ..., QY;_,-correspondent of
ab; (see Theorem 5.143). This, along with (6.97e), implies (6.116c). The relation (6.116d) now
follows, easily from (6.90c).

This completes the proof of Theorem 6.115. O
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Chapter 7

The New Characters x! of G

Let G be a finite group satisfying
|G| = p® - ¢°, with p # ¢ primes and a, b non negative integers . (7.1)

Assume further that
1=GodG1 <---AG 1G (7.2)

is a normal series for G satisfying Hypothesis 5.1 with = = {p}, i.e., G;/G,;_1 is a p-group if i
is even and a g-group if ¢ is odd. Note also that (7.2) plays the role of (5.2) with m = 2k. Let
{1 =x0,X1, ", X2k} be a character tower for the series (7.2). We have seen in Chapter 5, Theorem
5.6, that there exists a unique, up to conjugation, triangular set

{Q2i-1, Por|Bai-1, 0421»}?;]617,“:0 (7.3)

for (7.2) that corresponds to the above character tower. Of course there is no reason for the
irreducible character (G9._1 to extend to its own stabilizer in G. In addition, we have seen how to
achieve the irreducible character a3, of the product group Py, = PyPy -+ Py, from the irreducible
character agy, € Irr(Pyy) (see Definition 5.147). We have also seen how to pick a ¢-Sylow subgroup
Q of G(ad;,) satisfying all the conditions in Theorem 6.19. (Observe that 7’ = {¢}. )

What we will prove in this chapter is that, under the above conditions, we can find a new
character tower {1 = xg,x%,..., x5} for the normal series (7.2) of G so that a corresponding
triangular set {QY, |, P¥, PY = 1|8%,_,,ak:, a8 = 1}F_, satisfies

L. Pj =Py and ol = aby, forall i =1,...,k,
2. Glag,) = G(ay) and Q = Q,
3. 52'/1{,1’% extends to @ = @7/

where we keep the same notation as before with teh addition of the superscript v to any group that
refers to the new character tower and triangular set. So P,;" = Py --- Py’*, the character ay) is
an irreducible character of P¥* that is achieved using the character af, € Irr(Py,) via Definition
5.147 for the new characters. Furthermore, @\” is a g-Sylow subgroup of G (oz;k*) that satisfies the
conditions in Theorem 6.19.

For this we will put together all the complicated machinery we developed in the previous
chapters. We use the same notation for the groups and the characters that was introduced in
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those chapters, but applied in our specific case, i.e., where G satisfies (7.1), and the series (7.2), its
character tower and the corresponding triangular set (7.3) are fixed.

Thus we can use all the information about the subgroups @,@22‘71 and Py; of G/ = G(o3,),
given in Chapter 6. So we can prove

Lemma 7.4. The hypotheses of Theorem 4.24 are satisfied by the present group G, with the integer
n in the theorem equal to the present k, the g-subgroup Qny1 = Q in the theorem equal to the
present Q, the q-subgroup Q; in th etheorem equal to the present Qo;—1, for all i =1,2,... ,n =k,
and the p-subgroup P; in the theorem equal to the present ﬁgj, forallj=1,...,n=k.

Proof. Our present group G has order p®q®, as required in Theorem 4.24. By definition @ is an
arbitary subgroup of G satisfying all the conditions in Theorem 6.19. In particular it is a g-group,
as it is a 7’-Hall subgroup of of G(o3,) and ©’ = ¢. For each i = 1,2,...,k, the subgroup @gi,l
is the intersection Go;_1 N Q by Deﬁmtlon 6.28. Since G1 <dG3d--- <Gy is a series of normal
subgroups of Ga—1, this 1mphes that Ql < Q3 - ng 1 is a series of normal subgroups of
ng 1, as required of Q1 < Q9 <--- <@, in Theorem 4.24.

For every j = 1,...,k the group ﬁgj was picked to satisfy the conditions in Proposition 6.64.
Hence P is a p-group, as it is a m-group and 7 = p. Furthermore, according to (6.65¢) the group
ﬁgi normalizes ]ng, whenever 1 < j <1i <n =k, as required of P;, P,, ..., P, in Theorem 4.24. In
addition, (6.65a) implies that P»; also normalizes @gj_l, whenever 1 < j <i < k.

According to Lemma 6.60 and (6.65a) we get that

N (P, Qaj—1 in Gajab; o)) = Paj x Qaj_1, (7.5)

forj=1,..., k. But @21_1 < Gy = Goi—1(03,,) by (6.29a). Hence @22-_1 normalizes Py, and fixes
as;, for all j =1,...,i— 1. This, along with (7.5), implies that QQZ 1 normalizes the semidirect

product PQJ X ng 1, whenever 1 < j < ¢ < k. Slmllarly, we use Q < G(a%) to see that @

also normalizes the above semidirect product, PQJ [ QQJ 1. Therefore the groups Q (Q2;—1 and le
satisfy the conditions (1) and (2) in Theorem 4.24 and the lemma follows. O

Lemma 7.4 implies

Theorem 7.6. There exist linear characters Bé’i_l € Lin(@%_l) such that the following hold:

ﬂAQVifl € Irr(@%—l‘ﬁgp& sty 311/)7 (773)
@%—1(35]'71) = Q2i1, (7.7b)
Poi(3%;_1) = C(Qai—1 in Py;) = Poi(Bai—1), (7.7¢)
and R R
B5_q1 extends to an irreducible character of Q, (7.7d)

whenever 1 < j <1 < k. By convention Bil =1.

Proof. According to Lemma 7.4, the groups {Q QQl 1, Pgl}z 1- satisfy the conditions in Theorem
4.24, with the series Q1 <1Q3<1 <1Q2k 1<1Q here in the place of the chain Q1 <dQ2<---Q, Q11 =

(@ in Theorem 4.24, and the sequence Pg, Py, .. ng here, in the place of the sequence Py, P, ..., P,
there.
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Note also that Corollary 6.72, and in particular (6.73a), provides the additional information
that C(Q2;—1 in Py;) = Pai((2i—1). This, along with the conclusions (a) and (b) in Theorem 4.24,
implies the theorem. O

An immediate consequence of (7.7b) is
Remark 7.8. For every ¢ =1,...,k and j = 1,...,1, the character Bé’j_l is the unique character
of @Qj,1 that lies under 32”1-71 € Irr(@\gi,l). Hence any subgroup that fixes Bé’ifl also fixes 32’/]'717
as it normalizes @gj_l = @27;_1 NGoj—1.

In the next lemma we collect some easy remarks that follow from the properties (7.7).

Lemma 7.9. For everyi=1,...,k we have
1521’(351'—1) = ﬁ2i(3?a T ’Béli—l)a (7.10a)
and
Poi(B1,- -+, Baic1) = C(Q in P3) = Poi(Bai—1) = C(Qai—1 in Po;) = Poy(%;_,). (7.10b)

Proof. Equation (7.10a) follows easily from Remark 7.8, and the fact that Py; normalizes @gj,l
whenever 1 < j < i < k. The equation (7.7c), along with (6.66) and (6.73b), implies (7.10b)
Therefore the lemma holds. O

As the next proposition shows, the group ]321-(@”2-_1) has properties similar to those of ]521-(521-_1)
(see (6.63) and (6.65b)).

Proposition 7.11. For alli=1,...,k we have
]321'(312/2'—1) = ﬁm(@lya T 7351’—1) € Sylp(N(PQ*k’ @21'71 in G2z’(04§i—2,ﬁi/» T v/égi—l))) =
Sylp(N(PQ*k: in G2i(a§i—27132yi—1)))' (7.12)
Even more, ﬁgi(ﬁgi_l) is the unique p-Sylow subgroup of N(Py, in Gzi(a;_z,ﬁgi_l)), and
N(Py;, in Goi(a3;_o, 05 1)) = Poi(B5;_1) x Q2i—1 = C(Q2i—1 in Pa;) X Qi1, (7.13)

whenever 1 < i < k.

Proof. Let i =1,...,k be fixed. According to (6.61) we have
N (P, Q2ic1 in Goi(ad; o)) = Pai  Qaic1.

Therefore, ﬁgz(,élf, e ,Bgi_l) is a p-subgroup of N(Pj;, @2,-_1 in Ga;(ad; o, ﬁAl”, . ,BQVZ»_I)). Hence

there exists an element s € Q\Qi,l such that

P5(BY,....05_ 1) € SyL, (N (P, Qai—1 in Goi(ad;_o,3Y,...,0%_1))),and (7.14a)
Poi(B7,- - Bric1) < Pyi(BYs -+, Byiq)- (7.14b)

But Qo1 fixes 57, ..., 3% _, by (7.7b). Thus P5(8Y, ..., 3% 1) = (Pu(BY,...,3%_1))*. A cardi-
nality argument, along with (7.14b), implies that

ﬁ%(BTa s BQVi—l) = ﬁéi(@i s BQVi—l) = (ﬁm’(ﬁf’ cee aBQVi—Q)S-
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This, along with (7.14a) and (7.10a), implies that
ﬁ2z‘(32’j¢—1) = ]521(31/’ S ’@2”1—1) € Sylp(N(P;kﬂ @21'—1 in Ga;i(ag;_s, Blyv e 7351‘—1)))~

In view of Remark 7.8, every subgroup of G that fixes 651;—1 fixes 32”]»_1 € Irr(égj_l), for all 1 <
J <i. Hence N(Pj,Q2i—1 in Goi(ad,_o, 087, .., 0% 1)) = N(Ps in Goi(a3;_9,55_1)). Therefore
(7.12) holds.

According to Proposition 6.35, we have le 1 € Syl (N (P35, in Gai(as;_5))) . Hence Q-1 €
Syl,(N(Py;, in Gai(a3;_,,3%_1))). This, along with (7.12), implies that

N(Pyy in GQi(a;i—%BQVi—l)) = ﬁQi(BQVi—l) X @2i—1- (7.15)

But according to (7.7c¢) we have ﬁgi(ﬁg’ifl) = C(Qai_1 in Py;). This, along with (7.15), implies
(7.13). Hence Proposition 7.11 holds. O

Definition 7.16. For every i = 1,...,k we define d&y; € Irr(ﬁgi (Bgi_l) to be the @gi_l—Glauberman
correspondent of o3; € Irr(FPy;).

Note that the do; are well defined, as a3, € Irr(Py;) is @zi_l—invariant (since @gi_l < G(a3))
and Pgi(ﬁgz;l) = C(Qgifl in P2*z) (see (710b))
We can now prove the main theorem of this section.

Theorem 7.17. The set R o A

{Qai—1, Pai(B2i—1)05_1, G2i Yy (7.18)
is a triangular set for the series 1 = Gy I G} <--- I G, I G in (6.76). Furthermore, it satisfies
Property 6.89, while (6.88b) holds for this triangular set, with Q' = Q.

Proof. We will first prove that (7.18) is a triangular set for the above series, i.e., we will verify the
properties (5.17) for that set and series. Assume that i =1,...,k is fixed.

The equations in (5.17a) hold trivially. As Q, = Q1or = Gy (see (6.34)) and (Y € Irr(Q1),
(5.17b) holds, while (5.17e) is trivially true for i = 1.

Assume that i > 2. Accordmg to (6. 29&) the group ng 1 is a g-Sylow subgroup of Gb;_;.
Furthermore, Q2Z 1 normalizes ng ] = QQZ 1 N Gaj—1, and fixes ﬂzj 1 € Irr(ng 1), by (7.7b),
for all j =1,...,i — 1. The group le,l also fixes aj;, as it fixes ag;, for all such j. Therefore,
it fixes the @gj_l—Glauberman correspondent do; € Irr(]szj (ﬁé’j_l)) = Irr(C(@gj_l in P5;) of a;in
Definition 7.16, for all j =1,...,7 — 1. Hence

Qoi—1 < Gy (G2, ..., G2, 01, ..., By;_3) < Gy 1.
As Qa1 € Syl (G5;_1) we get that

Qi1 € Syl (G WGy i, BY, ., By 3)).

Hence (5.17¢) holds. R _ N R R

As Pgi,Q(ﬁgi_?)) = C(Qgifg in Pgl’, ) by (7 7(3) we have that C(PQi,Q(ﬁQVi_?)) in Qgifg) == Qgifg
Therefore, the character 32”1»_3721-_2 € Irr(C/( Py (62Z 3) in @Qi_g)) concides with ﬁ;i_3. This, along
with (7.7a), makes the condition (5.17f) valid.
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For the p-groups and characters we have that 1521‘(3'2@_1) = C(@gi_l in ]52,) fixes aj;, for all
j =1,...,k, as it is a subgroup of G’ = G(a%) It also centralizes @21_1, and thus centralizes
QQJ 1 < Qg, 1 forall j =1,...,i. Therefore Pgl(ﬂgz 1) fixes the ng 1-Glauberman correspondent

doj of aj;, for all j =1,...,4. In view of Remark 7.8, we also have that Poi(B%;_,) fixes 52]-_1
all such j. Hence

Poi(35_1) < Goi(ayy o, .oy Goja, 3y, 35 1) < N(Pyjp in Gai(ads;_o, B5_1)). (7.19)

According to Proposition 7.11, the unique p-Sylow subgroup of N (P, in Ga;(as,_s, ﬁ?z 1)) is the
group sz(ﬁ2Z 1)- This, along with (7.19) and the fact that G%; = Ga;(c3, ), implies that

Pyi(By;_ 1) € Syl (Gai(dy, Gia, - . Gaima, BY ... B8 1)) = Syl (Ghi(Ga, . .., daima, BT, ..., B 1))

Hence (5.17c¢) holds.

To prove (5.17d), we first observe that @21;1 normalizes both @21;3 = Gg;_3 N Q\gi,l and
P o = Py N Gai_a, since @2@' —1 < G' = G(a}),) normalizes Py, Hence the g-group @gi_l
normalizes the p-group C (Q\Qi,g in Pj; ,) . Hence

C(@Qi—l in Py o) = C(@Qi—l in C(@%—s in Py;_5)).

By convention we set @_1 := 1, so that the above equation holds trivially for i = 1. Let &w2;—22;—1 €
Irr(C (@21;1 in Pj;_,)) denote the Q\gl 1-Glauberman correspondent of the irreducible character
Goi—o € Irr(C (@2Z 3in Py o). (Note that since le 1 is a subgroup of G’ = G(ad,) it fixes
al,_o € Irr(Py;_,) and normalizes ng 3, so it fixes the ng 3-Glauberman correspondent éo;_o
of ab;,_,.) Then Ggj_292;—1 is the QQi,l—Glauberman correspondent of o3, 5. Hence &o;—22i—1
lies under the Qo i-Glauberman correspondent dg; of 0, as oG, o lies under aj;. Therefore
Qi € Ir]r(ﬁgz(ﬁgZ 1)|62i—2.2i—1). So (5.17d) is satisfied. This completes the proof of (5.17). Hence
(7.18) is a triangular set for (6.76).

The group ng 1= QﬂGg, 1 is clearly a normal subgroup of Q forall7 =1,..., k. Furthermore,
Q fixes the character ﬁ% 1, by (7.7d). Hence, Remark 7.8 implies that Q ﬁxes 521 1, for all
i =1,...,k As @ is a subgroup of G' = G(o3,), it fixes aj;, for all « = 1,... k. Since Q
normalizes Qgi_l, it fixes the @Qi_l—Glauberman correspondent dog; of a3, for all such ¢. Thus
Q < G'(&,. .., a0 0%, ..., 3% ). So Q satisfies (6.88b).

Definition 7.16 implies that the triangular set (7.18) satisfies (6.90c). It also satisfies (6.90b),
according to Proposition 7.11. As we have already seen, the subgroup @Q2;—1 of G’ normalizes Py;.
Hence

P;i(ﬁgifl) < N(@?i—l in P;) = C(@Qi—l in PZ) < Pikz(@/zq)
So Py(B%, 1) = N(Qai_1 in Pj;) = C(Qai_1 in Py;). This, along with (7.7¢), implies that
ﬁQi(Bgi—l) = N(@zz‘q in PQ*Z) = C(@%—l in PQ*Z) = PZ*i(BQVi—l)'

Thus (6.90a) also holds. Hence the set (7.18) satisfies Property 6.89. This completes the proof of
the theorem. O

All the work in Chapters 4-6 was done to prove the following theorem
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Theorem 7.20. Let {1 = xo0,X1,---, X2k} be a character tower for the series (7.2), and let (7.3)
be its unique, up to conjugation, corresponding triangular set. Then there exists a character tower
{1 = xt, XY, - X8} for the series (7.2), with corresponding triangular set {Q%;_,, Py, P§ =
18y, |, a. a8 =1} so that the following hold

Q2i1 = QY11 and By = BY;_ 1 o1 (7.21a)

Py = Py and o; = o), (7.21b)

By;_1 is the Py - Py; o« -+ Pyp-Glauberman correspondent of 32”1-,1, (7.21c)
as; is the Q% ..., Qy;_q-correspondent of o, (7.21d)

Qi1 = Q2i-1,2k; (7.21e)

Q normalizes Q5i_1, (7.21f)

B3k—1.2k extends to Q, (7.21g)

whenever 1 < i < k.

Proof. For the fixed triangular set (7.3) of the character tower {1 = xo,X1,-.., X2k} We saw in
Chapter 6 how to pick groups @21 1 and ﬁgz, along with characters ,322 1 € Irr(@gZ 1) satisfying all
the conditions in Theorem 6.19 Proposition 6.64 and Proposition 6.51. Furthermore, we proved at
the beglmng of this chapter that we can replace the characters o;_1 with new characters 521 1 €
Irr(Qgi—1) that satisfy (7.7). Even more, as Theorem 7.17 shows, the set (7.18) is a triangular set
for (6.76) that satisfies Property 6.89, while (6.88b) holds for this triangular set, with Q in the
place of Q'. According to Theorems 6.95 and 6.115, the set (7.18) determines a triangular set

k
{ng‘—pppréj = 1|ﬁ§i—1,045¢a045 = 1}i:1 (7.22)

for the series (7.2), such that (6.97) and (6.116) hold with Q, Q2;_1 and Pa;(B2i_1) in the place of
Q', QY4 and P}, respectively. In view of Theorem 5.6, the triangular set (7.22) corresponds to a
unique, up to conjugation, character tower {1 = xg, x{, ..., X5, } for the series (7.2).

To complete the proof of the theorem it suffices to show that the set (7.22) has the properties
(7.21). As it satisfies (6.116), the equations in (7.21b) follow trivially from the first part of (6.116b),
and (6.116¢). It also satisfies (7.21a) and (7.21d) as it satisfies (6.116a) and (6.97e) respectively.
In addition (7.21c) holds, since the set (7.22) satisfies (6.97c) and Corollary 6.113. Furthermore,
according to (6.97b), the group Q% _; contains @21-,1, as Q;_,(ad,) = Q\Qi,l. In addition, (6.33)
implies that @gi_l > QQ2i—1,2k- We conclude that QY;_; > Q2i—12x and (7.21e) follows.

Clearly (6.97a) implies that Q normalizes Q%;_q, forall i =1,... k. Thus (7.21f) holds.

The last part, (7.21g), follows easily from (7.7d), as Bé’k_l = By _1.0¢ by (7.21a). O

Furthermore, the new triangular set shares one more group with the old one, as the next theorem
shows.

Theorem 7.23. The group Cj satisfies the conditions in Theorem 6.19 for the new groups. Hence
we may assume that Q¥ = Q. Then

Q" =Q = Q(B%_1.01) = Q(BY_1.01)- (7.24)

Proof. For the proof we need to show that Q satisfies (6.20) and (6.21) for the new groups. Clearly,
Q is a w'-Hall subgroup of G(as;'), as as;, = ajy, by (7.21b), and Q is a 7'-Hall subgroup of G(a3,).
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Thus (6.20a) holds.

In view of (7.7d) the character BQkal is fixed by @ Thus, Remark 7.8 implies that @ fixes 32”1-71,
for all = 1,..., k. Hence @ fixes By, 191 = B2Vi—1v for all such 7. Furthermore, @ normalizes the
groups QY;_,, by (7.21f), and P;;" = P2*Z-7: P}, NGy, as it fixes o € Irr(Py;,), whenever 1 <1 < k.
But (5.141), applied to the new groups, implies that Py, = N(QY,...,Q%_, in P,"), for all such
i We conclude that @ normalizes Py, for all @ = 1,...,k. Hence @ fixes the Py; - Py o+ Py).-
Glauberman correspondent 35, | € Irr(QY; ;) of 8%, (see (7.21c)), as it fixes Bgi_l. So

@ = @(ﬁgiflzk) = @(52”@—1)7

whenever 1 < i < k.
Even more, Q ﬁxesAaEZ-, as it fixes a,. We saw above that it and normalizes Q5; ; and Py}, for
all i =1,...,k. Thus @ fixes the Q), ..., QY,_;-correspondent of; of aj; in (7.21d). Hence

@(agz) = @7
whenever 1 <17 < k.

According to Theorem 5.88, the cPy, ... ,cPy, cQY,...,cQ% _,-correspondent of x4, € Irr(Ga;)
is the character x3, 5, = ag; X 05 1 9; for all 4 = 1,...,k. As we have already seen, the group
@ fixes the characters of; and 35,_;, and normalizes the groups ngfl and P2Vj for j =1,...,14.
Thus it also fixes both the Py -Glauberman correspondent 35;  o; of 33 ;, and the direct product
X5i2; = 03; X B3;_1 o;- Therefore, Q also fixes the cPy, ... ,cPy,cQY, ..., cQy _ -correspondent x5,
of Xl?liﬂi’ for all i = 1,...,k (see Diagram 5.5 applied to the new characters). Similarly, we can
see that @ fixes X51—1,2z‘—1 = O‘gi—2,2i—1 X By;_1, as well as the cPY,...,cPy_5,cQY,...,cQ% _;-
correspondent x5, _; of Xgi—l,%—l‘

In conclusion,
@ = @(52”#1,214) = Q\(/BQVi—l) = @(0451') = @(ng) = @(X%—ﬁy (7.25)

whenever 1 < < k.

It is clear that (6.20c) and (6.20d) hold, with the new characters B3i—1> 831 2k W335 X35 X551
and o}, in the place of the analogous original characters. (Actually, in (6.20d) we have equality.)
Furthermore, (7.25) also implies that the group Q = Q(ﬁgi_mk) is contained in G'(8y;_; 4,) N
GO, X5 ) NG (XY, x5 NG (BY, ..., B5_4), Thus it is a n’-Hall subgroup of each group
in this intersection, as it is a 7/-Hall subgroup of G’. Hence @ satisfies (6.20b, c, d) for the new
groups.

It remains to show (6.21). But, as (7.21f) implies, @ = Q\(ﬂz”i_L%) normalizes Q%,, ,, for all
i=1,...,k—1. Thus (6.21) holds. This completes the proof of the theorem. O

An easy consequence is

Corollary 7.26. Let {1 = xo0,X1,---, X2k} be a character tower for the series (7.2), and let
(7.3) be its unique, up to conjugation, corresponding triangular set. Assume further that @ sat-
isfies the conditions in Theorem 6.19 for this set and tower. Then there exist a character tower
{1 = x¢:x¥s---, X5} for the series (7.2), with corresponding triangular set {Qb,_,, Py, Pj =

130



1|8y 1, o, a5 = 1};‘“':1, and a group C/QT’ that satisfy

Py = Py" and of), = ay)), (7.27a)
Q=0qQ", (7.27b)

@ fizes the characters a5, B5; 1, X5, (7.27¢)
B3i—12k extends to Q=0 (7.27d)

foralli=1,...;kand j=1,...,2k.
Proof. Follows immediately from Theorems 7.20 and 7.23. O

If instead of the series (7.2), we consider the bigger series
1=GodG1 <-4 G, A Gopy1 <G, (7.28)
then the conclusions of Corollary 7.26 still hold, i.e.,

Corollary 7.29. Let {1 = xo0,X1,---,X2k+1} be a character tower for the series (7.28), and let
{Q2i+1,Pzi|ﬂzi+1,agi}f:0 be its unique, up to conjugation, corresponding triangular set. Assume
further that @ is picked to satisfy the conditions in Theorem 6.19 for this set and tower. Then there
exist a character tower {1 = xg,xY,-.., X5} for the series (7.2), with corresponding triangular set

{QY,_1, Py, P} =1|5%,_1, 05, af = 1}?21, and a group @\” that satisfy

Py, = Py and of), = ay), (7.30a)
Q=0q, (7.30b)
QV fizes the characters a5, By 15 X s (7.30c)
Byi—1,0r extends to Q=0qQ, (7.30d)
foralli=1,...;kand j=1,...,2k.
Proof. Follows easily from Corollary 6.24 and Corollary 7.26. O
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Chapter 8

The 7,7’ Symmetry and the Hall
System {A,B}

8.1 The group P

Let G be a finite group of odd order. As we saw in Chapter 6, whenever we fix a normal series
1=Go<--- <G, <G of G that satisfies Hypothesis 5.1, a character tower {x; € Irr(G;)}*, for
this series and its corresponding triangular set, then we can get a m-Hall subgroup @ of G(ak,) with
the properties described in Theorem 6.19. We also saw how to get the m-groups P. Furthermore,
we used Q and P in Chapter 7, to replace the given character tower with another one having the
properties described in Corollary 7.26.

Of course the m — 7’ symmetry in the construction of the triangular sets implies that results
similar to those for the 7’-groups also hold for the m-groups. That is, whenever the above series, the
character tower and its triangular set are fixed, we can find a w-Hall subgroup PofG"=G (B3_1)
that satisfies a modification of Theorem 6.19, that is,

P € Hall(G(83_1))

P(agii-1) € Hally (G (ag;.91-1)) NHall (G" (x1, .- ., x2:))N
Hallw(G”(Xl, RN XQZ'_H)) N Hall,; (G”(Oég, cee,02i)), (81b)

(8.1a)

]3(042@21,1) = ﬁ(Xl; N 7X2i) = ﬁ(le ce 7X2i+1) = ﬁ(ag, PN ,agi) and (810)
P(x1,- > x2) < P(Bu,- ., Pairn), (8.1d)

foralli=1,...,l — 1. Furthermore,
ﬁ(agml,l) normalizes Py; o, (8.1e)

forall¢=0,1,...,k—1.
In the particular case of a p?¢’-group G (where p # q are odd primes), we get the analogue of
Corollary 7.26 for the m-groups, interchanging the roles of p and ¢, that is,

Theorem 8.2. Let {1 = xo, X1, -- -, X2k} be a character tower for the series 1 = Go<G1<- - -Gy,
and let {Q2i—1, Poi, Py = 1|fB2i—1, 2,9 = 1}‘;“:1 be its unique, up to conjugation, corresponding
tri(mgular set. Then there exist a character tower {1 = xg,x{s---s Xop_1} for the series 1 =
Go<Gy Q- QGox_1, a corresponding triangular set {QY. |, P¥._,|B%, 1, ok, 4 }=F and a p-group
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pv , that satisfy
Qa1 = Q4 and B3y = By,
P =P,
PV fizes the characters ;s B5i—1, X5, and

;91 extends to P = P,

foralli=1,...;l—1andj=1,...,2k—1.

8.2 The Hall system {A,B} of G

Let G be any finite group of odd order, and 7 any set of primes. If A € Hall;(G) and B € Hall/(G),
then we call the set {A,B} a Hall 7, n'-system for G, or, more shortly, a Hall system for G.
Note that G has a single conjugacy class of such Hall systems, because it is solvable. Furthermore,
if H is a subgroup of G, we say that the Hall system A,B of G reduces into H, if ANH,BNH
form a Hall system for H.

We start with a finite odd order group G, and we fix an increasing chain

1:G0ﬁG1ﬁG2§"'§]Gn:G, (8.3&)

of normal subgroups G; of G, that satisfy Hypothesis 5.1 with n > 0 in the place of m, i.e., G;/G;_1

is a m-group if 7 is even, and a 7’-group if 7 is odd, for each i = 1,2,...,n. We also fix a character
tower

{xi € Irr(Gi) }iep (8.3b)

for the above series.

We denote by k' and I’ the integers
K =[n/2] and I' = [(n +1)/2]

corresponding to k and [ in (5.7), with n in place of m. So 2k" and 2I’ — 1 are the greatest even and
odd integers, respectively, in the set {1,2,...,n}. As in Section 5.3, we construct a triangular set

{Par, Qaic1]0r, Baic1 Fo2lg iy (8.3¢)

corresponding to the chain (8.3a) and tower (8.3b). It, in turn, determines the groups Pj. and
Q5_q, forr=1,2,... K andi=1,2,...,l'. We know by Corollary 5.157 that P}, and Q3,_, form
a Hall system for G,,(x1,Xx2,---,Xm), whenever m = 1,2,...,n and k, [ are related to m by the
usual equations in (5.7). In particular, Py, and Q3,_; form a Hall system for G(x1, x2,---,Xn) =
Gn(X1,X2,- -+, Xn)- Furthermore, the groups G(x1,...,Xm), for m = 1,...,n, form a decreasing
chain, i.e.,

G>G(x1) =2 G(x1x2) =2 =2 G(X15- -5 Xn)-
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So we may choose A and B satisfying

A € Hall,(G), B € Hall.(G), (8.4a)
A(Xla X2+ 7Xh) and B(X17 X2y 7Xh) form a Hall SyStem for G(X17 X2y Xh)7 (84b)
A(Xb X2y .- 7Xn) = PQ*k’ and B(Xh X250 Xn) = Q;l’—h (840)

forallh =1,...,n. So (8.4b) says that A, B reduces into G(x1, x2,--.,Xn), foreach h =1,2,... n,
while (8.4c) says that A, B reduces to the Hall system Py, Q5,_; for G(x1,x2,---,Xn)-
We fix an integer m = 1,...,n and we consider the normal series

1=Go<G1<9---4G,, <4G. (8.53)

The sub tower
{xi € Irr(Gi) } (8.5b)

of (8.3a) is a character tower of the above series. If k and [ are defined as in (5.7) for m, then
Remark 5.125 implies that the subset

{Par, Qai—t]aoy, Baic1 Fl iy (8.5¢)

of (8.3¢c) is a triangular set corresponding to the chain (8.5a) and tower (8.5b).
As in (5.129a), we set G* := G/(x1,X2,-- -, Xm). S0 we can define the intersection groups

A" =ANG" =A(x1,---,Xm)s
B*:=BNG"=B(x1,---,Xm)- (8.6)

Note that these definitions depend heavily on m. Then we can prove

Proposition 8.7. Let m = 1,...,n be fized, and k,l be its associate, via (5.7), integers. Then

P 9A* < A and Q%_, <B* <B, (8.82)
N(Py;, in B*) € Hall/ (G(a5y, X15 -+ s Xm))s (8.8b)
N(Q%_; in A*) € Hall:(G(B5_1, X15- - - s Xm))- (8.8¢)

Proof. We fix the integers m, k and [, and the triangular set (8.5¢) corresponding to the tower
(8.5b). Then Corollary 5.157 implies that P, and @3, ; form a Hall system for G7,. According to
(8.4b) the groups A* = ANG* and B* = BN G* form a Hall system for G*. In view of (8.4c) the
group A* contains Py, and hence contains Py < Pj,. Similarly, B* contains Q3;,_;. Since Py
and @Q3;_; form a Hall system for G7,, it follows that

P = A*NG: <A (8.9a)
Qi =B NG, <AB*. (8.9b)

The subgroup G}, = G* N Gy, is normal in G*. Hence conjugation by elements of B* permutes
among themselves the Hall m-subgroups of Gj,. One of those Hall m-subgroups is Fj;.. Since
G, = P35, Q5,_,, the normal subgroup Q3,_; of B* acts transitively on those Hall w-subgroups. It
follows that

B* = N(Py;, in B*) - Q5;_;. (8.10)

This implies that N (Py, in B*)-G, /G, is a Hall 7’-subgroup of G*/G},. Since N (P, in B*)N
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Gy, = N(Ps, in Q3;,_,) is a Hall 7’-subgroup of N (P, in Gj},), we conclude that

N(Pj, in B) € Hall,(N(Py;, in G*)). (8.11)

Now the group N(FPj;, in B*) normalizes Pj,, and thus normalizes Pj; = P N Go; for all
i =1,2,...,k. As N(Py, in B*) is a subgroup of B*, it normalizes @Q%,_; = B* N G;,. So it
normalizes Q%j—l = @5,_1 NGaj_1 for each j = 1,2,...,[. Since it normalizes both Pj; and @Q3;_;,
it normalizes Po; = N(Q3;_; in Py;) (see (5.160)), for each ¢ = 1,2,..., k. Similarly, it normalizes
Q2j—1 = N(P3;_5 in Q5;_1) (see (5.161)), for each j =2,3,...,1. It also normalizes Q1 = G1. The
definitions of Q2;—1,2; and Py 2,1 in (5.22a) and (5.22b) show that they, too, are normalized by
N(Py, in B¥). Thus N (P, in B*) normalizes every subgroup appearing in the triangles displayed
as (5.20a) and (5.21a) in Chapter 5.

The group N(Py, in B*) also fixes all the characters x1, X2, .., Xm, since B* does. Because it
also normalizes @1, P, Q3, ..., it leaves invariant the cQi- , ¢Ps- , ¢Q3-, ... correspondences in
Table 5.5. Hence it fixes all the characters in that table. In particular, it fixes aw;, for: =1,2,...,k
and (o1, for j = 1,2,...,1. It also fixes all the characters ag;2;j—1 and (2,_12s in the displayed
triangles (5.20b) and (5.21b). Because it fixes all the groups and characters entering into the
definition of a3;, it also fixes that character for each ¢ = 1,2,... k. Similarly, it fixes 53, ; for
i=12,...,1.

At this point we know that N(Py, in B*) is a Hall n’-subgroup of N(Pj, in G*) fixing o, .
Hence it is a Hall 7’-subgroup of G* (a3, ). Since G* = G(x1,x2,---, Xm), We get that (8.8b) follows
immediately.

The proof of (8.8¢) is similar, with the roles of m and 7’ interchanged. So we omit it. O

The proof of Proposition 8.7 implies

Corollary 8.12. Both N(Py;, in B*) and N(Q3%,_, in A*) fix the characters ag;, fori=1,...,k,
and Boj—1, for j =1,...,1. They also fix ag—221—1 and Boj—12k-

With the above notation, we can now prove

Theorem 8.13. Assume the series (8.3a), the tower (8.3b) and the triangular set (8.3c) are fized.
Assume further, that m is any integer with 1 < m < n, and consider the series, tower and triangular
set appearing in (8.5) for that m. Then we can choose a w'-Hall subgroup @ of G' = G(c3,), to
satisfy the conditions (6.20) and (6.21) in Theorem 6.19 for the set (8.5¢) and the tower (8.5b),
along with the property

N(Py, in B(x1, -, x2k)) = Q(Bok—1.28)-

Hence

~

Q(Bok—1.2k) - Q3—1 < B(x1,.--,x26) < B. (8.14)

Proof. Suppose first that m = 21 —1 is odd with [ < ', so 2k = 21 —2. Then (6.20b) tells us that the
groups G'(Bar—12k), G'(x1,---,X2k), G'(x1,---,x2k—1) and G'(B1, B3, .., Box—1) have a common
Hall 7’-subgroup, (where G’ = G(a4,;)). Proposition 8.7, and in particular (8.8b), with 2k = 2] — 2
in the place of m there, implies that the 7’-group N(Pj, in B*) = N (P, in B(x1,...,x2k)) is a
Hall 7’-subgroup of the second group on this list. By Corollary 8.12 the character fax_1 2 is fixed
by N (P}, in B(x1,...,x2k)). Hence the latter is a subgroup of G'(B2r—1,2¢). So it must be a Hall
7/-subgroup of that group, because of its order. Similarly, it is contained in both G'(x1, ..., x2k—1)
and G'(B1,. .., Pok—1). Hence it is a Hall 7'-subgroup of those groups, too. So it satisfies all the
conditions for @(ﬁgk_l,gk) in (6.20b). Clearly it also satisfies the equations (6.20c), as these follow
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from (6.20b). Furthermore, N(Ps, in B(x1,...,X2k)) fixes ag, a4, ..., as, by Corollary 8.12, and
thus satisfies equation (6.20d).

According to (8.8a) (for m = 2] — 1), the group Q9;_1 is a subgroup of B(x1, ..., X2k, X21-1) <
B(x1,---,x2k). Furthermore, Q21 normalizes Py, = Py, _,, by (5.10a). Thus Q91 is a subgroup
of N(Pj, in B(x1, ..., Xx2k)). By Corollary 8.12, the latter normalizes G(aa, . .., a2, 51, - - ., Bok—1)-
Hence it normalizes Goj_1 (v, . . ., aak, B1, . . ., Pok—1) = Qoi—1 X Pay, where the equality follows from
(5.42c) as 2k = 21 — 2. Hence N(Py, in B(x1, ..., x2x)) normalizes Q91 x Py, and contains Qg;—1.
Therefore, it normalizes Qy_;. Thus it satisfies (6.21). Evidently we can choose Q € Hall,(G") so

~

that N(PQ*k in B(Xl, o ,ng)) = Q(ﬂ?k—l,Qk)-

So Q(Bak—1.2k) < B(xi,---,x2k). But Q3 is contained in B(x1,...,x2-1), by (8.8a)and
(8.6), asm =2l — 1. As 2k =21 — 2 < 2] — 1 in the odd case, B(x1,...,x2-1) < B(x1,---,X2k)-
Hence Theorem 8.13 follows for any odd m.

If m = 2k is even and strictly smaller than n, then we can still form the 2k + 1 series, by adding
the group Gapy1 and its character xopy1. Then, according to Corollary 6.24, the even system,
(where m = 2k), with the odd, (where m = 2k + 1), share the group @ This, along the already
proved odd case of Theorem 8.13, implies the first part of Theorem 8.13 when m = 2k < n.

If m = 2k = n, we can’t form a bigger odd system, but we know exactly what group @(ﬁgk_lygk)
is. Indeed, as Gop/Gok—1 is a m-group, and @(,82]@_172]6) is a 7'-Hall subgroup of G'(fax—1,2k), by
(6.20b), it must be a n’-Hall subgroup of G%,_,(f2x—1,2¢). This, along with (6.29b), implies

Q(Bor—1.26) = Q(Bar—1,2) N Cak—1 = Qop—1(Bok—1,2%)-

By (6.33) this gives R

Q(B2k—1,2k) = Q2r—1,2k-
On the other hand, in the case m = 2k = n we have 2I' — 1 = 2k — 1. Thus (8.4c) implies
B(x1,---,Xn) = Q%,_,. Hence

N(Pﬁﬁk in B(Xh ‘e ,sz)) = N(P2*k in Q;k—l) = Q2k—1,2k‘

So the first part of Theorem 8.13 holds in the case m = 2k = n.

Furthermore, when m = 2k is even, (8.8a) and (8.6) imply that Q%,_; < B(x1,.-.,x2r). Thus
(8.14) follows for the even case. This completes the proof of Theorem 8.13 O

Of course, a similar result holds by p,g-symmetry for ]3(0425_2721_1) - Py, whenever | =
2,3,....,1.

Theorem 8.15. Assume the series (8.3a) the tower (8.3b) and the triangular set (8.3c) are fized.
Assume further that m is any integer with 1 < m < n and consider the series of subgroups, the
character tower, and the triangular set appearing in (8.5) for that m. Then we can choose a w-Hall
subgroup P of G(B3_1), to satisfy (8.1) for the set (8.5¢c) and the tower (8.5b), along with the
property R
N(Q5_1 in A(x1,...,x2-1)) = Pag—2,21-1)-

Hence R

P(agi—221-1) - Py, < A(x1,---,Xx21-1) < A. (8.16)
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8.3 “Shifting ” properties

We assume that the normal series
Go=1<G1<9--- 4G, =G (8.17)
is fixed for some n > 2, and satisfies

G2 = Gar x G is a m-split group (see Definition 5.163) and (8.18a)
G fixes the character ;. (8.18b)

Assume also that the character tower

{1 :X07X17---7Xn} (818C)

is fixed, while the set
{Q2i—1, Por|f2i-1, 0427«}2:’]17«:0 (8.18d)

is a representative of the conjugacy class of triangular sets that corresponds to (8.18¢c). Furthermore,
we fix a Hall system {A,B} of G that satisfies (8.4), that is

A € Hall (G),B € Hall/(G), (8.18e)
A(x1,x2---,xn) and B(x1, X2, ..., xn) form a Hall system for G(x1, x2,---,Xn);s (8.18f)
A(x1,X25 -5 Xn) = Py and B(x1, X2, -+, Xn) = Qop_1, (8.18g)

for any h =1,2,...,n. According to Corollary 5.177 this set satisfies

G2 = P2 X Ql, (819&)
X2 = X2, X X2, = Q2 X [, (8.19b)

where P, and Q1 = G are the m-and n’-Hall subgroups respectively, of G.

We replace the first 7’-group G7 = Q1 appearing in (8.17), by the trivial group and consider
the series

149G =196 =P, <G =G3<9GS =Gy < 4G =Gy = G. (8.20a)

We call the series (8.20a) a shifting of the series (8.17). Note that (8.20a) is a normal series of G,
that satisfies Hypothesis 5.1 with G§ = 1. The characters

Lxi = 1,X5 1= a2, X3 1= X3, X4 = X4, -, Xp, '= X, (8.20b)
form a character tower for the series (8.20a). In addition, the set
UK
{QI=1=F,Q5_1=Q2i-1, P = Por|f] =1 =05, 851 = f2i-1,05, = o }; 75,1 (8.20c)

is a triangular set for (8.20a), corresponding to the character tower (8.20b) (this can be very easily
verified using the fact that (8.18d) is a triangular set for (8.17) corresponding to (8.18c)). Note
that the groups Q3;_; 5;, P5, 9,11 and their characters 33,_; ,; and 3, 5,1, respectively, remain the
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same as those of (8.18), whenever 2 <i < j <k and2<r <t <l'—1,ie,

Qgi—l,Qj = Q2;-1,2; and P28r,2t+1 = Poroty1, (8.21)

/Bgifl,Qj = [32i—1,2j and agr,2t+1 = Q27 2¢+1- (8.22)

Also, the product groups P2>k =Py P}, remain unchanged, for every k = 1,... k', because
Pj. = Py, whenever 1 <r < k'. In addition, for any such k, the irreducible character o3, € Irr(Py;)
was chosen as the @3, . .., Qor_1-correspondent of agy, (see Definition 5.147). As neither of the above
groups nor the character ag; changes when passing to the shifted system (8.20), we conclude that
also the character ay)’ € Irr(P};°) remains unchanged, that is,

) = aiy, (8.23)

forallk=1,... k.
Furthermore, the group @3 contains Q1, as Q3 > Q12 = C(FP2 in Q1) = Q1, by (8.19b). Thus

Q-1 =Q3- Q5 - Qa1, (8.24)
whenever 1 < [ < [’. This implies that
Q5 1 =Q3-Q5---Q3_1 = Q5 4, (8.25)

for all such [. Furthermore, the fact that P, centralizes both @1 and N (P, in Q’Q‘l_l) = Q%4
implies that the Py, Py, ..., Py_s-correspondent (35, | € Irr(Q%;,_) of Bo—1 € Irr(Q2—1), is actually
the Py, ..., Py_o-correspondent of 35_1, whenever 1 < [ < [I’. Clearly, for all such I, we get

Boi”y = B3y, because Q5" | = Q3 1, P5 = Pa,..., Py o = Pyg and 85 = Ba1.
As G fixes x1 by (8.18b), while x2 = ag x 1 by (8.19d), we get that G = G(x1) = G(81). We
conclude that
G(x1, x3) = G(az) = G(x1, x2), (8.26a)
and thus
G(XT,X3: X3 - -» X1) = G(a2, X3, - -, xn) = G(X1, X2, X3> X4 - - - s X)), (8.26b)

for all h = 3,...,n. For any subgroup H of G, similar equations, with H in place of G, hold. In
particular, for the Hall system {A, B} we get

A(x7,x3) = Aa2) = A(x1, x2) and B(x1, x3) = B(a2) = B(x1, x2),
AXT X5 -5 X7) =A(a2,x3,-- -, Xn) = A(x1, x2, - - -, xn) and
B(x1, X35 --->Xn) =B(a2, x3,-- -, xn) = B(x1, X2, - -, Xn),

for all h = 3,...,n. This, along with teh conditions (8.18e,f,g) which A and B satisfy, implies

A(az) = A(x],x3) and B(a2) = B(xj, x3) form a Hall system for G(az2) = G(x7, x3)
A(xT x5, ---,x7) and B(x7, x5, - - -, x},) form a Hall system for G(x3, x3,---,X})>

for any h = 3,...,n. Furthermore, (8.18g), along with (8.24), implies
AXT X525 X)) == Pyand B(XT, X5, -+, X5) = Q3+ - Qap—1. (8.27)
Therefore, the groups A, B satisfy the equivalent of (8.18e,f,g), for the shifted system (8.20).
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The other groups of interest that doesn’t change, when we work in the shifted case (8.20), are
Q and P as these are defined for every fixed, but arbitrary, smaller system

1=GodG1 4G 4--- 4G, 4G,
17X17X27---7Xm; (828&)
{Q2i—1, Por|B2i-1, a2r}§£17r:0

where m = 3,...,n, and k,[ are related to m via (5.7). Of course when we shift the original system
to get (8.20), we also get the smaller shifted system

1<1G5_1<1G2—P2<1G3 Gs < 4G, =Gy <G,
1 X17X27'--7Xm7 (828b)
{sz 1,P27~sz 17a27"}1 1,r=0

Indeed, it is easy to see that the same group @, which was picked among the n’-Hall subgroups of
G(03,,) to satisfy the conditions (6.20) and (6.21) in Theorem 6.19 for the system (8.28), satisfies
the same conditions for the shifted system (8.28). First note that G’ = G(a3,) = G(ay;). Hence

@ is also a m’-Hall subgroup of G(a;‘}:). Furthermore, the group @ fixes (1, as the latter is G-
invariant. This forces @ to fix the Py -Glauberman correspondent (3195 of 31, as @ normalizes
Pj,.. Hence @(ﬁLQk) = (. For the shifted system (8.28) we have B = 1. Thus the P’ = Py,-
Glauberman correspondent 37 5, of 57 is also trivial. Hence @(ﬁf%) = Cj = @(617%). In addition,
651‘—1,% = [B2i—1,2k, for any 7 = 2, ..., We conclude that

@(552‘—1,%) € Hall, (G'(85;_1,2,)) N Halle (G (X1, X3, X35 - - -5 X3i—1))N
Hall,/ (G' (X7, X3, X3 - - > X3;)) N Hallw (G'(87, B3, - - -, B5;21)),
QB3 1.9%) = QU X3 X5, - X3i1) = QX3 X3, X3 - X3:) = Q(B5, 85, 35, ..., 351 ) and
QO X3 X5 - > X3i1) < QL a3, 03)

forallt =1,2,...,k. In addition, for all ¢ with 1 <¢ <1 —1 we get
Q(ﬁgiq,zk) normalizes (3,1 = Qi1

So @ remains unchanged in the shifted case, as does @ (B2k—1,2k)- Therefore the image I of @(5%,1)
in Aut(Ps;) remains unchanged.

__ Similarly, we can show that the group P remains unchanged in the shifted case, as does
P(ag—229;1-1). So the image of the latter group in Aut(Q%,_;) remains unchanged.

It is also clear that if the characters fog_1 2k € Irr(Qar—12k) and agi—291—1 € Irr(Py_2.91-1)
extend to Q\(ﬁgk,LQk) and ﬁ(agl,ggl,l), respectively, then the same property passes to the shifted
case, provided that £ > 2, as none of these groups and characters really changes. In conclusion we
have

Theorem 8.29. Assume that the normal series 1 = Go <Gy <--- <G, <G satisfies (8.18). Let
(8.18¢c) be a character tower for the series, (8.18d) the corresponding triangular set and {A,B}
a Hall system for G that satisfies (8.18e). Replacing the group G1 = Q1 with the trivial group
we obtain a normal series (8.20a) for G. Then (8.20b) is a character tower for that series, and
(8.20¢) its corresponding triangular set. Furthermore, {A,B} remains a Hall system for G satis-
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fying the equivalent of (8.18e.f,g) for the series (8.20a) and tower (8.20b). Even more, the groups
P, Q%5 _1,Q, P, as well as Q(Bak—1,2k) and P(og—2,21—1) satisfy the same conditions for the smaller
system (8.28) and the shifted one (8.28), whenever m =3,...,n.

The above theorem makes clear that, whenever the series (8.17) satisfies (8.18a,b), we can
replace the group G with a trivial group without affecting any other group or character involved
in our constructions. From now on, for simplicity, whenever such a shifting is performed, we will
be writing the produced series, tower and triangular set of (8.20) as

19PdG3d--- 4G, =G (8.30a)
{1,042,X3>---,Xn} (830b)
{Q2i-1, Por|f2i—1, 0427«}2:’];77«:1 (8.30c)

Note that the trivial groups G| = Q7 = 1 = F and their characters, have been dropped.
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Chapter 9

Normal Subgroups

As in Chapter 8, we fix a normal chain
1:G0§]G1§]G2§"'§]GHZG, (9.1&)

for an odd order group G, such that Hypothesis 5.1 holds with n in the place of m, i.e., n > 0 and
G;/G;—1 is a m-group if i is even, and a 7'-group if 7 is odd, for each i = 1,2,...,n. We also fix a
character tower

{xi € Irr(Gi) }i (9.1b)

for the above series and a corresponding triangular set

{Por, Q2i—1]a2y, 521‘—1}7]?:’[071-:1 (9.1c)

where ¥’ = [n/2] and I’ = [(n+1)/2]. Along with that we fix a Hall system A, B of G that satisfies
(8.4), that is,

A € Hall,(G), B € Hall.(G), (9.22)
A(Xla X2 .- 7Xh) and B(X17 X2y 7Xh) form a Hall System for G(Xla X255 Xh)7 (92b)
A(Xl)X?v cee 7Xn) - PQ*k;’ and B(Xla X250+ XTL) = Q;l/—b (92C)

whenever h =1,...,n.

9.1 Normal 7’-subgroups inside ()4

We fix an integer m = 1,...,n and we consider the normal series
1=Gp<G1<---4G,, <4G. (9.3&)

The sub tower
{1=X0, X1, Xm} (9.3b)

of (9.1b) is a character tower for (9.3b), and the subset
{Qai—1, PorlBaic1, oo}y g (9-3c)
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of (9.1c) is a representative of the conjugacy class of triangular sets that corresponds uniquely to
(9.3b). (As usual, the integers k and [ are related to m via (5.7).) Thus all the groups, the characters
and their properties that were defined and proved in Chapter 5 are valid for (9.3). In particular we
can define groups G; s and their characters x; s (see Theorem 5.88 for their properties). Even more,
we can pick the groups CAQ and P to satisfy the conditions in Theorems 8.13 and 8.15 respectively.
Hence if we write

77 = (Oéglfg’gl,l) . P2*l<:7 (94&)
Q= Q(Pak-1,2k) - Q5115 (9.4b)

then Theorems 8.13 and 8.15, and in particular (8.14) and (8.16), imply

y M)

P < A(Xl,...,lefl) <A (9.4C)

We remark that the group Q is well defined, as @(ﬁgk,l,gk) < @(ﬁgi,l,gk) normalizes the group
Q2i41, for all i = 1,...,1 — 1, by (6.21). It also normalizes @);. Thus it normalizes their product
Q1-Q3-- Q-1 = Q% _,. Similarly we can show that P is well defined.

For the rest of this section we assume that S is a subgroup of G, and ( is a character of S,
satisfying

S <G and S <Gy, (9.5a)
¢ € Irr(S) is G-invariant and lies under ;. (9.5b)

Either S or ¢ may be trivial. We also assume that E is a normal subgroup of G with

S<E<Q=0G. (9.5¢)
Then
Lemma 9.6. There is an irreducible character \ € Irr(E) such that \ is A(x1)-invariant and lies
under every x;, fori=1,... ,n. Any such X lies above (.
Proof. Let A1 be an irreducible character of F lying under 1, and thus under y; forany i =1,...,n.

Then Clifford’s Theorem implies that y; lies above the G1-conjugacy class of A;. The m-group A (1)
fixes x1, and normalizes F, as the latter is normal in G. Hence A(x1) permutes among themselves
the G'1-conjugates of A;. As (|A(x1)|, |G1]) = 1, Glauberman’s Lemma (Lemma 13.8 in [12]) implies
that A(x1) fixes at least one, A, of the G1-conjugates of A;.

As ¢ € Trr(9) is G-invariant and lies under xq, Clifford’s theorem implies that any irreducible
character of E lying under x; also lies above (. Thus the character A satisfies all the conditions in
the lemma. O

Note that the proof of Lemma 9.6 also shows

Remark 9.7. Assume that A\; € Lin(F) is a linear character of E lying under x;. Then there
exists a Gy-conjugate A € Lin(FE) of Ay, such that A is A(1)-invariant, and lies under x; and above

C.

Remark 9.8. The m-group Py, = P> - - Py fixes x1, as every one of its factors P; fixes x1 = (31,
for all i =1,...,k". Hence it is a subgroup of A(x1). So Pj; fixes \, for all i =1,... k.
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In the same spirit is
Remark 9.9. The 7-group P fixes A, as it is a subgroup of A(x1), by (9.4c).

From now on we fix a character A € Irr(E) satisfying the conditions in Lemma 9.6.
The m-group Pj; acts on the 7'-group E, and fixes A by Remark 9.8, whenever 1 <1i < k. So
we can define

Ey = C(Pj; in F) and (9.10a)
A2i € Irr(Ey;) is the Py;-Glauberman correspondent of A, (9.10b)

for all : =1,...,k". We obviously have that
Fo; = QLQZ‘ NE = C(P;l in@1)NE, (9.11)
for each such ¢. Furthermore,

Ag; lies under (3 9, (9.12)

as f1,2i is the Py;-Glauberman correspondent of 31, and 31 = x1 lies over . It follows from the
definition (9.10b) of Ag; that
N(A) = N(Az), (9.13)
for every group N with N < N(FPj; in G).
We also define

Gy = G(N), (9.14&)
G@/\ = Gz()\) =Gy NGy, (9.14b)

whenever 0 < ¢ < n. This way we can form the series
Gopr=Go=19G1\dGax <+ LGy =Gy (9.15)

of normal subgroups of the stabilizer G of A\ in G. Its is clear that this series satisfies Hypothesis
5.1 with n in the place of m, as the series (9.1a) does. Furthermore, Clifford’s Theorem provides
unique irreducible characters x; » € Irr(G; ) lying above A and inducing x;, whenever ¢ = 0,1,...n,
ie.,

Xix € Irr(G; A|A\) and (Xi,/\)Gi = Xi- (9.16a)

Clearly we get that
Xox = xo = L. (9.16Db)

As the x; lie above each other, the same holds for the characters x;x, i.e., x; lies above x;
whenever 0 < j < ¢ < n. This way we have formed a character tower

{1=x0x X100 Xna} (9.17a)

for the series (9.15). Hence Theorem 5.6, applied to the tower (9.17a), implies the existence of a
unique Gy-conjugacy class of triangular sets for (9.15) that correspond to the tower (9.17a). Let

K
{Q2i—1. PorA|B2i—1.0 @2r 2}t g (9.17b)

be a representative of this class. All the groups, the characters and their properties that were
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described in Chapter 5 are valid for the A-situation. We follow the same notation as in Chapter 5,
with the addition of an extra A in the subscripts, to refer to this A-situation. As a small sample we
give the following list:

Q2r—12rx = C(Pa, ) in Qop—1.3), see (5.11),
Bar—12rx € Irr(Q2r—1 2, 1) is the Po, \-Glauberman correspondent of fa,_1 y € Irr(Q2,—1,3) ;

Poisivin = C(Qaiy1) in Py y), by (5.14),
a2; 2i+1,x € Irr(Py; 2i41,1) is the Q2,41 x-Glauberman correspondent of ag; x € Irr(P; 5) ,

Goi2icipy = N(Pop, ..o, Poio ), Q1 xs- - Q2i1x in G a(X10, -+ -5 X2i—1,0)), see (5.91),
X2i,2i—1,x 18 the Py y, ..., cPai_9 x,cQ1 x, . .., cQ2i—1 x-correspondent of xo; x, see
Theorem 5.88 and the Definition 5.63
forallr=1,...,kK andi=1,...,0' — 1.

In this section we will describe the relations between the sets (9.1c) and (9.17b). We start with
the groups Gj , defined as

GS,A = GO’)\ = ].,
Giy = Gia(xan - Xi—12) = Gia(X12 -5 Xn)s (9.18)
G; = G)\(Xl,/\, ceey XTL,)\)?

whenever ¢ = 1,...,n. Note that this is equivalent to the definitions of G and G* that were given
in (5.129b) and (5.129a), respectively. Obviously we have that

Gix=G\NG;, (9.19)
for all i =0,1,...,n. Furthermore,
Lemma 9.20.
Gy = G*(\N), (9.21a)
ix=Gi(N), (9.21b)

foralli=0,1,...,n.

Proof. The fact that x; x € Irr(G; A|A) = Irr(G;(A)|A) is the A-Clifford correspondent of x; € Irr(G;)
implies that
G()\a X1 Ay« 7Xi,/\) = G(Xh B Xl)(A)7

But G* = G(x1,---,Xn), by (5.129a), while G(\) = G by (9.14a). Thus (9.21a) follows.
Equation (9.21b) follows easily from (9.21a) and (9.19). O

We can now prove
Proposition 9.22. For everyr =0,1,...,k andi1=1,...,I' we have that

JS Hallﬂ(Gzrv)\), (9.23a)
Q3-1(\) € Haﬂw’(GSi_L)\)- (9.23b)
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Therefore the triangular set (9.17b) can be chosen among the sets in its G-conjugacy class so that
it satisfies

P2*T‘ = PZ*r,)\v (924&)
Q-1 (A) = Q%1 x (9.24b)

whenever 0 <r <k and 1 <i <.

Proof. According to Proposition 5.132, the group Py, is a m-Hall subgroup of G3,,. Furthermore,
A is fixed by Py, = A(X1,---,xn) < A(x1). Hence, Py, is also a m-Hall subgroup of G%,,(\). As
P3. = P, NGoy, while G5.(\) = G3,,(A) NGar G35,/ (N), we also get that P5. is a m-Hall subgroup
of G3,.(\) for each r =0,1,...,k" . So (9.23a) holds.

By Corollary 5.157 we have that G5, _| = Py, _o-Q5,_;. This, along with the fact that Py, _, <
Py, fixes A, implies that G5, _(\) = Py, _, - Q5,1 (X). Thus Q%, ,()) is a n’-Hall subgroup of

sr_1(N) =G5, . Furthermore, for all i = 1,...,1’, we have that Q3,_;(\) = Q%,_;(\) N Gai—1,
where Go;_1 < Ggl’/,l. Thus @Q3;_;()) is a also 7’-Hall subgroup of G5, ;(\) for all i = 1,...,0’.
This completes the proof of (9.23).

The groups Py, = P -+ Pop ) and Q;l,_l)\ = Q1" Qoy—1,\ satisfy the conditions in
Propositions 5.132 and 5.155 in the A-situation, that is, P, , € Hall (G5, ) and Q5,_; , €
Hall (G5 ). Therefore, there exist G(A)-conjugates, (PQ*k,’A)%, (@5 _1,)° Of7P5k17/\ and Q;l;_l)\
respectively, such that Py, = (P, )" and Q3 ((A) = (@5, ,)°. Hence, we also get that
Py =Py, NG5, = (PQ*N\)S and Q5;_1(A\) = Q5 (AN) NGy = (sz’—l,/\)sv whenever 0 < r < K
and 1 < i <!'. The set (9.17b) was picked as any representative of a G = G(\)-conjugacy class of
triangular sets. Thus we can pick (9.17b) to be the one that satisfies (9.24).

So Proposition 9.22 holds. O

The following is a straightforward but useful lemma:

Lemma 9.25. Assume that Q1 < T < G(f1). Then T = T(X) - Q1. Furthermore, if S satisfies
Q12 < S < N(Py; in G(f1,2i)), for some i =1,..., k', then S = S(X3;) - Q1,20 = S(A) - Q1,2i-
Proof. As the group T fixes 1, it permutes among themselves the (Q1-conjugacy class of characters
in Irr(F) lying under 3 = x1. Since A is one of these characters, we have T' < T'(A) - Q1. The other
inclusion is trivial. So T'=T(\) - Q1.

The group S normalizes Pj; and thus normalizes Ey; = C(Ps; in E). Furthermore, it fixes 1 2;.
Hence S permutes among themselves the Q1 o-conjugacy class of characters in Irr(Es;) lying under
B1,2i- Since Ay; lies in that class, we have S < S(Ay;) - Q1,2;. As the other inclusion is trivial, we
get S = S(Ag;) - Q1,2i- Since S normalizes Pj;, and Ag; is the Pj;-Glauberman correspondent of A,
we obviously have that S(Ag;) = S(A). Hence the lemma follows. O

After these preliminary comments we are ready to state and prove
Theorem 9.26. The set (9.17b) chosen in Proposition 9.22 satisfies

Porx = Poyr (9.27a)
Qopr N = Q2p, (927b)
forallr =0,1,..., K. And
Q2i—1.3 = Q2i—1(A) = Q2i—1(A2i—2), (9.28a)
Boi—1.x € Irr(Q2i—1,0) 15 the Aoj—a-Clifford correspondent of Bai—1 € Irr(Qai—1), (9.28b)
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foralli=1,...,l'. (By convention Ao := X.) Hence (a1 induces [2;—1 € Irr(Q2i—1).

Proof. According to Lemma 9.25 for T' = Q5. we get that T = Q3,._;(A)Q1. Since Q1 = G1 <G,
it follows that N(Q35,_;(A) in Ps,) < N(Q5,_, in P5.). But P;. fixes A\. So the other direction of
the above inclusion also holds. Thus

N(Q4,_y in Pgy) = N(Q3_y (V) in B3,). (0.29)

The triangular set (9.17b) satisfies the equivalent of Proposition 5.159 for the A-situation. Hence

P\ = N(Q3_y \ in P35, ) by (5.160)
= N(Q3,—1(A) in P3,) by (9.24)
= N(Q3,—y in P3,) by (9.29)
= Py, by (5.160)

for all » =1,...,k". Thus (9.27a) holds for all » > 1. It also holds for r = 0, since Py =1 = F.
Similarly, for the 7’-groups we have

Qi1 = N(Pz*z‘fz,,\ in infl,)\) by (5.161)
= N(Py_5 in Q3_1(N) by (9.24)
= N(Py_5 in Q3_1)(N)
= Q2i-1(N), by (5.161)
for all ¢ = 1,...,I’. The group Q2;_1 normalizes P,..., Py;_o and thus normalizes their product

Py, _,. Hence (9.13), with Q2;—1 in the place of N, implies that Q2;—1(\) = Q2i—1(A2i—2). So (9.28a)
holds.

It remains to show (9.27b) and (9.28b) for the A-characters. This will be done by induction on
1 and r, with the help of various observations that we write here separately as steps.

Step 1. For every i = 1,...,n, the cQq x-correspondent x;1x € Irr(Gi1) of xixn € Irr(Gn)
induces the cQq-correspondent x;1 € Irr(Gi1) of xi € Irr(G;). Even more,

G@l»)\ = Gi,l()\) and (9.30&)
Xi1x € Irr(Gi1.0) is the A-Clifford correspondent of x;1 € Irr(Gj1). (9.30b)

Proof. We first remark that the cQq x-correspondent (which is analogous to the cQq-correspondent
for the A-case), is nothing else but a Clifford correspondent, as we can see in Table 5.1. That is,
Giix = Gix(x1n) and x;1.0 € Irr(Giq,0) (see (5.65a), and (5.67)), is the x; x-Clifford correspon-
dent of x; x € Irr(G;alxin), for all i = 1,...,n. Of course, G131y = G1 ) and X110 = X1,)-

Furthermore, for all i = 1,...,n, we have that

Giix = Gix(xin) by (5.65a) for the \-case
= Gi(x12)(A) as G1» = G1(\), by (9.14b)
= Gi(x1, ) by Clifford’s theory, since x1, is the A-Clifford correcpondent of x4
= Gz,l()\) by (565&)

Therefore (9.30a) holds.
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Let i = 1,...,n be fixed. The character x;;1 € Irr(G; 1) = Irr(Gi(x1,A)) induces x;\ €
Irr (G )) = Irr(G;(N)), by (5.67). Also the character x; \ € Irr(Gi()\)) induces x; € Irr(G;) by
(9.16a). Therefore, ;1 € Irr(Gi(x1,A)) induces x; € Irr(G;). Hence x;i1x € Irr(Gi(xi, A))
induces a character ¥ € Irr(G;(x1)). Note that the induced character W& is Xff,A = xi- Even
more, the character W lies above y; = (1. To see this, first note that, according to Lemma 9.25
for T = Gi(Xl)a we have Gi(Xl) == Gz(Xl)(A) . Ql == Gi(Xla)‘) . Gl, while Gi(le)‘) N G1 == G1(>\)
This, along with Mackey’s Theorem (see Problem 5.6 in [12], or the special case in Problem 5.2 in

. . Gz
[12])’ 1mphes (Xi71(X1))|G1 = (Xi,l,)\|G1(>\))G1' Hence

)

G;
<\II‘G17X1> = <(Xz‘717()>\<1))‘G17X1> = <(Xi,1,)\‘G1(/\))G17X1> 7& 0,

where the last inequality holds as x1 = X%\ (by (9.16a)), and x1,x € Irr(G1(X)) lies under x; 1.
Thus the character ¥ € Irr(Gi(x1)), induces x; € Irr(G;) and lies above xi. Hence Clifford’s
theorem implies that ¥ is the unique xi-Clifford correspondent of y;. This, along with (5.67),
implies that ¥ = x; 1, i.e., Xf{,; =W =x;1.

So x4, € Irr(Gi10) = Irr(Gi 1 (M) induces x;,1 € Irr(Gy 1), and lies above X. Thus x; 1,y is the
A-Clifford correspondent of x; 1.

This completes the proof of the first step. O

Step 2. For every i =2,...,l" we have that

Q2i-1 = Q2i-1(\) - Q1,2i—2. (9.31)

Furthermore, for everyr =1,..., k" and everyi=1,...,I' — 1 we have that

N(Pox, Pax, .o s Poin, @iy -5 Q2ic1 ) in Goipi x(X1h, - -5 X2i0)) =
N(P07 P27 o 7P2i7 Qlu o 7Q2i—1 in GQi-l—l,A(Xl,)\u .. 7X2i,>\))7 (9323‘)

and

N(Pox Pax,-o s Por—ax, Qi -, Qar—1 ) I0 Gop a(X1 0, -5 X2r—1,0)) =
N(Py, Py, ..., Por—2,Q1,...,Q2r—1 in Gor x(X1 ), X2r—1,0))- (9.32b)

Thus, for all i = 1,...,I' =1, the cPy,...,cPox,cQs, ..., Qa1 \-correspondent X2i+12ix,
of X2i+1,1,n coincides with the cPs, ..., cP,cQs3, ..., cQ2i—1-correspondent of x2i+1,1,x- By con-
vention, if i = 1 this is only the cPy = cPy x-correspondence. Similarly, for all v = 2,... K,
the cPy y,...,cPoyr_2,cQ3 2, ..., Qa1 r-correspondent Xor2r—1x, Of Xor1x coincides with the
cPs,....cPy_2,cQ3,. .., cQ2—1-correspondent of Xor1 -

Proof. For all t =2,...,l' we have that

Qrot—2 = Q1N Q21 < Qa1 < N(P3_5 in G((12t—2)),

(by (5.33) we get the equality, while Proposition 5.55 shows that Qo;—1 fixes 1 2:—2). Hence Lemma
9.25, for QQo;—1 in the place of S, implies that

Q2—1 = Q2—1(N) - Q1,20—2,
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for all t =2,...,1I'. This proves (9.31).
We have already seen that Py, = Pa, while Q21 = Q2i—1(\), whenever 1 < r < &k’ and
1 <4< (by (9.27a) and (9.28a)). Thus (9.31) implies that

Q2t—1 = Qar—1,) - Q1,2¢—2,

for all t = 2,...,1'. Any subgroup of G that normalizes P, ..., Py_2 and Q21 ) also normalizes
Qi2t—2 = N(P5,_5 in Q1). Thus it normalizes Qo1 = Q21 - Q1,2t—2, Whenever t = 2,.. LU
Since @)1 < G, is normalized by any subgroup of GG, we therefore get

NPy, Popy, ..o, Poin, Quny - Qaicix in Gojpr a(X1 0y -+ -5 X2i0)) =
N(Py,Pa, ..., Py, Qs .- Qoim1 ) in Gojpr a(X1 0, -+ -5 X2i0)) <
N(Py, P, ..., P, Q1. .., Q2i—1 in Gaip1 x(X1 25 - -5 X2i0))-

The other inclusion is trivial as Ggi11.\ = G2i41(A). So everything in Gg;41 x that normalizes Q2,1
also normalizes Qa1 3 = Q2—1(N), forallt =1,...,I'. Also Q1 <G is normalized by any subgroup
of G. Hence we have equality, and (9.32a) is proved.

The proof for (9.32b) is similar. So we omit it.

Let ¢ = 1,...,0' =1 be fixed. For all t = 1,...,4, we have Py = Py . So to prove the
next two statements of Step 2, it suffices to show that the cQo;—1-correspondence coincides with
the cQa¢—1 r-correspondence, for all ¢ = 2...,47. We remark that the cQ2;—1 r-correspondence was
used, in Theorem 5.88 and Table 5.5 for the A-situation, to get the irreducible character x2i41,2¢—1,)
of N(Qa¢—1,x in Goiy120-22(X2t—1,0)) = Goiy1,2e-1,x from xoi11,2t-2x € Iir(Gaiq1,2t-2,1), Whenever
t=2,...,i. That is, we applied Lemma 5.56 to the groups

Got—12t—2 3 = Q-1 X Pog_ox I Gopp—2) I+ I Goi—12t-2)

and their irreducible characters

e
X2t—1,2t—2,1 = 52t—1,/\ CQp2 x5 X2t,2t—2,X) -+ -5 X20i—1,2t—2,))

in the place of N < K; <--- <K, and {x = o % x1,- .., Xr} respectively. On the other hand, for
allt = 2,...,1, the character x2;41,2:—2 ) has a cQQ2;—1-correspondent. Indeed, the group Q2;—1 acts
on P9 = Py, while the semidirect product (QQ2;—1 X Py;_1 ) is normalized by all the groups in
the normal series

Py 1) AGoor—10 I L Goim1,26—1,1-

Notice that Q2;—1,) and Q21 have the same image in Aut(Pay_2 ), as Q-1 = Qa2r—1.1-Q1,2¢—2 (by
(9.31)), and Q1,2:—2 centralizes Pa;_o y = Po;_o, whenever 2 < t < i. Furthermore, G;41,2¢—2,) nor-
malizes Ps, ..., Py_o (see (5.91)), and thus normalizes Q1 2—2. Hence N(Q2:—1.x in Gait1,2t-2)) <
N(Qgt_l in G2i+1,2t—2,)\)- The other inclusion holds trivially, as GQZ‘_A'_LQt_Q’)\ < GQH_L)\ = G2i+1()\)
fixes A and Qa¢—1.n = Q2t—1(A). Hence N(Q2—1x in Goiq120-22) = N(Qar—1 in Goiy12i-2,)), for
all t = 2,...,i. Therefore Proposition 3.9 implies that the cQ)2;—1 -correspondent X2;41.2:—1,1 of
X2i+1,2t—2,) coincides with its cQa;—1-correspondent, whenever 2 <t <.

We conclude that the CP27)\7 ooy CPQZ‘V)\, CQg,)\, e ,cQgi_ly,\—correspondent X2i41,2i,\5 of X2i+1,1,A
coincides with the cP, ..., cPs;, cQs3, . .., cQ2—1-correspondent of xg;41,1x, foralli =1,..., U —1.

Similarly we can work with the character x2, 2,—1,x, the group G, 2;—1 ) and its normal subgroup
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Gator—1n = Porx X Qap—1 5, for all t = 2,...,r, for some fixed r = 2,...,k". Thus we get that that
the cQo¢—1,x-correspondent xo,2;—1,x 0f X2r2:—2,x coincides with the cQ2;_1-correspondent. We con-

clude similarly that the cP y,...,cPar—2x,c@3 ;- .., cQ2,—1 r-correspondent xor2,—1, of X2r1
coincides with the cPs, ..., cPy_2,¢Q3, . .., cQar—1-correspondent of xo,1, for all 7 =2,... k.
This completes the proof of Step 2. O

Step 3. For all i = 1,...,I' =1, we have that Goit192ix = Gait12i(N), while the character
X2i+1,2ix € Irt(Gaip12i0) induces x2i412i € Irr(Gaigp1,2). Stmilarly, for all v = 1,... K, we
get that Gapor—1 3 = Gorar—1(\), while the character X2, 2,15 € Irr(Goyor—1 1) induces xor2r—2 €
Irr(Garor—1).

Proof. According to (5.91) for the A-case we have that

Goir12ix = N(FPox, Pax, -5 Poin, @iy -5 Q2ic1 ) in Goipi x(X1 0, - -5 X2i0))-

This, along with (9.32a), (9.18) and (9.21b), implies that

Goit1.2i) = N(Po, Pa, ..., Poi, Q1, .., Q2i—1 in Gajpi A(X10, -+ -5 X2i0)) =
N(PO7P27 .. .,PQZ',QI, .. -;Q2i—1 n G§i+1,)\) = N(Po,PQ, .. .,PQZ',Ql, . ~7Q2i—1 n G§z+l()‘>) =
N(Py, P, ..., Py, Q1,...,Q2—1 in Gy, 1)(N).

As GQH_LQZ‘ = N(P(), P Py, Q1,...,Q2_1 in Gzi—&-l) (by (5.91)), we have that G2i+1’2i7)\ =
G2it1,2i(A) , for all ¢ = 1,...,1" — 1. Furthermore, according to Step 2, the character x2;+1 21
is the cPs, ..., cPy, cQs3,. .., cQai—1-correspondent of x2;+11.x, whenever ¢ = 1,...,I' — 1. But
X2i+1,1,0 € Irr(Gaip1,1(N)) induces x2i41,1 in Gaip1,1 according to Step 1, for all such i. Fur-
thermore, the cA-correspondence (for arbitrary A) respects induction (see Theorem 3.13). Hence
X2i+1,2i,x induces the cPs, ..., cP;,cQ3,. .., cQ2_1-correspondent character of x2;41,1 in the nor-
malizer N(Po, PQ, . ,PQZ', Ql, ey QQZ‘_l in GQZ'_H(Xl, N ,XQZ')) = GQH_LQZ‘. As this COI‘I‘GSpOHdth
character of x2;41,1 i X2i+1,2¢ (by Theorem 5.88), we conclude that x2;41,2;x induces x2;41,2;, for
all i =1,...,I' — 1. This completes the first part of Step 3.

For the second part, we first remark that the case r = 1 has been done in Step 1. Indeed, by
(9.30a), we have that G 1\ = G2,1(\), while by (9.30b) the character x2 1 ) induces x2,1. The rest
of proof for r = 2,... k' is analogous to the proof of the first part, with the use of (9.32b) in the
place of (9.32a). So we omit it. O

We can now continue with the proof of (9.27b) and (9.28b) for the A-characters. If » = 0 then
ap = 1 = ag. Hence (9.27b) holds trivially for » = 0. Furthermore, 3; x = x1,, by (5.17b). But
X1, is the A-Clifford correspondent of xi € Irr(Q1|\). Thus (9.28b) holds for i = 1.

Using an inductive argument we will prove that, if (9.28b) holds when i is some integer ¢t =
1,...,k" =1, then (9.27b) holds for r = t. Symmetrically if (9.27b) holds when r is some integer
s=1,...,I' =1, then (9.28b) holds for i = s+ 1. This is enough to prove that (9.27b) and (9.28b)
hold for all r = 0,...,k and alli = 1,...,I’, respectively.

Assume that (9.28b) holds for ¢ = ¢t. That is, fo—1 ) is the Ag_o-Clifford correspondent of
Bot_1. Therefore

»322_775\ = B2t-1- (9.33)

Furthermore, Theorem 5.88, and in particular (5.92), implies that the character ag; y was picked
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as the unique character of Py ) that satisfies

Xot2t-1,0 = @26\ 351 (9.34a)

where 35, , , is the canonical extension of 89,1\ € Irr(Qa:—1,) to Gt 2i—1.. Similarly, ag; is the
unique character of Ps; such that

Xat2t—1 = 2t 1. (9.34b)

According to Step 3 the character xa¢9:—1,\ induces xor2i—1 € Irr(Gage—1). Also Gapor—1 =
Py;Qa;—1, see (5.92). This, along with (9.34), implies

Xot2t—1 = (Xat2e—1.2) 22 = (agy - ﬁst_m)%t’”_l- (9.35)

Lemma 2.21 can be applied to the group Ga;2i—1 = Por X Q2;—1 and the characters g\ €
Irr(Py ) = Irr(Po) and Boi_1x € Irr(Pa¢ X Q1) Thus

(uzen - F5-1,) T2 = ey - (851 )22 (9.36)

The groups G 2i—1 = Por X Qar—1 = (PorQat—1,0) - Q2i—1, Q21— 1, P2t Q2r—1,0 = Gar2e—1,) and Qo1 x,
along with the character fo;—; x € Irr(Q2:—1,1), satisfy the hypothesis of Proposition 2.16 in the
place of the groups G, N, K and H respectively. So we conclude that

(85 12) G2t = (B 1)°

where ( gzjﬂ\)e is the canonical extension of ﬁ%ﬁ;i\ € Irr(Q2—1) to Gat2t—1. But, according to

the inductive hypothesis, the character 82,1\ satisfies (9.33). Therefore

(B5_1.0) 221 = (B 0)° = BS54,

where (35, ; is the canonical extension of fa;—1 to Gas2i—1. This, along with (9.36) and (9.35),
implies that

G _
Xat,2t—1 = (2 - By 1,0) 72027 = agen - B 1

Therefore (9.34b) holds with ay » in the place of ags. As gy is the unique character of Py satisfying
(9.34b), we must have ag; = ags x. Therefore, (9.27b) holds for r = t.

Now assume that (9.27b) holds when r is some integer s = 1,...,'’ — 1. We will prove, in an
argument similar to the one we just gave, that (9.28b) also holds for i = s + 1.

According to (9.27b) for r = s we get
Q25 = (25 \- (937)

Furthermore, equations (5.93) imply that (2541, and (2441 are the unique characters of Q25412
and (o541, respectively, that satisfy

X2s+1,25,A = 0453,,\ Bast1,2 (9.38a)

X2s+1,2s = Q5 * B25+1, (9.38Db)

where o, , and a5, are the canonical extensions of agy € Ir(Po,y) and ags € Irr(P) to
Gost1,250 = Posy X Qasp1) and Gasi12s = Pos X QQ2s41, respectively. But Pogy = FPps and
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Qs \ = Qg by (9.37). Furthermore, Gosi1,25 0 < G2st1,25 (see Step 3). Therefore

O‘SS,A = a§s|025+1,2s,A‘ (939)

The fact that x2s112s 1 induces x2s41,25 (see Step 3), along with (9.38) and (9.39), implies

X2s+1,2s = (O55|Goy sy 20 '525+1,,\)G2S“‘25. (9.40)

Using the isomorphism Qasy1,x = Q25411 X Pas/Pag, we denote the inflation of Basq1 5 t0 Qasy1,) X
Posn = Qast1,n X Posx = Gosp1.251 88 By, - S0 (9.40) becomes

i G
X2s+1,2s = (O‘Ss|st+1,2s,A 'B%s+1,/\) bl

Hence we can apply Lemma 2.20 to get

i G i G
(a§s|025+1,2s,/\ ’ B§s+1,)\) Zetli2s = OZSS ) (ﬁéerl,)\) 2etl2s,

This, along with (9.40), implies that
i G s 5 — ) P s s — Q s i
X2s+1,2s = ags : (ﬁ%erl,)\) LS = CMSS ' (ﬁ%erl,/\) 20XQ2041 — ags ' ( 281;1)\)2’

where (ﬁgjjfa)z denotes the inflation of ﬂgfjiﬁ € Irr(Qa2s+1) = Irr(PosQas 1/ Pas) 10 Pog X Qasi1-

Note that a$, - ( gﬁﬁ\)’ is equal to af, - ( ?;jf/\) by the definition of the ltter product. But (2511
is the unique character of Q2541 that satisfies (9.38b). Hence

(BL%14)" = Bheyr, and thus SL2T = Bogar. (9.41)

Furthermore, the character xas41,2s lies above X125 € Irr(Gi 25) = Irr(Q1,25). Also x1,25 = (1,25 (as
X1 = 1), lies above A9, by (9.12). This, along with the fact that o, , is trivial on Q1 2, = G125,
implies that f2s11 € Irr(Qas41,1) lies above Aoy and induces [asi1 € Irr(Qas41). As Qasy1 ) =
Q25+1(N) = Q2s1+1(X2s), by (9.13) with N = Q2s4+1, we conclude that fas11 ) is the Ao -Clifford
correspondent of (2541. Hence (9.28b) holds for i = s + 1.

This completes the proof of Theorem 9.26. O

Assume that 4,7 satisfy 1 < i < j < k. According to Lemma 2.5 in [22], Glauberman cor-
respondence is compatible with Clifford theory. This, along with (9.28b) and (9.27a), implies
that the Py;--- Poj = Py; ) - - P x-Glauberman correspondent (32,12 of 2,1 is induced by the
Py; y -+ Pyj \-Glauberman correspondent (82;_1 25 of 82,1 x. Furthermore, 32;_12; lies above the
Py; - - - Pyj-Glauberman correspondent Ao; of Ag;—o (see (9.10)), as (2;_1 5 lies above Ag;_9. Since
Q2i—1)» = Q2i—1(A), we also have that

Q2i—12j0 = C(Pai -+ Poj in Qa2i—1) = C(Pa; -+ Paj in Q2i—1)(A) = Q2i—1,2;(N),

whenever 1 S 7 S ] S k‘/. But Q21;172j()\) = QQZ;LQJ'()\QJ'), as Q2i71,2j normalizes E and P2*j‘
Therefore,

Remark 9.42. For every 4,7 with 1 <17 < j < k/, we have
Q2i—12j3 = Q2i—1,2j(A) = Q2i—1,2j(A25),
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while the character (B2;_12; x is the Ag;-Clifford correspondent of (32,1 2;.

Furthermore, Q1 2;—2 centralizes Py, ..., Py_2 by (5.23a), and Q2i—1 = Q2i—1(\) - Q1,2i—2 by
(9.31). We conclude that
C(Q2i-1(N) in Po) = C(Q2i—1 in Poy), (9.43)

whenever 1 < r < ¢ <{’. Hence,

Poroi—1 ) = C(Qarg1 0 - - -, Q2i—1,) in Py 3)

= C(Q2r+1(N), -+, Q2i-1(N) in Py) by (9.27a) and (9.28a)
= C(Q2r+1, ..., Q2i—1 in Py;) by (9.43)
= Py 91,

whenever 1 <r < i <’.

Even more, the Q2,41 - Q2i—1-Glauberman correspondent cgy2i—1 € Irr(Pa,2i—1) of the ir-
reducible character g, of Py, (see (5.52)), coincides with the Qay4+1(\) - Q2i—1(N)-Glauberman
correspondent of a,, by Corollary 3.10. In conclusion,

Remark 9.44. For every r,i with 1 <r < ¢ <!’, we have
Pyoi 1y = Porpi—1 and agp2i—1 3 = 2r2i—1-
The relation between «a3; and agi, ) is an easy corollary of Theorem 9.26.
Corollary 9.45. For allr =0,...,k" we have
a3y = a3, € Ie(P5,) = (5, ).

Proof. By (9.24a) and (9.27b), we have Py, = P, and ag, » = ag,, forall7 =0,1,...,k". Further-
more, the character o3, is uniquely determined by g, and the one to one Q2;1-correspondence

* . *
a27‘,2j—1Q2j+1a2r,2j+1‘

The latter is a correspondence between all characters a3, 5,1 € Irr(P 1o+ o) and all char-
acters a;ﬂj_l € Irr(Poj - Pyjyo--- Poy) lying over some (Qoj41-invariant character of P, for all
j=1,...,r —1, as Lemma 5.142 and Theorem 5.143 imply. (Note that o3, € Irr(Fs,) is the
Q3,Qs, . .., Qar_1-correspondent of ag, € Irr(Pyy;).)

Because Pyjyo - Py, normalizes Q2541 and fixes A, (by Remark 9.8), it normalizes Q2j41(\) =

Q2j+1,)\~ The subgroup QLQJ‘ = C(PQ ce ng in Ql) centralizes ng. But Q2j+1 = Q2j+1()\) . Ql’gj =
Q2j+1,) - Q1,2, according to (9.31), for all j =1,...,7 — 1. Hence

Py N Pajio- - Pop = N(Qaj41 in Poj)
= C(Q2j41 in Pyj) = C(Q2j41,x in Poj) = N(Q2j41,x in Pyj).

Therefore

N(Q2j+1,x in Poj - Pojyo--- Poy) = N(Q2jt1, in Poj) - Pojyo- Py,
= N(Q2j+1 in Poj) - Pajio- -+ Por = N(Q2j41 in Poj - Pajyo- - Pay).

This, along with Proposition 3.9, ,
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implies that the above QQ2;41-correspondence coincides with the (2541 x-correspondence, for all

j=1,...,7r — 1. Hence the Q3,Qs,...,Qa2—1-correspondent, 3. € Irr(P5), of g, = g x €
Irr(Py,) coincides with the Q3 x, @5z, - - ., Q2r—1 r-correspondent aEnA € Irr(P;r,)\) of agr = o) €
Irr (P, ), e, 03, = %, 5. So the corollary follows. O

What about the groups A and B? How is a Hall system for G()) that satisfies the analogue of
(9.2) for the A\-case related to A, B? The answer is given in

Theorem 9.46. We can find A, € Hall;(G,) and By € Hall/(G)) satisfying the equivalent of
(9.2) for the A-groups, along with

Ax(X1 255 xmn) = Alxa, - X)), (9.47a)
BA(XI,)\?"‘)Xh,)\) - B(Xl)"'JXh’)\)7 (947b)

forallh=1,... n.

Proof. 1t suffices to show that A(x1,...,xs) and B(x1,...,xn, A) satisfy (9.2b,c) for the A-groups.
We already know, by (9.2c), that A(x1,...,Xn) = Py, while B(x1,...,xn)(A) = @3, _;(A). But
PZ*k‘/ - PQ*k:/,)\ and Q;llfl()\) = Q;l/fl,)ﬂ by (923) ThuS

A(Xl, ceey XTL) = PQ*IC’,)\’ and B(Xl, e ,Xn)(A) = Q;l/_L/\.

Thus they satisfy (9.2¢) for the A-groups.
The fact that x; » is the A-Clifford correspondent of ;, whenever i = 1,..., h, implies

G(X17 cee 7Xh7)‘) = G)\(XL/\? .. 'aXh,)\) < G(X17 cee 7Xh)7

forall h = 1,...,n. As A(x1) fixes A, the group A(x1,,...,Xn) is a subgroup of the first group
in the above list. It is also a w-Hall subgroup of G(x1,...,xn), by (9.2b). Hence it is a w-Hall
subgroup of G\(x1,x;---,Xn,»). Furthermore,

G(Xb' . 'aXh) = A(Xh"'th) ' B(Xla" . 7Xh)7

by (9.2b). Hence Gx(x1x,--->Xn2) = G(X15---, X0, A) = A(x1,---5xn) - B(x1,-. -, xnA). So
A(x1,...,xn) and B(x1, ..., Xn, A) form a Hall system for Gx(x1x,...,Xxn)), forallh=1,...,n.

This completes the proof of Theorem 9.46. O

From now until the end of the section we restrict our attention to the smaller system (9.3). It
is clear that the subset

{Q2i—1.7; ParAlB2i—1,1s OéQT,A}lifl,rzo,
of (9.17b), is a triangular set for the normal series Go < G\ < --- < Gy, » I Gy, corresponding
to the tower {x;}/",. Hence Theorem 9.26 implies that the above triangular set satisfies (9.27)
and (9.28) for all r = 0,...,k and all i = 1,...,[, respectively, since (9.17b) satisfies them. The
groups in question now are @(ﬁgk_mk) and ]3(042;_2721_1) along with their corresponding groups
@A(ﬂgk,mk,)\) and ]3)\(0421,2721,27,\), in the A-situation. Their relation is described in the next two
theorems.

Theorem 9.48. Assume that {Ax,By} is a Hall system for Gy that is derived from {A,B} and
satisfies the conditions in Theorem 9.46. Assume further that, for every m = 1,...,n, the group
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@ is picked to satisfythe conditions in Theorem 8.13 for the smaller system (9.3), while the group

X

Q) s picked to satisfy similar conditions for the \-groups. Then
Or(Bar-126) = Q(Bor—1.2, ). (9.49)
So Qx = Qa(Bok-1.260) - Qiy_1.5 < Q). where Q = Q(Bar—1,24) - Q1

Proof. Assume that Q\A satisfies the conditions in Theorem 8.13 for the A-situation. Of course it
satisfies the equivalent of the conditions in Theorem 6.19 for the A-groups. Furthermore,

~

Qx(B2r—1,2k.0) = N(Psp , in Ba(x1,n -5 X2k,0)) by Theorem 8.13
= N (P, in B(x1, -, X2k, \)) by (9.24a) and (9.47)
= N(P3, in B(x1, ..., x2k))(})
= Q( 2k—1,2k) (A). by Theorem 8.13
This proves the first part of the theorem. The last part follows from the first and (9.24b). O

Similarly to the above Theorem 9.48 we have

Theorem 9.50. Assume that {Ax,By\} is a Hall system for Gy that is derived from {A,B} and
satisfies the conditions in Theorem 9.46. Assume further that, for every m = 1,...,n, the group
P s picked to satisfy the conditions in Theorem 8.15 for the smaller system (9.3), while the group
ﬁ,\ is picked to satisfy the similar conditions for the A-groups. Then Then

13,\(042172,2171)\) = 13(042172,2171)- (9-51)

So Py = 13,\(042172,2171»\) Py =P = ]3(0421,1,21,1) - P

Proof. Assume that @A satisfies the conditions in Theorem 8.15 for the A-situation. Of course it
satisfies the equivalent of the conditions in Theorem 6.19 for the A-groups. Furthermore,

~

Py(agi—2,21-1,0) = N(Q§Z—1,,\ in Ax(X1,2s -5 X21-1,0)) by Theorem 8.15
= N(Q3_1(A\) in Alx1,- .., Xx21-1)) by (9.24b) and (9.47)

Clearly @1 < Q%,_; < G(61). Thus Lemma 9.25 implies

Q31 = Qy_1(A) - Q1.

As A(x1,---,x21—1) is contained in A(x1), it fixes A since A(x1) fixes A. It also normalizes Q1 <G.
Therefore

N(Q3_1(N) in A(x1,---,x2-1)) = N(Q3_1 in A(x1,---,X2-1))-

According to Theorem 8.15, the latter group is 13(0421,272171). Hence

~

Py(ag—221-1,0) = N(Q3_1(A) in A(x1,---,x20-1)) = ﬁ(a2l72,21—1)~

So the first part of Theorem 9.50 follows. This, along with (9.24a) implies the rest of the theorem.
O
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The fact that Q < & = G (a3, ) normalizes P, along with (9.13), obviously implies

Q(Bote—1,26: N) = Q(Bok—1,2%: Aok (9.52)

We define R
I := the image of Q(fB2r—1,2x) in Aut(Ps). (9.53)

Obviously, the group I is well defined, as @ < G(o3),) normalizes Pj,.. Then as an easy corollary
of Theorem 9.48 we get

Corollary 9.54. The groups Q\,\(ﬁgk_l,gk,)\) and @(ﬁgk_mk), chosen in Theorem 9.48, have the
same 1mage in Aut(Py,). In particular,
I=1y, (9.55)

where I is the image of @)\(ﬁgk,hgk’)\) m Aut(PQ*kA).
Proof. The group @(5%71,21{) is a subgroup of G'(for—1,2k) = G(ad, Pak—1,2). By Proposition

5.50, the character (3 o4 is the unique character of Qi ok lying under fBo_19x. Thus G'(Bak—12k)
fixes 31,2 Hence

@(5%—1,%) < G'(Bag—1.2k) < N(P3y, in G(By1.98))-

Furthermore, according to (6.34) and the Definition 6.28, the group Qi 2k is a subgroup of @ It

also fixes Bor_1,2x € Irr(Qok—12k), as Qi 2k < Qar—1,2%- Thus Q12 is a subgroup of Q(Bax—1,2k)-
In conclusion,

~

Qror < Q(Poar—1,2k) < N(Pyy in G(By 1))
Therefore Lemma 9.25 can be applied with @(ﬂQk,Lgk) in the place of S. So
@(ﬂqu,%) = @(ﬂ%q,zk, A) - Q1,2k-

This, along with Theorem 9.48 implies

Q(Bok—1.26) = Qr(Bok—1.26.) - Qu.2k-

The fact that Q121 = C(Py, in Q1) centralizes Py, implies the first part of the corollary immedi-
ately. This, along with (9.24a) and the definitions of I and I, implies equation (9.55). O

Theorem 9.50 easily implies

Corollary 9.56. The groups ]3(0525_2’21_1) and ﬁA(agl_gjgl_L)\), chosen in Theorem 9.50, have the
same images in Aut(Q3_;) and the same images in Aut(Qy_, ,)-

We finish this section by checking a special case of extendibility in the A-situation. The following
is a well known result.

Theorem 9.57. Assume that G is a finite group and that S < H are subgroups of G with S normal
in G. Assume further that 0 € Irr(H) lies above A € Irr(S). Let 0y € Irr(H (X)) denote the unique
A-Clifford correspondent of 0.

If 0 extends to its stabilizer G(0) in G, then 0 also extends to G(6,\).

Proof. A straight forward application of Clifford Theory implies that G(0, ) < G(0)). Further-
more, as G(#) fixes 6 it permutes among themselves the members of the H-conjugacy class of
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characters in Irr(S) lying under 6. Since A € Irr(S) lies under 6 we get
GO)=H- -G6,\) <H-G(6)). (9.58a)
In addition,
GO, \)NH =H(\). (9.58b)

Let 6" € Trr(G(0)) be an extension of § to G(#). Then ¢ lies above \. Let ¥ € Irr(G(6,\))
denote the unique A-Clifford correspondent of §* € Irr(G(#)). So ¥ lies above A and induces 6°.
Therefore,

(WO g = 0| = 0.

Mackey’s Theorem, along with (9.58), implies that
(T = (T )™

Hence (¥]g(y)) = 6 is an irreducible character of H. So the restriction W]y is an irreducible
character of H(A) that induces ¢ and lies above A (as ¥ lies above A). We conclude that W|gy)
is the A-Clifford correspondent of 6. Hence W|g(y) = 0). Thus W is an extension of 6y to G(6, \),
and Theorem 9.57 follows. O

As a consequence of Theorem 9.57 we get

Theorem 9.59. Assume that Bop—1 21 € Irr(Qox—121) extends to Q\(ﬁgk,mk). Let @)\ be a n’'-Hall
subgroup of G\ = G(\, 03, ) that satisfies the conditions in Theorem 9.48. Then the character

Bok—1,2k,x extends to Qx(Bak—1,2k1)-

Proof. According to (6.33) we get that

Qok—12K = @%71,216(5%71,21@) = @(521@71,21{) N Gaop—1 9 @(521%1,21@)-

In view of Remark 9.42, this implies

Eor < Qak—12k0 = Qar—1,26(A2k) < Qar—1,2k I Q(Bak—12k)-

As Bog—12kx € Irr(Q2x—1,2k,2) is the Agi-Clifford correspondent of Bar—1 2k € Irr(Qox—1,2k), Theo-

rem 9.57 implies that (51 2 extends to @(ﬁgk_ljgk, Aak), when (o1 2, extends to Q\(ﬂgk_lgk).
But

@(ﬁ2k—1,2k, Aog) = @(5%—1,21@, A) = @A(ﬁ%—sz,A),

by (9.52) and Theorem 9.48.
This completes the proof of the theorem. O

Furthermore, Remark 9.44 easily implies

Theorem 9.60. Assume that ag_99;—1 € Irr(Py_g21—1) extends to ]s(agl,ml,l). Let ]3)\ be the
w-Hall subgroup of G\(B3,_,) that satisfies the conditions in Theorem 9.50. Then the character

Qo_221-1) extends to Py(co—2.21-1,1)-
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9.2 Normal m-subgroups inside P,

Assume now that we are in a situation where the fixed normal series (9.1a), i.e., 1 = Go I G1 <
-+ <Gy <G, satisfies (8.18). So teh following two onditions hold

Go = Gaor X Ggﬂrl, (9.61)
G fixes x1. (9.62)

We assume fixed the character tower (9.1b) and its corresponding triangular set (9.1c). We also fix
the Hall system {A,B} that satisfies (9.2).

The additional hypothesis on the group Ga give more specific information on y2 (see (8.19)).
Thus we have

G2 = Pg X Q1 = P2 X Gl, (963&)
X2 = ag X (. (9.63b)
Furthermore
G(x2) = G(az). (9.64)
We also fix an integer m = 2,...,n and we consider the normal series

1=Gy<G1<9---4G,, <G, (9.65a)

We also fix the subtower
{1=xX0, X1, Xm} (9.65b)

of (9.1b) and the subset
{Q2i—1, Por|f2i-1, Oézr}f;’:ki,r:o (9.65¢)

of (9.1c) . The subtower (9.65b) is a character tower of (9.65a), and the subset (9.65c) is is a
representative of the conjugacy class of triangular sets that corresponds uniquely to (9.65b). We
also assume known the groups Q and P satsfying (6.20) and (8.1) respectively for the system (9.65).
Also known are assume the groups P and Q, as these were defined in (9.4a), i.e.,

P = 13(0421,272[,1) - Py and Q = @(ﬁ%q,zk) Q%1 (9.66)

So P < A(X17 s 7X2l71) and Q < B(X17 s 7X2k)7 by <91)

As the series (9.1a) satisfies (9.61), we can apply all the results of Section 8.3. So according to
Theorem 8.29, we can drop the group @1 = G (i.e. shift the above series by one), without any
loss. Thus the original system (9.1) reduces to

19 dG3d--- 4Gy, =G,
1aa27X37"'aXna (967&)

{Q% =1,Qai—1, Por|B5 = 1, Boic1, a0 11 g
Similarly the subsystem (9.65) reduces to

199634 4G, 4G,
1,09, X3, s X, (9.67b)
{Q7, Qa2i—1, Por| 87, Bai-1, Oézr}ifwzo
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They both satisfy the conditions in Theorem 8.29. Therefore the Hall system {A,B} remains
the same as well as the groups Py, Q%,_,Q, Q(Box—12k), P and P(ag_12-1). Note also that the
shifted systems satisfy

G‘i — Q‘lq =1 and Xiq = ﬁf =1 (968)
5=Py, =Py and x5 = az = a5. (9.69)

As with the previous section, the goal is to understand the behavior of the above systems when
we apply Clifford’s theory to a normal subgroup of G. This time the normal subgroup is contained
in P, and not ()1 as was the case with Section 9.1. The results we obtain are similar to those of the
previous section, and their proofs are identical, (the only modification being, whenever necessary,
the interchanged role of m and 7). As with the group S and the character ( earlier, we fix (until
the end of this section) a subgroup R of G2 and a character n of R that satisfy

R<G and R < Py, (9.70a)
1 € Irr(R) is G-invariant and lies under as. (9.70b)

We also assume that M is a normal subgroup of G with
R<M <P, (9.70¢)

The role of A(f1) is played here by the group B(az). So, as in the case of A and E in the previous
section, we have

Lemma 9.71. There is an irreducible character p € Irr(M) such that p is B(az)-invariant and
lies under aa and under x;, for all i =3,...,n. Any such p lies above n € Irr(R).

Proof. The proof is similar to that of Lemma 9.6. If pg is any irreducible character of M lying
under ag, then B(ay) permutes among themselves the Ps-conjugates of p1, as it normalizes P, <G
and fixes aa. So Glauberman’s Lemma implies that B(ag) fixes at least one Py-conjugate of p.
The lemma follows if we observe that any character of M that lies under as also lies under y;, for
all i = 3,...,n, while any character of M lying under «ay lies necessarily above n € Irr(R), as 7 is
G-invariant. O

Note also that

Remark 9.72. Assume that p; € Lin(M) is a linear character of M lying under . Then there
exists a Pp-conjugate p € Lin(M) of pi, such that p is B(ag)-invariant, and lies under ap and
above 7.

Remark 9.73. The 7'-group Q3, | =1-Q3- Q5 -- Qor_1 fixes ay, as every one of its factors does,
by (5.17e). Thus Q3,_; < B(ag). So Q3,_, fixes p.

Remark 9.74. For any m > 2, the 7’-group Q is a subgroup of B(x1, x2,---,Xx2k), by (9.4d).
Thus Q < B(x1, x2) = B(x2) = B(ag). So Q fixes pu.

From now on we fix a character u € Irr(M) having all the properties in Lemma 9.71.
Since the 7’-group Q3,_;, as a subgroup of Q%,_; < B(az2), fixes the character ;1, we can define
Mo; 1 and pg;—1 by
MQifl = C(sz—l in M) and (975&)
p2i—1 € Irr(Ma;—1) is the Q3;_;-Glauberman correspondent of u € Irr(M), (9.75b)
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for all i =2,...,I'. We also define M; and p; as

M, =M and p = p. (9.75¢)
Furthermore,
Mo, = P2’2z‘_1 NM = C(Q§1—1 in PQ) N M, (9763)
for all t = 2,...,0’, while
w1 lies under ag € Irr(Ps), (9.76b)
251 lies under Q22i—1 € II‘I‘(P2721',1), (976(3)

whenever 2 < i <1, as ag9;—1 is the @}, ;-Glauberman correspondent of ag, and ay lies over f.
In view of (9.75) we have

N(p) = N(p2i-1), (9.77)
for all groups N with N < N(Q5;,_; in G),and all i =2,...,1".

As in the previous section, we define

G = G(p), (9.78a)
GLM = Gz(H) = GM N GZ‘, (978b)
P27M = Pg(u), (9780)

whenever 3 < i < n. This way we can form the series
14P,4G3,d--- 4Gy, = G, (9.78d)

of normal subgroups of G, = G().
We also write
G =01 =1, (9.79a)
and

Goy = Po(p) = Pay. (9.79b)

Furthermore, we can apply Clifford’s Theorem to the groups G; and the characters y;, for all

i = 3,...,n. Thus there exist unique irreducible characters x;, € Irr(G;,) lying above p and
inducing y;

Xip € Irr(Gip|p) and (Xz}u)Gi = Xi (9.80a)

for all © = 3,...,n. We complete this list by setting
Xiu=031=1 (9.80b)

We also write
Xeu = a2y € Irr(Po(p)) (9.80c)

for the p-Clifford correspondent of ag, i.e., x2,, lies above u and induces ag € Irr(P). Clearly x2,,
lies above x1,, = 1. Furthermore, as the x; lie above each other, the same holds for the characters
Xi,u, by Clifford’s theory, for all # = 2,...,n. Therefore, we have formed a character tower

{17 XQ,M = a?,uv X3,,u,7 o 7XTL,,U,} (981&)
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for the series (9.78d). Hence Theorem 5.6, applied to the tower (9.81a), implies the existence of a
unique G,-conjugacy class of triangular sets of (9.78d) that corresponds to the tower (9.81a). Let

{Q2i-1,1 Por,pl B2i—1,15 a2r,u}i:’ﬁr:0 (9.81Db)

be a representative of this class.

All the groups, the characters and their properties that were described in Chapter 5 are valid
for the p-situation. We follow the same notation as in the previous section, with an extra p in
the place of the A\ there. The goal is the same as in the previous section, that is, to compare the
triangular set in (9.67) with that in (9.81b). As many of the results here have proofs analogous to
those in Section 9.1, we give them briefly or skip them.

The first steps in that direction follow from (9.79) and (9.80). In particular, these relations
clearly imply

Qu=Giu=GI=Q] =1, (
B =P =1, (9.82b
Py, = Py(p), (9.82¢
ag, € Irr(Pyy,) is the p-Clifford correspondent of ap € Irr(P). (9.82d

As in (5.129b) and (5.129a), we get the groups G7 , and G}, defined as

Go = Gop =1,
Gf,u =Gip(Xa - Xi-1) = Gi(X1 55 X ) (9.83)
GZ =Gu(X1 s Xnop)s
for all t = 1,...,n. Clearly we have
Giy =G, NG, (9.84a)
=Gl =0Q1, =1, (9.84b)
G5, = Gaou(x1) = Poy(l) = Py, (9.84c)

whenever 3 < i < n.
As with the A-groups and Lemma 9.20, the following holds:

Lemma 9.85. For anyi¢=3,...,n we have
G, =G"(n) (9.86a)
Gi,=Gl(p). (9.86Db)
Proof. The proof is similar to that of Lemma 9.20. So we omit it. O

We can now prove
Proposition 9.87. For everyr =0,1,...,k andi=2,...,I' we have that
P;.(p) € Hally (G5, ), (9.88a)
Q21 € Hall (G _y ,,)- (9.88b)
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Therefore the triangular set (9.81b) can be chosen among the sets in its G ,-conjugacy class so that
it satisfies

Pi () = P (9.89%)
Q31 = Q51 > (9.89b)
whenever 0 < r < k' and 2 <i <.

Proof. The cases Py and Py are easy (see (9.82c) ). The rest of the proof is similar to that of
Proposition 9.22, with the roles of P; , and @3,_, , interchanged. 0

The analogue of Lemma 9.25 is

Lemma 9.90. Assume that P» < T < G(az2). Then T = T(u) - P. Furthermore, if S satisfies
P272i_1 S S S N<Q;i—1 in G(Oz2722‘_1)), fO’/’ some 1 = 2,. . .,l/, Then S = S(M%—l) . P2722'_1 =
S(p) - Pagi1.

Proof. Similar to the proof of Lemma 9.90. We only remark that the role of P, here is the same as
that of @1 there, as the group P, is a normal subgroup of G. O

To compare the groups Py; , and Q2;—1,, with P; and (Q2;—1 we have, as we would have guessed

Theorem 9.91. The set (9.81b) chosen in Proposition 9.87 satisfies

Q2i-1,u = Qai-1, (9.92a)
B2i—1,u = B2i-1, (9.92b)
foralli=2,...,l', and
PQT’,,U, = P2r(,ul) = Py (/~L2r—1)7 (9933)
agry € Irv(Pay ) is the pgr—1-Clifford correspondent of ag, € Irr(Poy), (9.93b)
forallr =1,...,Kk'. Hence o, induces gy € Irr(Pay).

Proof. The proof is similar to that of Theorem 9.26. So we omit it. We only remark that we need
to interchange the role of the m-and n’-groups. Note also that the case i = 1, that is omitted here,
was already done, along with the case r =1, in (9.82). O

The analogue of (9.31), that would also appear as a step if we had given the proof of the above
theorem in detail, is

Remark 9.94. For all r = 2,..., K, we get
Py, = Py () - Poor—1 = Por(ptor—1) - Poor—1.
Proof. For all r = 2,...,k" we have that
Pror_1 = Po N Py < Po, < N(Q5,_; in G(az2r-1)),

by (5.34) and Proposition 5.55. Hence we can apply Lemma 9.90, with P, in the place of S. So
the remark follows. O
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Furthermore, the analogue of Remark 9.42 for the w-groups is

Remark 9.95. For all r,¢ with 1 <r < ¢ <[’ we have

Poroi1.y = Poroi—1(p) = Por2i—1(p2i-1),
while the character ao;2;—1,, is the pg;_1-Clifford correspondent of ag; 2—1.
Proof. The proof is the same as that of Remark 9.42, so we only sketch it.
Pyoi1u=C(Qars1ps---rQ2im1,u i Pory) = C(Qarg1 -+ Qoi—1 in Por(1))

= C(Qar+1 - Q2i—1 In Po,) (1) = Poroi—1(pt) = Por2i—1(p2i-1), (9.96)

where the last equation follows from (9.77), along with the fact that P, 2;—1 normalizes @3, ;.
Furthermore, the fact that Clifford theory is compatible with Glauberman correspondence
(Lemma 2.5 in [22]), along with (9.93b), implies that the Qap41 - Q2i—1 = QQH_LM .- 'QQi—l,lf
Glauberman correspondent g, 2;—1 of ao, is induced by the Q2,41 - - - Q2i—1,,-Glauberman corre-
spondent ay2;—1,, of aor,, and, in addition, agy2;—1,, lies above the Qa,41 - - - Q2;—1-Glauberman
correspondent po;—1 of por—1. Hence Remark 9.95 follows. O

Now we can prove two corollaries that follow from Theorem 9.91,

Corollary 9.97. For all i,7 with 2 <1 < j < k' we have that
Q2i-1,2j,u = Q2i-1,25 and 2125, = B2i-1,2j-
In addition, Q125 = QF o5 = 1 and P12, = B75; = 1, whenever 1 < j <K'

Proof. For all t,i with 2 <7 <t < k', the group Q2;—1 centralizes P> 9;—1 = C(Q3,...,Qa—1 in P).
As Py = Py (p) - P22t—1, we conclude that

C(Py in Q2;-1) = C(Poy(p) in Q2;-1), (9.98)

whenever 2 < <t < k. So we get

Q2i—12ju = C(Paiy -+ Poj o in Qoi—1,,) by (5.33), for the u-case
= C(Poi(p) - -+ Poj(p) in Q2i—1) by (9.92a) and (9.93a)
=C (P Py in Q2i—1) by (9.98)
= Q2i-1,2; by (5.33)

whenever 2 <1 < j < k.

The character (B2;_12j, is the P, --- Py ,-Glauberman correspondent of (2;_1,, by Defi-
nition 5.49 for the p-case. Hence it is also the Py;(p)- - - Pj(p)-Glauberman correspondent of
B2i—1, according to Theorem 9.91. This, along with (9.98), implies that Bo;_1,2;, is the Po; - - - Pyj-
Glauberman correspondent of 32;_1. Thus (32;_1 25, equals B2;_1,2;, as the latter was also defined
as the Py; - - - Poj-Glauberman correspondent of ($2;_1. This completes the proof of the first part of
the corollary. The rest holds trivially. So Corollary 9.97 holds. O

Corollary 9.99. For allr =1,..., kK, the character O‘;T,u € Irr(Pg*nM) is the u-Clifford correspon-
dent of a3, € Irr(FPs,).
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Proof. The character a3, , is defined (see Definition 5.147), as the Q3 ,, . .., Q2,—1 -correspondent
of aay,,, whenever 1 <r < k. Hence, (9.92a) implies that as, , 1s the Qs, ..., Q2i—1-correspondent
of agr,. But ag,, is the p-Clifford correspondent of ag,, and the groups Q3,...,Q2—1 fix p.
According to Proposition 3.12 the A-correspondence is compatible with the Clifford correspondence.
Thus, taking A as Q3,Qs,...,Q2-—1 in turn, we conclude that the Qs, ..., Q2-_1-correspondent
a3, , of gy € Irr(Par (1)) is the p-Clifford correspondent of the Qs, ..., Q2y—1-correspondent o,
of ag, € Irr(Py,). Hence Corollary 9.99 follows. O

As far as the Hall system { A, B} is concerned, we have, similarly to Theorem 9.46, the following

Theorem 9.100. We can find new A, € Hall(G,) and B, € Hall»(G,) satisfying the equivalent
of (9.2) for the u-groups, along with

AL(Xar s Xhop) = A(XTs -5 Xho 1) (9.101a)
BIJ«(Xl,;M s )Xh,/i) = B(X17 . 7Xh)a (glolb)

forallh=2,...,n. Hence
A,u(X?,,ua cee 7Xh,u) = A(XQa <oy Xh M)?
BM(XQ,/M s 7Xh,u) = B(X?v s )Xh)a
for all such h.

Proof. The proof is similar to that of Theorem 9.46, with the roles of A and B interchanged. Just
observe, for the last part, that x1, = 1, while x; is G-invariant (and thus A-and B-invariant). O

We restrict our attention to the smaller system (9.65). The subset

Ik
{Q2i—1,s Por,u B2i—1,1, @2 }i21 o

of (9.81b), is clearly a triangular set of the normal series 1 = G <G, <G, - - <Gy, IG),, and
the tower {x; . }"y. Of course, (9.79) and (9.82) imply that G, =1 = Q1 and x1,, = 1 = Si,,
while G2, = P, and X2, = a2 ;. In view of Theorem 9.91, the above system can be chosen to
satisfy (9.92) and (9.93), for all » = 0,...,k and all ¢ = 1,...,l. As in the previous section, we
can chose the groups @ and P along with their corresponding in the u-case groups Qu and ﬁu to
satisfy theorems analogous to Theorems 9.48 and 9.50, that is,

Theorem 9.102. Assume that {A,,B,} is a Hall system for G, that is derived from {A,B} and
satisfies the conditions in Theorem 9.100. Assume further that for every m = 1,...,n, the group
@ is picked to satisfy the conditions in Theorem 8.13 for the smaller system (9.65), while the group
@A is picked to satisfy the equivalence of teh conditions in Theorem 8.13 for the u-groups. Then

@,u(ﬁZkfl,Zk,u) = @(521%1,%)-
So Q,, = @p(ﬁ%q,%,u) "Qy_q1, =<

Proof. Same as the proof of Theorem 9.50, with the roles of P and @ interchanged. Note that,
when passing to the shifted system, the groups P and () remain the same by Theorem 8.29. O

We also have
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Theorem 9.103. Let {A,,B,} be as above, and let m =1,...,n be fized. If]3 is picked to satisfy

the conditions in Theorem 8.15, for the smaller system (9.65), while ﬁu is picked to satisfy the
equivalent of the conditions in Theorem 8.15 for the p-groups, then

~

Pu(oar—291-1,) = Plag_ao1-1, ).

So Pu = Bulam12-1,) - Py, < P(w).

Proof. See the proof of Theorem 9.48. O
As a corollary of Theorem 9.102, we get

Corollary 9.104. The groups @H(ﬁgk,l,%’“) and @(ﬂgk,mk) have the same image in Aut(Ps) .
They also have the same image in Aut(Py, ). Thus

I = the image of @u(ﬁgk,mk,u) in Aut(Ps;,). (9.105)

Proof. This is trivially true, as according to Theorem 9.102 the two groups @#(ﬂgk_172k7u) and

Q(B2k—1,2k) coincide. Hence (9.105) follows. O
We define R

J := the image of P(ag_22—1) in Aut(Q%_)- (9.106)

Note that this is the analogue to the definition of I in (9.53). Of course J is well defined as Pisa
subgroup of G(f5,_,), and thus normalizes @, ;. Furthermore, Theorem 9.103 easily implies

Corollary 9.107. The groups ﬁu(a2172,2171,u) and ]3(042172,2171) have the same image inside
Aut(Q5,_) = AU'E(QSFL!L). Hence
J=1J,

where J, is the image of ﬁu(a21—1,2l—1,u) in Aut(Qy_y )
Proof. Same as the proof of Corollary 9.54. So, in view of (9.89b), it is clear that Aut(Q3, ;) =
AUt(QSZ—l,M)v as Q;l—l = Q;l—l,,u' While

P272l_1 < ﬁ(a21—2,2l—1) < N(le,1 in G(a2,2l—l))-

Thus

~

P(agi—221-1) = Pu(oi—221-1,4) - Paoi—1,

where Pogi—1 = C(Q3 - Qs5---Qo—1 in P»). As Q1 centralizes P, we conclude that P91 =
C(Q%,_; in Py). Therefore, Corollary 9.107 follows. O

We conclude this section with the analogue to Theorems 9.59 and 9.60.

Theorem 9.108. Assume that the character Boj—12, € Irr(Qox—12k) extends to @(5%—1,%)' Let
Q. be the group picked in Theorem 9.102. Then the character Bop_1 2k, € Irr(ng,l,u) extends to

the group Qu(Bok—1,2k,u)-

Proof. The proof here is as trivial was that of Theorem 9.60. So, Bor—1 2k, = B2k—1,2k, by Corollary
9.97, and Q. (Bok—1,2k,u) = Q(P2k—1,2¢), by Theorem 9.102. Thus Theorem 9.108 holds. O
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Theorem 9.57 and Remark 9.95 imply

Theorem 9.109. Assume that agy—o2;—1 € Irr(Py_g91—1) extends to ﬁ(agl,ml,l). Let ﬁu be a -
Hall subgroup of G, gy, |, chosen so that the conditions in Theorem 9.103 hold. Then the character

Qg—oi—1,u extends to P,(ao—221-1,)-

Proof. Same as that of Theorem 9.59, so we omit it. O
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9.3 Kernels

9.3.1 Inside

In our common situation, we have a finite group G, and the fixed system described in (9.1) and
(9.2), that is

the normal series: 1 =Gy <G 4---<4G,, =G, (9.110a)
the character tower:{1 = xo0, x1,---,Xn} (9.110b)
the triangular set: {Q2;—1, Por|B2i—1, ag,«}g:’ﬁ;zo (9.110c¢)
and the Hall system
{A, B}, (9.110d)

that satisfies (9.2). As usual, we assume known all the groups and their characters that accompany
the above setting. In particular, we assume known the groups Py, Q5 _1, Pi2j+1, Q2i—1,25, as well
as @, ]3, and the characters o3, 35, _,, 2i2;+1 and (2;_12;.

We also assume that S and ¢ € Irr(S) satisfy (9.5), i.e., S is a normal subgroup of G contained
in Gp, and ( is a G-invariant character of S lying under 81 = xi1. If K denotes the kernel of (,
then K is a normal subgroup of G, as ( is G-invariant, and K is contained in G; < G;, for all

i=1,...,n. Thus we can define the factor groups
Grg =G/K and G, k = Gi/K, (9.111a)
foralli =1,...,n. Then G; g is the image of G; in the factor group Gx. This way we have created

a normal series
Goxk =14G1 kG -+ 4Gy gk =Gk (9.111b)

of G, that clearly satisfies Hypothesis 5.1. Along with that series we can associate a character
tower that arises from (9.110b). Indeed, K = Ker(¢) is contained in the kernel of y;, for all
it =1,...,n, as x; lies above the G-invariant character ¢. Thus there exists a unique character x;
of the factor group G; x = G;/K, that inflates to x; € Irr(G;), whenever 1 < i < n. Hence the set

{1= X0,K5 X1,K - - - ,Xn,K}, (9.111c¢)
forms a character tower for the series (9.111b).
As in the earlier sections, we fix an integer m = 1,...,n, and consider the smaller system
1=Gy<dG1 4--- 4G, 4G, (9.112a)
{1=x0,X15+++, Xm} (9.112b)
{Q2i-1, Por|f2i-1, Oézr}i’jl,r:o- (9.112¢)

Clearly the series (9.111b) and the tower (9.111c) provide the smaller reduced system

Goxk =14G1xk AGo I+ Gk Gk (9.113a)
{1 = X0,k X1,K5 -+ Xm,K }- (9.113b)

The aim of this section is to give a “nice” triangular set for (9.111b), that corresponds to the
tower (9.111c), so that we can control the groups Py, Q% _,,1 and J of the system (9.112). This
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is done using the natural group epimorphism
p:G— G/K. (9.114a)

Assume that H is a subgroup of G and # an irreducible character of H having K N H in its
kernel. Let Irr(H|H N K) be the set of all such characters of H. Then, as it is well known, any
0 € Irr(H|H N K) determines, in a natural way, a unique irreducible character p(6) € Irr((HK)/K)
such that

PO)(0K) = b(0), (9.114D)

for all 0 € H. We remark that an arbitrary element 7 € G fixes 6 if and only if it normalizes H
and its image p(7) in G/K fixes p(#). (Note that we could have 7 € G such that p(7) fixes p(6),
and thus normalizes HK, but 7 moves H around inside HK.) Therefore

Remark 9.115. The homomorphism

p:G(0) = (G/K)(p(0)) = Gk (p(0))

is onto if and only if for every x € G with p(x) € Gk (p(f)), there exists an element 7 such that
TexKNN(H in G).

Some sufficient conditions that make the above homomorphism onto are given in the next
lemmas.

Lemma 9.116. If 0 € Irr(H|H N K) and H is a 7-Hall subgroup of HK, for some set of primes
7, then the map

p:G0) — Gr(p(0))

s an epimorphism.

Proof. Let x € G be such that p(z) fixes p(f) € Irr(p(H)). Then p(z) normalizes p(H). So x
normalizes the inverse image HK of p(H) in G. Therefore

H* < H'K = (HK)" = HK.

As H is a #-Hall subgroup of HK, we conclude that H* = H*_ for some k € K. Hence the element
7 = k™! normalizes H and lies in K. In view of Remark 9.115 the proof is complete. O

As a generalization of Lemma 9.116 we have

Lemma 9.117. Assume that H; is a subgroup of G and 0; € Irr(H;|H; N K), for alli=1,... s,
and some integer s > 1. Assume further that the product Hy - Hs--- Hg is a 7-Hall subgroup of
H{-Hy---Hs- K, for some set of primes &, and that Hy --- HiNH; K = H; for alli=1,...,s. Let
x be an element in G that normalizes H; K, for all i = 1,...,s. Then there exists some T € xK
such that T normalizes H;, for alli=1,...,s. Hence the map

p:G01,...,05) = Gg(p(01),...,p(0s))
s an epimorphism.

Proof. Since x normalizes each H;K, it also normalizes the product group Hy - Hy--- Hs - K. As
H,---H, is a #-Hall subgroup of Hy --- H, - K, we get that (Hy--- H,)® = (H;--- H,)*, for some
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k € K. Thus the element 7 = xk~! normalizes the product H; --- Hy. But 7 also normalizes H; K,
as x does, for all i = 1,...,s. Hence 7 normalizes the intersection H; = Hy--- H; N H; K, for each
i=1,...,s. This completes the proof of the first part of the lemma.

To show that the desired map is an epimorphism it suffices to see, (according to Remark
9.115), that for any x € G with p(z) € Gg(p(01),...,p(0s)), there exists some 7 € zK that

normalizes the groups H;, for all i = 1,...,s. But any such element x normalizes H;K, as p(x)
fixes p(0;) € Irr(H; K/K), for all i = 1,...,s. Therefore, the first part of the lemma applies, and
guarantees the existence of such a 7. O

As we did with the system (9.111), we will follow the same, standard by now, notation as in
Chapters 5 and 6, with the addition of an extra K in the subscripts. We first observe

Lemma 9.118. Forall j=1,...,n, alli=1,...,I', and allr =1,... k', we have that

Gik =Gix(X1K, - Xj-1k) = G/ K,
(Q3-1K)/K € Hall (G3; 1 i),
PQ*T = (PQ*TK)/K € Hauﬂ'( ;T,K)'
Proof. Since each y;, for ¢ = 1,...,n, is a character of a normal subgroup G; of G containing K,
its stabilizer G(x;) is the unique image of Gk (xi k) = G(xi)/K in G. The first part follows from

this and the definition of Gj- in (5.129b). The other two parts are implied by the first, and the fact
that Q3,_; and Py, are n’-and 7-Hall subgroups of G5, _; and G35, respectively. 0

We also note

Lemma 9.119. The intersection K N Q2i—1 is a subgroup of the kernel Ker(B2;—1) of [ai—1 €
Irr(Q2i—1), whenever 1 < i <1’

Proof. Indeed, assume i = 1,...,0" is fixed. Then K N Q2i—1 < Q1 N Q2i—1 = Q1,2i, (see (5.33)
for the last equality). So K N Q21 < Ker(Bi]q,.;), as K < Ker(f1) = Ker(x1). Since 12
is the Pj;-Glauberman correspondent of i, it is a constituent of the restriction 31|q, ,, of 41 to
Q1,2i- Thus K N Q2—1 is also a subgroup of the kernel, Ker(/2;), of this constituent 3 2;. The
character (31 2; is the unique character of Q1 2; lying under (32;_1, according to Proposition 5.55.
Thus Ker(51,2i) < Ker(82;—1). We conclude that

K N Q2i—1 < Ker(B,2;) < Ker(B2i-1), (9.120)

whenever 1 < ¢ <!’. Thus Lemma 9.119 follows. O
In view of above lemma, we see that the character (39;_1 determines a unique character

Bai—1,i = p(B2i—1) € Irr(p(Q2i-1)), (9.121a)

by (9.114b).
Since Py, is a w-group, for all 7 =0, 1,..., k', we have that Py, = (P, K)/K, as K is a 7’-group.
Thus the character ag, € Irr(Py,.) determines, under the above isomorphism, a unique character

Qor K 1= p(OCQk) < II‘I‘((PQTK)/K> (9121b)

Now we can define the desired K-triangular set for (9.111b).
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Theorem 9.122. For everyr =0,1,...,k andi=1,...,I" we define

P2T‘,K = P(P2r) = (P2TK)/K = P2r’
Q2i—1,x = p(Q2i-1) = (Q2i1K) /K. (9.123)

Then the set o
{Q2i-1,K, Por k| B2i-1.K, OCQ'/‘,K}i:”iT:O (9.124)

is representative of the unique G -conjugacy class of triangular sets that corresponds to (9.111c).

Proof. Tt suffices to verify all the relations in (5.17) and in Theorem 5.88, for the K case. We will
do that using the map p and the fact that the same relations hold for the set (9.110c).

The first two relations (5.17a, b) of (5.17), hold trivially. To see that (5.17c) and (5.17¢) hold,
it is enough to show that the maps

p:Go(ag, ... 002,01, .., Por—1) = Gorr(plaz),...,plaz—2),p(B1),- ., p(B2r-1))

9.125
p:Go—1(a, ..., a2i-2,01,...,02i-3) = Gai—1,k(p(2), ..., p(a2i—2), p(B1), - - -, p(P2i-3)) ( )

are onto, whenever 1 < r < k/ and 2 < ¢ < I’. Indeed, that would be enough to guarantee that if
we apply p to (5.17c) and (5.17e) we get

p(Pay) = Poy ¢ € Hallp(Gar ik (p(a2), ..., plaar—2), p(B1), - - -, p(B2r—1)))s
p(Q2i—1) = Q2i—1,x € Hall(Gai—1,x(p(2), . .., plazi—2), p(B1), ..., p(P2i—3))).

We first fix some ¢ = 2,...,l" and consider the map

p:Goi1(ag,... a2 2,01,...,02-3) = Gai—1,x(p(a2),...,pla2i—2), p(B1), .., p(B2i-3))-
(9.126)
The groups P; and their characters ag;, with 1 < j < ¢ — 1, satisfy the hypotheses of Lemma
9.117. That is, the product P> - -- Py;_9 = Py, _, forms a group, that is actually a 7-Hall subgroup
of Py;_o K. Furthermore, Py, , N Py K = Pyj, for all j =1,...,¢ — 1. We conclude that the map

p:Gag,...,a0i—2) = Gg(plag),...,plai—2)), (9.127)

is an epimorphism.
Let x € G with p(z) € Gai—1,x(p(a2), ..., p(ai—2), p(B1), - - ., p(B2i—3)). Then the epimorphism
of (9.127) allows to assume that = is an element of G(az, ...a2i—2). Thus to prove that the map

in (9.126) is onto, it suffices to show that = normalizes Q;_1, for all j =1,...,i — 1. Clearly «
normalizes Q1 < G. For the rest we will induct on j.

Assume that x normalizes Q1,...,Q2._1, for some r with 1 < r < ¢ — 1. Then x fixes
Bi,...,P2—1. Hence z normalizes the group Gari1(a,... a9, B1,...,02—1). But Qory1 is a

7/-Hall subgroup of this latter group, by (5.17¢), and x normalizes the 7'-group Q2,4+1K, as p(z)
fixes p(B2r+1) € Irr((Q2r+1K)/K). Therefore z normalizes the intersection

Qor+1K NGorpi(a, ..., a2, 01,. .., 02r—1) = Q2rt1.

This completes the proof of the inductive argument, and thus shows that the map in (9.126) is
onto.

A similar proof shows that the other map in (9.125) is also onto.

To prove (5.17f), we have to show that 32;_1 i lies above the P»;_o g-Glauberman correspondent
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Boi—32i—2.k € Irr(Q2i—32i—2 k) of B2i—3 i, for all i =2, ... 1. First notice that
Q2i-32i—2.k = C(Pri—2.x in Qoi—3 1) = C((Po—2K)/K in (Q2-3K)/K).
The fact that (|Q2i—3|, |P2i—2|) = 1 and Glauberman’s lemma imply that
C((Poi—2K)/K in (Q2i—3K)/K) = (C(Pi—2 in Q2i-3)K)/K = (Q2i-32i—2K)/K = p(Q2i-32i—2)-

Hence QQZ‘_3’22‘_27K = p(QzZ;g,Qifg), whenever 2 < ¢ < [ Furthermore, ﬁgi,&%,g is the Py;_o-
Glauberman correspondent of [(o;_3. Thus p(B2i—32i—2) is the p(Pai—2) = Pa;_2 r-Glauberman
correspondent of p(32;_3), by Proposition 3.5. In conclusion,

p(B2i—3,2i—2) = [2i—32i—-2,K, (9.128)

for all i = 2,...,1’. This, along with the fact that (a;_1 lies above (2;_3 2,—2, implies that B;_1 x =
p(,@Qi_l) lies above 521;3’21',271( = p(ﬂzi_ggi_g). Thus (5.17f) holds.
Similarly we can show
plagr—29r-1) = Q2r—2.27—1 K+ (9.129)
for all r =1,...,k’. From this (5.17d) follows.

As far as Theorem 5.88 is concerned, the relations in (5.92), and (5.93), are easily translated to
the K-case using p (for groups and characters). For example, we have

G2i2i—1,K = p(G2i2i—1) = p(Pa; ¥ Q2i—1) = Paj gk ¥ Q21 K,

whenever 1 < i < k’. So the first part of (5.92) holds for the K-case. The proof for the rest is
analogous, and we leave it to the reader.

We need to work more to show that (5.91) holds for the K-case, i.e., to show that

Gigj1,k = Gix(ao K, ..,005 25, BLK, -, P2j-1K)
= N(PQ’K, ey PQJ',Q’K, QLK’ e ,ng,LK in Gi,K(Xl,Ka e ,ng,LK)), (9130&)

and
Giork = Girx(2 K, Q2 Kk, LK, - Por—1,K)
=NPoyr,. . P, Qui, -, Qa1 in Gi k(X155 -+, Xork)), (9.130b)
whenever j =1,...,0', r=1,...,k and i = 1,...,n. (Note that we have separated the odd from

the even case in (5.91).)

We have already seen that the maps in (9.125) are onto. So if we prove that the maps

p:N(Po,...,Poj2,Q1,...,Q2-1in Gi(x1,---,X2j-1))
— N(Pory- s Pojo i, Quis -, Qoj—1,k in Gy (X1,K,---,X2j-1,K)), (9.131a)

p: N(PQ, e ,PQT, Ql, ceey Qgrfl in Gi(Xla e ,XQT))
= NPoyg,. s Porr,Quic,- -, Qor—1,x in Gy g (X1,K,-- - X2or,K)), (9.131D)
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are onto, then the equations in (9.130) hold, as we can apply p to the equation (5.91).

We will prove that the map in (9.131a) is onto and leave the proof of (9.131b) to the reader.
The idea for the proof is the same as that used to prove the maps in (9.125) were onto.

So assume that € G is such that p(x) lies G;(x1,K,- -, X2j—1,k) and normalizes the groups
Por,...,Py_ox and Q1 k,...,Q2_1K, for some fixed i = 1,...,n and j = 1,...,I'. Then it is
easy to see that x lies in G; and fixes x1,...,Xx2j-1. Furthermore,  normalizes K, ..., P oK,
while the groups P, ..., Py;_2 and the characters ag, ..., ag;—2, satisfy the hypotheses of Lemma
9.117. Hence we can assume that x normalizes the groups Ps, ..., Pyj_o.

It remains to show that x normalizes the groups 1, ..., Q2j—1. We use induction on j. Clearly
x normalizes ()1 < G. Now assume that z normalizes Q1,...,Q2.—1 for some r with 1 < r <
j. Then x normalizes N (P, ..., Por,Q1,...,Q2r—1 in Gopp1(X1,---,X2r—1)), a8 Gory1 < G. But
this normalizer equals Ga,412, = Par X Q2r41, having Q2,41 as a n'-Hall subgroup. As z also
normalizes the 7'-group Qo2,4+1K, (since p(x) normalizes Q2,41 k), we conclude that z normalizes
the intersection (Po, X Q2,41) N Q2,41 K = Q2,41. This completes the proof of the inductive step,
thus proving that the map (9.131a) is an epimorphism.

So, with analogous proofs left to the reader, Theorem 9.122 follows. O

Clearly we have
Remark 9.132. For any fixed m = 1,...,n, the smaller set
NG
{Qai—1,k; Por k| Boi—1,K05 @25, K }io1 g

is a triangular set for (9.113a) that corresponds to the character tower (9.113b). So now we have
a complete smaller K-system

Goxk =14G1k 9Gox 4+ IGpy x 4Gk, (9.133a)

{1 = X0,k X1,K>- s Xm,K} (9.133b)

{Q2i-1,K, Por x| B2i1,x, Oézr,K}ifM:O- (9.133c)

For any k = 1,..., K/, we write ag r for the Qs K, ..., Qar—1,Kk-correspondent of agy, i (see

Definition 5.147). Then the above theorem implies
Corollary 9.134.
Py ¢ = p(Pay,) = Py,
g ¢ = plagy) € Tir((Py K)/K),
forallk=1,...,k.
Proof. In view of Lemma 9.118 and (9.123) we have that

Py = Poxc - Popic = p(Pa) - p(Par) = p(Psy) = Py,

for all kK = 1,...,k". The character as,. was defined as the @3,. .., Qar_1-correspondent of aoy,
for all such k. Hence Proposition 3.5 implies that p(c3,.) is the p(Q3),. .., p(Q2x—1)-correspondent
of p(cr), whenever k = 1,...,k'. But p(agr) = ag ik, by (9.121b), and p(Q2;—1) = Q2i—1,x, by
(9.123), for all i = 1,..., k" <!'. Thus, the p(Q3),. .., p(Qax_1)-correspondent of p(ag) is nothing
else but the Q3 k..., Qak—1,K-correspondent a3, ;- of agy . We conclude that oF; = p(ai;),
for all k =1,...,k, and the corollary follows. 7 7 O
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Furthermore,

Corollary 9.135. Foralll =1,...,l', the character 55, ;- € Irr(Q%,_, k) is the unique character
of Q;l_LK = (Q5,_K)/K that inflates to 55, , € Irr(Q%,_,). Hence ﬁ;l_l’K = p(55,_1)-

Proof. In view of (9.123), the product group Q3_; x = Q1,k -+ Qa-1,x is the image under p of
Q51 = Q1+ Qo -1, that is,

Q31 = P(Qy_1) = (@51 K)/K,

for all I = 1,...,l'. Furthermore, K is a subgroup of Q1 = @7, and is contained in Ker(f;). As
B1 = B7 is the unique character of Q7 lying under 35, ;, we conclude that K is a subgroup of
Ker(8;,_,), for all I = 1,...,1". Hence there is a unique character, p(35,_;) of (Q%,_,K)/K that
inflates to 33,_,. It suffices to show that p(85,_;) = 55,1 k-

Indeed, since (3, , is the Pg,...,Pgl_g—correspondeflt of By_1, we get that p(B35,_;) is the
p(Py), ..., p(Pay_s)-correspondent of p(fy_1), for all I = 1,...,I', (see Proposition 3.5). But
p(PQZ') = P27:7K, for all ¢ = 1,...,]4:’, by (9.123), and p(BQl_l) == ﬂQl—l,Ka by (9.121). Hence,
p(B5,_1) is the Py i, ..., Py_o g-correspondent of By g, for all I = 1,...,1’. This completes the
proof of the corollary. O

Even more, the Hall system {A, B} is nicely transfered via p to a Hall system of (9.111), as the
next theorem shows.

Theorem 9.136. Let
Ag:=p(A)=(AK)/K =2 A and Bk = p(B) = (BK)/K = B/K.

Then {Ak,Bxk} is a Hall system for Gg that satisfies the equivalent of (9.2) for the K-case.

Proof. The maps

p:G(x1,--sxn) = Gr(X1,K, -+ s XRK),

P A(X17"'7Xh) - AK(X17K7"'7Xh,K)7

p: B(XL"'?X}L) - BK(Xl,Kv"'7Xh,K)7
are clearly onto, as x; € Irr(G;) with G; <G, for all i = 1,...,h, and all h = 1,...,n. This, along
with (9.2a, b), implies

Ag € Haﬂﬂ(GK), By € Hallﬂ-/(GK),
Ar(X1,K:X2,K5 -+ > Xh k) and B(x1,x, X2k, - - - Xn,k) form a Hall system for
GK(XLK7 X2,Ky--- 7Xh,K)7

forallh=1,...,n.
In addition, (9.2¢) and Corollary 9.134 imply

AK(X].,KJ"'?X’I%K) :P(A(X177Xn)) :p(PQ*k;’) :P;k",K'

Similarly we get that Br (x1,K,- -5 Xn,x) = p(Q5y_1) = Q5 ;- Hence the groups A, Bx form
a Hall system for G, and satisfy (9.2) for the K-case.

Since (JA|[,|K|) = 1, we clearly have (AK)/K = A. This completes the proof of the theorem.

O
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As a corollary of the above theorem we have

Corollary 9.137. For any k=1,...,k" and anyl =1,...,I' we have

p(N (P in B(x1,- -+, x2k))) = N(Pyy g in Be(X1,K, - -, X2k, k)5
P(N(Qy—1 in A(X1,- -, x2-1))) = N(Q3_q i In Ar(X1,K,- - -5 X21-1,K))-

Proof. As (|P5,],|K|) =1, we have
(N (Pay in B(x1,. -, x2x)) K) /K = N((Pg.K) /K in (B(x1, - .., Xar) K)/ K).

Also, N((Py,K)/K in (B(x1,...,x2x)K)/K) equals N (P in Br(x1,K, - -2 X2k,K)), as Poy g =
(P K)/K, by Corollary 9.134, and (B(x1,...,x2t)K)/K = Br(Xx1,K;---,X2k,Kk), by Theorem
9.136. Furthermore, as (N (Py, in B(x1,...,x2%))K)/K = p(N(Pj, in B(x1,...,x2k))), the first
part of the corollary follows.

The proof for the second equation is similar. O

Working on the smaller system (9.112), we can now prove

Theorem 9.138. Let {Ax,Bk} be a Hall system of Gk that arises from {A,B} via Theorem
9.186. For any fited m = 1,...,n, we choose the groups QQ and Qg to satisfy the conditions in
Theorem 8.13 for the systems (9.112) and (9.133), respectively. Then

~ ~ ~

Qr (Bor—1,2k,1) = P(Q(Bar—1,2k)) = (Q(Bor—1,26) K) /K. (9.139)

Proof. We choose @ and Cj K to satisfy the conditions Theorem 8.13 for the systems (9.112) and
(9.133), respectively. Therefore N (P}, in B(x1,...,x2t)) = Q(B2k—1,2¢). In addition, we have
N(Pz*k,K in Bx(x1,K,---sX2kk)) = QK (B2k—12kk). This, along with Corollary 9.137, implies

Theorem 9.138 O

Similarly we can show

Theorem 9.140. Assume thatA{AK,/BK} are as above. Assume further that, for any fired m =
1,...,n, we choose the groups P and Pk to satisfy the conditions in Theorem 8.15 for the systems
(9.112) and (9.133), respectively. Then

~

PK(Oézl—Q,Ql—LK) = 0(13(0421—2,2l—1)) = (13(@21—2,21—1)K)/K

Hence

~

Pr(ag1—221-1,K) = 13(0421—2,25—1)'

Proof. Choose P and ﬁK to satisfy the conditions in Theorem 8.15, for the systems (9.112) and
(9A.133)7 respectively. Then the first part ofATheorem 9.140 follows from Corollary 9.137. Note that
(P(agl_gygl_l)K)/K = P(a2l—2,21—1)7 as (|P(a25_2721_1)|, |K|) = 1. Hence the theorem follows. [

As Qk (Bak—1,26,5) = p(Q(Bok—1,2k)), while Py = P51 = p(Py;.), the action of Q(B2x—1,2¢) on
Py, is carried onto the action of Qx (fBax—1.2k k) o0 Py i = Py, in the sense that

p(07) = p(0)"7) € Pii 1c (9.141)
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for any o € Py and any 7 € @(ﬂgk_mk). Let Ix be the image of Q\K(ﬂgk_lgk,[() in the auto-
morphism group Aut(Pz*,“ ). As the isomorphism p of Pj, onto P2*k7 x induces an isomorphism of

Aut(Py,) onto Aut(Py, 4 ), we conclude that this isomorphism carries the image of Q\(ﬁgk_lgk) in

the former automorphism group onto the image of @ K (B2k—1,2k k) in the latter such group. So we
have an isomorphism

pr - I = the image of @\(6%_17%) in Aut(Ps;)
— I = the image of @K(ﬂ%—l,%,K) in Aut(Pyy ;). (9.142)
Furthermore, identifying P}, with Pj;, ;- and Aut(Py;,) with Aut(P}, ) we conclude

Corollary 9.143. For any fized m = 1,...,n, the groups @(ﬁgk,l,gk) and @K(ﬁgk,mk,[() have
the same image in Aut(Py, ) = Aut(FPy,).

Similarly, Theorem 9.140 implies

Corollary 9.144. For any fited m = 1,...,n, the groups ]3(oz2l_2’21_1) and ]31((&2[_2,21_17[() have
the same image in Aut(Qy_; ).

Proof. As we have seen in Corollary 9.135 and Theorem 9.140

Q31 = p(Qy—1) = (Qy_1K)/K,

~ ~ ~

Pr(oo—221-1,x) = p(P(o21—2,21-1)) = Pag—22-1)-

So the action of ]3;((042;_2’21_17;() on Q3,_4 g is given (similarly to (9.141)) as

p(x)"W) = p(a¥) € Q51 i (9.145)
for any x € 5;,_, and y € ﬁ(agl_g’Ql_l). Furthermore, ﬁ(agl_ml_l) acts also on @3, _; j via

p(x)? = p(z¥),

for any x and y as above. As the map

~

p: Plagi—221-1) — Pr(0—221-1 k),

~

sending y € ﬁ(a25_2721_1) to p(y) € Pr(a2-221—1,K), is an isomorphism, Corollary 9.144 follows.
|

‘We conclude this section with

Theorem 9.146. Assume that the character Bog—1 21 € Irr(Qor—12k) extends to @(ﬁgk,LQk). Then
the character Bog—1 2k K € Irv(Qor—12k k) extends to the group Qr (Bok—1,2k K)-

Proof. Obvious, since betasy—1.2k,x = p(Bak—1,2c) by (9.128). O
Similarly we have.
Theorem 9.147. Assume that the character cg—99;—1 € Irr(Py_29—1) extends to ﬁ(agl_gvgl_l).

Then the character ag—o91—1 K € Irv(Py—221—1 k) extends to the group ﬁK(a21_2721_17K).
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9.3.2 Inside P,

Assume now that the system (9.110) for the normal series 1 = Go <G <--- JG)y, = G is fixed, but
in addition G5 satisfies (9.61), i.e., G is the direct product of a m-and a 7’-group, while x; = (3 is
G-invariant. Then the triangular set (9.110c) satisfies (9.63), i.e.,

GQ = Gg(ﬂ1) = P2 X Ql = PQ X Gl, (9.1488,)
X2 = a2 X . (9.148b)

Assume further that R is a normal subgroup of G and 7 is a character in Irr(R) satisfying (9.70),
i.e., R is a subgroup of P» while the irreducible character n of R is G-invariant and lies under as.
We write K for the kernel of 7. (Note this is not the same K as in Section 9.3.1.) Then K is a
normal subgroup of G, as n is G-invariant. As in the previous section, we are interested at the
factor group Gg = G/K. (Note that this time K is a m-group.) So we define the factor groups
Gix =G;i/K, for alli =2,...,n. We also write G1 g = (G1K)/K. Then (9.148a) implies

GI,K:(Gl XK)/KgGl. (9.149)

The series
1=Gox 9G1,xk Gox - 4Gk =Gk (9.150a)
is a normal series of G that satisfies Hypothesis 5.1. Furthermore, for every ¢ = 2,...,n the

character x; lies above the G-invariant character ¢. Hence K is a subgroup of Ker(x;), for all such
i. So we can define again the character x; xk € Irr(G; i), to be the unique character of G;/K that
inflates to x;, whenever 2 < i < n. As Gi g = G, we denote by x1,x the unique irreducible
character of G i that corresponds to x1, via that isomorphism. So we get a character tower for
(9.150),

{1 = X0,k X1, X2, -+ » Xn, KK} (9.150b)
that arises from the original tower (9.110b).

In conclusion, we have created a similar system to that of Section 9.3.1, with the only important
difference being that K is a m-group instead of a n’-group. The natural map p, on groups and
characters, that was defined at (9.114), is carried unchanged in this situation. Of course Remark
9.115 and Lemmas 9.116 and 9.117 are still valid. With the help of the same map p we will define
a triangular set for (9.150a) that corresponds to (9.150b). As we would expect, this set is going to
be the mirror of the set (9.124), with the roles of the m-and the 7’-groups interchanged.

We start with

Lemma 9.151. Forall j=2,...,n, alli=1,...,l' and all 7 =1,... k', we have

Gik =Gix(X1K - Xj-1k) = G/ K,
Q31 = (Q%_1K)/K € Hall (G5, k),
Pi, /K = (P3,K)/K € Hally (G, 1.

Proof. See the proof of Lemma 9.118. O

Also in the same way we worked to prove Lemma 9.119 and (9.121), but this time using the
characters ao,, g and ag2,—1 in the place of 32,1, 31 and B1 2; respectively, we can see that
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Remark 9.152. The intersection K N Py, is a subgroup of the kernel Ker(ay,) of ag, € Irr(Py;),
whenever 1 < r < k/. Thus, for all such r, there exists a unique character

agr i = plag,) € Irr((Py, K)/K), (9.153)

that inflates to o, € Irr(Pa,).

Furthermore, Q2;—1 is a 7'-group, and thus has order coprime to |K|, for all i = 1,...,l’. Hence
Q2i—1 = (Q2i—1K)/K, for all such i. So the character fg;—1 € Irr(Q2;—1) determines, under the
above isomorphism, a unique character

Boi—1,i = p(Bai—1) € Irr((Q2i-1K)/K), (9.154)

foralli=1,...,0.
We can now prove the main theorem of this section, the analogue of Theorem 9.122.

Theorem 9.155. For everyr =0,1,...,k" andi=1,...,I" we define

Py = p(Par) = (P K)/K, (9.156)
Q2i—1,x = p(Q2i—1) = (Q2i—1K) /K = Qai_1. (9.157)

Then the set .
{Q2i-1,5, Por x| 2i1,K¢, Oézr,K}ﬁ;kLr:O (9.158)

is a representative of the unique G g -conjugacy class of triangular sets that corresponds to (9.150b).

Proof. The proof is the same as that of Theorem 9.122, if we interchange the roles of P, and axo,
with those of Q2;,_1 and (2;_1, respectively. O

We also get

Corollary 9.159. Forallk =1,...,k', we have P}, ;- = p(Py,.). Furthermore, the character a; ;-
is the unique character p(ad,) of Py, - that inflates to o, € Irr(Py,.).

Proof. Same as that of Corollary 9.135, with the roles of m and 7’ -interchanged. O
and

Corollary 9.160.

Qu-1x = P(Qy_1) = Qy_1,
Bk = P(Ba-1)

foralll=1,...,1.
Proof. See Corollary 9.134. O

The same argument as that of Theorem 9.136 implies

Theorem 9.161. Let
Ag:=p(A)=(AK)/K and Bk = p(B) = (BK)/K = B.
Then {Ak,Bg} forms a Hall system for Gk that satisfies the equivalent of (9.2) for the K -case.
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Until the end of the section, we fix an integer m = 2,...,n and consider the smaller system
(9.112). Of course, as before, we get a smaller K-system (9.133), where now the triangular set is
picked to be a subset of (9.158). So as in Theorems 9.138 and 9.140, we have

Theorem 9.162. Let {Ax,Bg} be tha Hall system of G _that arises from {A,B} via Theorem
9.161. For any firted m = 1,...,n, we choose the groups Q and Qi to satisfy the conditions in
Theorem 8.13 for the systems (9.112) and (9.133), respectively. Then

Qrx (Bor—1,25,1) = P(Q(Bor—121)) = (Q(Bop—12) K) /K. (9.163)
Hence N R
QK (Bak—22k,1) = Q(Por—12k)-
Proof. See Theorem 9.140 O
and

Theorem 9.164. Assume thatA{AK,PK} are as above. Assume further that, for any fired m =
2,...,n, we choose the groups P and Pk to satisfy the conditions in Theorem 8.15 for the systems
(9.112) and (9.133), respectively. Then

131((042172,21711() = P(ﬁ(a2172,2171)) = (13(042[,2721,1)K)/K.
Proof. Same as that of Theorem 9.138. O
So we get the next two corollaries

Corollary 9.165. The groups @(ﬁgk_l’zk) and @K(ﬁgk_l,%;{), have the same image in the group
of automorphisms Aut(P3;, ).

Proof. See the proof of Corollary 9.144. O
and

Corollary 9.166. For any fivzed m = 2,...,n, the groups 13(0(21_27%_1) and ﬁK(agl_2721_17K) have
the same image in Aut(Q3,_; ;) = Aut(Q3,_,).

Proof. See Corollary 9.143. O
We conclude the section and the chapter with

Theorem 9.167. Assume that Bar—1 2k € Irr(Qox—12k) extends to Q\(ﬁgk_l’gk). Then the character
Bok—1,2k,K € Irr(Qar—1,2k,K) extends to Qx(Bak—1,2k,K)-

Proof. Obvious. O
and

Theorem 9.168. Assume that the character cg—29;—1 € Irr(Py_29;—1) extends to ﬁ(agl_ggl_l).
Then the character agy—o 911k € Irv(Poy—221-1 ) extends to the group Py (ooi—221-1,K)-
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Chapter 10

Linear Limits

10.1 Basic properties

We say that (G, A, ¢, N,¢) is a linear quintuple if A < N are normal subgroups of a finite group
G, ¢ € Lin(A) is a G-invariant linear character of A and ¢ € Irr(IN|¢). Note that as ¢ is G-
invariant, Ker(¢) is a normal subgroup of G. Furthermore, Ker(¢) = Ker(¢)|4) < Ker(y). Hence
Ker(¢) is contained in the largest normal subgroup M of G contained in Ker(¢)). (Note that
M = (,eq(Ker(¢))*.) This, along with the fact that ¢ is linear, implies that A is abelian modulo
M, ie., (AM)/M = A/(AN M) is abelian.

Let A’<AG with A < A’ < N. Let ¢/ € Irr(A’) be a linear character of A’ extending ¢ and lying
under ¢. Then (A'M)/M = A'/(A'N M) is also abelian. Indeed, [A", A’] is contained in Ker((¢")"),
for every n € N, since ¢’ is linear. Thus [A", A'] <N, oy Ker((¢)"). As the restriction of ¢ to A’ is
a sum of N-conjugates of ¢, we conclude that [A’, A'] is contained in Ker(¢|4/) = (), Ker((¢')").
So [A’, A'] < Ker()). Furthermore, [A’, A'] is a normal subgroup of G, as A’ <G. Hence [A’, A'] is
a subgroup of M, which implies that A’/(A" N M) is abelian.

Furthermore, we can use Clifford theory to form a new linear quintuple (G’, A’, ¢/, N’,4)’), where
G' = G(¢') and N’ = N(¢') are the stabilizers of ¢/ in G and N respectively, and )’ is the ¢'-
Clifford correspondent of ¢ € Irr(N|¢'). We say that (G', A',¢', N',4') is a linear reduction of
(G, A, ¢, N,1). We call this reduction proper if the reduced linear quintuple is different from the
original one, i.e., if and only if A < A’. We can repeat this process and consider a linear reduction
of the linear reduction (G’, A’,¢', N’,4’). Any linear quintuple that we reach after a series of such
linear reductions, is called a multiple linear reduction of (G, A,$,N,v). A “minimal” multiple
linear reduction is a linear quintuple that has no proper linear reductions We call such a minimal
linear quintuple a linear limit of (G, A, ¢, N,v). We denote by LL(G, A, ¢, N,1) the set of all the
linear limits of (G, A, ¢, N, ), and by

(U(G),1(A), (), L(N), ()

any element of that set. Assume that H is a subgroup of G with N < H < G. Then the quintuple
(H, A, ¢, N,1) is clearly a linear one. The definition of linear limits clearly implies

Remark 10.1. If (I(G),I(A),l(¢),l(N),I(x))) is a linear limit of (G, A, ¢, N,1), then (I(G) N
H,I(A),l(¢),l(N),l(x))) is a linear limit of (H, A, ¢, N, ).

The following is also straight forward:
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Remark 10.2. If we reach the linear quintuple (G', A’, ¢/, N’,¢) after a series of linear reductions
starting with the quintuple (G, A, ¢, N, ), then LL(G', A’,¢', N',4") C LL(G, A, ¢, N, ).

If (I(G),1(A),l(¢),l(N),l(v)) is a linear limit of (G, A, ¢, N, 1), then we can form the quintuple
(I(G)/K,I(A)/K,l(¢)/K,I(N)/K,l(v)/K) where K = Ker(l(¢))) is the kernel of I(¢) (and thus a
normal subgroup of I(G)) while [(¢)/K and [(y))/K are the unique characters of the factor groups
I(A)/K and I(N)/K that inflate to I(¢) and (), respectively. It is clear that the quintuple
((G)/K,I(A)/K,l(¢)/K,I(N)/K,l(¢)/K) is linear, and that I(¢)/K is faithful. We call this triple
a faithful linear limit of (G, A, ¢, N, 1) We denote by FLL(G, A, ¢, N, 1) the set of all faithful linear
limits of (G, A, ¢, N, 1), and by

(FUG), FI(A), fU(@), FUN), fL()) (10.3)

any element of that set.

Now assume that N <H <G and x € Irr(H|¢). Then any linear reduction (G’, A’, ¢', N, ') of
(G, A, ¢, N,1) provides an irreducible character x’ € Irr(H'), where H' = G'NH = H(¢') and X' is
the ¢/-Clifford correspondent of y, i.e., X’ lies above ¢ and induces y. We can repeat this process
and consider the Clifford correspondent for x’ in the next linear reduction of (G, A’,¢', N’ ,¢)
that we perform. When we reach a linear limit (I(G),l(A),l(¢),l(N),I(y)), of (G, A, ¢, N,1p) we
have also reached a character 6 € Irr({(G) N H) that induces x. Any such character 6, that arises
by repeated Clifford correspondences on linear reductions, we call a linear limit of xy. We write it
as 0 = ls(x), or more simply as [(x) if the starting linear quintuple is clear. We also write as
lyy(H) =1(H) the domain of [(x), i.e., I(H) = [(G)N H. Clearly l(x) lies above [(¢) and [(¢), and
induces x. The collection of all linear limits of x we write as LL(x). Note that LL(x) is a subset
of CCCn(x) as this was defined in [14]. Furthermore, let (fI(G), fl(A), fl(®), fU(N), fl(¥)) be a
faithful linear limit, i.e.,

(FUG), [I(A), fL(@), FLN), fU()) = (UG)/ K, [(A)/ K, [($)/ K, U(N) /K, () | K) (10.4)

where (I(G),1(A),l(¢),l(N),l(¢)) is a linear limit of (G, A, ¢, N,v) and K = Ker(l(¢)). Then K
is a subgroup of Ker(I(x)) the kernel of the linear limit [(x) € Irr(I(H)) of x, as x lies above the
[(G)-invariant character {(¢) € Irr(I(A)). Thus I(x) is inflated from a unique character I(x)/K of
the factor group [(H)/K that we call faithful linear limit of x and write as fl(x). We also write
fU(H) for the domain of fi(y), i.e., fl(H) = I(H)/K. The set of all faithful linear limits of y we
denote by F'LL(x).

We conclude these preliminary definitions of linear limits with the following straight forward
observations.

Remark 10.5. Let (I(G),l(A),l(¢),l(N),l(¢))) be a linear limit of (G, A, ¢, N,¢). Let K be the
kernel Ker(l(¢)), and let (fI(G), fl(A), fl(¢), fFI(N), fl(¢)) be the faithful linear limit defined in
(10.4). Then I(G) is a subgroup of G while fI(G) is the section [(G)/K of G. Furthermore,
any subgroup H of G with N < H, has a limit and a faithful limit group I(H) = I(G) N H and
fl(H) = I(H)/K, respectively, that satisfy {(N) <I(H) < I(G) and fI(N) < fl(H) < fl(G).
In addition, (I(H),l(A),l1(¢),l(N),I(x))) and (fI(H), fI(A), fl(p), fFI(N), fl(¢))) are a linear and a
faithful linear limit respectively, of (H, A, ¢, N,v). If H is normal in G, then I(H) and fI(H) are
normal in [(G) and fI(G), respectively.

Definition 10.6. By convention, whenever N < H < G and (G, A, ®,N, ¥) is a faithful linear
limit of (G, A, ¢, N,v), we write (G N H, A, ®,N, ¥) for the faithful linear limit of (H, A, ¢, N, )
(described in Remark 10.5) that (G, A, ®,N, ¥) induces.

179



We can say a little more for a special type of subgroup B of G. Assume that B < Cg(N), i.e.,
B centralizes N. Then B centralizes any A" with A < A’ < N. Hence it fixes any character
¢’ € Irr(A’), and, in particular, those that extend ¢. Hence B is also a subgroup of G(¢').
Furthermore, it centralizes N(¢') < N. Repeating the same argument at every linear reduction we
perform (note that all such are inside N), we see that B is a subgroup of [(G), and centralizes [(N).
Furthermore, as K < [(N), we get that fl(B) := (BK)/K is a subgroup of fl(G) that centralizes
fU(N) =1(N)/K. Thus we have shown

Remark 10.7. If B is a subgroup of G that centralizes N, i.e., B < Cg(N), then B < [(G)
centralizes [(N) while fI(B) = (BK)/K < fl(G) centralizes fI(N). If in addition (|B|,|K]|) =1
then B = fI(B) < fl(G).

The next two lemmas are straight forward applications of the above definitions.

Lemma 10.8. Any faithful linear limit of (G, A, ¢, N, 1) is a minimal linear quintuple, that is, no
proper linear reductions can be made to a faithful linear limit of (G, A, ¢, N, ).

Proof. Let

(FUG), FI(A), fU(9), FIN), fl(v)) = (9/K, A/ K, ®/K, N /K, ¥/K),

be a faithful linear limit of (G, A, ¢, N,v), where (G, A, ®, N, ¥) is a linear limit of the latter, and
K = Ker(®). It is not hard to see that any linear reduction of (G/K, A/K,®/K,N/K,V/K)
provides a linear reduction of (G, A, ®, N, ¥). Indeed, if 4 is a linear extension of ®/K to a normal
subgroup I' of G/K, and lies under W/K, then I' = I'/K, where I' is a normal subgroup of G.
Furthermore, 4 inflates to a unique character v € Irr(I), i.e., ¥ = v/K. Also, « is linear, as ¥ is,
and lies under ¥ € Irr(N), as 4 lies under ¥/K € Irr(N/K). Hence we can form a linear reduction
of (G, A, ®,N,¥), using the extension v of ® to I'. As no proper linear reductions can be made to
the quintuple (G, A, ®, N, ¥), the lemma follows. O

Corollary 10.9. Let (G, A, ®,N, W) be a faithful linear limit of (G, A, ¢, N,v). Then A is a cyclic
central subgroup of G (it could be trivial), and is maximal among the abelian G-invariant subgroups
of N. Hence A = Z(N).

Proof. Clearly A is a normal subgroup of G, while @ is a linear faithful G-invariant character of A.
Then A is cyclic, as it affords a faithful linear character. The additional fact that ® is G-invariant
implies that A is a subgroup of the center Z(G) of G.

Now assume that B is an abelian G-invariant subgroup of N that contains A. Let § € Irr(B)
be any character of B that lies above ® and under ¥. (Clearly such a character exists if the group
B exists.) Then 3 is an extension of ® to B. Furthermore, if W4 is the 8-Clifford correspondent
of ¥, then the quintuple (G(f3), B, 3,N(3), ¥3) is a linear reduction of (G, A, ®,N, ¥). According
to Lemma 10.8 the latter quintuple can’t have any proper reductions. Therefore, B = A, and A is
maximal among the abelian G-invariant subgroups of N.

As the center Z(N) is an abelian characteristic subgroup of N, it is clearly G-invariant. Fur-
thermore, A is a subgroup of Z(N), as A is a subgroup of Z(G). So A = Z(N), and Corollary 10.9
follows. O

Corollary 10.10. Let (G, A, ®,N, W) be a faithful linear limit of (G, A, ¢, N,1p). Assume further
that N is a p-group, for some odd prime p. Then either N = Z(N) is cyclic, or N is the central
product N = E ® A, of a non-trivial extra special p-group E of exponent p, and A = Z(N). In both
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cases the irreducible character ¥ € Irr(N) is zero on N — A and a multiple of ® on A. Hence W is
G-invariant.

Proof. According to Corollary 10.9, the group A = Z(N) is cyclic, central in G and maximal among
the abelian G-invariant subgroups of N. Furthermore, the fact that (G, A, ®,N, ¥) is a linear
quintuple, implies that ® is G-invariant.

If N=A = Z(N), then N is cyclic and ® = W. In this case the corollary holds trivially.

If N> A, then A # 1, or else A = N = 1, since N is a p-group. Furthermore, ® is a faithful
linear character of the cyclic group A. The fact that the cyclic group A = Z(N) is maximal among
the abelian subgroups of N, normal in G implies that every characteristic abelian subgroup of the
p-group N is cyclic and central. Hence P.Hall’s theorem (see Theorem 4.22 pp.75 in [19]) implies
that N is the central product

N=FoZ(N)=E0oA,

where F is a non-trivial (or else N is abelian), extra special p-group of exponent p. Hence ¥ must
be the unique character of N that lies above the faithful character ® of the center, (see Theorem 7.5
n [11]) Even more, this unique character is zero outside A, while its restriction to A is a multiple
of ®. In addition, the fact that ® is G-invariant, while N is a normal subgroup of G, makes ¥ also
G-invariant. So Corollary 10.10 follows. O

Lemma 10.11. Let (G, A, ®,N, W) be a faithful linear limit of the linear quintuple (G, A, ¢, N, ).
If © € Irr(G|®), then there exists a unique x € Irr(G|p), so that © is a faithful linear limit of X,
that is, © = fl(x). If, in addition, © lies above ¥, then x lies above 1.

Proof. Let
(G,A,®,N,¥)=(G/K,A/K,®/K,N/K,V/K),

where (G, A, ®, N, V) is a linear limit of (G, A, ¢, N,¢), and K = Ker(®). Then O inflates to a
unique character 6 € Irr(G). Clearly 6 lies above ®. If (G, A, ®, N, V) = (G, A, ¢, N,v), i.e., the
starting quintuple was already minimal, then the lemma obviously holds with y = 6.

If (G, A, ® N,¥) is a linear reduction of (G, A, ¢, N,v), that is we reach the limit quintuple
after only one proper reduction, then G = G(®). Hence Clifford’s theorem implies that § € Irr(G|®)
induces irreducibly to G. Therefore the character ¢ = x is the only character in Irr(G|¢) having
6 as its ®-Clifford correspondent. Hence y = 6% is an irreducible character of G that lies above ¢,
since ® is an extension of ¢. It is also obvious that [(x) = 6, while fi(x) = ©.

If we need a series of linear reductions to reach the limit quintuple (G, A, ®, N, V), then we
repeat Clifford’s theorem as many times as the number of proper linear reductions we perform. In
conclusion, the character ¢ = y is an irreducible character of G that lies above ¢, and satisfies
the conditions in Lemma 10.11.

If, in addition, © lies above ¥, then the inflation 6 of © to G, lies above W. Since [(1)) = ¥, the
character ¥ induces 1 in N, i.e., ¥V =1). We conclude that 6 = y lies above ) whenever 6 lies
above V. This completes the proof of Lemma 10.11. O

The following is straight forward.

Lemma 10.12. Assume that (G, A, ¢, N,v) and (H, B, 3, M, i) are two linear quintuples. Assume
further that there exists an epimorphism of linear quintuples

p: (G7A’¢?N?/l/}) - (H’B7/67M’/’L)'
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By this we mean that p is an epimorphism of the group G onto H sending A onto B and N
onto M. Furthermore, ¢ = o pa and ¥ = po pn. The restriction of p to any linear reduction
(or multiple linear reduction) (G', A',¢', N',4") of (G, A, ¢, N,1)) is an epimorphism onto a linear
reduction (or multiple linear reduction respectively) (H', B',3', M', i) of (H,B,3,M,un). In this
way p induces a one to one correspondence between linear reductions ( or multiple linear reductions)
of (G, A, ¢,N,) and linear reductions (respectively multiple linear reductions) of (H, B, 3, M, ).
Hence p induces a one to one correspondence between linear limits of (G, A, ¢, N,) and linear
limits of (H, B, 3, M, ).

Proof. 1t (G', A’,¢', N',4') is a linear reduction of (G, A, ¢, N, 1)), it is easy to check that its image
p((G' A, ¢, N',¢")) under p is a linear reduction of (H, B, 3, M, p).

Let (H',B', ', M', i) be a linear reduction of (H, B, 3, M, ). If G', A’ and N’ are the inverse
images, under p, of H', B" and M’, respectively, then the quintuple (G', A, " o p/y, N', 1t/ 0 ply) is
a linear reduction of (G, A, ¢, N, ), and its image under p equals (H', B', ', M', i"). We conclude
that there exists a one to one correspondence between linear reductions of (G, A, ¢, N, ) and linear
reductions of (H, B, 3, M, u).

Because a multiple linear reduction is reached after a series of linear reductions, repeated appli-
cations of the one to one correspondence on linear reductions implies the existence of a one to one
correspondence between multiple linear reductions of (G, A, ¢, N, ) and (H, B, 3, M, j1). Further-
more, since any linear limit of (G, A, ¢, N, %) is a minimal multiple linear reduction of the latter
quintuple, we also get a one to one correspondence between the linear limits of (G, A, ¢, N, 1) and
those of (H, B, 3, M, ). Hence the lemma holds. O

Corollary 10.13. Assume that the linear quintuples (G, A, ¢, N,v) and (H, B, 3, M, 1) satisfy the
hypothesis in Lemma 10.12. Then any faithful linear limit of (H, B, 3, M, ) is isomorphic to a
faithful linear limit of (G, A, ¢, N, ).

Proof. Let (H',B',3', M', i) be a linear limit of (H, B, 3, M, i1). Then according to Lemma 10.12
it corresponds to a linear limit (G', A’, ¢, N',¢') of (G, A, ¢, N,v) . Because p maps the latter
linear limit onto the former, we get that p maps A’ onto B’, while ¢' = ' o p/,. We conclude that
the kernel Ker(¢') of ¢’ is mapped, under p, onto the kernel Ker(3') of ', i.e., p(Ker(¢')) = Ker(5').
Furthermore, if S equals the kernel of pg then S is a normal subgroup of G’ that is contained in
Ker(¢'), (since for all s € S we get ¢/(s) = 3'(p(s)) = #'(1) = 1). Hence the following holds

G'/Ker(¢') = H'/ Ker(),

A/ Ker(¢!) = B Ker(),

N'/Ker(¢') =2 M’/ Ker(3).
In addition, the unique characters ¢’/ Ker(¢') and ¢’/ Ker(¢') of the factor groups A’/ Ker(¢') and
N'/Ker(¢') that inflate to ¢ and v/, respectively, correspond under the above isomorphisms, to

the unique characters 3’/ Ker(f') and p’/ Ker(3') of the factor groups B’/ Ker(3') and M’/ Ker(5')
that inflate to ' and p/, respectively. This completes the proof of the corollary. O

Proposition 10.14. Let (G, A, ¢, N,¢) be a linear quintuple, and T' = Ker(¢). Then the factor
quintuple (G/T, AT, ¢/T,N/T,1/T) is well defined. Furthermore, any faithful linear limit of the
factor quintuple is isomorphic to a faithful linear limit of the original one.

Proof. Observe that the natural epimorphism from G to G/T provides an epimorphism
p:(G,A ¢, N.Yp) — (G/T,A/T,¢/T,N/T,¢/T)
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of linear quintuples, so that (G, A, ¢, N,¢) and (G/T,A/T,¢/T,N/T,/T) satisfy the hypothesis
in Lemma 10.12. The rest of proof is a simple application of Lemma 10.12 and Corollary 10.13. [

From now on, whenever needed, we will identify any two faithful linear limits of (G, A, ¢, N, 1)
and (G/T,A/T,¢/T,N/T,+/T) which are isomorphic under the preceding proposition.

Corollary 10.15. Assume that the linear quintuple (G', A', ¢', N',4") is a multiple linear reduction
of (G,A,¢,N,v), and let T = Ker(¢'). Then the factor quintuple (G'/T,A’)T,¢'/T,N'/T,¢'/T)
1s well defined. Furthermore, any faithful linear limit of the factor quintuple is, under some iden-

tification, also a faithful linear limit of (G, A, ¢, N, ), i.e.,
FLL(G'/T,A'/T,¢/T,N'/T ¢/ /T) < FLL(G, A, ¢, N, ).
Proof. Follows immediately from Remark 10.2 and Proposition 10.14. O

For the next proposition we will need a nice observation of I.M.Isaacs, that is actually the
exercise (6.11) in [12].

Lemma 10.16. Let B be a normal subgroup of a finite group G, v € Lin(B) a linear character
of B and x € Irr(G|y) an irreducible character of G lying above v. If x, € Irr(G(7)) is the -
Clifford correspondent of x in the stabilizer G(vy) of v in G, then x is monomial if and only if x~
s monomaal.

Proof. 1t is clear that if x is monomial then x is monomial, as x. induces x in G.

So we assume that x is a monomial character, and we will show that x, is also monomial.
Let K = Ker(x). Of course K < G. It is clear that x, is monomial if and only if the irreducible
character x-/K of the factor group G(v)/K that inflates to x, is monomial. Hence it suffices
to prove the lemma in the case of a faithful irreducible character , as we can pass to the factor
groups G/K and (BK)/K. So in the rest of the proof we assume that K = 1.

Clifford’s Theorem implies that the restriction y|p of x to B is a sum of G-conjugates of ~.
Thus 1 = Ker(x|B) = Nseq/c(,) (Ker(v°)). But the derived group [B, B] of B is contained in the
kernel of v* for every s € G, as 7 is linear. Thus [B, B] < Ker(x|g) = 1. So B is abelian.

We can now follow the hint of problem 6.11 in [12]. As x is monomial, there exists H < G and
A € Lin(H) with x = A®. Thus the irreducible character A2 of HB lies above a G-conjugate v*
of v, where s € GG. As the G-conjugate X e Lin(HSil) of \ also induces y, we can replace H by
H*" and A by A*"". This way A8 is replaced by ()\Sil)HS_lB = ()\HB)SA, which lies above 7.

According to Mackey’s Theorem

MNAB| g = (N mnB)B. (10.17)

As B is abelian, the right hand side of (10.17) equals the sum of |B : H N B| distinct character
extensions of A\|gnp to B, each one appearing with multiplicity one. Thus every irreducible con-
stituent of A7B|5 appears with multiplicity one. This, along with Clifford’s theorem, (as AP lies

above ), implies that
S Iy
seS seS

where S is a family of representatives for the cosets H(vy)Bs of H(v)B = (HB)(y) in HB, and e is
a positive integer. Furthermore, Clifford’s theorem implies the existence of an irreducible character
6 € Irr(HB(v)) lying above v and inducing M5B, The fact that e = 1 implies that 0|p = 7, i.e.,
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0 € Trr(HB(v)) is an extension of v € Irr(B) to HB(y). Thus 6 € Lin(HB(v)]y) induces A\75.
Hence #% = x, as A induces x. Therefore, () is an irreducible character of G(v) lying above ~
and inducing x. As the v-Clifford correspondent x, of x is unique, we conclude that 9c() = X~ -
Hence x is induced from the linear character 6, and thus is monomial.

This completes the proof of the lemma in the case of an abelian B. So the lemma follows. [J

Proposition 10.18. Let (G, A, ¢, N,¢) be a linear quintuple. Let x € Irr(G|¢p) an irreducible
character of G lying above ¢, l(x) € Irr(I(G)|l(¢p)) be a linear limit of x, and fl(x) € Irr(fI(G)|fl(®))
be the corresponding faithful linear limit of x. Then the following are equivalent

1) x is monomial
2) l(x) is monomial
3) fl(x) is monomial

Proof. Let (G', A',¢', N’,9') be a linear reduction of (G, A, ¢, N, ). According to Lemma 10.16,
the character y € Irr(G|¢) is monomial if and only its ¢/-Clifford correspondent x’ is monomial.
This is true for every linear reduction, so at the end we get that y is monomial if and only if any
linear limit () of x is monomial.

Let fl(x) € Irr(fI(G)) = Irr(I(G)/K) be the faithful linear limit of x corresponding to I(x).
It is obvious that [() is monomial if and only if fI(x) is monomial. This, along with the already
proved first equivalence, implies that fI(x) is monomial if and only if y is monomial. As this is
true for any faithful linear limit fI(x) of x, the proof of Proposition 10.18 is complete. O

10.2 Linear limits of characters of p-groups

Assume that (G, A, ¢, N, 1) is a linear quintuple. For the rest of this section we suppose that N is
a p-group, for some odd prime p. The main result of this section is

Theorem 10.19. Suppose that (G, A, ¢, N,1) is a linear quintuple with N a p-group, for some
odd prime p. Assume further that (G,A, ® N, W) and (G, A, ®' N W) are two faithful linear
limits of (G, A, ¢, N,v). Then both N/A and N'/A’ are naturaly symplectic Z,(G(¢)/N)-modules.
Furthermore, N/A is isomorphic to N'/A" as a symplectic Z,(G (1) /N)-module.

To prove it we will use strongly Theorem 8.4 in [3]. We remark here that the definitions
of a “stabilizer limit” and an “elementary stabilizer limit” that were given in Sections 2 and 3,
respectively, in [3], are related to but not the same as our definition of linear limits.

We start with an elementary construction of symplectic modules, and the associate notation.
Assume that a p-group R is a normal subgroup of some finite group X, where p is an odd prime.
Assume further that the center Z(R) of R is central in X, while R is a central product

R=FE® Z(R),
where either E is 1, or else F is an extra special group of exponent p and
ENnZ(R)=Z(E).

Then R/Z(R) is an elementary abelian p-group, which may be trivial. So R/Z(R), when written
additively, can be considered as a vector space over the field Z, of p elements. This way R/Z(R)
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becomes a Z,(X)-module. Moreover, [R,R] = [E,E] = Z(E) is either trivial or a cyclic group
of order p. If Z(E) =1, i.e., R/Z(R) = 1, then R/Z(R) becomes trivially a symplectic Z,(X)-
module. If |Z(E)| = p, then we can still make R/Z(R) a symplectic Z,(X)-module. Indeed, if
A € Irr(Z(E)) is any faithful linear character of Z(E), then we can define a bilinear form <, > from
(R/Z(R)) x (R/Z(R)) to the multiplicative group C, of complex p-roots of unity as

<z,y>= A[z,y]) € C,, (10.20)

for all x,y € R, where T denotes the image of x € R in the factor group R/Z(R), and [z,y] is
the commutator of x and y in R. Note that, as the multiplicative group C, of p-roots of unity
is isomorphic to the additive group Z; of Z,, we can identify these two isomorphic groups, and
consider the bilinear form <, > as a symplectic form in Z,. As Z(R) is central in X, this form is
X-invariant. So R/Z(R) is a symplectic Z,(X )-module.

We assume that R and X are as above, with Z(R) central in X. Let U be a subgroup of R
containing Z(R), and normal in X. Then, (see the notation in [1]), we call the symplectic Z,(X)-
submodule U/Z(R) of R/Z(R) isotropic if U < R is an abelian subgroup of R. We call U/Z(R)
anisotropic if 0 is its only isotropic Z,(X)-submodule, i.e., every abelian subgroup of U which is
normal in X is contained in Z(R). Observe that 0 is an anisotropic symplectic Z,(X )-module.

Now we go back to the linear quintuple (G, A, ¢, N,v). Let (G, A, ®, N, ¥) be a linear limit of
(G,A,¢,N,1), and

(G,A,®,N,¥) = (G/K,A/K,®/K,N/K,V/K), (10.21)

be the corresponding faithful linear limit of (G, A, ¢, N, ¥), where K = Ker(®). Assume further
that (Gj, Ai, ¢i, Ni, 1), is a chain of linear quintuples, for all ¢ = 0,...,n, such that

(G07A07¢07N0)1/}0) = (G7A7¢7N)1/))7 (10223‘)

(G, Ay Gy Ny ) = (G, A, @, N, ), and (10.22b)

(Gi, A, iy Niy1b;) is a proper linear reduction of (Gi—1, Ai—1, ¢i—1, Ni—1,%i—1), (10.22c¢)
whenever ¢ = 1,...,n. These objects stay fixed until the end of the section. We also keep fixed an

arbitrary CG(v)-elementary stabilizer limit A € ESL(|CG(¢)) of 1, in the sense of [3], and in
particular (3.7) of that paper. (Note that the ordered triple (G(v), N, ) is a member of the family
defined in (2.1) of [3]. Thus we can define a CG(v))-elementary stabilizer limit of 1).)

We start with some results following (10.22).

Lemma 10.23. Let M be a subgroup of G with A; < M, for some i = 0,1,...,n. Assume
further that an irreducible character x € Irr(M), when restricted to A;, is a multiple of ¢;. Then
G(x) =G(x, 01,--.,0;) = Gi(x). In particular, G(¢;) = G;, for alli=0,1,...,n.

Proof. Clearly (10.22c) implies that G; = G(¢o, ¢1,...,¢;) for every i = 0,1,...,n. For all i =
1,...,n, the linear character ¢; € Irr(4;) is an extension of ¢;_1 € Irr(4;_1). Even more, for all
such ¢ the group A; is a normal subgroup of G(¢1,...,¢i—1) = Gi_1.

Assume that ¢ = 0,1,...,n is fixed. Let M > A; and x € Irr(M) with x|a, = me¢; for some
integer m > 1. For any j = 0,1,...,i — 1, the linear character ¢; is an extension of ¢; € Irr(A;)
to A;. Hence x|a; = m@; for all j =0,1,...,i. Therefore G(x) fixes any such ¢; if and only if it
normalizes A;. Clearly G(x) fixes the G-invariant character ¢g of Ag = A. It also normalizes Ay,
as the latter is normal in G. Thus G(x) fixes ¢1. Suppose now that G(x) normalizes Ay, ..., Aj_1,
where j = 2,...,4. Then it fixes ¢1,...,¢;-1, i.e., G(x) < G(x)(¢0,¢1,...,0j—1). But A; is a
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normal subgroup of G(¢g, ¢1,...,¢j—1) = G;j—1. Hence G(x) normalizes A; as well, and therefore
also fixes ¢; . As this holds for all j = 1,...,4, the first statement of the lemma follows.

The second part of the lemma follows from the first, if we take y = ¢; and M = A;. O
Proposition 10.24. For every i =0,1,...,n, we have

Hence G(V) = G(V) = G(¢) and G(V)N = G(v).

Proof. As G = G, and ¥ = 1),,, it suffices to prove (10.25). For this proof we will use induction on
i. As Gop = G and g = 1), the equations in (10.25) hold trivially for i = 0. Suppose (10.25) is true
foralli=0,...,t —1, where t =1,...,n. We will show it holds for ¢ = t.

By (10.22c), both groups A; and N;_; are normal subgroups of G;_1. Furthermore, ¢; € Irr(A;)
is a linear extension of ¢;—1 € Irr(A4;_1) and lies under ¢;_;. In addition, ¢y € Irr(Ny) is the ¢-
Clifford correspondent of 9,1 € Irr(N¢—1). Hence

Gi-1(¥r) = Gi—1(Yr—1, d1). (10.26)

As G is the subgroup Gy_1(¢¢) of Gi—_1, both sides of this equation are equal to

Gi(thr—1) = Ge(tr). (10.27)

Furthermore, any element of G;_; that fixes 1,1 permutes among themselves the N;_i-conjugates
of ¢, as Az is normal in Gy—_1. We conclude that G_1(¢4—1) = G¢—1(t—1, ¢t)N¢—1. This, along
with (10.26), implies

Gi—1(Yi—1) = Gi—1(Y1—1, ¢t) Ni—1 = Gi—1(9¢) Ni—1. (10.28)
Hence
Gi(vr) = Gi(¥r-1) by (10.27)
= Gi—1(dt, Y1) as Gy = Gy_1(y)
= Gi—1(¢, V) by induction for i = ¢ — 1
= Gi(v).

Lemma 10.23 implies that G(¢;) = G¢(1)¢), as 14| 4, is a multiple of ¢;. We conclude that
Gi(Yr) = Gi(¥) = G(¢r). (10.29)
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Hence the first part of (10.25) follows for the inductive step. For the second part we get

G(¢) = G(r—1)N by induction for : =¢ — 1
= Gr-1(Y1-1)N
= Gi-1(Yt—1,6t) Nt-1 N by (10.28)
= Gi-1(Yt-1, )N
= Gi(Y—1)N as Gy = Gy_1(y)
= Gi(r)N by (10.27)
= G(Ye)N by (10.29)

This completes the inductive proof of (10.25) for ¢ = ¢. Hence Proposition 10.24 follows. O

Corollary 10.30. The inclusion G(¥) — G(¢) induces an isomorphism of G(¥)/N onto G(¢)/N,
where 3 maps to SN, for any 5 € G(V)/N.

Proof. Obvious, as G(V)N = G(V)N = G(¢), while G(¥)NN =GNN =N. O

Corollary 10.31. The character ¥ € Irr(N) is G-invariant. Furthermore, W is zero on N — A,
and it is a multiple of ® on A. Hence

G = (V) = G(v) = G(¥),

Proof. According to (10.21), we have G = G/K,N = N/K and A = A/K, where K = Ker(®).
Furthermore, W is the unique character of the factor group N'/K that inflates to ¥ € Irr(A). But
as N is a p-group, Corollary 10.10 implies that the character ¥ € Irr(N) is G-invariant. Hence ¥ is
G-invariant. The same corollary implies that ¥ € Irr(N) vanishes outside A and is a multiple of ®
on A. Thus a similar property holds for its unique inflation ¥ € Irr(N'). The rest of the corollary
follows easily from Proposition 10.24. O

The next result follows immediately from the above two corollaries.

Corollary 10.32. The isosmorphism of G(¢))/N onto G(¥)/N in Corollary 10.50, composed with
the natural isomorphism of G/N = G(¥)/N onto G/N, provides an isomorphism j from G()/N

onto the factor group G/N. So any coset t € G(v))/N gets mapped under j, to the image of the
coset (tNG(V))/N under the natural isomorphism of G/N onto G/N.

Proposition 10.33. The factor group N/A is an anisotropic symplectic Z,(G/N)-module, which
may be 0, with respect to the bilinear G-invariant form defined, as in (10.20), by

< zhA,yA >= ®([z,y]) € C, = Z;‘, (10.34)
for any x,y € N. Here the G/N-action is induced by conjugation in G.

Proof. As N is a p-group, Lemmas 10.9 and 10.10 imply that either N = A or N is the central
product N = E©® Z(N) = E ® A, of a non-trivial extra special p-group E of exponent p, and
A = Z(N) which is central in G. Furthermore, ® € Irr(A) is a faithful linear character of A.
In both cases, the factor group N/A, becomes a symplectic Z,(G)-module, where G acts on N/A
by conjugation, and the symplectic form is defined via commutation in N, (see (10.20) and the
paragraph that follows it). In addition, Lemma 10.9 implies that A is maximal among the abelian
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subgroups of N which are normal in G. Hence N/A is an anisotropic symplectic Z,(G)-module,
which may be 0.

Clearly N centralizes the factor group N/A, as [N,N] < A. Hence the action of G on N/A
induces one of G/N on that symplectic group. So Proposition 10.33 follows. U

Proposition 10.33, along with the isomorphism j defined in Corollary 10.32, implies

Corollary 10.35. The factor group N/A is an anisotropic symplectic Z,(G()/N)-module, with
respect to the bilinear form defined in (10.34). Here the G(¢)/N -action is defined as through the
isomorphism j, defined in Corollary 10.32 as

(zA)® = 27A e N/A
for allz € N and s € G(¢)/N.

Corollary 10.36. The factor group N'/ A is an anisotropic symplectic Z,(G/N)-module, that may
be 0, with respect to the bilinear form defined by
< sAtA>=®([s,1]) € C, 2 L}, (10.37)
for any s,t € N'. Here the G/N -action is induced by conjugation in G. Hence with respect to the
same form, N'/ A is an anisotropic symplectic Z,(G(¢)/N)-module, where the action of G(¢)/N =
G(U)/N =G/N is defined by
(sA)™N = (s A e N/ A,

for any s,t e N andr €G.

Proof. Let K = Ker(®). Then, as we have already seen,
NJ/A=(N/K)/(A/K) =N/A, (10.38)

where the isomorphism is G-invariant. Furthermore, ® is the unique character of the factor group
A/K = A that inflates to ® € Irr(A). Hence, under the isomorphism in (10.38), Proposition 10.33
implies that N'/A is an anisotropic symplectic Z,(G/N)-module, with respect to the bilinear form
that (10.34) determines. (Note that this bilinear form translates to (10.37).) Furthermore, G acts
on N/ A by conjugation, while A/ centralizes it. But G = G(¥) = G(¥), by Corollary 10.31, while
Corollary 10.30 implies that G(¢)/N is naturally isomorphic to G(¥)/N = G/N. Hence N /A
becomes an anisotropic G(¢)/N-module. This completes the proof of the corollary. O

Proposition 10.39. If N is a p-group, then U is a CG(1))-stabilizer limit of 1 as this is defined
in [3], that is, ¥ € SL(y|CG()).

Proof. According to (10.22¢), for every ¢ = 1,...,n, we have a normal subgroup A; of G;_1 con-
tained in N;_1, and a linear character ¢; € Irr(A;) lying under v;—;1 € Irr(N;—1). Furthermore,
; € Irr(V;) is the ¢;-Clifford correspondent of 1);_1. As the ordered triple (G;—1(¢i—1), Ni—1,%i—1)
is a member of the family defined in (2.1) of [3], while A; is a normal subgroup of G;_1(¢_1), we
conclude that v; is an element of the set DCC(t);—1|CGi—1(v)i—1)) defined in (2.2) of [3]. Accord-
ing to Proposition 10.24 we have G;_1(¢;—1) = G(v;—1). Hence we get a sequence of characters

Y = o, Y1, ...,y = 1, such that
;i € DCC(15—1|CG (¥i-1)),

188



foralli=1,...,n. Hence V lies in the set CC(y)|CG(%))), (see (2.3) in [3]).

According to the definition of stabilizer limits, in (2.16) of [3], we can complete the proof of the
proposition by showing that ¥ € Irr(AN) is the only member of DCC(¥|CG(¥)). By (2.14) and
(2.15) in [3], it suffices to show that whenever M is a normal subgroup of G(¥) contained in N,
the restriction W|;; is a multiple of of a single irreducible character. Suppose such an M < N is
fixed. Let 6 € Irr(M) be an irreducible character of M that lies under W. It is enough to show that
6 is G(V)-invariant. We know from Corollary 10.31 that G(¥) = G(¥) = G. So it suffices to show
that G(0) = G.

U lies above the G-invariant linear character ® € Irr(A). Hence we can replace M with M - A
and 6 € Irr(M) with 6 - & € Irr(M.A) (where (6 - ®)(ma) = (m)®(a), for all m € M and a € A ).
This way G(0) = G(0 - ) remains the same. So we may assume that A < M < N, and that 6 lies
above ®. Then M/A is a Zy(G/N)-submodule of '/ A. But the latter is an anisotropic Z,(G/N)
module by Corollary 10.36. Hence its symplectic form <, > (see (10.37)), restricts to a non-singular
bilinear alternating form on (M/A) x (M/A). It follows that 6 is zero on M — A and a multiple of
® on A. Therefore G(0) = G, and the proposition follows. O

According to (2.12) in [3], we may define another triple, denoted by (G(¢){V¥}*, N{¥}*, U*),
using the CG(v)-stabilizer limit ¥ of ¢. The star groups are defined in (2.12) of [3], as the factor
groups we get when we divide the triple (G(¢){¥}, N{U}, ¥) by Ker(¥). So ¥* in [3] denotes
the unique character ¥/ Ker(¥) from which U is inflated. Note also that X {6} denotes in [3] the
stabilizer X (6) of 0 in X, for any group X and any irreducible character € of any subgroup of X.
In our case, where N is a p-group, the kernel Ker(¥) of ¥ coincides with K = Ker(®), by Corollary
10.31. Furthermore, the same corollary implies that G(¢){¥} = G(¢)(¥) = G(¥) = G. Of course
N{¥} =N(¥)=G(¥)NN =GNN =N. Hence the star triple (G(¢){¥}*, N{U}*, ¥*) in [3], is
what we write as (G, N, ¥) (see (10.21)).

Even more, according to (2.13a) in [3] the stabilizer limit ¥ of ¢ defines a natural isomor-
phism denoted by -/¥ from G(¢)/N to G(¢, V)*/N(¥)* = G/N. Observe that this is exactly the
isomorphism j defined in Corollary 10.32. Having explained this, we can now prove

Theorem 10.40. Let A € ESL(y|CG(v)) be a CG(y)-elementary stabilizer limit of 1, with
Ky =Ker(A) and N(A)* = N(A)/Ky. Then N(AN)*/Z(N(A)*) is isomorphic to N/A as symplectic
Zp(G(¢)/N)-modules.

Proof. We are going to apply Theorem 8.4 in [3], for the triple (G(¢), N,1) here in the place
of (G, N,v) there, the CG(1))-elementary stabilizer limit A of ¢ here, in the place of the CG-
elementary stabilizer limit ¢ of ¢ there, and the CG()-stabilizer limit W of ¢ here, in the place
of 0 there. (Note that the hypotheses (7.1) and (7.2a) in [3] are satisfied.) Observe also that A is
an irreducible character of N(A), by (2.4c) in [3], as A € CC()|CG(v)). Hence Theorem 8.4 gives
us a monomorphism p of the group G(¢){A}* = G(¢, A)/Ky into the group G(){V}* = G that
satisfies the equivalent of (6.1) in [3]. Furthermore, the relations (8.5)in [3] tell us that

G = A p(G(, A)) = A (G, A)/Ko) and N = A u(N(A)") = A p(N(A)/Ko). (1041

(Note that in our case Z(N{V¥}*) = Z(N) = A.) Furthermore, y satisfies (6.1), and, in particular,
(6.1a), of [3]. Hence the triple (u(G(v0, A)*), n(N(A)*), n(A*¥)) is a restrictor of (G, N, ¥), in the
sense of (5.1) in [3]. (Where the irreducible character A* is the unique character of the factor group
N(A)* = N(A)/Ky from which A € Irr(N(A)) is inflated, and pu(A*) € Irr(u(N(A)*)) is the unique
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character of p(IN(A)*) whose composition with p is A*.) Therefore (5.1) of [3] implies
BIN(AY) = N (G5, A)) and (A*) = ¥, v(a)- (10.42)
Hence p restricts to an isomorphism
N(A)/Ko = N(A)* = u(N(A)) = N p(G(, A)") (10.43)

that sends the irreducible character A* € Irr(N(A)*) to the restriction of ¥ to u(N(A)*). Even
more, in view of (10.41) we have A N p(N(A)*) = Z(u(N(A)*)), and thus

N/A = p(N(A)")/(ANp(N(A))) = u(N(A))/Z(u(N(A)))-

According to (10.43), the group N(A)* = N(A)/Kj is isomorphic to p(N(A)*). Hence the inverse
image under p of Z(u(N(A)*)) = AN p(N(A)*) in N(A)* is the center Z(N(A)*). Furthermore,

N(A)*/Z(N(A)) = p(N(A))/Z(u(N (L)) = N/A. (10.44)

Let i be the above isomorphism that sends the factor group N(A)*/Z(N(A)*) onto N/A. (Of course
i is induced by the restriction of p to N(A)*.) As we have seen (at (10.42)), the character A* maps,
under u, to the restriction of ¥ to u(N(A)*). Hence A* has a structure similar to that of ¥, ie.,
A* € Irr(N(A)*) lies above the unique linear character A\* of Z(IN(A)*) that is carried, under pu, to
the restriction of ® to A N u(N(A)*) = Z(u(N(A)*)). There is a natural alternating bilinear form
on N(A)*/Z(N(A)*) x N(A)*/Z(N(A)*) defined by

<2 Z(N(A)"), y Z(N(A)) >= X*(l2,y]) = B([u(z), n(y)]) € Z,. (10.45)

for all ,y € N(A)*. The isomorphism ¢ carries this bilinear form onto the form <, > of N/AxN/A,
defined in (10.34). Hence N(A)*/Z(N(A)*) is a symplectic group isomorphic to the symplectic
group N/A.

In view of (10.41) and (10.42), we get a natural isomorphism between the groups G/N and
WG, A)*)/pu(N(A)*). This, composed with p, provides an isomorphism u* of G(¢, A)*/N(A)*
onto G/N. The group G(1, A)*/N(A)* acts on N(A)*/Z(N(A)*) via conjugation in G(¢), A)*, and
leaves the form (10.45) invariant. As p preserves conjugation, and induces the isomorphism i, it
follows that p* and ¢ send the action of G(¢, A)*/N(A)* on N(A)*/Z(N(A)*) to the action of G/N
on N/A in the sense that

i(z°) = i()*®) e N/A, (10.46)

for all T € N(A)*/Z(N(A)*) and 5 € G(, A)*/N(A)*.

The group G(v)/N is naturally isomorphic to the factor group G(v, A)*/N(A)*, via the iso-
morphism -/A in (2.13a) of [3]. Any coset v € G(¢)/N gets mapped under -/A, to the image v/A
of the coset yNG (¢, A)inG (¢, A)/N(A) under the natural epimorphism of G (¢, A) onto G (¢, A)*.
We use this isomorphism to make the symplectic Z,(G(v,A)*/N(A)*)-module N(A)*/Z(N(A)*)
into a symplectic Z,(G(¢)/N)-module. As we have already seen in Corollary 10.35, we may turn
the Z,(G/N)-module N/A into a Z,(G(v)/N )-module, using the isomorphism j of Corollary 10.32.
But j is the natural isomorphism -/W, as this is defined in (2.13a) of[3]. According to (6.1b) in [3],
the isomorphism /A is the composition of - /¥ = j with u*. We conclude that ¢ is an isomorphism
of N(A)*/Z(N(A)*) onto N/A as symplectic Z,(G(1))/N)-modules. So Theorem 10.40 follows. O
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Theorem 10.19 is now an easy corollary of Theorem 10.40, as
N/A = N(A)"/Z(N(A)") = N/A,

as symplectic G(¢))/N-modules.
We conclude this section with a characterization of any faithful linear limit (G, A, ®,N, ¥) of
(G, A, ¢, N,1) when N is nearly extra special.

Proposition 10.47. Assume that (G, A, ¢, N,¢) is a linear quintuple with N a p-group, such
that A = Z(N) is cyclic and central in G. Assume further that A is mazimal among the abelian
characteristic subgroups of N, while ¢ is a faithful linear character of A. Then V.= N/A is a
symplectic Z,(G /N )-space with the symplectic form < wA,yA >= ¢([w,y]), for any w,y € N. If
(G, A, ®,N, W) is a faithful linear limit of (G, A, ¢, N,1), then N/A is isomorphic as a symplectic
Z,(G/N)-module to W+ /W, where W is a mazimal G /N -invariant totally isotropic subspace of
V, and W is the perpendicular subspace to W with respect to the above bilinear form.

Proof. As A = Z(N) is maximal characteristic abelian subgroup of N, we conclude that N is the
central product of A with an extra special p-group of exponent p. Hence the factor group V.= N/A
is a Zy(G)-module and thus a Z,(G/N) module (see the discussion after Theorem 10.19). Note
also that 1) is the unique character of IV that lies above ¢, and thus is G-invariant as ¢ is.

Let W be maximal among the G/N-invariant totally isotropic subspaces of V. If X is the
inverse image of W in N, then X is an abelian normal subgroup of N that contains A = Z (V).
(Note that X could be A.) Then ¢ € Lin(A) extends to a linear character A of X. In addition,
the stabilizer X’ of A in N is the inverse image in N of W+, while X’/X is naturally isomorphic
to the factor symplectic space W= /W. Furthermore, if ¢y € Irr(X’) is the A-Clifford correspon-
dent of 1, then the quintuple (G(X), X, A, X',4y) is a linear reduction of (G, A, ¢, N,). Now,
G = G(X\) - N as G fixes the unique character ¢ of N that lies above A\. As W is a maximal
G/N-invariant totally isotropic subspace of V, we conclude that (G(\), X, \, X', 1)) is a linear
limit of (G, A, ¢, N,). (Or else, A would be extended to an abelian normal subgroup B of G(\)
contained in N(A). Thus the image of B in V' would be a G(A)-invariant, and thus G-invariant,
totally isotropic subspace of V', contradicting the maximality of W.) Hence, if K = Ker()), then
(GON)/K,X/K,\/K,X'/K,{)/K) is a faithful linear limit of (G, A, ¢, N, ). But (X'/K)/(X/K)
is isomorphic to X’'/X (see (10.38)), and this isomorphism is G())-, and thus G-,invariant. We
conclude that, for the faithful linear limit (G(\)/K,X/K,\/K,X'/K,¥»/K) of (G, A,$, N,v),
the proposition holds, that is, (X'/K)/(X/K) is isomorphic to W+ /W for some maximal G /N-
invariant totally isotropic subspace of N/A.

According to Theorem 10.19, if (G, A, ®,N, ¥) is another faithful linear limit of (G, A, ¢, N, 1),
then N/A is isomorphic to (X'/K)/(X/K), and this isomorphism is invariant under G(¢)/N =
G/N. This completes the proof of Proposition 10.47. O
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10.3 Linear limits, character towers and triangular sets
Assume that we have the same situation as in Chapter 9. That is, we have a fixed normal series
1=Go <G <--- 4G, =G, (10.48a)
of GG that satisfies Hypothesis 5.1. We also fix a character tower
{1 =x0: X1, -+ Xn} (10.48b)
for that series, along with a representative of its corresponding conjugacy class of triangular sets
{Q2i—1, Por|f2i-1, aQT}i’;f7;:0' (10.48c)

Along with the above system we fix a Hall system {A,B} of G that satisfies (9.2), that is,

A € Hall,(G),B € Hall/(G), (10.48d)

A(x1,x2s---,xn) and B(x1, X2, .-, xn) form a Hall system for G(x1, x2,-- -, Xn)s (10.48e)
A(X1,X25 -5 Xn) = Py and B(x1, X2, -+, Xn) = Qop_1, (10.48f)

for all A = 1,...,n. The way the above character tower, its triangular set, and the Hall system

change, if we take a linear limit with respect to a subgroup G; of G, is in general arbitrary. In some
special cases we can control these changes, as we will see in the next two subsections. The basic
results were already proved in Chapter 9. Here we will apply them multiple times and translate
them into the language of “linear limits”.

For the rest of the chapter, we fix an integer m = 1,...,n. Whenever necessary we consider
the smaller system
1=Gp<dG14---4G,, 4G,
{1=X0,X1,--+>Xm} (10.49)
I k
{Q2i—1,Por| Boi1, 2r by g
where the integers k, [ are related to m via (5.7). Of course, as always, along with the above system
the groups Q(fak—1,2k) and P(ag;—22;—1) are uniquely defined, up to conjugation, via Theorem 8.13

and Theorem 8.15, respectively.
We first work, as in Chapter 9, inside a 7’-group.

10.3.1  “A(f(;)”-invariant linear reductions

Assume that the normal series (10.48a), its character tower (10.48b), the triangular set (10.48c)
and the Hall system (10.48d) are fixed. In addition, we assume that S is a subgroup of G satisfying

S <G with S < @4, and (10.50a)
¢ € Lin(S) is G-invariant and lies under ;. (10.50Db)

Note that (10.50a,b) are the conditions in (9.5). Furthermore, the quintuple (G, S,{,Q1,51) is a
linear one.
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Let E be a normal subgroup of G with S < E < @1, and \; € Lin(FE) be a linear character of
FE lying above ¢ and under #1. So A; is an extension of ( to E. Then we can use all the results of
the first section of Chapter 9. We also use the same notation as that introduced in Section 9.1. In
particular, Remark 9.7 implies that some G1-conjugate A € Irr(E) of A\; is A(x1) = A(S1)-invariant
and extends . So the quintuple (G, E, X\, Q1 x,81,2) is a linear reduction of (G, S, (,Q1,51). We
call it an “A(S1)"-invariant linear reduction, as \ was picked, among its Gi-conjugates, to be
A(f1)-invariant. We saw in (9.15) that the series 1 = Gy IG1 2 D--- IG,, » = Gy, formed by the
stabilizers of X in the various subgroups G; of G, is a normal series of G). Along with that series of
groups, we get the tower of characters {x; » € Gix}i, where x; x is the A-Clifford correspondent of
Xi (see (9.17a)). As in Section 9.1, we add a subscript A to any object such as Poy, Q2i—1, a2r, $2i—1
etc, to indicate the corresponding object for the A-situation. We pick the groups {Ps; x, Q2i—11},

forallr=1,...,kand all t = 1,...,[, to satisfy the conditions in Proposition 9.22. In particular,
we get P35, = Py, by (9.24a), while Q3;, ; = Q3,_;, by (9.24b), whenever r = 1,...,k" and
1=1,...,l', respectively. Then the triangular set

UK
{Q2i—1.x: Por Al B2i—1,3, @22 }ily o

satisfies the conditions in Theorem 9.26. In addition, the A-Hall system {A\,B)} for G, can be
chosen to satisfy the conditions in Theorem 9.46. In particular (9.47) implies

Ax(xin) = Alxa) (10.51)

Also for the fixed smaller system 10.49, all the conclusions of Theorems 9.48 and 9.50 hold.
Hence the groups Q(f2x—1,21) and P(og;—1,2/—1) and their A-correspondents can be chosen to satisfy
the conditions in Theorems 8.13 and 8.15, respectively, along with (9.49) and (9.51). Thus

Q(Bak—1.2)(N) = Qx(Bak—1,250); (10.52a)
13(042172,2171) = ﬁ/\(a2lf2,2171,)\)7 (10.52b)
Q) = Qi (10.52c)
P =Py, (10.52d)
where the groups Q and P are defined as in (9.4). Also (9.4c), along with (10.51), implies
Plagi221-1) <P < A(x1) = Ax(x1n)- (10.52¢)

Furthermore, Corollary 9.54 implies that the image I of @(ﬂgk,mk) in Aut(Py;,) equals the im-
age Iy of Q\(Bok—1.2k2) in Aut(Py, ) = Aut(P;;). Similarly, the images of P(ag—22/—1) and
ﬁ,\(agl,g,gl,w\) in Aut(@3,_, ) coincide, by Corollary 9.56.

The following observation turns out to be very important for the ultimate proof of Main Theorem
1. We define the group U as
U:=Q3_1 % J, (10.53)

where J is the image of ﬁ(@gl_ml_l) in Aut(Q3;,_,), as this was defined in (9.106). (Clearly the
group U depends on the smaller system (10.49) and thus on m). We observe that the quintuple
(U, S,¢,Q5,_1,85_1) is a linear one. The “A(f)"-invariant linear reduction (G, E, X, Q1 x, B1,))
of (G,S,(,Q1,01) determines naturally the linear reduction (U(MN), E, A, QZZ—LM@Z—L/\) of the
quintuple (U, S, ¢, Q%_1,55_1). Note that U(\) = Q5 1) % J, a8 Q5 4, = Q5_1(A) and A is
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A(pr) > ﬁ(agl_ml_l)—invariant. We call such a reduction a G-associate linear reduction of
(U, S,¢,Q5,_1,85_1), as the E-group we are choosing for this reduction is not only normal in U, as
it is the common case in linear reductions, but it is normal in G. We remark here that the group
U is isomorphic to a section of G.

Assume now that there exists another pair (E’, \}), where E’ is a subgroup of @ », normal in
G, such that S < E < E' < @y, and )] is a linear character of E’ that extends A and lies under
B1,x. Then, by Remark 9.7, we can replace \| with one of its Q1 x-conjugates X', that is Ax(x1.1)-
invariant and also lies under 5 ». By (10.51) the above character is A(f1) = A(x1) = Ax(x1,0)-
invariant. So we can repeat the same process and consider an “A((;)”-invariant linear reduction
(G, E', N Q1w Braw) of the “A(B1)”-linear reduction (G, E, A, @15, 81,1). That is, we apply
again the methods of Section 9.1, but this time for the normal series 1 = G xJIG1 (- - -Gy \ = Gy,
the normal subgroup E of GG in the place of S, and the G-invariant character A in the place of
¢. Clearly E’ satisfies (9.5¢). So Proposition 9.22, Theorems 9.26, 9.48 and 9.50 along with their
Corollaries 9.54 and 9.56 can be applied. We conclude that

Py = Papx = Pa, (10.54a)

Q1 an = Qa_12(N) = Q51 (A, X), (10.54b)

We also have a Hall system {A », By x} for G y that satisfies the conditions Theorem 9.46 and
is derived from {A,B,}. For any fixed m = 1,...,n, the groups @, » and P, y can be chosen

with respect to the above Hall system. Hence they satisfy

Qo (Bor—1.26a00) = Q(Bar—1,26) (N, X), (10.54c)
Py (2i—221-1300) = Pa(ai—221-130) = Plag—22-1), (10.54d)
A < QN N), (10.54e)
Pyy = P. (10.54f)
Hence (10.54d) and repeated applications of (9.4c) and (9.47a) imply

ﬁ(agl_zgl_l) is a subgroup of A(81) = A(x1) = Ax(x1,0) = Ax v (X10)- (10.54g)

Furthermore, (10.54a) implies that Aut(Py; , \/) = Aut(Fy,). Thus Corollary 9.54 implies
I= I)\ = the image of Q\)\V)\/ (,ng_172k7)\7/\/) in Aut(Pz*k)\,)\/), (1054h)

where I is the image of @(ﬁgk_sz) in Aut(Py;) and I that of @)\(ﬁgk_172k7/\) in Aut(P;kJ\). Also

The subgroups 18)\)\/(@21,2721,1,)\7)\/) and ﬁ(agl_g,gl_l) have the same images in
Aut(Q%_q \x), Aut(@Q3_q ) and Aut(Q3_q). (10.54i)

As far as the quintuple (U()N), E, A, Q;l_L/\,ﬁ;‘l_l’/\) is concerned, we clearly have that one of
its Gy-associate linear reductions is the quintuple (U(X, X'), E', X', Q3 5 y 851 5 ). Further-
more, the group ﬁ(a21_2721_1) fixes \, as it is a subgroup of A(x1), by (10.54h). It also fixes )\,
as ﬁ(agl,ml,l) is a subgroup of Ax(x1,x), by (10.54h). Hence the image J of ]S(agl,ggl,l) in
Aut(Q3_4), fixes A, N, Thus J < U(A, X'). Even more, Q3 , v = @3_1(\, X), by (10.54b). We
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conclude that
UNX) = Q51 pn .

We can continue this process until we reach a linear limit

(Z(G)7 Z(S), Z(C)v Z(Ql)v l(ﬂl)) € LL(G7 S, ¢, Q1, 51) (1055)

of (G, S,(,Q1,1). As this was done in a very specific way, at every linear reduction we were using
a character that is invariant, under A (), we call any such limit an “A((31)” -invariant linear limit
of (G,S,(,Q1,01). The fact that we only consider “A((;)”-invariant linear characters in every
linear reduction does not restrict our options in the possible linear reduction we can perform, as,
according to Remark 9.7, we can always replace any given linear character with one of its conjugates
that is “A(f;1)”-invariant.

Of course, along with the limit group [(G), we reach a limit normal series of I(G)
=1(Gy) <IU(G1) <U(Ga) D--- UG, =U(G), (10.56)

where I(G;) = G; N I(G).
Along with the series (10.56) we get a limit character tower

{i(x:) € Irr(I(Gi)) }io, (10.57a)
where [(xg) = 1 and
I(xi) € LL(x;) is a linear limit of y;, (10.57b)
foralli=1,...,n. We also write
{U(Q2i-1), L(Per) |1 Bai-1), Uz ) Yok (10.58)

for a representative of the unique I(G)-conjugacy class of triangular sets of (10.56) that corresponds
to the character tower (10.57a), and is derived from the original triangular set (10.48c) following
the rules in Theorem 9.26. In addition we write {{(A),(B)} for a Hall system of [(G) that satisfies
(8.4) for the limit case.

Of course, the above system restricts to the smaller

= (Go)U(G1) DUG) <+ LUGrm) TUG),
{l(xs) € Irr(I(Gy)) }ito, (10.59)
{1(Qai=1)L(Par) L(Po)[1(Biz1). Lazr) 1oy, .

We also write I(P;;,) for the product group [(FPy) - I(P»)---I(Pay), and I[(Q5,_,) for the product
U(Q1) -+ 1(Q2-1). Similarly, working for a fixed m and looking at the smaller system (10.59), w
denote by I (Q) the analogue of Q in this limit case, and by (P ) the analogue of P ie., [ (Q) and
l (ﬁ), satisfy Theorems 6.19 and 8.1, respectively, for the limit case.

Using this notation we can easily see that results similar to (10.54) hold. In particular,

Theorem 10.60. Assume that the normal series, the character tower and the triangular set in
(10.48) satisfy the conditions (10.50). Assume further that (10.55) is an “A(B1)” -invariant linear
limit of (G,S,(,Q1,01), and (10.57a) a character tower that arises as a linear limit of (10.48b)
(see (10.57b)). Then the triangular set (10.58), that corresponds to the tower (10.57a), can be
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chosen to satisfy

[(Pyy,) = P3.. (10.61a)
Furthermore, a Hall system {l(A),l(B)} of I(G) can be derived from {A,B}, so that at every
linear reduction the conditions in Theorem 9.46 hold. Then, for any m = 1,...,n, the groups

~ ~

HQ)(U(Pak—12k)) and I(P)(I(ci—2,21—1)), for the smaller system (10.59), can be chosen in associa-
tion to 1(B) and I(A) respectively. Therefore we have

I(P)(I(a2-221-1)) = Plosi—2.2-1), (10.61b)
I(P)="P, (10.61c)
II) =1, (10.61d)

~

where (1) is the image of 1(Q)(1(Bak—1,2k)) in Aut(l(Pyy)).

Proof. Follows immediately by repeated applications of Proposition 9.22, Theorems 9.26, 9.46, 9.48,
9.50 and Corollaries 9.54 and 9.56, at every “A ()" -invariant linear reduction that we perform. [

Remark 10.62. The fact I(Py;) = P;;, implies that the groups @(ﬁgk_Lgk) and l(@)(l(ﬁ%_l,gk))
have the same image, that is I, in the automorphism group Aut(P};,) = Aut(l(Ps),)).

Similarly,

~ ~

Remark 10.63. The equation [(P)(I(cgi—2.21-1)) = P(ag—22/—1) implies that both these groups
have the same images in the automorphism groups Aut(Q3,_;) and Aut(I(Q%,_,)).

Along with the limit (10.55), we reach the quintuple

(UWU),1(5),1(€), Q1) 1 (By-1)), (10.64)

This is a multiple linear reduction, but not necessarily a linear limit, of (U, S,(,Q%,_1,85_1), as
we could possibly reduce it further using a normal subgroup of I(7), that is not normal in I(G),
and a linear extension of I(¢) to that normal subgroup. We call (I(U),1(S),1(¢), 1 (Q%_1),1(B5_1))
a G-associate limit of (U, S,(, Q% _1, 3% _1). Note that [(U) is isomorphic to a section of [(G) . We
clearly have

Remark 10.65. The G-associate linear limit (I(U),1(S),1({), 1(Q%_1),1(35_;)) of the quintuple
(U7 Sa Ca Q;l_l; /Bgl—l) S&tiSﬁeS

Q1) =UG) N QY1 (10.66a)

WU) =1Q%_1) x J. (10.66b)

Repeated applications of Theorems 9.59 and 9.60, at every “A(f;)”-linear reduction that we
perform, imply

Theorem 10.67. If Bok_1 21 extends to @(52;6,17%) then the character I(Bar—1,2k) also extends to

)
~ ~

HQ)(U(Bar—1,2k)). Simalarly, if ag o1 extends to Plag—22-1), then l(ag—22-1) also extends
to (P)(I(a21—2,21-1))-

Now let K be the kernel of the limit character [(¢). As we have seen in the previous section
(see (10.3)), we can form a faithful linear limit

(FUG), FU(S), FUC), FUQq), FL(B)) = (UG) /K, LU(S)/ K, 1(Q) /K, [ (@) /K, (1) K)

196



of the linear quintuple (G, S, (,Q1,51). We call such a limit an “A(B1)” -invariant faithful linear
limit | as it is obtained from an “A(f;)”-invariant linear limit. Along with that we have a normal
series of fI(G)

0= f1(Go) < fI(G1) < fU(Ga) <+ < fU(G) = FI(G), (10.684)

where fI(G;) = l(G;)/K, for all i = 1,...,n. Along with the series (10.68a) we get a character
tower

{f1(xi) € e (FU(Gi)) Yo (10.68b)

where fl(x;) is the unique character of fI(G;) = l(G;)/K that inflates to I(x;) € Irr(I(G;)), for
eachi=1,...,n. Let fl(xo) =1, then

fl(xi) € FLL(x;) is a faithful linear limit of x; (10.68c)
foralli=0,1,...,n. Let

{FUQai1), FUP2) [ FUB2i1). flloon) 2 g (10.68d)

be the representative of the unique fI(G)-conjugate class of triangular sets that corresponds to
(10.68b), that is derived from the set (10.58).

The fact that the quintuple (I(G),1(S),1(¢),1(Q1),1(1)) is a linear one implies that the group
[(S) and its irreducible character I(¢) satisfy (9.5). Thus we can apply the results of Section 9.3.
In particular, Theorem 9.122 implies that the set (10.68d) satisfies

fU(Q2i-1) = ((Q2i-1)K)/ K, (10.69a)
fl(PQr) = (Z(PQT)K)/K = Z(PZT)- (10'69b)

whenever 1 < i <!’ and 1 < r < k’. Hence

FUQ3) = Q3 )K) /K, (10.69¢)
JUP) = ((P3)K) /K = 1(F3,). (10.69d)

Even more, we can pick a Hall system { fI(A), fl(B)} of fI(G) to satisfy the conditions in Theorem
9.136, i.e.,
fl(A) = (I(A)K)/K 2I(A) and fI(B) = (I(B)K)/K. (10.70)

For every fixed m = 1,...,n, the smaller limit system (10.59) provides the faithful limit system

0= fU(Go) < fI(G1) D fl(G2) <-4 fU(G) D fUG), (10.71a)
{Fl(xi) € Ier(fL(GH)) ™ (10.71D)
{fUQai—1), FI(Par) | F1(Bai=1), fll02r) }o") o (10.71c)

where its triangular set (10.71c) satisfies (10.69). Even more, having fixed the Hall system

~

{fU(A), fl(B)}, Theorem 9.138 implies that the group fI(Q) can be chosen, (in relation to fI(B)),
to satisfy the conditions of Theorem 6.19 for the faithful linear situation (10.71), along with

FUQ) (1 Bak—121)) = (UQ)(U(Bos—1,26)) K) / K. (10.72)
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Even more, if

~

fUI) := the image of fI(Q)(fI(f2k—12k)) in the automorphism group Aut(fI(FPs;,)),  (10.73)

then identifying I(Py;,) with fI(Pj,), Corollary 9.143 implies that

~

FUI) = Image of I(Q)(I(Par—1,.2k)) in Aut(l(P5},)).
But this last group equals the image I of @(ﬁ%_ljgk) in Aut(Fj;,), by Remark 10.62. Hence
Ul =) =1. (10.74)

In addition, Theorem 9.140 implies that we may choose the group fl(lB), (in relation to fI(A)),
for the system (10.71) to satisfy (8.1), along with

~

FUP)(fllag—221-1)) = U(P)(l(a—221-1))- (10.75)

Thus (see Corollary 9.144), the above two isomorphic groups have the same image in the au-
tomorphism group Aut(fI(Q3,_,)). This, along with Remark 10.63, implies that the groups
FUP)(fl(ogi—2,21-1)) and P(ag—22—1) have the same image in Aut(fI(Q3_1))-

In conclusion we get

Theorem 10.76. Assume that the normal series, the character tower, the triangular set and the
Hall system in (10.48) are fized. Along with them we fiz S and ¢ € Irr(S) to satisfy (10.50). Let
(fUG), FL(S), fU(C), fU(Q1), fL(B1)) be an “A(B1)” -invariant faithful linear limit of (G, S,(,Q1, 1)
and (10.68b) be the character tower for the normal series (10.68a), that arises as the faithful linear
limit of the tower (10.48b). Then we can pick the triangular set (10.68d) to satisfy (10.69). In
particular Py, is naturally isomorphic to fl(Py.), for allr =1,...,k'. We also derive a Hall system
{fU(A), fI(B)} of fI(G) from the original {A,B}, via (10.70) and Theorem 10.60. Then for any
m=1,...,n, the groups fl(@) and fl(ﬁ), for the smaller faithful system (10.71), can be chosen,
(in association to fl(B) and fI(A)), to satisfy

1. the associated isomorphism of Aut(Py,) onto Aut(fI(Py,)) sends the image of @(ﬁgk_lgk) in

~

Aut(P},) onto that of fI(Q)(fl(Bar—1,2k)) in Aut(fI(P5,)), i.e.,

SUT)

1

I.

2. ﬁ(agl,g,gl,l) = fl(ﬁ)(fl(agl,27gl,1)), and they both have the same image in Aut(fI(Q%_;))-
Proof. Follows from Theorem 10.60, and equations (10.71d), (10.74) and (10.75). O
Furthermore, Theorems 9.146 and 9.147, along with Theorem 10.67, easily imply

Theorem 10.77. If the character Boj—1 21 € Irr(Qar—12k) extends to @(ﬂgkflgk), then the char-

~

acter fl(Bok—12k) € Irr(fl(Qar—12k)) extends to fU(Q)(fl(Bok—1,2k)). Similarly, if the character
ag—291—1 € Irr(Py_o91—1) extends to P(ag—29—1), then the irreducible character fl(ogi—221-1) of
JU(Po—221-1) extends to fI(P)fl(aa—221-1)-

Finally, the group K = Ker(I(¢)) is a normal subgroup of I(G), as [(() is {(G)-invariant. Fur-
thermore, K < 1(Q1) < 1(Q%,_,), thus K <I(Q3,_,). Since the group I(U) is isomorphic to a section
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of [(G), and K is a subgroup of [(Q%,_;) < {(U), we conclude that K is also a normal subgroup of
[(U). Hence we can form the faithful linear quintuple

(UU) /K, U(S)/K Q) /K, UQy 1)/ K, 1(By—1)/ K) = (fl(U%fl(S),fl(C)jfl(Q’éz1),fl(ﬁ%‘11)- |
10.78a
We call the above quintuple a G-associate faithful linear limit of (U, S,(,Q%_4,05_1). The fact

that K is a 7’-normal subgroup of 1(Q%,_,), while J is the image of the m-group P(agi—29-1) =
I(P)(I(ag—221-1)) in Aut(Q3,_,), along with (10.66b), implies

JUU) = A0/ K = UQ5_1)/K) % T = [UQ3_) . (10.78b)
Corollary 10.15 clearly implies

Proposition 10.79. Let (fI(Q%,_,) x J, fI(S), fI(C), fFL(Q%,_1), [U(B5_1) be a G-associate faithful
linear limit of (U, S,(,Q%_1,0%5_1). Then any faithful linear limit of the former quintuple is also
a faithful linear limit of (U, S,(, Q%_1,55_1)-

10.3.2  “B(ay)”-invariant linear reductions

Assume that the normal series (10.48a), its character tower (10.48b) and the triangular set (10.48c)
are fixed. In addition, we assume that G is a direct product

GQ = GQ’ﬂ— X Gg,ﬂ/ (10.80&)

while
X1 is G-invariant, (10.80b)

that is, (9.61) holds. Hence (9.63) holds for the triangular set (10.48c). In particular we have

G2 = PQ X Gl = P2 X Ql; (10800)
X2 = a2 X P, (10.80d)
G(x2) = G(a2). (10.80e)

Furthermore, we assume that the normal subgroup R of G and its irreducible character n € Irr(R),
satisfy (9.70), that is,

R <G with R < Py, (10.80f)
n € Lin(R) is G-invariant and lies under . (10.80g)

The quintuple (G, R,n, P2, ) is clearly a linear one. As with the “A(/;)”-invariant linear reduc-
tions, we will get a linear limit of the above quintuple with respect to the group B(az) = B(x2).
To get a linear reduction of (G, R, n, P3, ag) we start with a normal subgroup M of G contained
in P» and a linear character 1 of M that extends n and lies under as. Note that all the hypothesis
of Section 9.2 are satisfied, and therefore all the results of that section hold. Thus, according to
Remark 9.72, there exists a Py-conjugate p € Lin(M) of uq, such that p is B(asg)-invariant, extends
7, and lies under ay. We proceed using the same notation as that of Section 9.2. As in (9.78d) we
form the series
1=GoudG1,d---dGpy =Gy, (10.81a)

consisting of the stabilizer of y in the groups G; and G for i = 2,3,...,n. In addition (see (9.79)),
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we write

S = ]-a (1081b)
G27u = Pg(u). (10.81C)

Along with that we get, as in (9.80) and (9.81a), the u-character tower {x; .}, where

Xo,u = 1, (10.81d)

X1, = 1, (10.81e)

X2,u = Q2 - (10.81f)

Furthermore, o, and x;, are the p-Clifford correspondents of ag and y;, respectively, for all

i =3,...,n. Proposition 9.87 and Theorem 9.91 show that we can choose a triangular set {Q1 , =
UK

1, Q2i—1,us Por | Brp = 1, B2im1p, 042,,7,!}1:’2,7,:0, that corresponds to the above p-character tower, so
that P, = P3.(p), while @3;_; , = @5;_;, whenever 1 < r < k' and 1 <4 <. In addition,
Theorem 9.100 implies that the p-Hall system {A,,B,} for G, can be chosen to satisfy (9.101).
Then B, (x1,u: x2,u) = B(x1,Xx2). As x2 = a2 x x1, where x; is G-invariant and x2, = ag,,, we
conclude that

Bu(alu) = BM(XQ,M) = B(x1,x2) = B(a). (10.82)

We assume fixed the smaller system (10.49). In addition, we assume that m is any integer so
that
m > 2.

Then Theorems 9.102 and 9.103 hold for this smaller system. Hence the groups @(ﬂgk_mk) and
P(ag—2291—1), along with their p-correspondents @, (Box—1,2k,,) and P, (a2—221-1,,), can be chosen
to satisfy

Q(Bok—1.26) = Qpu(Bok—1.2k 1), (10.83a)
13(042172,2171, W) = 13;‘(062172,2171,;;), (10.83b)
Q=20, (10.83¢)
P(p) > Py (10.83d)
Equation (10.82), along with Remark 9.74, implies
Q(Bak-1.2k) < Q < B(x2) = Bu(azy). (10.83e¢)

Furthermore, Corollary 9.104 implies that @M(ﬂ%,l,gk’“) and @(ﬂgk,mk) have the same im-
ages in both Aut(F;;) and Aut(Fy, ). Similarly Corollary 9.107 implies that the image J of

]3(@21_2725_1) in Aut(Q3,_,) equals the image J,, of ﬁu(a2l—2,21—l,u) in Aut(le_LM) = Aut(Q3,_,)-
The quintuple (G, M, p1, Py, 0,) is clearly a linear reduction of (G, R,n, P>, az). We call it a
“B(az)” -invariant linear reduction, as p is B(ag)-invariant.

Similarly to the group U, we write T for group

where (as always) R
I = Image of Q(fax—1,2k) in Aut(Pyy).
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It is clear that the quintuple (T, R, ), Py, o5,.) is a linear one. Furthermore, the “B(az)”-invariant
linear reduction (G, M, p, Py, 00,) of (G, R,n, Pa, o) determines naturally a linear reduction
(T(u),M,M,PQ*kyu,agk#) of (T, R,n, P,,a%,.). Note that, as @(ﬂgk_lgk) fixes p by (10.83e), its
image I in Aut(Fy;) also fixes u. As Py = P (u), we conclude that the stabilizer T'(uu) of
p in T' satisfies T'(u) = P35, x 1. We call such a reduction a G-associate linear reduction of
(T,R,n, Py, 05,), as the group M we are choosing for this reduction is normal in G We also
remark that 7" and T}, are isomorphic to a section of G and G, respectively.

Now we can repeat the procedure. So assume that there exists another pair (M’, p1}), such that
M’ is a normal subgroup of G, satisfying R < M < M’ < P, ,, and p} € Lin(M’) is an extension
of u, and thus an extension of 1, that lies under as,. Again, using Remark 9.72, we can replace
py with a P ,-conjugate p' of p1f that is B, (ag ,)-invariant, extends p, and lies under as . (So
i is B(ag) = B (ag,)-invariant, by (10.82)). We apply the results of Section 9.2 to the series
Gopw=14G1,=12Gy,, =P, AG3, <--- 4Gy, = Gy, its character tower {x; ,}i, and the
triangular set {Q2i—1,u, Por | ﬁ2i—1,u,a2r,u}él:’kll +—o» already picked at the previous reduction. We
also use the normal subgroup M of G, in the i)lace of R, the G -invariant character u in the place
of 7, and the normal subgroup M’ of G/, in the place of M. Notice that (9.70) holds, with M’ here
in the place of M there, and M here in the place of R there. Furthermore, the group Gy, splits
trivialy as the product Gz, x 1 of a m-and a 7’-group. Thus the conditions (9.61) and (9.70) are
satisfied. Hence all the results of Section 9.2 hold. In particular, we have a normal series

1=Gopupw QG1pw QGopy D LG = Gy,

of the stabilizer G, ,» = G(u, ') of ¢ in G, = G(). In addition,

Gruw =G =1, (10.85a)
G = Palp, i) (10.85D)
and
Gipp = Gip NGy = Gi(u, M,)a
for all i = 2,3,...,n. We also get a character tower {x; , . };—o for that series, where x; , , is the
w'-Clifford correspondent of x; ,, for each ¢ = 2,...,n. Furthermore, as in (10.81), we have
X1,p,u = 17 (10.85C)
X2,p, = G2y’ (1085d)

where ay,, v is the p/-Clifford correspondent of ag .

Hence Proposition 9.87, Theorems 9.91, 9.102 and 9.103, along with their Corollaries 9.104
and 9.107, imply that we can pick a triangular set {Q2;—1,4.1, Por | B2i— 1,11+ 0‘2r,u,u’}g:’k1,,r:0 that
corresponds to the character tower {x, ,/}i-g, so that

P = P (1) = Py (p, 1) = P 0 G (10.86a)
Qlupw=Q1,=Q1u=1, (10.86b)
Qa1 = Qa1-1, = Qa1-1- (10.86¢)

We also pick a Hall system {A, ,/,B, v} of G, s, that satisfies the conditions in Theorem 9.100

and is derived from {A,,B,}. So it is derived from the original {A,B}. Therefore, for any fixed
m = 1,...,n, the groups Q(Bar—12k) and P(ag—29;—1) for the smaller system (10.49), can be

201



chosen via B, ,» and A, /, respectively, (see Theorems 8.13 and 8.15). Hence, as in Theorem 9.102
and 9.103, they satisfy

@Mﬂ (Bok—1,26k ) = @u(ﬁ?kfl,%,u) = @(ﬁ%fl,%)a (10.86d)
Py (ao—201-1,u) = Plagi—2,2-1) (1, 1), (10.86¢)
Qp,,u’ = Qu = Q, (10 86f)
P < Pl ). (10.86g)
Furthermore,
Q(Bar-1,2) is a subgroup of B(az) = By (az,) = By (a2,,0), (10.86h)
GQ,/L,/L/ = PZ,M,M- (10861)

Equation (10.86d) implies that the groups @(ﬁgk_mk) and @Mﬂ (B2k—1,2k,p,w) have the same
image in Aut(Pj, uu’)' Also, (10.86¢), along with Corollary 9.107, implies that J, = J, ,/, where

J,,w denotes the image of ﬁ‘u7“/(0¢2l_2’2l_1’“’“/) in Aut(Qa_l,Wﬂ). So
J=Jy= . (10.87)
As far as the linear reductions are concerned, we have that (G, /M’ , 1, P, v, 00,,0) is &
“B(cr2)”-invariant linear reduction of (G, M, u, P>y, «2,). Furthermore, the reduced quintuple
(T(/%/‘I)vM/7NI7P;k,u,u’7a;k,u,u/) is a Gy-associate linear reduction of (T'(w), M, u, Py, . a5y ).

Note that
T(,uv M,) = (PQ*IC A I)(:UMU/) = P;k,,u,u’ X I? (1088)

as both p and p/, are B(ag) > @(ﬁ%_lvgk)—invariant, (by (10.86h)), and thus I-invariant.
We continue this process until we reach a linear limit
(I(G),l(R),l(n),l(P2),l(a2)) € LL(G, R,n, Py, t2), (10.89)

that we call a “B(a2)” -invariant linear limit of the linear quintuple (G, R, n, P2, ag). We also reach
a limit normal series for the group I(G)

1= U(Go) TUGY) UGa) D+ AUG) = UG), (10.90a)
where I(G;) = G; NI(G), for all i = 2,...,n, and

IGy) =1, (10.90b)
UG2) = (), (10.90¢)

as the same holds at every linear reduction. Observe also that the above normal series has the
same notation as the one in (10.56), but of course is produced in a different way.

Along with the series (10.90a) we get a character tower
{l(xi) € Irr(I(Gy)) Fimo (10.90d)
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where

!
l(x2) = l(o2), (10.90e)

forall2=3,...,n. Let
{1(Q2i-1), Z<P2r)’l(/82i—1)7l(OCQT)}i:Jir:O (10.90f)

be the representative of the unique {(G)-conjugate class that corresponds to (10.90d), and is derived
from the original triangular set (10.48c) following the rules in Theorem 9.91. . We also denote by

{{(A),1(B)} (10.90g)

a Hall system for {(G) that satisfies (8.1), for the above limit case.
Of course the above system restricts to the smaller

1 =1(Go) <UG1) DUG2) <+ DUG) DUG),
{l(xi) € Irr(1(Gy)) Fio (10.91a)
{1(Qai-1), L(Po)|1(Bai 1), o)}y g

Note that we have the same notation as that in (10.59). Similar to the notation there, we write
[(P5,) and [(Q3;_,) for the product groups [(Fy)-1(Ps) - - - I(Por) and [(Q1) - - - [(Q21—1), respectively.
Also for any fixed m, we denote by l(@) the analogue of Cj in this limit case, and by l(ﬁ) the analogue
of P, for the smaller system (10.91) i.e., [(Q) and [(P), satisfy the conditions in Theorems 6.19 and
8.1, respectively, for the limit case.

Then

Theorem 10.92. Assume that the normal series, the character tower, the triangular set and the
Hall system in (10.48) satisfy the conditions (10.80). Assume further that (10.89) is a “B(az)”-
invariant linear limit of (G, R,n, P2, a2) and (10.90a) a character tower that arises as a linear limit
of (10.48b) (see (10.90e) ). Then the triangular set (10.90f), that corresponds to the tower (10.90a),
can be chosen to satisfy

UQ3%-1) = Q31 (10.93a)
for alli=1,...,l'. Furthermore, a Hall system {l(A),l(B)} for I(G), can be derived from {A,B}
so that at every linear reduction theconditions in Theorem 9.100 hold. Then, for everym =1,...,n,

the groups l(@)(l(ﬁgk,l,gk)) and l(]g)(l(om,ml,l)) for the smaller system (10.91), can be chosen,
using the groups [(B) and I(A), respectively, to satisfy

Q(Bar—1.2%) = UQ)(I(Bore—1,2x)), (10.93b)
Q=1(9Q), (10.93¢)
J=1(J), (10.93d)

where [(.J) is the image ofl(lg)(l(agl_zgl_l)) in Aut(1(Q%_1))-

Proof. We reach the linear limit (10.89) doing, at every step, “B(az)”-invariant linear reductions.
Therefore at every step we are picking a triangular set that satisfies the conditions in Proposition
9.87 and Theorem 9.91. We also pick, at every linear redution, a Hall system that satisfies thecon-
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ditions in Theorem 9.100. Furthermore, for any fixed m = 1,...,n, the groups @ and P satisfy the
conditions in Theorems 9.102 and 9.103. Hence at every step equations (10.86) hold. In particular,
repeated applications of (10.86¢), (10.86d) and (10.86f) imply (10.93a,b) and (10.93c), respectively.
Similarly, repeated applications of (10.87) imply (10.93d). Hence Theorem 10.92 follows. O

As an easy consequence of (10.93a) we have

Remark 10.94. The groups @(ﬁ%,l,gk) and l(@)(l(ﬁQk,LQk)) have the same images in both au-
tomorphism groups Aut(P;,) and Aut(l(Fy;,)).

Also repeated applications of Theorems 9.108 and 9.109 at every “B(ag)”-invariant linear re-
duction imply

Theorem 10.95. If G112 extends to @(5%—1,%)7 then the character I(Bar—1,2k) also extends to

the limit group 1(Q)(I(Bak—1,2k)). Similarly, if a1 extends to P(ogi—221—1) then l(agi—221—1)
also extends to [(P)(I(cgi—2.21-1)).

Notice that, along with the limit in (10.89), we reach the quintuple

(Z<T)7Z(R)7l(77)7l(P;k)J(a;k))? (10'96)

that we call a G-associate limit of (T, R,n, Py, a%,). Note that, as with (10.64), the G-associate
limit is a multiple linear reduction, but not a linear limit, of (T, R, 7, Py, a35,). Because (10.88)
holds for every “B(ag)”-invariant linear reduction, we have

Proposition 10.97. The G-associate linear limit (I(T),l(R),1(n),l(Ps,),l(ad)) of the quintuple
(T,R,n, Py, a3,), satisfies

I(Py) = U(G) N Py, (10.98a)
U(T) = U(P},) % 1. (10.98b)

We want to pass to a faithful linear limit of (G, R,n, P2, a3), as we did with the “A(3;)”-
invariant case in (10.68). So we first note that {(G2) = [(P2). So I(G2) is the product of a m-and
a trivial 7’-group. Furthermore, I(R) is a normal subgroup of I(G), while I(n) € Lin(I{(R)) is an
[(G)-invariant linear character that lies under I(ag) € Irr(I(P)), as (I(G),L(R),1(n),l(P),l(as2)) is
a linear quintuple. Hence all the conditions of Section 9.3.2 are satisfied. Thus if K = Ker(l(n)) is
the kernel of [(n), then we can form the faithful linear limit

(FUG), FUR), fU(n), fFI(P2), fl(az)) = ((G)/ K, I(R)/ K, 1(n)/ K, [(P2) /K, [(a2) | K)

of the linear quintuple (G, R,n, Py, a2). We call this a “B(a2)”-invariant faithful linear limit , as
it is obtained from a “B(ag)”-invariant linear limit. Along with it we have a normal series of fI(G),
as in (9.150),

1= fl(Go) Q fI(G1) D fI(G) D --- 4 fI(Gn) = fUG), (10.99a)
where
fl(G1) =1(G1)K/K =1, (10.99b)
fl(G2) =1(G2)K/K =1(Py)/K (10.99c¢)
fl(G;) =1(Gy) /K, (10.99d)
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for all i = 3,...,n. Along with the series (10.99a) we get a character tower, see (9.150b),

{f1(xi) € Ire(F1(Gi)) o (10.99)
where
flba) =1, (10.99f)
fllx2) = fl(az), (10.99g)
fl(x:) € FLL(x;) is a faithful linear limit of y; (10.99h)

for all ¢ = 3,...,n. That is, fl(x;) is the unique character of fI(G;) = G;/K that inflates to
Xi € Irr(G;). Let

{FUQ2im1), FUP2 ) FU(Baizr), Ll )} (10.99i)

be a representative of the unique fI(G)-conjugate class that corresponds to (10.99¢). Then Theorem
9.155 implies that we can pick the set (10.991) so that

JUQ2i-1) = ([(Q2i-1)K)/K =2 1(Q2i-1),
FU(Poy) = (I(Po) K) /K. (10.100a)

whenever 1 <3 <[’ and 1 <r < k’. Hence

FUQy—1) = (H(Qo—1) K)/ K = Q5 1), (10.100b)
FU(Psy) = (I(Pay ) K) /K = 1(Pyy.) / K. (10.100¢)

Furthermore, we can pick a Hall system {fl(A), fi(B)} for flI(G) to satisfy Theorem 9.161, that is

fl(A) = (I(A)K)/K and fI(B)=(I(B)K)/K = 1(B). (10.101)
For every fixed m = 1,...,n we have the smaller faithful limit system
0= fl(Go) < fl(G1) S fl(G2) Q-+ D fl(G) < fUG), (10.102a)
{fl(xq) € Trr(fFU(G)) Hy (10.102b)
{f1(Qai1), FUP2) | FU(Bai—1), fllezr) ity g (10.102¢)

~

withn the triangular set picked so that (10.100b) holds. Furthermore, if fI(Q) denotes the cor-
responding to @ for the system (10.102), then Theorem 9.162 implies that, having fixed the Hall
system 10.101, we can choose fI(Q) so that

FUQ) = ((Q)K)/K = 1(Q).

Even more, Corollary 9.165 implies that

FUQ)(f1(Bar—121)) and 1(Q)((Bor—1.2t))
have the same image in the automorphism group Aut(fI(Ps)). (10.103)

In addition, Theorem 9.164 implies that we may choose the group fl(ﬁ) for the smaller system
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(10.102) so that

FUP)(fllaz—2.2-1)) = ((P)(I(az1-2.20-1)) K) /K. (10.104a)
Thus, as in Corollary 9.166, identifying I(Q3,_,) with the isomorphic group fI(Q3,_;), we conclude
that the image fI(J) of fl(ﬁ)(fl(am,ml,l)) in Aut(fI(Q%_;)) is isomorphic to the image I(.J) of
l(ﬁ)(l(agl_ggl_l)) in Aut(1(Q%,_,)). But the latter equals J, by (10.93d). Hence

FUT) 2 IU(T) = J. (10.104b)

In conclusion we get

Theorem 10.105. Assume that the normal series, the character tower, the triangular set and the
Hall system in (10.48) are fized and satisfy (10.80a). Along with them we fix R and n € Irr(R)
to satisfy (10.80b,c). Let (fl(G), fl(R), fl(n), fl(P2), fl(a2)) be a “B(ag)” -invariant faithful linear
limit of (G, R,n, P2, ), and (10.99¢) be a character tower for the normal series (10.99a), arising
as a faithful linear limit of the tower (10.48b). Then we can pick the triangular set (10.99i) to
satisfy (10.100). In particular, Q%;_ is naturally isomorphic to fl(Q%,_1), for alli=1,...,1". We
also reach a Hall system {fl(A), fi(B)} for fl(G), from (A,B) via (10.101) and Theorem 10.92.
Then for any m = 1,...,n, the groups fl(@) and fl(ﬁ) for the smaller system (10.102), can be
chosen, with respect to fl(B) and flI(A) respectively, to satisfy

1. @(ﬂgk,mk) 18 isomorphic to fl(@)(fl(ﬁgk,mk)), and they both have the same image in
Aut(fI(F5,))-

2. the associated isomorphism of Aut(Q3,_,) onto the group of automorphisms Aut(fl(Q%_;))
sends the image of ﬁ(agl_z,gl_l) inside Aut(Q%,_,) onto the image of fl(ﬁ)(fl(agl_gjgl_l))
inside Aut(fl1(Q%,_1)), i-e.,

FUT) = .

Proof. We have already seen that we can pick the set (10.99i) so that (10.100) holds. The rest

follows from (10.103) and (10.104). O
Furthermore, Theorems 9.146 and 9.168, along with Theorem 10.95, easily imply

Theorem 10.106. If the character Bor—1 2k € Irr(Qok—1,2k) extends to @(ﬁgk_mk), then the char-

~

acter fl(Bok—1.2k) € Irr(fl(Qar—12k)) extends to fU(Q)(fl(Bok—1,2k)). Similarly, if the character
ag—291—1 € Irr(Py_o91—1) extends to P(ag—29—1), then the irreducible character fl(ogi—221-1) of
fl(P21_272[_1) extends to fl(P)fl(OéQl_Q’Ql_l).

The character I(n) is [(T)-invariant and thus I-invariant. Furthermore, K = Ker(l(n)) is a
subgroup of I(Ps) < P,. Hence equation (10.98b) implies

FUT) = UT)/K = (U(P3)/K) % T = fI(Pg) » 1.
So we can form the quintuple
(FUT) = fU(P;,) I, fI(R), fL(n), fI(P3), fl(agy)), (10.107)

that we call a G-associate faithful linear limit of (T, R, n, Py, , o3, ). Corollary 10.15 clearly implies

Proposition 10.108. Any faithful linear limit of (fI(T), fI(R), fl(n), fU(P5), fl(c3)) is also a
faithful linear limit of (T, R,n, Py, a%,).
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Chapter 11

Main Theorem

11.1 An outline of the proof

We start with a monomial group G of order p®q®, for distinct odd primes p, ¢ and integers a,b > 0.
Of course G is solvable. Hence there exists some chain

1=Gy<G <G Q- <Gy =G, (11.1a)

of normal subgroups G; of G that satisfy Hypothesis 5.1. So G; is a g-group, while G;/G;_1 is a
p-group if ¢ is even, and a g-group if ¢ is odd, for each i = 2,...,n. Let xo0, X1, - ., Xn satisfy

Xi € Irr(G}) lies under x; € Irr(G) (11.1b)

for any i,7 = 0,1,2,...,n with i < j, i.e., the y; form a character tower for the series (11.1a).
Assume further that the integers k' and I’ are related to n via (5.7), while the set

{Q2i—1, Por|f2i-1, OAQT}éjl’T:O (11.1c)

is a representative of the unique conjugacy class of triangular sets that correspond to (11.1b).
We fix a Sylow system {A,B} of G satisfying (8.4) with m = {p}, that is,

A € Syl,(G) and B € Syl (G), (11.1d)
A(Xl?XZa e 7XZ) S Sylp(G(X17X27 e 7Xl)) and B(Xl)XQa e 7X1) S Squ(G(XhXZa cee 7Xi))7
(11.1e)
A(xt1,---,Xn) = Popy = Po- Py-+- Py and B(x1,...,xn) = Q51 = Q1 - Q3 Qay_1,
(11.1f)
for each i = 1,2,...,n. Therefore
G(x1,x2,- -+ xi) = A(xs xes - -5 xa)B(xa, x2, - -+ Xa) (11.1g)

fori=1,2,...,n.

We are going to perform a series of linear reductions of a very special form. We set S = 1,
and let ¢ be the trivial linear character of S. We also set R = 1, and let 1 be the trivial character
of R. Then (G,S,(,G1,x1) is a quintuple satisfying (10.50). So we may pass to an arbitrary

“A(f1)”-invariant faithful linear limit (G(l), s, C(l), Ggl), @gl)) of the quintuple (G, S,(, G, x1)-
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Of course along with that we obtain (see (10.68)) a normal series
1 g le) — Ggl) <...d4 Gg) — G(1)7 (11.2)

of G, from the series (11.1a). In addition we reach a tower of characters 6§1) € Irr(GEl)), for
1=20,1,...,n, such that @él) =1 and 91(1) lies under @;l) and above ¢V whenever 1 <i < j < n.
We also get a triangular set
1 k/,l/
{Q2z 1 27" |16§z) & T)}izl,rzo (113)

for (11.2) that corresponds uniquely to the tower {@g )};LZO and satisfies Theorem 10.76. Further-
more, the original Sylow system {A, B} for G, (see (11.1d)), provides a Sylow system {A(1) B}
for G, that also satisfies Theorem 10.76.

1) (1)

Obviously the trivial group R is still a subgroup of P57, and its trivial character n lies under o, .

We denote by R = 1 = R the trivial group, seen inside ]P’él), and by n(1) e Irr(]R(l)) its trivial
character. Hence

1 x SM =RMW »x s is a central subgroup of GV (11.4a)

1x ¢W =M % ¢® e rrRM x s, (11.4b)

If n > 2 then in addition we have

RD x s ).V =g (11.4c¢)

77(1) and C M lie under aél) and 51 , respectively . (11.44)

Notice that, as (G(l),S(l),C(l),Ggl),@gl)) is a faithful linear limit of (G, S, (,G1,x1), Corollaries
10.9 and 10.10 imply

Remark 11.5. S = Z(Ggl)) is a cyclic central subgroup of G(), maximal among the abelian
(1

G(-invariant subgroups of G3 ), Furthermore, the character ,3&1) = @gl) is GMW-invariant.

Note also that Corollary 10.15 easily implies

Remark 11.6. Any faithful linear limit of ((G(l), NO3 C(l), Ggl), @El)) is also a faithful linear limit
of (G,1,1,G;,x;), foralli =1,2,...,n

As far as the monomial characters of G are concerned we have

Proposition 11.7. Any character 1) e Irr(GM) that lies above 1 x ¢V = x ¢ e Irr(RM x
SM)Y is monomial.

Proof. Let ©) be an irreducible character of G() that lies above n(!) x C(l), and thus above C(l)
According to Lemma 10.11, there exists an irreducible character y € Irr(G), that lies above ( =1
and satisfies ©(1) = fi(y), that is, ©(1) is the faithful linear limit of y. But x is monomial, as G is
a monomial group. Therefore, Proposition 10.18 implies that 0 is also monomial. O

The first critical result, which we will prove in Section 11.3, is
Theorem 11.8. After the above reduction, the group Ggl) s nilpotent, if it exists, i.e., if n > 2.
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(1)

This theorem implies that G, is the direct product

Gg) _ Pgl) % le) _ IPS) % Ggl) (11.9a)

of its p-Sylow subgroup }P’(QI) and its g-Sylow subgroup le) = Ggl). It also implies that @gl) is the
direct product
o) = al!) x gV (11.9D)

of agl) € Irr(]P’él)) and ,Bgl) = @gl) € Irr((@gl)) = Irr(Ggl)). Therefore, in the case of n > 2, the
relations in (11.4c¢,d) imply

RM x s « IP’S) X le)
nM x ¢W lies under aél) X ,8&1) = @gl) . (11.10)

Furthermore, the character ,Bgl) is GM-invariant. Hence the normal series (11.2), along with its

character tower {@El) ™, satisfies (8.18) of Section 8.3. So we shift the series by one, and consider
the series
1aPP ac 9. <G =GO, (11.11a)

of normal subgroups of GO, that satisfies Hypothesis 5.1. Then, as we have seen in Section 8.3,
and in particular Theorem 8.29, the characters

1,V el .. oW, (11.11b)

form a tower for the above series, with corresponding triangular set
1 1), 51 DUk
{Qgi)A? ]P);r) ’5;’)717 a;r)}z:zr:l' (11.11c)

(Note that we have dropped the first ¢ and p groups, @gl)’s and IP’(()I)’S (see (8.20c) and (8.30c))
respectively, along with their characters, as these are assume trivial for the shifted system.) Fur-
thermore, as Theorem 8.29 implies, the above shifted system and the one for (11.2) have in common
the Sylow system {A(1) B}, i.c., this Sylow system satisfies (8.4) for (11.11).

The quintuple (G(l),R(l),n(l),Pgl),agl)) is clearly a linear one. Therefore we may pass to a
B(l)(aél))—invariant faithful linear limit (G(?), R() n(®), ]P’g), aéQ)) of the former quintuple. So, (see
(10.99)), the chain (11.11a) reduces to a chain

1aPP a6 acP <. aG6® =@, (11.12a)

of normal subgroups G§2) of G, The character tower (11.11b) reduces (see (10.99¢)) to the tower
{1.a5”, 0P}, (11.12b)

where aéQ) € Irr(]P’éQ)) and 07 ¢ Irr((GEQ)) , for all ¢ = 3,...,n. According to the Theorem

10.105, the Sylow system {AM) BMY for G reduces to a Sylow system {A(?) B®} for G?).
Furthermore, the same theorem provides a unique, up to conjugation, triangular set

Q% B85 | alik (11.12¢)

209



that corresponds to (11.12b). (Note that we have dropped two trivial groups and their characters.)

Clearly, the characters ag) and @l@) lie above the limit character n®, for all i = 3,...,n.
As ((G(Q), R®), n(2),]P’g2), a§2)) is a faithful linear limit of ((G(l), RO, n(l),]P’gl), agl)), Corollaries 10.9
and 10.10 imply

Remark 11.13. R? = Z (]P’;Q)) is a cyclic central subgroup of G(?), maximal among the abelian

G®-invariant subgroups of ]P’§2), while the character aéQ) is G@-invariant.

In addition, the way we perform the linear reductions, along with Remark 11.6 and Corollary
10.15, implies

Remark 11.14. Any faithful linear limit of (G(2),R(2),n(2), ng), 952)) is also a faithful linear limit
of (G,1,1,G4,x;), for all i = 3,4,...,n.

Furthermore, the fact that S®) is a normal subgroup of G that centralizes Pgl) implies, by
Remarks 10.5 and 10.7, that there exists a subgroup S? of G(? such that

s ~s@ gG@ (11.15)

and S centralizes Pg). Thus, it also centralizes R® < IP’g). In addition, S® is a central subgroup

of G@, as SM is a central subgroup of G, and G is a section of GM). Under the isomorphism in
(11.15), the irreducible character ¢ € Irr(S®)) maps to an irreducible character ¢?) € Irr(S®@).

If n > 3 we can say more about S? and its character ¢, Indeed, the fact we used a B(l)(agl))—

invariant faithful limit to get (11.12a), implies (see Theorem 10.105) that QSE’{ ~ @;?E for all
l=2,...,I'. In particular we have

o) =~ ®.

The group SU is a subgroup of le). But the latter is a subgroup of @:(31), as Ggl) = IP’gl) X le) <
Ggl). Hence S is a subgroup of le). We conclude that its isomorphic image S is a subgroup
of ng). Furthermore, its irreducible character ¢V € Irr(SM) lies under Bgl). But Bgl) lies under
[3;1), as le) < le). Hence ¢V lies under ,Bél). As ¢ maps to ¢®) e Irr(S®)), while ﬂgl) maps
to ,6§2) € Irr((@gf)), we conclude that ¢(® lies under /6:(32). Hence

R® x @ is a central subgroup of G2 (11.16a)
n? x ¢@ e Irr(R® x s?). (11.16D)
If in addition n > 3 then
R® x s® <PP . QP =G, (11.16¢)
17(2) and ¢ lie under agg) and Bi(f), respectively. (11.16d)

Now we can extend Proposition 11.7 to

Proposition 11.17. Every irreducible character ©2) ¢ Irr(G(2)) that lies above n(® x C(2) €
Irr(R®) x S?)) is monomial.

Proof. Obviously any ©?) ¢ Irr(GP®|n®? x C(Q)) lies above n® € Irr(R®). As the quintuple
((G(Q),R(z),n(Q),IP’gz), agz)) is a faithful linear limit of (G(l),R(l), n(l),]P’él), aél)), Lemma 10.11 im-
plies the existence of an irreducible character @) ¢ Irr(G(l)), lying above ), so that ©®) is a
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faithful linear limit of ©(1), under the B(l)(aél))—invariant reductions we performed. As we have
already seen, under those reductions the g-subgroup SM of GO maps isomorphically to the sub-
group S of G®?). Hence the only way the faithful limit character ©® € Irr(G®)) can lie above
¢? e r(S®), is if O lies above ¢V e Trr(SM). In conclusion O e Irr(GM) lies above
nW x ¢ e Irr(RM x SM). Now we can apply Proposition 11.7 to conclude that ©™) is mono-
mial. But ©®@ is a faithful linear limit of ©). Hence Proposition 11.7 implies that ©®) is also
monomial. This completes the proof of the proposition. O

The next important theorem, that is proved in Section 11.4 is
Theorem 11.18. After the above reductions, the group Ggf) is nilpotent if it exists, i.e., if n > 3.
Hence ng) is the direct product
P =PP? x ¥, (11.19a)

of its p-Sylow subgroup ]P’éz)

91(52) is the direct product

and its ¢-Sylow subgroup ng). Furthermore, its irreducible character

o) = al? x gY (11.19b)

of aéQ) € Irr(]P’gz)) and ﬁéz) € Irr((@:(f)). Hence (11.16) in the case of n > 3 becomes

R® x 5@ aPP x QP =¥, (11.20)
n® x ¢@ lies under aéQ) X ,8:(32). (11.21)

The fact that Gz(f) is a nilpotent group permits us to shift the series (11.12a) by one, and apply all
the results of Section 8.3. (Note that the roles of p and ¢ are interchanged.) Thus we get the series

1< @:(32) < Gf) 4...<4GP =GO, (11.22a)

of normal subgroups of G(2). Then, according to Section 8.3 and, in particular, Theorem 8.29, the
characters
1,81, ... e®, (11.22b)

n

form a tower for the above series, with corresponding triangular set

KU
{P2T’Q21 e 27"’B2z s 2,i=2" (11.22¢)

(As expected, (see (8.20c) and (8.30c)), there are 3 trivial groups (the IP’( ) IP’( ) and Ql ) in
(11.22¢) that have been dropped.) Furthermore, the Hall system {A(®) B } for G®, that was
obtained via the second faithful linear limit, satisfies the equivalent of (11.1d-f) for (11.22) (see
Theorem 8.29). Of course the groups S@ and R® remain central subgroups of G2 that satisfy
(11.16).

At this point we can repeat the process from the beginning, with R® and S@ in the place of R
and S respectively (So the next step would be to take an A®?) (ﬁgf))—invariant faithful linear limit
(G(3) NG C(?’) Q 5;(;3)) of the quintuple (G(2),S(2),C(Q),@§2),,8é2)).)

Suppose, for the sake of our inductive hypothesis, that we have repeated this process t —1 times,
for some integer ¢ with 2 < ¢t < n, i.e., we have taken ¢ — 1 invariant faithful limits and, after each
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such, we have shifted our series by one. So we arrive at a group G = (Ggf 71), that is a section

of the original group G. Note that according to the inductive hypothesis, the last group shown to
(t-1) (t—1)

be nilpotent is the group G; /. Therefore, depending on the parity of ¢, the group G, equals
thfl) _ [pl(ttfl) « Et:ll), when t is even (11.23a)
GV = P,Et__ll) x QY when ¢ is odd. (11.23b)

According to the inductive hypothesis, we can also generalize (11.1) and Remark 11.13. Thus we
can assume that

RO-D x §t-1D qpi=Y 5 @i = g{=Y (11.24a)
D % ¢ lies under agt Y% gt 11) G(t b, (11.24Db)
St=1) — Z(Qgt:ll)) and [32(5:1) is G~ Y-invariant, (11.24c)

in the case of an even ¢. If ¢ is odd then

RO-D x g1 qpl=b Qt =gl (11.24d)
Y x ¢ lies under at ,Btt o (t b, (11.24e)
RO = Z(Pgill)) and al(tfl ) is G(t_l)—mvarlant. (11.24f)

Furthermore, the last group dropped is the g-group Qgt__ll) in the case of an even ¢, or the p-group

IP’I(f 11) in the case of an odd ¢.

Case 1: t is even

1)

Assume first that ¢ is even. So we reach the series (after the g-group Q,gt__l is dropped)

1PV agl Vg aglt) = g, (11.25a)
of normal subgroups of G*~1. Then G (t=1) / Gztzl) is a p- group if ¢ is even, and a ¢-group if 7 is
odd, for each i =t + 2,...,n, while for ¢t = ¢t + 1 we get Gt+1 /Pt Vs a g-group with Pgtil) a
p-group. Along with the above series, we reach the characters

Lol @), 0/ e (Gl Y) (11.25b)
for each i =t +1,...,n, that form a tower for (11.25a). Furthermore, we have the triangular set

t 1) (t=1) 1" K
{QZZ 1 ’ |1622 1 7a2r }Z (t/2)+1,7’:t/2 (1125C>

that corresponds uniquely, up to conjugation, to (11.25b). (Note the first ¢ groups in (11.25¢), have
been dropped as they are trivial.) Also the Sylow system {A,B} has been transfered to a Sylow
system {A() B} of GE1) that satisfies the properties in (8.4), for (11.25). In addition,
we reach two central subgroups of G¢=1) | the p-group R¢—1 and the g-group S¢—1), along with
their characters n*=1 ¢ Trr(R¢=1) and = Irr(S¢=1). We assume that n > ¢, so that our
inductive step will be the ¢-th step. So we get the linear quintuple (see (11.24))

G ROD, gD B, off ), (11.26)
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Furthermore, our inductive hypothesis implies that every irreducible character @¢—1 e Irr(G(t_l))
that lies above nt—1 x C(tfl) € Irr(R(t_l) X S(t_l)) is monomial. Also any faithful linear limit
of the quintuple (G(t_l),]R(t_l),n(t_l), th_l), @Et_l)) or the (G(t_l),S(t_l), C(t_l), th_l), @Et_l)) is
also a faithful linear limit of (G,1,1,G;, x;) foralli =t —1,¢,...,n

For the inductive step, we take a B(tfl)(agt_l))—invariant faithful linear limit

(GO RO 5O, [[Dgt)’ agt))
of (G(t_l),R(t_l),n(t_l),Pgtfl),agtfl)). The series (11.25a) reduces to
1<pPP a6, <. <G =GO, (11.27a)
Furthermore, the character tower (11.25b) reduces to the tower
1o, 0" e (Gl (11.27b)
Along with the above character tower we get a triangular set

t t t) Uk
{Q(274)717]P>é7‘)‘1621 17 ()} t/2 +1,r, t/2 (11270)

that satisfies Theorem 10.105. Hence the Sylow system {A(tfl),B(tfl)} for G1 reduces to a
Sylow system {A®) B®} for GO, that satisfies (8.4) for the above reduced t-system. As with
Remarks 11.5 and 11.13, the fact that we have taken faithful linear limits, along with Corollaries
10.9 and 10.10, implies

Remark 11.28. The group R®) = Z (Pgt)) is a cyclic central subgroup of G, maximal among the
(t)

abelian G®-invariant subgroups of G, ", while the character agt) is G-invariant.
In addition, the way the reductions are done, along with Corollary 10.15, implies

Remark 11. 29 Any faithful linear limit of the quintuple (G(t) R®, n) (G(t) G(t)) or the quintuple
(GO, 8O ¢® (G(t (¢ )) is also a faithful linear limit of (G,1,1,G;, x;) for all i =¢,¢ +1,.

Even more, Theorem 10.105 implies that
1 ~
@gl 1 QQ? it (11.30a)

for all I =t +1,...,I', where (@%:11)’* and (@g?_*l denote the product groups Qg:?’* = Qgt!ll)
@Ei}, ). ~Qg}:1l) and Qg?_*l = Qgﬁl : QSBS e Qg?_l, respectively. In particular,

QY = QLY. (11.30Db)
(Observe that Qgill = Qtt U a Qt = le.) The group S¢=1 is a central subgroup of

G~ that centralizes IP’% 2 (see (11.24&)). Hence Remarks 10.5 and 10.7 imply that S¢=1 maps
isomorphically to a normal subgroup
S =~ g(t—1) (11.30c)

of G, that centralizes Pgt). In addition, S® is a central subgroup of G®, as St~1) is a central
subgroup of G and G® is a section of G*~1. Furthermore, under the group isomorphism in
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11.30c), the irreducible character C ) € Irr(S=1D) maps to
( ) p
C(t) S Irr(S(t)). (11.30d)

(t=1) _ t U« @t 1 is nilpotent we get

Asn >t+1, the group Qt +1 ) exists. Furthermore, as G;
that Q(t Yis a subgroup of Qt 11 ), while its irreducible character :61:—1 € Irr((@t 1 ) lies under
Bt +1 ) € Irr(Qg:ll)). Hence S¢-1) < Qgt:ll) is a subgroup of QS:IU. This along with (11.30) implies
that S® is a subgroup of le. Even more, its irreducible Character ¢ ) ¢ Irr(S(t)) lies under Bg?l,
as ¢~ lies under ,@Et:ll) (see (11.24b)) and that under ,Bt +1 . Hence

Proposition 11.31. We have two central subgroups of G, the p-group R® and the q-group SW.
Along with them we get their irreducible characters n® € Irr(R®) and ¢ € Irr(SW). These
groups and characters satisfy

R® xs® ap . Q) =6Y,,
(1

n(t) and C(t) lie under a;” and ,Bt_H, respectively.

We can also show

Proposition 11.32. Every irreducible character O ¢ II‘I'(G(t)) that lies above n® x ¢ ) ¢
Irr(R® x S®)), is monomial.

Proof. The quintuple (G(t),R(t)7n(t),P§t),agt)) is a faithful linear lirnit of the linear quintuple
(G(t_l),R(t_l),n(t_l),IP)gt*l), agtfl)). If 00 e Irr(G®) lies above p®) x ¢® | then it lies above 5,
hence Lemma 10.11 implies the existence of an irreducible character ©(¢~ n € Irr(G*1) above
=1 so that O is a faithful linear limit of @1, under the B(t_l)(aﬁtfl))—invariant reductions
we performed. As we have already seen, under those reductions, the g-subgroup S¢—1 of G(—1
maps isomorphically to the subgroup S®) of G®) see (11.30c). Hence the only way the faithful limit
character ©®) e Irr(G®) can lie above ¢ e Irr(S®), is if Y lies above ¢~Y € Irr(S¢—1). In
conclusion O~ e Irr(GED) lies above nt=1) x ¢t~ e Irr(RE-D x SE-1D). According to our
inductive hypothesis, ©¢~1) is monomial. As ©® is a faithful linear limit of @~ Proposition
11.7 implies that ©® is also monomial. This completes the proof of the proposition. O

The main theorem for the inductive step, in the case of an even t, will be

Theorem 11.33. After the above reductions, the group Ggl 1s nilpotent if it exists, i.e., if n > t+1.

Observe that, as before, the fact Ggl is nilpotent allows us to shift the series (11.27a) by one.
So, provided that t + 2 < n, we get the series

1<Q, a6, <...<aGW =c®. (11.34a)

The character tower and its corresponding triangular set are carried over to the shifted series, as
in the Sylow system. Hence the characters

1,8{),,015,....00 (11.34b)
form a tower for the series (11.34a). Its corresponding triangular set is
UK
{QQZ 1 2r |162z I 2r }z (t/2)+1,r=(t/2)+1 (11.340)
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Case 2: t is odd
We work similarly if ¢ is odd. Note that, after we drop the p-group ]P’( 2 (see (11.23)), we
reach the system

1< Qgt_l) q Gg__ll) - <GED = gD, (11.35a)

| BﬁH) e (@), 0" e (G (11.35b)
t—1) t=1)  (t=1) UK

Q) B8l Y, el )}iz(t+1)/2,r:(t+1)/2 (11.35¢)

that is equaivalent to (11.25) for the even case.
Observe that we can adjoint the trivial group at the bottom of (11.35a) and consider the series

19120 Va6V g 96D =G, (11.36)

This way t has become even. We can now interchange the roles of p and ¢, and apply the already
proved results of Case 1. For clarity we remark that, to prove the inductive step in this case of an
odd t, we take an A=) (Bgt_l))—invariant faithful linear limit

(G0, s ¢ QM g1y

of (GU=1 st=1) ¢t=1) (t b, Etil)). So the system (11.35) reduces to

19Q aGY, <---<aGY =GO, (11.37a)
1,8 0 e r(c!") (11.37b)

t t l/ k/
{Qéi)fl’ Por "6(21) b 2r }z (t+1)/2,r=(t+1)/2 (11.37c)

All the conclusions of the even case are transfered to the odd case. In particular we get,

Remark 11.38. The group S*) (Qt ) is a cyclic central subgroup of G(), maximal among the
abelian G®-invariant Subgroups of GE ), while the character ﬂgt) is G"-invariant.

Remark 11. 39 Any faithful linear limit of the quintuple (G(t), R®, n®), th), @gt)) or the quintuple
(G®,s® ¢ G(t @l(»t)) is also a faithful linear limit of (G,1,1,G;, x;) foralli =¢,t4+1,...,n

Proposition 11.40. We have two central subgroups of G, the p-group R® and the q-group SW.
Along with them we get their irreducible characters n© € Irr(R®) and ¢® e Irr(SM). These
groups and characters satisfy

R® x s® g szl : Q( ) _ Gl(fle
(1)

n(t) and C(t) lie under a; [y and ,Bgt), respectively.

Proposition 11.41. Every irreducible character O ¢ Irr(G(t)) that lies above n® x C(t) €
Irr(R® x S®)), is monomial.

The main theorem for the inductive step in the case of an odd ¢, will be
Theorem 11.42. After the above reductions, the group G§21 s nilpotent if it exists, i.e., ifn > t+1.
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Observe that, as before, the fact Ggl is nilpotent allows us to shift the series (11.37a) by one.
So, provided that t + 2 < n, we get the series

1<p? <G, <. <acl =GO, (11.43a)

The character tower and its corresponding triangular set are carried over to the shifted series, as
in the Sylow system. Hence the characters
1ol e, .. el (11.43b)

n

form a tower for the series (11.43a). Its corresponding triangular set is

l/ k/
{QQz I 2r|:621 1’ QT}Z (t+3)/2,r=(t+1)/2 (11.43C)

Now we can repeat the process at the t + 1-st step.

11.2 Conclusions for the smaller systems

Before giving the proofs of the three theorems stated in the previous section, we will analyze the
behavior, under the described reductions, of the smaller system

14G1 4Gy 9--- 4G, <G, (11.44a)

{xi € Irr(Gi) }iZo (11.44D)

{QQi—h PQ’I‘? ’/622'—17 a2r}iﬁ1ﬂa:0 (1144C)

for any fixed, but arbitrary, m = 1,...,n. The integers k and [ are, as usual, related to m via

(5.7). Associated to this system are the groups 7' = Py, x [ and U = @3, _; x J, where I is the
image of @(ﬁ%_l’gk) in Aut(Pj,) and J that of ﬁ(agl_ggl_l) in Aut(Q3,_,), (for their definitions
see (10.84) and (10.53)).

After the first A(()-invariant reductions the above smaller system reduces, along with the
original (11.1), to the system

14 (Ggl) 4 Ggl) < <G a6, (11.45a)
{e<l> e (G m)};ﬂ (11.45D)
{le 1 27« ) |16§) 1 27" }ﬁ kl ,r=0 (1145C)

(Note that this last triangular set is a subset of (11.3).) Of course the groups T and U reduce
to TW and UMW, respectively. So TW) = ]P’;C)’* x I where IV is the image of (@(1)(ﬁ$€) 1 2k) in

Aut(IP’é?’*). Similarly, UM = Qg)_i x JM) | where J) is the image of P( )(aél) 991-1) IN Aut(@é})’i).
Then, according to Theorem 10.76,

Theorem 11.46. The groups @(1)(B$€)_1 o) and ]?D(l)(ag)_l 91_1) can be chosen to satisfy
P35 is naturally isomorphic to Pé}g’*.

This isosmorphism sends the image of @(ﬁgk_sz) in Aut(Py,.) onto that of @(1)(5%)71,21@) n
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Aut(IP’Sf)’*). So I =TM. In addition,

T=T1O),
Image of P(agi—221-1) in Aut(@gﬁ) =JW = TImage of ]/I\”(l)(ag)_lﬂ_l) in Aut(@gﬂ’{) .

)

Note that as P, is naturally isomorphic to ]P’( , we get that

Image of @(ﬂQk,Lgk) in Aut(IP’é?’*) =1 = Image of @(1)(,6;3_1’%) in Aut(]P’Sg)’*) (11.47)

As we have already seen, the group R = 1 seen inside ]P)g ) IP’(I) *is denoted by R and its irre-
ducible character 7 = 1, by n™). So we can form the linear quintuple (T}, R() n(l),ng)’ aé}g) ).
Furthermore, T = T, while IP’SC)’* is naturally isomorphic to P, (so that the character aé?’*
maps to o). This, along with the equations in (10.78), implies

Corollary 11.48. After the first A(B1)-invariant reductions we have
(10RO, g By 0l ) = (T, R,n, P, 03). (11.49)

Furthermore, the quintuple ( C(l Qm 11 21 ;) 1s a G-associate faithful linear limit of
(U,S,¢,Q5,_1,85_1). Hence any fazthful linear limit of the former quintuple is also a faithful
linear limit of the latter one.

From now on, we will identify the quintuples in (11.49).
Note that when we shift the series (11.2) by one in (11.11), the same happens to the series
(11.44a). Thus we get the system

1aPP ac’ 9. a6 <O, (11.50a)
OIS @U) (11.50b)

(1) Lk
{Qm—p 27“7|162z 1 2r }z 2,r=1 (11.50¢)

that is a smaller system for (11.11). Observe also that, according to Theorem 8.29, none of the
groups I, 7O 7@ and UW changes passing to the shifted case.
When the next series of B() (agl))—invariant reductions is performed the system (11.50) reduces

to
1<aPP a6 <. <c® a6®, (11.51a)
1 af),@( )...,0@) (11.51b)
{Q21 1 2T ) |16(23) 1 QT)}%:Z,r:l (11510)

The groups 1D, 7O and T, UD reduce to the groups 13, J@ and T® UG, respectively, so
that Theorem 10.105 holds. (The notation is as expected, that is T® = IP’(;C)’* x I?) | where 12
is the image of @(2) (ngfl’%) in Aut(IP’gi)’*), and U® = Qg)j x J@ | where J@ is the image of

@(2)(0&12 o) in Aut((@gﬁ).) In view of Theorem 10.105, we get
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Theorem 11.52. The reduced system (11.51) satisfies
@;F{ s naturally isomorphic to le*{’

This isosmorphism sends the image of @(1)(04%%)_2721_1) in Aut(@%ﬁ) onto that of @(2)(04%?)_27%_1)
in Aut(QgE) So JM = 1@ In addition,

UM > y®,
Image of @(1)(,35?_17%) in Aut(IP’gc)’*) =1® = Image of Q© (,[3% 1.2%) @ Aut(Py (2) ).

Note that similar to (11.47), the fact that Qg})j is naturally isomorphic to Qgﬁ, along with
Theorem 11.52, implies

Image of P(! )(ag}) 9911) in Aut(Q; (2) ) = J® = Image of P )(ag) 9911) 0 Aut(QgE)

(11.53)
Furthermore, the group S is isomorphic to S(?), (see (11.15)), while its irreducible character
C(l) € Irr(S(l)) maps under the above isomorphism to C(2) € Irr(S(2)). This, along with the
isomorphism between U) and U®), and the remarks following Theorem 10.105 (see (10.107)),
implies

Corollary 11.54. After the second B(l)(agl))-invam'ant reductions we have
(U(l) S C le 17/[3%}) D g( () 8(2 C Q2l 176,5??{) (11'55)

Furthermore, the quintuple (T(2) R®) n3), IP’(Q) aéi)’*) is a GW-associate faithful linear limit of

(']I‘(l), R, n(l),IP’;c)’*, a(zi)’*). Hence any faithful linear limit of the former quintuple is also a faithful
linear limit of the latter one.

From now on we will identify the quintuples in (11.55).

Corollary 11.48 and 11.54 combined (with the appropriate identifications) imply

Theorem 11.56. Any faithful linear limit of the quintuple (T R n) IP’(Q)*, gk)’*), or the

(U(2)7S(2),C @2l 11 [35&’;) is also a faithful linear limit of the quintuple (T, R,n, Py, 5;), or
(U, S,¢,Q5,_1,85_1), respectively.

Furthermore, for the image J®? of P2 )(agl) 9911) in Aut( (2)’*) we have

211
2),%
J® = Image of P! )(aél) 991 1) 0 Aut(@él) 1) by (11.53)
= Image of P(O[gl_ggl_l) in Aut((@m_l) by Theorem 11.46, since (@%)_T % @S)_T

Even more, equation (11.47), along with the fact that Pgi;)’* is a factor of Pé}c)’*, implies

Image of Q\(ﬁgk_mk) in Aut(]P’éi)’*) = Image of @(1)(,8%)717%) in Aut(Pgi)’*).
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Therefore, for the image 1) of Q( (sz 1.9%) in Aut(P gk)*) we have

I® = Tmage of QV(8Y)_, ,,) in Aut(P5") by Theorem 11.52
= Image of Q(ﬂgk 1,2¢) in Aut(P; (2)’ ).

In conclusion, we get
Theorem 11.57. R
I® = Image of P(ag—221-1) in Aut(Qﬁl*{) ,
1® = Image of @(5%71,11@) in Aut(IP’éi)’*) )

When we shift the series (11.12a) by one to get (11.22a), the system (11.51) is also shifted by
one. Thus we reach

190 96P 9. 9GP 16?, (11.58a)
1 ﬂ§2>,@(2>, . @,&?), (11.58b)
{QQl 1° 27« ) |/8g) 1a }ﬁ k2 =2 (1158C)

According to Theorem 8.29, the groups 1, 7@ T® and U remain unchanged passing to the
shifted system (11.58).
According to our inductive hypothesis, after ¢t —1 steps (where 2 < t < m), we reach the system

1ap! M agi Vg aGl Y 9gtY, (11.59a)
1, agt_l) @§131)7 00, (11.59b)

L,k
{5 Py, 185 e Y (t/2)+1,r=t/2 (11.59¢)

when t is even. In the case of an odd ¢ we get

19Qf Va6V 96EY 9GHY, (11.60a)
La Y el el (11.60b)

t 1 L,k
Q7P Y, 185 1va§r D) (1) /24 Lr=(t+1)/2 (11.60c)

Furthermore, the groups I,J,T and U are reduced to the groups I¢—1 Jt=1) -1 and yt-1),

where T(¢—1) = IP’gtk_l)’* 31D and I¢-Y) is the image of Q1 g}g_ll) o) in Aut(P (t_l)’*) Similarly,

Ut-1 = Q%_P’* x J=1) where J*~1 is the image of ]?D(Qt_l)( gtl ;)21 ) in Aut(@m 1 ™). These
groups satisfy

Theorem 11.61. Any faithful linear limit of (T(tfl),R(tfl),n(tfl),P(zi_l)’*,ag;_l)’*) or the quin-
tuple (U1 st=1) ), ¢=1) Q;l i)*,ﬁg;:ll)’*) is also a faithful linear limit of (T, R,n, Py, o) or

(Ua Sa Ca QQZ—I’ /82l—1)7 Tespectwely

Furthermore for the groups I~ and J¢—1 we have

Theorem 11.62. R
IV = Image of P(ag_99-1) in Aut(@éi i )
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=1 — Image of @(ﬁ%—l,lk) n Aut(}P’g;;l)’*) .

At the inductive step (the ¢-th step), either we perform a series of B(tfl)(agt_l))—invariant

reductions,if ¢ is even, or a series of A1 (ﬁgt_l))—invariant reductions, if ¢ is odd. The systems
(11.59) and (11.60) reduce to

1aP a6, ... a6 a6V, (11.63a)
1 a§ ),eﬁfgl, ...,0), (11.63b)
{@g?—p 2r= ‘521‘—1’ (t)}lk (t/2)+1,r=t/2 (11.63c)
when t is even, and
1<Q <6l <...aGY aGY, (11.64a)
1,880,010, .. .,@,ﬁ), (11.64b)
(@) 5188 1 oS ot 2 (11.64c)

when ¢ is odd.

Case 1: t is even

Suppose first that ¢ is even. Then the groups I¢—1, J¢=1 T¢=1) and U1 (for the system
(11.59)), reduce to the groups I, J® T® and U®, (for the system (11.63)), so that Theorem
10.105 holds. (Observe we can use Theorem 10.105 as the reductions we used to get (11.63) were
B(t_l)(agtfl))—invariant.) In particular we get

Q;tlj)’* is naturally isomorphic to Qg)’*l, (11.65a)

this isosmorphism sends the image of P(~ )(ag ?2[ )
in Aut(QY_}"") onto that of PO (a) , ;) in Aut(Q)") ie., JED = g0, (11.65D)
0 ( V=R § (O (11.65c¢)

Image of @(tfl)(ﬁgz__ll),%) in Aut(IP’é?’*) = Image of Q) (,6;2_1’%) in Aut(IP’éQ’*). (11.65d)
Similar to (11.53), the above implies

Image of pt- )(a;tl 2)21 1) in Aut((@g?_’*l) =J® = Image of @(t)(ag)_z%_l) in AUt(Qg){l)' |
11.66
This, along with the fact that S® =2 S¢=1) (see (11.30c)), implies that

(U, 80D, 0D, i7" gL = (00,80, ¢0, Qi) YY), (11.67)

From now on we identify these two quintuples. Observe that (’]T(t), R®, ), gk) " agk) )isa G{t-1).

associate faithful linear limit of (T(t_l),R(t_l),n(t_l),IP)gk_l)’* agtk_l)’*), (see (10.107)). Hence,
Proposition 10.108 implies that any faithful linear limit of (T®) ,R® 5, IP’ék) ,ag;c) ) is also a
faithful linear limit of (T(t_l),R(t_l),n(t_l),P&_l)’*, ag2_1)7*). This, along with (11.67) and Theo-

rem 11.56 implies

220



Theorem 11.68. Any faz'thful linear limit of the quintuple (T® R®) n(t)vpglg’*, aétk)*) or the quin-
tuple (U(t), s®), C Q2l 1 ﬁg?_*l) is also a faithful linear limit of the quintuple (T, R,n, Py, o5,.) or
(Ua Sa Ca Q;lfla 62171) Tespectively.

So Theorem 11.61 holds for the inductive ¢-th step, in the case of an even ¢. In addition,
Theorem 11.62 is still valid for an even ¢, i.e.,

Theorem 11.69.

J® = Image of ﬁ(a2lf2,2171) in Aut(@gl 1) (11.70a)
1) = Image of @(5%—1,%) in Aut(IP’gtk)’*) . (11.70Db)

Proof. For the proof of (11.70a), note that Theorem 11.62, along with the fact that the section
Qg?_*l of Qg;j)’* is isomorphic to @21 1 ) *(see (11.30a)), implies that

Image of P~ 1)(ozgl 2)21 ;) in Aut(@Ql 1) = Image of ﬁ(()&gl_ggl_l) in Aut(@étl)jl) .
This, along with (11.66), implies
J® = Image of I/P\’(t_l)(ag 2)21 1) in Aut((@g)jl)
= Image of 13((12[_2721_1) in Aut(Qgtl)_’*l) .

Hence (11.70a) follows.
As far as (11.70b) is concerned, first observe that

1) = Image of @(t) (,Bétk)_l’%) in Aut(]P’gtk)’*)
= Image of Q¥ V(8Y,"),,) in Aut(BS)") by (11.65d). (11.71)
On the other hand, Theorem 11.62 implies that

1Y = Image of Q¢ (ﬁ;;~C 11) o) i Aut (P (t D ) = Image of @(ﬂgk_mk) in Aut(IP’gl;l)’*) .

(11.72)
But PO is a section of P¢~1*. Hence (11.72) implies that
(t—1) (t—1) . (t), %\ ~ . (),
Image of Q! (/B2k i 2k) in Aut(PPy,;") = Image of Q(Box—1,2x) in Aut(PPs,") .
This, along with (11.71), implies the desired equation in (11.70a). O

Case 2: t is odd We can work similarly in the case of an odd ¢, to prove that Theorems 11.68
and 11.69 are still valid. This time we use Theorem 10.76 on the system 11.64, as the reductions
we used to get 11.64 were A(t_l)(Bgt_l))—invariant. Note that the analogue to (11.65) in this case
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is

Pgﬁ;l)’* is naturally isomorphic to Pgtk)’*, (11.73a)

this isosmorphism sends the image of @(t_l)(,ﬁgi;ll),%)
in Aut(Pg, ") onto that of Q®(8Y)_, ,,) in Aut(P§)™) ie., I¢-D = 10 (11.73b)
Tt >~ ) (11.73¢c)

Image of @(tfl)(aétl:;?%_l) in Aut(@étl)_’*l) = Image of P®) (aétl)_w_l) in Aut(@étl)_’*l). (11.73d)
As with the even case (note that this time R® = R(*=1) we have

(101, RO, =1 PG Q7)== (10, RO, 9, P, af)™). (11.74)
Furthermore, Proposition 10.79 implies that any faithful linear limit of (U(t), s® ¢ (t),@gk)’*, ,Bgtk)’*)
is also a faithful linear limit of (U(t_l),S(t_l),C(tfl),Qgi;l)’*,ﬁgg_l)’*). These are enough for the
proof of Theorem 11.68, when t is odd.
The proof of Theorem 11.69 in the case of an odd ¢, is in the same spirit as the one we have
already given for even t, so we omit it.
We can now give the proofs of Theorems 11.8, 11.18 and 11.33.
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11.3 The t =1 case

In this section we handle the t = 1 case, i.e., we give the proof of Theorem 11.8. For that we need
a result stated as Theorem 11.76 below, which is interesting on its own.

We use the same notation about symplectic modules as the one introduced in Section 10.2. The
“magic” theorem of this chapter is Theorem 3.2 in [1]. An equivalent form of this theorem we give
here as Theorem 11.75.

Theorem 11.75. Suppose that F' is a finite field of odd characteristic p, that G is a finite p-solvable
group, that H is a subgroup of p-power index in G, that B is an anisotropic symplectic FG-module
and that C is an FG-submodule of B. Then the G-invariant symplectic form on B restricts to
a G-invariant symplectic form on C. If C, with this form, restricts to a hyperbolic symplectic

FH-module C|g, then C = 0.

Proof. Since B is symplectic and F'G-anisotropic, so is its F'G-submodule C. Theorem 3.2 of [1],
applied to C, tells us that C' is FG-hyperbolic if C|g is F H-hyperbolic. In that case C' is both
FG-anisotropic and F'G-hyperbolic. So it must be 0. O

After these preliminaries we can prove the first important theorem of this chapter.

Theorem 11.76. Assume that G is a p,q-group, where p and q are distinct odd primes, and
that N, M are normal subgroups of G. Let M = P x S and N = P x Q, where P is a p-group,
and S,Q are q-groups with S < Q. Assume that the center Z(P) of P is maximal among the
abelian G-invariant subgroups of P. Let x,a, 3 and ¢ be irreducible characters of G, P, S and Z(P)
respectively that satisfy

X € Irr(Gla x ) and a € Irr(P|(), (11.77a)
¢ is a faithful G-invariant character of Z(P), (11.77b)
G(B) =G, (11.77¢)

X is a monomial character of G with x (1), = 5(1), (11.77d)

where x (1), denotes the g-part of the integer x(1). Then Q centralizes P.

Proof. First observe that S, P are normal subgroups of (G, as they are characteristic subgroups of
M < G. The existence of the G-invariant faithful character ¢ € Irr(Z(P)) implies that Z(P) is
a cyclic central subgroup of G, i.e., Z(P) < Z(G). Furthermore, the fact that Z(P) is maximal
among the abelian subgroups of P that are normal in G implies that every characteristic abelian
subgroup of P is contained in Z(P) and thus is cyclic. Hence P. Hall’s theorem implies that either
P is an abelian group or it is the central product

P=T06ZP), (11.78a)
where T is an extra special p-group of exponent p and
TNZ(P)=Z(T). (11.78b)

Note that the group T is unique, as T' = Q(P).

In the case that P = Z(P) is an abelian group, Theorem 11.76 holds trivially, as P = Z(P) <
Z(@G) is centralized by G. Thus we may assume that P > Z(P) and (11.78) holds.

Since x is monomial, there exists a subgroup H of G, and a linear character A € Lin(H) that
induces ¥ = A®. Then the product HS forms a subgroup of G. Furthermore,
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Claim 11.79. |G : HS| is a p-number, and (\7%)|s = 3.

Proof. Indeed, as S < G, Clifford’s theory, along with (11.77¢), implies that

X‘S:m'ﬁ>

for some integer m > 0. Hence deg(x) = mdeg(/3). Since x(1)q = B(1), we have that m is a power
of p. As H < HS < G, the induced character A® lies in Irr(HS) and induces (M%) = \¢ = y.
So

deg(\"®) - |G : HS| = deg(x) = m deg(8).

Clifford’s theorem also implies that A7S|g = s3, for some integer s. As deg(A\7°) = |HS : H| =
|S : HN S| we get that both deg(\#¥|s) and s are g-numbers. But

sdeg(3)|G : HS| = deg(\¥9) - |G : HS| = m deg(f),

with m a p-number. Hence s = 1, while |G : HS| is a power of p. This completes the proof of the
claim. O

The fact that A € Lin(H) induces irreducibly to G implies that the center, Z(G), of G is a
subgroup of H. This, along with the fact that Z(P) < Z(G), implies

Z(P) < Z(G) < H. (11.80)

Let E := [P,Q]. Then E is a characteristic subgroup of N and thus a normal subgroup of G. Even
more, we have

Claim 11.81. E = [P, Q] is an abelian group.

Proof. Suppose not. Then FE is a non-abelian normal subgroup of G contained in P =T - Z(P).
As Z(P) < Z(G) (by (11.80)),we have E = [P,Q] = [T, Q] < T. Furthermore, Z(F) is an abelian
normal subgroup of G, contained in 7' < P. Hence Z(F) is contained in TNZ(P) = Z(T). As E
is non-abelian and Z(7T') has order p, we conclude that Z(F) = Z(T) < Z(P) < Z(G). Therefore
E = [T,Q)] is an extra special subgroup of T of exponent p, whose center is central in G. Hence
the group E satisfies condition (4.3a) in [1]. In addition, @ is a p’-subgroup of G such that QF
is normal in G (as P = [P,Q]C(Q in P) and thus G = EN(Q in G)). Clearly the commutator
subgroup [E, Q] = [[P, Q], Q] coincides with E = [P, Q]. Hence (4.3b) in [1] holds with @ here, in
the place of K there.

As the index of HS in G is a power of p, and PQ) = N is a normal subgroup of GG, we conclude
that HS contains a ¢g-Sylow subgroup of PQ. Hence HS contains a P-conjugate of (). Therefore,
we may replace H and A by some P-conjugates, and assume that HS contains Q.

The subgroup HN(E x S) of E x S is equal to (HNE) x (HNS), since |E| and |S| are relatively
prime. Note that S centralizes F, as the latter is a subgroup of P. This implies that

HSN(ExS)=(HN(ExS) -S=(HNE)xS.

Hence HNE = HSN E. Thus H N F is a normal subgroup of HS. Furthermore, the restriction
AN ung of Ato HNE, is a linear character of HNE that is clearly H-invariant. It is also S-invariant,
as S centralizes E > H N E. Hence A gnp is HS-invariant. We conclude that the restriction of the
irreducible character A5 of HS to H N E is a multiple of the linear character M rng. Of course
the irreducible character A® of HS induces irreducibly to x € Irr(G), and lies above a non-trivial
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character of Z(F) (as Z(E) < Z(P) and ¢ € Irr(Z(P)) is non-trivial). Hence we can apply Lemma
(4.4) and its Corollary (4.8) of [1], using HS here in the place of H there, and A5 here in the
place of ¢ there. We conclude that HS N E = H N E is a maximal abelian subgroup of F.

Let P := P/Z(P). Then P is a symplectic Z,(G)-module. According to the hypotheses of the
theorem, Z(P) is the maximal abelian G-invariant subgroup of P. Hence P is an anisotropic Z,(G)-
module. If E is the image of E in P, i.e., E = F/Z(FE), then E is a symplectic Z,(G)-submodule
of P, as F is normal in G. Furthermore, E is Z,(HS)-hyperbolic as HS N E is a maximal abelian
H S-invariant subgroup of E. Since the index [G : HS] is a power of p, Theorem 11.75 forces E to
be trivial. Hence E = Z(FE) is abelian, and the claim follows. O

Now E = [P,Q)] is an abelian subgroup of P normal in G. According to the hypotheses of
the theorem, Z(P) is the maximal such subgroup. Therefore 1 < [P,Q] < Z(P) < Z(G). So @
centralizes [P, @], which implies that [P,Q, Q] = 1 and thus [P, Q] = [P, Q, Q] = 1.

This completes the proof of the theorem. O

Lemma 11.82. Assume that G is a p,q-group, where p and q are distinct odd primes. Let M =
P x S be a normal subgroup of G, where P is a p-group and S is a q-group. Assume further
that B is a G-invariant irreducible character of S that can be extended to a q-Sylow subgroup @
of G. Let a € Irr(P) be a Q-invariant character of P. Then there exists an irreducible character

x € Irr(Gla x 3) with x(1), = B(1).

Proof. Let A/S be a p-Sylow subgroup of G/S. Then the g-special character 8 € Irr(S) can be
extended to A, as (|4 : S|,3(1)o(B)) = 1, (see Corollary 8.16 in [12]). As 3 is also extendible to a
¢-Sylow subgroup of G, we conclude that it is extendible to G (see Corollary 11.31 in [12]). Let 8¢
be an extension of § to G.

The irreducible character a of P is Q-invariant. Hence Proposition 21.5 in [18] implies that
the canonical extension a® of o to P x @ is the unique p-special character of P x @ lying above
«. Furthermore, the index of the group P x @ in G is a p-number, as () is a ¢-Sylow subgroup
of GG. Therefore, the same proposition implies that any character of G above af is p-special. Let
U € Irr(Glac) be such.

As U is a p-special character, while 3¢ is a g-special character of G, Theorem 21.6 in [18] implies
that the product x := V¥ - 3¢ is an irreducible character of G. Obviously x lies above a x 3, while
x(1)y = B(1), as ¥(1) is a p-number. So the lemma follows. O

We can now complete the proof of the t =1 case.

Proof of Theorem 11.8. According to Remark 11.5, the character Bgl) is GW-invariant, while S() =
Z (Ggl)) is maximal among the abelian G(D-invariant subgroups of Ggl). Furthermore, Ggl) is a
g-group (as a section of G; = Q1), while G;”/Ggl) is a p-group. Hence Ggl) = Pgl) X Ggl), where
IP’gl) is a p-Sylow subgroup of Ggl) = Gél)(,@(l)).

We can now apply Theorem 11.76, with the roles of p and ¢ interchanged. So we work with
G(l),Gél),Ggl),S(l) and IP)S) in the place of G,N,M = P, Z(P) and @, respectively. As S there,
we take the trivial group here. We also use ,Bgl) = @gl) and ¢ () here, in the place of a and ( there.
Of course 3 € Irr(S) there, is the trivial character here. Clearly, ¢ M) is a faithful GM-invariant
character of S = Z(Ggl)). Thus (11.77b) holds. Also (11.77c) holds trivially as 1 € Irr(1) is
GW-invariant.

We are missing a monomial character of G() that will play the role of x € Irr(G) there. For
that we will use some baby 7-special theory. Indeed, the character ﬁgl) is g-special, as a character
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of the g-group Ggl). Furthermore, Ggl) is a normal subgroup of G, while Bgl) is GM-invariant.
Hence Corollary 4.8 in [7], implies that there exists a g-special character ©(1) € Irr(G) that lies
above ﬁgl), and thus above C(l). According to Proposition 11.7, the character ©(!) is monomial.
Now all the hypothesis of Theorem 11.76 are satisfied. We conclude that ]Pél) centralizes Ggl).

Hence Ggl) = Pgl) X Ggl) = Pgl) X Ggl). This completes the proof of Theorem 11.8. O

11.4 The t = 2 case
(2)

In this section we handle the ¢ = 2 case. So we ultimate prove that the group G3 is nilpotent.
For the rest of the section we assume that n > 3. We also fix the subsystem

1=Go9G1 9G29G3 4G, (11.83a)
{xi € Irr(Gy) Yo (11.83b)
{Q2i-1, Por|B2i—1, 0521"}?’:1177«:0 (11.83c¢)

of the system (11.1). (Note that this is the m = 3 case for (11.44). So k = 1, Pj;, = P, and

Bak—1,2k = P1,2.) We also pick and fix the groups @ and ]3, for the above system, so that Theorems
8.13 and 8.15 hold. This way the groups 1" and U are also fixed.
According to (11.45), after the first set of reductions the above system reduces to

1=6Y a6V <6V <6f’ <c® (11.84a)
(0" e (G2, (11.84b)
{Q5L 1 B 185 1 Y2 (11.84c)

According to Remark 11.5, the character ,851) is GM-invariant. Furthermore, Theorem 11.8 implies
that the group Ggl) is nilpotent. Hence Qg = C(IP’S) in le)) = (@gl). So the character ,Bglg
coincides with ,Bgl) (its P(Ql)—Glauberman correspondent). Thus G(l)(,@%)) =GW (Bgl)) =GW. In

particular, for the ¢-Sylow subgroup of G (a(?) we have @(1)(,353) = @(1). This, along with
(11.47), implies (note that k = 1)

Image of @(5172) in Aut(IP)él)) = Image of Q) in Aut(IPgl)). (11.85)

Furthermore, (11.49) holds.

For the next set of reductions, we first have to shift the system (11.84) (see (11.50)), and then
we perform the B(l)(agl))-invariant reductions. We end up with the system (11.51), which for
m = 3 (i.e., the case here) gives

1aPP aGP aG6®, (11.86a)
1,0 0 (11.86b)
(@, PP 187, al?} (11.86¢)

Note that, as le) is a normal subgroup of G(!) that centralizes Pgl), Remark 10.7 implies that

the group le) maps isomorphically to a normal subgroup Q?) of G2 that centralizes sz). In
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addition, its irreducible character Bgl) € Irr(le)) maps to ng) € Irr(QP). The fact that Bgl) is
GW-invariant, while G® is a section of G, implies that B?) is G@-invariant, and thus @(2)—
invariant. This, along with Theorem 11.57, implies

Image of Q) in Aut(PéQ)) = Image of @(,8172) in Aut(IP’;2)). (11.87a)
Even more, Theorem 11.56 implies

Any faithful linear limit of (’]I‘(Q), ]R(Q), n(z),IF’éz), agz)) is also a
faithful linear limit of (T, R, n, P, a2). (11.87b)

According to Remark 11.13, the character aéz) is G®-invariant. Hence the ¢-Sylow subgroup @(2)
of G(Q)(ag)) satisfies
Q@ e Syl,(GP). (11.88)

Having fixed the system (11.83), and the groups @ and T, we can get a new system, via Corollary
7.29. That is, we get a new character tower

1= x4, X1: X3 (11.89a)
for the series
1=Gop 4G, 9G2 4G, (11.89b)
along with a triangular set
{1=F, P, Q11 =ag, 05,57} (11.89¢)

and a g-Sylow subgroup C/f’ of G(a4), so that (7.30) holds. In particular, we have

P, =Py =P)" and as = o = ay”, (11.90a)
B o extends to @ = 6/27’ (11.90Db)

Observe that the character 37, is g-special, as it is an irreducible character of the g-group Q7 ,.
Hence the fact that it extends to a g-Sylow subgroup of G(a4) implies (see Corollary 11.31 in [12])
that it extends to G(a}). As expected, we write IV for the image of @V(ﬁfg) = Qv Aut(Py").
Therefore (11.90) implies that I* is the image of Q in Aut(P,).

Assume we perform the reduction procedure described in Section 11.1 for this new system.
We assume that m = n = 2 here. We keep the same notation as earlier, with the addition of
the superscript v to any group that refers to the new system. So we first start with A"(37)-
invariant linear reductions of the quintuple (G, S¥,¢",GY, xY), where S¥ =1= S and (¥ =1 = (.
Furthermore, G = G and x{ = 3{. Let

(GW» sM» W GgHw», lggl)v”) (11.91)

be an A¥(fY)-invariant faithful limit of (G, S", (", GY,xY). Note that, even though we start with
S = S and G} = (1, the limit groups s Ggl)’y and S, Ggl) are not the same, as the reductions

227



we perform may be different. At this point the system (11.89) has been reduced to
1=G"" a6 a6 agW, (11.92a)

1,817 o (11.92b)
(1 =p"" PO ) = oV ), g (11.92¢)

where, (according to Theorem 11.8), the limit group Ggl)’y is nilpotent, i.e., Gél)’y = Pgl)’y X le)’y.
So
1), 1),
QY =qly”,

and the limit character ,851)’” coincides with its ]P’S)’V—Glauberman correspondent, i.e.

1),v 1),v
V=l

According to Theorem 10.77, the character ,8&2’” = ﬁgl)’u extends to @(1)’”(,6'52’”) , as the character
By 2 extends to @ = @\” But ﬁgl)’y is GM¥-invariant by Remark 11.5. Hence ,@gl)’y extends to
@(1)’”. Even more, in this case we have ]P’g?’m = Pgl)’y’* = Pgl)’y. Therefore, if 1M denotes the
image of @(1)7”(,883’”) in Aut(IP)gl)’V’*), the above equations, along with (11.47) for the new system,
imply

Image of (Q = @7’) in Aut(IP’gl)’V) =1M" = Image of QU in Aut(IP)gl)’V). (11.93)

Furthermore, (11.4) implies that R(M» < Pgl)’y, while its irreducible character (1" lies under

a(l)’y.

To perform the next set of reductions on (11.92), we have to shift it first (see (11.50) with
m = 2). So we get

1P 9@, (11.94a)
1,alP" (11.94D)
(P )0l y (11.94c)

Now we can take a B(1)” (aél)’y)—invariant faithful linear limit
(G R@w p@w pR» o2y (11.95)

of the quintuple (G RM» =1, »pM» = 1,[?51)’”, agl)’y). This way (11.94) is reduced to

1<9PP” ac@w, (11.96a)
1, a2 (11.96b)
(P2 |l (11.96¢)

Then, according to Remark 11.13, the center R of ]P’g)’y is maximal among the abelian G-
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invariant subgroups of IP’§2)’V, while aéQ)’V is G ¥ invariant. Hence

G(2),u(a§2)»’/) _ G(Z),V(ag)v'/»*) — G, (11.97)

2w, Fur-

Thus the ¢-Sylow subgroup @(2)’” of G(Q)”’(ag)’y) is actually a ¢-Sylow subgroup of G
thermore, Remark 10.7 implies that the normal subgroup le)’y of GW¥, that centralizes Pgl)’y,

maps isomorphically to a normal subgroup Q?)’V of the limit group G®¥. So
le),l’ ~ Qf)v” = G(Q)al" (11.98)

Therefore the group M := IP’ W Ql ) is a normal subgroup of G Under the isomorphism
n (11.98), the character [5’1 Y of (@1 " maps to the character ﬁ?)’y € Irr((@?)’”). Note that
ng)’y is the faithful linear limit of le)’y, under the B(l)’”(agl)’y)—invariant linear reductions we
perform. In addition, B{”" is the faithful linear limit of B8{"" and M = PP x QP that of
Y @gl)’y = Gél)’y. The character ,3&2)’” is G®*_invariant as Bl is GU ) Y-invariant. Hence

552)’1' is @(2)7”—invariant. This, along with Theorem 11.57, implies
2w 2),ry ATEN 2),v
Image of Q in Aut(Py”") = Image of Q" in Aut(Py ). (11.99a)
Furthermore, Theorem 11.56 implies for the new system

Any faithful linear limit of (T(z)’”, R 77(2)”’,]?52)’”, ag)’”) is also a
faithful linear limit of (T, RV, n", Py, ay). (11.99b)

(Observe that (11.99) is the analogue of (11.87) for the new system (11.89).) Note that R¥ =1 =R
while ¥ = 1 = 5. Furthermore, Py = P5 and a4 = «”, by (11.90a). In addition, the image I” of
@(ﬂlf,z) in Aut(Py) equals the image of Q in Aut(Py), as Q=Q"= @\'/(61”2) by (11.90b). Hence
the image I of @\(61,2) in Aut(P,), is a subgroup of I¥. So T¥ = Py x I¥ = P, x I” contains
T = Pyx I, while T > Py = P,. This, along with Remark 10.5, Definition 10.6 and (11.99), implies
that

If (T, RY, 7", PY, ab) is a faithful linear limit of (T¥ R@» p@» p@» o)
then (T NT,R”,n”, P4, a5) is a faithful linear limit of (7, R, n, Ps, a2). (11.99c¢)

We give the rest of the proof in a series of steps
Step 1. The character ﬁgz),y is GO invariant, and extends to a q-Sylow subgroup of G@v

Proof. The group @(2)"’ is both a faithful invariant limit of @(1)’” , and isomorphic to the latter
group. Similarly, Q?)’V is both a faithful invariant limit of, and isomorphic to, le)’y. In addition,
,852)’” is the faithful linear limit of ,Bgl)’y. Hence the fact that Bgl) ¥ is GM¥-invariant implies that
,652)"/ is G()¥-invariant. Furthermore, as ,6'51)’” extends to @(1)”’, we conclude that ,6'52)"/ extends

to Q@ that is a ¢-Sylow subgroup of G So the first step follows. O
Step 2. There exists a monomial character ©@* € Trr(GPY) lying above a2 M '3(2)V
satisfying @(2)’”(1)q = ,352)’”(1)'
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(2),

@) while as " s G® . invariant, and P

Proof. As B?)’V extends to a ¢-Sylow subgroup of G ;2)’” X

@52)’1/ is a normal subgroup of G, Lemma 11.82 implies the existence of an irreducible character
0@ ¢ Irr(GP¥) that lies above agz)’l’ X ,352)’” and satisfies (2 (1), = ,352)’11(1). It suffices
to show that ©®* is monomial. The character ,651)’” lies above ¢(M¥ (see (11.91)), hence its
faithful linear limit ,6(12)’V lies above the faithful linear limit ¢®* of ¢, (see (11.15) and the

following remarks for the definition of ¢®¥). In addition, ag)’” lies above (¥ (see (11.95)).
Hence 6@ ¢ Irr(G®Y) lies above n®¥ x ¢ e Irr(R@ x S@#). Therefore, Proposition
11.17 implies that ©@" is monomial. O

Step 3.
Image of QN G3 in Aut(IP’g)’V) =1.

Proof. Let N be any normal subgroup of G with M = ]P’g)"/ X ng)’y < N <G®¥ and
N/M a g-group. Then N = ]P’g)’y x @ for some g-group @, with QgQ)’V < Q. Furthermore,

2),v

as we have seen, Z (IP’gQ)’V) = R®" is maximal among the abelian G®)*-invariant subgroups of

PgZ)’V, while a§2)’y € Irr(]P’g)’V) lies above the G)¥-invariant faithful irreducible character n® ¢
Irr(R®)¥). This, along with Step 1 and 2, implies that we can apply Theorem 11.76 with the

groups G(Q)’”,sz)’y, ng)’y, Q@ here, in the place of the groups G, P, S, Q there, and the characters

0, aéQ)’V,Bgz)’V and n@ here, in the place of y, a, 3 and ¢ there. We conclude that any such
normal subgroup N of G is nilpotent, i.e.,

Q € Syl,(N) centralizes ]P’éQ)’V € Syl (N), whenever (11.100)
MJINQ G with N/M a g-group.

The group G3 is a normal subgroup of G that contains Gi = G} and G2 = GY. Hence, see
Remark 10.5, when the normal series (11.89b) reduces to (11.96a), the group G5 reduces to a normal

subgroup ng),,, of G® Furthermore, ng)’V/M is a g-group as G3/G2 is a g-group, and M is the
limit of Gél)’y and thus of Ga. As @(2)"’ is a ¢-Sylow subgroup of G, we get that @(2)’” N ng)’y
is a ¢-Sylow subgroup of ng)’y. Hence (11.100) implies

Q®¥n G;(f)’” centralizes IP’;Q)’V € Sylp(GgQ)’V).
This, along with (11.99a) implies
Image of @" N Gz in Aut(PgQ)’V) = Image of @(2)’” N ng),y in Aut(]P’g)"’) =1.

As @ = @”, Step 3 follows. O

Assume that (T,R,n, P2, a2) and (T, R”,n”, Py, of) are faithful linear limits of the quintuples
(']I‘(Q),R(Q),n@),[[”g),a§2)) and (’]I‘(Q)’”,]R(Q)’”,17(2)’”,[?’%2)"/,(1%2)’”), respectively. Then according to
(11.87) and (11.99) the quintuples (T,R,n, P2, a2) and (T N T,R",n", P4, of) are both faithful
linear limits of (7, R,n, P2, a3). Hence Theorem 10.19 and Corollary 10.35 imply that Py/R and
Py /R” are isomorphic anisotropic symplectic Z,(T'(a2)/P>)-modules. The group T' = P x I fixes
ay € Irr(Py), as Q fixes oy = af and I is the image of @(6172) in Aut(P;). Hence T(a2)/P» is
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naturally isomorphic to the g-group I. So
Py /R = Py /R” as anisotropic symplectic Z,(/)-modules. (11.101)

In view of Step 3, the group @ N G centralizes sz),u' As P4 is a section of Péz)’y, we conclude that
@(6172) N G5 centralizes PY. Hence it also centralizes the factor group P§/R”. As the latter factor
group is isomorphic to Py/R as I-modules, and [ is the image of @(5172) in Aut(P2) = Aut(Py),
we conclude that @(5172) N G3 also centralizes Po/R. (The action of I on the above two isomorphic

factor groups is defined in Corollary 10.35.) If ng) denotes the limit group to which G5 reduces,
as G reduces to G?), then (11.87a) implies

I3 := Image of @(ﬁl,g) NGz in Aut(Isz)) = Image of Q) N GgQ) in Aut(]P’gQ)). (11.102)
Since Py is a section of ]P’gQ), the fact that @(,8172) N G3 centralizes Py /R, implies

I3 centralizes Pa/R. (11.103)

Let V := ]P’gQ)/R(Q). Then V is anisotropic Z,(G®)-module (by Remark 11.13). Thus V', when
written additively, is the direct sum
V=V 4+, (11.104a)

of the perpendicular Z,(G®)-modules, V; = C(Ggg) in V) and Vo = [V, G;(f)]. Note that, as Q)
is a g-Sylow subgroup of G, see (11.88), we get that @g) = @(2) N Gz(,)z) is a g-Sylow subgroup of
ng). Thus GgQ) = @:(32) X IP’?). We conclude that the direct summands in (11.104a) are

Vi =C(@QY in V) and V5 = [V,Q{Y]. (11.104b)

Both V4 and V, are anisotropic Z,(G®))-modules.
As (T, R, n, P2, ag) is a faithful linear limit of (']1‘(2), R® 7@, }P’g), aég)), we have that U := Py /R

is isomorphic to a factor subgroup of V. Furthermore, U is isomorphic, as a symplectic Z,(I)-
module, to the orthogonal direct sum U = Uy + Us, where U; is a limit module for V;, for each
i=1,2. In view of (11.104b) we have

U1 = C(Ig in U) and U2 = [U, Ig], (11105)

where I3 is the image of @9 in Aut(]PgQ)) (see (11.102)). In view of (11.103) we get Us = 0.

According to Remark 11.13, the center R(?) of }P’g) is a cyclic central subgroup of G(?), maximal
among the abelian G®-invariant subgroups of ]P’g). As T® = Pg) x I where I? is the image of
@(2) in Aut(]P’gZ))7 we get that R® is a central subgroup of T(?). Even more, it is maximal among
the characteristic abelian subgroups of ]P’;Q). Thus Proposition 10.47 applies to the faithful linear
limit (T, R, n, P2, az). So U is isomorphic to W= /W for some maximal I-invariant totally isotropic
subspace W of V. Then W = W; + W5, where W; is a maximal totally isotropic I-invariant
subspace of V;, for i = 1,2. But Uy = 0. Hence W must equal Wo. Thus V5 contains a self
perpendicular I-invariant subspace. We conclude that V3 is hyperbolic as a Z,(I)-module, and so
as a Zp(@(2))—module. As @(2) is a g-Sylow subgroup of G®| it has p-power index in G). Since V5
is an anisotropic symplectic Zp((G(Z))—module, Theorem 3.2 in [1], implies that V5 is both hyperbolic

231



and anisotropic. Therefore V3 is 0. So V =V = C(@:(f) in V). Thus @ém centralizes IP’;2) /RA),
We conclude that the g-Sylow subgroup @gf) of ng) centralizes the p-Sylow subgroup IP’§2) of the

same group. Hence ng) is nilpotent, and Theorem 11.18 follows.
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11.5 The general case

The aim in this section is to prove Theorem 11.33, i.e. to show that the group G§21 is nilpotent.

The ideas for the proof are already given in the ¢ = 2 case, whose proof is a demonstration of
the general argument. That’s the reason we leave hidden some of the details of the general proof,
already discussed in the previous section.

Assume the system (11.1) is fixed, with n > ¢+1. Assume further, using an inductive argument,
that the groups Gl@l are nilpotent for all ¢ = 1,...,¢t — 1. Thus we can perform all the reductions
described in Section 11.1, until we reach the group in question, i.e., the group Ggl. As the last
step in the reductions depends on the parity of ¢, we first assume that ¢ = 2k is even. (As expected,

we will see that it is enough to prove Theorem 11.33 in the even case.) In addition, we assume
fixed the subsystem

149Gy 94G2 Q- 4Gy G, (11.106&)
{xi € Irr(Gi) g, (11.106b)
{Q2i—1, Por|f2i—1, a2r}éﬁ1m:0, (11.106¢)

where, in our case (that of an even t), k =¢/2 and | =¢/2 + 1. (Note that k and [ are related to
t+ 1 via (5.7).) Along with that system we pick and fix the groups @ and P so as to satisfy the
conditions in Theorems 8.13 and 8.15. This way the groups 7" and U are also fixed. After t steps
of reductions the above system reduces to (see (11.63) with m =t + 1)

14 a6, <c®), (11.107a)
1,a!” e\ (11.107b)
{71 P18, o} (11.107c)

In addition note that the group QSQ,1 and all the groups with indices smaller than ¢t = 2k, have

become trivial. (To be precise, all the g-groups Qg?_h with indices 2¢ — 1 smaller than 2k have

been dropped by repeated shifts of the original series, as they are normal subgroups of G(*) that are

contained in ng) 41 and are centralized by IP’gtk), while their characters ,@g?_l are G®-invariant. The

same holds for the p-groups IP’gJ) with indices 2j smaller than 2k = ¢. They are normal subgroups of

G® that are contained in IP’g;k) and centralized by ng) +1» While their characters are G®-invariant.
This is the reason we drop them on the way.) So Pgtk)* = sz = Py). Furthermore the last

group that is been dropped is the g-group Qgt,;ll) Note that Qgt,;ll) is centralized by IP;;U. In

addition, the irreducible character Bg};ll) is G~ Y_invariant. After the last set of reductions is
been performed, the group Qg;ll) maps isomorphically to a normal subgroup ng)fl of the limit
group G® that centralizes IP’;tk), by Remark 10.7. In addition, the irreducible character 5;2__11) of
Qg;—_ll) maps, under the above isomorphism, to an irreducible character ﬂgz_l of @5'2_1. Note that
f)’étk)_l is G®-invariant, as ﬁg;_ll) is Gt Y invariant and G is a section of GV, Even more,
the centralizer Qg}z_l’% of IP’SQ in Q;tk)_l equals Qg}g_l. Thus the character /682_17% coincides with

ng),l- So Bg}g)il’% is G"-invariant. This implies that @(t)( &)717%) = Q. Hence the image I(*)
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of Q) ([3;2_1’%) in Aut(IF’gt,g’*) is reduced to
I = Image of Q) in Aut(P{)). (11.108)
This, along with Theorem 11.69 and in particular (11.70b), implies
Image of Q) in Aut(IP’gtlz) = Image of @(/ng_lygk) in Aut(IF’gz). (11.109a)
1f TO = P 5 1) = P % 10, then Theorem 11.68 implies

Any faithful linear limit of (’]T(t), R®) n(t),]Ing), agi)) is also a
faithful linear limit of (T, R,n, P3},, a5;). (11.109Db)

Observe also that agk)* = agk) is G®-invariant, by Remark 11.28, as 2k = ¢t. Hence the fact that

QW is a ¢-Sylow subgroup of G(t)(agk?’*) implies

QWY e syl (GW). (11.109¢)

(Note that (11.109) is the analogue of (11.87) and (11.88) for the general case.)

According to Corollary 7.29 we get a new character tower

L =X0: X155 X¢ (11.110a)
for the series
1=GodG1 2+ 4G, 4G =G, (11.110b)
along with a triangular set
kk
{Qgi—b P2Vr|ﬂgi—1’ ag'r}izlﬂ“zo (11110(3)

and a g-Sylow subgroup C,/?\V of G(aw;), so that (7.30) holds. In particular, we have

Py, = Py;" and o), = ay), (11.111a)

%125 extends to Q = QY. (11.111b)

We proceed with the reductions described in Section 11.1 for the new system (11.110). We follow
the same notation as that of Sections 11.1 and 11.2 with the addition of a supescript v on anything
that refers to the new system (11.110). So, we reduce the above new system, using first reductions
that are A”((7)-invariant, then B(l)’”(aél)’y)—invariant that are followed by A(z)’”(,@gg)’y)—invariant
and so on. Hence all the conclusions of Section 11.2 are valid for the system (11.110). In particular,
after ¢ steps of reductions, what is left of the system (11.110) is (see (11.63) with m =t = 2k)

19PYY 9GO, (11.112a)
1, i (11.112b)
{B5)Y o)} (11.112¢)
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According to Remark 11.28 the character agtk)’y’* = agtk)’y is G invariant. Thus

GO (o)) = GO¥ (o)) = g, (11.113)
Note that the last group dropped after ¢t — 1 steps of reductions is the g-group Qtt_ll v as according
to the inductive hypothesis the last group proved to be nilpotent is G(t_l) Y = ]P’ Qt 1
(see (11.24)). It is clear that the centralizer Qg@ 11 2k fIP’g;_ W P(t b (@% = Qt 1
equals Qg}f . Furthermore, the irreducible character [3% 1 % of QQ’; 11) ;k: coincides with BQZ 11) v,

In addition, repeated applications (at every step of reductlons) of Theorems 10.77 and 10.95 imply
that the character ﬁétk__ll) ¥ extends to QU—D» (,Bétk__ll) "), (where QU1 is a ¢-Sylow subgroup of
G(t_l)’”(aglgl)’y)), as the character 83, _; 5, extends to @\”(ﬂé’k_l,zk) —Q"=0Q (see (11.111)). But

the character Bg;;ll) Y= Bit__ll)’y is GV invariant, according to the inductive hypothesis (see
(11.24c)). Hence
B ¢ Ter(QUL)") extends to Q4D (11.114)

Each reduction in the t¢-th set of reductions is B(t_l)v”(agt_l)’y)—invariant (see the comments fol-

lowing (11.24)). After this set of reductions is performed, the normal subgroup Qg};ll) Y oof GEDw
that centralizes IP’g’;l)’V, maps isomorphically to a normal subgroup Qgtk)fl of the limit group G®w

by Remark 10.7. Under this isomorphism the character ,6';;_11) " of (@;2__11) " maps to the character
BY, € ir(Q4)). So

QY = Q)Y 9GH, and

t—1),v t),v
st = B (11.115)

(Observe this is the analogue of (11.98).) Clearly Bgtk)fl is GM*-invariant as Bg;_ll) Y is G

t—1),v

invariant, and G()* is a section of G! . According to Theorem 10.105 (see its first part), under

this last set of B(t_l)v”(agtfl)’y)—invariant reductions, the ¢-Sylow subgroup Q)+ of G(tw(agk)’y’*)
satisfies

QO (B 1) = QUD (B 5.
We conclude that R R
QW = Q=D (11.116)

as ,32k i 2k B% 7’ Y and ﬂg;zfl ok = ﬁgk)fl are G~V and G®*-invariant respectively. Note
also that (11.113) implies

~

QO (BN, 1) = QO € Syl (GO™). (11.117)
We can know easily prove

Step 1. The character ,Bgtk)fl € Irr(@étk)’fl) is GO invariant and extends to QM e Squ(G(t)’”).
Proof. Follows immediately from (11.114)-(11.117). O

Of course the last set of reductions send Pgl;l)’y to ng) Thus the group M := P, t) v ng)fl
is a normal subgroup of G(®)¥. (The group M is the image of GE Dw QG in G ) ¥ under the
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last set of reductions.)
Completing the list of the general properties about the new system (11.112), we remark that

if I®¥ denotes the image of @(t)’”( étk) 12k) Q®W in Aut(}Pgtk)’y’*) Aut (P, Pt "), then Theorem
11.69 implies

IM* = Image of Q¥ in Aut(]P’gtk)’y) = TImage of Q" in Aut(]P’gk)’V). (11.118)
Furthermore, Theorem 11.68 implies

Any faithful linear limit of (T(t)’”,R(t)”’, n(t)’”, Pétk?"/, agtk)’y) is also a
faithful linear limit of (T%, RV, n", Py, ag)’). (11.119)

(We remind the reader the definition of T()* as the product T®)» = }P’gk)’y x 1MV ) Of course
R =1 = Rand n” =1 = 5. In addition, P;;" = P}, and oy, = o, by (11.111). Note
also that the image I of @(ng_mk)in Aut(P;,) is a subgroup of the image I of @(52%71,%)
in Aut(Py;") = Aut(Pj,), as @(ﬁ5k71’2k) — Q" = Q. Hence T = P}, x I is a subgroup of
TV = P,;" x IV = Py, x IV, This, along with Remark 10.5, Definition 10.6 and (11.5), implies

If (T, R",n", Py, asy.) is a faithful linear limit of (']I‘(t)”’,R(t)’”,n(t)’”,IP’é%V’*, agg’y’*)

then (TY NT,R”,n", P4, as;) is a faithful linear limit of (7, R, n, Py, a3y,)- (11.120)
The next two steps will complete the proof of the theorem, and are identical to those proved in
the case t = 2.

Step 2. There exists a monomial character O ¢ Trr(GWY) lying above a(t

satisfying @(t)’”(l)q = B;tk)fl(l)

X ,8% , and

Proof. As ,6;,2’”1 extends to a ¢-Sylow subgroup of G®, while agk)’y is G®¥-invariant, and M =

t) Y x Q% 1 is a normal subgroup of G®¥, Lemma 11.82 implies the existence of an irreducible

Character 0¥ ¢ Trr(GM*) that lies above a;k’ X ,3% | and satisfies ") (1), = ng)fl(l). It

suffices to show that ©®)* is monomial. The character ﬂQkill) ¥ lies above ¢~ py (11.24Db).
Hence its faithful linear limit ,ng)fl lies above the faithful linear limit ¢ O of ¢ (t_l)”’, (for the
definition of ¢ see (11.30)). In addition, agtk)’y lies above ¥ (see Proposition 11.31, with

t = 2k even). Hence O ¢ Irr(GM*) lies above M x ¢® e Trr(RO» x $M¥), Therefore,
Proposition 11.32 implies that ©®" is monomial. O

Step 3.
Image of Q N Gyy1 in Aut(IP)g;g’V) =1.

Proof. Let N be any normal subgroup of G with M = }P’étk)’y X Q% AN <9GW¥ and N/M

(t),v @)
= Py

a g-group. Then N x @ for some g-group @, with sz_l < @. Furthermore, as we have

seen in Remark 11.28, Z (IP’(t)’V) = R® is maximal among the abelian G®)*-invariant subgroups of

%T% Furthermore agk) € Irr (P, P ") lies above the G®¥_invariant faithful irreducible character
€ Irr(R

) by Proposition 11 31. This, along with Steps 1 and 2, implies that we can apply
Theorem 11.76 with the groups G®)» P(t ,@% 1> Q here, in the place of the groups G, P, S, Q
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there, and the characters ©(), aétk)’y, Bgtk?fl and 9" here, in the place of x, o, f and ¢ there. We
conclude that any such normal subgroup N of G@ ig nilpotent, i.e.,

Q € Syl,(N) centralizes ng)’y € Syl,(N), whenever (11.121)
M <N <GWY with N/M a g-group.

The group Gy41 is a normal subgroup of G that contains G; = GY for all ¢ = 1,...,t. Hence,

by Remark 10.5, the normal series (11.110b) reduces to (11.112a), the group Gy reduces to a
normal subgroup Gg’f of G®¥ . Furthermore, Ggf /M is a g-group as Gy+1/Gy is a g-group, and
M is the limit of th_l)’y and thus of G;. As @(t)”’ is a g-Sylow subgroup of G we get that

@(t)’” N Ggr)’ly is a g-Sylow subgroup of Ggi)’l”. Hence (11.121) implies

~

Q®¥ n Ggf centralizes Pétk)’y € Sylp(Gg’lV).
This, along with (11.118) implies
Image of Q¥ N Gyp1 in Aut(PéQ’”) — Image of Q" N Gg’f/ in Aut(IP’gk?’”) =1.

As @ = @”, Step 3 follows. O

We continue as in the case t = 2. So assume that (T, R, 7, Poy, agr) and (TY, R”, n”, Py, , o, ) are
faithful linear limits of the quintuples (T®), R®), () P(;k), agtk)) and (T®» ROV pO», IF’S,C)’V, ozétk)’y),
respectively. Then (T,R,n, Poy, agy) and (TV NT,RY, n”, P4, , ok, ) are both faithful linear limits of
(T, R,n, Py, c5,). Hence, by Theorem 10.19,

Por/R = Py, /R”,

as anisotropic symplectic Z,(T' (a3, )/ Py, )-modules. But T'= Py, x I fixes o, as I is the image of
Q(Bak—1,2k) in Aut(Py;,) and the group @ € G(o3),) fixes o5 So T'(o3,.)/ Py, is naturally isomorphic
to I. We conclude that

Po /R = Py, /R” as anisotropic symplectic Zjy(I)-modules. (11.122)

In view of Step 3, the group @ N Gt11 centralizes ]P’gk)’” and thus also centralizes its section P%,.

This, along with (11.122) and the definition of I, implies that @ NGy centralizes Poi /R. Let Gg?l
denote the limit group to which Gy4; reduces, as G reduces to G®). Then (11.109a) implies

I; 11 := Image of @(ﬁgk_Lgk) N Gaq in Aut(IP’gk)) = Image of @(t) N Ggl in Aut(]P’gtk)).
(11.123)
The fact that @(ﬁgk_LQk) N G4 centralizes Poi /R, while Py, is a section of IP’g,g, implies

I;+1 centralizes Py /R. (11.124)
This time we define V' := ng) JR®. So V is an anisotropic Z,(G®)-module. Thus V, when
written additively, is the direct sum

V=V +Va, (11.125a)

237



of the perpendicular Z,(G®)-modules,

Vi=C@GY, inv)=c@y,, inV) (11.125b)
Ve = V.G = [V, Q5. ], (11.125¢)

where @étk) = @(t) N ng) 41 is a g-Sylow subgroup of thk) = GSZI, as @(t) is a ¢-Sylow subgroup
of G®.

As (T, R, n,Po, agx) is a faithful linear limit of (']I‘(t),R(t),n(t),PgQ,agQ), we have that U :=
Py /R is isomorphic to a section of V. Furthermore, U is isomorphic as a symplectic Zj,(I)-module,
to the orthogonal direct sum U = U; + Us, where Uj; is a limit module for V;, for each ¢ = 1,2. In

view of (11.125b) we have
Uy = C(Ii41 in U) and Uz = [U, Ij41], (11.126)

where I is the image of @étk)ﬂ in Aut(IF’gg) (see (11.123)). In view of (11.124) we get Uz = 0.

According to Remark 11.28, the center R®) of IP)gk) is a cyclic central subgroup of G(), maximal

among the characteristic abelian subgroups of IP’étk) So R® is also a central subgroup of T(*) =

IP’S;C) x 10, as 1M is the image of Q® < GO in Aut([[”é?). Thus Proposition 10.47 applies to the
faithful linear limit (T, R, 7, Pog, aor). So U is isomorphic to W+ /W for some maximal I-invariant
totally isotropic subspace W of V. Then W = Wy + W5, where W; is a maximal totally isotropic
I-invariant subspace of V;, for ¢ = 1,2. But Uy = 0. Hence VVQL must equal Ws. Thus V5 contains
a self perpendicular [-invariant subspace. We conclude that V3 is hyperbolic as both a Z,(I)- and
a Zp(@(t))-module. The group @(t) has p-power index in G®), since it is a ¢-Sylow subgroup of the
latter group. Since Vi is an anisotropic symplectic Z,(G®)-module, Theorem (3.2) in [1], implies
that V4 is both hyperbolic and anisotropic. Therefore V5 is 0. So V =V; =C (@gtk) 41 in V). Thus

@g]g 41 centralizes ng) 41 /R® . We conclude that the g-Sylow subgroup @gtk) 4 of ng) 1= Gg?l
(t) ®)

centralizes the p-Sylow subgroup Py of the same group. Hence G,/; is nilpotent. So Theorem
11.33 follows in the case of an even t.

The proof for an odd ¢ follows immediately from the already proved case of an even t. Indeed,
assume that ¢ is odd. Then we can adjoin a trivial group and character at the bottom of (11.106)
so that t becomes even. We now interchange p and ¢, and apply the already proved result. (Note
that the normal series (11.106a) becomes 141 = Hy Gy = Hy <Gy = H3<--- <Gy = Hi 204G,
so that 1 = H; is assumed to be the first p-group of order p° = 1, while G1/1 = Hy/Hj is a g-group
and H;y1/H; is either a g-group if 7 is odd, or a p-group if 7 is even, for all i =1,...,t + 1.)

Hence Theorem 11.33 follows.

11.6 Corollaries

Below we list a series of corollaries following Theorem 11.33.

Corollary 11.127. Let G be a finite p*q®-monomial group, for some odd primes p and q. Assume
that N is a normal subgroup of G and that v is an irreducible character of N. Consider the linear
quintuple (G,1,1,N,v). Then there exists a faithful linear limit (G, A, ®,N,¥) of (G,1,1,N,)
such that N is a nilpotent group.

Observe that this is Theorem 1 of the introduction.

238



Proof. As (G is a solvable group and N is normal subgroup of GG, we can form a series
1=GodG1 9G24 4G 4G = NdGryo 1+ 4Gy, =G, (11.128)

such that G; is a normal subgroup of GG, while the order of G;11/G; is a power of a prime, for all
i=0,1,...,t. Furthermore, without any loss of generality we can assume that G;1/G; is p-group
if 4 is odd and a g-group if ¢ is even, for all ¢ = 0,1,...,t. We also form recursively a character
tower

{xi € Irr(Gi) g, (11.129)

for (11.128), so that xy+1 = % and x; is any irreducible character of G; that lies under ;11 €
Irr(Giy1), for all i = 0,1,...,t. In addition, we fix a representative of the unique conjugacy class
of triangular sets that corresponds to the above character tower, along with a Sylow system for G
so that (8.4) holds.

We proceed with the series of reductions described in Section 11.1. So after ¢ steps, we reach the
limit groups G® = GY, Ggl and R® S® along with their limit characters o), 91(521 and n® and
¢ ), According to Theorem 11.33 the group Ggl is nilpotent. Furthermore, Remark 11.29 implies

that any faithful linear limit (G, A, ®,N, ¥) of (G®,R® n® G 0" ) is also a faithful linear
limit of (G, 1,1, Get1, xe+1) = (G,1,1, N,v). Hence if we take (G, A, ®,N, ¥) to be any faithful
linear limit of (G(t),R(t),n(t), Ggl, @7521), then N is nilpotent as a section of Ggl. So Corollary
11.127 follows. O

As any nilpotent group is monomial, Proposition 10.18, along Corollary 11.127 applied to any
irreducible character ¢ of N, easily implies

Corollary 11.130. Let G be a finite p*q®-monomial group, for some odd primes p and q. Assume
that N is a normal subgroup of G. Then N is a monomial group.

Observe that this is Theorem 2 of the Introduction.

If, in addition, we take N = G and x € Irr(G), then Corollary 11.127 implies the existence of a
faithful linear limit (G, A, ®, G, ¥) of (G, 1,1, G, x) so that G is nilpotent. In view of Corollary 10.9
the group A = Z(G) is maximal among the abelian G-invariant subgroups of G. As G is nilpotent
this forces Z(G) = A = G. Hence ¥ = ® € Irr(A) is linear. We conclude

Corollary 11.131. Let G be an odd order monomial p®q°-group and let x € Irr(G). Then there
exists a faithful linear limit ¥ of x such that ¥(1) =1, i.e., ¥ is a linear character.

Hence Theorem 3 follows.
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