
A CHARACTERIZATION OF VANISHING MEAN
OSCILLATION

THEMIS MITSIS

A. We show that a function has vanishing mean oscillation with
respect to a nonatomic measure if and only if it satisfies an asymptotic
reverse Jensen inequality.

1. 

Let µ be a positive, finite Borel measure on the unit circle T. The space of
functions of vanishing mean oscillation with respect to µ (V MOµ) consists
of all f ∈ L1

µ(T) such that

lim
δ→0

sup
length(I)<δ

1
µ(I)

∫
I

∣∣∣∣∣ f − 1
µ(I)

∫
I

f dµ
∣∣∣∣∣ dµ = 0,

where the supremum is taken over all closed arcs I ⊂ T with length less
than δ.

It is known that a sufficient condition in order for f to be in V MOµ is

lim
δ→0

sup
length(I)<δ

(
1
µ(I)

∫
I
e f dµ

) (
1
µ(I)

∫
I
e− f dµ

)
= 1. (1)

Moreover, if µ is Lebesgue measure then (1) is also necessary. This is a
consequence of the John-Nirenberg inequality. Therefore, (1) is in fact
necessary for any measure satisfying such an inequality, in particular for
nonatomic measures (see [4]). Note that (1) may be thought of as a limit
Muckenhoupt A2 condition (see, for example, [1] for the basic theory of
weights).

It is also known that f has vanishing mean oscillation if and only if e f

satisfies an asymptotic reverse Cauchy-Schwarz inequality. This suggests
an analogy between results relating usual Muckenhoupt weights to BMO
(Bounded Mean Oscillation, see [1]), and results relating weights satisfying
asymptotic conditions like (1) to V MO.
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The purpose of this paper is to push the analogy further by replacing
(1) with an asymptotic reverse Jensen inequality. Namely, we prove the
following.

Theorem. Let µ be a positive, finite, nonatomic Borel measure on T, and
f ∈ L1

µ(T). Then a necessary and sufficient condition in order for f to be a
V MOµ function is

lim
δ→0

sup
length(I)<δ

(
1
µ(I)

∫
I
e f dµ

)
exp

(
−

1
µ(I)

∫
I

f dµ
)
= 1. (2)

This parallels the familiar fact that

f ∈ BMO⇔ ec f ∈ A∞, for some c > 0,

where A∞ is the reverse Jensen class (see [1]). Note that if µ is atom-free
then our result implies that (1) and (2) are equivalent.

Put it differently, A2 and A∞ coincide if one restricts to weights which
tend to be constant on arbitrarily small arcs. Other structural properties of
Muckenhoupt weights with respect to general measures may be found in
[2], [3] and [5].

2. P   

To prove sufficiency, which is the main point, we fix ε0 > 0 so that the
number

c0 :=
√

e − 1 − ε0

(1 + ε0)(e − 1)
(3)

is positive and less than 1/2. By (2), for any a with 1 < a < 1 + ε0 there
exists δ0 > 0 so that for all arcs I with length less than δ0 we have(

1
µ(I)

∫
I
e f dµ

)
exp

(
−

1
µ(I)

∫
I

f dµ
)
< a. (4)

Let I be such an arc. We will perform a “dyadic” decomposition of I in the
spirit of Fefferman et al as follows: Since µ is nonatomic we can divide I
into two adjacent subarcs of equal measure. We repeat the same division
inside each of these subarcs to get four arcs of equal measure. We continue
ad infinitum and obtain a family J of arcs. Letting Jk be the family of
arcs obtained at k-th step in the construction of J , we see that J has the
following obvious properties:

• For every pair J1, J2 ∈ J , either J◦1 ∩ J◦2 = ∅, or one is contained in
the other.
• Every J ∈ J splits into two subarcs J+, J− of equal µ-measure.
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• Every decreasing sequence of arcs in J shrinks either to a point or
to an arc of positive length and zero µ-measure. The family of these
limit arcs is disjoint, hence countable, and therefore its union has
µ-measure zero. Consequently, for µ-almost all points x ∈ I, there
are (unique) Jx

n ∈ Jn such that
⋂

n

Jx
n = {x}.

Now for g ∈ L1
µ(I) consider the averaging operator

Ek(g) =
∑
J∈Jk

(
1

µ(J)

∫
J

gdµ
)
χJ,

where χJ is the characteristic function of J. By a standard argument, the
corresponding “dyadic” maximal function

g 7→ sup
k

Ek(|g|)

is of weak type (1, 1) and therefore

lim
k

Ek(g) = g, µ-almost everywhere on I.

(Alternatively, one may invoke the one-dimensional result of Sjögren [6]
concerning the uncentered maximal function with respect to general mea-
sures.)

In particular

e f = lim
k

Ek

(
e f

)
=

1
µ(I)

∫
I
e f dµ

∏
k

(
Ek+1

(
e f

)) (
Ek

(
e f

))−1

=
1
µ(I)

∫
I
e f dµ

∏
J∈J

1 +
2

∫
J+

e f dµ∫
J

e f dµ
− 1

 hJ


=

1
µ(I)

∫
I
e f dµ

∏
J∈J

(1 + αJhJ), (5)

where

αJ = 2

∫
J+

e f dµ∫
J

e f dµ
− 1, hJ(x) =


1, if x ∈ J+
−1, if x ∈ J−
0, if x < J

.
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To estimate αJ, note that
√

e = exp
(
µ(J+)
µ(J)

)
= exp

(
1

µ(J)

∫
J+

(χJ+ + f )dµ
)

exp
(
−

1
µ(J)

∫
J

f dµ
)

≤
a∫

J
e f dµ

∫
J

exp(χJ+ + f )dµ,

where we have used Jensen’s inequality and (4). Consequently
√

e ≤
a∫

J
e f dµ

(
e
∫

J+
e f dµ +

∫
J\J+

e f dµ
)
,

which, by (3), implies that

c0 ≤

√
e − a

a(e − 1)
≤

∫
J+

e f dµ∫
J

e f dµ
.

By symmetry, the same estimate holds with J− in place of J+. Therefore

|αJ | ≤ 1 − 2c0.

Now (5) yields

f = log
(

1
µ(I)

∫
I
e f dµ

)
+

∑
J∈J

log(1 + αJhJ). (6)

By Taylor’s theorem

log(1 + αJhJ) = αJhJ −
1
2
α2

JχJ(1 + ϕJ)−2,

where ϕJ is a function supported in J with |ϕJ | ≤ |αJ |. Hence

f = log
(

1
µ(I)

∫
I
e f dµ

)
+

∑
J∈J

αJhJ −
∑
J∈J

α2
JψJ,

where ψJ is a function supported in J with |ψJ | ≤ 1/(8c2
0). Using the above

representation of f we get that

Osc f (I) :=
1
µ(I)

∫
I

∣∣∣∣∣ f − 1
µ(I)

∫
I

f dµ
∣∣∣∣∣ dµ

≤
2
µ(I)

∫
I

∣∣∣∣∣∣∣∑J∈J αJhJ

∣∣∣∣∣∣∣ dµ + 2
µ(I)

∫
I

∑
J∈J

α2
J |ψJ |

 dµ

.

 1
µ(I)

∫
I

∑
J∈J

αJhJ


2

dµ


1/2

+
1
µ(I)

∑
J∈J

α2
Jµ(J),
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where the implicit constant depends only on c0.
Since the functions hJ are orthogonal we have∫

I

∑
J∈J

αJhJ


2

dµ =
∑
J∈J

α2
Jµ(J).

Consequently

Osc f (I) .

 1
µ(I)

∑
J∈J

α2
Jµ(J)


1/2

+
1
µ(I)

∑
J∈J

α2
Jµ(J).

To estimate the expression above, notice that (4) and (6) imply

− log a ≤ − log
(

1
µ(I)

∫
I
e f dµ

)
+

1
µ(I)

∫
I

f dµ

=
1
µ(I)

∑
J∈J

∫
J

log(1 + αJhJ)dµ

=
1

2µ(I)

∑
J∈J

(log(1 + αJ) + log(1 − αJ))µ(J)

. −
1
µ(I)

∑
J∈J

α2
Jµ(J).

Therefore
Osc f (I) .

√
log a + log a,

which proves that f ∈ V MOµ.
To prove necessity, as we pointed out in the introduction, one uses a

standard argument involving the John-Nirenberg inequality for nonatomic
measures (see [4]), so we omit the proof.

3. R

The result of this paper is new even in the case of the one-dimensional
Lebesgue measure. Moreover, it is also valid in the case of the higher
dimensional Lebesgue measure (in this situation we replace “arcs” and
“length” with “cubes” and “diameter”, respectively, in the statement of the
theorem). Indeed, we may repeat the argument almost verbatim by perform-
ing a canonical dyadic decomposition of a cube into rectangles of bounded
eccentricities. Then everything goes through since all the rectangles which
appear in the decomposition are comparable to cubes. On the other hand,
in the context of arbitrary nonatomic measures, our methods do not seem
to generalize to higher dimensions. The reason is that if we “dyadically”
decompose a cube with respect to µ, we will get a family of rectangles with
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arbitrary eccentricities, in which case (2) is of no use, unless we make fur-
ther assumptions on µ. However, the “only if” part of the theorem is valid
in any dimension by the the general John-Nirenberg inequality of [4].

Finally, let us observe that the assumption that µ should be nonatomic is
needed at least for the “only if” part of the theorem. This may be seen by
considering the example from [4]: Fix a sequence θn ↘ 0 and let xn = eiθn .
Now if we put

µ =
∑

n

1
2n2 δxn , f (xn) = 2n

then it easy to show that f ∈ V MOµ. But e f is not µ-integrable so it cannot
satisfy (2).

On the other hand, we do not know whether the assumption on µ is
needed for the “if” part of the theorem.
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