The Fourier Transform and applications

Mihalis Kolountzakis
University of Crete
January 2006

Groups and Haar measure

Locally compact abelian groups:

- Integers $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
- Finite cyclic group $\mathbb{Z}_{m}=\{0,1, \ldots, m-1\}$: addition $\bmod m$
- Reals \mathbb{R}
- Torus $\mathbb{T}=\mathbb{R} / \mathbb{Z}$: addition of reals $\bmod 1$
- Products: $\mathbb{Z}^{d}, \mathbb{R}^{d}, \mathbb{T} \times \mathbb{R}$, etc

Haar measure on $G=$ translation invariant on $G: \mu(A)=\mu(A+t)$. Unique up to scalar multiple.

- Counting measure on \mathbb{Z}
- Counting measure on \mathbb{Z}_{m}, normalized to total measure 1 (usually)
- Lebesgue measure on \mathbb{R}
- Lebesgue masure on \mathbb{T} viewed as a circle
- Product of Haar measures on the components

Characters and the dual group

- Character is a (continuous) group homomorphism from G to the multiplicative group $U=\{z \in \mathbb{C}:|z|=1\}$.
- $\chi: G \rightarrow U$ satsifies $\chi(h+g)=\chi(h) \chi(g)$
- If χ, ψ are characters then so is $\chi \psi$ (pointwise product). Write $\chi+\psi$ from now on instead of $\chi \psi$.
- Group of characters (written additively) \widehat{G} is the dual group of G
- $G=\mathbb{Z} \Longrightarrow \widehat{G}=\mathbb{T}$: the functions $\chi_{x}(n)=\exp (2 \pi i x n), x \in \mathbb{T}$
- $G=\mathbb{T} \Longrightarrow \widehat{G}=\mathbb{Z}$: the functions $\chi_{n}(x)=\exp (2 \pi i n x), n \in \mathbb{Z}$
- $G=\mathbb{R} \Longrightarrow \widehat{G}=\mathbb{R}$: the functions $\chi_{t}(x)=\exp (2 \pi i t x), t \in \mathbb{R}$
- $G=\mathbb{Z}_{m} \Longrightarrow \widehat{G}=\mathbb{Z}_{m}$: the functions $\chi_{k}(n)=\exp (2 \pi i k n / m), k \in \mathbb{Z}_{m}$
- $G=A \times B \Longrightarrow \widehat{G}=\widehat{A} \times \widehat{B}$
- Example: $G=\mathbb{T} \times \mathbb{R} \Longrightarrow \widehat{G}=\mathbb{Z} \times \mathbb{R}$. The characters are $\chi_{n, t}(x, y)=\exp (2 \pi i(n x+t y))$.
- G is compact $\Longleftrightarrow \widehat{G}$ is discrete
- Pontryagin duality: $\widehat{\widehat{G}}=G$.

The Fourier Transform of integrable functions

- $f \in L^{1}(G)$. That is $\|f\|_{1}:=\int_{G}|f(x)| d \mu(x)<\infty$
- If G is finite then $L^{1}(G)$ is all functions $G \rightarrow \mathbb{C}$
- The FT of f is $\widehat{f}: \widehat{G} \rightarrow \mathbb{C}$ defined by

$$
\widehat{f}(\chi)=\int_{G} f(x) \overline{\chi(x)} d \mu(x), \quad \chi \in \widehat{G}
$$

- Example: $G=\mathbb{T}$ ("Fourier coefficients"):

$$
\widehat{f}(n)=\int_{\mathbb{T}} f(x) e^{-2 \pi i n x} d x, \quad n \in \mathbb{Z}
$$

- Example: $G=\mathbb{R}$ ("Fourier transform"):

$$
\widehat{f}(\xi)=\int_{\mathbb{T}} f(x) e^{-2 \pi i \xi x} d x, \quad \xi \in \mathbb{R}
$$

- Example: $G=\mathbb{Z}_{m}$ ("Discrete Fourier transform or DFT"):

$$
\widehat{f}(k)=\frac{1}{m} \sum_{j=0}^{m-1} f(j) e^{-2 \pi i k j / m}, \quad k \in \mathbb{Z}_{m}
$$

Elementary properties of the Fourier Transform

- Linearity: $\lambda \widehat{f+\mu} g=\lambda \widehat{f}+\mu \widehat{g}$.
- Symmetry: $\widehat{f}(-x)=\overline{\widehat{f}}(x), \widehat{\bar{f}}(x)=\overline{\widehat{f}}(-x)$
- Real f : then $\widehat{f}(x)=\overline{\hat{f}(-x)}$
- Translation: if $\tau \in G, \xi \in \widehat{G}, f_{\tau}(x)=f(x-\tau)$ then $\widehat{f}_{\tau}(\xi)=\overline{\xi(\tau)} \cdot \widehat{f}(\xi)$.
Example: $G=\mathbb{T}: \widehat{f(x-\theta)}(n)=e^{-2 \pi i n \theta} \widehat{f}(n)$, for $\theta \in \mathbb{T}, n \in \mathbb{Z}$.
- Modulation: If $\chi, \xi \in \widehat{G}$ then $\chi \widehat{(x) f(x)}(\xi)=\widehat{f}(\xi-\chi)$.

Example: $G=\mathbb{R}: e^{2 \pi i t x} f(x)(\xi)=\widehat{f}(\xi-t)$.

- $f, g \in L^{1}(G)$: their convolution is $f * g(x)=\int_{G} f(t) g(x-t) d \mu(t)$. Then $\|f * g\|_{1} \leq\|f\|_{1}\|g\|_{1}$ and

$$
\widehat{f * g}(\xi)=\widehat{f}(\xi) \cdot \widehat{g}(\xi), \quad \xi \in \widehat{G}
$$

Orthogonality of characters on compact groups

- If G is compact $(\Longrightarrow$ total Haar measure $=1)$ then characters are in $L^{1}(G)$, being bounded.
- If $\chi \in \widehat{G}$ then

$$
\int_{G} \chi(x) d x=\int_{G} \chi(x+g) d x=\chi(g) \int_{G} \chi(x) d x
$$

so $\int_{G} \chi=0$ if χ nontrivial, 1 if χ is trivial $(=1)$.

- If $\chi, \psi \in \widehat{G}$ then $\chi(x) \psi(-x)$ is also a character. Hence

$$
\langle\chi, \psi\rangle=\int_{G} \chi(x) \overline{\psi(x)} d x=\int_{G} \chi(x) \psi(-x) d x= \begin{cases}1 & \chi=\psi \\ 0 & \chi \neq \psi\end{cases}
$$

- Fourier representation (inversion) in $\mathbb{Z}_{m}: G=\mathbb{Z}_{m} \Longrightarrow$ the m characters form a complete orthonormal set in $L^{2}(G)$:

$$
f(x)=\sum_{k=0}^{m-1}\left\langle f(\cdot), e^{2 \pi i k \cdot}\right\rangle e^{2 \pi i k x}=\sum_{k=0}^{m-1} \widehat{f}(k) e^{2 \pi i k x}
$$

L^{2} of compact G

- Trigonometric polynomials $=$ finite linear combinations of characters on G
- Example: $G=\mathbb{T}$. Trig. polynomials are of the type $\sum_{k=-N}^{N} c_{k} e^{2 \pi i k x}$. The least such N is called the degree of the polynomial.
- Example: $G=\mathbb{R}$. Trig. polynomials are of the type $\sum_{k=1}^{K} c_{k} e^{2 \pi i \lambda_{k} x}$, where $\lambda_{j} \in \mathbb{R}$.
- Compact G: Stone - Weierstrass Theorem \Longrightarrow trig. polynomials dense in $C(G)$ (in $\left.\|\cdot\|_{\infty}\right)$.
- Fourier representation in $L^{2}(G)$: Compact G : The characters form a complete ONS. Since $C(G)$ is dense in $L^{2}(G)$:

$$
f=\int_{\chi \in \widehat{G}} \widehat{f}(\chi) \chi d \chi \text { all } f \in L^{2}(G), \text { convergence in } L^{2}(G)
$$

- \widehat{G} necessarily discrete in this case

L^{2} of compact G, continued

- Compact G: Parseval formula:

$$
\int_{G} f(x) \overline{g(x)} d x=\int_{\widehat{G}} \widehat{f}(\chi) \overline{\hat{g}(\chi)} d \chi
$$

- Compact $G: f \rightarrow \widehat{f}$ is an isometry from $L^{2}(G)$ onto $L^{2}(\widehat{G})$.
- Example: $G=\mathbb{T}$

$$
\int_{\mathbb{T}} f(x) \overline{g(x)} d x=\sum_{k \in \mathbb{Z}} \widehat{f}(k) \overline{\hat{g}(k)}, \quad f, g \in L^{2}(\mathbb{T})
$$

- Example: $G=\mathbb{Z}_{m}$

$$
\sum_{j=0}^{m-1} f(j) \overline{g(j)}=\sum_{k=0}^{m-1} \widehat{f}(k) \overline{\hat{g}(k)}, \quad \text { all } f, g: \mathbb{Z}_{m} \rightarrow \mathbb{C}
$$

Triple correlations in \mathbb{Z}_{p} : an application

- Problem of significance in (a) crystallography, (b) astrophysics: determine a subset $E \subseteq \mathbb{Z}_{n}$ from its triple correlation:

$$
\begin{aligned}
N_{E}(a, b) & =\#\left\{x \in \mathbb{Z}_{n}: x, x+a, x+b \in E\right\}, \quad a, b \in \mathbb{Z}_{n} \\
& =\sum_{x \in \mathbb{Z}_{n}} \mathbf{1}_{E}(x) \mathbf{1}_{E}(x+a) \mathbf{1}_{E}(x+b)
\end{aligned}
$$

Counts number of occurences of translated 3-point patterns $\{0, a, b\}$.

- E can only be determined up to translation: E and $E+t$ have the same $N(\cdot, \cdot)$.
- For general n it has been proved that $N(\cdot, \cdot)$ cannot determine E even up to translation (non-trivial).
- Special case: E can be determined up to translation from $N(\cdot, \cdot)$ if $n=p$ is a prime.
- Fourier transform of $N_{E}: \mathbb{Z}_{n} \times \mathbb{Z}_{n} \rightarrow \mathbb{R}$ is easily computed:

$$
\widehat{N_{E}}(\xi, \eta)=\widehat{\mathbf{1}_{E}}(\xi) \widehat{\mathbf{1}_{E}}(\eta) \widehat{\mathbf{1}_{E}}(-(\xi+\eta)), \quad \xi, \eta \in \mathbb{Z}_{n}
$$

Triple correlations in \mathbb{Z}_{p} : an application (continued)

- If $N_{E} \equiv N_{F}$ for $E, F \subseteq \mathbb{Z}_{n}$ then

$$
\begin{equation*}
\widehat{\mathbf{1}_{E}}(\xi) \widehat{\mathbf{1}_{E}}(\eta) \widehat{\mathbf{1}_{E}}(-(\xi+\eta))=\widehat{\mathbf{1}_{F}}(\xi) \widehat{\mathbf{1}_{F}}(\eta) \widehat{\mathbf{1}_{F}}(-(\xi+\eta)), \quad \xi, \eta \in \mathbb{Z}_{n} \tag{1}
\end{equation*}
$$

- Setting $\xi=\eta=0$ we deduce $\# E=\# F$.
- Setting $\eta=0$, and using $\widehat{f}(-x)=\widehat{\widehat{f}}(x)$ for real f, we get $\left|\widehat{\mathbf{1}_{E}}\right| \equiv\left|\widehat{\mathbf{1}_{F}}\right|$.
- If $\widehat{\mathbf{1}_{F}}$ is never 0 we divide (1) by its RHS to get

$$
\begin{equation*}
\phi(\xi) \phi(\eta)=\phi(\xi+\eta), \quad \text { where } \phi=\widehat{\mathbf{1}_{E}} / \widehat{\mathbf{1}_{F}} \tag{2}
\end{equation*}
$$

- Hence $\phi: \mathbb{Z}_{n} \rightarrow \mathbb{C}$ is a character and $\widehat{\mathbf{1}_{E}} \equiv \phi \widehat{\mathbf{1}_{F}}$.
- Since $\widehat{\mathbb{Z}_{n}}=\mathbb{Z}_{n}$ we have $\phi(\xi)=e^{2 \pi i t \xi / n}$ for some $t \in \mathbb{Z}_{n}$
- Hence $E=F+t$
- So N_{E} determines E up to translation if $\widehat{\mathbf{1}_{E}}$ is never 0

Triple correlations in \mathbb{Z}_{p} : an application (conclusion)

- Suppose $n=p$ is a prime, $E \subseteq \mathbb{Z}_{p}$. Then

$$
\begin{equation*}
\widehat{\mathbf{1}_{E}}(\xi)=\frac{1}{p} \sum_{s \in E}\left(\zeta^{\xi}\right)^{s}, \quad \zeta=e^{-2 \pi i / p} \text { is a } p \text {-root of unity. } \tag{3}
\end{equation*}
$$

- Each $\zeta^{\xi}, \xi \neq 0$, is a primitive p-th root of unity itself.
- All powers $\left(\zeta^{\xi}\right)^{s}$ are distinct, so $\widehat{\mathbf{1}_{E}}(\xi)$ is a subset sum of all primitive p-th roots of unity $(\xi \neq 0)$.
- The polynomial $1+x+x^{2}+\cdots+x^{p-1}$ is the minimal polynomial over \mathbb{Q} of each primitive root of unity (there are $p-1$ of them).
- It divides any polynomial in $\mathbb{Q}[x]$ which vanishes on some primitive p-th root of unity
- The only subset sums of all roots of unity which vanish are the empty and the full sum ($E=$ or $E=\mathbb{Z}_{p}$).
- So in \mathbb{Z}_{p} the triple correlation $N_{E}(\cdot, \cdot)$ determines E up to translation.

The basics of the FT on the torus (circle) $\mathbb{T}=\mathbb{R} / 2 \pi \mathbb{Z}$

- $1 \leq p \leq q \Longleftrightarrow L^{q}(\mathbb{T}) \subseteq L^{p}(\mathbb{T})$: nested L^{p} spaces. True on compact groups.
- $f \in L^{1}(\mathbb{T})$: we write $f(x) \sim \sum_{k=-\infty}^{\infty} \widehat{f}(k) e^{2 \pi i k x}$ to denote the Fourier series of f. No claim of convergence is made.
- The Fourier coefficients of $f(x)=e^{2 \pi i k x}$ is the sequence $\widehat{f}(n)=\delta_{k, n}$.
- The Fourier series of a trig. poly. $f(x)=\sum_{k=-N}^{N} a_{k} e^{2 \pi i k x}$ is the sequence $\ldots, 0,0, a_{-N}, a_{-N+1}, \ldots, a_{0}, \ldots, a_{N}, 0,0, \ldots$
- Symmetric partial sums of the Fourier series of f :

$$
S_{N}(f ; x)=\sum_{k=-N}^{N} \widehat{f}(k) e^{2 \pi i k x}
$$

- From $\widehat{f * g}=\widehat{f} \cdot \widehat{g}$ we get easily $S_{N}(f ; x)=f(x) * D_{N}(x)$, where

$$
D_{N}(x)=\sum_{k=-N}^{N} e^{2 \pi i k x}=\frac{\sin 2 \pi\left(N+\frac{1}{2}\right) x}{\sin \pi x} \text { (DIRICHLET kernel of order } N \text {) }
$$

The Dirichlet kernel

The Dirichlet kernel $D_{N}(x)$ for $N=10$

Pointwise convergence

- Important: $\left\|D_{N}\right\|_{1} \geq C \log N$, as $N \rightarrow \infty$
- $T_{N}: f \rightarrow S_{N}(f ; x)=D_{N} * f(x)$ is a (continuous) linear functional $C(\mathbb{T}) \rightarrow \mathbb{C}$. From the inequality $\left\|D_{N} * f\right\|_{\infty} \leq\left\|D_{N}\right\|_{1}\|f\|_{\infty}$
- $\left\|T_{N}\right\|=\left\|D_{N}\right\|_{1}$ is unbounded
- Banach-Steinhaus (uniform boundedness principle) \Longrightarrow Given x there are many continuous functions f such that $T_{N}(f)$ is unbounded
- Consequence: In general $S_{N}(f ; x)$ does not converge pointwise to $f(x)$, even for continuous f

Summability

- Look at the arithmetical means of $S_{N}(f ; x)$

$$
\sigma_{N}(f ; x)=\frac{1}{N+1} \sum_{n=0}^{N} S_{n}(f ; x)=K_{N} * f(x)
$$

- The Fejér kernel $K_{N}(x)$ is the mean of the Dirichlet kernels

$$
K_{N}(x)=\sum_{n=-N}^{N}\left(1-\frac{|n|}{N+1}\right) e^{2 \pi i n x}=\frac{1}{N+1}\left(\frac{\sin \pi(N+1) x}{\sin \pi x}\right)^{2} \geq 0
$$

- $K_{N}(x)$ is an approximate identity:
(a) $\int_{\mathbb{T}} K_{N}(x) d x=\widehat{K_{N}}(0)=1$,
(b) $\left\|K_{N}\right\|_{1}$ is bounded $\left(\left\|K_{N}\right\|_{1}=1\right.$, from nonnegativity and (a)),
(c) for any $\epsilon>0$ we have $\int_{|x|>\epsilon}\left|K_{N}(x)\right| d x \rightarrow 0$, as $N \rightarrow \infty$

The Fejér kernel

The Fej'er kernel $D_{N}(x)$ for $N=10$

Summability (continued)

- K_{N} approximate identity $\Longrightarrow K_{N} * f(x) \rightarrow f(x)$, in some Banach spaces. These can be:
- $C(\mathbb{T})$ normed with $\|\cdot\|_{\infty}$: If $f \in C(\mathbb{T})$ then $\sigma_{N}(f ; x) \rightarrow f(x)$ uniformly in \mathbb{T}.
- $L^{p}(\mathbb{T}), 1 \leq p<\infty$: If $f \in L^{p}(\mathbb{T})$ then $\left\|\sigma_{N}(f ; x)-f(x)\right\|_{p} \rightarrow 0$
- $C^{n}(\mathbb{T})$, all n-times C-differentiable functions, normed with $\|f\|_{C^{n}}=\sum_{k=0}^{n}\left\|f^{(k)}\right\|_{\infty}$
- Summability implies uniqueness: the Fourier series of $f \in L^{1}(\mathbb{T})$ determines the function.
- Another consequence: trig. polynomials are dense in $L^{p}(\mathbb{T}), C(\mathbb{T}), C^{n}(\mathbb{T})$
- Another important summability kernel: the Poisson kernel

$$
P(r, x)=\sum_{k \in \mathbb{Z}} r^{k} e^{2 \pi i k x}, \quad 0<r<1 \text { : absolute convergence obvious }
$$

Significant for the theory of analytic functions.

The decay of the Fourier coefficients at ∞

- Obvious: $\widehat{f}(n) \leq\|f\|_{1}$
- Riemann-Lebesgue Lemma: $\lim _{|n| \rightarrow \infty} \widehat{f}(n)=0$ if $f \in L^{1}(\mathbb{T})$. Obviously true for trig. polynomials and they are dense in $L^{1}(\mathbb{T})$.
- Can go to 0 arbitrarily slowly if we only assume $f \in L^{1}$.
- $f(x)=\int_{0}^{x} g(t) d t$, where $\int g=0: \widehat{f}(n)=\frac{1}{2 \pi i n} \widehat{g}(n)$ (Fubini)
- Previous implies: $\widehat{f}(|n|)=-\widehat{f}(-|n|) \geq 0 \Longrightarrow \sum_{n \neq 0} \widehat{f}(n) / n<\infty$.
- $\sum_{n>0} \frac{\sin n x}{\log n}$ is not a Fourier series.
- f is an integral $\Longrightarrow \widehat{f}(n)=o(1 / n)$: the "smoother" f is the better decay for the FT of f
- $f \in C^{2}(\mathbb{T}) \Longrightarrow$ absolute convergence for the Fourier Series of f.
- Another condition that imposes "decay":
$f \in L^{2}(\mathbb{T}) \Longrightarrow \sum_{n}|\widehat{f}(n)|^{2}<\infty$.

Interpolation of operators

- T is bounded linear operator on dense subsets of $L^{p_{1}}$ and $L^{p_{2}}$:

$$
\|T f\|_{q_{1}} \leq C_{1}\|f\|_{p_{1}}, \quad\|T f\|_{q_{2}} \leq C_{2}\|f\|_{p_{2}}
$$

- Riesz-Thorin interpolation theorem: $T: L^{p} \rightarrow L^{q}$ for any p between p_{1}, p_{2} (all p^{\prime} s and $q ' s \geq 1$).
- p and q are related by:

$$
\frac{1}{p}=t \frac{1}{p_{1}}+(1-t) \frac{1}{p_{2}} \Longrightarrow \frac{1}{q}=t \frac{1}{q_{1}}+(1-t) \frac{1}{q_{2}}
$$

- $\|T\|_{L^{p} \rightarrow L^{q}} \leq C_{1}^{t} C_{2}^{(1-t)}$
- The exponents p, q, \ldots are allowed to be ∞.

Interpolation of operators: the $1 / p, 1 / q$ plane

The Hausdorff-Young inequality

- Hausdorff-Young: Suppose $1 \leq p \leq 2, \frac{1}{p}+\frac{1}{q}=1$, and $f \in L^{P}(\mathbb{T})$. It follows that

$$
\|\widehat{f}\|_{L^{q}(\mathbb{Z})} \leq C_{p}\|f\|_{L^{p}(\mathbb{T})}
$$

- False if $p>2$.
- Clearly true if $p=1$ (trivial) or $p=2$ (Parseval).
- Use Riesz-Thorin interpolation for $1<p<2$ for the operator $f \rightarrow \widehat{f}$ from $L^{p}(\mathbb{T}) \rightarrow L^{q}(\mathbb{Z})$.

An application: the isoperimetric inequality

- Suppose Γ is a simple closed curve in the plane with perimeter L enclosing area A.

$$
A \leq \frac{1}{4 \pi} L^{2} \quad \text { (isoperimetric inequality) }
$$

Equality holds only when Γ is a circle.

- Wirtinger's inequality: if $f \in C^{\infty}(\mathbb{T})$ then

$$
\begin{equation*}
\int_{0}^{1}|f(x)-\widehat{f}(0)|^{2} d x \leq \frac{1}{4 \pi^{2}} \int_{0}^{1}\left|f^{\prime}(x)\right|^{2} d x \tag{4}
\end{equation*}
$$

- By smoothness $f(x)$ equals its Fourier series and so does $f^{\prime}(x)=2 \pi i \sum_{n} n \widehat{f}(n) e^{2 \pi i n x}$
- FT is an isometry (Parseval) so LHS of (4) is $\sum_{n \neq 0}|\widehat{f}(n)|^{2}$ while the RHS is $\sum_{n \neq 0} n|\widehat{f}(n)|^{2}$ so (4) holds.
- Equality in (4) precisely when $f(x)=\widehat{f}(-1) e^{-2 \pi i x}+\widehat{f}(0)+\widehat{f}(1) e^{2 \pi i x}$.

An application: the isoperimetric inequality (continued)

- Hurwitz' proof. First assume Γ is smooth, has $L=1$.
- Parametrization of $\Gamma:(x(s), y(s)), 0 \leq s \leq 1$ w.r.t. arc length s
- $x, y \in C^{\infty}(\mathbb{T}), \quad\left(x^{\prime}(s)\right)^{2}+\left(y^{\prime}(s)\right)^{2}=1$.
- Green's Theorem \Longrightarrow area $A=\int_{0}^{1} x(s) y^{\prime}(s) d s$:

$$
\begin{aligned}
A & =\int(x(s)-\widehat{x}(0)) y^{\prime}(s)= \\
& =\frac{1}{4 \pi} \int(2 \pi(x(s)-\widehat{x}(0)))^{2}+y^{\prime}(s)^{2}-\left(2 \pi(x(s)-\widehat{x}(0))-y^{\prime}(s)\right)^{2} \\
& \leq 1 / 4 \pi \int 4 \pi^{2}(x(s)-\widehat{x}(0))^{2}+y^{\prime}(s)^{2} \quad \text { (drop last term) } \\
& \leq 1 / 4 \pi \int x^{\prime}(s)^{2}+y^{\prime}(s)^{2} \quad \text { (WIRTINGER's ineq) } \\
& =1 / 4 \pi
\end{aligned}
$$

- For equality must have $x(s)=a \cos 2 \pi s+b \sin 2 \pi s+c$, $y^{\prime}(s)=2 \pi(x(s)-\widehat{x}(0))$. So $x(s)^{2}+y(s)^{2}$ constant if $c=0$.

Fourier transform on \mathbb{R}^{n}

- Initially defined only for $f \in L^{1}\left(\mathbb{R}^{n}\right) . \widehat{f}(\xi)=\int_{\mathbb{R}^{n}} f(x) e^{-2 \pi i \xi \cdot x} d x$.

Follows: $\|\hat{f}\|_{\infty} \leq\|f\|_{1} \cdot \hat{f}$ is continuous.

- Trig. polynomials are not dense anymore in the usual spaces.
- But Riemann-Lebesgue is true. First for indicator function of an interval

$$
\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n}, b_{n}\right] .
$$

Then approximate an L^{1} function by finite linear combinations of such.

- Multi-index notation $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$:
(a) $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$.
(b) $x^{\alpha}=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}$
(c) $\partial^{\alpha}=\left(\partial / \partial_{1}\right)^{\alpha_{1}} \cdots\left(\partial / \partial_{n}\right)^{\alpha_{n}}$
- Diff operators $D^{j} \phi:=\frac{1}{2 \pi i}\left(\partial / \partial x_{j}\right), D^{\alpha} \phi=(1 / 2 \pi i)^{|\alpha|} \partial^{\alpha}$.

Schwartz functions on \mathbb{R}^{n}

- $L^{p}\left(\mathbb{R}^{n}\right)$ spaces are not nested.
- Not clear how to define \widehat{f} for $f \in L^{2}$.
- Schwartz class \mathcal{S} : those $\phi \in C^{\infty}\left(\mathbb{R}^{n}\right)$ s.t. for all multiindices α, γ

$$
\|\phi\|_{\alpha, \gamma}:=\sup _{x \in \mathbb{R}^{n}}\left|x^{\gamma} \partial^{\alpha} \phi(x)\right|<\infty .
$$

- The $\|\phi\|_{\alpha, \gamma}$ are seminorms. They determine the topology of \mathcal{S}.
- $C_{0}^{\infty}\left(\mathbb{R}^{n}\right) \subseteq \mathcal{S}$
- Easy to see that $\widehat{D^{j}(\phi)}(\xi)=\xi_{j} \widehat{\phi}(\xi)$ and $\widehat{x_{j} \phi(x)}(\xi)=-D^{j} \widehat{\phi}(\xi)$. More generally $\xi^{\alpha} D^{\gamma} \widehat{\phi}(\xi)=D^{\alpha}(-x)^{\gamma} \phi(x)(\xi)$.
- $\phi \in \mathcal{S} \Longrightarrow \widehat{\phi} \in \mathcal{S}$ (smoothness \Longrightarrow decay, decay \Longrightarrow smoothness)
- Fourier inversion formula: $\phi(x)=\int \widehat{\phi}(\xi) e^{2 \pi i \xi x} d \xi$.

Can also write as $\widehat{\phi}(-x)=\phi(x)$.

- We first show its validity for $\phi \in \mathcal{S}$.

Fourier inversion formula on \mathcal{S}

- ${ }^{\text {shifting: }} f, g \in L^{1}\left(\mathbb{R}^{n}\right) \Longrightarrow \int f \widehat{g}=\int \widehat{f} g$ (Fubini)
- Define the Gaussian function $g(x)=(2 \pi)^{-n / 2} e^{-|x|^{2} / 2}, x \in \mathbb{R}^{n}$. This normalization gives $\int g(x)=\int|x|^{2} g(x)=1$.
- Using CaUChy's integral formula for analytic functions we prove $\widehat{g}(\xi)=(2 \pi)^{n / 2} g(2 \pi \xi)$. The Fourier inversion formula holds.
- Write $g_{\epsilon}(x)=\epsilon^{-n} g(x / \epsilon)$, an approximate identity.
- We have $\widehat{g}_{\epsilon}(\xi)=(2 \pi)^{n / 2} g(2 \pi \epsilon \xi), \lim _{\epsilon \rightarrow 0} \widehat{g}_{\epsilon}(\xi)=1$.
- $\widehat{\hat{\phi}}(-x)=\int e^{2 \pi i \xi x} \widehat{\phi}(\xi) d \xi=\lim _{\epsilon \rightarrow 0} \int e^{2 \pi i \xi \times} \widehat{\phi}(\xi) \widehat{g}_{\epsilon}(\xi) d \xi$ (dom. conv.)
- $\left.=\lim _{\epsilon \rightarrow 0} \int \widehat{\phi(\cdot+x}\right)(\xi) \widehat{g}_{\epsilon}(\xi) d \xi$ (FT of translation)
- $=\lim _{\epsilon \rightarrow 0} \int \phi(x+y) \widehat{\hat{g}}_{\epsilon}(y) d y$ ((shifting)
- $=\lim _{\epsilon \rightarrow 0} \int \phi(x+y) g_{\epsilon}(-y) d y$ (FT inversion for g_{ϵ}).
- $=\phi(x)$ (g_{ϵ} is an approximate identity)

FT on $L^{2}\left(\mathbb{R}^{n}\right)$

- Preservation of inner product: $\int \phi \bar{\psi}=\int \widehat{\phi} \bar{\psi}$, for $\phi, \psi \in \mathcal{S}$

Fourier inversion implies $\widehat{\widehat{\hat{\psi}}}=\bar{\psi}$. Use ${ }$ shifting.

- Parseval: $f \in \mathcal{S}:\|f\|_{2}=\|\widehat{f}\|_{2}$.
- \mathcal{S} dense in $L^{2}\left(\mathbb{R}^{n}\right)$: FT extends to L^{2} and $f \rightarrow \widehat{f}$ is an isometry on L^{2}.
- By interpolation FT is defined on $L^{p}, 1 \leq p \leq 2$, and satisfies the HAUSDORFF-YOUNG inequality:

$$
\|\widehat{f}\|_{q} \leq C_{p}\|f\|_{p}, \quad \frac{1}{p}+\frac{1}{q}=1 .
$$

Tempered distributions

- Tempered distributions: \mathcal{S}^{\prime} is the space of continuous linear functionals on \mathcal{S}.
- FT defined on \mathcal{S}^{\prime} : for $u \in \mathcal{S}^{\prime}$ we define $\widehat{u}(\phi)=u(\widehat{\phi})$, for $\phi \in \mathcal{S}$.
- Fourier inversion for $\mathcal{S}^{\prime}: u(\phi(x))=\widehat{\widehat{u}}(\phi(-x))$.
- $u \rightarrow \widehat{u}$ is an isomorphism on \mathcal{S}^{\prime}
- $1 \leq p \leq \infty: L^{p} \subseteq \mathcal{S}^{\prime}$. If $f \in L^{p}$ this mapping is in \mathcal{S}^{\prime} :

$$
\phi \rightarrow \int f \phi
$$

Also $\mathcal{S} \subseteq \mathcal{S}^{\prime}$.

- Tempered measures: $\int(1+|x|)^{-k} d|\mu|(x)<\infty$, for some $k \in \mathbb{N}$. These are in \mathcal{S}^{\prime}.
- Differentiation defined as: $\left(\partial^{\alpha} u\right)(\phi)=(-1)^{|\alpha|} u\left(\partial^{\alpha} \phi\right)$.
- FT of L^{p} functions or tempered measures defined in \mathcal{S}^{\prime}

Examples of tempered distributions and their FT

- $u=\delta_{0}, \widehat{u}=1$
- $u=D^{\alpha} \delta_{0}$. To find its FT

$$
\begin{gathered}
\widehat{D^{\alpha} \delta_{0}}(\phi)=\left(D^{\alpha} \delta_{0}\right)(\widehat{\phi})=(-1)^{|\alpha|} \delta_{0}\left(D^{\alpha} \widehat{\phi}\right)=(-1)^{|\alpha|} \delta_{0}\left(\left(-\widehat{x)^{\alpha} \phi}(x)\right)\right. \\
=(-1)^{|\alpha|} \widehat{\delta_{0}}\left((-x)^{\alpha} \phi(x)\right)=\int x^{\alpha} \phi(x)
\end{gathered}
$$

- So $\widehat{D^{\alpha} \delta_{0}}=x^{\alpha}$.
- $u=x^{\alpha}, \widehat{u}=D^{\alpha} \delta_{0}$
- $u=\sum_{j=1}^{J} a_{j} \delta_{p_{j}}, \widehat{u}(\xi)=\sum_{j=1}^{J} a_{j} e^{2 \pi i p_{j} \xi}$.
- Poisson Summation Formula (PSF): $u=\sum_{k \in \mathbb{Z}^{n}} \delta_{k}, \widehat{u}=u$

Proof of the Poisson Summation Formula

- $\phi \in \mathcal{S}$. Define $g(x)=\sum_{k \in \mathbb{Z}^{n}} \phi(x+k)$.
- g has \mathbb{Z}^{n} as a period lattice: $g(x+k)=g(x), x \in \mathbb{R}^{n}, k \in \mathbb{Z}^{n}$.
- The periodization g may be viewed as $g: \mathbb{T}^{n} \rightarrow \mathbb{C}$.
- FT of g lives on $\widehat{\mathbb{T}^{n}}=\mathbb{Z}^{n}$. The Fourier coefficients are

$$
\widehat{g}(k)=\int_{\mathbb{T}^{n}} \sum_{m \in \mathbb{Z}^{n}} \phi(x+m) e^{-2 \pi i k x} d x=\widehat{\phi}(k)
$$

- From decay of $\widehat{\phi}$ follows that the FS of $g(x)$ converges absolutely and uniformly and

$$
g(x)=\sum_{k \in \mathbb{Z}^{n}} \widehat{\phi}(k) e^{2 \pi i k x}
$$

- $x=0$ gives the PSF: $\sum_{k \in \mathbb{Z}^{n}} \phi(k)=\sum_{k \in \mathbb{Z}^{n}} \widehat{\phi}(k)$.

FT behavior under linear transformation

- Suppose $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a non-singular linear operator. $u \in \mathcal{S}^{\prime}$, $v=u \circ T$.
- Change of variables formula for integration implies

$$
\widehat{v}=\frac{1}{|\operatorname{det} T|} \widehat{u} \circ T^{-\top} .
$$

- Write $\mathbb{R}^{n}=H \oplus H^{\perp}, H$ a linear subspace.
- Projection onto subspace defined by

$$
\left(\pi_{H} f\right)(h):=\int_{H^{\top}} f(h+x) d x, \quad(h \in H)
$$

- For $\xi \in H: \widehat{\pi_{H} f}(\xi)=\widehat{f}(\xi)$ (Fubini).

Analyticity of the FT

- Compact support: $f: \mathbb{R} \rightarrow \mathbb{C}, f \in L^{1}(\mathbb{R}), f(x)=0$ for $|x|>R$.
- FT defined by

$$
\widehat{f}(\xi)=\int_{\mathbb{R}} f(x) e^{-2 \pi i \xi x} d x
$$

- Allow $\xi \in \mathbb{C}, \xi=s+i t$ in the formula.

$$
\widehat{f}(s+i t)=\int f(x) e^{2 \pi t x} e^{-2 \pi i s x} d x
$$

- Compact support implies $f(x) e^{2 \pi t x} \in L^{1}(\mathbb{R})$, so integral is defined.
- Since $e^{-2 \pi i x \xi}$ is analytic for all $\xi \in \mathbb{C}$, so is $\widehat{f}(\xi)$.
- Paley-Wiener: $f \in L^{2}(\mathbb{R})$. The following are equivalent:
(a) f is the restriction on \mathbb{R} of a function F holomorphic in the strip
$\{z:|\Im z|<a\}$ which satisfies

$$
\int|F(x+i y)|^{2} d x \leq C, \quad(|y|<a)
$$

(b) $e^{a|\xi|} \widehat{f}(\xi) \in L^{2}(\mathbb{R})$.

Application: the Steinhaus tiling problem

- Question of Steinhaus: Is there $E \subseteq \mathbb{R}^{2}$ such that no matter how translated and rotated it always contains exactly one point with integer coordinates?
- Two versions: E is required to be measurable or not
- Non-measurable version was answered in the affirmative by Jackson and Mauldin a few years ago.
- Measurable version remains open.
- Equivalent form (R_{θ} is rotation by θ):

$$
\begin{equation*}
\sum_{k \in \mathbb{Z}^{2}} \mathbf{1}_{R_{\theta} E}(t+k)=1, \quad\left(0 \leq \theta<2 \pi, t \in \mathbb{R}^{2}\right) \tag{5}
\end{equation*}
$$

- We prove: there is no bounded measurable Steinhaus set.
- Integrating (5) for $t \in[0,1]^{2}$ we obtain $|E|=1$.
- LHS of (5) is the \mathbb{Z}^{2}-periodization of $\mathbf{1}_{R_{\theta} E}$. Hence $\widehat{\mathbf{1}_{R_{\theta} E}}(k)=0$, $k \in \mathbb{Z}^{2} \backslash\{0\}$.
- $\widehat{\mathbf{1}_{E}}(\xi)=0$, whenever ξ on a circle through a lattice point

The circles on which $\widehat{\widehat{1}_{E}}$ must vanish

Application: the Steinhaus tiling problem: conclusion

- Consider the projection f of $\mathbf{1}_{E}$ on \mathbb{R}.
E bounded $\Longrightarrow f$ has compact support, say in $[-B, B]$.
- For $\xi \in \mathbb{R}$ we have $\widehat{f}(\xi)=\widehat{\mathbf{1}_{E}}(\xi, 0)$, hence

$$
\widehat{f}\left(\sqrt{m^{2}+n^{2}}\right)=0, \quad(m, n) \in \mathbb{Z}^{2} \backslash\{0\}
$$

- Landau: The number of integers up to x which are sums of two squares is $\sim C x / \log ^{1 / 2} x$.
- Hence \widehat{f} has almost R^{2} zeros from 0 to R.
- $\operatorname{supp} f \subseteq[-B, B]$ implies $|\widehat{f}(z)| \leq\|f\|_{1} e^{2 \pi B|z|}, z \in \mathbb{C}$
- But such a function can only have $O(R)$ zeros from 0 to R.

Zeros of entire functions of exponential type

- Jensen's formula: F analytic in the disk $\{|z| \leq R\}, z_{k}$ are the zeros of F in that disk. Then

$$
\sum_{k} \log \frac{R}{\left|z_{k}\right|}=\int_{0}^{1} \log \left|F\left(R e^{2 \pi i \theta}\right)\right| d \theta
$$

- It follows

$$
\#\left\{k:\left|z_{k}\right| \leq R / e\right\} \leq \int_{0}^{1} \log \left|F\left(R e^{2 \pi i \theta}\right)\right| d \theta
$$

- Suppose $|F(z)| \leq A e^{B|z|}$. Then RHS above is $\leq B R+\log A$.
- Such a function F can therefore have only $O(R)$ zeros in the disk $\{|z| \leq R\}$.

