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University of Crete – Department of Mathematics and Applied Mathematics
Problem Set No 11

Solutions

1. In the lecture we showed that if f ∈ C(T) has non-zero Fourier coefficients only on the powers of 3 then
SNf converges to f uniformly on T.
Prove the same if the Fourier coefficients of f are non-zero only at the locations ±n1,±n2,±n3, . . ., with

1 ≤ n1 < n2 < n3 < · · · , where nk+1

nk
≥ ρ > 1, for k ≥ 1.

Solution:
The only thing that needs to change in our proof of the case with frequencies at ±3n is that we shall need a

different kernel in place of the de la Vallée Poussin kernel. We need a kernel RN whose Fourier coefficients (on
the positive axis, and symmetrically on the negative frequency axis) up to N are equal to 1, its Fourier coefficients
from N to ρN are bounded by 1 and its coefficients from ρN and beyond are 0.
For this we define

RN (x) = ANK⌊ρN⌋(x)−BNKN (x)

for two appropriate numbers AN , BN . The Fourier coefficients of RN are shown below.

0 N ⌊ρN⌋−N

1

BN

−⌊ρN⌋

AN

The two isosceles triangles (−⌊ρN⌋, 0) – (⌊ρN⌋, 0) – (0, AN ) and (−N, 1) – (N, 1) – (0, AN ) are similar. We
clearly have BN = AN − 1 and we can find AN by the similarity of the two triangles

AN − 1

AN
=

N

⌊ρN⌋
∼ 1

ρ

which leads to AN ∼ ρ
ρ−1 , BN ∼ ρ

ρ−1 − 1. It is important that these quantities converge to constants (ρ/(ρ− 1) and
1/(ρ− 1) respectively).
Hence RN ∗ f = ANK⌊ρN⌋ ∗ f(x)−BNKN ∗ f(x). Since K⌊ρN⌋ ∗ f and KN ∗ f both converge uniformly to f and

AN → ρ/(ρ− 1), BN → 1/(ρ− 1), it follows that RN ∗ f converges uniformly to f .
Now, as in the original proof, we observe that RN ∗ f and SN ∗ f differ only by a quantity that tends to 0

uniformly in x and this completes the proof.

2. Define the function f : R → R to be 0 on the irrationals and at 0 and to be equal to 1/n on every rational
of the form m/n with (m,n) = 1. Show that f is continuous exactly on the irrationals and at 0.

Solution:
Assume x = m

n is a non-zero rational, with (m,n) = 1. Then f(x) = 1/n. If we approach x by any sequence of
irrationals we get 0 which is ̸= f(x), so x is not a point of continuity.
If x = 0 then f(0) = 0. If xn → x then we break up the sequence xn in its rational members, call it rn, and its

irrational members, call it qn. Then f(qn) = 0 so the limit is 0 on that sequence and since rn → 0 it follows that
the denominators of rn (we may assume rn ̸= 0) tend to infinity, so f(rn) → 0, and this shows that 0 is a point of
continuity.
If x is irrational, so f(x) = 0, and xn → x again we break up the sequence xn in its rational members, call

it rn, and its irrational members, call it qn. Along qn the limit is 0 and along rn the limit is again 0 as, again,
the denominators must tend to infinity. No irrational number can be the limit of a sequence of rationals unless
the denominators of that sequence tend to infinity. If the denominators did not tend to infinity we could find a
subsequence with bounded denominators. But such a convergent sequence must eventually be constant, so our
number x would be rational.
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3. The function f : R → R is increasing. Show that there exists a countable set E ⊆ R, possibly empty, such
that f is continuous on R \ E.

Solution:
At any point x ∈ R the side limits L(x) = limt→x− f(t) and R(x) = limt→x+ f(t) exist and are real numbers

because of the monotonicity of f . The function f is continuous at x if and only if L(x) = R(x) (and then f(x) is
also forced to have the same value). So if x is a point of discontinuity we have L(x) < R(x).
If x < y are two different points of discontinuity we have L(x) < R(x) ≤ L(y) < R(y), because f is increasing.

If we map each point of continuity to any rational number in the nonempty open interval (L(x), R(x)) it follows,
from the above remark, that two different discontinuities x and y get mapped to different rational numbers. This
mapping is therefore a 1-1 map from the set of discontinuities into the rational numbers. Since the rational numbers
are countable then so are the discontinuities of f .


