1. If $f \in C^1(\mathbb{T})$ show that $\sum_{n \in \mathbb{Z}} |\widehat{f}(n)| < \infty$ (and thus that the Fourier series of f converges uniformly to f). $\bigvee \sum_{n \neq 0} |\widehat{f}(n)| = \sum_{n \neq 0} \frac{1}{|n|} |in\widehat{f}(n)|.$

Solution: We know that $\widehat{f'}(n) = in\widehat{f}(n)$, for all $n \in \mathbb{Z}$. So we have

$$\begin{split} \sum_{n \neq 0} \left| \widehat{f}(n) \right| &= \sum_{n \neq 0} \frac{1}{|n|} \left| in \widehat{f}(n) \right| \\ &= \sum_{n \neq 0} \frac{1}{|n|} \left| \widehat{f'}(n) \right| \\ &\leq \left(\sum_{n \neq 0} \frac{1}{|n|^2} \right)^{1/2} \cdot \left(\sum_{n \neq 0} \left| \widehat{f'}(n) \right|^2 \right)^{1/2} \text{ by the Cauchy-Schwarz inequality} \\ &= \left(\sum_{n \neq 0} \frac{1}{|n|^2} \right)^{1/2} \cdot \left\| f' \right\|_2^2 \text{ by the Parseval identity and since } \widehat{f'}(0) = 0. \end{split}$$

Since $f' \in C(\mathbb{T})$ we also have that $f' \in L^2(\mathbb{T})$, so the upper bound we found above is a finite number. Since $\sum_n \left| \widehat{f}(n) \right| < \infty$ the Fourier Series of f converges absolutely and uniformly on \mathbb{T} .

2. Compute, as a function of $\alpha \in \mathbb{R} \setminus \mathbb{Z}$, a formula for the series

$$\sum_{n=-\infty}^{\infty} \frac{1}{(n+\alpha)^2}$$

 \bigvee Let $f(x) = \frac{\pi}{\sin(\pi\alpha)} e^{i(\pi-x)\alpha}$. Show that $\widehat{f}(n) = \frac{1}{n+\alpha}$ $(n \in \mathbb{Z})$ and use Parseval's formula.

Solution: You can verify the identity $\hat{f}(n) = \frac{1}{n+\alpha}$ suggested in the hint by evaluating carefully the integral

$$\widehat{f}(n) = \frac{\pi}{\sin(\pi\alpha)} \frac{1}{2\pi} \int_{0}^{2\pi} e^{i((\pi-x)\alpha - nx)} dx$$

Then, by Parseval's identity, we have

$$\sum_{n} \frac{1}{(n+\alpha)^2} = \|f\|_2^2 = \frac{\pi^2}{\sin^2(\pi\alpha)} \frac{1}{2\pi} \int_0^{2\pi} dx = \frac{\pi^2}{\sin^2(\pi\alpha)}.$$

3. If f(x) = x, for $x \in [0, 2\pi]$, compute the Fourier coefficients of f and use Parseval's formula to compute the sum $\sum_{n=1}^{\infty} \frac{1}{n^2}$.

Solution: We have $\hat{f}(0) = \pi$ and for $n \neq 0$ we can calculate (using integration by parts) that $\hat{f}(n) = \frac{i}{n}$. By Parseval's identity we obtain

$$\pi^{2} + \sum_{n \neq 0} \frac{1}{n^{2}} = \sum_{n \in \mathbb{Z}} \left| \widehat{f}(n) \right|^{2} = \left\| f \right\|_{2}^{2} = \frac{1}{2\pi} \int_{0}^{2\pi} x^{2} \, dx = \frac{4}{3}\pi^{2}$$

which implies

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$