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Solutions

1. If f € C1(T) show that ZnGZ‘ (n )‘ < oo (and thus that the Fourier series of f converges uniformly to

n.
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Solution: We know that f’ (n) =inf ( ), for all n € Z. So we have
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= Z 2 ‘ Hf’||§ by the Parseval identity and since f/(0) = 0.

o 7l
Since f' € C
Since ),

T) we also have that f’ € L?(T), so the upper bound we found above is a finite number.
i ‘ < oo the Fourier Series of f converges absolutely and uniformly on T.
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2. Compute, as a function of @ € R\ Z, a formula for the series
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¥V Let f@) = G ei(m=2)a_ Show that f(n) = —— (n € Z) and use Parseval’s formula.

Solution: You can verify the identity f(n) = suggested in the hint by evaluating carefully the integral

n+a
27

—~ T 1 )
_ - i((r—z)a—nz der.
f(n) sin(ma) 27 Oje *

Then, by Parseval’s identity, we have
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3. If f(z) =z, for x € [0,27], compute the Fourier coefficients of f and use Parseval’s formula to compute
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Solution: We have f(()) = 7 and for n # 0 we can calculate (using integration by parts) that f(n) = L. By
Parseval’s identity we obtain
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which implies



