- 1. Prove that $e^x = 1 + x + x^2/2 + O(x^3)$ for $x \to 0$.
- **2.** If $a_n = O(n)$ show that $\sum_{k=1}^n a_k = O(n^2)$.
- **3.** If f(x) = o(x) for $x \to 0$ show that

$$\frac{1}{1 - f(x)} = 1 + o(x)$$

- 4. If $\epsilon > 0$ show that $\log x = o(x^{\epsilon})$ for $x \to \infty$.
- 5. Show that $\sqrt{x + \sqrt{x}} = (1 + o(1))x^{1/4}$ for $x \to 0^+$.
- 6. Exactly one of the following relations is correct. Which one and why?

(a)
$$2^{o(n)} = o(2^n)$$
, (b) $2^{O(n)} = O(2^n)$.