Turn in your solutions in class on Thursday 5/3/2020. Turn in also the previous set that you forgot to turn in this Thursday. Write briefly without ommitting the essentials.

1. If $f \in L^1(\mathbb{T})$, $g \in C(\mathbb{T})$ show that $f * g \in C(\mathbb{T})$.

Write $f * g(x_0) - f * g(x_0 + h)$ as an integral and use the Dominated Convergence Theorem in order to show that it goes to 0 for $h \to 0$.

2. If $f \in L^1(\mathbb{T})$, $g \in C^1(\mathbb{T})$ show that $f * g \in C^1(\mathbb{T})$ and that

(f * g)' = f * g'.

Express the difference $f * g'(x_0) - \frac{1}{h}(f * g(x_0 + h) - f * g(x_0))$ as an integral and use the Dominated Convergence Theorem to show that it goes to 0 as $h \to 0$.

3. Find a closed formula for the Dirichlet kernel of order *N*:

$$D_N(x) = \sum_{k=-N}^{N} e^{ikx}.$$

 \bigvee Use the formula for the finite geometric series $1 + a + a^2 + a^3 + \dots + a^{n-1} = \frac{1-a^n}{1-a}$, for $a \in \mathbb{C} \setminus \{1\}$.