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Abstract. Suppose an is a real, nonnegative sequence that does not increase exponentially.
For any p < 1 we construct a Lebesgue measurable set E ⊆ R which has measure at least p
in any unit interval and which contains no affine copy {x + tan : n ∈N} of the given sequence
(for any x ∈ R, t > 0). We generalize this to higher dimensions and also for some “non-linear”
copies of the sequence. Our method is probabilistic.
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1. Introduction

In Euclidean Ramsey Theory one is interested in assuming some kind of largeness for
sets E in Euclidean space Rd, or, sometimes in Zd, and concluding that E then contains
a “copy” of a pattern. The most famous such example is perhaps Szemeredi’s Theorem
[Sze75] which states that any subset of the integers with positive density contains arib-
trarily long arithmetic progressions. Another well known example is the theorem of Fal-
coner and Marstrand [FM86], Furstenberg, Katznelson and Weiss [FKW90] and Bourgain
[Bou86] (see also [Kol04]) that if the set E ⊆ Rd has positive Lebesgue density (this means
that there are arbitrarily large cubes where E takes up at least a constant fraction of the
measure) then its points implement all sufficiently large distances (conjecture by Székely
[Szé83]).

Another well known problem, very much related to the contents of this paper, is the so-
called Erdős similarity problem: A set A ⊆ R is called universal in measure if whenever
E ⊆ R has positive Lebesgue measure we can find an affine copy of A contained in E. In
other words x + tA ⊆ E for some x ∈ R, t > 0. It is easy to see that every finite set A
is universal (just look close enough to some point of density of E, shrink A enough and
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average the number of points of the copy ofA that belong to E over translates ofA nearby)
but it has been conjectured [Erd15] (see also [CFG12, p. 183]) that no infinite set A can
be universal in measure. This is known for many classes of infinite sets but not for all
[Fal84, GLW23, HL98, Kom83, Chl15]. Clearly it would suffice to prove this for A being a
positive sequence an decreasing to 0 but if an decays fast to 0 (so it is in some sense sparse,
hence not that hard to contain) this is still unknown. On the contrary this is known when
log 1

an
= o(n). This is not known if an = 2−n, for example.

In this paper we consider an analogue of the Erdős similarity problem “in the large”.
Let A ⊆ R be a discrete, unbounded, infinite set in R. Can we find a “large” measurable
set E ⊆ R which does not contain any affine copy x + tA of A (for any x ∈ R, t > 0)? Our
attention to this problem was drawn by a recent paper by Bradford, Kohut and Mooroogen
[BKM23] in which the authors prove that if A is an infinite arithmetic progression then
this is indeed possible: for any p ∈ [0, 1) they construct a Lebesgue measurable set E, with
measure at least p in any interval of length 1, which does not contain any affine copy of
A. This is clearly equivalent to being able to obtain, for any p ∈ [0, 1) a set E avoiding all
infinite arithmetic progressions and having measure ≥ p in any interval of length 1 whose
endpoints are integers. (Indeed, if the set E has measure at least p in every interval of the
form [n,n + 1], n ∈ Z, then, since for any x the interval [x, x + 1] is contained in the union
of two such unit-length intervals with integer endpoints, we obtain that [x, x + 1] \ E has
measure at most 2(1−p). Since p can be as close to 1 as we want, this implies that [x, x+1]\E
has measure as close to 0 as we want.) From now on we follow this simplification and we
deal only with intervals with integer endpoints (in any dimension).

We generalize the result of [BKM23] to sequences of nonnegative numbers A which do
not grow too fast. To state our result, we introduce the following class of sequences.
Definition 1.1. We say that a real sequence A = {an, n ∈N} is in the class (A) if

(1) a0 = 0,
(2) an+1 − an ≥ 1, for every n ∈N.
(3) log an = o(n)

Remark. Since the problem we are studying is translation invariant condition 1.1.(1) in
Definition 1.1 is unnecessary, but we keep it as it simplifies the proofs somewhat.

Writing
(1.1) A(t) = |A ∩ [0, t]|
for the counting function of the setA, notice that the growth condition 1.1.(3) is equivalent
to the limit, as t→ +∞,

(1.2) A(t)
log t

→ +∞.

Our main result is the following.
Theorem 1.1. Consider the sequenceA = {an : n ∈N} which belongs to the class (A). Then,
for each 0 ≤ p < 1, there exists a Lebesgue measurable set E ⊆ R such that

|E ∩ [m,m + 1]| ≥ p, for all m ∈ Z,
but E does not contain any affine copy of A.
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As in the case of the Erdős similarity problem described above, the sparser the set A
is the easier it should be to be contained in large sets, so it is not surprising that we had
to impose a growth condition (to belong to the class (A)). It remains an open question if a
similar set E can be constructed when A grows exponentially or faster.

Question 1. Is there a sequence 0 < an → +∞ and a number p ∈ [0, 1) such that one can find
an affine copy of A = {an : n ∈N} in any set E ⊆ R which has measure more than p in any
interval of length 1?

Unlike the approach taken in [BKM23] our method of proof is probabilistic. We construct
a family of random sets and we show that, with high probability, such a random set will
have all the properties we want. This method turns out to be extremely flexible, and this
allows us to generalize. Not only can we deal with essentially arbitrary and unstructured
sequences A but we can also relax the sense in which we seek copies of A in the large set
E. Instead of scaling the elements of A and translating them

x + tan, x ∈ R, t > 0,

we can allow for more general transformations
(1.3) x + ϕ(n, t) · an, x ∈ R, t > 0.

Theorem 1.2. Consider the set A = {an : n ∈ N}, which belongs to the class (A), and let
ϕ(n, t) : N × (0,+∞) → (0,+∞) be such that for each n the function ϕ(n, t) is increasing in t
and is such that for all n ∈N we have
(1.4) C1t ≤ ϕ(n + 1, t)an+1 − ϕ(n, t)an

and
(1.5) ϕ(n, t) ≤ C2t, for all t > 0,

for some C1,C2 > 0. Then, for each 0 ≤ p < 1, there exists a Lebesgue measurable set E ⊆ R
such that E intersects every interval of unit length in a set of measure at least p, but E does
not contain the set {

x + ϕ(n, t) · an : n ∈N
}

for any choice of x ∈ R, t > 0.

We adopt certain arguments from [Kol97, Section 3] where it is proved, on the Erdős
similarity problem, that sequences with a finite limit, say 0, which are not decaying very fast
(e.g. they decay polynomially or subexponentially but not, for instance, exponentially fast –
compare to our growth condition (1.1.(3))), cannot be universal in measure, by showing the
existence of a randomly constructed set E ⊆ [0, 1], avoiding all affine copies of the sequence.

The measure assumption makes this problem different than other “avoidance" problems,
where the avoiding set is often taken to have zero Lebesgue measure but to have large
Hausdorff dimension or Fourier dimension. For example, in [Kel08], a compact subset of R
is constructed that has full Hausdorff dimension but does not contain any 3-term arithmetic
progression. See also [CLP22, DPZ21, FP18, Mag11, Mát17, Shm17, Yav21].

We can also prove the following result in higher dimension. We phrase it as avoiding
linear images of a set in Euclidean space into another Euclidean space. In this manner
we obtain easily some corollaries, Theorem 1.1 one of them, and its proof is rather simpler
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than that of Theorem 1.1 given in §3. But it does not extend easily to more complicated
transformations such as those in Theorem 1.2, so we choose to stay with linear maps.

Theorem 1.3. Let d1, d ≥ 1, b, f > 0, p ∈ [0, 1). Let also α(R) be a function satisfying α(R)
log R

→
+∞ as R→ +∞.

Then if A ⊆ Rd1 is a discrete point set such that

(1.6) |A ∩ BR(0)| ≤ C2Rb, (R > 0)

there is a set E ⊆ Rd such that

i.
∣∣∣E ∩ (m + [0, 1]d)

∣∣∣ ≥ p for all m ∈ Zd,
ii. For any linear map T : Rd1 → Rd if for arbitrarily large values of R

(1.7) T(A) ∩ BR(0)

contains at least α(R) points with separation R− f then
(1.8) T(A) is not contained in E.

Proof of Theorem 1.1 using Theorem 1.3. Apply Theorem 1.3 with d1 = 2, d = 1, b = 1, α(x) =
A(x1/2) (where A(x) is the counting function ofA), f = 1 (there is great flexibility in choosing
α(x), b, f ) and the set

P = A × {1} ⊆ R2

to obtain a set E ⊆ R satisfying |E ∩ [m,m + 1]| ≥ p for all m ∈ Z. We see that (1.6) is satisfied.
Let now T : R2 → R be given by the 1 × 2 matrix T = (t, x) so that

T(P) = x + tA.

For any x ∈ R, t > 0, the set (x + tA) ∩ [−R,R] contains at least A(R/t) points of separation
t, so, if R is large enough, it contains α(R) = A(R1/2) points with separation R−1. It follows
that x + tA is not contained in E. □

Corollary 1.4 (Avoiding linear images of general sets in high dimension). Let p ∈ [0, 1),
d ≥ 1, an ∈ Rd, for n ∈ N, with log |an| = o(n) and |an − an+1| ≥ 1 for all n ∈ N. Then there is a
set E ⊆ Rd such that for all m ∈ Zd we have

∣∣∣E ∩ (m + [0, 1]d)
∣∣∣ ≥ p and such that for all x ∈ Rd

and for all non-singular linear T : Rd → Rd the set {x + Tan : n ∈N} is not contained in E.

Proof. Take A ⊆ R2d to be the set A × {(1, 0, . . . , 0︸     ︷︷     ︸
d

)}, where A = {an : n ∈N}. Writing A(s) =

#(A ∩ Bs(0)) for the counting function of A we have A(R)
log R

→ +∞. Use Theorem 1.3 with

d1 = 2d, b = 1, α(R) = A(R1/2), f = 1. Let T : Rd → Rd be non-singular, x ∈ Rd, and define the
linear map S : R2d → Rd by

S(u, v) = S(u, v1, v2, . . . , vd) = Tu + v1x.

In other words the d × (2d) matrix of S is (T | x | 0) in block form. It follows that
S(A) = {Tan + x : n ∈N}.
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Since T is non-singular it follows that if R > 0 is sufficiently large the set S(A) ∩ BR(0)
contains at least α(R) points with separation ≥ R−1 so the set E ⊆ Rd furnished by Theorem
1.3 does not contain S(A), as we had to prove. □

Corollary 1.5 (Corollary 6 from [BKM23]). If p ∈ [0, 1) then there exists a set E ⊆ Rd such
that

∣∣∣E ∩ (m + [0, 1]d)
∣∣∣ ≥ p for all m ∈ Zd and it does not contain any set of the form x +N∆,

with x ∈ Rd, ∆ ∈ Rd \ {0} (an arithmetic progression in Rd).

Proof. We use Corollary 1.4 with the sequence an = (n, 0, . . . , 0) ∈ Rd, x ∈ Rd and any non-
singular d × d matrix T that maps (1, 0, . . . , 0) to ∆. □

The outline of this note is as follows. In §3 we give the proof of Theorem 1.1 without
using Theorem 1.3, and we indicate how the same proof also works for Theorem 1.2. In
§4 we extend our technique to cover linear transformations of given sequences from one
Euclidean space to another and prove Theorem 1.3 and some corollaries.
Added in revision: The results in [BGK+22], which came after this paper was submitted,
are very relevant to the results in this paper and contain some improvements.

2. Warm-up and some basic tools: no translational copies

In this section we introduce the basic probabilistic method by proving the more restricted
Theorem 2.1: we can avoid all translations of a given infinite sequence 0 ≤ an → +∞ with
a set which is arbitrarily large everywhere. This is considerably easier than avoiding all
affine copies of the sequence, when scaling the sequence as well as translating it is allowed.
For translations we have only one degree of freedom while for affine copies we have two.
Still, some important ingredients of the method will be evident in the proof of Theorem 2.1
below. In §3 we will introduce the extra discretization in scaling space that will be required.

Theorem 2.1. LetA = {a0 = 0 < a1 < a2 < · · ·} ⊆ R be a sequence with an → +∞, and p ∈ [0, 1).
Then we can find a Lebesgue measurable set E ⊆ R such that no translate of A

x +A, x ∈ R,
is contained in E, and such that for each m ∈ Z we have

|E ∩ [m,m + 1]| ≥ p.

Proof. Let q < 1 be defined by 1 − q = 1
2 (1 − p) (or q = 1

2 (1 + p)). Passing to a subsequence
we can assume that an+1 − an ≥ 1 for all n. We construct a random set E by breaking up
each unit interval [m,m + 1], m ∈ Z, into a number Nm of equal intervals and keeping each
of these subintervals with probability q, independently, into our set E. As |m| increases the
number Nm will also have to increase, so let us take Nm = max {K, |m|} say, where the large
positive integer K will be determined later.

-4 -3 -2 -1 0 1 2 3 4

Figure 1. How the random set E looks like
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Define now for x ∈ R the random function
ϕ(x) = 1 (x +A ⊆ E) .

Since all points of x+A are in different random intervals it follows, by independence, that
Eϕ(x) = P [x +A ⊆ E] = 0. Let the set of “bad” x be

B = {x ∈ R : x +A ⊆ E}.
We have

E|B| =
∫
Eϕ(x) dx = 0,

hence |B| is almost surely 0.
It remains to make sure that |E ∩ [m,m + 1]| ≥ p for all m ∈ Z. Fix m and let X1, . . . ,XNm

be 0/1 random variables such that Xi is 0 if we included the i-th subinterval of [m,m+1] into
the set E and is 1 otherwise. In other words, Xi denotes the absence of the i-the subinterval
from the set E. Clearly EXi = 1 − q and the random variable

X =
Nm∑
i=1

Xi (the number of missing subintervals)

is a sum of independent indicator random variables with EX = (1−q)Nm and we can use the
very versatile large deviation Chernoff inequality (to be used repeatedly in §§3.1,4 below)
(2.1) P [|X − EX| ≥ ϵEX] ≤ 2e−cϵEX

(see [Che52, AS16]) with ϵ = 1 to obtain
P
[|E ∩ [m,m + 1]| < p

]
= P
[
X > (1 − p)Nm

]
= P [X − EX > EX]
≤ 2 exp(−c1(1 − q) max {K, |m|}).(2.2)

Define now the bad events Bm =
{|E ∩ [m,m + 1]| < p

} which we want not to hold, for all
m ∈ Z, and observe that the above inequality means that we can choose K large enough to
achieve ∑

m∈Z
P [Bm] <

1
2
.

This means that with probability at least 1/2 none of the bad events Bm hold and, with the
same probability, the set B has measure 0. We now amend our random set E by removing
from it the set B (the set of first terms of those x+Awhich are contained in E). Thus arises a
set E′, which differs from E by a set of measure 0, and which contains no translate ofA. □
Remark 2.1. It is not necessary to assume that an → +∞ in Theorem 2.1. It suffices to
assume that the set A is infinite. If A does not contain a sequence tending to infinity
(for Theorem 2.1 to apply to it) then it will have a finite accumulation point, so a result of
Komjáth [Kom83] guarantees the existence of a set Ẽ ⊆ [0, 1], of measure arbitrarily close
to 1, which contains no translate of A. Repeating Ẽ 1-periodically

E =
⋃
n∈Z

Ẽ + n

we obtain a set E with the required properties. For a probabilistic proof of this result in the
spirit of the present paper see [Kol97].
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Remark 2.2. The Chernoff inequality (2.1) is extremely useful when one needs to control
a random variable X (this means that one wants to ensure, with high probability, that X
is near its mean EX) which is a sum of indicator, independent random variables. The key
is that the mean EX cannot be very small, as it appears in the exponent in the right hand
side of (2.1). Since one usually wants to do so simultanesouly for a large number of random
variables X, one key situation to keep in mind is the following: if the number of random
variables to be controlled is polynomial in N (a parameter) it is enough that their mean are
at least a large multiple of log N.

With minor modifications of the proof we can get a progressively denser set E avoiding
all translates. We throw in the whole negative half line (as we could have done in Theorem
1.1 too).

Theorem 2.2. Let A = {a0 = 0 < a1 < a2 < · · ·} ⊆ R be a sequence with an → +∞. Then we
can find a Lebesgue measurable set E ⊆ R such that no translate of A

x +A, x ∈ R,
is contained in E, and such that

(−∞, 0] ⊆ E and |E ∩ [m,m + 1]| → 1− as m→ +∞.

Proof. We indicate the differences with the proof of Theorem 2.1 and omit some details.
Our random set E now will be of the same type as in the proof of Theorem 2.1 but with

the probability of including the small subintervals tending slowly to 1 as we go out to +∞
and with the negative half line contained in E to begin with.

Let us view the probability of keeping an interval as a function p(s) defined on the real
line. In the proof of Theorem 2.1 this function was constant. Here it will be constant on all
intervals of the form [m,m + 1], m ∈ Z.

With ϕ(x) = 1 (x +A ⊆ E) we need again to ensure that Eϕ(x) = 0 for all x ∈ R. After
assuming, as in the previous proof, that the points of A differ by at least 1, we again have
independence of all events x + a ∈ E for a ∈ A so that Eϕ(x) = 0 becomes equivalent to∏

a∈A
p(x + a) = 0,

which, writing q(s) = 1 − p(s), is equivalent to

(2.3)
∑
a∈A

q(x + a) = +∞.

Let 0 = k1 < k2 < · · · be those positive integers for which
[k, k + 1) ∩A , ∅.

Define then q(x) to be 1/i in the interval [ki, ki+1), i = 1, 2, . . .. It follows easily that for all
x ∈ R we have (2.3): since the function q(·) is decreasing we have q(x + an) ≥ q(an) if x ≤ 0
and if x ≥ 0 we have q(x + an) ≥ q(a⌈x⌉+n) since ak+1 − ak ≥ 1 for all k ∈ N. In both cases the
series (2.3) contains a tail of the series

∑
a∈A q(a) which is divergent.

It remains to ensure that the random variables |[m,m + 1] \ E| tend to 0 with m → +∞.
These random variables are 1

Nm
times a sum of independent indicator random variables
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(one for each of the Nm subintervals into which we break up [m,m + 1]) of mean q(m)Nm so
we can use the Chernoff bound (2.1) to obtain

P
[|[m,m + 1] \ E| > 2q(m)

] ≤ 2 exp(−c1q(m)Nm).

To ensure that the sum, over all m ∈ Z of the left hand side is < 1 we can of course pick the
integers Nm to be very large, say Nm = K 1

q(m) |m|, with a sufficiently large constant K > 0.
□

3. No affine copies for slowly increasing sequences

In this section we prove Theorem 1.1 and explain why the proof also gives the more
general Theorem 1.2.
Lemma 3.1. Let A ∈ (A). For all 0 < a < b, 0 ≤ p < 1 and ϵ > 0, there is N0 ∈ N, such that
for all N ≥ N0, there is a set E ⊆ [−N,N] such that

(i) for all m ∈ {−N,−N + 1, ...,N − 1}, we have |E ∩ [m,m + 1]| ≥ p, and
(ii) if the set B consists of all x ∈ [−N,N] for which there is t ∈ [a, b] such that

(a) (x + tA) ∩ [−N,N] ⊆ E and
(b) #((x + tA) ∩ [−N,N]) ≥ A

(
N

10b

)
,

then |B| < ϵ. Here, A(·) is the counting function (1.1) of the setA and A
(

N
10b

)
= |A ∩ [0,N/(10b)]|.

Let us first show how one derives Theorem 1.1 from Lemma 3.1. We give the proof of
Theorem 1.1 in two steps: the first one verifies the result for a restricted scale, that is, for
scales in a compact interval, and the second one concludes for all positive scales, by writing
the whole scaling interval (0,+∞) as a countable union of intervals of the above type.

Step 1. For all 0 < a < b and for each 0 ≤ p < 1, there exists a set E ⊆ R, such that
|E ∩ [m,m + 1]| ≥ p for all m ∈ Z, but E does not contain any affine copies of A with scale in
[a, b].

Consider 0 ≤ p < 1 and a positive increasing sequence {pn}, n = 1, 2, ... such that pn → 1−

and, moreover,

(3.1)
∞∑

n=0

(1 − pn) < 1 − p.

Take also any positive sequence ϵn → 0. According to Lemma 3.1, for 0 < a < b, we can
choose an increasing sequence of natural numbers Nn = Nn(pn, ϵn, a, b) → ∞, for which
there exist sets En ⊆ [−Nn,Nn] with the following properties:

(i) for all m = −Nn, ...,Nn − 1, we have |En ∩ [m,m + 1]| ≥ pn,
(ii) if

An(x, t) = (x + tA) ∩ [−Nn,Nn]
and

Bn = {x ∈ [−Nn,Nn] : ∃t ∈ [a, b] s.t. An(x, t) ⊆ En

and #An(x, t) ≥ A
(Nn

10b

)
},

then |Bn| < ϵn.
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Now take
Ẽn = (−∞,−Nn] ∪ En ∪ [Nn,+∞)

and

E =
∞⋂

n=1

Ẽn.

−Nn · · ·. . . . . . .· · ·Nn0

Figure 2. The set Ẽn.

Then, since
∣∣∣∣Ẽn ∩ [m,m + 1]

∣∣∣∣ ≥ pn for all m ∈ Z, we get from (3.1) that the set E has measure
at least p at every unit interval with integer endpoints. Also, if there exist x, t such that
x+ tA ⊆ E, then x+ tA is also contained in each Ẽn. Having fixed x and t we can then find n0

large enough such that for all n ≥ n0, we have #((x+ tA)∩ [−Nn,Nn]) ≥ A
(

Nn
10b

)
. This implies

that for every n ≥ n0, x ∈ Bn. It follows that for every n ≥ n0, |Bn| < ϵn. Since ϵn → 0, setting
B = {x : ∃t ∈ [a, b] s.t. x + tA ⊆ E},

we get |B| = 0. The null set of “bad" translates B is contained in E (since we assumed that
0 ∈ A), thus removing it from E results in a set E′, which still has measure |E′ ∩ [m,m + 1]| ≥
p for all m ∈ Z, but contains no affine copy of A with scale in [a, b].

Step 2. Completion of the proof of Theorem 1.1.
Take a positive sequence p′n ∈ [0, 1), n ∈ Z, such that

(3.2)
∑
n∈Z

(1 − p′n) < 1 − p.

Consider the intervals [an, bn] = [2n−1, 2n], n ∈ Z. Then, according to Step 1, for each p′n,
there exists a set En such that |En ∩ [m,m + 1]| ≥ p′n, for all m ∈ Z, but for all x ∈ R and for
all t ∈ [an, bn], the set x + tA is not contained in En.

Take
E =
⋂
n∈Z

En.

Assume that for some x ∈ R and some t > 0, x + tA ⊆ E. Then, x + tA ⊆ En, for all n ∈ Z.
However, since there is n0 ∈ Z such that t ∈ [2n0−1, 2n0], the inclusion x+ tA ⊆ En0 cannot be
true. Thus, E does not contain any affine copy ofA with positive scale. Finally, due to (3.2)
we have |[m,m + 1] \ E| < 1 − p, or |E ∩ [m,m + 1]| ≥ p.

3.1. Proof of Lemma 3.1. Fix the scale t ∈ [a, b] and let 0 ≤ p < 1. Consider the positive
sequence given by

(3.3) pN = 1 −

√√√√
log
(

N
10b

)
A
(

N
10b

) .
From (1.2) this implies pN → 1−.
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Partition [−N,N] into unit intervals [m,m + 1], m = −N,−N + 1, ...,N − 1. Divide each
[m,m + 1] further, into kN equal subintervals

Ii,m = m +
[ i − 1

kN
,

i
kN

]
, i = 1, ..., kN,

where

(3.4) kN =
⌈10

a

⌉ N
1 − pN

.

Notice that kN/N→ +∞.
Construct a random set E = EN as follows: keep each Ii,m in E independently of the other

intervals and with probability pN as in (3.3). Then, P(x ∈ E) = pN for each x ∈ [−N,N].

−N · · · -3 -2 -1 0 1 2 3 · · ·N

Figure 3. The random set E.

Let MN(x, t) be the number of elements of (x + tA) ∩ [−N,N] and observe that

(3.5) MN(x, t) ≤ A(2N/a), for x ∈ [−N,N].

For a given set E ⊆ [−N,N], consider the set of “bad" translates

B =
{
x ∈ [−N,N] : ∃t ∈ [a, b] s.t. (x + tA) ∩ [−N,N] ⊆ E

and MN(x, t) ≥ A
( N
10b

)}
.

We first deal with the measure of B. We have

E|B| = E
∫ N

−N
1B(x)dx

=

∫ N

−N
P
[
∃t ∈ [a, b] : (x + tA) ∩ [−N,N] ⊆ E(3.6)

and MN(x, t) ≥ A
( N
10b

)]
dx.(3.7)

In what follows, we estimate from above the probability in (3.7), uniformly in x ∈ [−N,N].
Fix x ∈ [−N,N]. To check whether there exists t ∈ [a, b] such that (x + tA) ∩ [−N,N] ⊆ E,

it is sufficient to check whether such a t exists in a finite set

(3.8) S = S(x) = {t1, t2, ..., tu} ⊆ [a, b].

Write α′0 < α
′
1 < ... < α

′
MN(x,t)−1 for the elements of (x+ tA)∩ [−N,N]. Then, the set S consists

exactly of those t ∈ [a, b] for which some α′j = x + ta j, j = 0, ...,MN(x, t) − 1, is in the set
m +
{
0, 1

kN
, 2

kN
, ..., kN−1

kN
, 1
}
, for some m ∈ {−N,−N + 1, ...,N − 1}. Each of the points α′j = x + ta j

traverses, as t moves from a to b, and as long as the point α′j remains in [−N,N], an interval
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−N · · · -3 -2 -1 0 1 2 3 · · ·N
x

x + t1an1

x + t2an2

Figure 4. As x is held fixed and t grows the points x+ tan cross over interval
endpoints creating events that need to be checked.

of length at most 2N, therefore it meets at most 2NkN interval endpoints of the intervals
Ii,m. Altogether, we have

(3.9) u ≤ 2NkN sup
a≤t≤b

MN(x, t) ≤ c(a)N2(1 − pN)−1A
(2N

a

)
,

where for the last inequality, we used (3.4) and (3.5).
Since kN → +∞, we can take N large enough, say N ≥ N0, so that kN > 1/a, for every

N ≥ N0. Then, the length of each Ii,m is small enough, ≤ a, to ensure that, for each t ∈ [a, b],
the points α′j, j = 0, ...,MN − 1, all belong to different intervals Ii,m. Therefore, for any fixed
x and t,

P
[
(x + tA) ∩ [−N,N] ⊆ E and MN(x, t) ≥ A

( N
10b

)]
≤ P
[
(x + tA) ∩ [−N,N] ⊆ E | MN(x, t) ≥ A

( N
10b

)]
≤ p

A( N
10b )

N .(3.10)

Thus, using the bound (3.9),

P [∃t ∈ S : (x + tA) ∩ [−N,N]) ⊆ E]

≤ c(a)N2(1 − pN)−1A
(2N

a

)
p

A( N
10b )

N .

Thus, (3.7) yields

E|B| ≤ 2c(a)N3(1 − pN)−1A
(2N

a

)
p

A( N
10b )

N .

We want to have
N3(1 − pN)−1A

(2N
a

)
p

A( N
10b )

N → 0,

while pN → 1−, as N → ∞. Since A(·) grows at most linearly at infinity, it suffices to show
that

A
( N
10b

)
log pN

4 log N

A
(

N
10b

)
log pN

−
log(1 − pN)

A
(

N
10b

)
log pN

+ 1

(3.11)

→ −∞.
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To show (3.11), observe first that since limx→+∞ x log
(
1 − x−1/2

)
= −∞, we have

(3.12)
A
(

N
10b

)
log pN

log N
→ −∞,

due to (3.3). Therefore, we also have A
(

N
10b

)
log pN → −∞. Finally, by (3.3) and (3.12) we get

log(1 − pN)

A
(

N
10b

)
log pN

= −1
2

log A
(

N
10b

)
A
(

N
10b

)
log pN

1 −
log log N

10b

log A
(

N
10b

)→ 0.

In other words, we have shown that for every ϵ > 0, there is N1 ≥ N0 such that for all N ≥ N1,
E|B| < ϵ/2, which implies that
(3.13) P(|B| ≥ ϵ) < 1/2, ∀N ≥ N1.

We now turn to the measure of E in every unit interval with integer endpoints. Fix
m ∈ [−N,N]. Let Xm

1 ,X
m
2 , ...,X

m
kN

be independent indicator random variables, with Xm
i = 1 if

and only if Ii,m ⊆ E. Let Ym
i = 1 − Xm

i and denote by Xm =
∑kN

i=1 Xm
i , Ym =

∑kN
i=1 Ym

i their sums.
Then, EYm = (1− pN)kN. Notice also that the total measure kept in [m,m+ 1]∩E is equal to
Xm/kN.

For any δ > 0 we define the “bad" events
Am = {|Ym − EYm| > δEYm}, m = −N,−N + 1, ...,N − 1.

To control P [Am], we use Chernoff’s inequality, [AS16, Che52]: for all δ > 0,
P [Am] ≤ 2e−cδEYm

,

where cδ = min
{
(1 + δ) log(1 + δ) − δ log δ, δ2/2

}
. Take δ = 1/2. It follows that

P
[
|Ym − (1 − pN)kN | >

1
2

(1 − pN)kN

]
≤ 2 exp

(
−1

2
(1 − pN)kN

)
.

Thus, the probability that there is some [m,m + 1] ⊆ [−N,N], such that Am holds, is at
most

4N exp
(
−1

2
(1 − pN)kN

)
and the right hand side tends to zero as N → +∞, by our choice of kN in (3.4). Thus, there
is N2 ≥ N1 such that

(3.14) P [∃m ∈ {−N,−N + 1, ...,N − 1} : Am holds] <
1
2
,

for all N ≥ N2. Then, (3.13) and (3.14) imply the existence of a set E ⊆ R such that, on the
one hand, it satisfies

|B| < ϵ
and on the other hand,

Xm − pNkN ≥ −
1
2

(1 − pN)kN,
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for all m = −N,−N + 1, ...,N − 1, for all N ≥ N2. Thus the measure of E in each unit interval
[m,m + 1], is at least pN − 1

2 (1 − pN)→ 1, as pN → 1−. In other words, for all 0 ≤ p < 1, there
is N3 ≥ N2 such that for all N ≥ N3, we have |E ∩ [m,m + 1]| ≥ p. The proof of Lemma 3.1 is
now complete.

Remark 3.1. Let us indicate here why the proof of Theorem 1.1 just completed also applies
to Theorem 1.2 without any essential changes. First of all, the implication from Lemma
3.1 to Theorem 1.3 (finite to infinite) remains true almost verbatim. So it suffices to ensure
that Lemma 3.1 is true in this case. The main ingredients of the proof of Lemma 3.1 are the
following. Having fixed x and varying t we have to make sure that the following conditions
hold.

C.1 All points of the the (x, t)-copy of the set remain well separated, so that independence
applies and we can multiply the probabilities that they belong to our random set.
This is ensured by (1.4).

C.2 The number of points in the (x, t)-copy of the set in the interval [−N,N] has to be
large as this is the exponent in the upper bound (3.10). Condition (1.5) guarantees
this.

C.3 The number of events that need to be checked so that we are certain that for all t
no (x, t)-copy is contained in our random set is small. This is the number u in (3.8).
What we are doing in the proof is to count how many times each of the points of our
set (as x is held fixed and t increases from a to b) crosses over an interval boundary.
Since the ϕ(n, t) are assumed increasing in t this remains as before.

It should be clear that the conditions imposed on the scaling functions ϕ(n, t) in Theorem
1.2 are far from optimal. They are rather indicative of what can be accomplished with the
method and it is clear that the method could work under different sorts of conditions.

4. The problem in higher dimension

We will derive Theorem 1.3 as a consequence of the more finitary theorem below.

Theorem 4.1. Let d1, d ≥ 1, β, ζ > 0, p ∈ (0, 1). Let also α(N) be a function satisfying
α(N)
log N

→ +∞.

Then if N is sufficiently large and P ⊆ Rd1 is a point set with at most Nζ points there is a
set EN ⊆ [−N,N]d such that

(1)
∣∣∣∣EN ∩

(
m + [0, 1]d

)∣∣∣∣ ≥ p for all m = (m1, . . . ,md) ∈ Zd, with −N ≤ m j < N,
(2) For any linear map T : Rd1 → Rd if

(4.1) T(P) ∩ [−N,N]d

contains at least α(N) points with separation≥ N−β then

(4.2)
(
T(P) ∩ [−N,N]d

)
⊊ EN.

Proof. Let γ > β and split the cube [−N,N]d with a N−γ × · · · ×N−γ-spaced grid of O(dN1+γ)
hyperplanes perpendicular to the d coordinate axes. Define the random set E to contain
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each of the N−γ × · · · ×N−γ-sized cubes independently with probability p′ ∈ (p, 1). We show
that with positive probability one can take EN = E.

The first property of E is a simple consequence of Chernoff bounds and we can assume it
holds with probability > 1

2 working as in the proof of Theorem 1.1.

Let T = (Ti, j) be a linear map Rd1 → Rd. This depends on d · d1 real variables Ti, j, so we
view T as an element ofRd·d1 . Instead of checking condition (2) for all T ∈ Rd·d1 we first show
that there is a small number (polynomial in N) of T’s that need to be checked.

Indeed, the set of N−γ × · · · × N−γ-sized cubes that contain T(P) does not change when T
varies except when one or more of the points in T(P) cross a dividing hyperplane of those
that subdivide [−N,N]d. Let H be one of those O(dN1+γ) hyperplanes and fix an arbitrary
point h ∈ H. Let also u be a unit vector orthogonal to H. For a point x ∈ Rd to belong to H
it must satisfy the linear equation

E(H, x) : u · x = u · h.

Let q ∈ P. For the point T(q) to belong to H we must have

E(H,T(q)) : u · T(q) = u · h,

which is a linear equation in T ∈ Rd·d1 . Taking all such equations in T, over all dividing
hyperplanes H and all q ∈ P we obtain a subdivision of Rd·d1 by

n = O(d ·N1+γ · |P|)

hyperplanes. These n hyperplanes subdivide Rd·d1 into m = O(nd·d1) connected regions (this
is easily proved by induction on the dimension, or see [Buc43]). For any two points T1,T2
in the same region condition (4.2) is either true for both or false for both since we can move
continuously from T1 to T2 without leaving the region and, therefore, without any of the
point T(q) touching any of the dividing hyperplanes H.

It suffices therefore to check condition (4.2) for one point per region. Let us call these
points T1, . . . ,Tm. To guarantee that (4.2) holds for all T it is enough for it to be true for all
T j, j = 1, 2, . . . ,m. Define the bad events

B j =
⋂
q∈P

{
T j(q) ∈ E

}
.

We need to ensure that none of the B j holds, but we only need to check those B j for which
there is a T in the cell of T j for which (4.1) holds. For such a j the number of different
N−γ × · · · × N−γ-sized cubes touched by T j(P) is the same as the number touched by T(P)
which is at least α(N) so

P
[
B j

]
≤ p′α(N),

and it is therefore enough to make sure that

nd·d1p′α(N) = O
(
Nζ·d·d1N(1+γ)d·d1p′α(N)

)
can be made arbitrarily small by choosing N large. This is clearly possible since the term
p′α(N) decays faster than any power of N. □
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T1

T2

Figure 5. The regions defined in T-space by the equations E(H,T(q)) for all
H, q. Only one of the transformations T1, T2 needs to be checked.

Proof of Theorem 1.3. Let pn ∈ (0, 1) be such that

(4.3)
∞∑

n=1

(1 − pn) < 1 − p.

Apply Theorem 4.1 successively for N = n, pn, ζ = b, α(N) = α(R), β = f and the set P =
A ∩ [−n,n]d1 to obtain sets En ⊆ [−n,n]d. Define

E =
∞⋂

n=1

(
En ∪ (Rd \ [−n,n]d)

)
.

It is easy to see because of (4.3) that for any m ∈ Zd we have
∣∣∣E ∩m + [0, 1]d

∣∣∣ ≥ p. Let T :
Rd1 → Rd and let R be such that T(A)∩BR(0) contains α(R) points which are R− f separated.
Let n = ⌈R⌉. It follows from Theorem 4.1 that T(A) ∩ [−n,n]d is not contained in En ∪ (Rd \
[−n,n]d) and therefore not contained in E, as we had to show. □
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