The Fourier Transform and applications

Mihalis Kolountzakis

University of Crete

January 2006

Locally compact abelian groups:

Locally compact abelian groups:

• Integers $\mathbb{Z} = \{ \dots, -2, -1, 0, 1, 2, \dots \}$

<u>Haar measure</u> on G = translation invariant on G: $\mu(A) = \mu(A + t)$. Unique up to scalar multiple.

• Counting measure on $\mathbb Z$

Locally compact abelian groups:

- Integers $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$
- Finite cyclic group $\mathbb{Z}_m = \{0, 1, \dots, m-1\}$: addition mod m

- Counting measure on $\mathbb Z$
- Counting measure on \mathbb{Z}_m , normalized to total measure 1 (usually)

Locally compact abelian groups:

- Integers $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$
- Finite cyclic group $\mathbb{Z}_m = \{0, 1, \dots, m-1\}$: addition mod m

• Reals ${\mathbb R}$

- Counting measure on $\mathbb Z$
- Counting measure on \mathbb{Z}_m , normalized to total measure 1 (usually)
- Lebesgue measure on $\mathbb R$

Locally compact abelian groups:

- Integers $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$
- Finite cyclic group $\mathbb{Z}_m = \{0, 1, \dots, m-1\}$: addition mod m
- Reals ${\mathbb R}$
- Torus $\mathbb{T}=\mathbb{R}/\mathbb{Z}$: addition of reals mod1

- Counting measure on $\mathbb Z$
- Counting measure on \mathbb{Z}_m , normalized to total measure 1 (usually)
- Lebesgue measure on $\mathbb R$
- Lebesgue masure on ${\mathbb T}$ viewed as a circle

Locally compact abelian groups:

- Integers $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$
- Finite cyclic group $\mathbb{Z}_m = \{0, 1, \dots, m-1\}$: addition mod m
- Reals ${\mathbb R}$
- Torus $\mathbb{T}=\mathbb{R}/\mathbb{Z}$: addition of reals mod1
- Products: \mathbb{Z}^d , \mathbb{R}^d , $\mathbb{T} \times \mathbb{R}$, etc

<u>Haar measure</u> on G = translation invariant on G: $\mu(A) = \mu(A + t)$. Unique up to scalar multiple.

- Counting measure on $\mathbb Z$
- Counting measure on \mathbb{Z}_m , normalized to total measure 1 (usually)
- Lebesgue measure on $\mathbb R$
- \bullet Lebesgue masure on ${\mathbb T}$ viewed as a circle
- Product of Haar measures on the components

<u>Character</u> is a (continuous) group homomorphism from G to the multiplicative group U = {z ∈ C : |z| = 1}.

- <u>Character</u> is a (continuous) group homomorphism from G to the *multiplicative* group $U = \{z \in \mathbb{C} : |z| = 1\}.$
- $\chi: G \to U$ satsifies $\chi(h+g) = \chi(h)\chi(g)$

- <u>Character</u> is a (continuous) group homomorphism from G to the multiplicative group U = {z ∈ C : |z| = 1}.
- $\chi: G \to U$ satsifies $\chi(h+g) = \chi(h)\chi(g)$
- If χ, ψ are characters then so is $\chi \psi$ (pointwise product). Write $\chi + \psi$ from now on instead of $\chi \psi$.

- <u>Character</u> is a (continuous) group homomorphism from G to the multiplicative group U = {z ∈ C : |z| = 1}.
- $\chi: \mathcal{G} \to \mathcal{U}$ satsifies $\chi(h+g) = \chi(h)\chi(g)$
- If χ, ψ are characters then so is $\chi \psi$ (pointwise product). Write $\chi + \psi$ from now on instead of $\chi \psi$.
- Group of characters (written *additively*) \widehat{G} is the dual group of G

- <u>Character</u> is a (continuous) group homomorphism from G to the multiplicative group U = {z ∈ C : |z| = 1}.
- $\chi: \mathcal{G} \to \mathcal{U}$ satsifies $\chi(h+g) = \chi(h)\chi(g)$
- If χ, ψ are characters then so is $\chi \psi$ (pointwise product). Write $\chi + \psi$ from now on instead of $\chi \psi$.
- Group of characters (written *additively*) \widehat{G} is the dual group of G
- $G = \mathbb{Z} \Longrightarrow \widehat{G} = \mathbb{T}$: the functions $\chi_x(n) = \exp(2\pi i x n), x \in \mathbb{T}$

- <u>Character</u> is a (continuous) group homomorphism from G to the multiplicative group U = {z ∈ C : |z| = 1}.
- $\chi: \mathcal{G} \to \mathcal{U}$ satsifies $\chi(h+g) = \chi(h)\chi(g)$
- If χ, ψ are characters then so is $\chi \psi$ (pointwise product). Write $\chi + \psi$ from now on instead of $\chi \psi$.
- Group of characters (written *additively*) \widehat{G} is the dual group of G
- $G = \mathbb{Z} \Longrightarrow \widehat{G} = \mathbb{T}$: the functions $\chi_x(n) = \exp(2\pi i x n), x \in \mathbb{T}$
- $G = \mathbb{T} \Longrightarrow \widehat{G} = \mathbb{Z}$: the functions $\chi_n(x) = \exp(2\pi i n x), n \in \mathbb{Z}$

- <u>Character</u> is a (continuous) group homomorphism from G to the multiplicative group U = {z ∈ C : |z| = 1}.
- $\chi: \mathcal{G} \to \mathcal{U}$ satsifies $\chi(h+g) = \chi(h)\chi(g)$
- If χ, ψ are characters then so is $\chi \psi$ (pointwise product). Write $\chi + \psi$ from now on instead of $\chi \psi$.
- Group of characters (written *additively*) \widehat{G} is the dual group of G
- $G = \mathbb{Z} \Longrightarrow \widehat{G} = \mathbb{T}$: the functions $\chi_x(n) = \exp(2\pi i x n), x \in \mathbb{T}$
- $G = \mathbb{T} \Longrightarrow \widehat{G} = \mathbb{Z}$: the functions $\chi_n(x) = \exp(2\pi i n x), n \in \mathbb{Z}$
- $G = \mathbb{R} \Longrightarrow \widehat{G} = \mathbb{R}$: the functions $\chi_t(x) = \exp(2\pi i t x), t \in \mathbb{R}$

- <u>Character</u> is a (continuous) group homomorphism from G to the multiplicative group U = {z ∈ C : |z| = 1}.
- $\chi: \mathcal{G} \to \mathcal{U}$ satsifies $\chi(h+g) = \chi(h)\chi(g)$
- If χ, ψ are characters then so is $\chi \psi$ (pointwise product). Write $\chi + \psi$ from now on instead of $\chi \psi$.
- Group of characters (written *additively*) \widehat{G} is the dual group of G
- $G = \mathbb{Z} \Longrightarrow \widehat{G} = \mathbb{T}$: the functions $\chi_x(n) = \exp(2\pi i x n), x \in \mathbb{T}$
- $G = \mathbb{T} \Longrightarrow \widehat{G} = \mathbb{Z}$: the functions $\chi_n(x) = \exp(2\pi i n x), n \in \mathbb{Z}$
- $G = \mathbb{R} \Longrightarrow \widehat{G} = \mathbb{R}$: the functions $\chi_t(x) = \exp(2\pi i t x), t \in \mathbb{R}$
- $G = \mathbb{Z}_m \Longrightarrow \widehat{G} = \mathbb{Z}_m$: the functions $\chi_k(n) = \exp(2\pi i k n/m), k \in \mathbb{Z}_m$

- <u>Character</u> is a (continuous) group homomorphism from G to the multiplicative group U = {z ∈ C : |z| = 1}.
- $\chi: \mathcal{G} \to \mathcal{U}$ satsifies $\chi(h+g) = \chi(h)\chi(g)$
- If χ, ψ are characters then so is $\chi \psi$ (pointwise product). Write $\chi + \psi$ from now on instead of $\chi \psi$.
- Group of characters (written *additively*) \widehat{G} is the dual group of G
- $G = \mathbb{Z} \Longrightarrow \widehat{G} = \mathbb{T}$: the functions $\chi_x(n) = \exp(2\pi i x n), x \in \mathbb{T}$
- $G = \mathbb{T} \Longrightarrow \widehat{G} = \mathbb{Z}$: the functions $\chi_n(x) = \exp(2\pi i n x), n \in \mathbb{Z}$
- $G = \mathbb{R} \Longrightarrow \widehat{G} = \mathbb{R}$: the functions $\chi_t(x) = \exp(2\pi i t x), t \in \mathbb{R}$
- $G = \mathbb{Z}_m \Longrightarrow \widehat{G} = \mathbb{Z}_m$: the functions $\chi_k(n) = \exp(2\pi i k n/m), k \in \mathbb{Z}_m$
- $G = A \times B \Longrightarrow \widehat{G} = \widehat{A} \times \widehat{B}$

- <u>Character</u> is a (continuous) group homomorphism from G to the multiplicative group U = {z ∈ C : |z| = 1}.
- $\chi: \mathcal{G} \to \mathcal{U}$ satsifies $\chi(h+g) = \chi(h)\chi(g)$
- If χ, ψ are characters then so is $\chi \psi$ (pointwise product). Write $\chi + \psi$ from now on instead of $\chi \psi$.
- Group of characters (written *additively*) \widehat{G} is the dual group of G
- $G = \mathbb{Z} \Longrightarrow \widehat{G} = \mathbb{T}$: the functions $\chi_x(n) = \exp(2\pi i x n), x \in \mathbb{T}$
- $G = \mathbb{T} \Longrightarrow \widehat{G} = \mathbb{Z}$: the functions $\chi_n(x) = \exp(2\pi i n x), n \in \mathbb{Z}$
- $G = \mathbb{R} \Longrightarrow \widehat{G} = \mathbb{R}$: the functions $\chi_t(x) = \exp(2\pi i t x), t \in \mathbb{R}$
- $G = \mathbb{Z}_m \Longrightarrow \widehat{G} = \mathbb{Z}_m$: the functions $\chi_k(n) = \exp(2\pi i k n/m), k \in \mathbb{Z}_m$
- $G = A \times B \Longrightarrow \widehat{G} = \widehat{A} \times \widehat{B}$
- Example: $G = \mathbb{T} \times \mathbb{R} \Longrightarrow \widehat{G} = \mathbb{Z} \times \mathbb{R}$. The characters are $\chi_{n,t}(x, y) = \exp(2\pi i (nx + ty))$.

- <u>Character</u> is a (continuous) group homomorphism from G to the multiplicative group U = {z ∈ C : |z| = 1}.
- $\chi: \mathcal{G} \to \mathcal{U}$ satsifies $\chi(h+g) = \chi(h)\chi(g)$
- If χ, ψ are characters then so is $\chi \psi$ (pointwise product). Write $\chi + \psi$ from now on instead of $\chi \psi$.
- Group of characters (written *additively*) \widehat{G} is the dual group of G
- $G = \mathbb{Z} \Longrightarrow \widehat{G} = \mathbb{T}$: the functions $\chi_x(n) = \exp(2\pi i x n), x \in \mathbb{T}$
- $G = \mathbb{T} \Longrightarrow \widehat{G} = \mathbb{Z}$: the functions $\chi_n(x) = \exp(2\pi i n x), n \in \mathbb{Z}$
- $G = \mathbb{R} \Longrightarrow \widehat{G} = \mathbb{R}$: the functions $\chi_t(x) = \exp(2\pi i t x), t \in \mathbb{R}$
- $G = \mathbb{Z}_m \Longrightarrow \widehat{G} = \mathbb{Z}_m$: the functions $\chi_k(n) = \exp(2\pi i k n/m), k \in \mathbb{Z}_m$
- $G = A \times B \Longrightarrow \widehat{G} = \widehat{A} \times \widehat{B}$
- Example: $G = \mathbb{T} \times \mathbb{R} \Longrightarrow \widehat{G} = \mathbb{Z} \times \mathbb{R}$. The characters are $\chi_{n,t}(x, y) = \exp(2\pi i (nx + ty))$.
- G is compact $\iff \widehat{G}$ is discrete

- <u>Character</u> is a (continuous) group homomorphism from G to the multiplicative group U = {z ∈ C : |z| = 1}.
- $\chi: \mathcal{G} \to \mathcal{U}$ satsifies $\chi(h+g) = \chi(h)\chi(g)$
- If χ, ψ are characters then so is $\chi \psi$ (pointwise product). Write $\chi + \psi$ from now on instead of $\chi \psi$.
- Group of characters (written *additively*) \widehat{G} is the dual group of G
- $G = \mathbb{Z} \Longrightarrow \widehat{G} = \mathbb{T}$: the functions $\chi_x(n) = \exp(2\pi i x n), x \in \mathbb{T}$
- $G = \mathbb{T} \Longrightarrow \widehat{G} = \mathbb{Z}$: the functions $\chi_n(x) = \exp(2\pi i n x), n \in \mathbb{Z}$
- $G = \mathbb{R} \Longrightarrow \widehat{G} = \mathbb{R}$: the functions $\chi_t(x) = \exp(2\pi i t x), t \in \mathbb{R}$
- $G = \mathbb{Z}_m \Longrightarrow \widehat{G} = \mathbb{Z}_m$: the functions $\chi_k(n) = \exp(2\pi i k n/m), k \in \mathbb{Z}_m$
- $G = A \times B \Longrightarrow \widehat{G} = \widehat{A} \times \widehat{B}$
- Example: $G = \mathbb{T} \times \mathbb{R} \Longrightarrow \widehat{G} = \mathbb{Z} \times \mathbb{R}$. The characters are $\chi_{n,t}(x, y) = \exp(2\pi i (nx + ty))$.
- G is compact $\iff \widehat{G}$ is discrete
- PONTRYAGIN duality: $\hat{G} = G$.

•
$$f \in L^1(G)$$
. That is $\|f\|_1 := \int_G |f(x)| d\mu(x) < \infty$

• $f \in L^1(G)$. That is $||f||_1 := \int_G |f(x)| d\mu(x) < \infty$ • If G is finite then $L^1(G)$ is all functions $G \to \mathbb{C}$

- $f \in L^1(G)$. That is $\|f\|_1 := \int_G |f(x)| d\mu(x) < \infty$
- If G is finite then $L^1(G)$ is all functions $G \to \mathbb{C}$
- The FT of f is $\widehat{f} : \widehat{G} \to \mathbb{C}$ defined by

$$\widehat{f}(\chi) = \int_{G} f(x) \overline{\chi(x)} \, d\mu(x), \ \chi \in \widehat{G}$$

- $f \in L^1(G)$. That is $\|f\|_1 := \int_G |f(x)| d\mu(x) < \infty$
- If G is finite then $L^1(G)$ is all functions $G \to \mathbb{C}$
- The FT of f is $\widehat{f} : \widehat{G} \to \mathbb{C}$ defined by

$$\widehat{f}(\chi) = \int_{\mathcal{G}} f(x) \overline{\chi(x)} \, d\mu(x), \ \chi \in \widehat{\mathcal{G}}$$

• Example: $G = \mathbb{T}$ ("Fourier coefficients"):

$$\widehat{f}(n) = \int_{\mathbb{T}} f(x) e^{-2\pi i n x} dx, \quad n \in \mathbb{Z}$$

- $f \in L^1(G)$. That is $||f||_1 := \int_G |f(x)| d\mu(x) < \infty$
- If G is finite then $L^1(G)$ is all functions $G \to \mathbb{C}$
- The FT of f is $\widehat{f} : \widehat{G} \to \mathbb{C}$ defined by

$$\widehat{f}(\chi) = \int_{\mathcal{G}} f(x) \overline{\chi(x)} \, d\mu(x), \ \chi \in \widehat{\mathcal{G}}$$

• Example: $G = \mathbb{T}$ ("Fourier coefficients"):

$$\widehat{f}(n) = \int_{\mathbb{T}} f(x) e^{-2\pi i n x} \, dx, \quad n \in \mathbb{Z}$$

• Example: $G = \mathbb{R}$ ("Fourier transform"):

$$\widehat{f}(\xi) = \int_{\mathbb{T}} f(x) e^{-2\pi i \xi x} \, dx, \ \xi \in \mathbb{R}$$

Mihalis Kolountzakis (U. of Crete)

- $f \in L^1(G)$. That is $||f||_1 := \int_G |f(x)| d\mu(x) < \infty$
- If G is finite then $L^1(G)$ is all functions $G \to \mathbb{C}$
- The FT of f is $\widehat{f} : \widehat{G} \to \mathbb{C}$ defined by

$$\widehat{f}(\chi) = \int_{\mathcal{G}} f(x) \overline{\chi(x)} \, d\mu(x), \ \chi \in \widehat{\mathcal{G}}$$

• Example: $G = \mathbb{T}$ ("Fourier coefficients"):

$$\widehat{f}(n) = \int_{\mathbb{T}} f(x) e^{-2\pi i n x} \, dx, \quad n \in \mathbb{Z}$$

• Example: $G = \mathbb{R}$ ("Fourier transform"):

$$\widehat{f}(\xi) = \int_{\mathbb{T}} f(x) e^{-2\pi i \xi x} \, dx, \ \xi \in \mathbb{R}$$

• Example: $G = \mathbb{Z}_m$ ("Discrete Fourier transform or DFT"):

$$\widehat{f}(k) = rac{1}{m} \sum_{j=0}^{m-1} f(j) e^{-2\pi i k j/m}, \quad k \in \mathbb{Z}_m$$

• Linearity:
$$\lambda \widehat{f + \mu} g = \lambda \widehat{f} + \mu \widehat{g}$$
.

Image: Image:

• Linearity:
$$\lambda \widehat{f + \mu} g = \lambda \widehat{f} + \mu \widehat{g}$$
.

• Symmetry:
$$\hat{f}(-x) = \hat{f}(x), \ \overline{f}(x) = \hat{f}(-x)$$

• Linearity:
$$\lambda \widehat{f + \mu} g = \lambda \widehat{f} + \mu \widehat{g}$$
.

• Symmetry: $\widehat{f}(-x) = \overline{\widehat{f}(x)}, \ \widehat{\overline{f}}(x) = \overline{\widehat{f}(-x)}$

• Real
$$f$$
: then $\widehat{f}(x) = \widehat{f}(-x)$

• Linearity:
$$\lambda \widehat{f} + \mu g = \lambda \widehat{f} + \mu \widehat{g}$$
.
• Symmetry: $\widehat{f}(-x) = \overline{\widehat{f}(x)}, \ \overline{\widehat{f}}(x) = \overline{\widehat{f}(-x)}$
• Real f : then $\widehat{f}(x) = \overline{\widehat{f}(-x)}$
• Translation: if $\tau \in G, \xi \in \widehat{G}, f_{\tau}(x) = f(x - \tau)$ then $\widehat{f_{\tau}}(\xi) = \overline{\xi(\tau)} \cdot \widehat{f}(\xi)$.
Example: $G = \mathbb{T}$: $\widehat{f(x - \theta)}(n) = e^{-2\pi i n \theta} \widehat{f}(n)$, for $\theta \in \mathbb{T}, n \in \mathbb{Z}$.

Image: Image:

• Linearity:
$$\lambda \widehat{f + \mu g} = \lambda \widehat{f} + \mu \widehat{g}$$
.
• Symmetry: $\widehat{f}(-x) = \overline{\widehat{f}(x)}, \ \overline{\widehat{f}}(x) = \overline{\widehat{f}(-x)}$
• Real f : then $\widehat{f}(x) = \overline{\widehat{f}(-x)}$
• Translation: if $\tau \in G, \xi \in \widehat{G}, f_{\tau}(x) = f(x - \tau)$ then
 $\widehat{f_{\tau}}(\xi) = \overline{\xi(\tau)} \cdot \widehat{f}(\xi)$.
Example: $G = \mathbb{T}$: $\widehat{f(x - \theta)}(n) = e^{-2\pi i n \theta} \widehat{f}(n)$, for $\theta \in \mathbb{T}, n \in \mathbb{Z}$.
• Modulation: If $\chi, \xi \in \widehat{G}$ then $\chi(\widehat{x})\widehat{f(x)}(\xi) = \widehat{f}(\xi - \chi)$.
Example: $G = \mathbb{R}$: $e^{2\pi i t x} \widehat{f}(x)(\xi) = \widehat{f}(\xi - t)$.
• $f, g \in L^1(G)$: their convolution is $f * g(x) = \int_G f(t)g(x - t) d\mu(t)$.
Then $\|f * g\|_1 \le \|f\|_1 \|g\|_1$ and
 $\widehat{f * g}(\xi) = \widehat{f}(\xi) \cdot \widehat{g}(\xi), \quad \xi \in \widehat{G}$

• If G is compact (\implies total Haar measure = 1) then characters are in $L^1(G)$, being bounded.

- If G is compact (\Longrightarrow total Haar measure = 1) then characters are in $L^1(G)$, being bounded.
- If $\chi \in \widehat{G}$ then

SO

$$\int_{G} \chi(x) \, dx = \int_{G} \chi(x+g) \, dx = \chi(g) \int_{G} \chi(x) \, dx,$$
$$\int_{G} \chi = 0 \text{ if } \chi \text{ nontrivial, 1 if } \chi \text{ is trivial } (=1).$$

- If G is compact (\Longrightarrow total Haar measure = 1) then characters are in $L^1(G)$, being bounded.
- If $\chi \in \widehat{G}$ then

$$\int_{\mathcal{G}} \chi(x) \, dx = \int_{\mathcal{G}} \chi(x+g) \, dx = \chi(g) \int_{\mathcal{G}} \chi(x) \, dx,$$

so $\int_{G} \chi = 0$ if χ nontrivial, 1 if χ is trivial (= 1).

• If $\chi, \psi \in \widehat{G}$ then $\chi(x)\psi(-x)$ is also a character. Hence

$$\langle \chi, \psi \rangle = \int_{\mathcal{G}} \chi(x) \overline{\psi(x)} \, dx = \int_{\mathcal{G}} \chi(x) \psi(-x) \, dx = \begin{cases} 1 & \chi = \psi \\ 0 & \chi \neq \psi \end{cases}$$

- If G is compact (\implies total Haar measure = 1) then characters are in $L^1(G)$, being bounded.
- If $\chi \in \widehat{G}$ then

$$\int_G \chi(x) \, dx = \int_G \chi(x+g) \, dx = \chi(g) \int_G \chi(x) \, dx,$$

so $\int_{G} \chi = 0$ if χ nontrivial, 1 if χ is trivial (= 1).

• If $\chi, \psi \in \widehat{G}$ then $\chi(x)\psi(-x)$ is also a character. Hence

$$\langle \chi, \psi \rangle = \int_{G} \chi(x) \overline{\psi(x)} \, dx = \int_{G} \chi(x) \psi(-x) \, dx = \begin{cases} 1 & \chi = \psi \\ 0 & \chi \neq \psi \end{cases}$$

• Fourier representation (inversion) in \mathbb{Z}_m : $G = \mathbb{Z}_m \Longrightarrow$ the *m* characters form a complete orthonormal set in $L^2(G)$:

$$f(x) = \sum_{k=0}^{m-1} \langle f(\cdot), e^{2\pi i k \cdot} \rangle e^{2\pi i k x} = \sum_{k=0}^{m-1} \widehat{f}(k) e^{2\pi i k x}$$

L^2 of compact G

• Trigonometric polynomials = finite linear combinations of characters on G

- Trigonometric polynomials = finite linear combinations of characters on G
- Example: $G = \mathbb{T}$. Trig. polynomials are of the type $\sum_{k=-N}^{N} c_k e^{2\pi i k x}$. The least such N is called the degree of the polynomial.

- Trigonometric polynomials = finite linear combinations of characters on G
- Example: $G = \mathbb{T}$. Trig. polynomials are of the type $\sum_{k=-N}^{N} c_k e^{2\pi i k x}$. The least such N is called the degree of the polynomial.
- Example: $G = \mathbb{R}$. Trig. polynomials are of the type $\sum_{k=1}^{K} c_k e^{2\pi i \lambda_k x}$, where $\lambda_j \in \mathbb{R}$.

- Trigonometric polynomials = finite linear combinations of characters on G
- Example: $G = \mathbb{T}$. Trig. polynomials are of the type $\sum_{k=-N}^{N} c_k e^{2\pi i k x}$. The least such N is called the degree of the polynomial.
- Example: $G = \mathbb{R}$. Trig. polynomials are of the type $\sum_{k=1}^{K} c_k e^{2\pi i \lambda_k x}$, where $\lambda_j \in \mathbb{R}$.
- Compact G: STONE WEIERSTRASS Theorem \implies trig. polynomials dense in C(G) (in $\|\cdot\|_{\infty}$).

- Trigonometric polynomials = finite linear combinations of characters on G
- Example: $G = \mathbb{T}$. Trig. polynomials are of the type $\sum_{k=-N}^{N} c_k e^{2\pi i k x}$. The least such N is called the degree of the polynomial.
- Example: $G = \mathbb{R}$. Trig. polynomials are of the type $\sum_{k=1}^{K} c_k e^{2\pi i \lambda_k x}$, where $\lambda_j \in \mathbb{R}$.
- Compact G: STONE WEIERSTRASS Theorem \implies trig. polynomials dense in C(G) (in $\|\cdot\|_{\infty}$).
- Fourier representation in $L^2(G)$: Compact G: The characters form a complete ONS. Since C(G) is dense in $L^2(G)$:

$$f = \int_{\chi \in \widehat{G}} \widehat{f}(\chi) \chi \, d\chi$$
 all $f \in L^2(G)$, convergence in $L^2(G)$

- Trigonometric polynomials = finite linear combinations of characters on G
- Example: $G = \mathbb{T}$. Trig. polynomials are of the type $\sum_{k=-N}^{N} c_k e^{2\pi i k x}$. The least such N is called the degree of the polynomial.
- Example: $G = \mathbb{R}$. Trig. polynomials are of the type $\sum_{k=1}^{K} c_k e^{2\pi i \lambda_k x}$, where $\lambda_j \in \mathbb{R}$.
- Compact G: STONE WEIERSTRASS Theorem \implies trig. polynomials dense in C(G) (in $\|\cdot\|_{\infty}$).
- Fourier representation in $L^2(G)$: Compact G: The characters form a complete ONS. Since C(G) is dense in $L^2(G)$:

$$f = \int_{\chi \in \widehat{G}} \widehat{f}(\chi) \chi \, d\chi$$
 all $f \in L^2(G)$, convergence in $L^2(G)$

• \widehat{G} necessarily discrete in this case

• Compact G: Parseval formula:

$$\int_{\mathcal{G}} f(x)\overline{g(x)} \, dx = \int_{\widehat{\mathcal{G}}} \widehat{f}(\chi)\overline{\widehat{g}(\chi)} \, d\chi.$$

• Compact G: Parseval formula:

$$\int_{G} f(x)\overline{g(x)} \, dx = \int_{\widehat{G}} \widehat{f}(\chi)\overline{\widehat{g}(\chi)} \, d\chi.$$

• Compact G: $f \to \hat{f}$ is an *isometry* from $L^2(G)$ onto $L^2(\hat{G})$.

• Compact G: Parseval formula:

$$\int_{G} f(x)\overline{g(x)} \, dx = \int_{\widehat{G}} \widehat{f}(\chi)\overline{\widehat{g}(\chi)} \, d\chi.$$

• Compact G: $f \to \hat{f}$ is an *isometry* from $L^2(G)$ onto $L^2(\hat{G})$.

• Example: $G = \mathbb{T}$

$$\int_{\mathbb{T}} f(x)\overline{g(x)} \, dx = \sum_{k \in \mathbb{Z}} \widehat{f}(k)\overline{\widehat{g}(k)}, \quad f,g \in L^2(\mathbb{T}).$$

• Compact G: Parseval formula:

$$\int_{G} f(x)\overline{g(x)} \, dx = \int_{\widehat{G}} \widehat{f}(\chi)\overline{\widehat{g}(\chi)} \, d\chi.$$

• Compact $G: f \to \hat{f}$ is an *isometry* from $L^2(G)$ onto $L^2(\widehat{G})$.

• Example: $G = \mathbb{T}$

$$\int_{\mathbb{T}} f(x)\overline{g(x)} \, dx = \sum_{k \in \mathbb{Z}} \widehat{f}(k)\overline{\widehat{g}(k)}, \quad f,g \in L^2(\mathbb{T}).$$

• Example: $G = \mathbb{Z}_m$

$$\sum_{j=0}^{m-1} f(j)\overline{g(j)} = \sum_{k=0}^{m-1} \widehat{f}(k)\overline{\widehat{g}(k)}, \text{ all } f,g:\mathbb{Z}_m \to \mathbb{C}$$

 Problem of significance in (a) crystallography, (b) astrophysics: determine a subset E ⊆ Z_n from its triple correlation:

$$V_E(a,b) = \#\{x \in \mathbb{Z}_n : x, x+a, x+b \in E\}, a, b \in \mathbb{Z}_n \\ = \sum_{x \in \mathbb{Z}_n} \mathbf{1}_E(x) \mathbf{1}_E(x+a) \mathbf{1}_E(x+b)$$

 Problem of significance in (a) crystallography, (b) astrophysics: determine a subset E ⊆ Z_n from its triple correlation:

$$V_E(a,b) = \#\{x \in \mathbb{Z}_n : x, x+a, x+b \in E\}, a, b \in \mathbb{Z}_n \\ = \sum_{x \in \mathbb{Z}_n} \mathbf{1}_E(x) \mathbf{1}_E(x+a) \mathbf{1}_E(x+b)$$

Counts number of occurences of translated 3-point patterns $\{0, a, b\}$.

• *E* can only be determined up to translation: *E* and *E* + *t* have the same $N(\cdot, \cdot)$.

 Problem of significance in (a) crystallography, (b) astrophysics: determine a subset E ⊆ Z_n from its triple correlation:

$$V_E(a,b) = \#\{x \in \mathbb{Z}_n : x, x+a, x+b \in E\}, a, b \in \mathbb{Z}_n \\ = \sum_{x \in \mathbb{Z}_n} \mathbf{1}_E(x) \mathbf{1}_E(x+a) \mathbf{1}_E(x+b)$$

- *E* can only be determined up to translation: *E* and *E* + *t* have the same $N(\cdot, \cdot)$.
- For general *n* it has been proved that $N(\cdot, \cdot)$ cannot determine *E* even up to translation (non-trivial).

 Problem of significance in (a) crystallography, (b) astrophysics: determine a subset E ⊆ Z_n from its triple correlation:

$$V_E(a,b) = \#\{x \in \mathbb{Z}_n : x, x+a, x+b \in E\}, a, b \in \mathbb{Z}_n \\ = \sum_{x \in \mathbb{Z}_n} \mathbf{1}_E(x) \mathbf{1}_E(x+a) \mathbf{1}_E(x+b)$$

- *E* can only be determined up to translation: *E* and *E* + *t* have the same $N(\cdot, \cdot)$.
- For general *n* it has been proved that $N(\cdot, \cdot)$ cannot determine *E* even up to translation (non-trivial).
- Special case: *E* can be determined up to translation from $N(\cdot, \cdot)$ if n = p is a prime.

 Problem of significance in (a) crystallography, (b) astrophysics: determine a subset E ⊆ Z_n from its triple correlation:

$$V_E(a,b) = \#\{x \in \mathbb{Z}_n : x, x+a, x+b \in E\}, a, b \in \mathbb{Z}_n \\ = \sum_{x \in \mathbb{Z}_n} \mathbf{1}_E(x) \mathbf{1}_E(x+a) \mathbf{1}_E(x+b)$$

- *E* can only be determined up to translation: *E* and *E* + *t* have the same $N(\cdot, \cdot)$.
- For general *n* it has been proved that $N(\cdot, \cdot)$ cannot determine *E* even up to translation (non-trivial).
- Special case: *E* can be determined up to translation from $N(\cdot, \cdot)$ if n = p is a prime.
- Fourier transform of $N_E : \mathbb{Z}_n \times \mathbb{Z}_n \to \mathbb{R}$ is easily computed:

$$\widehat{N_{E}}(\xi,\eta) = \widehat{\mathbf{1}_{E}}(\xi)\widehat{\mathbf{1}_{E}}(\eta)\widehat{\mathbf{1}_{E}}(-(\xi+\eta)), \quad \xi,\eta\in\mathbb{Z}_{n}.$$

• If $N_E \equiv N_F$ for $E, F \subseteq \mathbb{Z}_n$ then

 $\widehat{\mathbf{1}_{E}}(\xi)\widehat{\mathbf{1}_{E}}(\eta)\widehat{\mathbf{1}_{E}}(-(\xi+\eta)) = \widehat{\mathbf{1}_{F}}(\xi)\widehat{\mathbf{1}_{F}}(\eta)\widehat{\mathbf{1}_{F}}(-(\xi+\eta)), \ \xi,\eta\in\mathbb{Z}_{n} \ (1)$

• If
$$N_E \equiv N_F$$
 for $E, F \subseteq \mathbb{Z}_n$ then
 $\widehat{\mathbf{1}_E}(\xi)\widehat{\mathbf{1}_E}(\eta)\widehat{\mathbf{1}_E}(-(\xi+\eta)) = \widehat{\mathbf{1}_F}(\xi)\widehat{\mathbf{1}_F}(\eta)\widehat{\mathbf{1}_F}(-(\xi+\eta)), \quad \xi, \eta \in \mathbb{Z}_n$ (1)

• Setting $\xi = \eta = 0$ we deduce #E = #F.

• If
$$N_E \equiv N_F$$
 for $E, F \subseteq \mathbb{Z}_n$ then
 $\widehat{\mathbf{1}_E}(\xi)\widehat{\mathbf{1}_E}(\eta)\widehat{\mathbf{1}_E}(-(\xi+\eta)) = \widehat{\mathbf{1}_F}(\xi)\widehat{\mathbf{1}_F}(\eta)\widehat{\mathbf{1}_F}(-(\xi+\eta)), \quad \xi, \eta \in \mathbb{Z}_n$ (1)

• Setting $\xi = \eta = 0$ we deduce #E = #F.

• Setting $\eta = 0$, and using $\widehat{f}(-x) = \overline{\widehat{f}(x)}$ for real f, we get $\left|\widehat{\mathbf{1}_{E}}\right| \equiv \left|\widehat{\mathbf{1}_{F}}\right|$.

$$\phi(\xi)\phi(\eta) = \phi(\xi + \eta), \text{ where } \phi = \widehat{\mathbf{1}_E}/\widehat{\mathbf{1}_F}$$
 (2)

• If
$$N_E \equiv N_F$$
 for $E, F \subseteq \mathbb{Z}_n$ then
 $\widehat{\mathbf{1}_E}(\xi)\widehat{\mathbf{1}_E}(\eta)\widehat{\mathbf{1}_E}(-(\xi+\eta)) = \widehat{\mathbf{1}_F}(\xi)\widehat{\mathbf{1}_F}(\eta)\widehat{\mathbf{1}_F}(-(\xi+\eta)), \quad \xi, \eta \in \mathbb{Z}_n$ (1)
• Setting $\xi = \eta = 0$ we deduce $\#E = \#F$.
• Setting $\eta = 0$, and using $\widehat{f}(-x) = \overline{\widehat{f}(x)}$ for real f , we get $\left|\widehat{\mathbf{1}_E}\right| \equiv \left|\widehat{\mathbf{1}_F}\right|$.
• If $\widehat{\mathbf{1}_F}$ is never 0 we divide (1) by its RHS to get
 $\phi(\xi)\phi(\eta) = \phi(\xi+\eta), \quad \text{where } \phi = \widehat{\mathbf{1}_E}/\widehat{\mathbf{1}_F}$ (2)

• Hence
$$\phi : \mathbb{Z}_n \to \mathbb{C}$$
 is a character and $\widehat{\mathbf{1}_E} \equiv \phi \widehat{\mathbf{1}_F}$.

Image: Image:

• If
$$N_E \equiv N_F$$
 for $E, F \subseteq \mathbb{Z}_n$ then
 $\widehat{\mathbf{1}_E}(\xi)\widehat{\mathbf{1}_E}(\eta)\widehat{\mathbf{1}_E}(-(\xi+\eta)) = \widehat{\mathbf{1}_F}(\xi)\widehat{\mathbf{1}_F}(\eta)\widehat{\mathbf{1}_F}(-(\xi+\eta)), \quad \xi, \eta \in \mathbb{Z}_n$ (1)
• Setting $\xi = \eta = 0$ we deduce $\#E = \#F$.
• Setting $\eta = 0$, and using $\widehat{f}(-x) = \overline{\widehat{f}(x)}$ for real f , we get $\left|\widehat{\mathbf{1}_E}\right| \equiv \left|\widehat{\mathbf{1}_F}\right|$.
• If $\widehat{\mathbf{1}_F}$ is never 0 we divide (1) by its RHS to get
 $\phi(\xi)\phi(\eta) = \phi(\xi+\eta), \text{ where } \phi = \widehat{\mathbf{1}_E}/\widehat{\mathbf{1}_F}$ (2)

Hence φ : Z_n → C is a <u>character</u> and Î_E ≡ φÎ_F.
Since Z_n = Z_n we have φ(ξ) = e^{2πitξ/n} for some t ∈ Z_n

Mihalis Kolountzakis (U. of Crete)

• If
$$N_E \equiv N_F$$
 for $E, F \subseteq \mathbb{Z}_n$ then
 $\widehat{\mathbf{1}_E}(\xi)\widehat{\mathbf{1}_E}(\eta)\widehat{\mathbf{1}_E}(-(\xi+\eta)) = \widehat{\mathbf{1}_F}(\xi)\widehat{\mathbf{1}_F}(\eta)\widehat{\mathbf{1}_F}(-(\xi+\eta)), \quad \xi, \eta \in \mathbb{Z}_n$ (1)
• Setting $\xi = \eta = 0$ we deduce $\#E = \#F$.
• Setting $\eta = 0$, and using $\widehat{f}(-x) = \overline{\widehat{f}(x)}$ for real f , we get $\left|\widehat{\mathbf{1}_E}\right| \equiv \left|\widehat{\mathbf{1}_F}\right|$.
• If $\widehat{\mathbf{1}_F}$ is never 0 we divide (1) by its RHS to get
 $\phi(\xi)\phi(\eta) = \phi(\xi+\eta), \quad \text{where } \phi = \widehat{\mathbf{1}_E}/\widehat{\mathbf{1}_F}$ (2)

Hence φ : Z_n → C is a <u>character</u> and Î_E ≡ φÎ_F.
Since Ẑ_n = Z_n we have φ(ξ) = e^{2πitξ/n} for some t ∈ Z_n

• Hence E = F + t

• If
$$N_E \equiv N_F$$
 for $E, F \subseteq \mathbb{Z}_n$ then
 $\widehat{\mathbf{1}_E}(\xi)\widehat{\mathbf{1}_E}(\eta)\widehat{\mathbf{1}_E}(-(\xi+\eta)) = \widehat{\mathbf{1}_F}(\xi)\widehat{\mathbf{1}_F}(\eta)\widehat{\mathbf{1}_F}(-(\xi+\eta)), \quad \xi, \eta \in \mathbb{Z}_n$ (1)
• Setting $\xi = \eta = 0$ we deduce $\#E = \#F$.
• Setting $\eta = 0$, and using $\widehat{f}(-x) = \overline{\widehat{f}(x)}$ for real f , we get $\left|\widehat{\mathbf{1}_E}\right| \equiv \left|\widehat{\mathbf{1}_F}\right|$.
• If $\widehat{\mathbf{1}_F}$ is never 0 we divide (1) by its RHS to get
 $\phi(\xi)\phi(\eta) = \phi(\xi+\eta), \quad \text{where } \phi = \widehat{\mathbf{1}_E}/\widehat{\mathbf{1}_F}$ (2)

- Hence $\phi : \mathbb{Z}_n \to \mathbb{C}$ is a <u>character</u> and $\widehat{\mathbf{1}_E} \equiv \phi \widehat{\mathbf{1}_F}$.
- Since $\widehat{\mathbb{Z}_n} = \mathbb{Z}_n$ we have $\phi(\xi) = e^{2\pi i t \xi/n}$ for some $t \in \mathbb{Z}_n$
- Hence E = F + t
- So N_E determines E up to translation if $\widehat{\mathbf{1}}_E$ is never 0

$$\widehat{\mathbf{1}_E}(\xi) = \frac{1}{p} \sum_{s \in E} (\zeta^{\xi})^s, \quad \zeta = e^{-2\pi i/p} \text{ is a } p \text{-root of unity.}$$
(3)

• Suppose n = p is a prime, $E \subseteq \mathbb{Z}_p$. Then

$$\widehat{\mathbf{1}_{E}}(\xi) = \frac{1}{p} \sum_{s \in E} (\zeta^{\xi})^{s}, \quad \zeta = e^{-2\pi i/p} \text{ is a } p \text{-root of unity.}$$
(3)

• Each ζ^{ξ} , $\xi \neq 0$, is a primitive *p*-th root of unity itself.

$$\widehat{\mathbf{1}_{E}}(\xi) = \frac{1}{p} \sum_{s \in E} (\zeta^{\xi})^{s}, \quad \zeta = e^{-2\pi i/p} \text{ is a } p \text{-root of unity.}$$
(3)

- Each ζ^{ξ} , $\xi \neq 0$, is a primitive *p*-th root of unity itself.
- All powers (ζ^ξ)^s are distinct, so Î_E(ξ) is a subset sum of all primitive p-th roots of unity (ξ ≠ 0).

$$\widehat{\mathbf{1}_E}(\xi) = \frac{1}{p} \sum_{s \in E} (\zeta^{\xi})^s, \quad \zeta = e^{-2\pi i/p} \text{ is a } p \text{-root of unity.}$$
(3)

- Each ζ^{ξ} , $\xi \neq 0$, is a primitive *p*-th root of unity itself.
- All powers (ζ^ξ)^s are distinct, so Î_E(ξ) is a subset sum of all primitive p-th roots of unity (ξ ≠ 0).
- The polynomial 1 + x + x² + ··· + x^{p-1} is the minimal polynomial over Q of each primitive root of unity (there are p 1 of them).

$$\widehat{\mathbf{1}_E}(\xi) = \frac{1}{p} \sum_{s \in E} (\zeta^{\xi})^s, \quad \zeta = e^{-2\pi i/p} \text{ is a } p \text{-root of unity.}$$
(3)

- Each ζ^{ξ} , $\xi \neq 0$, is a primitive *p*-th root of unity itself.
- All powers (ζ^ξ)^s are distinct, so Î_E(ξ) is a subset sum of all primitive p-th roots of unity (ξ ≠ 0).
- The polynomial 1 + x + x² + ··· + x^{p-1} is the minimal polynomial over Q of each primitive root of unity (there are p 1 of them).
- It divides any polynomial in Q[x] which vanishes on some primitive p-th root of unity

$$\widehat{\mathbf{1}_E}(\xi) = \frac{1}{p} \sum_{s \in E} (\zeta^{\xi})^s, \quad \zeta = e^{-2\pi i/p} \text{ is a } p \text{-root of unity.}$$
 (3)

- Each ζ^{ξ} , $\xi \neq 0$, is a primitive *p*-th root of unity itself.
- All powers (ζ^ξ)^s are distinct, so Î_E(ξ) is a subset sum of all primitive p-th roots of unity (ξ ≠ 0).
- The polynomial 1 + x + x² + ··· + x^{p-1} is the minimal polynomial over Q of each primitive root of unity (there are p 1 of them).
- It divides any polynomial in Q[x] which vanishes on some primitive p-th root of unity
- The only subset sums of all roots of unity which vanish are the empty and the full sum (E = or E = Z_p).

$$\widehat{\mathbf{1}_E}(\xi) = \frac{1}{p} \sum_{s \in E} (\zeta^{\xi})^s, \quad \zeta = e^{-2\pi i/p} \text{ is a } p \text{-root of unity.}$$
(3)

- Each ζ^{ξ} , $\xi \neq 0$, is a primitive *p*-th root of unity itself.
- All powers (ζ^ξ)^s are distinct, so Î_E(ξ) is a subset sum of all primitive p-th roots of unity (ξ ≠ 0).
- The polynomial 1 + x + x² + ··· + x^{p-1} is the minimal polynomial over Q of each primitive root of unity (there are p 1 of them).
- It divides any polynomial in Q[x] which vanishes on some primitive p-th root of unity
- The only subset sums of all roots of unity which vanish are the empty and the full sum (E = or E = Z_p).
- So in \mathbb{Z}_p the triple correlation $N_E(\cdot, \cdot)$ determines E up to translation.

1 ≤ p ≤ q ⇐⇒ L^q(T) ⊆ L^p(T): nested L^p spaces. True on compact groups.

- 1 ≤ p ≤ q ⇔ L^q(T) ⊆ L^p(T): nested L^p spaces. True on compact groups.
- $f \in L^1(\mathbb{T})$: we write $f(x) \sim \sum_{k=-\infty}^{\infty} \widehat{f}(k)e^{2\pi i k x}$ to denote the <u>Fourier series</u> of f. No claim of convergence is made.

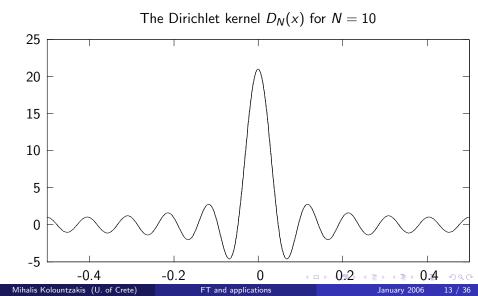
- 1 ≤ p ≤ q ⇐⇒ L^q(T) ⊆ L^p(T): nested L^p spaces. True on compact groups.
- $f \in L^1(\mathbb{T})$: we write $f(x) \sim \sum_{k=-\infty}^{\infty} \widehat{f}(k)e^{2\pi ikx}$ to denote the Fourier series of f. No claim of convergence is made.
- The Fourier coefficients of $f(x) = e^{2\pi i k x}$ is the sequence $\hat{f}(n) = \delta_{k,n}$.

- 1 ≤ p ≤ q ⇐⇒ L^q(T) ⊆ L^p(T): nested L^p spaces. True on compact groups.
- $f \in L^1(\mathbb{T})$: we write $f(x) \sim \sum_{k=-\infty}^{\infty} \widehat{f}(k)e^{2\pi i k x}$ to denote the <u>Fourier series</u> of f. No claim of convergence is made.
- The Fourier coefficients of $f(x) = e^{2\pi i k x}$ is the sequence $\hat{f}(n) = \delta_{k,n}$.
- The Fourier series of a trig. poly. $f(x) = \sum_{k=-N}^{N} a_k e^{2\pi i k x}$ is the sequence ..., 0, 0, a_{-N} , a_{-N+1} , ..., a_0 , ..., a_N , 0, 0,

- 1 ≤ p ≤ q ⇐⇒ L^q(T) ⊆ L^p(T): nested L^p spaces. True on compact groups.
- $f \in L^1(\mathbb{T})$: we write $f(x) \sim \sum_{k=-\infty}^{\infty} \widehat{f}(k)e^{2\pi i k x}$ to denote the <u>Fourier series</u> of f. No claim of convergence is made.
- The Fourier coefficients of $f(x) = e^{2\pi i k x}$ is the sequence $\hat{f}(n) = \delta_{k,n}$.
- The Fourier series of a trig. poly. $f(x) = \sum_{k=-N}^{N} a_k e^{2\pi i k x}$ is the sequence ..., 0, 0, a_{-N} , a_{-N+1} , ..., a_0 , ..., a_N , 0, 0,
- Symmetric partial sums of the Fourier series of f: $S_N(f; x) = \sum_{k=-N}^{N} \hat{f}(k) e^{2\pi i k x}$

- 1 ≤ p ≤ q ⇐⇒ L^q(T) ⊆ L^p(T): nested L^p spaces. True on compact groups.
- $f \in L^1(\mathbb{T})$: we write $f(x) \sim \sum_{k=-\infty}^{\infty} \widehat{f}(k)e^{2\pi i k x}$ to denote the <u>Fourier series</u> of f. No claim of convergence is made.
- The Fourier coefficients of $f(x) = e^{2\pi i k x}$ is the sequence $\hat{f}(n) = \delta_{k,n}$.
- The Fourier series of a trig. poly. $f(x) = \sum_{k=-N}^{N} a_k e^{2\pi i k x}$ is the sequence ..., 0, 0, a_{-N} , a_{-N+1} , ..., a_0 , ..., a_N , 0, 0,
- Symmetric partial sums of the Fourier series of f: $S_N(f; x) = \sum_{k=-N}^{N} \hat{f}(k) e^{2\pi i k x}$
- From $\widehat{f * g} = \widehat{f} \cdot \widehat{g}$ we get easily $S_N(f; x) = f(x) * D_N(x)$, where

$$D_N(x) = \sum_{k=-N}^{N} e^{2\pi i k x} = \frac{\sin 2\pi (N + \frac{1}{2}) x}{\sin \pi x} \quad (\underline{\text{DIRICHLET kernel}} \text{ of order } N)$$



• Important: $\|D_N\|_1 \ge C \log N$, as $N \to \infty$

- Important: $\|D_N\|_1 \ge C \log N$, as $N \to \infty$
- T_N: f → S_N(f; x) = D_N * f(x) is a (continuous) linear functional C(T) → C. From the inequality ||D_N * f||_∞ ≤ ||D_N||₁||f||_∞

Pointwise convergence

- Important: $\|D_N\|_1 \ge C \log N$, as $N \to \infty$
- $T_N: f \to S_N(f; x) = D_N * f(x)$ is a (continuous) linear functional $C(\mathbb{T}) \to \mathbb{C}$. From the inequality $||D_N * f||_{\infty} \le ||D_N||_1 ||f||_{\infty}$
- $||T_N|| = ||D_N||_1$ is unbounded

- Important: $\|D_N\|_1 \ge C \log N$, as $N \to \infty$
- $T_N: f \to S_N(f; x) = D_N * f(x)$ is a (continuous) linear functional $C(\mathbb{T}) \to \mathbb{C}$. From the inequality $\|D_N * f\|_{\infty} \le \|D_N\|_1 \|f\|_{\infty}$
- $||T_N|| = ||D_N||_1$ is unbounded
- BANACH-STEINHAUS (uniform boundedness principle) \implies Given x there are many continuous functions f such that $T_N(f)$ is unbounded

- Important: $\|D_N\|_1 \ge C \log N$, as $N \to \infty$
- $T_N: f \to S_N(f; x) = D_N * f(x)$ is a (continuous) linear functional $C(\mathbb{T}) \to \mathbb{C}$. From the inequality $\|D_N * f\|_{\infty} \le \|D_N\|_1 \|f\|_{\infty}$
- $||T_N|| = ||D_N||_1$ is unbounded
- BANACH-STEINHAUS (uniform boundedness principle) \implies Given x there are many continuous functions f such that $T_N(f)$ is unbounded
- Consequence: In general $S_N(f; x)$ does not converge pointwise to f(x), even for continuous f

Summability

• Look at the arithmetical means of $S_N(f; x)$

$$\sigma_N(f;x) = \frac{1}{N+1} \sum_{n=0}^N S_n(f;x) = K_N * f(x)$$

Image: A matrix of the second seco

Summability

• Look at the arithmetical means of $S_N(f; x)$

$$\sigma_N(f;x) = \frac{1}{N+1} \sum_{n=0}^N S_n(f;x) = K_N * f(x)$$

• The <u>FEJÉR kernel</u> $K_N(x)$ is the mean of the DIRICHLET kernels

$$\mathcal{K}_{N}(x) = \sum_{n=-N}^{N} \left(1 - \frac{|n|}{N+1}\right) e^{2\pi i n x} = \frac{1}{N+1} \left(\frac{\sin \pi (N+1)x}{\sin \pi x}\right)^{2} \ge 0.$$

Summability

• Look at the arithmetical means of $S_N(f; x)$

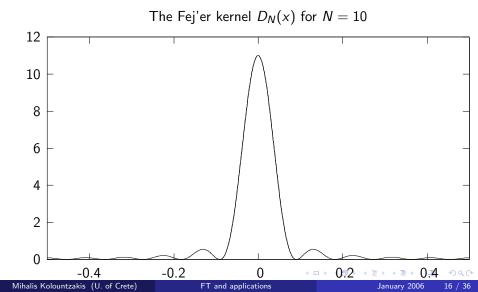
$$\sigma_N(f;x) = \frac{1}{N+1} \sum_{n=0}^N S_n(f;x) = K_N * f(x)$$

• The <u>FEJÉR kernel</u> $K_N(x)$ is the mean of the DIRICHLET kernels

$$K_N(x) = \sum_{n=-N}^N \left(1 - \frac{|n|}{N+1}\right) e^{2\pi i n x} = \frac{1}{N+1} \left(\frac{\sin \pi (N+1)x}{\sin \pi x}\right)^2 \ge 0.$$

• $K_N(x)$ is an approximate identity: (a) $\int_{\mathbb{T}} K_N(x) dx = \widehat{K_N}(0) = 1$, (b) $\|K_N\|_1$ is bounded $(\|K_N\|_1 = 1$, from nonnegativity and (a)), (c) for any $\epsilon > 0$ we have $\int_{|x|>\epsilon} |K_N(x)| dx \to 0$, as $N \to \infty$

The FEJÉR kernel



• K_N approximate identity $\implies K_N * f(x) \to f(x)$, in some Banach spaces. These can be:

- K_N approximate identity $\implies K_N * f(x) \to f(x)$, in some Banach spaces. These can be:
- $C(\mathbb{T})$ normed with $\|\cdot\|_{\infty}$: If $f \in C(\mathbb{T})$ then $\sigma_N(f;x) \to f(x)$ uniformly in \mathbb{T} .

- K_N approximate identity $\implies K_N * f(x) \to f(x)$, in some Banach spaces. These can be:
- $C(\mathbb{T})$ normed with $\|\cdot\|_{\infty}$: If $f \in C(\mathbb{T})$ then $\sigma_N(f;x) \to f(x)$ uniformly in \mathbb{T} .
- $L^p(\mathbb{T}), 1 \leq p < \infty$: If $f \in L^p(\mathbb{T})$ then $\|\sigma_N(f; x) f(x)\|_p \to 0$

- K_N approximate identity $\implies K_N * f(x) \to f(x)$, in some Banach spaces. These can be:
- $C(\mathbb{T})$ normed with $\|\cdot\|_{\infty}$: If $f \in C(\mathbb{T})$ then $\sigma_N(f; x) \to f(x)$ uniformly in \mathbb{T} .
- $L^p(\mathbb{T}), \ 1 \leq p < \infty$: If $f \in L^p(\mathbb{T})$ then $\|\sigma_N(f; x) f(x)\|_p \to 0$
- $C^{n}(\mathbb{T})$, all *n*-times *C*-differentiable functions, normed with $\|f\|_{C^{n}} = \sum_{k=0}^{n} \|f^{(k)}\|_{\infty}$

- K_N approximate identity $\implies K_N * f(x) \to f(x)$, in some Banach spaces. These can be:
- $C(\mathbb{T})$ normed with $\|\cdot\|_{\infty}$: If $f \in C(\mathbb{T})$ then $\sigma_N(f;x) \to f(x)$ uniformly in \mathbb{T} .
- $L^p(\mathbb{T}), \ 1 \leq p < \infty$: If $f \in L^p(\mathbb{T})$ then $\|\sigma_N(f; x) f(x)\|_p \to 0$
- $C^{n}(\mathbb{T})$, all *n*-times *C*-differentiable functions, normed with $\|f\|_{C^{n}} = \sum_{k=0}^{n} \|f^{(k)}\|_{\infty}$
- Summability implies uniqueness: the Fourier series of f ∈ L¹(T) determines the function.

- K_N approximate identity $\implies K_N * f(x) \to f(x)$, in some Banach spaces. These can be:
- $C(\mathbb{T})$ normed with $\|\cdot\|_{\infty}$: If $f \in C(\mathbb{T})$ then $\sigma_N(f;x) \to f(x)$ uniformly in \mathbb{T} .
- $L^p(\mathbb{T}), \ 1 \leq p < \infty$: If $f \in L^p(\mathbb{T})$ then $\|\sigma_N(f; x) f(x)\|_p \to 0$
- $C^{n}(\mathbb{T})$, all *n*-times *C*-differentiable functions, normed with $\|f\|_{C^{n}} = \sum_{k=0}^{n} \|f^{(k)}\|_{\infty}$
- Summability implies uniqueness: the Fourier series of f ∈ L¹(T) determines the function.
- Another consequence: trig. polynomials are dense in L^p(T), C(T), Cⁿ(T)

- K_N approximate identity $\implies K_N * f(x) \to f(x)$, in some Banach spaces. These can be:
- $C(\mathbb{T})$ normed with $\|\cdot\|_{\infty}$: If $f \in C(\mathbb{T})$ then $\sigma_N(f;x) \to f(x)$ uniformly in \mathbb{T} .
- $L^p(\mathbb{T}), \ 1 \leq p < \infty$: If $f \in L^p(\mathbb{T})$ then $\|\sigma_N(f; x) f(x)\|_p \to 0$
- $C^{n}(\mathbb{T})$, all *n*-times *C*-differentiable functions, normed with $\|f\|_{C^{n}} = \sum_{k=0}^{n} \|f^{(k)}\|_{\infty}$
- Summability implies uniqueness: the Fourier series of $f \in L^1(\mathbb{T})$ determines the function.
- Another consequence: trig. polynomials are dense in L^p(T), C(T), Cⁿ(T)
- \bullet Another important summability kernel: the $\operatorname{Poisson}$ kernel

$$P(r,x) = \sum_{k \in \mathbb{Z}} r^k e^{2\pi i k x}, \ 0 < r < 1$$
: absolute convergence obvious

Significant for the theory of analytic functions.

• Obvious:
$$\widehat{f}(n) \leq \|f\|_1$$

- Obvious: $\widehat{f}(n) \leq \|f\|_1$
- <u>RIEMANN-LEBESGUE Lemma</u>: $\lim_{|n|\to\infty} \widehat{f}(n) = 0$ if $f \in L^1(\mathbb{T})$. Obviously true for trig. polynomials and they are dense in $L^1(\mathbb{T})$.

- Obvious: $\widehat{f}(n) \leq \|f\|_1$
- <u>RIEMANN-LEBESGUE Lemma</u>: $\lim_{|n|\to\infty} \widehat{f}(n) = 0$ if $f \in L^1(\mathbb{T})$. Obviously true for trig. polynomials and they are dense in $L^1(\mathbb{T})$.
- Can go to 0 arbitrarily slowly if we only assume $f \in L^1$.

- Obvious: $\widehat{f}(n) \leq \|f\|_1$
- <u>RIEMANN-LEBESGUE Lemma</u>: $\lim_{|n|\to\infty} \widehat{f}(n) = 0$ if $f \in L^1(\mathbb{T})$. Obviously true for trig. polynomials and they are dense in $L^1(\mathbb{T})$.
- Can go to 0 arbitrarily slowly if we only assume $f \in L^1$.
- $f(x) = \int_0^x g(t) dt$, where $\int g = 0$: $\hat{f}(n) = \frac{1}{2\pi i n} \hat{g}(n)$ (Fubini)

- Obvious: $\widehat{f}(n) \leq \|f\|_1$
- <u>RIEMANN-LEBESGUE Lemma</u>: $\lim_{|n|\to\infty} \widehat{f}(n) = 0$ if $f \in L^1(\mathbb{T})$. Obviously true for trig. polynomials and they are dense in $L^1(\mathbb{T})$.
- Can go to 0 arbitrarily slowly if we only assume $f \in L^1$.
- $f(x) = \int_0^x g(t) dt$, where $\int g = 0$: $\hat{f}(n) = \frac{1}{2\pi i n} \hat{g}(n)$ (Fubini)
- Previous implies: $\hat{f}(|n|) = -\hat{f}(-|n|) \ge 0 \Longrightarrow \sum_{n \ne 0} \hat{f}(n)/n < \infty$.

- Obvious: $\widehat{f}(n) \leq \|f\|_1$
- <u>RIEMANN-LEBESGUE Lemma</u>: $\lim_{|n|\to\infty} \widehat{f}(n) = 0$ if $f \in L^1(\mathbb{T})$. Obviously true for trig. polynomials and they are dense in $L^1(\mathbb{T})$.
- Can go to 0 arbitrarily slowly if we only assume $f \in L^1$.
- $f(x) = \int_0^x g(t) dt$, where $\int g = 0$: $\hat{f}(n) = \frac{1}{2\pi i n} \hat{g}(n)$ (Fubini)
- Previous implies: $\hat{f}(|n|) = -\hat{f}(-|n|) \ge 0 \Longrightarrow \sum_{n \ne 0} \hat{f}(n)/n < \infty$.
- $\sum_{n>0} \frac{\sin nx}{\log n}$ is <u>not a Fourier series</u>.

- Obvious: $\widehat{f}(n) \leq \|f\|_1$
- <u>RIEMANN-LEBESGUE Lemma</u>: $\lim_{|n|\to\infty} \widehat{f}(n) = 0$ if $f \in L^1(\mathbb{T})$. Obviously true for trig. polynomials and they are dense in $L^1(\mathbb{T})$.
- Can go to 0 arbitrarily slowly if we only assume $f \in L^1$.
- $f(x) = \int_0^x g(t) dt$, where $\int g = 0$: $\hat{f}(n) = \frac{1}{2\pi i n} \hat{g}(n)$ (Fubini)
- Previous implies: $\hat{f}(|n|) = -\hat{f}(-|n|) \ge 0 \Longrightarrow \sum_{n \ne 0} \hat{f}(n)/n < \infty$.
- $\sum_{n>0} \frac{\sin nx}{\log n}$ is <u>not a Fourier series</u>.
- f is an integral $\Longrightarrow \hat{f}(n) = o(1/n)$: the "smoother" f is the better decay for the FT of f

- Obvious: $\widehat{f}(n) \leq \|f\|_1$
- <u>RIEMANN-LEBESGUE Lemma</u>: $\lim_{|n|\to\infty} \widehat{f}(n) = 0$ if $f \in L^1(\mathbb{T})$. Obviously true for trig. polynomials and they are dense in $L^1(\mathbb{T})$.
- Can go to 0 arbitrarily slowly if we only assume $f \in L^1$.
- $f(x) = \int_0^x g(t) dt$, where $\int g = 0$: $\hat{f}(n) = \frac{1}{2\pi i n} \hat{g}(n)$ (Fubini)
- Previous implies: $\hat{f}(|n|) = -\hat{f}(-|n|) \ge 0 \Longrightarrow \sum_{n \ne 0} \hat{f}(n)/n < \infty$.
- $\sum_{n>0} \frac{\sin nx}{\log n}$ is <u>not a Fourier series</u>.
- f is an integral $\Longrightarrow \hat{f}(n) = o(1/n)$: the "smoother" f is the better decay for the FT of f
- $f \in C^2(\mathbb{T}) \Longrightarrow$ absolute convergence for the Fourier Series of f.

- Obvious: $\widehat{f}(n) \leq \|f\|_1$
- <u>RIEMANN-LEBESGUE Lemma</u>: $\lim_{|n|\to\infty} \widehat{f}(n) = 0$ if $f \in L^1(\mathbb{T})$. Obviously true for trig. polynomials and they are dense in $L^1(\mathbb{T})$.
- Can go to 0 arbitrarily slowly if we only assume $f \in L^1$.
- $f(x) = \int_0^x g(t) dt$, where $\int g = 0$: $\hat{f}(n) = \frac{1}{2\pi i n} \hat{g}(n)$ (Fubini)
- Previous implies: $\hat{f}(|n|) = -\hat{f}(-|n|) \ge 0 \Longrightarrow \sum_{n \ne 0} \hat{f}(n)/n < \infty$.
- $\sum_{n>0} \frac{\sin nx}{\log n}$ is <u>not a Fourier series</u>.
- f is an integral $\Longrightarrow \hat{f}(n) = o(1/n)$: the "smoother" f is the better decay for the FT of f
- $f \in C^2(\mathbb{T}) \Longrightarrow$ absolute convergence for the Fourier Series of f.
- Another condition that imposes "decay":

$$f \in L^2(\mathbb{T}) \Longrightarrow \sum_n \left|\widehat{f}(n)\right|^2 < \infty$$

• T is bounded linear operator on dense subsets of L^{p_1} and L^{p_2} :

$$\|Tf\|_{q_1} \le C_1 \|f\|_{p_1}, \|Tf\|_{q_2} \le C_2 \|f\|_{p_2}$$

• T is bounded linear operator on dense subsets of L^{p_1} and L^{p_2} :

$$\|Tf\|_{q_1} \le C_1 \|f\|_{p_1}, \|Tf\|_{q_2} \le C_2 \|f\|_{p_2}$$

• RIESZ-THORIN interpolation theorem: $T : L^p \to L^q$ for any p between p_1, p_2 (all p's and q's ≥ 1).

• T is bounded linear operator on dense subsets of L^{p1} and L^{p2}:

$$\|Tf\|_{q_1} \le C_1 \|f\|_{p_1}, \|Tf\|_{q_2} \le C_2 \|f\|_{p_2}$$

- RIESZ-THORIN interpolation theorem: $T : L^p \to L^q$ for any p between p_1, p_2 (all p's and q's ≥ 1).
- p and q are related by:

$$\frac{1}{p} = t \frac{1}{p_1} + (1-t) \frac{1}{p_2} \implies \frac{1}{q} = t \frac{1}{q_1} + (1-t) \frac{1}{q_2}$$

• T is bounded linear operator on dense subsets of L^{p1} and L^{p2}:

$$\|Tf\|_{q_1} \le C_1 \|f\|_{p_1}, \|Tf\|_{q_2} \le C_2 \|f\|_{p_2}$$

- RIESZ-THORIN interpolation theorem: T : L^p → L^q for any p between p₁, p₂ (all p's and q's ≥ 1).
- p and q are related by:

$$\frac{1}{p} = t \frac{1}{p_1} + (1-t) \frac{1}{p_2} \implies \frac{1}{q} = t \frac{1}{q_1} + (1-t) \frac{1}{q_2}$$

• $\|T\|_{L^p \to L^q} \le C_1^t C_2^{(1-t)}$

• T is bounded linear operator on dense subsets of L^{p1} and L^{p2}:

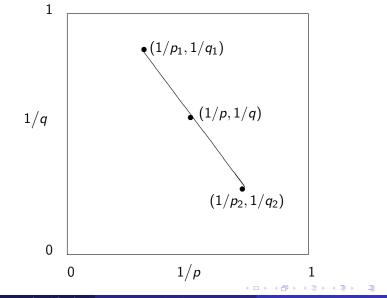
$$\|Tf\|_{q_1} \le C_1 \|f\|_{p_1}, \|Tf\|_{q_2} \le C_2 \|f\|_{p_2}$$

- RIESZ-THORIN interpolation theorem: $T : L^p \to L^q$ for any p between p_1, p_2 (all p's and q's ≥ 1).
- p and q are related by:

$$\frac{1}{p} = t \frac{1}{p_1} + (1-t) \frac{1}{p_2} \implies \frac{1}{q} = t \frac{1}{q_1} + (1-t) \frac{1}{q_2}$$

- $||T||_{L^p \to L^q} \le C_1^t C_2^{(1-t)}$
- The exponents p, q, \ldots are allowed to be ∞ .

Interpolation of operators: the 1/p, 1/q plane



Mihalis Kolountzakis (U. of Crete)

The Hausdorff-Young inequality

• HAUSDORFF-YOUNG: Suppose $1 \le p \le 2$, $\frac{1}{p} + \frac{1}{q} = 1$, and $f \in L^p(\mathbb{T})$. It follows that

$$\left\|\widehat{f}\right\|_{L^q(\mathbb{Z})} \le C_p \|f\|_{L^p(\mathbb{T})}$$

• HAUSDORFF-YOUNG: Suppose $1 \le p \le 2$, $\frac{1}{p} + \frac{1}{q} = 1$, and $f \in L^p(\mathbb{T})$. It follows that

$$\left\|\widehat{f}\right\|_{L^q(\mathbb{Z})} \le C_p \|f\|_{L^p(\mathbb{T})}$$

• False if p > 2.

• HAUSDORFF-YOUNG: Suppose $1 \le p \le 2$, $\frac{1}{p} + \frac{1}{q} = 1$, and $f \in L^p(\mathbb{T})$. It follows that

$$\left\|\widehat{f}\right\|_{L^q(\mathbb{Z})} \leq C_p \|f\|_{L^p(\mathbb{T})}$$

- False if p > 2.
- Clearly true if p = 1 (trivial) or p = 2 (Parseval).

• HAUSDORFF-YOUNG: Suppose $1 \le p \le 2$, $\frac{1}{p} + \frac{1}{q} = 1$, and $f \in L^p(\mathbb{T})$. It follows that

$$\left\|\widehat{f}\right\|_{L^q(\mathbb{Z})} \le C_p \|f\|_{L^p(\mathbb{T})}$$

- False if p > 2.
- Clearly true if p = 1 (trivial) or p = 2 (Parseval).
- Use RIESZ-THORIN interpolation for $1 for the operator <math>f \to \hat{f}$ from $L^p(\mathbb{T}) \to L^q(\mathbb{Z})$.

An application: the isoperimetric inequality

• Suppose Γ is a simple closed curve in the plane with perimeter *L* enclosing area *A*.

$$A \leq rac{1}{4\pi} L^2$$
 (isoperimetric inequality)

Equality holds only when Γ is a circle.

• Suppose Γ is a simple closed curve in the plane with perimeter *L* enclosing area *A*.

$$A \leq rac{1}{4\pi} L^2$$
 (isoperimetric inequality)

Equality holds only when Γ is a circle.

• WIRTINGER's inequality: if $f \in C^{\infty}(\mathbb{T})$ then

$$\int_{0}^{1} \left| f(x) - \widehat{f}(0) \right|^{2} dx \leq \frac{1}{4\pi^{2}} \int_{0}^{1} \left| f'(x) \right|^{2} dx.$$
 (4)

• Suppose Γ is a simple closed curve in the plane with perimeter *L* enclosing area *A*.

$$A \leq rac{1}{4\pi}L^2$$
 (isoperimetric inequality)

Equality holds only when Γ is a circle.

٠

• WIRTINGER's inequality: if $f \in C^{\infty}(\mathbb{T})$ then

$$\int_{0}^{1} \left| f(x) - \widehat{f}(0) \right|^{2} dx \leq \frac{1}{4\pi^{2}} \int_{0}^{1} \left| f'(x) \right|^{2} dx.$$
 (4)

• By smoothness f(x) equals its Fourier series and so does $f'(x) = 2\pi i \sum_{n} n \widehat{f}(n) e^{2\pi i n x}$

• Suppose Γ is a simple closed curve in the plane with perimeter *L* enclosing area *A*.

$$A \leq rac{1}{4\pi}L^2$$
 (isoperimetric inequality)

Equality holds only when Γ is a circle.

٠

• WIRTINGER's inequality: if $f \in C^{\infty}(\mathbb{T})$ then

$$\int_{0}^{1} \left| f(x) - \widehat{f}(0) \right|^{2} dx \leq \frac{1}{4\pi^{2}} \int_{0}^{1} \left| f'(x) \right|^{2} dx.$$
 (4)

- By smoothness f(x) equals its Fourier series and so does $f'(x) = 2\pi i \sum_{n} n \widehat{f}(n) e^{2\pi i n x}$
- FT is an isometry (Parseval) so LHS of (4) is $\sum_{n\neq 0} |\hat{f}(n)|^2$ while the RHS is $\sum_{n\neq 0} n |\hat{f}(n)|^2$ so (4) holds.

• Suppose Γ is a simple closed curve in the plane with perimeter *L* enclosing area *A*.

$$A \leq rac{1}{4\pi}L^2$$
 (isoperimetric inequality)

Equality holds only when Γ is a circle.

٠

• WIRTINGER's inequality: if $f \in C^{\infty}(\mathbb{T})$ then

$$\int_{0}^{1} \left| f(x) - \widehat{f}(0) \right|^{2} dx \leq \frac{1}{4\pi^{2}} \int_{0}^{1} \left| f'(x) \right|^{2} dx.$$
 (4)

- By smoothness f(x) equals its Fourier series and so does $f'(x) = 2\pi i \sum_{n} n \hat{f}(n) e^{2\pi i n x}$
- FT is an isometry (Parseval) so LHS of (4) is ∑_{n≠0} |f̂(n)|² while the RHS is ∑_{n≠0} n|f̂(n)|² so (4) holds.
 Equality in (4) precisely when f(x) = f̂(-1)e^{-2πix} + f̂(0) + f̂(1)e^{2πix}.

22 / 36

• HURWITZ' proof. First assume Γ is smooth, has L = 1.

- HURWITZ' proof. First assume Γ is smooth, has L = 1.
- Parametrization of Γ : (x(s), y(s)), $0 \le s \le 1$ w.r.t. arc length s

- HURWITZ' proof. First assume Γ is smooth, has L = 1.
- Parametrization of Γ : (x(s), y(s)), $0 \le s \le 1$ w.r.t. arc length s
- $x, y \in C^{\infty}(\mathbb{T}), \ (x'(s))^2 + (y'(s))^2 = 1.$

- HURWITZ' proof. First assume Γ is smooth, has L = 1.
- Parametrization of Γ : (x(s), y(s)), $0 \le s \le 1$ w.r.t. arc length s
- $x, y \in C^{\infty}(\mathbb{T}), \ (x'(s))^2 + (y'(s))^2 = 1.$
- GREEN's Theorem \implies area $A = \int_0^1 x(s)y'(s) ds$:

$$A = \int (x(s) - \hat{x}(0))y'(s) =$$

= $\frac{1}{4\pi} \int (2\pi(x(s) - \hat{x}(0)))^2 + y'(s)^2 - (2\pi(x(s) - \hat{x}(0)) - y'(s))^2$
 $\leq 1/4\pi \int 4\pi^2 (x(s) - \hat{x}(0))^2 + y'(s)^2$ (drop last term)
 $\leq 1/4\pi \int x'(s)^2 + y'(s)^2$ (WIRTINGER's ineq)
= $1/4\pi$

- HURWITZ' proof. First assume Γ is smooth, has L = 1.
- Parametrization of Γ : (x(s), y(s)), $0 \le s \le 1$ w.r.t. arc length s
- $x, y \in C^{\infty}(\mathbb{T}), \ (x'(s))^2 + (y'(s))^2 = 1.$
- GREEN's Theorem \implies area $A = \int_0^1 x(s)y'(s) ds$:

$$A = \int (x(s) - \hat{x}(0))y'(s) =$$

= $\frac{1}{4\pi} \int (2\pi(x(s) - \hat{x}(0)))^2 + y'(s)^2 - (2\pi(x(s) - \hat{x}(0)) - y'(s))^2$
 $\leq 1/4\pi \int 4\pi^2 (x(s) - \hat{x}(0))^2 + y'(s)^2$ (drop last term)
 $\leq 1/4\pi \int x'(s)^2 + y'(s)^2$ (WIRTINGER's ineq)
= $1/4\pi$

• For equality must have $x(s) = a \cos 2\pi s + b \sin 2\pi s + c$, $y'(s) = 2\pi(x(s) - \hat{x}(0))$. So $x(s)^2 + y(s)^2$ constant if c = 0.

Mihalis Kolountzakis (U. of Crete)

• Initially defined only for $f \in L^1(\mathbb{R}^n)$. $\hat{f}(\xi) = \int_{\mathbb{R}^n} f(x)e^{-2\pi i\xi \cdot x} dx$. Follows: $\|\hat{f}\|_{\infty} \leq \|f\|_1$. \hat{f} is continuous.

- Initially defined only for f ∈ L¹(ℝⁿ). f
 ^f(ξ) = ∫_{ℝⁿ} f(x)e^{-2πiξ·x} dx.
 Follows: || f
 ^f||_∞ ≤ || f ||₁. f
 ^f is continuous.
- Trig. polynomials are not dense anymore in the usual spaces.

- Initially defined only for f ∈ L¹(ℝⁿ). f
 ^f(ξ) = ∫_{ℝⁿ} f(x)e^{-2πiξ·x} dx.
 Follows: || f
 ^f||_∞ ≤ || f ||₁. f
 ^f is continuous.
- Trig. polynomials are not dense anymore in the usual spaces.
- But RIEMANN-LEBESGUE is true. First for indicator function of an interval

$$[a_1, b_1] \times \cdots \times [a_n, b_n].$$

Then approximate an L^1 function by finite linear combinations of such.

- Initially defined only for $f \in L^1(\mathbb{R}^n)$. $\hat{f}(\xi) = \int_{\mathbb{R}^n} f(x) e^{-2\pi i \xi \cdot x} dx$. Follows: $\|\hat{f}\|_{\infty} \leq \|f\|_1$. \hat{f} is continuous.
- Trig. polynomials are not dense anymore in the usual spaces.
- But RIEMANN-LEBESGUE is true. First for indicator function of an interval

$$[a_1, b_1] \times \cdots \times [a_n, b_n].$$

Then approximate an L^1 function by finite linear combinations of such.

Multi-index notation α = (α₁,..., α_n) ∈ Nⁿ:
 (a) |α| = α₁ + ··· + α_n.
 (b) x^α = x₁^{α₁}x₂<sup>α₂</sub> ··· x_n^{α_n}
 (c) ∂^α = (∂/∂₁)^{α₁} ··· (∂/∂_n)^{α_n}
</sup>

- Initially defined only for $f \in L^1(\mathbb{R}^n)$. $\hat{f}(\xi) = \int_{\mathbb{R}^n} f(x) e^{-2\pi i \xi \cdot x} dx$. Follows: $\|\hat{f}\|_{\infty} \leq \|f\|_1$. \hat{f} is continuous.
- Trig. polynomials are not dense anymore in the usual spaces.
- But RIEMANN-LEBESGUE is true. First for indicator function of an interval

$$[a_1, b_1] \times \cdots \times [a_n, b_n].$$

Then approximate an L^1 function by finite linear combinations of such.

Multi-index notation α = (α₁,..., α_n) ∈ Nⁿ:
(a) |α| = α₁ + ··· + α_n.
(b) x^α = x₁^{α₁}x₂^{α₂} ··· x_n^{α_n}
(c) ∂^α = (∂/∂₁)^{α₁} ··· (∂/∂_n)^{α_n}
Diff operators D^jφ := 1/(2πi)^{|α|}∂^α.

• $L^{p}(\mathbb{R}^{n})$ spaces are not nested.

► < ∃ ►</p>

- $L^{p}(\mathbb{R}^{n})$ spaces are not nested.
- Not clear how to define \hat{f} for $f \in L^2$.

- $L^{p}(\mathbb{R}^{n})$ spaces are not nested.
- Not clear how to define \hat{f} for $f \in L^2$.
- SCHWARTZ class S: those $\phi \in C^{\infty}(\mathbb{R}^n)$ s.t. for all multiindices α, γ

$$\|\phi\|_{lpha,\gamma}:=\sup_{x\in\mathbb{R}^n}|x^\gamma\partial^lpha\phi(x)|<\infty.$$

- $L^{p}(\mathbb{R}^{n})$ spaces are not nested.
- Not clear how to define \widehat{f} for $f \in L^2$.
- SCHWARTZ class S: those $\phi \in C^{\infty}(\mathbb{R}^n)$ s.t. for all multiindices α, γ

$$\|\phi\|_{lpha,\gamma}:=\sup_{x\in\mathbb{R}^n}|x^\gamma\partial^lpha\phi(x)|<\infty.$$

• The $\|\phi\|_{\alpha,\gamma}$ are *seminorms*. They determine the topology of \mathcal{S} .

- $L^{p}(\mathbb{R}^{n})$ spaces are not nested.
- Not clear how to define \widehat{f} for $f \in L^2$.
- SCHWARTZ class S: those $\phi \in C^{\infty}(\mathbb{R}^n)$ s.t. for all multiindices α, γ

$$\|\phi\|_{lpha,\gamma}:=\sup_{x\in\mathbb{R}^n}|x^\gamma\partial^lpha\phi(x)|<\infty.$$

The ||φ||_{α,γ} are *seminorms*. They determine the topology of S.
C₀[∞](ℝⁿ) ⊆ S

- $L^{p}(\mathbb{R}^{n})$ spaces are not nested.
- Not clear how to define \widehat{f} for $f \in L^2$.
- SCHWARTZ class S: those $\phi \in C^{\infty}(\mathbb{R}^n)$ s.t. for all multiindices α, γ

$$\|\phi\|_{lpha,\gamma}:=\sup_{x\in\mathbb{R}^n}|x^{\gamma}\partial^{lpha}\phi(x)|<\infty.$$

- The ||φ||_{α,γ} are *seminorms*. They determine the topology of S.
 C₀[∞](ℝⁿ) ⊆ S
- Easy to see that $\widehat{D^{j}(\phi)}(\xi) = \xi_{j}\widehat{\phi}(\xi)$ and $\widehat{x_{j}\phi(x)}(\xi) = -D^{j}\widehat{\phi}(\xi)$. More generally $\xi^{\alpha}D^{\gamma}\widehat{\phi}(\xi) = D^{\alpha}(-x)^{\gamma}\phi(x)(\xi)$.

- $L^{p}(\mathbb{R}^{n})$ spaces are not nested.
- Not clear how to define \widehat{f} for $f \in L^2$.
- SCHWARTZ class S: those $\phi \in C^{\infty}(\mathbb{R}^n)$ s.t. for all multiindices α, γ

$$\|\phi\|_{lpha,\gamma}:=\sup_{x\in\mathbb{R}^n}|x^\gamma\partial^lpha\phi(x)|<\infty.$$

- The ||φ||_{α,γ} are *seminorms*. They determine the topology of S.
 C₀[∞](ℝⁿ) ⊆ S
- Easy to see that $\widehat{D^{j}(\phi)}(\xi) = \xi_{j}\widehat{\phi}(\xi)$ and $\widehat{x_{j}\phi(x)}(\xi) = -D^{j}\widehat{\phi}(\xi)$. More generally $\xi^{\alpha}D^{\gamma}\widehat{\phi}(\xi) = D^{\alpha}(-x)^{\gamma}\phi(x)(\xi)$.
- $\phi \in \mathcal{S} \Longrightarrow \widehat{\phi} \in \mathcal{S}$ (smoothness \Longrightarrow decay, decay \Longrightarrow smoothness)

- $L^{p}(\mathbb{R}^{n})$ spaces are not nested.
- Not clear how to define \widehat{f} for $f \in L^2$.
- SCHWARTZ class S: those $\phi \in C^{\infty}(\mathbb{R}^n)$ s.t. for all multiindices α, γ

$$\|\phi\|_{lpha,\gamma}:=\sup_{x\in\mathbb{R}^n}|x^\gamma\partial^lpha\phi(x)|<\infty.$$

- The ||φ||_{α,γ} are *seminorms*. They determine the topology of S.
 C₀[∞](ℝⁿ) ⊆ S
- Easy to see that $\widehat{D^{j}(\phi)}(\xi) = \xi_{j}\widehat{\phi}(\xi)$ and $\widehat{x_{j}\phi(x)}(\xi) = -D^{j}\widehat{\phi}(\xi)$. More generally $\xi^{\alpha}D^{\gamma}\widehat{\phi}(\xi) = D^{\alpha}(-x)^{\gamma}\phi(x)(\xi)$.
- $\phi \in \mathcal{S} \Longrightarrow \widehat{\phi} \in \mathcal{S}$ (smoothness \Longrightarrow decay, decay \Longrightarrow smoothness)
- Fourier inversion formula: $\phi(x) = \int \widehat{\phi}(\xi) e^{2\pi i \xi x} d\xi$. Can also write as $\widehat{\widehat{\phi}}(-x) = \phi(x)$.

- $L^{p}(\mathbb{R}^{n})$ spaces are not nested.
- Not clear how to define \hat{f} for $f \in L^2$.
- SCHWARTZ class S: those $\phi \in C^{\infty}(\mathbb{R}^n)$ s.t. for all multiindices α, γ

$$\|\phi\|_{lpha,\gamma}:=\sup_{x\in\mathbb{R}^n}|x^\gamma\partial^lpha\phi(x)|<\infty.$$

- The ||φ||_{α,γ} are *seminorms*. They determine the topology of S.
 C₀[∞](ℝⁿ) ⊆ S
- Easy to see that $\widehat{D^{j}(\phi)}(\xi) = \xi_{j}\widehat{\phi}(\xi)$ and $\widehat{x_{j}\phi(x)}(\xi) = -D^{j}\widehat{\phi}(\xi)$. More generally $\xi^{\alpha}D^{\gamma}\widehat{\phi}(\xi) = D^{\alpha}(-x)^{\gamma}\phi(x)(\xi)$.
- $\phi \in \mathcal{S} \Longrightarrow \widehat{\phi} \in \mathcal{S}$ (smoothness \Longrightarrow decay, decay \Longrightarrow smoothness)
- Fourier inversion formula: $\phi(x) = \int \widehat{\phi}(\xi) e^{2\pi i \xi x} d\xi$. Can also write as $\widehat{\widehat{\phi}}(-x) = \phi(x)$.
- We first show its validity for $\phi \in S$.

•
$$\widehat{}$$
 shifting: $f,g \in L^1(\mathbb{R}^n) \Longrightarrow \int f\widehat{g} = \int \widehat{f}g$ (Fubini)

- ^ shifting: $f,g \in L^1(\mathbb{R}^n) \Longrightarrow \int f \widehat{g} = \int \widehat{f} g$ (Fubini)
- Define the GAUSSIAN function $g(x) = (2\pi)^{-n/2} e^{-|x|^2/2}$, $x \in \mathbb{R}^n$. This normalization gives $\int g(x) = \int |x|^2 g(x) = 1$.

- ^ shifting: $f,g \in L^1(\mathbb{R}^n) \Longrightarrow \int f \widehat{g} = \int \widehat{f} g$ (Fubini)
- Define the GAUSSIAN function $g(x) = (2\pi)^{-n/2}e^{-|x|^2/2}$, $x \in \mathbb{R}^n$. This normalization gives $\int g(x) = \int |x|^2 g(x) = 1$.
- Using CAUCHY's integral formula for analytic functions we prove $\widehat{g}(\xi) = (2\pi)^{n/2} g(2\pi\xi)$. The Fourier inversion formula holds.

- ^ shifting: $f,g \in L^1(\mathbb{R}^n) \Longrightarrow \int f \widehat{g} = \int \widehat{f} g$ (Fubini)
- Define the GAUSSIAN function $g(x) = (2\pi)^{-n/2}e^{-|x|^2/2}$, $x \in \mathbb{R}^n$. This normalization gives $\int g(x) = \int |x|^2 g(x) = 1$.
- Using CAUCHY's integral formula for analytic functions we prove $\hat{g}(\xi) = (2\pi)^{n/2}g(2\pi\xi)$. The Fourier inversion formula holds.
- Write $g_{\epsilon}(x) = \epsilon^{-n}g(x/\epsilon)$, an approximate identity.

- $\widehat{}$ shifting: $f,g \in L^1(\mathbb{R}^n) \Longrightarrow \int f\widehat{g} = \int \widehat{f}g$ (Fubini)
- Define the GAUSSIAN function $g(x) = (2\pi)^{-n/2} e^{-|x|^2/2}$, $x \in \mathbb{R}^n$. This normalization gives $\int g(x) = \int |x|^2 g(x) = 1$.
- Using CAUCHY's integral formula for analytic functions we prove $\hat{g}(\xi) = (2\pi)^{n/2}g(2\pi\xi)$. The Fourier inversion formula holds.
- Write $g_{\epsilon}(x) = \epsilon^{-n}g(x/\epsilon)$, an approximate identity.
- We have $\widehat{g_{\epsilon}}(\xi) = (2\pi)^{n/2} g(2\pi\epsilon\xi)$, $\lim_{\epsilon \to 0} \widehat{g_{\epsilon}}(\xi) = 1$.

- $\widehat{}$ shifting: $f,g \in L^1(\mathbb{R}^n) \Longrightarrow \int f\widehat{g} = \int \widehat{f}g$ (Fubini)
- Define the GAUSSIAN function $g(x) = (2\pi)^{-n/2} e^{-|x|^2/2}$, $x \in \mathbb{R}^n$. This normalization gives $\int g(x) = \int |x|^2 g(x) = 1$.
- Using CAUCHY's integral formula for analytic functions we prove $\hat{g}(\xi) = (2\pi)^{n/2}g(2\pi\xi)$. The Fourier inversion formula holds.
- Write $g_{\epsilon}(x) = \epsilon^{-n}g(x/\epsilon)$, an approximate identity.
- We have $\widehat{g_{\epsilon}}(\xi) = (2\pi)^{n/2} g(2\pi\epsilon\xi)$, $\lim_{\epsilon \to 0} \widehat{g_{\epsilon}}(\xi) = 1$.

•
$$\widehat{\phi}(-x) = \int e^{2\pi i \xi x} \widehat{\phi}(\xi) \, d\xi = \lim_{\epsilon \to 0} \int e^{2\pi i \xi x} \widehat{\phi}(\xi) \widehat{g_{\epsilon}}(\xi) \, d\xi \, (\text{dom. conv.})$$

•
$$\widehat{}$$
 shifting: $f,g \in L^1(\mathbb{R}^n) \Longrightarrow \int f\widehat{g} = \int \widehat{f}g$ (Fubini)

- Define the GAUSSIAN function $g(x) = (2\pi)^{-n/2} e^{-|x|^2/2}$, $x \in \mathbb{R}^n$. This normalization gives $\int g(x) = \int |x|^2 g(x) = 1$.
- Using CAUCHY's integral formula for analytic functions we prove $\hat{g}(\xi) = (2\pi)^{n/2}g(2\pi\xi)$. The Fourier inversion formula holds.
- Write $g_{\epsilon}(x) = \epsilon^{-n}g(x/\epsilon)$, an approximate identity.
- We have $\widehat{g_{\epsilon}}(\xi) = (2\pi)^{n/2} g(2\pi\epsilon\xi)$, $\lim_{\epsilon \to 0} \widehat{g_{\epsilon}}(\xi) = 1$.

•
$$\widehat{\phi}(-x) = \int e^{2\pi i \xi x} \widehat{\phi}(\xi) d\xi = \lim_{\epsilon \to 0} \int e^{2\pi i \xi x} \widehat{\phi}(\xi) \widehat{g}_{\epsilon}(\xi) d\xi$$
 (dom. conv.)

• = $\lim_{\epsilon \to 0} \int \widehat{\phi(\cdot + x)}(\xi) \widehat{g_{\epsilon}}(\xi) d\xi$ (FT of translation)

- $\widehat{}$ shifting: $f,g \in L^1(\mathbb{R}^n) \Longrightarrow \int f\widehat{g} = \int \widehat{f}g$ (Fubini)
- Define the GAUSSIAN function $g(x) = (2\pi)^{-n/2} e^{-|x|^2/2}$, $x \in \mathbb{R}^n$. This normalization gives $\int g(x) = \int |x|^2 g(x) = 1$.
- Using CAUCHY's integral formula for analytic functions we prove $\hat{g}(\xi) = (2\pi)^{n/2}g(2\pi\xi)$. The Fourier inversion formula holds.
- Write $g_{\epsilon}(x) = \epsilon^{-n}g(x/\epsilon)$, an approximate identity.
- We have $\widehat{g_{\epsilon}}(\xi) = (2\pi)^{n/2} g(2\pi\epsilon\xi)$, $\lim_{\epsilon \to 0} \widehat{g_{\epsilon}}(\xi) = 1$.

•
$$\widehat{\phi}(-x) = \int e^{2\pi i \xi x} \widehat{\phi}(\xi) d\xi = \lim_{\epsilon \to 0} \int e^{2\pi i \xi x} \widehat{\phi}(\xi) \widehat{g}_{\epsilon}(\xi) d\xi$$
 (dom. conv.)

- = $\lim_{\epsilon \to 0} \int \phi(\overline{(\cdot + x)}(\xi) \widehat{g_{\epsilon}}(\xi) d\xi$ (FT of translation)
- $= \lim_{\epsilon \to 0} \int \phi(x+y) \widehat{\widehat{g}}_{\epsilon}(y) \, dy$ (`shifting)

•
$$\widehat{}$$
 shifting: $f,g \in L^1(\mathbb{R}^n) \Longrightarrow \int f\widehat{g} = \int \widehat{f}g$ (Fubini)

- Define the GAUSSIAN function $g(x) = (2\pi)^{-n/2} e^{-|x|^2/2}$, $x \in \mathbb{R}^n$. This normalization gives $\int g(x) = \int |x|^2 g(x) = 1$.
- Using CAUCHY's integral formula for analytic functions we prove $\hat{g}(\xi) = (2\pi)^{n/2}g(2\pi\xi)$. The Fourier inversion formula holds.
- Write $g_{\epsilon}(x) = \epsilon^{-n}g(x/\epsilon)$, an approximate identity.
- We have $\widehat{g_{\epsilon}}(\xi) = (2\pi)^{n/2} g(2\pi\epsilon\xi)$, $\lim_{\epsilon \to 0} \widehat{g_{\epsilon}}(\xi) = 1$.

•
$$\widehat{\phi}(-x) = \int e^{2\pi i \xi x} \widehat{\phi}(\xi) d\xi = \lim_{\epsilon \to 0} \int e^{2\pi i \xi x} \widehat{\phi}(\xi) \widehat{g}_{\epsilon}(\xi) d\xi$$
 (dom. conv.)

- = $\lim_{\epsilon \to 0} \int \phi(\overline{(\cdot + x)}(\xi) \widehat{g_{\epsilon}}(\xi) d\xi$ (FT of translation)
- $= \lim_{\epsilon \to 0} \int \phi(x+y) \widehat{\widehat{g}}_{\epsilon}(y) \, dy$ (`shifting)
- = $\lim_{\epsilon \to 0} \int \phi(x+y) g_{\epsilon}(-y) dy$ (FT inversion for g_{ϵ}).

•
$$\widehat{}$$
 shifting: $f,g \in L^1(\mathbb{R}^n) \Longrightarrow \int f\widehat{g} = \int \widehat{f}g$ (Fubini)

- Define the GAUSSIAN function $g(x) = (2\pi)^{-n/2} e^{-|x|^2/2}$, $x \in \mathbb{R}^n$. This normalization gives $\int g(x) = \int |x|^2 g(x) = 1$.
- Using CAUCHY's integral formula for analytic functions we prove $\hat{g}(\xi) = (2\pi)^{n/2}g(2\pi\xi)$. The Fourier inversion formula holds.
- Write $g_{\epsilon}(x) = \epsilon^{-n}g(x/\epsilon)$, an approximate identity.
- We have $\widehat{g_{\epsilon}}(\xi) = (2\pi)^{n/2} g(2\pi\epsilon\xi)$, $\lim_{\epsilon \to 0} \widehat{g_{\epsilon}}(\xi) = 1$.

•
$$\widehat{\phi}(-x) = \int e^{2\pi i \xi x} \widehat{\phi}(\xi) d\xi = \lim_{\epsilon \to 0} \int e^{2\pi i \xi x} \widehat{\phi}(\xi) \widehat{g}_{\epsilon}(\xi) d\xi$$
 (dom. conv.)

- = $\lim_{\epsilon \to 0} \int \phi(\overline{(\cdot + x)}(\xi) \widehat{g_{\epsilon}}(\xi) d\xi$ (FT of translation)
- $= \lim_{\epsilon \to 0} \int \phi(x+y) \widehat{\widehat{g}}_{\epsilon}(y) \, dy$ (`shifting)
- $= \lim_{\epsilon \to 0} \int \phi(x+y) g_{\epsilon}(-y) dy$ (FT inversion for g_{ϵ}).
- = $\phi(x)$ (g_{ϵ} is an approximate identity)

FT on $L^2(\mathbb{R}^n)$

• Preservation of inner product: $\int \phi \overline{\psi} = \int \widehat{\phi} \overline{\widehat{\psi}}$, for $\phi, \psi \in S$ Fourier inversion implies $\widehat{\overline{\psi}} = \overline{\psi}$. Use $\widehat{}$ shifting.

FT on $L^2(\mathbb{R}^n)$

- Preservation of inner product: $\int \phi \overline{\psi} = \int \widehat{\phi} \overline{\widehat{\psi}}$, for $\phi, \psi \in S$ Fourier inversion implies $\widehat{\overline{\psi}} = \overline{\psi}$. Use $\widehat{}$ shifting.
- PARSEVAL: $f \in \mathcal{S}$: $\|f\|_2 = \|\widehat{f}\|_2$.

FT on $L^2(\mathbb{R}^n)$

- Preservation of inner product: $\int \phi \overline{\psi} = \int \widehat{\phi} \overline{\widehat{\psi}}$, for $\phi, \psi \in S$ Fourier inversion implies $\overline{\widehat{\psi}} = \overline{\psi}$. Use $\widehat{}$ shifting.
- PARSEVAL: $f \in \mathcal{S}$: $\|f\|_2 = \|\widehat{f}\|_2$.
- S dense in $L^2(\mathbb{R}^n)$: FT extends to L^2 and $f \to \hat{f}$ is an isometry on L^2 .

FT on $L^2(\mathbb{R}^n)$

- Preservation of inner product: $\int \phi \overline{\psi} = \int \widehat{\phi} \overline{\widehat{\psi}}$, for $\phi, \psi \in S$ Fourier inversion implies $\hat{\overline{\psi}} = \overline{\psi}$. Use $\widehat{}$ shifting.
- PARSEVAL: $f \in \mathcal{S}$: $\|f\|_2 = \|\widehat{f}\|_2$.
- S dense in $L^2(\mathbb{R}^n)$: FT extends to L^2 and $f \to \hat{f}$ is an isometry on L^2 .
- By interpolation FT is defined on L^p, 1 ≤ p ≤ 2, and satisfies the HAUSDORFF-YOUNG inequality:

$$\left\|\widehat{f}\right\|_q \leq C_p \|f\|_p, \quad \frac{1}{p} + \frac{1}{q} = 1.$$

• Tempered distributions: S' is the space of continuous linear functionals on S.

- Tempered distributions: S' is the space of continuous linear functionals on S.
- FT defined on S': for $u \in S'$ we define $\hat{u}(\phi) = u(\hat{\phi})$, for $\phi \in S$.

- Tempered distributions: S' is the space of continuous linear functionals on S.
- FT defined on S': for $u \in S'$ we define $\hat{u}(\phi) = u(\hat{\phi})$, for $\phi \in S$.
- Fourier inversion for S': $u(\phi(x)) = \hat{u}(\phi(-x))$.

- Tempered distributions: S' is the space of continuous linear functionals on S.
- FT defined on S': for $u \in S'$ we define $\widehat{u}(\phi) = u(\widehat{\phi})$, for $\phi \in S$.
- Fourier inversion for S': $u(\phi(x)) = \hat{u}(\phi(-x))$.
- $u
 ightarrow \widehat{u}$ is an isomorphism on \mathcal{S}'

- Tempered distributions: S' is the space of continuous linear functionals on S.
- FT defined on S': for $u \in S'$ we define $\widehat{u}(\phi) = u(\widehat{\phi})$, for $\phi \in S$.
- Fourier inversion for S': $u(\phi(x)) = \hat{u}(\phi(-x))$.
- $u
 ightarrow \widehat{u}$ is an isomorphism on \mathcal{S}'
- $1 \le p \le \infty$: $L^p \subseteq S'$. If $f \in L^p$ this mapping is in S':

$$\phi \to \int f \phi$$

Also $\mathcal{S} \subseteq \mathcal{S}'$.

- Tempered distributions: S' is the space of continuous linear functionals on S.
- FT defined on S': for $u \in S'$ we define $\widehat{u}(\phi) = u(\widehat{\phi})$, for $\phi \in S$.
- Fourier inversion for S': $u(\phi(x)) = \hat{u}(\phi(-x))$.
- $u
 ightarrow \widehat{u}$ is an isomorphism on \mathcal{S}'
- $1 \leq p \leq \infty$: $L^p \subseteq S'$. If $f \in L^p$ this mapping is in S':

$$\phi \to \int f\phi$$

Also $\mathcal{S} \subseteq \mathcal{S}'$.

• Tempered measures: $\int (1+|x|)^{-k} d|\mu|(x) < \infty$, for some $k \in \mathbb{N}$. These are in S'.

- Tempered distributions: S' is the space of continuous linear functionals on S.
- FT defined on S': for $u \in S'$ we define $\widehat{u}(\phi) = u(\widehat{\phi})$, for $\phi \in S$.
- Fourier inversion for S': $u(\phi(x)) = \hat{u}(\phi(-x))$.
- $u
 ightarrow \widehat{u}$ is an isomorphism on \mathcal{S}'
- $1 \leq p \leq \infty$: $L^p \subseteq S'$. If $f \in L^p$ this mapping is in S':

$$\phi \to \int f\phi$$

Also $\mathcal{S} \subseteq \mathcal{S}'$.

- Tempered measures: $\int (1+|x|)^{-k} d|\mu|(x) < \infty$, for some $k \in \mathbb{N}$. These are in S'.
- Differentiation defined as: $(\partial^{\alpha} u)(\phi) = (-1)^{|\alpha|} u(\partial^{\alpha} \phi).$

- Tempered distributions: S' is the space of continuous linear functionals on S.
- FT defined on S': for $u \in S'$ we define $\widehat{u}(\phi) = u(\widehat{\phi})$, for $\phi \in S$.
- Fourier inversion for S': $u(\phi(x)) = \hat{u}(\phi(-x))$.
- $u
 ightarrow \widehat{u}$ is an isomorphism on \mathcal{S}'
- $1 \leq p \leq \infty$: $L^p \subseteq S'$. If $f \in L^p$ this mapping is in S':

$$\phi \to \int f\phi$$

Also $\mathcal{S} \subseteq \mathcal{S}'$.

- Tempered measures: $\int (1+|x|)^{-k} d|\mu|(x) < \infty$, for some $k \in \mathbb{N}$. These are in S'.
- Differentiation defined as: $(\partial^{\alpha} u)(\phi) = (-1)^{|\alpha|} u(\partial^{\alpha} \phi).$
- FT of L^p functions or tempered measures defined in \mathcal{S}'

•
$$u = \delta_0$$
, $\hat{u} = 1$

•
$$u = \delta_0$$
, $\hat{u} = 1$

$$\begin{split} \widehat{D^{\alpha}\delta_{0}}(\phi) &= (D^{\alpha}\delta_{0})(\widehat{\phi}) = (-1)^{|\alpha|}\delta_{0}(D^{\alpha}\widehat{\phi}) = (-1)^{|\alpha|}\delta_{0}((-\widehat{x})^{\alpha}\phi(x)) \\ &= (-1)^{|\alpha|}\widehat{\delta_{0}}((-x)^{\alpha}\phi(x)) = \int x^{\alpha}\phi(x) \end{split}$$

•
$$u = \delta_0$$
, $\hat{u} = 1$

$$\widehat{D^{\alpha}\delta_{0}}(\phi) = (D^{\alpha}\delta_{0})(\widehat{\phi}) = (-1)^{|\alpha|}\delta_{0}(D^{\alpha}\widehat{\phi}) = (-1)^{|\alpha|}\delta_{0}((-\widehat{x})^{\alpha}\phi(x))$$
$$= (-1)^{|\alpha|}\widehat{\delta_{0}}((-x)^{\alpha}\phi(x)) = \int x^{\alpha}\phi(x)$$

• So $\widehat{D^{\alpha}\delta_0} = x^{\alpha}$.

•
$$u = \delta_0$$
, $\hat{u} = 1$

$$\widehat{D^{\alpha}\delta_{0}}(\phi) = (D^{\alpha}\delta_{0})(\widehat{\phi}) = (-1)^{|\alpha|}\delta_{0}(D^{\alpha}\widehat{\phi}) = (-1)^{|\alpha|}\delta_{0}((-\widehat{x})^{\alpha}\phi(x))$$
$$= (-1)^{|\alpha|}\widehat{\delta_{0}}((-x)^{\alpha}\phi(x)) = \int x^{\alpha}\phi(x)$$

• So
$$\widehat{D^{\alpha}\delta_0} = x^{\alpha}$$
.

• $u = x^{\alpha}$, $\hat{u} = D^{\alpha} \delta_0$

•
$$u = \delta_0$$
, $\hat{u} = 1$

$$\begin{split} \widehat{D^{\alpha}\delta_{0}}(\phi) &= (D^{\alpha}\delta_{0})(\widehat{\phi}) = (-1)^{|\alpha|}\delta_{0}(D^{\alpha}\widehat{\phi}) = (-1)^{|\alpha|}\delta_{0}((-\widehat{x})^{\alpha}\phi(x)) \\ &= (-1)^{|\alpha|}\widehat{\delta_{0}}((-x)^{\alpha}\phi(x)) = \int x^{\alpha}\phi(x) \end{split}$$

• So
$$\widehat{D^{\alpha}\delta_0} = x^{\alpha}$$
.

•
$$u = x^{\alpha}$$
, $\widehat{u} = D^{\alpha}\delta_0$
• $u = \sum_{j=1}^J a_j \delta_{p_j}$, $\widehat{u}(\xi) = \sum_{j=1}^J a_j e^{2\pi i p_j \xi}$.

•
$$u = \delta_0$$
, $\hat{u} = 1$

$$\begin{split} \widehat{D^{\alpha}\delta_{0}}(\phi) &= (D^{\alpha}\delta_{0})(\widehat{\phi}) = (-1)^{|\alpha|}\delta_{0}(D^{\alpha}\widehat{\phi}) = (-1)^{|\alpha|}\delta_{0}((-\widehat{x})^{\alpha}\phi(x)) \\ &= (-1)^{|\alpha|}\widehat{\delta_{0}}((-x)^{\alpha}\phi(x)) = \int x^{\alpha}\phi(x) \end{split}$$

• So
$$\widehat{D^{\alpha}\delta_0} = x^{\alpha}$$
.

- $u = x^{\alpha}$, $\hat{u} = D^{\alpha}\delta_0$
- $u = \sum_{j=1}^{J} a_j \delta_{p_j}$, $\hat{u}(\xi) = \sum_{j=1}^{J} a_j e^{2\pi i p_j \xi}$.
- POISSON Summation Formula (PSF): $u = \sum_{k \in \mathbb{Z}^n} \delta_k$, $\hat{u} = u$

•
$$\phi \in S$$
. Define $g(x) = \sum_{k \in \mathbb{Z}^n} \phi(x+k)$.

•
$$\phi \in S$$
. Define $g(x) = \sum_{k \in \mathbb{Z}^n} \phi(x+k)$.

• g has \mathbb{Z}^n as a period lattice: g(x+k) = g(x), $x \in \mathbb{R}^n$, $k \in \mathbb{Z}^n$.

•
$$\phi \in S$$
. Define $g(x) = \sum_{k \in \mathbb{Z}^n} \phi(x+k)$.

- g has \mathbb{Z}^n as a period lattice: g(x+k) = g(x), $x \in \mathbb{R}^n$, $k \in \mathbb{Z}^n$.
- The periodization g may be viewed as $g : \mathbb{T}^n \to \mathbb{C}$.

•
$$\phi \in S$$
. Define $g(x) = \sum_{k \in \mathbb{Z}^n} \phi(x+k)$.

- g has \mathbb{Z}^n as a period lattice: g(x+k) = g(x), $x \in \mathbb{R}^n$, $k \in \mathbb{Z}^n$.
- The periodization g may be viewed as $g: \mathbb{T}^n \to \mathbb{C}$.

• FT of g lives on $\widehat{\mathbb{T}^n} = \mathbb{Z}^n$. The Fourier coefficients are

$$\widehat{g}(k) = \int_{\mathbb{T}^n} \sum_{m \in \mathbb{Z}^n} \phi(x+m) e^{-2\pi i k x} \, dx = \widehat{\phi}(k).$$

•
$$\phi \in S$$
. Define $g(x) = \sum_{k \in \mathbb{Z}^n} \phi(x+k)$.

- g has \mathbb{Z}^n as a period lattice: g(x+k) = g(x), $x \in \mathbb{R}^n$, $k \in \mathbb{Z}^n$.
- The periodization g may be viewed as $g: \mathbb{T}^n \to \mathbb{C}$.

• FT of g lives on $\widehat{\mathbb{T}^n} = \mathbb{Z}^n$. The Fourier coefficients are

$$\widehat{g}(k) = \int_{\mathbb{T}^n} \sum_{m \in \mathbb{Z}^n} \phi(x+m) e^{-2\pi i k x} \, dx = \widehat{\phi}(k).$$

• From decay of $\widehat{\phi}$ follows that the FS of g(x) converges absolutely and uniformly and

$$g(x) = \sum_{k\in\mathbb{Z}^n}\widehat{\phi}(k)e^{2\pi i k x}.$$

•
$$\phi \in S$$
. Define $g(x) = \sum_{k \in \mathbb{Z}^n} \phi(x+k)$.

- g has \mathbb{Z}^n as a period lattice: g(x+k) = g(x), $x \in \mathbb{R}^n$, $k \in \mathbb{Z}^n$.
- The periodization g may be viewed as $g: \mathbb{T}^n \to \mathbb{C}$.

• FT of g lives on $\widehat{\mathbb{T}^n} = \mathbb{Z}^n$. The Fourier coefficients are

$$\widehat{g}(k) = \int_{\mathbb{T}^n} \sum_{m \in \mathbb{Z}^n} \phi(x+m) e^{-2\pi i k x} \, dx = \widehat{\phi}(k).$$

• From decay of $\widehat{\phi}$ follows that the FS of g(x) converges absolutely and uniformly and

$$g(x) = \sum_{k\in\mathbb{Z}^n}\widehat{\phi}(k)e^{2\pi i k x}.$$

• x = 0 gives the PSF: $\sum_{k \in \mathbb{Z}^n} \phi(k) = \sum_{k \in \mathbb{Z}^n} \widehat{\phi}(k)$.

• Suppose $T : \mathbb{R}^n \to \mathbb{R}^n$ is a non-singular linear operator. $u \in S'$, $v = u \circ T$.

- Suppose $T : \mathbb{R}^n \to \mathbb{R}^n$ is a non-singular linear operator. $u \in S'$, $v = u \circ T$.
- Change of variables formula for integration implies

$$\widehat{\mathbf{v}} = rac{1}{|\mathsf{det}\; T|} \widehat{u} \circ T^{- op}.$$

- Suppose $T : \mathbb{R}^n \to \mathbb{R}^n$ is a non-singular linear operator. $u \in S'$, $v = u \circ T$.
- Change of variables formula for integration implies

$$\widehat{\mathbf{v}} = rac{1}{|\mathsf{det}\; T|} \widehat{u} \circ T^{- op}.$$

• Write $\mathbb{R}^n = H \oplus H^{\perp}$, H a linear subspace.

- Suppose $T : \mathbb{R}^n \to \mathbb{R}^n$ is a non-singular linear operator. $u \in S'$, $v = u \circ T$.
- Change of variables formula for integration implies

$$\widehat{\mathbf{v}} = rac{1}{|\mathsf{det}\; T|} \widehat{u} \circ T^{- op}.$$

- Write $\mathbb{R}^n = H \oplus H^{\perp}$, H a linear subspace.
- Projection onto subspace defined by

$$(\pi_H f)(h) := \int_{H^{\top}} f(h+x) dx, \quad (h \in H).$$

- Suppose $T : \mathbb{R}^n \to \mathbb{R}^n$ is a non-singular linear operator. $u \in S'$, $v = u \circ T$.
- Change of variables formula for integration implies

$$\widehat{\mathbf{v}} = rac{1}{|\mathsf{det}\; T|} \widehat{u} \circ T^{- op}.$$

- Write $\mathbb{R}^n = H \oplus H^{\perp}$, H a linear subspace.
- Projection onto subspace defined by

$$(\pi_H f)(h) := \int_{H^{\top}} f(h+x) dx, \hspace{0.2cm} (h \in H).$$

• For
$$\xi \in H$$
: $\widehat{\pi_H f}(\xi) = \widehat{f}(\xi)$ (Fubini).

• Compact support: $f : \mathbb{R} \to \mathbb{C}$, $f \in L^1(\mathbb{R})$, f(x) = 0 for |x| > R.

Image: A matrix and A matrix

Compact support: f : ℝ → ℂ, f ∈ L¹(ℝ), f(x) = 0 for |x| > R.
FT defined by

$$\widehat{f}(\xi) = \int_{\mathbb{R}} f(x) e^{-2\pi i \xi x} \, dx.$$

Image: A matrix and A matrix

Compact support: f : ℝ → ℂ, f ∈ L¹(ℝ), f(x) = 0 for |x| > R.
FT defined by

$$\widehat{f}(\xi) = \int_{\mathbb{R}} f(x) e^{-2\pi i \xi x} \, dx.$$

• Allow $\xi \in \mathbb{C}$, $\xi = s + it$ in the formula.

$$\widehat{f}(s+it) = \int f(x)e^{2\pi tx}e^{-2\pi isx} dx$$

Compact support: f : ℝ → ℂ, f ∈ L¹(ℝ), f(x) = 0 for |x| > R.
FT defined by

$$\widehat{f}(\xi) = \int_{\mathbb{R}} f(x) e^{-2\pi i \xi x} dx.$$

• Allow $\xi \in \mathbb{C}$, $\xi = s + it$ in the formula.

$$\widehat{f}(s+it) = \int f(x)e^{2\pi tx}e^{-2\pi isx} dx$$

• Compact support implies $f(x)e^{2\pi tx} \in L^1(\mathbb{R})$, so integral is defined.

Compact support: f : ℝ → ℂ, f ∈ L¹(ℝ), f(x) = 0 for |x| > R.
FT defined by

$$\widehat{f}(\xi) = \int_{\mathbb{R}} f(x) e^{-2\pi i \xi x} dx.$$

• Allow $\xi \in \mathbb{C}$, $\xi = s + it$ in the formula.

$$\widehat{f}(s+it) = \int f(x)e^{2\pi tx}e^{-2\pi isx} dx$$

Compact support implies f(x)e^{2πtx} ∈ L¹(ℝ), so integral is defined.
Since e^{-2πixξ} is analytic for all ξ ∈ ℂ, so is f(ξ).

Compact support: f : ℝ → ℂ, f ∈ L¹(ℝ), f(x) = 0 for |x| > R.
FT defined by

$$\widehat{f}(\xi) = \int_{\mathbb{R}} f(x) e^{-2\pi i \xi x} \, dx.$$

• Allow $\xi \in \mathbb{C}$, $\xi = s + it$ in the formula.

$$\widehat{f}(s+it) = \int f(x)e^{2\pi tx}e^{-2\pi isx} dx$$

- Compact support implies $f(x)e^{2\pi tx} \in L^1(\mathbb{R})$, so integral is defined.
- Since $e^{-2\pi i x \xi}$ is analytic for all $\xi \in \mathbb{C}$, so is $\widehat{f}(\xi)$.
- PALEY-WIENER: f ∈ L²(ℝ). The following are equivalent:
 (a) f is the restriction on ℝ of a function F holomorphic in the strip {z : |ℑz| < a} which satisfies

$$\int |F(x+iy)|^2 \, dx \leq C, \quad (|y| < a)$$

(b) $e^{a|\xi|}\widehat{f}(\xi)\in L^2(\mathbb{R}).$

 Question of STEINHAUS: Is there E ⊆ R² such that no matter how translated and rotated it always contains exactly one point with integer coordinates?

- Question of STEINHAUS: Is there *E* ⊆ ℝ² such that no matter how translated and rotated it always contains exactly one point with integer coordinates?
- Two versions: E is required to be measurable or not

- Question of STEINHAUS: Is there E ⊆ R² such that no matter how translated and rotated it always contains exactly one point with integer coordinates?
- Two versions: E is required to be measurable or not
- Non-measurable version was answered in the affirmative by JACKSON and MAULDIN a few years ago.

- Question of STEINHAUS: Is there E ⊆ R² such that no matter how translated and rotated it always contains exactly one point with integer coordinates?
- Two versions: E is required to be measurable or not
- Non-measurable version was answered in the affirmative by JACKSON and MAULDIN a few years ago.
- Measurable version remains open.

- Question of STEINHAUS: Is there E ⊆ R² such that no matter how translated and rotated it always contains exactly one point with integer coordinates?
- Two versions: E is required to be measurable or not
- Non-measurable version was answered in the affirmative by JACKSON and MAULDIN a few years ago.
- Measurable version remains open.
- Equivalent form (R_{θ} is rotation by θ):

$$\sum_{k\in\mathbb{Z}^2}\mathbf{1}_{R_{\theta}E}(t+k)=1,\quad (0\leq\theta<2\pi,\ t\in\mathbb{R}^2). \tag{5}$$

- Question of STEINHAUS: Is there E ⊆ R² such that no matter how translated and rotated it always contains exactly one point with integer coordinates?
- Two versions: E is required to be measurable or not
- Non-measurable version was answered in the affirmative by JACKSON and MAULDIN a few years ago.
- Measurable version remains open.
- Equivalent form $(R_{\theta} \text{ is rotation by } \theta)$:

$$\sum_{k\in\mathbb{Z}^2}\mathbf{1}_{R_ heta E}(t+k)=1,\quad (0\leq heta<2\pi,\ t\in\mathbb{R}^2).$$
 (5)

• We prove: there is no <u>bounded</u> measurable STEINHAUS set.

- Question of STEINHAUS: Is there E ⊆ R² such that no matter how translated and rotated it always contains exactly one point with integer coordinates?
- Two versions: E is required to be measurable or not
- Non-measurable version was answered in the affirmative by JACKSON and MAULDIN a few years ago.
- Measurable version remains open.
- Equivalent form $(R_{\theta} \text{ is rotation by } \theta)$:

$$\sum_{k\in\mathbb{Z}^2}\mathbf{1}_{R_ heta E}(t+k)=1, \quad (0\leq heta < 2\pi, \ t\in\mathbb{R}^2).$$
 (5)

- We prove: there is no <u>bounded</u> measurable STEINHAUS set.
- Integrating (5) for $t \in [0,1]^2$ we obtain |E| = 1.

- Question of STEINHAUS: Is there E ⊆ R² such that no matter how translated and rotated it always contains exactly one point with integer coordinates?
- Two versions: E is required to be measurable or not
- \bullet Non-measurable version was answered in the affirmative by $\rm JACKSON$ and $\rm MAULDIN$ a few years ago.
- Measurable version remains open.
- Equivalent form $(R_{\theta} \text{ is rotation by } \theta)$:

$$\sum_{k\in\mathbb{Z}^2}\mathbf{1}_{R_{\theta}E}(t+k)=1,\quad (0\leq\theta<2\pi,\ t\in\mathbb{R}^2). \tag{5}$$

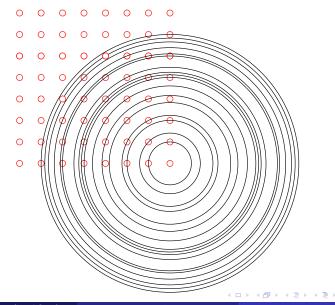
- We prove: there is no <u>bounded</u> measurable STEINHAUS set.
- Integrating (5) for $t \in [0,1]^2$ we obtain |E| = 1.
- LHS of (5) is the \mathbb{Z}^2 -periodization of $\mathbf{1}_{R_{\theta}E}$. Hence $\widehat{\mathbf{1}_{R_{\theta}E}}(k) = 0$, $k \in \mathbb{Z}^2 \setminus \{0\}$.

- Question of STEINHAUS: Is there E ⊆ R² such that no matter how translated and rotated it always contains exactly one point with integer coordinates?
- Two versions: E is required to be measurable or not
- \bullet Non-measurable version was answered in the affirmative by $\rm JACKSON$ and $\rm MAULDIN$ a few years ago.
- Measurable version remains open.
- Equivalent form $(R_{\theta} \text{ is rotation by } \theta)$:

$$\sum_{k\in\mathbb{Z}^2}\mathbf{1}_{\mathcal{R}_{\theta}\mathcal{E}}(t+k)=1,\quad (0\leq\theta<2\pi,\ t\in\mathbb{R}^2). \tag{5}$$

- We prove: there is no <u>bounded</u> measurable STEINHAUS set.
- Integrating (5) for $t \in [0,1]^2$ we obtain |E| = 1.
- LHS of (5) is the \mathbb{Z}^2 -periodization of $\mathbf{1}_{R_{\theta}E}$. Hence $\widehat{\mathbf{1}_{R_{\theta}E}}(k) = 0$, $k \in \mathbb{Z}^2 \setminus \{0\}$.
- $\widehat{\mathbf{1}_{E}}(\xi) = 0$, whenever ξ on a circle through a lattice point

The circles on which $\widehat{\mathbf{1}_{\scriptscriptstyle E}}$ must vanish



• Consider the projection f of $\mathbf{1}_E$ on \mathbb{R} . E bounded $\Longrightarrow f$ has compact support, say in [-B, B].

- Consider the projection f of $\mathbf{1}_E$ on \mathbb{R} . E bounded $\Longrightarrow f$ has compact support, say in [-B, B].
- For $\xi \in \mathbb{R}$ we have $\widehat{f}(\xi) = \widehat{\mathbf{1}_E}(\xi, 0)$, hence

$$\widehat{f}\left(\sqrt{m^2+n^2}\right)=0, \quad (m,n)\in\mathbb{Z}^2\setminus\{0\}.$$

- Consider the projection f of $\mathbf{1}_E$ on \mathbb{R} . E bounded $\implies f$ has compact support, say in [-B, B].
- For $\xi \in \mathbb{R}$ we have $\widehat{f}(\xi) = \widehat{\mathbf{1}_E}(\xi, 0)$, hence

$$\widehat{f}\left(\sqrt{m^2+n^2}\right)=0, \quad (m,n)\in\mathbb{Z}^2\setminus\{0\}.$$

 LANDAU: The number of integers up to x which are sums of two squares is ~ Cx/log^{1/2} x.

- Consider the projection f of $\mathbf{1}_E$ on \mathbb{R} . E bounded $\implies f$ has compact support, say in [-B, B].
- For $\xi \in \mathbb{R}$ we have $\widehat{f}(\xi) = \widehat{\mathbf{1}_E}(\xi, 0)$, hence

$$\widehat{f}\left(\sqrt{m^2+n^2}\right)=0, \quad (m,n)\in\mathbb{Z}^2\setminus\{0\}.$$

- LANDAU: The number of integers up to x which are sums of two squares is ~ Cx/log^{1/2} x.
- Hence \hat{f} has almost R^2 zeros from 0 to R.

- Consider the projection f of $\mathbf{1}_E$ on \mathbb{R} . E bounded $\implies f$ has compact support, say in [-B, B].
- For $\xi \in \mathbb{R}$ we have $\widehat{f}(\xi) = \widehat{\mathbf{1}_E}(\xi, 0)$, hence

$$\widehat{f}\left(\sqrt{m^2+n^2}\right)=0, \quad (m,n)\in\mathbb{Z}^2\setminus\{0\}.$$

- LANDAU: The number of integers up to x which are sums of two squares is ~ $Cx/\log^{1/2} x$.
- Hence \hat{f} has almost R^2 zeros from 0 to R.
- supp $f \subseteq [-B, B]$ implies $\left|\widehat{f}(z)\right| \leq \|f\|_1 e^{2\pi B|z|}, z \in \mathbb{C}$

- Consider the projection f of $\mathbf{1}_E$ on \mathbb{R} . E bounded $\implies f$ has compact support, say in [-B, B].
- For $\xi \in \mathbb{R}$ we have $\widehat{f}(\xi) = \widehat{\mathbf{1}_E}(\xi, 0)$, hence

$$\widehat{f}\left(\sqrt{m^2+n^2}\right)=0, \quad (m,n)\in\mathbb{Z}^2\setminus\{0\}.$$

- LANDAU: The number of integers up to x which are sums of two squares is ~ Cx/log^{1/2} x.
- Hence \hat{f} has almost R^2 zeros from 0 to R.
- supp $f \subseteq [-B, B]$ implies $\left|\widehat{f}(z)\right| \leq \|f\|_1 e^{2\pi B|z|}, z \in \mathbb{C}$
- But such a function can only have O(R) zeros from 0 to R.

JENSEN's formula: F analytic in the disk {|z| ≤ R}, z_k are the zeros of F in that disk. Then

$$\sum_{k} \log \frac{R}{|z_k|} = \int_0^1 \log \left| F(Re^{2\pi i\theta}) \right| d\theta.$$

JENSEN's formula: F analytic in the disk {|z| ≤ R}, z_k are the zeros of F in that disk. Then

$$\sum_{k} \log \frac{R}{|z_k|} = \int_0^1 \log \left| F(Re^{2\pi i\theta}) \right| d\theta.$$

It follows

$$\#\big\{k: |z_k| \le R/e\big\} \le \int_0^1 \log \left| F(Re^{2\pi i\theta}) \right| d\theta$$

JENSEN's formula: F analytic in the disk {|z| ≤ R}, z_k are the zeros of F in that disk. Then

$$\sum_{k} \log \frac{R}{|z_k|} = \int_0^1 \log \left| F(Re^{2\pi i\theta}) \right| d\theta.$$

It follows

$$\#\big\{k: |z_k| \le R/e\big\} \le \int_0^1 \log \left|F(Re^{2\pi i\theta})\right| d\theta$$

• Suppose $|F(z)| \le Ae^{B|z|}$. Then RHS above is $\le BR + \log A$.

JENSEN's formula: F analytic in the disk {|z| ≤ R}, z_k are the zeros of F in that disk. Then

$$\sum_{k} \log \frac{R}{|z_k|} = \int_0^1 \log \left| F(Re^{2\pi i\theta}) \right| d\theta.$$

It follows

$$\#\big\{k: |z_k| \le R/e\big\} \le \int_0^1 \log \left|F(Re^{2\pi i\theta})\right| d\theta$$

• Suppose $|F(z)| \le Ae^{B|z|}$. Then RHS above is $\le BR + \log A$.

• Such a function F can therefore have only O(R) zeros in the disk $\{|z| \le R\}$.