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Abstract. We prove that any finite union P of interior-disjoint polytopes in Rd has
the Pompeiu property, a result first proved by Williams [  Wil76 ]. This means that if
a continuous function f on Rd integrates to 0 on any congruent copy of P then f is
identically 0. By a fundamental result of Brown, Schreiber and Taylor [  BST73 ] this
is equivalent to showing that the Fourier–Laplace transform of the indicator func-
tion of P does not vanish identically on any 0-centered complex sphere in Cd. Our
proof initially follows the recent one of Machado and Robins [  MR23 ] who are using
the Brion–Barvinok formula for the Fourier–Laplace transform of a polytope. But
we simplify this method considerably by removing the use of properties of Bessel
function zeros. Instead we use some elementary arguments on the growth of linear
combinations of exponentials with rational functions as coefficients. Our approach
allows us to prove the non-existence of complex spheres of any center in the zero-set
of the Fourier–Laplace transform. The planar case is even simpler in that we do not
even need the Brion–Barvinok formula. We then go further in the question of which
sets can be contained in the null set of the Fourier–Laplace transform of a polytope
by extending results of Engel [  Eng23 ] who showed that rationally parametrized hy-
persurfaces, under some mild conditions, cannot be contained in this null-set. We
show that a rationally parametrized curve which is not contained in an affine hyper-
plane in Cd cannot be contained in this null-set. Results about curves parametrized
by meromorphic functions are also given.
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1. Introduction

The Pompeiu problem [ Pom29a ,  Pom29b ,  Zal80 ] is to determine if a bounded mea-
surable subset E ⊆ Rd has the Pompeiu property:

Definition 1.1. The measurable set E ⊆ Rd has the Pompeiu property if the only
continuous function f on Rd whose integrals on all congruent copies of E vanish is
the zero function.

If D is the unit ball in Rd with indicator function 1D then the Fourier transform
of 1D, i.e., 1̂D(ξ) =

∫
D

e−2πiξ·x dx, for ξ ∈ Rd, has rotational symmetry, is real-valued
and it does have at least one zero. If A = (a, 0, . . . , 0), with a > 0, is such a zero it
follows that the integrals of the function f (x) = e−2πiA·x on every translate of D are
0, without f being 0. So D (and any ball) does not have the Pompeiu property.

It has been conjectured that the ball is the only bounded convex body in Rd that
does not have the Pompeiu property. In [ Wil76 ] it is even conjectured that the ball
is the only body homeomorphic to the ball that does not have the Pompeiu property.
These conjectures are still open, but several large classes of sets are known which
do have the Pompeiu property [  Zal92 ].

A very important result [  BST73 ,  Wil76 ] regarding this problem is that a bounded
measurable set E ⊆ Rd does not have the Pompeiu property if and only if the
Fourier–Laplace transform of its indicator function 1E

(1) 1̂E(z) =
∫
Rd

1E(x)e−2πiz·x dx, z ∈ Cd,

does not vanish on any complex sphere C0,R (definition follows). Notice that since E
is bounded the function 1̂E(z) is entire.
Notation: In this paper the inner product x · y of two vectors in Rd or Cd is always
the quantity x · y = x1y1 + x2y2 + · · · + xdyd (no conjugation).

Definition 1.2. A complex sphere (complex circle if d = 2) of center a = (a1, . . . , ad) ∈
Cd and radius R ∈ C \ {0} is the subset of Cd

(2) Ca,R =
{
z = (z1, . . . , zd) ∈ Cd : (z1 − a1)2 + · · · + (zd − ad)2 = R2

}
.

Remark 1.1. Let us stress here that the “radius” R of the complex spheres related
to Pompeiu’s problem by the results in [ BST73 ,  Wil76 ] is allowed to be a (non-zero)
complex number. Such a complex sphere C0,R contains no points in Rd if R < R. It
may be possible to eliminate the case of complex radii in relation to the Pompeiu
problem (see discussion in [  MR23 ]) but we do not have to do so in this paper.

The reason we are excluding the case R = 0 is that in this case the structure of
the variety is very different. For instance, in dimension d = 2 the variety z2

1 + z2
2 = 0

consists of the two complex lines z1 = ±iz2.
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Let us finally observe that every complex sphere C0,R inCd, d ≥ 2, contains a complex
circle of the same radius, centered at 0, in C2 × {0}d−2.

In this paper we build on the recent approach in [  MR23 ] who used the Brion–
Barvinok [  Bri88 ,  Bar92 ] formula for the Fourier–Laplace transform of a convex
polytope in Rd in order to show that this Fourier–Laplace transform does not van-
ish on any complex sphere centered anywhere in Cd and, therefore, that any such
polytope has the Pompeiu property (only 0-centered spheres matter for the Pompeiu
problem).

Our innovation is that we do not use at all properties of the zeros of Bessel func-
tions as is done in [ MR23 ]. This allows us to give a much simpler proof with a clear
potential for generalization to other varieties on which the Fourier–Laplace trans-
form of a polytope cannot vanish identically. (These varieties do not necessarily
mean something for the Pompeiu problem.)

Our main theorem concerning the Pompeiu problem is the following:
Theorem 1.1. The Fourier–Laplace transform of the indicator function of any fi-
nite union of bounded convex polytopes with disjoint interiors cannot vanish on any
complex sphere of any center in Cd and any non-zero radius in C. Therefore such a
region has the Pompeiu property.

The vanishing set of the Fourier–Laplace transform of the indicator function of
a domain Ω ⊆ Rd is a much-studied object of huge importance in analysis and
geometry [  Ber80 ,  Kob94 ,  Kol04 ,  KW99 ], though often it is only its part contained in
Rd that is studied. The possibility to exclude certain varieties from the zero set is
therefore potentialy very useful and we anticipate that our approach will be useful
to other problems as well.

This work is also related to the recent paper [ Eng23 ], where a method similar
to ours has already been given to show the non-existence of spheres in the the
Fourier zeros of polytopes. In [  Eng23 ] the author is mainly interested in identify-
ing two polytopal regions (finite unions of interior-disjoint convex polytopes) whose
Fourier–Laplace Transform is identical on some subset E of Cd (see our Corol-
lary  3.2 ). The results obtained therein concern the case where E is a rationally
parametrized hypersurface in Cd satisfying certain mild conditions, and also imply
that such a surface cannot be contained in the null set of the Fourier–Laplace trans-
form of a polytopal region. Our results do not concern identifying two polytopal
regions from the equality of their Fourier–Laplace transform on a subset (which
is the main concern of [  Eng23 ]). We only deal with what sets can be contained in
the null set of the Fourier–Laplace transform of a polytopal region. In contrast
to [  Eng23 ] we, however, require vanishing of the Fourier–Laplace Transform only
on a rationally parametrized curve which is not contained in an affine hyperplane
in Cd. (If the curve is real then it is enough that it is not contained in an affine
hyperplane of Rd.) Our results also cover curves which are parametrized by higher
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order meromorphic functions and are not restricted to the rational case (though
the cleanest results for polytopes are still in the rational case). We achieve this
by invoking a theorem [  Bro76 , Corollary of Theorem 1] (see also our Theorem  3.2 )
that uses the growth of entire functions in order to show linear independence with
coefficients from entire functions of smaller order. In [  Eng23 ] the same theorem is
reproved for the case of order 0 essentially.

1.1. Structure of the paper. It all comes down to the null set of functions of the
form

(3)
N∑

j=1

g j(z)e f j(z), z ∈ C,

where the f j, g j are analytic functions, either entire or meromorphic, and where
the growth of g j is restricted in relation to the growth of the f j. By the Brion–
Barvinok formula (  20 ), ( 21 ) the Fourier–Laplace transform of a convex polytope,
when restricted on a rationally parametrized curve, is given by exactly such an
expression, where the g j and f j are rational functions.

In §  2 we develop our main tools about the zero sets of functions of the form ( 3 ). In
Theorem  2.1 we first examine the simple case where γ(t) is a complex circle and the
g j are polynomials, which is followed by Theorem  2.2 where γ(t) is still a circle but
the coefficients are allowed to be rational functions on γ(t). Theorem  2.1 leads us
to the Fourier–Laplace zeros of a measure consisting of multiples of arc-length on
line segments not being able to vanish identically on a circle (Theorem  2.3 ). This is
essentially the Pompeiu property for polygonal regions (Corollary  2.1 ). In general
dimension d ≥ 2 it is Theorem  2.2 that leads to the Pompeiu property for polytopal
regions (Theorem  2.4 , which is one step before Theorem  1.1 ) via the Brion–Barvinok
formula (  20 ), (  21 ). We treat the case d = 2 separately from the general case d ≥ 2 as
in this case the situation is much simpler and does not require the Brion–Barvinok
formula.

In § 3 then we leave the realm of circles and extend our discussion to curves de-
fined by a rational or meromorphic parametrization. We show in Theorem  3.1 that
such a curve γ(t), parametrized by meromorphic functions, cannot be in the zero
set of

(4)
N∑

j=1

q j(z)
p j(z)

e−2πiv j·z, z ∈ Cd,

where q j, p j are polynomials in Cd and v j ∈ Rd, unless some strong relations are
satisfied by the parametrization functions of γ(t) or the q j vanish identically on
γ(t). In Corollary  3.1 we show that this implies that no function (  4 ) can vanish
identically on a rationally parametrized curve which is not contained in an affine
hyperplane in Cd, unless the q j themselves all vanish on the curve. This in turn
implies (Corollary  3.2 ) that the Fourier–Laplace transform of a polytopal region
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cannot vanish identically on a rationally parametrized curve which is not contained
in an affine hyperplane. In § 3.1 we reprove our results about the absence of circles
in the null set using the theorems developed in §  3 . We also exhibit a simple curve
in C2 which is not rationally parametrizable yet can also not be contained in the
null set of functions of the form dealt with in Corollary  3.1 .

2. Vanishing on circles and growth of analytic functions

Lemma 2.1. For complex circles (d = 2) we have the parametrization
Ca,R = {a + (R cos t)e1 + (R sin t)e2 : t ∈ C}(5)
= {(a1 + R cos t, a2 + R sin t) : t ∈ C}

where e1 = (1, 0), e2 = (0, 1), a = (a1, a2).

Proof. It is clear that Ca,R contains the right hand side of (  5 ). To prove the reverse
containment it suffices to show that whenever w2

1 + w2
2 = 1, with w1,w2 ∈ C, then

there is t ∈ C such that w1 = cos t, w2 = sin t. For this it is enough to show that cos t
is onto C and this reduces to solving a quadratic (not satisfied by 0) to find eit.

□

The following lemma is an easy calculation and is the basis of the method we are
using in this section of the paper.
Lemma 2.2. If z = x + iy with x fixed and y→ +∞ then

(6) |cos z| =
(1
2
+ o(1)

)
ey, Arg cos z = −x + o(1).

And if A,B ∈ C and w = A sin z + B cos z then

|w| =
(1
2
+ o(1)

)
|B + iA|ey,(7)

Arg w = −x +Arg (B + iA) + o(1).

Proof. We have, for z = x + iy,

cos z =
eiz + e−iz

2
=

1
2

ey−ix(1 + e−2y+2ix),

from which ( 6 ) is immediate for x held fixed and y→ +∞.
As for ( 7 ), simple calculation shows:

w = e−ix+y

(
B + iA

2
+

(B − iA) e−2(y+ix)

2

)
and, again, fixing x ∈ R and letting y→ +∞ we obtain ( 7 ).

□
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We will use Lemma  2.2 in proving that certain linear combinations of exponential
functions with polynomial or rational function coefficients cannot vanish on certain
varieties of Cd. The first, easier case, which already exhibits the basic method,
is the case of polynomial coefficients. (See also [  KP17 ] for the case of constant
coefficients.)
Theorem 2.1. Let V = {v1, . . . , vN} ⊆ Rd be a finite set of points in Rd, d ≥ 2, such
that their orthogonal projections onto R2 × {0}d−2 are all different and let p j(x) be N
polynomials in x ∈ Cd. Let also

γ(t) = a + R cos t e1 + R sin t e2, 0 ≤ t < 2π,

denote a curve (here R ∈ C \ {0}, a ∈ Cd and e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0)).
Suppose finally that the function

(8) ϕ(t) =
N∑

j=1

p j(γ(t))e−2πiv j·γ(t)

vanishes identically in t ∈ [0, 2π). Then all p j(γ(t)) vanish identically in t ∈ C.

Proof. Observe first that if we translate the set V by τ ∈ Rd the function ϕ gets
multiplied by e−2πiτ·γ(t), so the zeros of ϕ are not altered. This allows us to assume
that one point of V (say v1) satisfies:
(9) |v1 · e1 + i(v1 · e2)| >

∣∣∣v j · e1 + i(v j · e2)
∣∣∣,

for every j > 1. In other words, there is a single orthogonal projection of the points
v j ∈ Rd onto R2 × {0}d−2 of largest Euclidean length.

Next, by analytic continuation, we conclude that ϕ(t) = 0 for all t ∈ C.
Finally, we may remove from (  8 ) all the summands for which pi vanishes iden-

tically on the complex circle γ(C) and assume, contrary to what we want to prove,
that at least one term remains in (  8 ). We will obtain a contradiction.

The j-th exponent in (  8 ) is
−2πiv j · γ(t) = −2πi(v j · a + Rv j · e1 cos t + Rv j · e2 sin t),

so that, as Re t is held fixed and Im t→ +∞, we have, by Lemma  2.2 ,∣∣∣−2πiv j · γ(t)
∣∣∣ = (
π
∣∣∣R∣∣∣ + o(1)

) ∣∣∣v j · e1 + i(v j · e2)
∣∣∣ eIm t

and
Arg (−2πiv j · γ(t)) = −Re t +Arg (−2πi(Rv j · e1 + i(Rv j · e2)) + o(1).

Fixing Re t = Arg (−2πi(Rv1 · e1 + i(Rv1 · e2)) we achieve that for large enough Im t

Re (−2πiv1 · γ(t)) ≥
(
π
∣∣∣R∣∣∣ + o(1)

) ∣∣∣v1 · e1 + i(v1 · e2)
∣∣∣eIm t,

while, at the same time, for j ≥ 2 we have

Re (−2πiv j · γ(t)) ≤ (1 − ϵ)
(
π
∣∣∣R∣∣∣ + o(1)

) ∣∣∣v1 · e1 + i(v1 · e2)
∣∣∣eIm t,
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for some ϵ > 0.
And by the following Lemma  2.3 the first term in (  8 ), whose exponential factor

grows doubly exponentially in Im t and dominates all the others, is multiplied by
p1(γ(t)), a polynomial in cos t, sin t, which does not vanish identically and which can
only affect the doubly exponential growth by an exponential.

Lemma 2.3. If z ∈ C tends to infinity along a straight line, that is z = b + ta, with
a, b ∈ C, a , 0, t ∈ R, and t→ +∞ then any exponential sum

S(z) =
N∑

j=1

c jeµ jz, c j, µ j ∈ C,

which is not identically 0 in t ∈ R cannot decay more than exponentially in t. In
other words, for some c ∈ R

lim sup
t→+∞

ect|S(b + ta)| > 0.

Proof. We can absorb the constant b into the coefficients c j of S(z) so we can assume
that z = ta. We can of course assume a = 1 (by replacing the µ j with aµ j) so we are
looking at the function

S(t) =
N∑

j=1

c jeµ jt =

N∑
j=1

c jetReµ jeitImµ j .

This sum is dominated by the terms for which Reµ j is maximal. Let us say that
this happens for j ∈ J ⊆ {1, . . . ,N} and assume (possibly renumbering) that 1 ∈ J.
Collecting these terms together their sum can be written as

T(t) = etReµ1

∑
j∈J

c jeitImµ j ,

and we have
(10) C1|T(t)| ≤ |S(t)| ≤ C2|T(t)|
for two positive constants C1,C2 that do not depend on t. In particular ( 10 ) implies
that T(t) does not vanish identically since S(t) does not.

The trigonometric polynomial

q(t) =
∑
j∈J

c jeitImµ j

is a non-zero almost periodic function so L = lim supt→∞

∣∣∣q(t)
∣∣∣ > 0. This implies that

lim sup
t→∞

e−tReµ1 |T(t)| > 0,

and the same is true for S(t) due to (  10 ). □
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Lemma  2.3 together with the clear fact that all factors p j(γ(t)) can grow at most
exponentially in t implies that the term for j = 1 is dominant in (  8 ) so that the
vanishing of (  8 ) is impossible, a contradiction.

□

Working similarly we can prove the following which allows for rational coeffi-
cients.

Theorem 2.2. Let V = {v1, . . . , vN} ⊆ Rd be a finite set of points in Rd, d ≥ 2, such
that their orthogonal projections onto R2 × {0}d−2 are all different and let p j(x), q j(x),
j = 1, 2, . . . ,N, be 2N polynomials in x ∈ Cd. Let also

γ(t) = a + R cos t e1 + R sin t e2, 0 ≤ t < 2π,

denote a complex circle in Cd. Here R ∈ C \ {0}, a ∈ Cd and e1 = (1, 0, . . . , 0), e2 =
(0, 1, 0, . . . , 0). Assume that none of the functions p j(γ(t)), q j(γ(t)), j = 1, 2, . . . ,N, vanish
identically for t ∈ [0, 2π), so that the function

(11) ϕ(t) =
N∑

j=1

q j(γ(t))
p j(γ(t))

e−2πiv j·γ(t), 0 ≤ t < 2π,

is defined for all but finitely many points in [0, 2π). Then ϕ(t) cannot vanish identi-
cally in t.

Proof. Assume that ϕ(t) vanishes for all t ∈ [0, 2π) at which it is defined (all but
finitely many points).

Observe first that if we translate the set V by τ ∈ Rd the functionϕ gets multiplied
by e−2πiτ·γ(t), so the zeros of ϕ are not altered. This allows us to assume that one point
of V (say v1) satisfies:
(12)

∣∣∣v1 · e1 + i(v1 · e2)
∣∣∣ > ∣∣∣v j · e1 + i(v j · e2)

∣∣∣
for every j > 1. (In other words, there is a single orthogonal projection of the points
v j onto R2 × {0}d−2 of largest Euclidean length.)

The functions
q j(γ(t))
p j(γ(t))

are meromorphic since the denominators are polynomials

of cos t, sin t, hence ϕ(t) is defined by (  11 ) for all t ∈ C for which the denominators do
not vanish, i.e. with the exception of a countable set Z. By analytic continuation,
we may assume that ϕ(t) = 0 for all t ∈ C \ Z.

The j-th exponent in (  11 ) is
−2πiv j · γ(t) = −2πi(v j · a + Rv j · e1 cos t + Rv j · e2 sin t),

so that, as Re t is held fixed and Im t→ +∞, we have, by Lemma  2.2 ,∣∣∣−2πiv j · γ(t)
∣∣∣ = (π

∣∣∣R∣∣∣ + o(1)) ·
∣∣∣v j · e1 + i(v j · e2)

∣∣∣eIm t
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and
Arg (−2πiv j · γ(t)) = −Re t +Arg (−2πi(Rv j · e1 + i(Rv j · e2)) + o(1).

Fixing Re t = Arg (−2πi(Rv1 · e1 + i(Rv1 · e2)) we achieve that for large enough Im t

(13) Re (−2πiv1 · γ(t)) ≥ (π
∣∣∣R∣∣∣ + o(1))

∣∣∣v1 · e1 + i(v1 · e2)
∣∣∣eIm t,

while, at the same time, for j ≥ 2 we have
(14) Re (−2πiv j · γ(t)) ≤ (1 − ϵ)(π

∣∣∣R∣∣∣ + o(1))
∣∣∣v1 · e1 + i(v1 · e2)

∣∣∣eIm t,

for some ϵ > 0.
Since the q j, p j are polynomials by Lemma  2.3 the growth or decay at infinity of

q j(γ(t)), p j(γ(t)) is at most exponentially fast. Since the growth of the exponential
terms in (  11 ) is doubly exponential as shown in (  13 ) and (  14 ), the coefficients in
( 11 ) cannot compensate and there is one dominant term, the one corresponding to
v1, which cannot be killed by all the others combined, a contradiction.

□

2.1. No circles in the Fourier zeros of polytopes. Let us start with the Pom-
peiu problem in dimension 2. This case is simpler than the case of general dimen-
sion since we do not need the Brion–Barvinok formula (  20 ), (  21 ).
Theorem 2.3. Suppose I j are different straight line segments in R2, j = 1, 2, . . . ,N,
and c1, . . . , cN ∈ C \ {0}. Let µ be the measure µ =

∑N
j=1 c jδI j, where δI j is arc-length on

I j. Then µ̂ cannot vanish identically on any complex circle in C2.

Proof. Let the unit vectors u1, . . . , uK ∈ R2, K ≤ N, be all the different directions of
the I j and apply the differential operator

D = ∂u1 . . . ∂uK

to µ, which we view as a tempered distribution. Suppose the line segment I has
endpoints a and b, and is of direction u1 (from a to b). Then

DδI = ∂u2 · · · ∂uK(δa − δb) = ∂u2 · · · ∂uKδa − ∂u2 · · · ∂uKδb,

and
D̂δI(x) = (−2πi)K−1(x · u2) · · · (x · uK) e(−a · x)(15)

− (−2πi)K−1(x · u2) · · · (x · uK) e(−b · x).

(Here e(x) = e2πix.)
Summing over the different line segments in µ we obtain for ν = Dµ

(16) ν̂(x) =
∑
v∈V

pv(x)e(−v · x),

where V is the set of endpoints of the I j (once each) and pv(x) is the polynomial
which arises if we add up (with the corresponding coefficients) all terms arising
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in the corresponding equations (  15 ) over all segments I j that have v as a vertex.
For every occurence of equation (  15 ) we have K − 1 non-collinear unit vectors. This
implies that pv(x) is always homogeneous of degree K−1. (We omit from ( 16 ) those v
for which pv(x) is the zero polynomial.) Notice also that ν is not the zero distribution
as the differential operator D translates to multiplication by a polynomial on the
Fourier side and cannot kill µ since µ̂, a continuous function onR2, is not supported
on subspaces and the zeros introduced by D are a finite union of straight lines in
R2.

Assume now that ν̂(x) vanishes on all points

γ(t) = a + R cos t e1 + R sin t e2

= (a1 + R cos t, a2 + R sin t), 0 ≤ t < 2π,

for some R ∈ C \ {0}, a = (a1, a2) ∈ C2. By Theorem  2.1 all pv(γ(t)) must vanish
identically in t. But pv(x) is a homogeneous polynomial of two variables, so, by the
fundamental theorem of algebra, it factors over C as a product of linear factors

pv(x) = pv(x1, x2) =
K−1∏
j=1

(c jx1 + d jx2),

so γ(C) ⊆ {
z ∈ C2 : pv(z) = 0

} should be contained in a union of complex lines in C2,
which clearly it is not, as this would imply a linear relation between cos t and sin t.

We have proved that all polynomials pv in (  16 ) are identically zero, which means
that ν = Dµ ≡ 0, and this is impossible as mentioned above.

□

Corollary 2.1. The Fourier–Laplace transform of the indicator function of any polyg-
onal region (not necessarily convex or even connected) cannot vanish on a complex
circle. Therefore every such region has the Pompeiu property.

Proof. If we differentiate the indicator function of this region along a direction
which is not parallel to any of the sides we get a measure as in Theorem  2.3 and
the zero set of the Fourier Transform only increases with the differentiation.

□

Remark 2.1. Corollary  2.1 is true even of the Fourier–Laplace transform of any
function that is locally constant on such a region (i.e. the level sets of this function
are polygonal regions), not necessarily equal to 1 everywhere in the region as the
indicator function is.

For general dimension d ≥ 2 we can now show that a polytopal region has the
Pompeiu property.
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Theorem 2.4. Let P ⊆ Rd be a d-dimensional polytope and e1 = (1, 0, . . . , 0), e2 =
(0, 1, 0, . . . , 0). Suppose that all points in V(P), the set of vertices of P, project or-
thogonally onto different points of R2 × {0}d−2. Let N(P)⊆ Cd be the null set of the
Fourier–Laplace transform of the indicator function of the polytope P. Then, N(P)
does not contain any complex circle

Ca,R = {a + R cos t · e1 + R sin t · e2 : t ∈ C)}(17)
⊆ a + C2 × {0}d−2

for any a ∈ Cd,R ∈ C \ {0}.
The same is true if P is a finite union of interior-disjoint polytopes.

Proof. The proof follows from Theorem  2.2 , using the Brion–Barvinok formula for
the Fourier–Laplace Transform of the indicator function of a d-dimensional poly-
tope. Given a d-dimensional polytope P of Rd with a vertex set V(P), one can define
for each element of V(P), call it v, its tangent cone, denote it Kv, as :
(18) Kv := {v + λ(x − v)|x ∈ P, λ ≥ 0}.
This is a pointed cone with apex v and it has a set of generators, call them wv

1, ...,w
v
m,

so that it can also be written as Kv = {v + λ1wv
1 + ... + λmwv

m|λ j ≥ 0}. Each wv
k is a

1-dimensional edge of P, emanating from v. When m = d, we say that the cone is
simplicial and so we can define its determinant as:
(19) det Kv := |det(wv

1, ...w
v
d)|.

It is also known that every pointed cone can be triangulated into simplicial cones
with no new generators, which means a collection Kv,1, ..,Kv,Mv of simplicial cones
with disjoint interiors such that Kv =

⋃
j≤Mv

Kv, j. The Brion–Barvinok [  Bri88 ,  Bar92 ,
 MR23 ] formula is:

(20) 1̂P(z) =
∑

v∈V(P)

qv(z)
pv(z)

e−2πi v·z,

whenever no denominator pv(z) vanishes, where

(21)
qv(z)
pv(z)

=

Mv∑
j=1

∣∣∣det Kv, j

∣∣∣
(2πi)d (wv

j,1 · z) · · · (wv
j,d · z)

.

If P is a finite union of interior-disjoint polytopes P =
⋃J

j=1 P j then 1P =
∑J

j=1 1P j

and taking the Fourier–Laplace Transform we conclude that P still satisfies (  20 )
with (  21 ), where now V(P) is the totality of the vertices of the P j, written once each,
and Mv is the total number of simplicial cones emanating from vertex v, over all
polytopes that share v as a vertex.

From the form of (  21 ) it follows that the denominator pv(z) can be taken to be
a product of linear factors of the form w · z. First we have to make sure that
the denominators do not vanish identically on Ca,R. This is indeed true as such
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a vanishing would require that some w · z would vanish identically on Ca,R, where
w = (w1, . . . ,wd) ∈ Rd is one of the one-dimensional edges of the polytope (and a
difference of two vertices of the polytope). This is equivalent to

0 = w · (a + R cos t · e1 + R sin t · e2) = w · a + Rw1 cos t + Rw2 sin t

for all t ∈ C. By our assumption on the unique projection of the vertices of P onto
R2 × {0}d−2 it follows that w1,w2 cannot both be 0, so this equation contradicts the
linear independence over C of the functions 1, cos t, sin t.

At the same time, the numerator qv(z) can be taken to be a homogeneous polyno-
mial. Since we care about the vanishing of (  20 ) on Ca,R we may discard all fractions
in ( 21 ) for which qv(z) vanishes identically on Ca,R. We assume that no term remains
in (  20 ) and we arrive at a contradiction. By the homogeneity of both qv(z) and pv(z)
it follows that qv(z)/pv(z) vanishes on all points of CCa,R on which (  20 ) is valid, i.e.,
on all points out of the hyperplanes w · z = 0 appearing in the denominators of (  21 ).
Since these hyperplanes do not cover Ca,R, as explained in the previous paragraph,
it follows that 0 is an accumulation point of the zeros of qv(z) (for all v). By the
continuity of 1̂P(z) we obtain that this function vanishes at 0, a contradiction since
1̂P(0) = |P| (the volume of P).

Thus the requirements of Theorem  2.2 (that all fractions appearing in ( 11 ) do not
vanish identically on Ca,R) are satisfied and we conclude that 1̂P(z) does not vanish
identically on Ca,R.

□

We can now complete the proof of Theorem  1.1 .

Proof of Theorem  1.1 . The Pompeiu property is invariant under orthogonal trans-
formations so by applying an appropriate orthogonal transformation to our set
we may assume that all its vertices project orthogonally onto different points in
R2×{0}d−2. If our set does not have the Pompeiu property then the Fourier–Laplace
transform of its indicator function must contain some complex sphere C0,R. This
complex sphere contains a complex circle in C2 × {0}d−2. But this is impossible by
Theorem  2.4 . □

3. Curves parametrized by meromorphic functions

Theorem 3.1. Let V = {v1, . . . , vN} ⊆ Rd be a finite set of points in Rd, d ≥ 2, and let
p j(x), q j(x) ∈ C[x], j = 1, 2, . . . ,N, be N polynomials in x ∈ Cd. Let also

γ(t) = (r1(t), . . . , rd(t)), 0 ≤ t ≤ 1,

denote a complex curve in Cd parametrized by functions

r j(t) =
a j(t)
b j(t)
, j = 1, 2, . . . , d,
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where a j(t), b j(t) are entire functions of t ∈ C, and let ρ ≥ 0 denote the maximum order
of all a j(t), b j(t).

Assume that none of the functions p j(γ(t)), q j(γ(t)), j = 1, 2, . . . ,N, vanish identically
for t ∈ [0, 1], so that the function

(22) ϕ(t) =
N∑

j=1

q j(γ(t))
p j(γ(t))

e−2πiv j·γ(t), 0 ≤ t < 1,

is defined for all but finitely many points in [0, 1].
Then ϕ(t) cannot vanish identically in t unless some non-trivial linear combina-

tion of the r j(t) (with complex coefficients) is a polynomial in t of degree ≤ ρ.

Proof. We will use the following result with d = 1.

Theorem 3.2 (Corollary of Theorem 1 in [  Bro76 ]). Let f1(z), . . . , fm(z) be meromor-
phic functions of z ∈ Cd. Then exp( f1), . . . , exp( fm) are linearly dependent over the ring
of entire functions of order ≤ ρ if and only if, for some 1 ≤ k < l ≤ m, fk(z)− fl(z) ∈ C[z]
with total degree at most ρ.

If the meromorphic function ϕ(t) vanishes identically for t ∈ [0, 1] then it vanishes
on all t ∈ C that are not poles of some p j(γ(t)) or some rk(t). Write

q j(γ(t))
p j(γ(t))

=
Q j(t)
P j(t)

,

with Q j(t),P j(t) entire, of order ≤ ρ, having no common zeros. The entire function
P(t) =

∏N
j=1 P j(t) can also not vanish identically on [0, 1]. Multiplying the identity

ϕ(t) = 0 by P(t) we obtain, for some entire functions Q̃ j(t) . 0 of order ≤ ρ,

(23) 0 =
N∑

j=1

Q̃ j(t)e−2πiv j·γ(t), t ∈ C.

We now apply Theorem  3.2 to (  23 ). It follows that for some 1 ≤ k < l ≤ N we have
that

−2πi(vk − vl) · γ(t) is a polynomial of degree ≤ ρ.
Writing 0 , w = −2πi(vk − vl) this means that

w1r1(t) + · · · + wdrd(t) is a polynomial of degree ≤ ρ,
as we had to show.

□

In the important case of rationally parametrized curves we have the following.
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Corollary 3.1. Let V = {v1, . . . , vN} ⊆ Rd be a finite set of points in Rd, d ≥ 2, and let
p j(x), q j(x) ∈ C[x], j = 1, 2, . . . ,N, be N polynomials in x ∈ Cd. Let also

γ(t) = (r1(t), . . . , rd(t)), 0 ≤ t ≤ 1,

denote a complex curve in Cd parametrized by rational functions r j(t), j = 1, 2, . . . , d,
which is not contained in any affine hyperplane of Cd (translate of some (d − 1)-
dimensional C-subspace).

Assume that none of the functions p j(γ(t)), q j(γ(t)), j = 1, 2, . . . ,N, vanish identically
for t ∈ [0, 1], so that the function

(24) ϕ(t) =
N∑

j=1

q j(γ(t))
p j(γ(t))

e−2πiv j·γ(t), 0 ≤ t < 1,

is defined for all but finitely many points in [0, 1].
Then ϕ(t) cannot vanish identically in t.

Proof. The r j(t) are quotients of polynomials which are entire functions of order 0,
so, by Theorem  3.1 , for some 1 ≤ k < l ≤ d we must have

−2πi(vk − vl) · γ(t) = C,

a constant. But this implies that γ([0, 1]) is contained in the affine hyperplane{
x ∈ Cd : (vk − vl) · x =

Ci
2π

}
,

in contradiction to our assumption. □

The following result specializes Corollary  3.1 to Fourier–Laplace transforms of
polytopal regions.
Corollary 3.2. Suppose γ(t), t ∈ [0, 1], is a curve parametrized by rational functions
with complex coefficients, which is not contained in any affine hyperplane of Cd. If P
is a polytopal region then its Fourier–Laplace transform cannot vanish identically
on γ(t), t ∈ [0, 1].

In particular, the conclusion is true if γ([0, 1]) ⊆ Rd and γ([0, 1]) is not contained
in any (real) affine hyperplane of Rd.

Proof. As explained in the proof of Theorem  2.4 and formulas ( 20 ) and ( 21 ) the
Fourier–Laplace transform of a polytopal region P, is of the form

(25)
∑

v

qv(z)
pv(z)

e−2πiv·z.

Corollary  3.1 tells us that this function cannot vanish on γ([0, 1]) as soon as we can
prove that all qv(z), pv(z) do not vanish identically on γ([0, 1]). There is no doubt
about the pv(z) which, according to (  21 ), are products of linear factors and γ([0, 1])
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is not contained in any hyperplane, by assumption. Then, as we did in the proof
of Theorem  2.4 , we throw away all summands where qv(z) vanishes identically on
γ([0, 1]) and assume that nothing remains, in order to reach a contradiction.

Were the homogeneous polynomial qv(z) to vanish identically on γ([0, 1]) it would
not be a constant, hence we would have qv(0) = 0 and also qv(z) would vanish on
Cγ([0, 1]) minus the hyperplanes on which some pv(z) vanishes. By the continuity
of the Fourier–Laplace transform at 0 we obtain then that 1̂P(0) = 0 which is a
contradiction since 1̂P(0) = |P| > 0. Therefore some summands in (  25 ) do remain
which do not vanish identically on γ([0, 1]) and Corollary  3.1 proves what we want.

To see the last remark about real curves, notice that if the curve γ([0, 1]) ⊆ Rd is
not contained in an affine subspace of Rd then its difference set γ([0, 1]) − γ([0, 1])
spans Rd over the reals. But this implies that γ([0, 1]) − γ([0, 1]) spans Cd over the
complex numbers so that γ([0, 1]) cannot be contained in an affine hyperplane of
Cd. □

3.1. Some specific curves.

3.1.1. Circle. Using Theorem  3.1 we can give an alternative proof of Theorem  2.4 .
As in our previous proof on p.  11 we deduce that we have

1̂P(z) =
∑

v∈V(P)

qv(z)
pv(z)

e−2πiv·z,

when no denominator pv(z) vanishes. Restricting z3 = · · · = zd = 0 we want to show
that the above function of z1, z2 does not vanish on a circle. We can use either the
trigonometric parametrization (  17 ) or the well-known rational parametrization

Ca,R =

{
a +

1 − t2

1 + t2 e1 +
2t

1 + t2 e2 : t ∈ C \ {±i}
}
.

We use the rational parametrization first. By Corollary  3.1 , with d = 2, and with
the curve γ(t)

r1(t) = a1 +
1 − t2

1 + t2 ,

r2(t) = a2 +
2t

1 + t2 ,

being the circle in question we obtain our contradiction since γ(C \ {±i}) is not con-
tained in a one-dimensional affine subspace ofC2 (no linear combination of r1(t), r2(t)
is a constant).
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If we use the trigonometric parametrization (  17 ), we conclude that some non-
trivial linear combination of the functions

r1(t) = a1 + R cos t,
r2(t) = a2 + R sin t,

must equal a polynomial of t of degree at most 1 (as the trigonometric functions
are entire of order 1). Again this is impossible (the function t is not a trigonometric
polynomial).

3.1.2. Not rationally parametrized. Next we give an example of a curve inR2 which
cannot be rationally parametrized, yet can serve as a curve such that no Fourier–
Laplace transform of a polytopal region can vanish identically on it. There are of
course many other examples.

Lemma 3.1. If p(x, y) ∈ C[x, y] is not the zero polynomial then it cannot vanish
identically on the curve
(26) γ(t) = (t2, sin t), t ∈ [0, 1].

Proof. Write p(x, y) =
∑N

j=0 p j(x)y j for some p j(x) ∈ C[x]. Suppose p(t2, sin t) = 0 for all
t ∈ [0, 1]. This leads to the equation

0 =
N∑

j=0

p j(t2) sin j t, (all t ∈ C)

for some polynomials p j(t) ∈ C[t]. By a method similar to that used in the proof of
Theorem  2.1 we can prove that this implies that all p j(t) are identically 0. More
concretely writing t = −is and letting s→ +∞ we have

0 =
N∑

j=0

p j(−s2)
1

(2i) j (e
s − e−s) j

=

N∑
j=0

p j(−s2)
1

(2i) j (e
js +O(e( j−1)s)),

and from this, working successively from j = N down to j = 0, it easily follows that
all p j ≡ 0, which implies p(x, y) ≡ 0. □

The curve (  26 ) in R2 cannot be rationally parametrized. If it could be rationally
parametrized then it would also be an algebraic curve [  Cox18 , Chapter 3, §3, Im-
plicitization], meaning that there exists a polynomial 0 . p(x, y) ∈ C[x, y] such that
p(t2, sin t) = 0 for all t. From Lemma  3.1 this implies that p(x, y) ≡ 0, a contradiction.

Suppose now that a function of the form (  22 ) vanishes identically on γ([0, 1]). It
follows from Lemma  3.1 that none of the fractions q j(γ(t))/p j(γ(t)) in ( 22 ) vanish
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identically in t. By Theorem  3.1 , with ρ = 1, it follows then that
−2πi(vk − vl) · γ(t) = At + B,

for some A,B ∈ C, k , l, and for all t ∈ [0, 1]. By the linear independence of the
functions 1, t, t2, sin t this implies that A = B = 0, vk = vl, which contradicts the fact
that all v j are distinct. So vanishing on this curve is impossible for such functions
(and therefore for Fourier–Laplace transforms of indicator functions of polytopal
regions). This is a curve which is not covered by results in [ Eng23 ] as it is not
rationally parametrizable.

We have shown the following.
Theorem 3.3. If P is a polygonal region then its Fourier–Laplace transform cannot
vanish identically on ( 26 ).
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