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1 Prologue

J.Marstrand proved, in 1954 that:
If E ⊆ R2 is a Borel set with Hausdorff dimension s ≤ 1, then the Hausdorff
dimension of the projection of E on almost every line L through the origin
has again Hausdorff dimension s, otherwise if s > 1 then E projects into a
set of positive length in almost all directions.

Marstrand’s original proof was based on the definition and basic proper-
ties of Hausdorff measures and depends heavily on delicate and, in places,
complicated geometric and measure theoretic arguments.

In this thesis,we give R.Kauffman’s proof(1968) of the theorem in Rd.
In his proof, he makes natural use of the potential theoretic characterization
of Hausdorff dimension and Fourier transform methods.

Here we shall prove the theorem only for the projections of compact
subsets of Rd.

For the general case of projections of Borel sets, we need a generalization
of Frostman’s Lemma ,the proof of which,requires theory of Polish spaces,
Souslin sets and capacities and its beyond the scope of this thesis. After
the proof of Frostman’s Lemma for Borel sets ,the general case of the main
theorem is proved with very similar(almost the same)arguments used for the
case of compact sets.

A proof of the general case of the Lemma can be found in [5],[7],[8].

Marstrand’s Theorem is also valid for projections of Borel sets on hyper-
planes in Rd but we’ll not prove that here. A proof of this, though, can be
found in [6].
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2 Some notions from measure theory and weak

convergence of measures

We denote B(x, r) the open ball with center x and radius r > 0, and
d(A,B) = inf{d(x, y) : x ∈ A, y ∈ B} the distance between A and B where
A,B are non-empty sets in a metric space (X, d).

Definition 2.1 (Metric outer measure). Let µ∗ be an outer measure on met-
ric space (X, d). We say that µ∗ is a metric outer measure if

µ∗(A ∪B) = µ∗(A) + µ∗(B)

for every non-empty A,B ⊆ X with d(A,B) > 0

If µ∗ is an outer measure on X,we denote Aµ∗ the sigma algebra of µ∗−
measurable subsets of X

Proposition 2.1 Let (X, d) be a metric space and µ∗ an outer measure
on X. Then, the measure µ which is induced by µ∗ on (X,Aµ∗) is a Borel
measure(i.e. all Borel sets in X are µ∗−measurable) if and only if µ∗ is a
metric outer measure.

Proof Suppose that all Borel sets in X are µ∗−measurable and take arbi-
trary non-empty A,B ⊆ X with d(A,B) > 0. We consider r = d(A,B) and
the open set U =

⋃
x∈AB(x, r). It is clear that A ⊆ U and B ∩U = ∅. Since

U is µ∗−measurable we have

µ∗(A ∪B) = µ∗((A ∪B) ∩ U) + µ∗((A ∪B) ∩ U c) = µ∗(A) + µ∗(B)

Therefore, µ∗ is a metric outer measure on X.

Now let µ∗ be a metric outer measure and consider an open U ⊆ X. If A
is a non-empty subset of U , we define

An = {x ∈ A : d(x, y) ≥ 1

n
,∀y /∈ U}

It is obvious that An ⊆ An+1 for all n. If x ∈ A ⊆ U , there is r > 0 so that
B(x, r) ⊆ U and if we take n ∈ N so that 1

n
≤ r then x ∈ An. Therefore

A =
⋃∞
n=1An. We define, now, B1 = A1 and Bn = An \ An−1 for all n ≥ 2
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and have that the sets B1, B2, ... are pairwise disjoint and that A =
⋃∞
n=1Bn.

If x ∈ An and z ∈ Bn+2, then z /∈ An+1 and there is some y /∈ U so that
d(y, z) < 1

n+1
. Then d(x, z) ≥ d(x, y)−d(y, z) > 1

n
− 1

n+1
= 1

n(n+1)
Therefore,

d(An, Bn+2) ≥ 1
n(n+1)

for every n. Since An+2 ⊃ An ∪Bn+2, we find

µ∗(An+2) ≥ µ∗(An ∪Bn+2) = µ∗(An) + µ∗(Bn+2)

By induction we get

µ∗(B1) + µ∗(B3) + ...+ µ∗(B2n+1) ≤ µ∗(A2n+1)

and
µ∗(B2) + µ∗(B4) + ...+ µ∗(B2n) ≤ µ∗(A2n)

for all n. If at least one of the series µ∗(B1)+µ∗(B3)+... and µ∗(B2)+µ∗(B4)+
... diverges to +∞, then either µ∗(A2n+1) → +∞ or µ∗(A2n) → +∞. Since
the sequence (µ∗(An)) is increasing, we get that in both cases it diverges to
+∞. Since, also µ∗(An) ≤ µ∗(A) for all n, we get that µ∗(An) → µ∗(A) If
both series µ∗(B1)+µ∗(B3)+ ... and µ∗(B2)+µ∗(B4)+ ... converge, for every
ε > 0 there is n so that

∑∞
k=n+1 µ

∗(Bk) < ε. Now,

µ∗(A) ≤ µ∗(An) +
∞∑

k=n+1

µ∗(Bk) < µ∗(An) + ε

This implies that µ∗(An)→ µ∗(A). Therefore, in any case,µ∗(An)→ µ∗(A)

We consider an arbitrary A ⊆ X and we take C = A ∩ U . Since
A ∪ U c ⊆ U c,we have that d(Cn, A ∩ U c) > 0 for all n and hence,

µ∗(A) ≥ µ∗(Cn ∪ (A ∩ U c)) = µ∗(Cn) + µ∗(A ∩ U c)

for all n. Taking the limit as n→ +∞ we find

µ∗(A) ≥ m∗(A ∩ U) + µ∗(A ∩ U c)

We conclude that every U open in X is µ∗− measurable and hence, every
Borel set in X is µ∗−measurable. �

Definition 2.2 (Support of a measure). Let µ be a Borel measure on a
separable metric space (X, d). The support of µ is the set

supp(µ) := {x ∈ X : µ(B(x, r)) > 0,∀r > 0}

6



The support of µ is evidently closed: if {xn}n∈N ⊆ supp(µ) is a sequence
converging to some point x ∈ X, and r > 0, then B(x, r) contains B(xm, r/2)
for some m ∈ N large enough, and hence µ(B(x, r)) > 0. This means that
x ∈ supp(µ). Another common definition of supp(µ) is the following: supp(µ)
is the smallest closest set F such that µ(X \F ) = 0. These definitions agree
on all separable metric spaces.

Definition 2.3 (Push-forward). Let µ be a measure on a space X, and let
f : X → Y be a map, where Y is another arbitrary space. We define the
push-forward of µ under f as the measure f(µ) defined by

f(µ)(A) := µ(f−1(A)), A ⊆ Y

Lemma 2.1. Assume that (X, d), (Y, s) are separable metric spaces, f : X →
Y is continuous, and µ is a measure on X with compact support. Then

supp(f(µ)) = f(supp(µ))

and in particular supp(f(µ)) is compact. Moreover, if g : Y → [0,+∞] is a
non-negative Borel function, and µ is a Borel measure, then∫

Y

gd(f(µ)) =

∫
X

(g ◦ f)dµ

Definition 2.4 (Weak convergence of measures). Let {µj}j∈N and µ be
locallyfinite(gives finite measure to all compact sets) Borel measures on a
metric space (X, d). We say that the measures µj converge weakly to µ if∫

gdµj →
∫
gdµ

for all g ∈ Cc(X), i.e. the space of all continuous functions g : X → C with
compact support. In this case, we write µj ⇀ µ.

We also denote C0(Rd) the space of continuous functions which vanish at
infinity.

Theorem 2.2. Let {µj}j∈N be a sequence of Borel measures on Rd satisfying

sup
j∈N

µj(K) < +∞
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for all compact subsets K ⊆ Rd.
Then, there exists a locally finite Borel measure µ, and a subsequence {µji}i∈N,
such that

µji ⇀ µ as i→ +∞

Proof Let ||.||∞ be the sup-norm in the space Cc(Rd). We will use the
fact that (Cc(Rd), ||.||∞) is separable, that is, there exists a countable dense
subset {gk}k∈N ⊆ Cc(Rd)
The sequence can also be chosen so that any function g ∈ Cc(Rd) supported
in B(0,M) can be approximated by functions gk supported in B(0, 2M), for
M ∈ N.

Then, for each k ∈ N, choose a subsequence {jki }i∈N such that

ak := lim
i→∞

∫
Rd
gkdµ

k
ji

Such subsequences exist, because the set of real numbers{∫
Rd
gkdµj : j ∈ N

}
is bounded by hypothesis and recalling that gk has compact support.

. Moreover, we may always take {jk+1
i }i∈N to be a subsequence of {jki }i∈N

for any k ∈ N, just by picking the sequences one at a time. Then, the se-
quence {jmm}m∈N is an eventual subsequence of every sequence {jki }k∈N : more
precisely jmm ∈ {jki }i∈N for all m ≥ k, because then jmm ∈ {jmi }i∈N ⊆ {jki }i∈N.

It follows that

(1) ak = lim
m→∞

∫
Rd
gkdµjmm , k ∈ N

Now, it follows from the density of the sequence {gk}k∈N that actually
the limit

(2) lim
m→∞

∫
Rd
gdµjmm =: T (g)

exists for every g ∈ Cc(Rd).
To see this, pick g ∈ Cc(Rd) with support in B(0,M), and let gk1 , gk2 , .... be
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a subsequence of {gk}k∈N with supp(gkl) ⊆ B(0, 2M) and ||g− gkl ||∞ → 0 as
l→ +∞. Then for any l, L ∈ N,

|akl − akL| ≤ lim sup
m→∞

(∣∣∣∣akl − ∫
Rd
gdµjmm

∣∣∣∣+

∣∣∣∣akL − ∫
Rd
gdµjmm

∣∣∣∣
)

= lim sup
m→∞

(∣∣∣∣∫
Rd
gkldµjmm −

∫
Rd
gdµjmm

∣∣∣∣+

∣∣∣∣∫
Rd
gkLdµjmm −

∫
Rd
gdµjmm

∣∣∣∣
)

≤ sup
m>0

µjmm (B(0, 2M))(||gkl − g||∞ + ||gkL − g||∞)

which shows that {akl}l∈N is a Cauchy sequence with a limit b ∈ R. Finally,
fix ε > 0 and pick kl ∈ N so large that |b− akl | < ε. Then, using the triangle
inequality,(1) and hypothesis we obtain

lim sup
m→∞

∣∣∣∣b− ∫
Rd
gdµjmm

∣∣∣∣ ≤ lim sup
m→∞

∣∣∣∣∫
Rd
gkldµjmm −

∫
Rd
gdµjmm

∣∣∣∣+ ε

≤ lim sup
m→∞

µjmm (B(0, 2M))||gkl − g||∞ + ε

≤ sup
m>0

µjmm (B(0, 2M))||gkl − g||∞ + ε

Letting l → +∞ and ε→ 0 proves that the left hand side of (2) exists, and
T (g) = b.

The operator g 7→ T (g) is clearly positive and linear: T (g) ≥ 0 if g ≥ 0,
and T (cg1 + dg2) = cT (g1) + dT (g2). The Riesz representation theorem (see
[1]) now states that the functional is given by a positive Borel measure µ :

T (g) =

∫
Rd
gdµ, g ∈ Cc(Rd)

The weak convergence µjmm ⇀ µ follows immediately from (2). �

Lemma 2.3. Assume that {µj}j∈N is a sequence of locally finite Borel mea-
sures in a locally compact metric space (X, d) converging weakly to a locally
finite Borel measure µ. If K ⊆ X is compact, and U ⊆ X is open and
σ−compact, then the following inequalities hold:

µ(K) ≥ lim sup
j→∞

µj(K)

µ(U) ≤ lim inf
j→∞

µj(U)
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Proof We start with the first inequality. Let ε > 0. Since K is compact
and X is locally compact, there exists an open set V ⊃ K with compact
closure, and hence µ(V ) <∞.
Then, it follows that

µ({x : dist(x,K) <
1

j
})→ µ(K) as j →∞

(the (1
j
)− neighbourhoods are contained in V for j ∈ N large enough), and

consequently (using the continuity of the function dist(x,K)) we may find
an open set U ⊃ K with µ(K) ≥ µ(U)− ε.
Then, pick the function :

f(x) =
dist(x, U c)

dist(x,K) + dist(x, U c)

which satisfies 1K ≤ f ≤ 1U and f ∈ Cc(X).

By definition of weak convergence, we then have

µ(K) ≥ µ(U)− ε ≥
∫
fdµ− ε = lim

j→∞

∫
fdµj − ε ≥ lim sup

j→∞
µj(K)− ε

Letting ε→ 0,we obtain the first inequality.

Now let U be a σ−compact open set and ε > 0.
Then we have that U =

⋃∞
n=1Kn where Kn are compact sets ∀n ∈ N.

Setting An =
⋃n
m=1Km,we have that µ(U) = limn→∞ µ(An) thus ∃n0 ∈ N

such that µ(U) ≤ µ(An0) + ε
The set F = An0 is a compact subset of U , so as before we pick a function
f ∈ Cc(X) satisfying:

1F ≤ f ≤ 1U

We have:

µ(U) ≤ µ(F ) + ε ≤
∫
fdµ+ ε = lim

j→∞

∫
fdµj + ε

= lim inf
j→∞

∫
fdµj + ε ≤ lim inf

j→∞
µj(U) + ε

Letting ε→ 0 we obtain the second inequality. �
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3 Concepts and theorems from harmonic anal-

ysis

The Euclidean norm and the Euclidean inner product are given by

|x| =
√
x2

1 + ...+ x2
d

x · y = x1y1 + ...+ xdyd

when x = (x1, ..., xd), y = (y1, ..., yd) ∈ Rd

If x = (x1, ..., xd) ∈ Rd and a = (a1, ..., ad), β = (β1, ..., βd) ∈ Nd
0 we write:

xa = xa11 · · · x
ad
d

|a| = a1 + ...+ ad

a+ β = (a1 + β1, ..., ad + βd)

a! = a1!a2! · · · ad!

Da =
∂|a|

∂xa11 · · · ∂x
ad
d

and we write a ≤ β if aj ≤ βj,∀j = 1, ..., d.

The Lebesgue measure of a Lebesgue measurable E ⊆ Rd is denoted
md(E) and the space of all finite complex Borel measures on Rd is denoted
M(Rd) with the norm ||µ|| = |µ|(Rd), where |µ| is the absolute variation
of µ and we have that L1(Rd) is contained in M(Rd) via the identification
f → µ, dµ = fdx
We also denote L1

loc(Rd) the space of locally integrable functions.

We define the convolution of f, g in Rd as follows:

(f ∗ g)(x) =

∫
Rd
f(y)g(x− y)dy

and if µ ∈M(Rd)

(f ∗ µ)(x) =

∫
Rd
f(x− y)dµ(y)

whenever the above integrals make sense.
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We recall the following properties of convolution:
1. If f ∈ L1(Rd), g ∈ Lp(Rd), 1 ≤ p ≤ ∞,then f ∗ g ∈ Lp(Rd) and

||f ∗ g||p ≤ ||f ||1||g||p

2. If f ∈ Lp(Rd) and g ∈ Lq(Rd) with 1
p

+ 1
q

= 1 then f ∗ g is continuous
and

||f ∗ g||∞ ≤ ||f ||p||g||q
3. If φ ∈ C∞c (Rd) and f ∈ L1

loc(Rd) then φ ∗ f ∈ C∞(Rd) and

Da(φ ∗ f) = (Daφ) ∗ f

We now denote S the space of Schwartz functions S(Rd) which contains
all functions φ ∈ C∞(Rd) which satisfy:

sup
x∈Rd
|xβDaφ(x)| < +∞,∀a, β ∈ Nd

0

If φ ∈ S and k ∈ N0 ,we define the quantity

pk(φ) = sup
x∈Rd,|a|≤k

(1 + |x|2)
k
2 |Daφ(x)|

We note that φ ∈ S⇐⇒ pk(φ) < +∞,∀k ∈ N0

Indeed if φ ∈ S and k ∈ N0 then we denote ca,β = supx∈Rd |xβDaφ(x)|,for
a, β ∈ Nd

0 which are finite quantities.
We have that

(1 + |x|2)
k
2 = (1 + x2

1 + ...+ x2
d)

k
2

≤ (1 + |x1|+ ...+ |xd|)k =
∑
|β|≤k

ρβ|xβ|

where ρβ are nonnegative constants.
So

(1 + |x|2)
k
2 |Daφ(x)| ≤

∑
|β|≤k

ρβ|xβDaφ(x)| ≤
∑
|β|≤k

ρβca,β

Thus
pk(φ) ≤

∑
|β|≤k

ρβ max
|a|,|β|≤k

ca,β < +∞
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Conversely if a, β ∈ Nd
0,then

|xβDaφ(x)| ≤ |x|k|Daφ(x)|

≤ (1 + |x|2)
k
2 |Daφ(x)| ≤ pk(φ)

for k = max{|a|, |β|}. Note that |xβ| ≤ |x||β| ≤ |x|k

Thus supx∈Rd |xβDaφ(x)| ≤ pk(φ) < +∞

It can be easily proved that S is a subspace of Lp(Rd),∀p ∈ [1,∞] and
if φ, ψ ∈ S then it can be easily proved that φ + ψ, φψ, φ ∗ ψ, φt ∈ S,where
φt(x) = 1

td
φ(x

t
), t > 0

Definition 3.1 (Radial function). A functions f defined on Rd is radial if
f(x) = g(|x|), where g : [0,+∞)→ R.
Equivalently a function f is radial if and only if f ◦ T = f, ∀T ∈ SO(d),i.e.
the space of all orthogonal matrices.

Now, let f ∈ L1(Rd),then its Fourier transform is f̂ : Rd −→ C defined
by:

f̂(ξ) =

∫
Rd
e−2πix·ξf(x)dx

and we have the Fourier inversion formula which says that, if f̂ ∈ L1(Rd),then

f(x) =

∫
Rd
e2πix·ξf̂(ξ)dξ

for almost every x ∈ Rd

Given f ∈ L1(Rd),we define f∨(x) = f̂(−x) for all x ∈ Rd. The operation

f 7→ f∨

is called the inverse Fourier Transform.
Also if µ ∈M(Rd) then we define its Fourier transform:

µ̂(ξ) =

∫
Rd
e−2πix·ξdµ(x)
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Let f, g ∈ L1(Rd). We recall some properties of Fourier transform:
1. f̂ is uniformly continuous
2. ||f̂ ||∞ ≤ ||f ||1
3. f̂ + g = f̂ + ĝ

4. ˆ̃f =
˜̂
f , where f̃(x) = f(−x)

5. ˆ̄f =
¯̂̃
f

6. ŝy(f)(ξ) = e−2πiy·ξf̂(ξ) where sy(f)(x) = f(x− y)

7. ̂(e2πiy·xf(x))(ξ) = sy(f̂)(ξ)

8. f̂t(ξ) = f̂(tξ),where ft(x) = 1
td
f(x

t
), t > 0

9. (̂Daf)(ξ) = (2πiξ)af̂(ξ)

10. (Daf̂)(ξ) = ̂((−2πix)af(x))(ξ)

11. (̂f ∗ g)(ξ) = f̂(ξ)ĝ(ξ)
12. f̂ , f∨ ∈ S, if f ∈ S
13. If f, g ∈ L1(Rd) and µ, ν ∈M(Rd) then∫

Rd
µ̂dν =

∫
Rd
ν̂dµ

∫
Rd
f̂(x)g(x)dx =

∫
Rd
f(x)ĝ(x)dx (Duality Relation)

14. lim|ξ|→+∞ f̂(ξ) = 0
15. The Fourier transform maps S onto S
16. The Fourier transform of a radial function is radial.

17.
ˆ̂
f = f̃

We state without proof the following theorem:

Theorem 3.1 (Plancherel). (i) If f, g ∈ S then
∫
Rd f̂

¯̂g =
∫
Rd fḡ

(ii)There is a unique bounded operator F : L2(Rd)→ L2(Rd) such that F(f) =
f̂ when f ∈ S and F has the properties:
1.F is a unitary operator
2.F(f) = f̂ if f ∈ L1(Rd) ∩ L2(Rd)

14



Statement 2 allows us to use the notation f̂ for F(f) if f ∈ L2(Rd)
without any possible ambiguity.

Corollary 3.1 The follwing form of the duality relation is valid:∫
Rd
ν̂ψ =

∫
Rd
ψ̂dν, ψ ∈ S

if ν = µ+ fdx, µ ∈M(Rd), f ∈ L2(Rd)

Proof If f = 0 then we are done,considering the measure λ = ψdx

If µ = 0,then it suffices to show that∫
Rd
F(f)ψ =

∫
Rd
fψ̂

.
For f ∈ L1(Rd) ∩ L2(Rd) we have from duality relation that∫

Rd
f̂ψ =

∫
Rd
fψ̂, ψ ∈ S

If f ∈ L2(Rd) then ∃ fk ∈ L1(Rd) ∩ L2(Rd) such that ||fk − f ||2 → 0.
We have ∣∣∣∣∫

Rd
f̂kψ −

∫
Rd
F(f)ψ

∣∣∣∣ ≤ ∫
Rd
|F(fk − f)||ψ|

≤ ||F(fk − f)||22||ψ||22 = ||fk − f ||22||ψ||22 → 0

Also from Cauchy-Schwartz inequality again, we have∫
Rd
fkψ̂ →

∫
Rd
fψ̂

Thus
∫
Rd F(f)ψ =

∫
Rd fψ̂. �

Theorem 3.2. If µ ∈M(Rd), f ∈ L2(Rd) and

f̂ + µ̂ = 0

then µ = −fdx.In other words if µ ∈M(Rd) and µ̂ ∈ L2(Rd) then µ is
absolutely continuous with respect to the Lebesgue measure with an L2 density.
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Proof By the Riesz representation theorem for measures on compact sets,
the measure µ+ fdx will be zero provided

(1)

∫
Rd
φdµ+ φfdx = 0,∀φ ∈ Cc(Rd)

If φ ∈ C∞c (Rd) then (1) follows from Corollary 3.1 for ψ = φ∨

In general,if φ ∈ Cc(Rd) we choose a sequence φk ∈ C∞c (Rd) such that:
1.φk → φ uniformly
2.||φk − φ||2 → 0
and by passing to the limit we have (1).

Now let µ̂ ∈ L2(Rd).
By Plancherel’s theorem we can choose g ∈ L2(Rd) such that ĝ = µ̂
Then dµ − gdx has Fourier transform zero, so by the first part of the proof
dµ = gdx.�

Theorem 3.3. Ket µ be a finite Borel measure with compact support . If
µ̂ ∈ L1(Rd), then µ is a continuous function.

Proof Assume that supp(µ) ⊆ B(0, R) for some R > 0.
Let ψ ∈ C∞(Rd) with the properties:

∫
Rd
ψ = 1

ψ ≥ 0

supp(ψ) ⊆ B(0, 1)

Denote ψt = 1
td
ψ(x

t
) and µt(x) = (ψt ∗ µ)(x).We will prove that µt ∈ S

Let 1 > t > 0.As an easy application of dominated convergence theorem
,since ψ ∈ S and µ is finite,the identity Da(ψt ∗ µ) = (Daψt ∗ µ) holds for all
a ∈ Nd

0.

Note that supp(Daψt) ⊆ B(0, t).
Let k ∈ N0 and x ∈ Rd and a ∈ Nd

0 such that |a| ≤ k.Then

(1 + |x|2)
k
2Daµt(x) ≤

∫
Rd

(1 + |x|2)
k
2 |Daφ(

x− y
t

)|d|µ|(y)
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=
1

td+|a|

∫
Rd

(1 + |x|2)
k
2 (1 + |x−y

t
|2)

k
2 |Daφ(x−y

t
)|

(1 + |x−y
t
|2)

k
2

d|µ|(y) =: I(x)

If y /∈ B(x, t) then |y−x|
t
≥ 1 thus Daφ( |x−y|

t
) = 0, so

I(x) =
1

td+|a|

∫
B(x,t)

(1 + |x|2)
k
2 (1 + |x−y

t
|2)

k
2 |Daφ(x−y

t
)|

(1 + |x−y
t
|2)

k
2

d|µ|(y)

≤ pk(φ)
1

td+k

∫
B(x,t)

(1 + |x|2)
k
2 d|µ|(y)

if |x| > R + t then B(0, R) ∩B(x, t) = ∅ thus

I(x) ≤ 1

td+|k| (1 + (R + t)2)
k
2 ||µ|| < +∞

which implies that pk(µt) < +∞

Now

ψ̂t(ξ) = ψ̂(tξ)→ ψ̂(0) =

∫
Rd
ψ = 1 as t→ 0

µt(x) =

∫
Rd
µ̂t(ξ)e

2πiξ·xdξ =

∫
Rd
ψ̂(tξ)µ̂(ξ)e2πıξ·xdξ

→t→0

∫
Rd
µ̂(ξ)e2πiξ·xdξ := g(x)

Also µt(x)dx ⇀ dµ(x) as t → 0. Indeed let ε > 0 and f ∈ Cc(Rd). Then
f is uniformly continuous so ∃δ > 0 such that

|f(x+ y)− f(y)| < ε

||µ||
, ∀x ∈ B(0, δ)

For t < δ we have:

∣∣∣∣∫
Rd
f(x)µt(x)dx−

∫
Rd
f(x)dµ(x)

∣∣∣∣ =

∣∣∣∣∫
Rd
f(x)(ψt ∗ µ)(x)dx−

∫
Rd
f(y)dµ(y)

∣∣∣∣
=

∣∣∣∣∫
Rd

∫
Rd
f(x)ψt(x− y)dµ(y)dx−

∫
Rd

∫
Rd
f(y)ψt(x)dxdµ(y)

∣∣∣∣
17



≤
∫
Rd

∫
B(0,t)

|f(x+ y)− f(y)|ψt(x)dxd|µ|(y)

<

∫
Rd

∫
B(0,t)

ε

||µ||
ψt(x)dxd|µ|(y) ≤ ||µ||||ψ||1

ε

||µ||
= ε

Finally µt(x)dx ⇀ g(x)dx. Indeed let f ∈ Cc(Rd) and tn → 0.

|µtn(x)| =
∣∣∣∣∫

Rd
ψ̂(tnξ)µ̂(ξ)e2πıξ·xdξ

∣∣∣∣ ≤ ||µ̂||1
so |f(x)µtn(x)|, |g(x)f(x)| ≤ ||µ̂||1|f(x)| ∈ L1(Rd)
By dominated convergence theorem we have that∫

Rd
f(x)µtn(x)dx→

∫
Rd
f(x)g(x)dx

. By uniqueness of weak limit µ = g. �

Definition 3.2. (i)A function f ∈ L1
loc(Rd) is a tempered fuction if∫

Rd

|f(x)|
(1 + |x|)N

dx <∞

for some constant N ∈ N.
(ii) If f, g are tempered functions,we say that g is the distributional Fourier transform
of f if ∫

Rd
gφ =

∫
Rd
fφ̂, ∀φ ∈ S

Definition 3.3. For a functions in f ∈ L1(Rd) + L2(Rd) we have that
f = f1 + f2 where fi ∈ Li(Rd). i = 1, 2 and we define its
(L1 + L2)− Fourier Transform by f̂ = f̂1 + f̂2

Lemma 3.4. Let ha =
Γ(a

2
)

π
a
2
|x|−a. Then ĥa = hd−a in the sence of

(L1 + L2)−Fourier transforms if d
2
< Re(a) < d, and in the sence

of distributional Fourier transforms if 0 < Re(a) < d.

18



Here Γ is the gamma function,i.e.,

Γ(s) =

∫ ∞
0

e−tts−1dt

Proof Let h(x) = |x|−a where a ∈ (d
2
, d), then h is radial and

h ∈ L1(Rd) + L2(Rd) because h(x) = h1 + h2 where

h1(x) = h(x)1{|x|<1}(x) ∈ L1(Rd)

h2(x) = h(x)1{|x|≥1}(x) ∈ L2(Rd)

Now recall that if f ∈ L2(Rd) and φn ∈ S such that φn →L2
f , then

φ̂n →L2 F(f)

Using this fact and simple changes of variables we can easily deduce that
the L2−Fourier transform F of a radial function f ∈ L2(Rd) is radial. Thus
the (L1 + L2)−Fourier transform of h is radial.

Also using the previous fact, again we have ĥ(Mξ) = M−(d−a)ĥ(ξ).
If ξ ∈ Rd then

ĥ(ξ) = ĥ(|ξ| ξ
|ξ|

) = |ξ|−(n−a)ĥ(
ξ

|ξ|
)

So ĥ(ξ) = c|ξ|−(d−a) where c = ĥ(x),∀x ∈ Sd−1

Using the Duality relation(which is true for L2 functions by approxima-
tion)we have ∫

Rd
|x|−ae−π|x|2dx = c

∫
Rd
|x|−(d−a)e−π|x|

2

dx (1)

Here we used the identity: ê−π|x|2(ξ) = e−π|ξ|
2

where e−π|x|
2 ∈ S

Polar Coordinates formula and appropriate changes of variables to on
both sides of the equation (1) give us:

c =
Γ(d−a

2
)π

a
2

Γ(a
2
)π

d−a
2
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Hence ĥa = hd−a.

Now for the general case, let φ ∈ S, d > 2 and

A(z) =

∫
Rd
hzφ̂

B(z) =

∫
Rd
hd−zφ

We will show that A(z), B(z) are holomorphic in the strip
I = {z : 0 < Re(z) < d− 1} and agree everywhere on I.
Note that d

2
< d− 1

Recall that Γ(z) is holomorphic in the region Ω = {z : Re(z) > 0} and
has no zeroes, so the reciprocal gamma function 1

Γ
(z)

is holomorphic in Ω. So it suffices to show the holomorphy of the function
G : I → C where

G(z) =

∫
Rd
|x|−zφ(x)dx

Let z ∈ I and define F (x, z) = |x|−zφ(x) and let hn ∈ C such that hn → 0
and |hn| < min{1, d−Rez−1

2
},∀n ∈ N.

Then

F (x, z + hn)− F (x, z)

hn
→ − ln |x|

xz
φ(x), a.e

and also∣∣∣∣F (x, z + hn)− F (x, z)

hn

∣∣∣∣ =

∣∣∣∣ 1

|hn||x|z

(
1

|x|hn
− 1

)∣∣∣∣|φ(x)| = |e
−hn ln |x| − 1|
|hn||x|Re(z)

|φ(x)|

=
|e−hn ln |x| − 1|
|hn||x|Re(z)

|φ(x)|1{|x|≤1} +
|e−hn ln |x| − 1|
|hn||x|Re(z)

|φ(x)|1{|x|>1}

(1) If |x| ≤ 1 then,

|e−hn ln |x| − 1|
|hn||x|Re(z)

1{|x|≤1}|φ(x)| ≤ | ln |x|||e
|hn|| ln |x||

|x|Re(z)
1{|x|≤1}|φ(x)| =

ln 1
|x|e
|hn| ln 1

|x|

|x|Re(z)
1{|x|≤1}|φ(x)|
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≤ 1

|x|Re(z)+1+|hn|
1{|x|≤1}|φ(x)| ≤ 1

|x|Re(z)+1+
d−1−Re(z)

2

1{|x|≤1}|φ(x)| ∈ L1(Rd)

since φ is bounded everywhere.

(2) If |x| > 1 then

|e−hn ln |x| − 1|
|hn||x|Re(z)

|φ(x)|1{|x|>1} ≤ |x|2|φ(x)|1{|x|>1} ∈ L1(Rd)

since φ ∈ S.

Using (1),(2) and the dominated convergence theorem we have that
A(z), B(z) are differentiable at z.
So A,B are differentiable at every z ∈ I thus holomorphic in I
By Corollary 3.1 ,

A(z) = B(z),∀z ∈ (
d

2
, d) ⊃ (

d

2
, d− 1)

Thus by identity theorem A(z) = B(z), ∀z ∈ I
If Re(z) > d

2
then ha ∈ L1(Rd) + L2(Rd), so its L1 + L2 and distributional

Fourier transforms coincide. �.
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4 Hausdorff dimension and Frostman’s Lemma

for compact sets

In this chapter we introduce notion of the Hausdorff measure and dimension
in Rd and we prove the Frostman’s Lemma which is one of the most im-
portant tools for the proof of the main theorem, because it leads us to the
potential-theoretic characterization of the Hausdorff dimension in the next
chapter.

Let a > 0, and E ⊆ Rd. For δ ∈ (0,+∞), one defines

Hδ
a(E) = inf

(∑
j

raj

)
where the infimum is taken over all countable coverings of E by balls B(xj, rj)
with rj < δ.
It is clear that Hδ

a(E) increases as δ decreases, and we define

Ha(E) = lim
δ→0

Hδ
a(E)

It is also clear that Hδ
a(E) ≤ Hδ

β(E) if a > β and δ ≤ 1, thus Ha(E) is a
nonincreasing function of a.

We also denote H∞a (·) the set function Hδ
a(·) when δ = +∞.

Remark Ha is a metric outer measure on Rd, and hence,by Proposition
2.1, all Borel sets in Rd are Ha−measurable.

Indeed it is not difficult to see that Ha is an outer measure.Now let
A,B ⊆ Rd with d(A,B) > 0 If Ha(A ∪ B) = +∞ then the equality Ha(A ∪
B) = Ha(A) + Ha(B) is clearly true. We suppose that Ha(A ∪ B) < +∞
and hence, Hδ

a(A ∪ B) < +∞ for every δ > 0. We take arbitrary δ < d(A,B)
2

and an arbitrary covering A ∪ B ⊆
⋃∞
j=1B(xj, rj) with rj < δ for every j.

It is obvious that each B(xj, rj) intersects at most one of the A and B. We
set Cj = B(xj, rj) when B(xj, rj)intersects A and Cj = ∅ otherwise and,
similarly, Dj = B(xj, rj) when B(xj, rj) intersects B and Dj = ∅ otherwise.
Then, A ⊆

⋃∞
j=1Cj and B ⊆

⋃∞
j=1Dj.We denote r(Cj), r(Dj) the radii

of the balls Cj, Dj respectively. So Hδ
a(A) ≤

∑∞
j=1(r(Cj))

a and Hδ
a(B) ≤
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∑∞
j=1(r(Dj))

a.Adding,we find Hδ
a(A) + Hδ

a(B) ≤
∑∞

j=1 r
a
j and, taking the

infimum of the right side, Hδ
a(A) + Hδ

a(B) ≤ Hδ
a(A ∪ B) Taking the limit

as δ → 0+ we find Ha(A) + Ha(B) ≤ Ha(A ∪ B) and since the opposite
inequality is obvious, we conclude that Ha(A) +Ha(B) = Ha(A ∪B)

Theorem 4.1. There is a unique number a0, called the Hausdorff dimension
of E or dim(E), such that Ha(E) =∞ if a < a0 and Ha(E) = 0 if a > a0

Proof Let E ⊆ Rd Borel. We claim that if 0 < a1 < a2 < ∞ and if
Ha1(E) <∞ then Ha2(E) = 0
Indeed,since Ha1(E) <∞ we have that Hδ

a1
(E) <∞, ∀δ > 0. We fix such a

δ and consider a covering E ⊆
⋃∞
j=1B(xj, rj) with rj ≤ δ, for all j so that∑

j r
a1
j < Hδ

a1
(E) + 1 ≤ Ha1(E) + 1

Therefore

Hδ
a2

(E) ≤
∑
j

ra2j ≤ δa2−a1
∑
j

ra1j ≤ (Hδ
a1

(E) + 1)δa2−a1

and taking the limit as δ → 0+ , we find Ha2(E) = 0

Now we consider various cases

1.Ha(E) = 0 for every a > 0. In this case we set a0 = 0.
2.Ha(E) = +∞ for every a > 0 . We, now, set a0 = +∞
3. There are a1 and a2 in (0,+∞) so that Ha1(E) > 0 and Ha2(E) < +∞.
The above claim implies that a1 ≤ a2 and that Ha(E) = +∞ for every
a ∈ (0, a1) and Ha(E) = 0 for every a ∈ (a2,+∞).
We consider the set {a ∈ (0,+∞) : Ha(E) = +∞} and its supremum
a0 ∈ [a1, a2]. Again,our claim implies that Ha(E) = +∞ for every a ∈ (0, a0)
and Ha(E) = 0 for every a ∈ (a0,+∞). �

From the previous theorem we can easily prove that

dim(E) = sup{a ≥ 0 : Ha(E) = +∞} = inf{a ≥ 0 : Ha(E) = 0}

We now state without proof some simple properties of the Hausdorff
dimension in Rd:

1. E ⊆ F =⇒ dim(E) ≤ dim(F )
2. For an open subset U ⊆ Rd,dim(U) = d
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3. dim(F ) = 0 if F is finite or countable.
4. dim(

⋃∞
m=1 Fm) = supm{dim(Fm)}

5. If f : E → Rm is Lipschitz, then dim(f(E)) ≤ dim(E)
6. If f : Rd → Rd is a similarity with ratio C (i.e. for some C > 0,
|f(x)−f(y)| = C|x−y| ∀x, y) or an affine transformation, then dim(f(E)) =
dim(E)

Lemma 4.2. Let E ⊆ Rd Borel. Then H∞a (E) = 0⇐⇒ Ha(E) = 0

Proof (⇐=) ∀δ > 0 we have H∞a (E) ≤ Hδ
a(E) =⇒ H∞a (E) = 0.

(=⇒)Let H∞a (E) = 0 and δ > 0.
Then there exists a covering {B(xj, rj) : j ∈ N} of E such that

∑
j r

a
j < δa

raj ≤
∑
j

raj < δa,∀j ∈ N =⇒ rj < δ,∀j ∈ N

thus
Hδ
a(E) ≤

∑
j

raj < δa

Letting δ → 0, we have Ha(E) = 0. �

For n ∈ Z, We denote

Dn = {
d∏

k=1

[ jk
2n
,
jk + 1

2n
)

: j1, j2, ..., jd ∈ Z}

the dyadic cubes in Rd with side length 1
2n
. and D =

⋃
n∈ZDn

(A) If Q,Q′ ∈ D intersect,then either Q ⊆ Q′ or Q′ ⊆ Q
(B) If Dmax ⊆ B is the family of maximal sets (with respect to set inclusion)
in B, where B is a familly of dyadic cubes

,then
Dmax consists of disjoint sets.

Definition 4.1 (Frostman measure). A Borel measure µ on Rd is called an
s−Frostman measure, if there is a constant C > 0, such that µ(B(x, r)) ≤
Crs, ∀x ∈ Rd,∀r > 0.
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Lemma 4.3 (Frostman’s Lemma). Assume that E ⊆ Rd is a compact. Then
Hs(E) > 0 if and only if there exists a non-zero s−Frostman measure µ with
supp(µ) ⊆ E.

Proof (⇐=) Let δ > 0 and {B(xj, rj) : j ∈ N} a covering of E by balls
with rj < δ,∀j ∈ N.
Then 0 < µ(E) ≤

∑
j µ(B(xj, rj)) ≤ C

∑
j r

s
j .

This is true for every such covering of E thus Hδ
s (E) ≥ 1

C
µ(E).

Since δ > 0 was arbitrary, Hδ
s (E) ≥ 1

C
µ(E) > 0,∀δ > 0.

As δ → 0, we have that Hs(E) > 0.

(=⇒) By lemma 4.1 since Hs(E) > 0, then H∞s (E) > 0.
We’ll find an s−Frostman measure µ with supp(µ) ⊆ E and µ(Rd) = µ(E) ≥
NdH

∞
s (E) > 0,where Nd is a positive constant that depends only on the

dimension d.
Assume that the lemma has already been proven for all

compact E ⊆ [0, 1)d. Then let E ⊆ Rd a compact set with H∞s (E) > 0 and
a cube Q ⊃ E with side length M > 0.
So Q =

∏d
k=1[ak, ak +M), a1, ..., ad ∈ R. Define T : Q→ [0, 1)d as

T (x1, x2, ..., xd) =
1

M
(x1 − a1, x2 − a2, ..., xd − ad)

Then T has the properties:

|T (x)− T (y)| = |x− y|
M

,∀x, y ∈ Q

T (Q) = [0, 1)d

So it is easy to check that H∞s (T (E)) = H∞s (E)
Ms , and we may find

(by assumption) an s−Frostman measure µ0 with supp(µ0) ⊆ T (E) and

µ0(T (E)) ≥ NdH
∞
s (T (E)) = Nd

H∞s (E)
Ms . Finally consider the measure µ :=

M sµ0(T (·)) where supp(µ) ⊆ E. Then

µ(E) = M sµ0(T (E)) ≥ NdH
∞
s (E)

µ(B(x, r)) = M sµ0(T (B(x, r)) ≤ CdM
s r

s

M s
= Cdr

s
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So, µ is the desired measure.

Now, we prove the lemma under the assumption E ⊆ [0, 1)d.
Let δ = 1

2n
for some n ∈ N, and let Dδ be the collection of dyadic cubes of

side-length l(Q) = δ, which are contained in [0, 1)d.
Also, let Dδ(E) := {Q ∈ Dδ : Q ∩ E 6= ∅}, and write

Eδ =
⋃

Q∈Dδ(E)

Q ⊆ [0, 1)d

We will first construct a measure µδ with supp(µδ) ⊆ Eδ, and satisfying

µδ(B(x, r)) ≤ Cdr
s,∀x ∈ Rd, ∀r ∈ [δ,+∞)

for some Cd > 0.
For Q ∈ Dδ, we start by defining the set functions µ0

δ such that

µ0
δ(Q) :=

{
l(Q)s If Q ∈ Dδ(E)

0 If Q ∩ E = ∅

and also for Q ∈ Dδ(E) define µ0
δ �Q to be a suitably weighted copy of

Lebesgue measure on Q so that its mass on Q is µ0
δ(Q). Clearly µ0

δ is a
measure supported on Eδ and satisfies:

µ0
δ(B(x, r)) ≤ 5drs,∀x ∈ Rd, ∀r ∈ [δ, 2δ)

Indeed, if x ∈ Rd and r ∈ [δ, 2δ) then we can cover B(x, r) with 5d dyadic
cubes with side-length δ and by definition of µ0

δ we have that µ0
δ(Q) ≤

l(Q)s,∀Q ∈ Dδ. So

µ0
δ(B(x, r)) ≤

5d∑
j=1

µ0
δ(Qj) ≤ 5dδs ≤ 5drs

Now in order to have control for µ0
δ(B(x, r)) when r ≥ 2δ we need to modify

µ0
δ on scales larger than δ. We’ll do this by induction.

Assume that µkδ has already been defined for some k ≥ 0 and
1. µkδ is a measure.
2. µkδ (B(x, r)) ≤ 5drs,∀x ∈ Rd, ∀r ∈ [δ, 2k+1δ)
3. µkδ (Q) ≤ l(Q)s,∀Q ∈ D2kδ
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Let Q ∈ D2k+1δ

(A) If µkδ (Q) ≤ l(Q)s = (2k+1δ)s then set

µk+1
δ �Q:= µkδ �Q

(B) If µkδ (Q) > l(Q)s then set

µk+1
δ �Q:=

l(Q)s

µkδ (Q)
µkδ �Q

so that now µk+1
δ (Q) = l(Q)s.

Clearly µk+1
δ is a measure and µk+1

δ (Q) ≤ l(Q)s,∀Q ∈ D2k+1δ and

µk+1
δ (Q) ≤ 5drs,∀x ∈ Rd,∀r ∈ [δ, 2k+2δ)

This completes the definition of µk+1
δ .Note that

µk+1
δ (A) ≤ µkδ (A),∀A ∈ Rd,∀k ≥ 0

since l(Q)s

µkδ (Q)
< 1 in case (B).

For k = n we have that 2nδ = 1. Set µδ := µnδ .
Then µδ([0, 1)d) ≤ 1 by construction,and since µδ(Rd \ [0, 1)d) = 0, we also
have µδ(Q) ≤ l(Q)s for all dyadic Q with l(Q) ≥ 1.

Fix a cube Q ∈ D2kδ for some k ≥ 0.If k ≥ n then µδ(Q) ≤ l(Q)s,since
l(Q) ≥ 1.
If k < n then µδ(Q) ≤ µkδ (Q) ≤ l(Q)s by construction.So we conclude that
µδ(Q) ≤ l(Q)s for all dyadic cubes with side-length larger than δ.
If x ∈ Rd and r ≥ δ then ∃m ≥ 0 such that 2mδ ≤ r < 2m+1δ thus
µδ(B(x, r)) ≤ 5drs.

Now we’ll show that µδ(E) ≥ NdH
∞
s (E) for some Nd > 0. We have that

∀x ∈ Eδ exists Qx 3 x such that µδ(Qx) = l(Qx)
s

Indeed this is the biggest cube Q 3 x for which case (B) occurred, because
then µδ(Q) = l(Q)s and if case (B) never occurred for cubes containing x,
then the x lies in some Q ∈ Dδ where µ0

δ(Q) = l(Q)s thus µδ(Q) = l(Q)s

since µδ, by construction, extends µ0
δ to cubes with side-length ≥ δ.

27



Denote M the set of maximal elements of {Qx : x ∈ Eδ}. Then M
consists of disjoint cubes which they also cover Eδ, so

µδ(Eδ) =
∑
Q∈M

µδ(Q) =
∑
Q∈M

l(Q)s ≥ 1

(
√
d)s

∑
Q∈M

diam(Q)s ≥ 1

(
√
d)s

H∞s (E)

since every Q ∈M is a subset of the ball B(s, diam(Q)) where s is the center
of Q and those balls cover E.

Now the sequence {µ 1
2n

: n ∈ N0} satisfies the hypothesis of theorem 2.2

so there exists a subsequence {µkn}n∈N and a locally finite Borel measure µ
such that µkn ⇀ µ as n→ +∞.
Each measure µkn is supported on Ekn := E2−kn and Rd\E =

⋃∞
n=1(Rd\Ekn).

Thus by lemma 2.3

µ(Rd \ E) = lim
n→+∞

µ(Rd \ Ekn) ≤ lim
n→+∞

lim inf
j→+∞

µkj(Rd \ Ekn) = 0

since µkj(Rd \ Ekn) = 0,∀j ≥ n. So we proved that supp(µ) ⊆ E.

Also since E is compact, ∃M > 0 such that E ⊆ B(0,M) =: B and so

µ(Rd) = µ(B) ≥ lim sup
j→+∞

µkj(B) ≥ lim sup
j→+∞

µkj(Ekj) ≥
1

(
√
d)s

H∞s (E) > 0

By construction of the measures µkj , j ∈ N and by lemma 2.3 it is clear
that µ(B(x, r)) ≤ 5drs,∀r > 0, ∀x ∈ Rd. �
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5 Riesz energy and its connection to the Haus-

dorff dimension and Fourier transform

We now define the a−dimensional Riesz energy of a (positive) measure
µ with compact support(the compact support assumption is not needed; it
is included to simplify the presentation) by the formula

Ia(µ) =

∫
Rd

∫
Rd
|x− y|−adµ(x)dµ(y)

We always assume that 0 < a < d and we also define the Riesz potential

Va
µ(x) =

∫
Rd
|x− y|−adµ(y)

(which is the convolution of |x|−a with µ). Thus

Ia(µ) =

∫
Rd

Va
µdµ

Lemma 5.1. (i) If µ is a probability a−Frostman measure with compact
support then Iβ(µ) <∞, ∀β < a.
(ii) Conversely,if µ is a probability measure with compact support and with
Ia(µ) < ∞ then there exists a probability a−Frostman measure ν such that
ν(X) ≤ 2µ(X) for all sets X ⊆ Rd

Proof (i)We have that supp(µ) ⊆ B(0,M), M > 0. Let x ∈ supp(µ)
and β < a.Then from the monotone convergence theorem:

Vβ
µ(x) =

∫
Rd

1

|x− y|β
dµ(y) =

∞∑
j=0

∫{
2M

2j+1≤|x−y|<
2M

2j

} 1

|x− y|β
dµ(y)

≤ 2β

Mβ

∞∑
j=0

2jβ
∫{

2M

2j+1≤|x−y|<
2M

2j

} dµ(y)

≤ 2β

Mβ

∞∑
j=0

2jβµ

(
B

(
x,

2M

2j

))
≤ CM,a,β

∞∑
j=0

2j(β−a) <∞
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where CM,a,β is a positive constant depending only on M,a, β. Thus

Iβ(µ) =

∫
Rd

Vβ
µ(x)dµ(x) <∞

(ii) Let a > 0 and F = {x : Va
µ(x) ≤ 2Ia(µ)}.Then

Ia(µ) =

∫
F

Va
µ(x)dµ(x)+

∫
F c

Va
µ(x)dµ(x) ≥

∫
F c

Va
µ(x)dµ(x) ≥ 2Ia(µ)(1−µ(F ))

Thus µ(F ) ≥ 1
2
. Let ν(X) = µ(X∩F )

µ(F )
, X ⊆ Rd

Let x ∈ F . If r > 0 then

Va
ν(x) =

∫
{|x−y|<r}

1

|x− y|a
dν(y) +

∫
{|x−y|≥r}

1

|x− y|a
dν(y)

≥
∫
{|x−y|<r}

1

|x− y|a
dν(y) ≥ r−aν(B(x, r))

Also

Va
ν(x) ≤ 1

µ(F )

∫
Rd

1

|x− y|a
1F (y)dµ(y) ≤ 2Va

µ(x) ≤ 4Ia(µ)

Thus
ν(B(x, r) ≤ 4Ia(µ)ra, ∀x ∈ F, ∀r > 0

For x ∈ Rd \ F we consider two cases:

If r > 0 such that B(x, r) ∩ F = ∅ then ν(B(x, r)) = 0

If r > 0 such that B(x, r) ∩ F 6= ∅, let y ∈ F ∩B(x, r). Then

ν(B(x, r)) ≤ ν(B(y, 2r)) ≤ 2a+2Ia(µ)ra

Combining all the above, we conclude that ν is a probability a−Frostman
measure with the property: ν(X) ≤ 2µ(X) for all sets X ⊆ Rd. �
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If E ⊆ Rd we denote P (E) the set of probability Borel measures sup-
ported on E.

Theorem 5.2. If E ⊆ Rd compact,then the Hausdorff dimension of E coin-
cides with the number

sup{a : ∃µ ∈ P (E) with Ia(µ) <∞}

Proof Let A = {a : ∃µ ∈ P (E) with Ia(µ) <∞} and s = supA.

If β ∈ A then from Lemma 5.1 exists a β−Frostman measure µ ∈ P (E),
so by Frostman’s Lemma Hβ(E) > 0 =⇒ β ≤ dim(E). Since this is true
∀β ∈ A,we have s ≤ dim(E)

Conversely if β < dim(E) then ∃ε > 0 such that

β + ε < dim(E) =⇒ Hβ+ε(E) > 0

By Frostman’s Lemma exists a (β+ ε)−Frostman measure µ ∈ P (E) and by
Lemma 5.1 we have Iβ(µ) <∞ since β < β + ε.

Thus β ≤ s and since this is true for all β < dim(E) then dim(E) ≤ s. �

For f ∈ L1
loc(Rd), we denote the Hardy-Littlewood maximal function

M(f)(x) := sup
r>0

1

md(B(x, r))

∫
B(x,r)

|f(y)|dy

Lemma 5.3. Let φ : Rd → R be any non-negative radial decreasing Schwartz
function and let 0 < a < d, and x ∈ Rd. Then∫

Rd
|x− y|−a|φ(y)|dy ≤ Ca,d

||φ||1
|x|a

where the constant Ca,d depends only on a, d,

Proof Let f(x) = 1
|x|a , then it is easy to see that f ∈ L1

loc(Rd) since a < d.

Firstly we’ll prove that |(φ ∗ f)(x)| ≤ ||φ||1M(f)(x), ∀x 6= 0.
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Since φ is radial we have that φ(re) = g(r),∀e ∈ Sd−1,∀r > 0 where
g : [0,+∞)→ R is decreasing. We define

F (r) =

∫
Sd−1

|f(x− re)|dσ(e)

By polar coordinates

|(φ ∗ f)(x)| ≤
∫ +∞

0

F (r)g(r)rd−1dr

There exists an increasing sequence {hn : n ∈ N} of step- functions defined
on [0 +∞) where each hn has bounded support, hn → g pointwise and

hn =
n∑
j=1

aj1[0,rj ], aj > 0 ∀j ∈ {1, 2, ..., n}

Again by polar coordinates∫
Rd
hn(|x|)dx =

n∑
j=1

σ(Sd−1)aj

∫ rj

0

rd−1dr =
n∑
j=1

ajmd(B(0, rj))

Thus we have ∫ +∞

0

F (r)hn(r)rd−1dr

=
n∑
j=1

aj

∫ rj

0

F (r)rd−1dr

=
n∑
j=1

aj

∫ rj

0

∫
Sd−1

|f(x− re)|dσ(e)rd−1dr

=
n∑
j=1

aj

∫
B(0,rj)

|f(x− y)|dy

=
n∑
j=1

aj

∫
B(x,rj)

|f(y)|dy

=
n∑
j=1

ajmd(B(x, rj))
1

md(B(x, rj))

∫
B(0,rj)

|f(y)|dy
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≤
n∑
j=1

ajmd(B(x, rj))M(f)(x)

=
n∑
j=1

ajmd(B(0, rj))M(f)(x)

=

∫
Rd
hn(|y|)dyM(f)(x)

≤
∫
Rd
φ(x)dxM(f)(x) = ||φ||1M(f)(x),∀n ∈ N

By Fatou’s Lemma we have

|(f ∗ φ)(x)| ≤ ||φ||1M(f)(x) (1)

In order to finish the proof of the lemma, it remains to show that

M(f)(x) ≤ Cd,a
1

|x|a

Let x ∈ Rd \ {0} and R > 0.

(A) If R < |x|
2

, then for y ∈ B(x,R) we have that

|y| ≥ |x| − |y − x| ≥ |x|
2

thus
1

md((B(x,R))

∫
B(x,R)

1

|y|a
dy ≤ 2a

1

|x|a

(B) If R ≥ |x|
2

then

1

md((B(x,R))

∫
B(x,R)

1

|y|a
dy

≤ 1

md((B(x,R))

∫
B(0,3R)

1

|y|a
dy

=
1

Rd

∫ 3R

0

rd−1−adr =
3d−a

d− a
1

Ra
≤ 2a3d−a

(d− a)|x|a

So (A), (B), (1) give the desired conclusion. �
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Theorem 5.4. Let µ be a positive measure with compact support
and 0 < a < d. Then

Ia(µ) =

∫
Rd

∫
Rd
|x− y|−adµ(x)dµ(y) = ca

∫
Rd
|µ̂(ξ)|2|ξ|−(d−a)dξ

where ca =
Γ( d−a

2
)πa−

d
2

Γ(a
2

)

Proof Suppose first that f ∈ L1(Rd) is real and even, and that
dµ(x) = φ(x)dx with 0 ≤ φ ∈ S. Then by Fubini’s theorem and inversion
formula we have ∫

Rd

∫
Rd
f(x− y)dµ(x)dµ(y)

=

∫
Rd

∫
Rd
f(x− y)φ(x)φ(y)dxdy

=

∫
Rd

(f ∗ φ)(x)φ(x)dx

=

∫
Rd

∫
Rd

(̂f ∗ φ)(ξ)e2πiξ·xφ(x)dξdx

=

∫
Rd

(̂f ∗ φ)(ξ)

∫
Rd
e2πiξ·xφ(x)dxdξ

=

∫
Rd

(̂f ∗ φ)(ξ)

∫
Rd
e−2πiξ·xφ(x)dxdξ

=

∫
Rd

(̂f ∗ φ)(ξ)

∫
Rd
e2πiξ·xφ(x)dxdξ

=

∫
Rd

(̂f ∗ φ)(ξ)φ̂(ξ)dξ

=

∫
Rd
f̂(ξ)φ̂(ξ)φ̂(ξ)dξ

=

∫
Rd
f̂(ξ)|φ̂(ξ)|2dξ =

∫
Rd
f̂(ξ)|µ̂(ξ)|2dξ
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Now if we fix 0 ≤ φ ∈ S,then it is easy to see that the linear operators
Sφ, Tφ : L2(Rd)→ R

Sφ(f) :=

∫
Rd
f̂(ξ)|µ̂(ξ)|2dξ

Tφ(f) :=

∫
Rd

∫
Rd
f(x− y)φ(x)φ(y)dxdy

are bounded.Indeed by Plancherel’s theorem

|Sφ(f)| =
∣∣∣∣∫

Rd
f̂(ξ)|µ̂(ξ)|2dξ

∣∣∣∣ =

∣∣∣∣∫
Rd
f̂(ξ)|φ̂(ξ)|2dξ

∣∣∣∣
≤ ||φ||1||φ̂||2||f̂ ||2 = ||φ||1||φ||2||f ||2

and by Tonelli’s theorem

|Tφ(f)| ≤
∫
Rd

∫
Rd
|f(x−y)||φ(x)||φ(y)|dxdy =

∫
Rd

∫
Rd
|f(x−y)||φ(y)|dy|φ(x)|dx

≤ ||f ||2||φ||2||φ||1
The operators agree on L1(Rd) ∩ L2(Rd), so by density

they agree on L2(Rd).

Thus the two operators agree for f ∈ L1(Rd) + L2(Rd) and
hence,by lemma 3.4 for f(x) = 1

|x|a ,
d
2
< a < d.

Observe that if f, g ∈ S then f̂ g = f̂ ∗ ĝ. Indeed by inversion formula and
Fubini’s theorem we have

f̂ g(ξ) =

∫
Rd
f(x)g(x)e−2πiξ·xdx

=

∫
Rd
f(x)

(∫
Rd
ĝ(z)e2πiz·xdz

)
e−2πiξ·xdx

=

∫
Rd

∫
Rd
f(x)ĝ(z)e−2πi(ξ−z)·xdzdx

=

∫
Rd
ĝ(z)f̂(ξ − z)dz = (f̂ ∗ ĝ)(ξ)
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So for dµ = φ(x)dx, 0 ≤ φ ∈ S

Ia(µ) =

∫
Rd

∫
Rd

1

|x− y|a
φ(x)φ(y)dxdy

=

∫
Rd

∫
Rd

1

|z|a
φ(y − z)φ(y)dzdy

=

∫
Rd

1

|z|a
(φ̃ ∗ φ)(z)dz

We have that φ̃ ∗ φ ∈ S and also (φ̃ ∗ φ) is the Fourier transform of

φ̂
¯̂
φ = |φ̂|2. Indeed by the previous observation and inversion formula

̂̂
φ

¯̂
φ(ξ) = (

ˆ̂
φ ∗ ˆ̂̄

φ)(ξ) = (φ̃ ∗ φ)(ξ)

So for 0 < a < d
2

we have by lemma 3.4

Ia(µ) =

∫
Rd

1

|z|a
(φ̃ ∗ φ)(z)dz

= ca

∫
Rd

1

|ξ|d−a
|φ̂(ξ)|2dξ

ca

∫
Rd

1

|ξ|d−a
|µ̂(ξ)|2dξ

Now for the general case, let µ a positive measure with compact support.

We denote Gt(x) = 1
td
e−π

|x|2

t2 = 1
td
G(x

t
), where G is the Gaussian

G(x) = e−π|x|
2 ∈ S

The Gaussian has the properties:

1. Ĝ(ξ) = G(ξ)

2. Gt ∗Gs = Gt+s
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We can easily see by definition of a Schwartz function that Gt ∗ µ ∈ S
Define

It(z, w) =

∫
Rd

∫
Rd

1

|x− y|a
Gt(x− z)Gt(y − w)dxdy

By Fubini’s theorem and applying the previous case to the measure
dν = Gt ∗ µ(x)dx we have∫

Rd

∫
Rd
It(z, w)dµ(z)dµ(w) = ca

∫
Rd
|µ̂(ξ)|2

(
Ĝ(tξ)

)2 1

|ξ|d−a
dξ (1)
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If we apply the change of variables:

u = x− z, s = y − w

we have that

It(z, w) =

[
(Gt∗Gt)∗| · |−a

]
(z−w) = (G2t∗| · |−a)(z−w)→t→0 1

|z − w|a
(2)

Also by lemma 5.3 and change of variables

It(z, w) =

∫
Rd

1

|s− (z − w)|a
G2t(s)ds ≤ Ca.d

1

|z − w|a
(3)

(A) If Ia(µ) < +∞ then by (2), (3) and the dominated convergence the-
orem we have that the left hand side of (1) converges to Ia(µ) as t→ 0.
If Ia(µ) = +∞ ,then by Fatou’s lemma we have the same convergence as
before when t→ 0.

(B) On the right hand side of (1) if
∫
Rd |µ̂(ξ)|2 1

|ξ|d−adξ < +∞ then by
dominated convergence we have that

ca

∫
Rd
|µ̂(ξ)|2

(
Ĝ(tξ)

)2 1

|ξ|d−a
dξ →t→0

∫
Rd
|µ̂(ξ)|2 1

|ξ|d−a
dξ

since (Ĝ(tξ)
)2

is bounded by 1.
If
∫
Rd |µ̂(ξ)|2 1

|ξ|d−adξ = +∞ then by Fatou’s lemma we have the same conver-
gence as before when t→ 0.

So (A),(B) combined, yield equality (1). �

38



6 Marstrand’s Projection Theorem

For e ∈ Sd−1, d ≥ 2, define the projection Pe : Rd → R,

Pe(x) = e · x

This is essentially the orthogonal projection onto the line L = {te : t ∈ R}.

If µ is a measure supported on a compact set E and e ∈ Sd−1 then we
denote µe the projected measure Peµ(B) = µ(P−1

e (B)), B ⊆ R.

With ”a.e. e ∈ Sd−1” we always mean, almost everywhere with respect
to the surface measure σ on Sd−1.

Theorem 6.1 (Marstrand). Assume that E ⊆ Rd is compact and dim(E) =
a. Then: (i) If a ≤ 1 then for a.e. e ∈ Sd−1 we have dim(Pe(E)) = a.
(ii) If a > 1 then for a.e. e ∈ Sd−1 we have m1(Pe(E)) > 0.

Proof (i) Let a < dim(E), and let µ be a probability measure supported
on E with Ia(µ) < +∞.
(Note that we can always find such measure by Theorem 5.2)
For ξ ∈ R and by lemma 2.1

µ̂e(ξ) =

∫
R
e−2πiξxdµe(x) =

∫
Rd
e−2πiξ(x·e)dµ(x) = µ̂(ξe)

Now by theorem 5.4 and polar coordinates we have:∫
Sd−1

Ia(µe)dσ(e) = ca

∫
Sd−1

∫
R

|µ̂e(ξ)|2

|ξ|1−a
dξdσ(e)

= 2ca

∫
Sd−1

∫ +∞

0

|µ̂e(ξ)|2

|ξ|1−a
dξdσ(e)

= 2ca

∫
Sd−1

∫ +∞

0

|µ̂(ξe)|2

|ξ|1−a
dξdσ(e)

= 2ca

∫
Sd−1

∫ +∞

0

|µ̂(re)|2

r1−a drdσ(e)

= 2ca

∫
Sd−1

∫ +∞

0

rd−1|µ̂(re)|2

rd−a
drdσ(e)
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= 2ca

∫
Rd

|µ̂(y)|2

|y|d−a
dy = 2Ia(µ) < +∞

So Ia(µe) < +∞ a.e. e ∈ Sd−1.Since supp(µe) ⊆ Pe(E), it follows by
theorem 5.2 that dim(Pe(E)) ≥ a a.e. e ∈ Sd−1.

This is true for all a < dim(E) thus

dim(Pe(E)) ≥ dim(E) a.e. e ∈ Sd−1

Also as Pe is Lipschitz, dim(Pe(E)) ≤ dim(E), ∀e ∈ Sd−1 so

dim(Pe(E)) = dim(E)

(ii) If dim(E) > 1 then for s = 1+dim(E)
2

we have 1 < s < dim(E)
so Hs(E) > 0.
By Frostman’s Lemma there exists a probability s−Frostman measure µ
supported on E and by lemma 5.1 we have that I1(µ) < +∞.∫

Sd−1

∫
R
|µ̂e(ξ)|2dξdσ(e)

= 2

∫
Sd−1

∫ +∞

0

|µ̂e(ξ)|2dξdσ(e)

= 2

∫
Sd−1

∫ +∞

0

|µ̂(re)|2drdσ(e)

= 2

∫
Sd−1

∫ +∞

0

rd−1|µ̂(re)|2

rd−1
drdσ(e)

= 2

∫
Rd

|µ̂(y)|2

|y|d−1
dy = cI1(µ) < +∞, c > 0

Thus µ̂e ∈ L2(R) a.e. e ∈ Sd−1.

By theorem 3.2, µe is absolutely continuous with respect to the Lebesgue
measure on R a.e. e ∈ Sd−1.

If m1(Pe(E)) = 0 for any e ∈ Sd−1, then µe(Pe(E)) = 0 , which contra-
dicts the fact that supp(µe) ⊆ Pe(E). �
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Theorem 6.2. Let E ⊆ Rd compact with dim(E) > 2. Then Pe(E) has
non-empty interior for a.e. e ∈ Sd−1.

Proof For a = dim(E)+2
2

we take c ∈ (a,dim(E)) so that Hc(E) > 0.
By Frostman’s Lemma there exists a probability c−Frostman measure
supported on E and by lemma 5.1 we have that Ia(µ) < +∞

By Schwartz’s inequality,theorem 5.4 and polar coordinates,we obtain:∫
Sd−1

∫
R
|µ̂e(r)|drdσ(e)

= 2

∫
Sd−1

∫ 1

0

|µ̂e(r)|drdσ(e) + 2

∫
Sd−1

∫ ∞
1

|µ̂e(r)|drdσ(e)

≤ 2||µ||σ(Sd−1) + 2

∫
Sd−1

∫ ∞
1

|µ̂e(r)|drdσ(e)

= 2||µ||σ(Sd−1) + 2

∫
Sd−1

∫ ∞
1

|µ̂e(r)|r
a−d−1+d

2 r
1−a
2 drdσ(e)

≤ 2

√∫
Sd−1

∫ ∞
1

|µ̂e(r)|2ra−d−1+ddrdσ(e)

√∫
Sd−1

∫ ∞
1

r1−adrdσ(e)+2||µ||σ(Sd−1)

= 2

√∫
Sd−1

∫ ∞
1

|µ̂(re)|2ra−d−1+ddrdσ(e)

√∫
Sd−1

∫ ∞
1

r1−adrdσ(e)+2||µ||σ(Sd−1)

≤ 2

√
σ(Sd−1)

a− 2

√∫
Sd−1

∫ ∞
0

|µ̂(re)|2rd−1

rd−a
drdσ(e) + 2||µ||σ(Sd−1)

= 2

√
σ(Sd−1)

a− 2

√∫
Rd

|µ̂(y)|2
|y|d−a

dy + 2||µ||σ(Sd−1)

= Ma,d

√
Ia(µ) + 2||µ||σ(Sd−1) < +∞

where Ma,d is a positive constant that depends only on a, d.
Hence µ̂e ∈ L1(R) a.e. e ∈ Sd−1 and by theorem 3.3 µe is a continuous
function for such e. Since supp(µe) ⊆ Pe(E) we conclude that Pe(E) has a
non-empty interior. �

41



Note that theorem 6.2 implies part (ii) o Marstrand’s theorem because
every Lebesgue measurable set with non-empty interior has positive Lebesgue
measure.

Now we prove a quantitative result for the average length of projections
of a compact set.

Theorem 6.3. Let E ⊆ Rd compact and µ a probability Borel measure
supported on E, with I1(µ) < +∞. Then∫

Sd−1

m1(Pe(E))dσ(e) ≥ c1σ(Sd−1)2

2I1(µ)

where c1 is the constant ca in Theorem 5.4 for a = 1

Proof If E is a finite union of dyadic cubes then m1(Pe(E)) is continuous.
If E is compact the E =

⋂∞
n=1En where {En : n ∈ N} is decreasing sequence

of open sets and each En is a finite union of dyadic cubes. Thus m1(Pe(E))
is a pointwise limit of continuous functions thus σ−measurable.

By theorem 5.4, we have∫
Sd−1

∫
R
|µ̂e(ξ)|2dξdσ(e)

= 2

∫
Sd−1

∫ ∞
0

|µ̂e(ξ)|2dξdσ(e)

= 2

∫
Sd−1

∫ +∞

0

|µ̂(re)|2drdσ(e)

= 2

∫
Sd−1

∫ +∞

0

rd−1|µ̂(re)|2

rd−1
drdσ(e)

= 2

∫
Rd

|µ̂(y)|2

|y|d−1
dy =

2

c1

I1(µ) < +∞

where µe is the projected measure.
So µ̂e ∈ L2(R) a.e. e ∈ Sd−1 and by theorem 3.2 µe is absolutely continuous
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with respect to the Lebesgue measure on R a.e. e ∈ Sd−1.
Also by Plancherel’s theorem, µe ∈ L2(R) a.e. e ∈ Sd−1 and∫

Sd−1

∫
R
|µ̂e(x)|2dxdσ(e) =

2

c1

I1(µ)

By Schwartz’s inequality and absolute continuity,

1 = µe(R)2 =

(∫
Pe(E)

µe(x)dx

)2

≤ m1(Pe(A))

∫
R
µ2
e(x)dx

=⇒
∫
Sd−1

1

m1(Pe(A))
dσ(e) ≤

∫
Sd−1

∫
R
µ2
e(x)dxdσ(e) =

2

c1

I1(µ)

and finally, again by Schwartz’s inequality

σ(Sd−1)2 =

(∫
Sd−1

1dσ(e)

)2

=

(∫
Sd−1

1√
m1(Pe(A))

√
m1(Pe(A))dσ(e)

)2

≤
(∫

Sd−1

1

m1(Pe(A))
dσ(e)

)(∫
Sd−1

m1(Pe(A))dσ(e)

)

=⇒
∫
Sd−1

m1(Pe(A))dσ(e) ≥ σ(Sd−1)2∫
Sd−1

1
m1(Pe(A))

dσ(e)
≥ c1σ(Sd−1)2

2I1(µ)
. �
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