Hilbert’s inequality is

\[\left| \sum_{m,n \neq n} \frac{x_m y_n}{m-n} \right| \leq C \left(\sum_m |x_m|^2 \right)^{1/2} \left(\sum_n |y_n|^2 \right)^{1/2} \]

for arbitrary \(x_m, y_n \in \mathbb{C} \).

Hilbert had given the value \(2\pi \) for the constant \(C \), while the best value \(\pi \) for \(C \) was found by Schur (1911).

There are two generalizations of Hilbert’s inequality:

\[\left| \sum_{m,n \neq n} \frac{x_m y_n}{\lambda_m - \lambda_n} \right| \leq C \delta \left(\sum_m \frac{|x_m|^2}{\delta_m} \right)^{1/2} \left(\sum_n \frac{|y_n|^2}{\delta_n} \right)^{1/2}, \tag{1} \]

where \(\{\lambda_k\} \) is a strictly increasing real sequence such that \(|\lambda_m - \lambda_n| \geq \delta > 0 \) for \(m \neq n \), and

\[\left| \sum_{m,n \neq n} \frac{x_m y_n}{\lambda_m - \lambda_n} \right| \leq C \left(\sum_m \frac{|x_m|^2}{\delta_m} \right)^{1/2} \left(\sum_n \frac{|y_n|^2}{\delta_n} \right)^{1/2}, \tag{2} \]

where \(\{\lambda_k\} \) is a strictly increasing real sequence and \(\delta_k = \min_{l,l \neq k} |\lambda_l - \lambda_k| \).

Both inequalities were proven by Montgomery and Vaughan in [2]. For (1) they calculated the best value \(\pi \) of the constant \(C \). For (2) they gave the value \(\frac{3\pi}{2} \) for \(C \), but this is not the best possible. The conjecture is that the best value of \(C \) for (2) is also \(\pi \). If this is true, (1) is a particular case of (2).

For the recent history of these inequalities see [1].

In this note we shall prove the continuous analogue of (2) with the best value \(\pi \) of \(C \). That is

\[\left| \iint_{\mathbb{R} \times \mathbb{R}} f(x)g(y) K(x-K(y)) - K(y)dy \right| \leq \pi \|F\|_2 \|G\|_2 \]

where \(K : \mathbb{R} \to \mathbb{R} \) has strictly positive continuous derivative and \(f, g \) have compact support in \(\mathbb{R} \).

We define \(F = \frac{f}{\sqrt{K}} \) and \(G = \frac{g}{\sqrt{K}} \) and we get the equivalent

\[\left| \iint_{\mathbb{R} \times \mathbb{R}} \sqrt{K(x)} \sqrt{K'(y)} F(x)G(y) dx dy \right| \leq \pi \|F\|_2 \|G\|_2. \]

By the Cauchy-Schwarz inequality it suffices to prove

\[\left(\int_{\mathbb{R}} \left| \int_{\mathbb{R}} \frac{\sqrt{K'(y)}}{K(x) - K(y)} G(y) dy \right|^2 K'(x) dx \right)^{1/2} \leq \pi \|G\|_2. \]
We change variables: \(\xi = K(x), \ x = L(\xi), \ \eta = K(y), \ y = L(\eta) \) and \(G^*(\xi) = G(x), \ G^*(\eta) = G(y) \). Therefore,

\[
\int_{\mathbb{R}} \left| \int_{\mathbb{R}} \frac{\sqrt{K'(y)}}{K(x) - K(y)} G(y) \, dy \right|^2 K'(x) \, dx = \int_{\mathbb{R}} \left| \int_{\mathbb{R}} \frac{\sqrt{L'(\eta)}G^*(\eta)}{\xi - \eta} \, d\eta \right|^2 d\xi
\]

\[
= \pi^2 \int_{\mathbb{R}} \left| \sqrt{L'(\eta)}G^*(\eta) \right|^2 d\eta
\]

\[
= \pi^2 \|G\|^2_2.
\]

The next to last equality is just the isometric property of the Hilbert transform \(Hk(\xi) = P.V. \frac{1}{\pi} \int_{\mathbb{R}} \frac{k(\eta)}{\xi - \eta} \, d\eta \).

References

Department of Mathematics, University of Crete, 71409 Heraklion, Greece