
A NONTRIVIAL VARIANT OF HILBERT’S INEQUALITY, AND
AN APPLICATION TO THE NORM OF THE HILBERT MATRIX

ON THE HARDY-LITTLEWOOD SPACES

V. DASKALOGIANNIS, P. GALANOPOULOS, AND M. PAPADIMITRAKIS

Abstract: Hilbert’s inequality for non negative sequences states that
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where 1 < p, q < ∞, 1
p + 1

q = 1. This implies that the norm of the Hilbert matrix
as an operator on the sequence space ℓp equals π

sin π
p

.
In this article we prove the nontrivial variant
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m,n=1

( n
m

) 1
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1
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p

( ∞∑
m=1
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) 1
p
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q

of Hilbert’s inequality, and we use it to prove that the norm of the Hilbert matrix
as an operator on the Hardy-Littlewood space Kp equals π

sin π
p

, where Kp con-

sists of all functions f(z) =
∞∑

m=0
amz

m analytic in the unit disc with ‖f‖pKp =

∞∑
m=0

(m+1)p−2|am|p <∞. We also see that π
sin π

p
is the norm of the Hilbert matrix

on the space ℓpp−2 of sequences (am) with ‖(am)‖p
ℓpp−2

=
∞∑

m=1
mp−2|am|p <∞.
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1. Preliminaries

The Hilbert matrix is the infinite matrix, whose entries are
1

m+ n− 1
, n,m = 1, 2 . . . .

The well known Hilbert’s inequality [8, Th. 323] (see also [8, Th. 315] for a
weaker inequality) states that if (am), (bn) are sequences of non negative terms
such that (am) ∈ ℓp, (bn) ∈ ℓq, then

(1.1)
∞∑

m,n=1

ambn
m+ n− 1

≤ π

sin π
p

( ∞∑
m=1

am
p
) 1

p
( ∞∑

n=1

bn
q
) 1

q

,
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where 1 < p, q < ∞, 1
p + 1

q = 1, and the constant π
sin π

p
is the smallest possible for

this inequality. This implies that the Hilbert matrix induces a bounded operator
H ,

H : (am) 7−→ H (am) =
( ∞∑

m=1

am
m+ n− 1

)
on the spaces ℓp, 1 < p <∞, with norm

‖H ‖ℓp→ℓp =
π

sin π
p

.

The operator H can also be considered as an operator on spaces of analytic
functions by its action on the sequence of Taylor coefficients of any such function.

Let D = {z ∈ C : |z| < 1} be the unit disk and H(D) be the space of analytic
functions on D.

The Hardy space Hp, 0 < p <∞, consists of all f ∈ H(D) for which

‖f‖Hp = sup
0≤r<1

Mp(r, f) <∞,

where Mp
p (r, f) are the integral means

Mp
p (r, f) =

1

2π

∫ 2π

0

|f(reiθ)|p dθ.

If p ≥ 1, then Hp is a Banach space under the norm ‖ · ‖Hp . If 0 < p < 1, then Hp

is a complete metric space.
For f(z) =

∞∑
m=0

amz
m ∈ H1, Hardy’s inequality [6, p.48]

∞∑
m=0

|am|
m+ 1

≤ π‖f‖H1 ,

implies that the power series

H (f)(z) =

∞∑
n=0

( ∞∑
m=0

am
m+ n+ 1

)
zn

has bounded coefficients. Therefore H (f) is an analytic function of the unit disk
for any f ∈ H1 and hence for any f ∈ Hp, p ≥ 1.

The Bergman space Ap, 0 < p <∞, consists of all f ∈ H(D) for which

‖f‖pAp =

∫
D
|f(z)|p dA(z) <∞,

where dA(z) is the normalized Lebesgue area measure on D. If p ≥ 1, then Ap is a
Banach space under the norm ‖ · ‖Ap .

If f(z) =
∞∑

m=0
amz

m ∈ Ap and p > 2, then by [10, Lemma 4.1] we have

∞∑
m=0

|am|
m+ 1

<∞.

Thus H (f) is an analytic function in D for each function f ∈ Ap, p > 2.
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E. Diamantopoulos and A. G. Siskakis initiated the study of the Hilbert matrix
as an operator on Hardy and Bergman spaces in [3, 4] and showed that H (f) has
the following integral representation

H (f)(z) =

∫ 1

0

f(t)

1− tz
dt, z ∈ D.

Then, considering H as an average of weighted composition operators, they showed
that it is a bounded operator on Hp, p > 1, and on Ap, p > 2, and they estimated its
norm. Their study was further extended by M. Dostanić, M. Jevtić and D. Vukotić
in [5] and by V. Božin and B. Karapetrović in [1] (see also [9]). Summarizing their
results, we now know that

‖H ‖Hp→Hp = ‖H ‖A2p→A2p =
π

sin π
p

, 1 < p <∞.

The Hardy-Littlewood space Kp, 0 < p < ∞, is defined as the space of all
f(z) =

∞∑
m=0

amz
m ∈ H(D) such that

‖f‖pKp =

∞∑
m=0

(m+ 1)p−2|am|p <∞.

If p ≥ 1, then Kp is a Banach space under the norm ‖ · ‖Kp .
According to the classical Hardy-Littlewood inequalities, [7, Th. 5 & 6], [6, Th.

6.2 & 6.3], if f(z) =
∞∑

m=0
amz

m ∈ Hp, 0 < p ≤ 2, then

∞∑
m=0

(m+ 1)p−2|am|p ≤ cp‖f‖pHp

and hence f ∈ Kp. Also, if 2 ≤ p <∞ and f(z) =
∞∑

m=0
amz

m ∈ Kp, then

‖f‖pHp ≤ cp

∞∑
m=0

(m+ 1)p−2|am|p

and hence f ∈ Hp. In both cases cp is a constant independent of f .
If p ≥ 1, and in the special case where the sequence (am) is real and decreasing

to zero, then for f(z) =
∞∑

m=0
amz

m we have that f ∈ Hp if and only if f ∈ Kp [11,

Th. A & 1.1] .
Now it is clear that the proper domain of definition of the operator H acting on

analytic functions in the unit disc is the space K1. Indeed, if f(z) =
∞∑

m=0
amz

m ∈

K1 then
∞∑

m=0

|am|
m+ 1

<∞,

and hence H (f) ∈ H(D).
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Moreover, when 1 < p < ∞ and f ∈ Kp, we consider q so that 1
p + 1

q = 1 and
we apply Hölder’s inequality to find

∞∑
m=0

|am|
m+ 1

=

∞∑
m=0

(m+ 1)
2
p−2(m+ 1)1−

2
p |am|

≤
( ∞∑

m=0

1

(m+ 1)2

) 1
q
( ∞∑

m=0

(m+ 1)p−2|am|p
) 1

p

<∞.

Hence Kp ⊆ K1 and so, if f ∈ Kp, then H (f) defines an analytic function in D.
Recently, in [12, Theorem 1] (see also [2]), the authors associated the bounded-

ness of the generalized Volterra operators

Tg(f)(z) =

∫ z

0

f(w)g′(w)dw, z ∈ D,

induced by symbols g ∈ H(D) with non-negative Taylor coefficients and acting from
a space X to H∞, to the Kp-norm of the function H (g′). In this result X can be
Hp or Kp or the Dirichlet-type space Dp

p−1.

2. A variant of Hilbert’s inequality

Our first result is a nontrivial variant of the classical Hilbert’s inequality.
Before we state our first main result we shall mention two more variants of

Hilbert’s inequality. The first, in [13], is
∞∑

m,n=1

( n
m

) 1
q−

1
p ambn
m+ n

≤ π

sin π
p

( ∞∑
m=1

apm

) 1
p
( ∞∑

n=1

bqn

) 1
q

and the second, in [14], is
∞∑

m,n=1

( n− 1
2

m− 1
2

) 1
q−

1
p ambn
m+ n− 1

≤ π

sin π
p

( ∞∑
m=1

apm

) 1
p
( ∞∑

n=1

bqn

) 1
q

.

In fact Yang proves a whole family of such inequalities depending on a parameter. In
all these variants, as well as in the original Hilbert’s inequality, the kernel involved
in the double sum is of the form( k(n)

k(m)

)cp 1

k(m) + k(n)

which is homogeneous of degree −1. As a consequence, in order to prove these
variants one needs to apply the standard arguments used in the proof of the original
Hilbert’s inequality. The kernel( n

m

) 1
q−

1
p 1

m+ n− 1

in our variant of Hilbert’s inequality, which appears in the following Theorem 1,
lacks this homegeneity and the standard arguments do not apply.

Theorem 1. Let 1 < p, q < ∞, 1
p + 1

q = 1. If (am) ∈ ℓp, (bn) ∈ ℓq are sequences
of non negative terms, then

∞∑
m,n=1

( n
m

) 1
q−

1
p ambn
m+ n− 1

≤ π

sin π
p

( ∞∑
m=1

apm

) 1
p
( ∞∑

n=1

bqn

) 1
q

.
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The constant π
sin π

p
is the smallest possible for this inequality.

Proof. In fact we may restrict to 1 < q ≤ 2 ≤ p <∞.
We assume

α

p
+
β

q
= 1, α ≥ 0, β ≥ 0,

where α and β will be chosen appropriately later.
By Hölder’s inequality,

∞∑
m,n=1

( n
m

) 1
q−

1
p ambn
m+ n− 1

=

∞∑
m,n=1

( n
m

)( 1
pq−

1
p )+( 1

q−
1
pq ) ambn

(m+ n)
1
p (m+ n)

1
q

( m+ n

m+ n− 1

)α
p
( m+ n

m+ n− 1

) β
q

≤
( ∞∑

m=1

apm

( ∞∑
n=1

(m
n

) 1
p 1

(m+ n)1−α(m+ n− 1)α

)) 1
p

×
( ∞∑

n=1

bqn

( ∞∑
m=1

( n
m

) 1
q 1

(m+ n)1−β(m+ n− 1)β

)) 1
q

.

Hence it is enough to prove

∞∑
n=1

(m
n

) 1
p 1

(m+ n)1−α(m+ n− 1)α
≤ π

sin π
p

, m ≥ 1,(2.1)

and
∞∑

m=1

( n
m

) 1
q 1

(m+ n)1−β(m+ n− 1)β
≤ π

sin π
q

, n ≥ 1,(2.2)

where, of course, sin π
p = sin π

q .
Now we observe that, for all α ≥ 0, p > 0, m ≥ 1, the positive function

f(t) = t−
1
p (m+ t)α−1(m+ t− 1)−α, t > 0,

is convex. Indeed, taking the second derivative of the logarithm of f(t), we get

f(t)f ′′(t)− f ′(t)2

f(t)2
=
t−2

p
+ (m+ t)−2 + α

(
(m+ t− 1)−2 − (m+ t)−2

)
> 0,

which proves that f ′′(t) > 0. In fact, this calculation proves more: that f is
logarithmically convex.
The convexity of f implies

f(n) ≤
∫ n+ 1

2

n− 1
2

f(t) dt, n ≥ 1.
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Adding these inequalities we get for the left side of (2.1) that
∞∑

n=1

(m
n

) 1
p 1

(m+ n)1−α(m+ n− 1)α

≤
∫ ∞

1
2

(m
t

) 1
p 1

(m+ t)1−α(m+ t− 1)α
dt

=

∫ ∞

1
2m

1

t
1
p (t+ 1)1−α(t+ 1− 1

m )α
dt

by the change of variables t 7→ mt.
Therefore, in order to prove (2.1) it is enough to prove

(2.3)
∫ ∞

1
2m

1

t
1
p (t+ 1)1−α(t+ 1− 1

m )α
dt ≤ π

sin π
p

, m ≥ 1.

We consider now the function

F (y) =

∫ ∞

y

1

t
1
p (t+ 1)1−α(t+ 1− 2y)α

dt

=

∫ ∞

0

1

(t+ y)
1
p (t+ 1 + y)1−α(t+ 1− y)α

dt, 0 ≤ y ≤ 1

2
.

Hence in order to prove (2.3) it is enough to prove

(2.4) F (y) ≤ π

sin π
p

, 0 ≤ y ≤ 1

2
.

Now, exactly as before, we observe that, for all α ≥ 0, p > 0, t > 0, the positive
function

gt(y) = (t+ y)−
1
p (t+ 1 + y)α−1(t+ 1− y)−α, 0 ≤ y ≤ 1

2
,

is convex. Indeed, we take the second derivative of the logarithm of gt(y) and we
get

gt(y)g
′′
t (y)− g′t(y)

2

gt(y)2
=
(t+ y)−2

p
+ (t+ 1 + y)−2

+ α
(
(t+ 1− y)−2 − (t+ 1 + y)−2

)
> 0,

which proves that g′′t (y) > 0.
Thus F (y) =

∫∞
0
gt(y) dt is also convex and, as such, it satisfies

F (y) ≤ max
{
F (0), F

(1
2

)}
.

Since
F (0) =

∫ ∞

0

1

t
1
p (t+ 1)

dt =
π

sin π
p

,

in order to prove (2.4) it is enough to prove

F
(1
2

)
≤ π

sin π
p

.

Since
F
(1
2

)
=

∫ ∞

1/2

(t+ 1)
α−1

t
1
p+α

dt =

∫ 2

0

(t+ 1)α

t1−
1
p (t+ 1)

dt
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after the change of variables t 7→ 1
t , we conclude that in order to prove (2.1) it is

enough to prove ∫ 2

0

(t+ 1)α

t1−
1
p (t+ 1)

dt ≤ π

sin π
p

.

In exactly the same manner, we see that in order to prove (2.2) it is enough to
prove ∫ 2

0

(t+ 1)β

t1−
1
q (t+ 1)

dt ≤ π

sin π
q

.

We make the change of notation

x =
1

p
, 1− x =

1

q
,

and, after α
p + β

q = 1, we write

β =
1− αx

1− x
,

where 0 ≤ αx ≤ 1. Then our last two inequalities become

(2.5)
∫ 2

0

(t+ 1)α

t1−x(t+ 1)
dt ≤ π

sinπx
=

∫ ∞

0

1

t1−x(t+ 1)
dt

and

(2.6)
∫ 2

0

(t+ 1)
1−αx
1−x

tx(t+ 1)
dt ≤ π

sinπx
=

∫ ∞

0

1

tx(t+ 1)
dt.

Now, inequality (2.5) is equivalent to∫ 2

0

(t+ 1)α − 1

t1−x(t+ 1)
dt ≤

∫ ∞

2

1

t1−x(t+ 1)
dt

or, after the change of variables t 7→ 2t, to∫ 1

0

(2t+ 1)α − 1

t1−x(2t+ 1)
dt ≤

∫ ∞

1

1

t1−x(2t+ 1)
dt,

or finally, substituting t 7→ 1
t in the left integral, to the inequality

(2.7)
∫ ∞

1

(
1 + 2

t

)α − 1

tx(t+ 2)
dt ≤

∫ ∞

1

1

t1−x(2t+ 1)
dt, 0 < x ≤ 1

2
.

Similarly, inequality (2.6) is equivalent to∫ 2

0

(t+ 1)
1−αx
1−x − 1

tx(t+ 1)
dt ≤

∫ ∞

2

1

tx(t+ 1)
dt

or, after the successive change of variables t 7→ 2t and t 7→ 1
t , to

(2.8)
∫ ∞

1

(
1 + 2

t

) 1−αx
1−x − 1

t1−x(t+ 2)
dt ≤

∫ ∞

1

1

tx(2t+ 1)
dt, 0 < x ≤ 1

2
.

So we have come to the point where, for every x with 0 < x ≤ 1
2 , we have to prove

inequalities (2.7) and (2.8) for a proper choice of α with 0 ≤ α ≤ 1
x .

A very usefull observation for what follows is that for fixed α with 0 ≤ α ≤ 1,
if (2.7) holds for some x, then it holds for all larger x. The reason is that the
left-hand side in (2.7) is a decreasing function of x and the right-hand side in (2.7)
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is an increasing function of x. Similarly, if (2.8) holds for some x, then it holds for
all smaller x. It helps to see that for fixed α with 0 ≤ α ≤ 1 the function 1−αx

1−x is
increasing.
Now we split the interval 0 < x ≤ 1

2 in three subintervals in each of which we make
the corresponding choices α = 0, α = 1 and α = 1

2 .
The case α = 0.
Let α = 0. First of all, it is obvious that (2.7) is true for all 0 < x ≤ 1

2 . We claim
that (2.8) is valid for all 0 < x ≤ 1

3 and as we observed it is enough to prove it for
x = 1

3 .
Observe now that 0 < x ≤ 1

2 implies 0 < x
1−x ≤ 1, so by Bernoulli’s inequality we

get (
1 +

2

t

) 1
1−x

=
(
1 +

2

t

)(
1 +

2

t

) x
1−x ≤

(
1 +

2

t

)(
1 +

x

1− x

2

t

)
= 1 +

2

t
+

x

1− x

2(t+ 2)

t2
.

Hence ∫ ∞

1

(
1 + 2

t

) 1
1−x − 1

t1−x(t+ 2)
dt ≤

∫ ∞

1

2

t2−x(t+ 2)
dt+

2x

1− x

∫ ∞

1

1

t3−x
dt.

Using

(2.9) 2

t(t+ 2)
=

1

t
− 1

t+ 2

the last inequality becomes∫ ∞

1

(
1 + 2

t

) 1
1−x − 1

t1−x(t+ 2)
dt ≤

∫ ∞

1

1

t2−x
dt−

∫ ∞

1

1

t1−x(t+ 2)
dt+

2x

(1− x)(2− x)

=
2 + x

(1− x)(2− x)
−

∫ ∞

1

1

t1−x(t+ 2)
dt.

Hence in order to prove (2.8) we need to have
2 + x

(1− x)(2− x)
≤

∫ ∞

1

1

t1−x(t+ 2)
dt+

∫ ∞

1

1

tx(2t+ 1)
dt

=

∫ 1

0

1

tx(2t+ 1)
dt+

∫ ∞

1

1

tx(2t+ 1)
dt =

∫ ∞

0

1

tx(2t+ 1)
dt

= 2x−1

∫ ∞

0

1

tx(t+ 1)
dt = 2x−1 π

sinπx
.

For x = 1
3 this becomes 21

10 ≤ 2
1
3 π√
3

which is true and proves our claim.
We proved that when α = 0 both (2.7) and (2.8) hold for 0 < x ≤ 1

3 .
The case α = 1.
Let α = 1. In this case (2.7) becomes

(2.10)
∫ ∞

1

2

t1+x(t+ 2)
dt ≤

∫ ∞

1

1

t1−x(2t+ 1)
dt.

We claim that this inequality is true for 2
5 ≤ x ≤ 1

2 and it suffices to prove it for
x = 2

5 .
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Using (2.9), the left-hand side of (2.10) becomes∫ ∞

1

2

t1+x(t+ 2)
dt =

∫ ∞

1

1

t1+x
dt−

∫ ∞

1

1

tx(t+ 2)
dt

=
1

x
−
∫ ∞

1

1

tx(t+ 2)
dt,

Therefore, (2.10) amounts to showing
1

x
≤

∫ ∞

1

1

tx(t+ 2)
dt+

∫ ∞

1

1

t1−x(2t+ 1)
dt =

∫ ∞

0

1

tx(t+ 2)
dt

= 2−x

∫ ∞

0

1

tx(t+ 1)
dt = 2−x π

sin(πx)
.

for x = 2
5 . Equivalently, we need to show that

sinπx

πx
≤ 2−x

for x = 2
5 . Indeed we have that

sin 2π
5

2π
5

< 1− 1

3!

(2π
5

)2

+
1

5!

(2π
5

)4

< 2−
2
5

as we easily see after a few calculations.
Thus, (2.7) is valid for 2

5 ≤ x ≤ 1
2 .

We now turn to (2.8), and we claim that it holds for 0 < x ≤ 1
2 and it suffices to

prove it for x = 1
2 .

When α = 1, (2.8) becomes∫ ∞

1

2

t2−x(t+ 2)
dt ≤

∫ ∞

1

1

tx(2t+ 1)
dt

or, by the use of (2.9),∫ ∞

1

1

t2−x
dt−

∫ ∞

1

1

t1−x(t+ 2)
dt ≤

∫ ∞

1

1

tx(2t+ 1)
dt.

This is equivalent to
1

1− x
≤

∫ ∞

1

1

t1−x(t+ 2)
dt+

∫ ∞

1

1

tx(2t+ 1)
dt =

∫ ∞

0

1

t1−x(t+ 2)
dt

= 2x−1 π

sinπx
.

When x = 1
2 this becomes 2

√
2 ≤ π and it is clearly true.

We proved that when α = 1 both (2.7) and (2.8) hold for 2
5 ≤ x ≤ 1

2 .
The case α = 1

2 .
Let α = 1

2 . We first deal with inequality (2.7), which we shall prove for 1
3 ≤ x ≤ 2

5 .
As we know it is enough to prove it for x = 1

3 .
When α = 1

2 , (2.7) becomes∫ ∞

1

(
1 + 2

t

) 1
2 − 1

tx(t+ 2)
dt ≤

∫ ∞

1

1

t1−x(2t+ 1)
dt.
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Bernoulli’s inequality gives(
1 +

2

t

) 1
2 ≤ 1 +

1

2

2

t
= 1 +

1

t

and hence ∫ ∞

1

(
1 + 2

t

) 1
2 − 1

tx(t+ 2)
dt ≤

∫ ∞

1

1

t1+x(t+ 2)
dt.

Therefore it suffices to show that∫ ∞

1

1

t1+x(t+ 2)
dt ≤

∫ ∞

1

1

t1−x(2t+ 1)
dt

for x = 1
3 . This is indeed true, since

t
2
3 (2t+ 1) ≤ t

4
3 (t+ 2), t ≥ 1,

as we easily see by raising to the third power.
We now turn to (2.8) which for α = 1

2 becomes∫ ∞

1

(
1 + 2

t

) 1
2

2−x
1−x − 1

t1−x(t+ 2)
dt ≤

∫ ∞

1

1

tx(2t+ 1)
dt,

and we claim it holds for 1
3 ≤ x ≤ 2

5 . Again it suffices to prove this inequality for
x = 2

5 . Namely, it suffices to show

(2.11)
∫ ∞

1

(
1 + 2

t

) 4
3 − 1

t
3
5 (t+ 2)

dt ≤
∫ ∞

1

1

t
2
5 (2t+ 1)

dt.

Taking into account Bernoulli’s inequality, we have(
1 +

2

t

) 4
3

=
(
1 +

2

t

)(
1 +

2

t

) 1
3 ≤

(
1 +

2

t

)(
1 +

1

3

2

t

)
= 1 +

4

3t2
(2t+ 1),

so instead of (2.11), it suffices to prove
4

3

∫ ∞

1

2t+ 1

t2+
3
5 (t+ 2)

dt ≤
∫ ∞

1

1

t
2
5 (2t+ 1)

dt.(2.12)

Observe that the left-hand side of (2.12), in view of (2.9), is equal to
4

3

∫ ∞

1

2t+ 1

t2+
3
5 (t+ 2)

dt =
2

3

∫ ∞

1

2t+ 1

t2+
3
5

dt− 2

3

∫ ∞

1

2t+ 1

t1+
3
5 (t+ 2)

dt

=
4

3

∫ ∞

1

1

t1+
3
5

dt+
2

3

∫ ∞

1

1

t2+
3
5

dt− 4

3

∫ ∞

1

1

t
3
5 (t+ 2)

dt

− 2

3

∫ ∞

1

1

t1+
3
5 (t+ 2)

dt

=
20

9
+

5

12
− 4

3

∫ ∞

1

1

t
3
5 (t+ 2)

dt− 1

3

∫ ∞

1

1

t1+
3
5

dt+
1

3

∫ ∞

1

1

t
3
5 (t+ 2)

dt,

where we used (2.9) for the last equality. Thus, altogether we have
4

3

∫ ∞

1

2t+ 1

t2+
3
5 (t+ 2)

dt =
25

12
−
∫ ∞

1

1

t
3
5 (t+ 2)

dt.
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Therefore, (2.12) is equivalent to the inequality

25

12
≤

∫ ∞

1

1

t
3
5 (t+ 2)

dt+

∫ ∞

1

1

t
2
5 (2t+ 1)

dt =

∫ ∞

0

1

t
2
5 (2t+ 1)

dt =
2−

3
5π

sin 3π
5

This inequality is an easy consequence of the inequality sin 2π
5

2π
5

< 2−
2
5 which we

proved when we considered the case α = 1. Indeed

sin
3π

5
= sin

2π

5
<

2π

5
2−

2
5 =

2π

5
2−

3
5 2

1
5 <

2π

5
2−

3
5

(
1 +

1

5

)
=

12π

25
2−

3
5 .

We proved that when α = 1
2 both (2.7) and (2.8) hold for 1

3 ≤ x ≤ 2
5 .

We have proved the inequality of our theorem and now we shall show that the
constant π

sin π
p

is the best possible in this inequality. The proof follows the lines of
Hardy’s corresponding proof for the original Hilbert’s inequality [8, proof of The-
orem 317, p. 232], adapted to our weighted setting. For the sake of completeness,
we provide the details.
We consider any ϵ > 0 and the sequences (am(ϵ)) and (bn(ϵ)) defined by

am(ϵ) = m− 1+ϵ
p , bn(ϵ) = n−

1+ϵ
q .

We then have

‖(am(ϵ))‖pℓp =

∞∑
m=1

1
m1+ϵ .

Now, since 1
x1+ϵ is decreasing for x ≥ 1, we have

1

ϵ
=

∫ ∞

1

1

x1+ϵ
dx ≤

∞∑
m=1

1

m1+ϵ
≤ 1 +

∫ ∞

1

1

x1+ϵ
dx = 1 +

1

ϵ
.

Setting ϕ(ϵ) =
∞∑

m=1

1
m1+ϵ − 1

ϵ , we get

(2.13) ‖(am(ϵ))‖pℓp =
1

ϵ
+ ϕ(ϵ), 0 ≤ ϕ(ϵ) ≤ 1.

Respectively, setting ψ(ϵ) =
∞∑

n=1

1
n1+ϵ − 1

ϵ , we have

(2.14) ‖(bn(ϵ)‖qℓq =
1

ϵ
+ ψ(ϵ), 0 ≤ ψ(ϵ) ≤ 1.

In addition, we have that

(2.15)
∞∑

m,n=1

( n
m

) 1
q−

1
p am(ϵ)bn(ϵ)

m+ n− 1
≥

∞∑
m,n=1

( n
m

) 1
q−

1
p am(ϵ)bn(ϵ)

m+ n
.

Now for (x, y) in the square [m,m+ 1)× [n, n+ 1), m ≥ 1, n ≥ 1, we have( n
m

) 1
q−

1
p am(ϵ)bn(ϵ)

m+ n
=

( n
m

) 1
q−

1
p m− 1+ϵ

p n−
1+ϵ
q

m+ n
=
m− 1

q−
ϵ
pn−

1
p−

ϵ
q

m+ n

≥ x−
1
q−

ϵ
p y−

1
p−

ϵ
q

x+ y
=

(y
x

) 1
q−

1
p x−

1+ϵ
p y−

1+ϵ
q

x+ y
.
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Therefore

(2.16)
∞∑

m,n=1

( n
m

) 1
q−

1
p am(ϵ)bn(ϵ)

m+ n
≥ I(ϵ),

where I(ϵ) is defined by

I(ϵ) =

∫ ∞

1

∫ ∞

1

(y
x

) 1
q−

1
p x−

1+ϵ
p y−

1+ϵ
q

x+ y
dx dy =

∫ ∞

1

∫ ∞

1

x−
1
q−

ϵ
p y−

1
p−

ϵ
q

x+ y
dx dy.

Applying the change of variables y 7→ xy, we get

I(ϵ) =

∫ ∞

1

1

x1+ϵ

∫ ∞

1
x

1

y
1
p+

ϵ
q (1 + y)

dy dx

Another change of variables x 7→ 1
x gives

I(ϵ) =

∫ 1

0

xϵ−1

∫ ∞

x

1

y
1
p+

ϵ
q (1 + y)

dy dx

=

∫ 1

0

1

ϵ
(xϵ)′

∫ ∞

x

1

y
1
p+

ϵ
q (1 + y)

dy dx

=
1

ϵ

(∫ ∞

1

1

y
1
p+

ϵ
q (1 + y)

dy +

∫ 1

0

1

x
1
p−

ϵ
p (1 + x)

dx
)

by integration by parts. From this we notice that

ϵI(ϵ) →
∫ ∞

0

1

t
1
p (1 + t)

dt =
π

sin π
p

when ϵ→ 0+. This together with (2.13), (2.14), (2.15) and (2.16) implies∑∞
m,n=1

(
n
m

) 1
q−

1
p am(ϵ)bn(ϵ)

m+n−1

‖(am(ϵ))‖ℓp‖(bn(ϵ))‖ℓq
≥ ϵI(ϵ)

(1 + ϵ ϕ(ϵ))
1
p (1 + ϵ ψ(ϵ))

1
q

→ π

sin π
p

,

when ϵ→ 0+. □

3. The norm of the Hilbert matrix on the Hardy-Littlewood spaces
and on weighted sequence spaces

One can easily check that H induces a bounded operator on the Hardy-Littlewood
space Kp, for 1 < p <∞. Our second result is the determination of the exact value
of the norm ‖H ‖Kp→Kp . To that effect we shall use the variant of Hilbert’s in-
equality in Theorem 1.

Theorem 2. If 1 < p <∞, then

‖H ‖Kp→Kp =
π

sin π
p

Proof. Let f(z) =
∞∑

m=0
amz

m ∈ Kp. Then

H (f)(z) =

∞∑
n=0

( ∞∑
m=0

am
m+ n+ 1

)
zn,
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and

‖H (f)‖Kp =
( ∞∑

n=0

(n+ 1)p−2
∣∣∣ ∞∑
m=0

am
m+ n+ 1

∣∣∣p) 1
p

=
( ∞∑

n=0

∣∣∣ ∞∑
m=0

(n+ 1)
p−2
p

am
m+ n+ 1

∣∣∣p) 1
p

.

Due to the duality of ℓp spaces

‖H (f)‖Kp = sup
∥(bn)∥ℓq=1

∣∣∣ ∞∑
m,n=0

(n+ 1)
p−2
p

ambn
m+ n+ 1

∣∣∣,
where 1

p + 1
q = 1.

Setting Am = am(m+ 1)
p−2
p , we have that ‖(Am)‖ℓp = ‖f‖Kp and

sup
∥f∥Kp=1

‖H (f)‖Kp = sup
∥(Am)∥ℓp=1,
∥(bn)∥ℓq=1

∣∣∣ ∞∑
m,n=0

( n+ 1

m+ 1

) 1
q−

1
p Ambn
m+ n+ 1

∣∣∣ =
π

sin π
p

,

because of Theorem 1. □

One final remark is that the proof of Theorem 2 applies unchanged and in an
obvious way to show that the Hilbert matrix H induces a bounded operator on
the weighted space lpp−2 of sequences (am) with norm defined by

‖(am)‖p
ℓpp−2

=

∞∑
m=1

mp−2|am|p ,

and that the norm ‖H ‖lpp−2→lpp−2
of this operator is again equal to π

sin π
p

.
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