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Chapter 1

The complex plane.

1.1 The complex plane.

We are familiar with the set C of all complex numbers

z = x+ iy, x, y ∈ R,

which we add and multiply as follows:

(x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2),

(x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(x1y2 + x2y1).

In particular:
i2 = −1.

With these operations of addition and multiplication, C is an algebraic field andR is a subfield
of C. We shall prove later that, besides the polynomial equation z2 +1 which has as solutions the
complex numbers ±i, every polynomial equation with coefficients in C is solvable in C. In other
words, we shall prove that C is an algebraically closed field.

In the following we shall only review a few basic things and fix some terminology and notation.
We identify the complex number z = x+ iy with the pair (x, y) of R2 and write

z = x+ iy = (x, y).

It is customary to use symbols like x, y, u, v, t, ξ, η for real numbers and symbols like z, w, ζ for
complex numbers. For instance, we write z = x+ iy, w = u+ iv, ζ = ξ + iη.

For every z = (x, y) = x+ iy we write

Re z = x, Im z = y, z = (x,−y) = x− iy, |z| =
√
x2 + y2

for the real part, the imaginary part, the conjugate and the absolute value (or modulus) of z,
respectively.

The geometrical model for C is the cartesian plane with two perpendicular axes: every z =
(x, y) = x+iy corresponds to the point of the plane with abscissa x and ordinate y. The horizontal
axis of all points (x, 0) is the real axis and, through the identification x = (x, 0), it represents R
as a subset of C. The vertical axis of all points iy = (0, y) is the imaginary axis.

We recall that the cartesian equation of the general line in the plane is

ax+ by = c,

where a, b, c ∈ R, a2 + b2 ̸= 0. If we set z = x+ iy and w = a+ ib ̸= 0, then the above equation
takes the form

Re(wz) = c.
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Similarly, the defining inequalities ax+ bc < c and ax+ bc > c of the two halfplanes on the
two sides of the line with equation ax+by = c become Re(wz) < c and Re(wz) > c, respectively.

We shall denote
[z1, z2] = {(1− t)z1 + tz2 | 0 ≤ t ≤ 1}

the linear segment joining the points z1, z2.
When we say interval we mean a linear segment on the real line: [a, b] ⊆ R.
The euclidean distance between the points z1 = (x1, y1) and z2 = (x2, y2) is√

(x2 − x1)2 + (y2 − y1)2 = |z2 − z1|.

Therefore, the circle, the open disc and the closed disc with center z = (x, y) and radius r ≥ 0 are
the sets

Cz(r) = {w | |w − z| = r}, Dz(r) = {w | |w − z| < r}, Dz(r) = {w | |w − z| ≤ r}.

For the unit circle, the open unit disc and the closed unit disc with center 0 we have the special
symbols:

T = C0(1), D = D0(1), D = D0(1).

The real part and the imaginary part of a complex function f : A → C are the functions
u = Re f : A→ R and v = Im f : A→ R, respectively, defined by

u(z) = Re f(z) =
1

2
(f(z) + f(z)), v(z) = Im f(z) =

1

2i
(f(z)− f(z)).

Of course, we have

f(z) = u(z) + iv(z) = (u(z), v(z)), z ∈ A.

We attach one extra element (not a complex number) to C, which we call infinity and denote
∞, and we form the set

Ĉ = C ∪ {∞}.

The set Ĉ is called extended C or extended complex plane.
We extend in Ĉ the usual algebraic operations between complex numbers, as follows:

z +∞ = ∞+ z = ∞, −∞ = ∞, z −∞ = ∞− z = ∞.

z∞ = ∞ z = ∞ if z ̸= 0, ∞∞ = ∞,
1

∞
= 0,

1

0
= ∞,

z

∞
= 0,

∞
z

= ∞.

∞ = ∞, |∞| = +∞.

The expressions
∞+∞, ∞−∞, 0∞, ∞ 0,

∞
∞
,

0

0

are not defined and they are called indeterminate forms.

1.2 Argument and polar representation.

The trigonometric functions sin and cos are defined and their properties are studied in the theory
of functions of a real variable. In particular, we know that sin and cos are periodic with smallest
positive period 2π:

sin(θ + 2π) = sin θ, cos(θ + 2π) = cos θ.

We also know the following result. Let I be any interval of length 2π which contains only one
of its endpoints, e.g. [0, 2π) or (−π, π]. Then for every a, b ∈ R with a2 + b2 = 1 there exists a
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unique θ ∈ I so that cos θ = a and sin θ = b. Equivalently, for every ζ ∈ C with |ζ| = 1 there
exists a unique θ ∈ I so that ζ = cos θ + i sin θ.

Therefore, the function
cos+i sin : R → T

is periodic with 2π as smallest positive period and its restriction

cos+i sin : I → T

to any interval I of length 2π which contains only one of its endpoints is one-to-one and onto T.
Thus, for every ζ ∈ T the equation cos θ + i sin θ = ζ has infinitely many solutions in R and
exactly one solution in each interval I of length 2π which contains only one of its endpoints. If θ
is any of these solutions, then the set of all solutions is {θ + k2π | k ∈ Z}.

Definition. For every z ∈ C, z ̸= 0, we have z
|z| ∈ T and then the set of all solutions of the

equation cos θ + i sin θ = z
|z| is called argument or angle of z and is denoted arg z:

arg z =
{
θ ∈ R

∣∣∣ cos θ + i sin θ = z
|z|

}
.

The unique solution of this equation in the interval (−π, π] is called principal argument or prin-
cipal angle of z and it is denoted Arg z:

θ = Arg z ⇔ cos θ + i sin θ = z
|z| , −π < θ ≤ π.

Each of the elements of arg z is called a value of the argument of z.

Wemust be careful: arg z is a set while Arg z is a number, one of the elements of arg z. In fact

arg z = {Arg z + k2π | k ∈ Z}.

Examples. (i) Arg 3 = 0, arg 3 = {k2π | k ∈ Z},

(ii) Arg(4i) = π
2 , arg(4i) =

{
π
2 + k2π | k ∈ Z

}
,

(iii) Arg(−2) = π, arg(−2) = {π + k2π | k ∈ Z},

(iv) Arg(1 + i) = π
4 , arg(1 + i) =

{
π
4 + k2π | k ∈ Z

}
,

(v) Arg(−1− i
√
3) = 4π

3 , arg(−1− i
√
3) = {4π

3 + k2π | k ∈ Z}.

It is obvious that the argument of any nonzero z is a (two-sided) arithmetical progression of
step 2π. Therefore, it is also obvious that, if we have any nonzero z1 and z2, then their arguments
are either identical sets or disjoint sets. Equivalently, either the arguments of z1 and z2 have exactly
the same values or their arguments have no common value. More precisely, any nonzero z1 and z2
have the same argument if and only if each of them is a multiple of the other by a positive number
or, equivalently, if and only if z1 and z2 belong to the same halfline with vertex 0. Moreover, if z1
and z2 belong to different halflines with vertex 0, their arguments have no common value.

The following identity is equivalent to the addition formulas of sin and cos:

cos(θ1 + θ2) + i sin(θ1 + θ2) = (cos θ1 + i sin θ1)(cos θ2 + i sin θ2).

A direct consequence by induction is the familiar formula of de Moivre:

cos(nθ) + i sin(nθ) = (cos θ + i sin θ)n

for all n ∈ Z.
For any two nonempty subsets A and B of C we define

A+B = {a+ b | a ∈ A, b ∈ B}, AB = {ab | a ∈ A, b ∈ B}.

We also write

a+B = {a+ b | b ∈ B}, aB = {ab | b ∈ B}, −B = {−b | b ∈ B}.
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Proposition 1.1. For every nonzero z1 and z2 we have

arg(z1z2) = arg z1 + arg z2.

Proof. Take any θ ∈ arg z1+arg z2. Then there are θ1 ∈ arg z1 and θ2 ∈ arg z2 so that θ = θ1+θ2.
By the addition formulas,

cos θ + i sin θ = (cos θ1 + i sin θ1)(cos θ2 + i sin θ2) =
z1
|z1|

z2
|z2|

=
z1z2
|z1z2|

.

Therefore, θ ∈ arg(z1z2).
Conversely, take any θ ∈ arg(z1z2). We consider any θ1 ∈ arg z1 and set θ2 = θ − θ1. Then

cos θ2 + i sin θ2 =
cos θ + i sin θ
cos θ1 + i sin θ1

=
z1z2
|z1z2|

/ z1
|z1|

=
z2
|z2|

.

Therefore, θ2 ∈ arg z2 and, thus, θ = θ1 + θ2 ∈ arg z1 + arg z2.

We must stress that arg(z1z2) = arg z1 + arg z2 is an equality between sets. The similar
equality between numbers, Arg(z1z2) = Arg z1 + Arg z2, is not true in general.

Example 1.2.1. Arg(−1) + Arg(−1) = π + π = 2π, while Arg((−1)(−1)) = Arg 1 = 0.

The equalities |z1z2| = |z1||z2| and arg(z1z2) = arg z1 + arg z2 express the well-known
rule: when two complex numbers are multiplied, their absolute values are multiplied and their
arguments (or angles) are added.

Definition. It is clear by now that for any nonzero z we may write

z = r(cos θ + i sin θ), r = |z|, θ ∈ arg z.

This is called a polar representation of z. There are infinitely many polar representations of z,
one for each value θ of its argument. The polar representation with θ = Arg z is called principal
polar representation of z.

Remark.We do not define argument or angle or polar representation for the number 0.

Exercises.

1.2.1.Which are all the possible values of Arg(z1z2)− Arg z1 − Arg z2 ?

1.2.2. Prove that arg 1
z = arg z = − arg z and arg(−z) = π+ arg z. (Note that these are equalities

between sets.)

1.2.3. Prove the following statement for any nonzero z, z1 and z2. It is true that z = z1z2 if and only
if the triangle T (0, 1, z1) with vertices 0, 1, z1 is similar to the triangle T (0, z2, z) with vertices
0, z2, z (0 corresponding to 0, 1 corresponding to z2 and z1 corresponding to z). This expresses
the geometric visualization of the operation of multiplication in C.

1.3 Sequences, neighborhoods, open sets, closed sets.

Definition.We say that the sequence (zn) in C converges to z ∈ C if for every ϵ > 0 there is n0
so that |zn − z| < ϵ for all n ≥ n0. We denote this by

lim
n→+∞

zn = z or zn → z when n→ +∞.

We say that the sequence (zn) in C diverges to ∞ if for every R > 0 there is n0 so that |zn| > R
for all n ≥ n0. We denote this by

lim
n→+∞

zn = ∞ or zn → ∞ when n→ +∞.
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The definition of convergence is formally identical to the analogous definition for sequences
in R. We shall make a comment regarding the case of divergence to ∞ and, specifically, on the
difference between the use of ∞ in the framework of complex analysis and the use of ±∞ in the
framework of real analysis. The terms of a sequence (xn) on the real line move unboundedly away
from 0 in exactly two distinct directions: either to the right or to the left and then we say that xn →
+∞ or xn → −∞, respectively. On the complex plane there aren’t any two particularly prefered
directions. The term zn of a complex sequence can move away from 0 either on halflines (i.e. in
infinitely many directions) or on spiral-like curves or in any other arbitrary manner. Therefore,
we simply say that zn → ∞. We shall come back at this point when we comment on the equality
1
0 = ∞.

Relating the notions of convergence and divergence for complex sequences to the similar no-
tions for real sequences, we observe that

zn → z ⇔ |zn − z| → 0, zn → ∞ ⇔ |zn| → +∞.

This is clear from the corresponding definitions.

Example 1.3.1. The sequence ((−2)n) does not have a limit as a real sequence since its subse-
quences of the odd and the even indices have the different limits −∞ and +∞. But as a complex
sequence ((−2)n) tends to∞, because |(−2)n| = 2n → +∞.

Proposition 1.2. Let zn → z and wn → w, where z, w ∈ Ĉ. Then, provided the result in each
case is not an indeterminate form, we have

zn ± wn → z ± w, znwn → zw,
zn
wn

→ z

w
, zn → z, |zn| → |z|.

Moreover, if zn = xn + iyn and z = x+ iy, then

zn → z ⇔ xn → x, yn → y.

Proof. The proofs of the first three properties are identical to the proofs of the analogous properties
for real sequences. For the fourth and fifth properties we write

|zn − z| = |zn − z| → 0, ||zn| − |z|| ≤ |zn − z| → 0.

Moreover, from

|zn − z| ≤ |xn − x|+ |yn − y|, |xn − x| ≤ |zn − z|, |yn − y| ≤ |zn − z|

we get the last equivalence.

Let us comment on the equality 1
0 = ∞. In R the expression 1

0 is an indeterminate form, since
1
xn

→ +∞ when xn → 0+ and 1
xn

→ −∞ when xn → 0−. But in C signs do not play the same
role as in R. In C only the absolute value of 1

zn
is significant and we see that, when zn → 0, then

| 1
zn
| = 1

|zn| → +∞ and hence 1
zn

→ ∞.

Example 1.3.2. Let us consider the geometric progression (zn).
If |z| < 1, then |zn − 0| = |z|n → 0 and hence zn → 0.
If |z| > 1, then |zn| = |z|n → +∞ and hence zn → ∞.
If z = 1, then zn = 1 → 1.
Finally, let |z| = 1, z ̸= 1 and assume that zn → w. Since |zn| = |z|n = 1 for every n, we find
that |w| = 1. From zn → w we have z = zn+1

zn → w
w = 1 and we arrive at a contradiction.

Thus:

zn


→ 0, if |z| < 1

→ 1, if z = 1

→ ∞, if |z| > 1

has no limit, if |z| = 1, z ̸= 1
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The open discDz(r) is also called r-neighborhood of z. It is useful to have a similar notation
to take care of points which are “close” to∞. We say that the set

D∞(r) = {w | |w| > 1/r} ∪ {∞}

is an r-neighborhhod of∞.

Proposition 1.3. z ∈ Ĉ is the limit of a sequence (zn) if and only if every neighborhood Dz(ϵ) of
z contains all terms of the sequence after some index.

Proof. Trivial.

Definition. Let A ⊆ C and z ∈ C.
We say that z is an interior point of A if some neighborhood of z is contained in A.
We say that z is a boundary point of A if every neighborhood of z intersects both A and Ac.
We say that z is a limit point of A if every neighborhood of z intersects A.
We say that z is an accumulation point of A if every neighborhood of z intersects A at a point
different from z.

Definition. Let A ⊆ C. We define

A◦ = {z ∈ C | z is an interior point of A},
∂A = {z ∈ C | z is a boundary point of A},
A = {z ∈ C | z is a limit point of A}.

The sets A◦, ∂A and A are called interior, boundary and closure of A, respectively.

Here is a comment regarding∞. We say that∞ is a limit point of a setA if every neighborhood
of∞ intersects A. If we look at the exact shape of the neighborhoods of∞, we realize that∞ is a
limit point of A if and only if there are points of A arbitrarily far away from 0, i.e. if and only if A
is an unbounded set. Also, since any neighborhood of ∞ can intersect A only at points different
from∞ (since A ⊆ C), we realize that∞ is a limit point of A if and only if it is an accumulation
point of A. Moreover, we may accept that every neighborhood of ∞ intersects Ac since it (the
neighborhood) contains ∞. After these thoughts we conclude that (i) an unbounded set has ∞
as a limit point, as an accumulation point and as a boundary point (ii) a bounded set does not
have ∞ either as a limit point or as an accumulation point or as a boundary point. Nevertheless,
when we talk about limit points, boundary points, accumulation points of a setA we consider only
complex numbers and when we write A, ∂A we do not include∞ in these sets even if the set A is
unbounded. If in some particular statement we want to consider∞ as a limit point or accumulation
point or boundary point of a particular set A, then we have to state this clearly.

If A ⊆ C, the complement of A with respect to C is denoted Ac.

Proposition 1.4. Let A ⊆ C. Then
(i) ∂A = ∂(Ac).
(ii) A◦ ⊆ A ⊆ A.
(iii) A \A◦ = ∂A.
(iv) A◦ = A \ ∂A.
(v) A = A ∪ ∂A.

Proof. (i) From the definition of a boundary point it is clear that the boundary points of A are the
same as the boundary points ofAc. In other words, the sets ∂A and ∂(Ac) have the same elements.
(ii) If z ∈ A◦, then there is a neighborhood of z which is contained in A and hence z ∈ A (since z
is the center of its neighborhood). Therefore, A◦ ⊆ A.
If z ∈ A, then every neighborhood of z intersects A and hence z ∈ A. Therefore, A ⊆ A.
(iii) Let z ∈ A \ A◦. Since z ∈ A, every neighborhood of z interects A. Since z /∈ A◦, there is
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no neighborhood of z which is contained in A and hence every neighborhood of z intersects Ac.
Therefore, z ∈ ∂A.
Conversely, let z ∈ ∂A. Then every neighborhood of z intersects A and hence z ∈ A. Also every
neighborhood of z intersectsAc which means that there is no neighborhood of z which is contained
in A and hence z /∈ A◦.
(iv) and (v) are straightforward corollaries of (ii) and (iii).

Part (iv) of proposition 1.4 says thatA◦ results fromAwhen we take away from it the boundary
points of A which belong to A. Also, (v) says that A results from A when we attach to it the
boundary points of A which do not belong to A. In other words, the set A \ A◦ consists of the
boundary points of A which belong to A and the set A \ A consists of the boundary points of A
which do not belong to A.

Example 1.3.3.We consider a relatively simple curve C which divides the plane in three subsets:
the set A1 of the points on one side of C, the set A2 of points on the other side of C and the set
of points of C. For instance C can be a circle or an ellipse or a line or a closed polygonal line
(the circumference of a rectangle, for instance). Just looking at these shapes on the plane, we
understand that A◦

1 = A1, ∂A1 = C and A1 = A1 ∪ C. We have analogous results for A2 and
also C◦ = ∅, ∂C = C and C = C.

Proposition 1.5. Let A ⊆ C. Then z is a limit point of A or, equivalently, z ∈ A if and only if
there is a sequence (zn) in A so that zn → z.

Proof. Let z ∈ A. Then every neighborhhod of z intersects A and hence for every n ∈ N there is
some zn ∈ Dz(

1
n) ∩A. Then the sequence (zn) is in A and also |zn − z| < 1

n → 0.
Conversely, if (zn) is in A and zn → z, then for every ϵ > 0 the neighborhoodDz(ϵ) contains all
terms of (zn) after some index. Thus, every neighborhood of z intersects A and hence z ∈ A.

Definition. Let A ⊆ C.
We say that A is open if it consists only of its interior points.
We say that A is closed if it contains all its limit points.

In other words, A is open if and only if A = A◦, and A is closed if and only if A = A

Proposition 1.6. Let A ⊆ C.
(i) A is open if and only if it contains none of its boundary points.
(ii) A is closed if it contains all its boundary points.

Proof. (i) Immediate from (iv) of proposition 1.4.
(ii) Immediate from (v) of proposition 1.4.

Example 1.3.4. In example 1.3.3 the sets A1, A2 are open and the sets A1 ∪C, A2 ∪C and C are
closed.

Proposition 1.7. Let A ⊆ C. Then A◦ is open and A, ∂A are closed.

Proof. Let z ∈ A◦, i.e. there is r > 0 so that Dz(r) ⊆ A. Now we take any w ∈ Dz(r). It
is geometrically clear that there is some s > 0 so that Dw(s) ⊆ Dz(r) and hence Dw(s) ⊆ A.
Therefore w is an interior point of A, i.e. w ∈ A◦. We proved thatDz(r) ⊆ A◦ and hence z is an
interior point of A◦. Therefore, every point of A◦ is an interior point of A◦ and A◦ is open.
Now let z be a limit point of A. We take any r > 0 and then Dz(r) intersects A. We consider
any w ∈ Dz(r) ∩ A. Again, there is some s > 0 so that Dw(s) ⊆ Dz(r). Since w ∈ A, Dw(s)
intersects A and hence Dz(r) also intersects A. Therefore, every neighborhood of z intersects A
and hence z is a limit point of A, i.e. z ∈ A. We proved that every limit point of A belongs to A
and A is closed.
Finally, let z be a limit point of ∂A. We take any r > 0 and thenDz(r) intersects ∂A. We consider
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any w ∈ Dz(r)∩ ∂A. Again, there is some s > 0 so thatDw(s) ⊆ Dz(r). Since w ∈ ∂A,Dw(s)
intersects bothA andAc and henceDz(r) also intersects bothA andAc. Thus every neighborhood
of z intersects both A and Ac and hence z is a boundary point of A, i.e. z ∈ ∂A. We proved that
every limit point of ∂A belongs to ∂A and ∂A is closed.

Proposition 1.8. LetA ⊆ C. ThenA is closed if and only if it contains the limit of every convergent
sequence in A.

Proof. LetA be closed. If (zn) is inA and zn → z, then z ∈ A (proposition 1.5) and hence z ∈ A.
Conversely, assume that A contains the limit of every convergent sequence in A. If z ∈ A, there
is a sequence (zn) in A so that zn → z and from our assumption we get that z ∈ A. Therefore, A
is closed.

Proposition 1.9. Let A ⊆ C. Then A is closed if and only if Ac is open.

Proof. Based on proposition 1.6 and since A and Ac have the same boundary points, we have the
following successive equivalent statements: A is closed if and only if A contains all boundary
points of A if and only if A contains all boundary points of Ac if and only if Ac contains no
boundary point of Ac if and only if Ac is closed.

The complement of the complement of a set is the set itself and hence: A is open if and only if
Ac is closed.

Exercises.

1.3.1. Prove that the limit in Ĉ of every sequence is unique.

1.3.2. Prove formally, using neighborhoods, that open discs are open and that closed discs and
circles are closed.

1.3.3. Prove that { 1
n |n ∈ N} is not a closed set, while {0} ∪ { 1

n |n ∈ N} is a closed set.

1.3.4. Prove formally, using sequences, that closed discs, circles, lines and closed halfplanes are
closed sets.

1.3.5. Is the open segment (a, b) an open set?

1.3.6. Prove that both C and ∅ are open and closed.

1.3.7. Prove that A is the smallest closed set which contains A, and that A◦ is the largest open set
which is contained in A.

1.3.8. Prove that the union of any open sets is open, that the intersection of any closed sets is closed,
that the intersection of finitely many open sets is open, and that the union of finitely many closed
sets is closed.

1.3.9.We define the diameter of A to be diamA = sup{|z−w| | z, w ∈ A}. Prove that diamA =
diamA.

1.3.10.We define the distance of z from A to be d(z,A) = inf{|z − w| |w ∈ A}. Prove that
(i) d(z,A) = d(z,A).
(ii) d(z,A) = 0 ⇔ z ∈ A.
(iii) |d(z,A)− d(w,A)| ≤ |z − w|.

1.3.11. Let A,B be closed and disjoint. Prove that there are U, V open and disjoint so that A ⊆ U
and B ⊆ V .
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1.4 Limits and continuity of functions.

Definition. Let A ⊆ C, f : A → C, z0 ∈ Ĉ be an accumulation point of A. We say that w0 ∈ Ĉ
is a limit of f at z0, and denote

lim
z→z0

f(z) = w0,

if for every ϵ > 0 there is δ > 0 so that f(z) ∈ Dw0(ϵ) for every z ∈ Dz0(δ) ∩A, z ̸= z0.

There are four cases, depending on whether z0, w0 are complex numbers or ∞ and we have
corresponding formulations of the above definition of limit:
(i) z0, w0 ∈ C. Then limz→z0 f(z) = w0 if for every ϵ > 0 there is δ > 0 so that |f(z)− w0| < ϵ
for every z ∈ A with 0 < |z − z0| < δ.
(ii) z0 ∈ C,w0 = ∞. Then limz→z0 f(z) = ∞ if for everyR > 0 there is δ > 0 so that |f(z)| > R
for every z ∈ A with 0 < |z − z0| < δ.
(iii) z0 = ∞, w0 ∈ C. Then limz→∞ f(z) = w0 if for every ϵ > 0 there is r > 0 so that
|f(z)− w0| < ϵ for every z ∈ A with |z| > r.
(iv) z0 = w0 = ∞. Then limz→∞ f(z) = ∞ if for every R > 0 there is r > 0 so that |f(z)| > R
for every z ∈ A with |z| > r.

Definition. Let A ⊆ C, f : A → C and z0 ∈ A. We say that f is continuous at z0 if for every
ϵ > 0 there is δ > 0 so that f(z) ∈ Df(z0)(ϵ) for every z ∈ Dz0(δ) ∩ A or, equivalently, if for
every ϵ > 0 there is δ > 0 so that |f(z)− f(z0)| < ϵ for every z ∈ A with |z − z0| < δ.

If z0 ∈ A is not an accumulation point of A (i.e. it is an isolated point of A), then we may
easily see that f is automatically continuous at z0. On the other hand, if z0 ∈ A is an accumulation
point of A, then f is continuous at z0 if and only if limz→z0 f(x) = f(z0).

Definition. Let A ⊆ C, f : A → C. We say that f is continuous in A if it is continuous at every
point of A.

Proposition 1.10. Let A,B ⊆ C, z0 ∈ A, f : A → B and g : B → C. If f is continuous at z0
and g is continuous at w0 = f(z0), then g ◦ f : A→ C is continuous at z0.

Proof. The proof is exactly the same as the proof of the analogous result for real functions of a
real variable.

All simple algebraic properties of limits and of continuity which hold for real functions of a
real variable also hold for complex functions of a complex variable. (Look back at proposition 1.2
for the case of sequences.) For instance, the limit of the sum is the sum of the limits (except in the
case of an indeterminate form). We do not bother to repeat the formal arguments. The proofs are
identical with the proofs in the real case.

Nevertheless, we mention the two results which restate the notions of limit and continuity of a
function in terms of sequences. Again, the proofs are identical with the proofs in the real case and
we omit them.

Proposition 1.11. Let A ⊆ C, f : A → C, z0 ∈ Ĉ be an accumulation point of A and w0 ∈ Ĉ.
The following are equivalent.
(i) limz→z0 f(z) = w0.
(ii) For every (zn) in A \ {z0} with zn → z0 we have f(zn) → w0.

Proposition 1.12. Let A ⊆ C, f : A→ C and z0 ∈ A. The following are equivalent.
(i) f is continuous at z0.
(ii) For every (zn) in A with zn → z0 we have f(zn) → f(z0).
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Example 1.4.1. Let us consider any polynomial function

p(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0,

where a0, . . . , an ∈ C and an ̸= 0. The domain of definition of p is C.
For every z0 ∈ C we have

lim
z→z0

p(z) = p(z0).

To prove it we use the well-known algebraic rules of limits and the trivial limits: limz→z0 c = c
and limz→z0 z = z0.
Therefore, p is continuous in C.
If the degree of p is ≥ 1, i.e. n ≥ 1 and an ̸= 0, then

lim
z→∞

p(z) = ∞

since p(z) = zn(an + an−1
1
z + · · ·+ a0

1
zn ) → ∞ an = ∞.

If the degree of p is 0, then the function is constant: p(z) = a0 for all z. Hence

lim
z→∞

p(z) = a0.

Example 1.4.2. Now we consider a rational function

r(z) =
p(z)

q(z)
=
anz

n + · · ·+ a1z + a0
bmzm + · · ·+ b1z + b0

,

where a0, . . . , an, b0, . . . , bm ∈ C and an ̸= 0 and bm ̸= 0. The domain of definition of r is
C \ {z1, . . . , zs}, where z1, . . . , zs are the roots of the polynomial q. We know that 0 ≤ s ≤ m.
If z0 ∈ C and q(z0) ̸= 0, then using the algebraic rules of limits, we get:

lim
z→z0

r(z) = r(z0).

Therefore r is continuous in its domain of definition.
Writing r in the form r(z) = zn−m(an+ an−1

1
z + · · ·+ a0

1
zn )/(bm+ bm−1

1
z + · · ·+ b0

1
zm

)
, we

can prove that

lim
z→∞

r(z) =


∞, if n > m
an
bn
, if n = m

0, if n < m

Finally, let z0 ∈ C and q(z0) = 0. Thus z0 is any of the roots z1, . . . , zs of q. Then z − z0 divides
q(z), and there is k ≥ 1 and a polynomial q1(z) so that q(z) = (z − z0)

kq1(z) and q1(z0) ̸= 0.
This means that the multiplicity of the root z0 of q(z) is k. There is also l ≥ 0 and a polynomial
p1(z) so that p(z) = (z − z0)

lp1(z) and p1(z0) ̸= 0. Indeed, if p(z0) = 0, then l ≥ 1 is the
multiplicity of z0 as a root of p(z) and, if p(z0) ̸= 0, we take l = 0 (and say that the multiplicity
of z0 as a root of p(z) is zero) and p1(z) = p(z). Thus for every z different from the roots of q(z)
we have

r(z) = (z − z0)
l−k p1(z)

q1(z)
and p1(z0) ̸= 0, q1(z0) ̸= 0.

Now p1(z0)
q1(z0)

is neither∞ nor 0, and hence

lim
z→z0

r(z) =


∞, if k > l
p1(z0)
q1(z0)

, if k = l

0, if k < l
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Definition. Let A ⊆ C and f : A ∪ {∞} → C. We say that f is continuous at ∞ if for every
ϵ > 0 there is R > 0 so that |f(z)− f(∞)| < ϵ for all z ∈ A with |z| > R.

Therefore, ifA is unbounded, i.e. if∞ is an accumulation point ofA, then f is continuous at∞
if and only if limz→∞ f(z) = f(∞). If A is bounded, then it is easy to see that f is automatically
continuous at∞. It has to be stressed that for f to be continuous at∞ it is necessary that its value
f(∞) be a complex number.

Example 1.4.3. If p is a polynomial as in example 1.4.1, then p is continuous at ∞ only if it is a
constant polynomial p(z) = a0 and provided we define its value at∞ to be p(∞) = a0.
Similarly, if r is a rational function as in example 1.4.2, then r is continuous at ∞ only if n ≤ m
and provided we define r(∞) = an

bn
or r(∞) = 0 depending on whether n = m or n < m,

respectively.

Exercises.

1.4.1. Prove that the limit of a function is unique.

1.4.2. Let A ⊆ C and f : A→ C. Prove that the following are equivalent.
(i) f is continuous in A.
(ii) For every open setW there is an open set U so that f−1(W ) = U ∩A.
(iii) For every closed set F there is a closed set G so that f−1(F ) = G ∩A.

1.5 Compactness.

Definition.We say thatM ⊆ C is compact if every sequence inM has at least one subsequence
converging to a point ofM .

Example 1.5.1. Take M = (a, b] and the sequence zn = a + b−a
n . Since zn → a, every subse-

quence of (zn) converges to a. Hence (zn) is contained inM but has no subsequence converging
to a point ofM . Therefore,M is not a compact set.

Example 1.5.2. Take M = {z | |z| ≥ 1} and the sequence zn = 2n. Since zn → ∞, every
subsequence of (zn) diverges to ∞. Thus (zn) is inM but has no subsequence converging to an
element ofM . Therefore,M is not compact.

In general, to prove that a setM is not compact is a relatively easy problem: it is enough to
find a specific sequence inM which has no subsequence converging to a point ofM . But to prove
that a setM is compact is usually a harder problem: we have to take the general sequence inM
and prove that it has a subsequence converging to an element ofM .

Example 1.5.3. LetM ⊆ C be finite, i.e. M = {w1, . . . , wm}.
We consider an arbitrary sequence (zn) in M . Then at least one of the elements of M appears
infinitely often as a term of the sequence. I.e. there is a subsequence (znk

) of (zn) with all its
terms equal to the same wj . This subsequence is constant znk

= wj and hence converges to wj .
Thus, every sequence inM has at least one subsequence converging to an element ofM andM
is compact.

Proposition 1.13. IfM ⊆ C is compact, then it is bounded and closed.

Proof. Assume thatM is not bounded. Then for every n ∈ N there is zn ∈ M so that |zn| ≥ n.
Then the sequence (zn) is inM and, sinceM is compact, there is a subsequence (znk

) of (zn) so
that znk

→ z for some z ∈ M . This implies |znk
| → |z|. But |znk

| ≥ nk for every k and hence
|znk

| → +∞. We arrive at a contradiction and we conclude thatM is bounded.
Now, take any sequence (zn) inM so that zn → z. SinceM is compact, there is a subsequence
(znk

) of (zn) so that znk
→ z′ for some z′ ∈ M . From zn → z we get znk

→ z and, due to
the uniqueness of limit, we get z′ = z. Thus z ∈ M . Therefore, the limit of every convergent
sequence inM belongs toM andM is closed.
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Proposition 1.14. Let N ⊆M ⊆ C. IfM is compact and N is closed, then N is compact.

Proof. Take any sequence (zn) in N . Then (zn) is in M and, since M is compact, there is a
subsequence (znk

) of (zn) so that znk
→ z for some z ∈M . Since (znk

) is inN andN is closed,
we have z ∈ N . Therefore, every sequence in N has a subsequence converging to an element of
N and N is compact.

Proposition 1.15 says that if two sets, one of them compact and the other closed, are disjoint,
then there is a positive distance between them.

Proposition 1.15. Let M,N ⊆ C with M ∩ N = ∅. If M is compact and N is closed, there is
ϵ > 0 so that |z − w| ≥ ϵ for every z ∈M and w ∈ N .

Proof. Assume that there is no ϵ > 0 so that |z − w| ≥ ϵ for every z ∈ M and w ∈ N . Then for
every n ∈ N there are zn ∈ M and wn ∈ N so that |zn − wn| < 1

n . SinceM is compact there is
a subsequence (znk

) of (zn) so that znk
→ z for some z ∈M . From

|wnk
− z| ≤ |znk

− wnk
|+ |znk

− z| < 1

nk
+ |znk

− z| → 0

we getwnk
→ z. Since (wnk

) is inN andN is closed, we find z ∈ N . This is impossible, because
M ∩N = ∅, and we arrive at a contradiction.

Proposition 1.16 is a generalization of the well known result for sequences of nested closed
and bounded intervals in R: if [a1, b1] ⊇ [a2, b2] ⊇ . . . ⊇ [an, bn] ⊇ . . . , there is x which belongs
to all [an, bn] and, if moreover bn − an → 0, then x is unique.

Definition.We define the diameter ofM ⊆ C to be

diamM = sup{|z − w| | z, w ∈M}.

Proposition 1.16. Let (Kn) be a sequence of non-empty compact sets in C so that Kn+1 ⊆ Kn

for every n. Then there is some point which belongs to all Kn. If moreover diam Kn → 0, then
the common element ofKn is unique.

Proof. For each n we take any zn ∈ Kn. Since K1 is compact and the sequence (zn) is in K1,
there is a subsequence (znk

) so that znk
→ z for some z ∈ K1. We observe that, for eachm, (zn)

is in Km after the value of the index n = m. Thus (znk
) is, after some value of the index k, in

Km. SinceKm is closed, we get z ∈ Km. Therefore, z is in everyKm.
Now, let diam Kn → 0. If z, w belong to every Kn, then 0 ≤ |z − w| ≤ diam Kn for every n.
This implies |z − w| = 0 and hence z = w.

Bolzano-Weierstrass theorem. Every bounded sequence in C has a convergent subsequence.

Proof. Let (zn) be a bounded sequence with zn = xn + iyn. Then (zn) is contained in some
rectangleM = [a, b]× [c, d].
Taking the midpoints a+b2 and c+d

2 of [a, b] and [c, d], we can splitM in four equal subrectangles.
The size of each of them is 1

2 of the size ofM . Since (zn) is contained inM , at least one of the
four subrectangles contains infinitely many terms of (zn). We take one of the subrectangles with
this property and denote itM1 = [a1, b1]× [c1, d1]. We repeat with the rectangleM1. We split it in
four equal subrectangles with size equal to 1

2 of the size ofM1 and denoteM2 = [a2, b2]× [c2, d2]
whichever of these subrectangles contains infinitely many terms of (zn). Continuing inductively,
we produce a sequence of rectanglesMl = [al, bl]× [cl, dl] with the following properties:
(i) everyMl contains infinitely many terms of (zn).
(ii) al−1 ≤ al ≤ bl ≤ bl−1 and cl−1 ≤ cl ≤ dl ≤ dl−1 for every l.
(iii) bl − al =

b−a
2l

→ 0 and dl − cl =
d−c
2l

→ 0.
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SinceM1 contains infinitely many terms of (zn) there is a zn1 ∈M1. SinceM2 contains infinitely
many terms of (zn) there is a zn2 ∈ M2 with n2 > n1. SinceM3 contains infinitely many terms
of (zn) there is a zn3 ∈M3 with n3 > n2. Continuing inductively, we get a subsequence (znl

) of
(zn) so that znl

∈Ml for every l ≥ 1. I.e.

al ≤ xnl
≤ bl, cl ≤ ynl

≤ dl for every l. (1.1)

From (ii) we get that (al) is increasing and bounded and that (bl) is decreasing and bounded and
hence the two sequences converge to two limits, which, due to (iii), coincide. The same is true for
the sequences (cl) and (dl). We set

x = lim
l→+∞

al = lim
l→+∞

bl, y = lim
l→+∞

cl = lim
l→+∞

dl.

From (1.1) we get xnl
→ x and ynl

→ y and hence znl
→ z = x+ iy.

Definition.We say that the sequence (zn) is a Cauchy sequence if for every ϵ > 0 there is n0 so
that |zn − zm| < ϵ for every n,m ≥ n0.

Proposition 1.17. Every Cauchy sequence converges.

Proof. Let (zn) be a Cauchy sequence. Then we easily see that (zn) is bounded. Indeed, there is
n0 so that |zn − zm| < 1 for every n,m ≥ n0. This implies that |zn − zn0 | < 1 for every n ≥ n0
and hence |zn| ≤ |zn0 |+ 1 for every n ≥ n0. Therefore,

|zn| ≤ max{|z1|, . . . , |zn0−1|, |zn0 |+ 1} for every n.

The Bolzano-Weierstrass theorem implies that there is a subsequence (znk
) so that znk

→ z for
some z. Now, we have that |zk − znk

| → 0, because (zn) is a Cauchy sequence, and hence

|zk − z| ≤ |zk − znk
|+ |znk

− z| → 0.

Therefore, zk → z.

This property of C, i.e. that every Cauchy sequence in C converges to some point of C, is
called completeness of C.

Theorem 1.1 is very useful for the determination of compact sets. Theorem 1.1 complements
proposition 1.13.

Theorem 1.1.M ⊆ C is compact if and only if it is bounded and closed.

Proof. Proposition 1.13 proves one direction.
Assume thatM is bounded and closed. We take any sequence (zn) inM . SinceM is bounded,
(zn) is also bounded and the Bolzano-Weierstrass theorem implies that there is a subsequence
(znk

) so that znk
→ z for some z. Since (znk

) is inM andM is closed, we get z ∈M .
Thus, every sequence inM has a subsequence converging to a point inM andM is compact.

Example 1.5.4. All closed rectangles and all closed discs are compact.

Proposition 1.18. LetM ⊆ C and f : M → C. If f is continuous inM andM is compact, then
f(M) is compact.

Proof. Let (wn) be an arbitrary sequence in f(M). It is enough to prove that (wn) has a subse-
quence converging to a point of f(M).
For each n there is zn ∈ M so that f(zn) = wn. Then (zn) is in M , and, since M is compact,
there is a subsequence (znk

) so that znk
→ z for some z ∈ M . Since f is continuous inM , we

get wnk
= f(znk

) → f(z) ∈ f(M).
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Proposition 1.19. Every non-empty compact subset of R has a maximal and a minimal element.

Proof. LetM ⊆ R be non-empty and compact. SinceM is non-empty and bounded, u = supM
is in R. Then for every ϵ > 0 there is x ∈M so that u− ϵ < x ≤ u and hence x ∈ Du(ϵ). Thus u
is a limit point ofM and, sinceM is closed, u ∈M . Therefore u is the maximal element ofM .
The proof for the existence of a minimal element is similar.

Theorem 1.2 generalizes the familiar analogous theorem for continuous f : [a, b] → R.

Theorem 1.2. LetM ⊆ C and f :M → R. If f is continuous inM andM is compact, then f is
bounded and has a maximum and a minimum value.

Proof. Proposition 1.18 implies that f(M) ⊆ R is compact. Now proposition 1.19 says that f(M)
is bounded and has a maximal and a minimal element.

Exercises.

1.5.1. LetM1, . . . ,Mn ⊆ C. IfM1, . . . ,Mn are compact, prove thatM1 ∪ · · · ∪Mn is compact.

1.5.2. Let A,B ⊆ C. If A is compact and B is closed, prove that A ∩B is compact.

1.5.3. Let z0 ∈ C,M ⊆ C be non-empty and closed and N ⊆ C be non-empty and compact.
Prove that there is z1 ∈M so that |z1 − z0| = inf{|z − z0| | z ∈M}.
Prove that there are z1 ∈M and w1 ∈ N so that |z1 − w1| = inf{|z − w| | z ∈M,w ∈ N}.

1.5.4. LetM ⊆ C be bounded. Prove thatM and ∂M are compact.

1.5.5. LetM ⊆ C and f : M → C. If f is continuous inM andM is compact, prove that f is
uniformly continuous inM .

1.5.6. LetA be bounded and f : A→ C be continuous. Prove that there is a continuousF : A→ C
so that F = f in A if and only if f is uniformly continuous in A.

1.5.7. Prove the following restatement of the Bolzano-Weierstrass theorem: every bounded infinite
set has at least one accumulation point.

1.6 Connectedness.

Definition. Let A ⊆ C. We say that B,C form a decomposition of A if (i) B ∪ C = A, (ii)
B ∩ C = ∅, (iii) B ̸= ∅, C ̸= ∅, (iv) none of B,C contains a limit point of the other.

When (i), (ii), (iii) hold we say thatB,C form a partition ofA. We may restate (iv) as follows:
B ∩ C = B ∩ C = ∅.

Example 1.6.1.We consider the closed discsB = D0(1),C = D3(1) and their unionA = B∪C.
It is clear that B,C form a decomposition of A.
If we consider the open discs B = D0(1), C = D2(1) and A = B ∪ C, then the discs B,C are
tangent but, again, they form a decomposition of A.
If we take the closed disc B = D0(1), the open disc C = D2(1) and A = B ∪ C, then the discs
B,C are tangent and they do not form a decomposition of A: B contains the limit point 1 of C.

Definition. Let A ⊆ C. We say that A is connected if there is no decomposition of A, i.e. there is
no pair of sets B,C with the properties (i)-(iv) of the above definition.

Example 1.6.2. The first two setsA of example 1.6.1 are not connected since each admits a specific
decomposition. But we cannot decide at thismoment if the third setA of example 1.6.1 is connected
or not. We know that the specific B,C related to this A do not form a decomposition of A. To
decide that A is connected we must prove that, not only the specific pair, but an arbitrary pair
does not form a decomposition of A.
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Example 1.6.3. It is obvious that ∅ as well as any {z} is a connected set. These sets do not even
have a partition, since for a set to have a partition it is necessary that it has at least two elements.

Lemma 1.1. Let A,B,C ⊆ C with B ∩ C = ∅ and assume that none of B,C contains a limit
point of the other. If A is connected and A ⊆ B ∪ C, then either A ⊆ B or A ⊆ C.

Proof. We define
B1 = A ∩B, C1 = A ∩ C.

Clearly, B1 ∪ C1 = A and B1 ∩ C1 = ∅.
Now let z ∈ B1. Then z ∈ B, and hence z is not a limit point of C. Then there is r > 0 so that
Dz(r) ∩ C = ∅ and, since C1 ⊆ C, we get Dz(r) ∩ C1 = ∅. Thus, z is not a limit point of C1.
We conclude that B1 does not contain any limit point of C1. Symmetrically, C1 does not contain
any limit point of B1.
If B1 ̸= ∅ and C1 ̸= ∅, then B1, C1 form a decomposition of A and this contradicts the connect-
edness of A. Hence, either B1 = ∅ or C1 = ∅ and thus either A ⊆ C or A ⊆ B, respectively

Proposition 1.20. Let Σ be a collection of connected subsets of C all of which have a common
point. Then

∪
A∈ΣA is connected.

Proof. We set U =
∪
A∈ΣA and we shall prove that U is connected.

Let z0 be a common point of all A ∈ Σ.
We assume that U is not connected. Then there areB,C which form a decomposition of U . Since
z0 ∈ U , we have that z0 ∈ B or z0 ∈ C. Assume that z0 ∈ B (the proof is the same if z0 ∈ C).
For every A ∈ Σ we have A ⊆ U and hence A ⊆ B ∪ C. According to lemma 1.1, every A ∈ Σ
is contained either in B or in C. But if any A ∈ Σ is contained in C, it cannot contain z0 which is
inB. Therefore everyA ∈ Σ is contained inB. Thus U =

∪
A∈ΣA is contained inB, i.e. U ⊆ B

and we arrive at a contradiction since C ̸= ∅.
Hence U is connected.

Proposition 1.21. Let A ⊆ C. If A is connected, then A is connected.

Proof. Let A not be connected. Then there are B,C which form a decomposition of A.
Since A ⊆ A, we have A ⊆ B ∪C. Lemma 1.1 implies that A ⊆ B or A ⊆ C. Let A ⊆ B. (The
proof is similar if A ⊆ C.)
Every point of A is a limit point of A and hence a limit point of B (since A ⊆ B). Therefore no
point of A belongs to C (since C does not contain limit points of B). This is wrong since C ̸= ∅.
Hence A is connected.

Proposition 1.22. LetA ⊆ C and let f : A→ C be continuous inA. IfA is connected, then f(A)
is connected.

Proof. Assume that f(A) is not connected. Then there are B′, C ′ which form a decomposition of
f(A). We consider the inverse images of B′, C ′, i.e. the sets

B = f−1(B′) = {b ∈ A | f(b) ∈ B′}, C = f−1(C ′) = {c ∈ A | f(c) ∈ C ′}.

It is clear that B ∪ C = A, B ∩ C = ∅, B ̸= ∅, C ̸= ∅.
Now, let B contain a limit point b of C. Then there is a sequence (cn) in C so that cn → b. Since
f is continuous at b, we get f(cn) → f(b). The sequence (f(cn)) is in C ′ and thus f(b) is a limit
point of C ′. But f(b) ∈ B′ and we arrive at a contradiction, because B′ does not contain any limit
point of C ′. Hence B does not contain any limit point of C. Symmetrically, C does not contain
any limit point of B.
Therefore B,C form a decomposition of A. This is wrong since A is connected and hence f(A)
is connected.
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Definition. Let a, b ∈ C and r > 0. Every finite set {z0, . . . , zn} ⊆ C with z0 = a, zn = b
and |zk−1 − zk| < r for every k = 1, . . . , n is called r-succession of points which joins a, b. If,
moreover, zk ∈ A for every k = 0, . . . , n, we say that the r-succession of points is in A.

Theorem 1.3. LetK ⊆ C be compact. ThenK is connected if and only if for every z, w ∈ K and
every r > 0 there is an r-succession of points inK which joins z, w.

Proof. Assume K is connected. We take any z, w ∈ K and any r > 0 and let there be no r-
succession of points inK which joins z, w.
We define the sets

B = {b ∈ K | there is an r-succession of points in K which joins z, b},
C = {c ∈ K | there is no r-succession of points in K which joins z, c}.

It is clear that B ∪ C = K, B ∩ C = ∅, B ̸= ∅ (since z ∈ B) and C ̸= ∅ (since w ∈ C).
Assume that B contains a limit point b of C. Then (since b ∈ B) there is an r-succession of points
in K which joins z, b and, also, (since b is a limit point of C) there is c ∈ C so that |b − c| < r.
If to the r-succession of points ofK which joins z, b we attach c (as a final point after b), then we
get an r-succession of points inK which joins z, c. This is wrong since c ∈ C. Hence B does not
contain any limit point of C.
Now assume thatC contains a limit point c ofB. Then (since c is a limit point ofB) there is b ∈ B
so that |b − c| < r and (since b ∈ B) there is an r-succession of points in K which joins z, b. If
to the r-succession of points in K which joins z, b we attach c (as a final point after b), then we
get an r-succession of points inK which joins z, c. This is wrong since c ∈ C. Hence C does not
contain any limit point of B.
We conclude that B,C form a decomposition ofK and this is wrong sinceK is connected.
Therefore there is an r-succession of points inK which joins z, w.
Conversely, assume that for every z, w ∈ K and every r > 0 there is an r-succession of points in
K which joins z, w.
We assume thatK is not connected. Then there are B,C which form a decomposition ofK.
Let z be a limit point of B. Since B ⊆ K, z is a limit point of K and, since K is closed, we get
z ∈ K. Now, z /∈ C (because C does not contain any limit point of B) and we get that z ∈ B.
Thus B contains all its limit points and it is closed. Finally, since B ⊆ K andK is compact, B is
also compact. Symmetrically, C is also compact.
NowB,C are compact and disjoint and proposition 1.15 implies that there is r > 0 so that |b−c| ≥
r for every b ∈ B and c ∈ C. Since B ̸= ∅, C ̸= ∅, we consider b′ ∈ B and c′ ∈ C. Then it
is easy to see that there is no r-succession of points in K which joins b′, c′, and we arrive at a
contradiction. Indeed, assume that there is an r-succession {z0, . . . , zn} in K so that z0 = b′,
zn = c′ and |zk−1 − zk| < r for every k = 1, . . . , n. Since z0 ∈ B, zn ∈ C, it is clear that there is
k so that zk−1 ∈ B, zk ∈ C. Then |zk−1 − zk| < r contradicts that we have |b− c| ≥ r for every
b ∈ B, c ∈ C.

Example 1.6.4. Every polygonal line is connected.

Proposition 1.23. A set I ⊆ R is connected if and only if it is an interval.

Proof. Let I be connected. If I is not an interval, then there are x1, x2 ∈ I and x /∈ I so that
x1 < x < x2. Then the sets B = I ∩ (−∞, x) and C = I ∩ (x,+∞) form a decomposition of I
and we have a contradiction. Thus I is an interval.
Conversely, let I be an interval.
If I has only one element, then it is connected.
If I = [a, b] with a < b, then [a, b] is compact and if we take any x, y in [a, b] and any r > 0,
it is clear that we can find an r-succession of points in [a, b] which joins x and y. Thus [a, b] is
connected.
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If I is an interval of any other type, we can find a sequence of intervals In = [an, bn] which
increase and their union is I . Then each In is connected and proposition 1.20 implies that I is also
connected.

Proposition 1.24. Let A ⊆ C and f : A → R be continuous in A. If A is connected, then f has
the intermediate value property in A.

Proof. f(A) is a connected subset of R and hence it is an interval. Now, let u1, u2 be values of f
in A, i.e. u1, u2 are in the interval f(A). Then every u with u1 < u < u2 is also in the interval
f(A). Thus, every number between the values u1, u2 of f in A is also a value of f in A.

A special case of proposition 1.24 is the well known intermediate value theorem saying that if
f : I → R is continuous in the interval I ⊆ R, then it has the intermediate value property in I .

Definition. Let A ⊆ C. We say thatA is polygonally connected if for every two points ofA there
is a polygonal line in A which joins those two points.

Proposition 1.25. Let A ⊆ C. If A is polygonally connected, then it is connected.

Proof. We fix any z0 ∈ A. For every z ∈ A there is a polygonal line lz in A which joins z0 and z.
Then lz ⊆ A for every z ∈ A and hence

∪
z∈A lz ⊆ A. Conversely, since every z ∈ A is a point

of lz , we have that A ⊆
∪
z∈A lz . Therefore A =

∪
z∈A lz . Now, every lz is connected and since

all lz have the point z0 in common, we conclude that A is connected.

Example 1.6.5. Every ring between two circles is a connected set.

Example 1.6.6. Every convex set A ⊆ C is polygonally connected and hence connected. Indeed,
if we take any two points in A the linear segment which joins them is contained in A.
For instance, all discs and all rectangles are connected sets.

Example 1.6.7. The set A = D0(1) ∪D2(1) in examples 1.6.1 and 1.6.2 is connected, since it is
polygonally connected.

Theorem 1.4. Let A ⊆ C be open. Then A is connected if and only if it is polygonally connected.

Proof. If A is polygonally connected, proposition 1.25 implies that it is connected.
Conversely, let A be connected. We take z, w ∈ A and we assume that there is no polygonal line
in A which joins z, w.
We define the sets

B = {b ∈ A | there is a polygonal line in A which joins z, b},
C = {c ∈ A | there is no polygonal line in A which joins z, c}.

It is clear that B ∪ C = A, B ∩ C = ∅, B ̸= ∅ (since z ∈ B) and C ̸= ∅ (since w ∈ C).
We assume that B contains a limit point b of C. Then (since b ∈ B) there is a polygonal line in A
which joins z, b. Since A is open, there is r > 0 so that Db(r) ⊆ A and (since b is a limit point
of C) there is c ∈ Db(r) ∩ C. If to the polygonal line in A which joins z, b we attach (as last) the
linear segment [b, c] (which is contained in Db(r) and hence in A), we get a polygonal line in A
which joins z, c. This is wrong, since c ∈ C. Therefore, B does not contain any limit point of C.
Now we assume that C contains a limit point c of B. Since A is open, there is r > 0 so that
Dc(r) ⊆ A. Then (since c is a limit point of B) there is b ∈ Dc(r) ∩B. As before, (since b ∈ B)
there is a polygonal line in A which joins z, b and, if to this we attach the linear segment [b, c]
(which is contained in Dc(r) and hence in A), we get a polygonal line in A which joins z, c. This
is wrong, since c ∈ C. Therefore, C does not contain any limit point of B.
We conclude that B,C form a decomposition of A and we arrive at a contradiction because A is
connected.
Therefore, there is a polygonal line in A which joins z, w.
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Definition. An open and connected A ⊆ C is called region. The closure A of a region A is called
closed region.

Definition. LetA ⊆ C. We say that C ⊆ A is a connected component ofA if C is connected and
has the following property: if C ⊆ C ′ ⊆ A and C ′ is connected, then C = C ′.

In other words, C is a connected component of A if it is a connected subset of A and there is
no strictly larger connected subset of A.

Let us see a characteristic property of connected components. LetC be a connected component
of A and let B be any connected subset of A so that C ∩B ̸= ∅. Then C ∪B is connected (being
the union of connected sets with a common point) and C ⊆ C ∪ B ⊆ A. Since C is a connected
component of A, we get C ∪B = C and hence B ⊆ C. In oher words, a connected component of
A swallows every connected subset of A intersecting it.

Let C1, C2 be different connected components of A and assume that C1 ∩ C2 ̸= ∅. Since C1

is a connected subset of A which intersects the connected component C2 of A, we get C1 ⊆ C2.
Symmetrically, C2 ⊆ C1 and hence C1 = C2. This is a contradiction and we get C1 ∩ C2 = ∅.
We conclude that different connected components of A are disjoint.

Proposition 1.26. LetA ⊆ C. ThenA is the union of its (mutually disjoint) connected components.

Proof. We shall prove that every point of A belongs to a connected component of A.
We take z ∈ A and define Cz to be the union of all connected subsets B of A which contain z.
(For instance, such a set is {z}.) I.e.

Cz =
∪

{B |B is connected ⊆ A and z ∈ B}.

Now Cz is a subset of A and it contains z. It is also connected, since it is the union of connected
sets B with z as a common point. If Cz ⊆ C ′ ⊆ A and C ′ is connected, then C ′ is one of the
connected subsets B of A which contain z and hence C ′ ⊆ Cz . Thus Cz = C ′. Therefore Cz is a
connected component of A and it contains z.

It is obvious that A is connected if and only if A is the only connected component of A.

Example 1.6.8.We take the set A = D0(1) ∪D3(1). The discs D0(1) and D3(1) are connected
subsets of A. Applying lemma 1.1 with B = D0(1) and C = D3(1), we see that any connected
subset of A is contained either inD0(1) or inD3(1). I.e. there is no connected subset ofA strictly
larger than either D0(1) or D3(1).
Therefore the discs D0(1) and D3(1) are the connected components of A.

Example 1.6.9.We take the set Z and any n ∈ Z. Then {n} is a connected set. Let {n} ⊆ C ′ ⊆ Z
and C ′ ̸= {n}. Then C ′ = {n} ∪

(
C ′ \ {n}

)
and it is clear that the sets {n} and C ′ \ {n} form a

decomposition of C ′. Thus C ′ is not connected and hence {n} is a connected component of Z.

Proposition 1.27. Let A ⊆ C. If A is closed, then every connected component of A is closed.

Proof. Let C be a connected component ofA. Since C ⊆ A and A is closed, we get C ⊆ C ⊆ A.
Proposition 1.21 implies that C is connected and, since C is a connected component of A, we get
that C = C. Therefore C is closed.

Proposition 1.28. Let A ⊆ C. If A is open, then every connected component of A is open.

Proof. Let C be a connected component of A and let z ∈ C. Then z ∈ A and, since A is open,
there is r > 0 so that Dz(r) ⊆ A. Since Dz(r) is a connected subset of A and intersects the
connected component C of A, we see that Dz(r) ⊆ C. Thus, z is an interior point of C.
Therefore C is open.

Propositions 1.26 and 1.28 imply that every open set is the union of disjoint regions.
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Exercises.

1.6.1. Find the connected components of the complements of a circle, of a triangle and of a linear
segment. Also of: {0} ∪ { 1

n |n ∈ N}, [0, 1] ∪
∪+∞
n=1[

i
n , 1 +

i
n ],

∪+∞
n=1C0(1 +

1
n), Q×Q.

1.6.2. Prove that the following sets are connected. {x+ i sinx |x ∈ R}, {x+ i sin 1
x | 0 < x ≤ 1},

{x+ i sin 1
x | 0 < x ≤ 1} ∪ [−i, i].

1.6.3. Find a simple example of (i) two connected sets whose intersection is not connected, (ii) a
connected setA such that ∂A is not connected, (iii) a connected setA such thatA◦ is not connected.

1.6.4. Let A be a region and z1, . . . , zn ∈ A. Prove that A \ {z1, . . . , zn} is a region.

1.6.5. Let A ⊆ C and A ⊆ D ⊆ A. If A is connected, prove that D is connected.

1.6.6. A ⊆ C is called star-shaped if there is a specific point z0 ∈ A so that for every z ∈ A the
linear segment [z0, z] is contained in A. Prove that a star-shaped A is polygonally connected and
hence connected.

1.6.7. Let An ⊆ C be connected and An ∩An+1 ̸= ∅ for all n. Prove that
∪+∞
n=1An is connected.

1.6.8. If B ⊆ C is open and closed, prove that either B = ∅ or B = C.

1.6.9. Let A ⊆ C be connected (not necessarily compact). Prove that for every r > 0 and every
z, w ∈ A there is an r-succession of points in A which joins z, w.

1.6.10. (i) Let A be closed. Prove that A is connected if and only if there are no closed B,C such
that B ∪ C = A, B ∩ C = ∅, B ̸= ∅, C ̸= ∅.
(ii) Let A be open. Prove that A is connected if and only if there are no open B,C such that
B ∪ C = A, B ∩ C = ∅, B ̸= ∅, C ̸= ∅.

1.6.11. Prove that A is connected if and only if the only continuous functions f : A → Z are the
constant functions.

1.6.12. LetA be a region and let every point ofB ⊆ A be an isolated point ofB. Prove thatA \B
is connected.

1.6.13. (i) Let An be compact so that An+1 ⊆ An for every n ∈ N and so that every two points of
An can be joined by some 1

n -succession of points in An. Prove that
∩+∞
n=1An is connected.

(ii) Let F be compact and let z, w ∈ F belong to different connected components of F . Prove that
there is a decomposition B,C of F so that z ∈ B and w ∈ C.
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Chapter 2

Series.

2.1 Series of numbers.

Definition. If (zn) is a sequence of complex numbers, the expression

z1 + z2 + · · ·+ zn + · · · or
+∞∑
n=1

zn

is called series of complex numbers or, simply, complex series. If all numbers zn are real, we
say series of real numbers or real series.
The sn = z1 + · · ·+ zn are the partial sums of the series

∑+∞
n=1 zn.

We say that the series
∑+∞

n=1 zn converges if the sequence (sn) converges and then the limit s of
(sn) is called sum of the series and we write

+∞∑
n=1

zn = s.

We say that the series
∑+∞

n=1 zn diverges if (sn) diverges. If (sn) diverges to ∞, then we say that∑+∞
n=1 zn diverges to∞ and that ∞ is the sum of the series and we write

+∞∑
n=1

zn = ∞.

We note that the sum of a complex series can be either a complex number or ∞. Only a real
series can have sum equal to+∞ or−∞. Therefore, when we write

∑+∞
n=1 zn = +∞ or−∞, we

accept that all zn are real and that the series diverges to +∞ or −∞ as a real series. Of course, if
a real series diverges to +∞ or −∞, then as a complex series it diverges to∞.

Example 2.1.1.We have
∑+∞

n=1 c =

{
0, if c = 0

∞, if c ̸= 0

Example 2.1.2. To examine the geometric series
∑+∞

n=0 z
n, we use the formula 1+z+ · · ·+zn =

1−zn+1

1−z for its partial sums, and we find that its sum is

+∞∑
n=0

zn


= 1

1−z , if |z| < 1

= ∞, if |z| > 1 or z = 1

it does not exist, if |z| = 1, z ̸= 1

The usual simple algebraic rules, which hold for real series, hold also for complex series. We
mention them without proofs. The proofs for the complex case are identical with the proofs in the
real case.
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Proposition 2.1. If
∑+∞

n=1 zn converges, then zn → 0.

Proposition 2.2. Provided the right sides of the following formulas exist and they are not indeter-
minate forms, we have

+∞∑
n=1

(zn + wn) =
+∞∑
n=1

zn +
+∞∑
n=1

wn,
+∞∑
n=1

λzn = λ
+∞∑
n=1

zn,
+∞∑
n=1

zn =
+∞∑
n=1

zn.

Moreover, if zn = xn + iyn, then
∑+∞

n=1 zn converges if and only if
∑+∞

n=1 xn and
∑+∞

n=1 yn
converge, and

+∞∑
n=1

zn =

+∞∑
n=1

xn + i

+∞∑
n=1

yn.

Regarding the comparison theorems, we may say that, since these are based on order relations
which can be expressed only between real numbers, when we write

∑+∞
n=1 zn ≤

∑+∞
n=1wn as a

consequence of zn ≤ wn, we accept that all zn, wn are real and then we just apply the well-known
comparison theorems for real series.

Cauchy criterion. The series
∑+∞

n=1 zn converges if and only if for every ϵ > 0 there is n0 so that
|
∑n

k=m+1 zk| = |zm+1 + · · ·+ zn| < ϵ for everym,n with n > m ≥ n0.

Proof. We consider the partial sums sn = z1+· · ·+zn. The series
∑+∞

n=1 zn converges if and only
if (sn) converges or, equivalently, if (sn) is a Cauchy sequence. That (sn) is a Cauchy sequence
means that for every ϵ > 0 there is n0 so that

|zm+1 + · · ·+ zn| = |(z1 + · · ·+ zn)− (z1 + · · ·+ zm)| = |sn − sm| < ϵ

for every n,m with n > m ≥ n0.

Definition.We say that
∑+∞

n=1 zn converges absolutely if the (real) series
∑+∞

n=1 |zn| converges,
i.e. if

∑+∞
n=1 |zn| < +∞.

Criterion of absolute convergence. If
∑+∞

n=1 zn converges absolutely, then it converges and

∣∣∣ +∞∑
n=1

zn

∣∣∣ ≤ +∞∑
n=1

|zn|.

Proof. Let
∑+∞

n=1 |zn| converge and take any ϵ > 0. From the Cauchy criterion we have that there
is n0 so that |zm+1| + · · · + |zn| < ϵ and hence |zm+1 + · · · + zn| < ϵ for every m,n with
n > m ≥ n0. The Cauchy criterion, again, implies that

∑+∞
n=1 zn converges.

Now we take the partial sums sn = z1 + · · ·+ zn and Sn = |z1|+ · · ·+ |zn|. We have |sn| ≤ Sn
for all n and, taking the limit of this as n→ +∞, we finish the proof.

Ratio test of d’ Alembert. Let zn ̸= 0 for all n.
(i) If lim

∣∣ zn+1

zn

∣∣ < 1, then
∑+∞

n=1 zn converges absolutely.
(ii) If lim

∣∣ zn+1

zn

∣∣ > 1, then
∑+∞

n=1 zn diverges.
(iii) If lim

∣∣ zn+1

zn

∣∣ ≤ 1 ≤ lim
∣∣ zn+1

zn

∣∣, then there is no general conclusion.

Proof. (i) We consider any a such that lim
∣∣ zn+1

zn

∣∣ < a < 1. Then there is n0 so that
∣∣ zn+1

zn
| ≤ a

for every n ≥ n0. Therefore, for every n ≥ n0 + 1 we have

|zn| =
∣∣∣ zn
zn−1

∣∣∣ ∣∣∣zn−1

zn−2

∣∣∣ · · · ∣∣∣zn0+1

zn0

∣∣∣ |zn0 | ≤ an−n0 |zn0 | = c an,
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where c = |zn0 |/an0 . Since 0 ≤ a < 1, the geometric series
∑+∞

n=1 a
n converges and, by compar-

ison,
∑+∞

n=1 |zn| also converges.
(ii) There is n0 so that

∣∣ zn+1

zn

∣∣ ≥ 1 for every n ≥ n0. Therefore, for every n ≥ n0 + 1 we have

|zn| ≥ |zn−1| ≥ · · · ≥ |zn0 | > 0.

This implies that zn ̸→ 0 and
∑+∞

n=1 zn diverges.
(iii) For the series

∑+∞
n=1

1
n and

∑+∞
n=1

1
n2 we have that

∣∣1/(n+1)
1/n

∣∣ → 1 and
∣∣1/(n+1)2

1/n2

∣∣ → 1. The
first series diverges and the second converges.

Root test of Cauchy. (i) If lim n
√

|zn| < 1, then
∑+∞

n=1 zn converges absolutely.
(ii) If lim n

√
|zn| > 1, then

∑+∞
n=1 zn diverges.

(iii) If lim n
√

|zn| = 1, then there is no general conclusion.

Proof. (i) We consider any a such that lim n
√

|zn| < a < 1. Then there is n0 so that n
√

|zn| ≤ a
and hence |zn| ≤ an for every n ≥ n0. Since 0 ≤ a < 1, the geometric series

∑+∞
n=1 a

n converges
and, by comparison,

∑+∞
n=1 |zn| also converges.

(ii) We have n
√

|zn| ≥ 1 for infinitely many n. Therefore, |zn| ≥ 1 for infinitely many n and
hence zn ̸→ 0. Thus,

∑+∞
n=1 zn diverges.

(iii) For the series
∑+∞

n=1
1
n and

∑+∞
n=1

1
n2 we have n

√
| 1n | → 1 and n

√
| 1
n2 | → 1. The first series

diverges and the second converges.

Applying the ratio test and the root test to specific series
∑+∞

n=1 zn, we find very often that the
limits limn→+∞

∣∣ zn+1

zn

∣∣ and limn→+∞
n
√

|zn| exist. We know (and we used it in the proofs of parts
(iii) of both tests) that in this case: lim = lim = lim.

Example 2.1.3. To the series
∑+∞

n=1
zn

n! we apply the ratio test. If z = 0, the series obviously
converges absolutely. If z ̸= 0, then

∣∣ zn+1/(n+1)!
zn/n!

∣∣ = |z|
n+1 → 0 < 1. Hence the series converges

absolutely for every z.
Now we apply the root test. We have n

√
| znn! | =

|z|
n√
n!

→ |z|
+∞ = 0 < 1 and we arrive at the same

conclusion as before.

Example 2.1.4.We consider
∑+∞

n=1
zn

n2 and we apply the ratio test. If z = 0, the series obviously
converges absolutely. If z ̸= 0, then

∣∣ zn+1/(n+1)2

zn/n2

∣∣ → |z|. Hence, if 0 < |z| < 1, the series
converges absolutely and, if |z| > 1, the series diverges.
Now we apply the root test. We have n

√
| zn
n2 | → |z|. Therefore, if |z| < 1, the series converges

absolutely and, if |z| > 1, the series diverges.
If |z| = 1, none of the two tests applies. But we observe that

∑+∞
n=1

∣∣ zn
n2

∣∣ = ∑+∞
n=1

1
n2 < +∞ in

this case, and
∑+∞

n=1
zn

n2 converges absolutely.
Conclusion:

∑+∞
n=1

zn

n2 converges absolutely if |z| ≤ 1, and diverges if |z| > 1.

Example 2.1.5.We consider
∑+∞

n=1
zn

n and we apply the ratio test. If z = 0, the series obviously
converges absolutely. If z ̸= 0, then

∣∣ zn+1/(n+1)
zn/n

∣∣ → |z|. Hence, if 0 < |z| < 1, the series
converges absolutely and, if |z| > 1, the series diverges.
Now we apply the root test. We have n

√
| znn | → |z|. Therefore, if |z| < 1, the series converges

absolutely and, if |z| > 1, the series diverges.
If |z| = 1, none of the two tests applies. If z = 1, the series becomes

∑+∞
n=1

1
n and diverges. If

|z| = 1, z ̸= 1, then
∑+∞

n=1

∣∣ zn
n

∣∣ = ∑+∞
n=1

1
n = +∞, and

∑+∞
n=1

zn

n does not converge absolutely.
In fact, exercise 2.1.10 (iv) shows that the series converges in this case. In general, when a series
is convergent but not absolutely convergent we say that it is conditionally convergent.
Conclusion:

∑+∞
n=1

zn

n converges absolutely if |z| < 1, diverges if |z| > 1 or z = 1, and converges
conditionally if |z| = 1, z ̸= 1.
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Exercises.

2.1.1.Which of the series
∑+∞

n=1(
1
n +

i
n2 ),

∑+∞
n=1(

n
2n + i

n3 ),
∑+∞

n=1
1+in

n2 ,
∑+∞

n=1
1

2+in ,
∑+∞

n=1
1
n+i ,∑+∞

n=1
1

n2+in
converge?

2.1.2. Find the sum of the series
∑+∞

n=1 n(−1)n−1 if we consider it as a complex series and also if
we consider it as a real series.

2.1.3. Apply the ratio test whenever possible:
∑+∞

n=1 n
3in,

∑+∞
n=1

n!
in ,

∑+∞
n=1

(1+i)n

n! ,
∑+∞

n=1
(2i)nn!
nn ,∑+∞

n=1
(2+i)nn!

nn ,
∑+∞

n=1
enn!
nn ,

∑+∞
n=1

(n!)2

(2n)! ,
∑+∞

n=1
(4i)n(n!)2

(2n)! ,
∑+∞

n=1
(3+i)(6+i)(9+i)···(3n+i)

(3+4i)(3+8i)(3+12i)···(3+4ni) .
Apply the root test whenever possible:

∑+∞
n=1 n

nin,
∑+∞

n=1(
n+i
2n−i)

n,
∑+∞

n=1(
n+i
n−i)

2n,
∑+∞

n=1
n3

(1+2i)n ,∑+∞
n=1 n

3(1− i)n,
∑+∞

n=1
(2+3i)n

nn ,
∑+∞

n=1
n+i

( n
√
n+i)n

.

2.1.4. If
∑+∞

n=1 |zn| < +∞, prove that
∑+∞

n=1 zn(cosnθ + i sinnθ) converges.

2.1.5. Let zn = xn + iyn for all n. Prove that
∑+∞

n=1 zn converges absolutely if and only if∑+∞
n=1 xn,

∑+∞
n=1 yn converge absolutely.

2.1.6. Let |an|rn ≤Mnk for all n. Prove that
∑+∞

n=1 anz
n converges for every z with |z| < r.

2.1.7. Find all z for which
∑+∞

n=1
zn

2+zn converges.

2.1.8. Let 0 ≤ θ0 <
π
2 and assume for every n that arg zn has a value in [−θ0, θ0]. Prove that∑+∞

n=1 zn converges if and only if it converges absolutely. Prove that
∑+∞

n=1 zn = ∞ if and only
if
∑+∞

n=1 |zn| = +∞.

2.1.9. Find a series
∑+∞

n=1 zn which converges and is such that
∑+∞

n=1 z
2
n diverges.

2.1.10. Consider the sequences (an), (zn) and the partial sums sn = z1 + · · ·+ zn.
(i) Prove that

∑n
k=m+1 akzk =

∑n
k=m+1(ak− ak+1)sk+ an+1sn− am+1sm for every n,m with

n > m. This is the summation by parts formula due to Abel.
(ii) Prove the Dirichlet test: if (an) is real and decreasing and an → 0 and if (sn) is bounded,
then

∑+∞
n=1 anzn converges.

(iii) Prove the Abel test: if (an) is real and decreasing and bounded below and if (sn) converges,
i.e. if

∑+∞
n=1 zn converges, then

∑+∞
n=1 anzn converges.

(iv) If (an) is real and decreasing and an → 0, prove that
∑+∞

n=0 anz
n converges for every z with

|z| ≤ 1, z ̸= 1.
(v) Check the conditional convergence and the absolute convergence of the series:

∑+∞
n=1

in

n ,∑+∞
n=2

in

n logn ,
∑+∞

n=2
in

n(logn)2 ,
∑+∞

n=1 i
n−1 sin 1

n ,
∑+∞

n=1 i
n−1(1− cos 1

n).

2.1.11. Let sn = z1 + · · · + zn for all n. If (an+1sn) converges and if
∑+∞

n=1(an − an+1)sn
converges, prove that

∑+∞
n=1 anzn converges. In particular: if (sn) is bounded, if an → 0 and if∑+∞

n=1 |an − an+1| < +∞, prove that
∑+∞

n=1 anzn converges.
What is the relation of all these with the tests of Dirichlet and Abel in the previous exercise?

2.2 Sequences and series of functions.

Definition. Let fn : A → C for every n and f : A → C. We say that the sequence of functions
(fn) converges to the function f uniformly in A if sup{|fn(z)− f(z)| | z ∈ A} → 0. We denote

fn
u→ f on A.

Equivalently, fn
u→ f in A if for every ϵ > 0 there is n0 so that |fn(z) − f(z)| ≤ ϵ for every

n ≥ n0 and every z ∈ A.
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It is easy to see that, if (fn) converges to f uniformly in A, then fn(z) → f(z) for every
z ∈ A, i.e. (fn) converges to f pointwise in A. Indeed, for every z ∈ A we have

0 ≤ |fn(z)− f(z)| ≤ sup{|fn(w)− f(w)| |w ∈ A} → 0.

Proposition 2.3. Let (fn) converge to f uniformly in A and let z0 ∈ A. If every fn is continuous
at z0, then f is continuous at z0. In particular, if every fn is continuous in A, then f is continuous
in A.

Proof. Let ϵ > 0. Then there is n0 so that |fn(z)− f(z)| ≤ ϵ
3 for every n ≥ n0 and every z ∈ A.

In particular, we have |fn0(z) − f(z)| ≤ ϵ
3 for every z ∈ A. Since fn0 is continuous at z0, there

is δ > 0 so that |fn0(z)− fn0(z0)| ≤ ϵ
3 for every z ∈ A with |z − z0| < δ.

Hence, for every z ∈ A with |z − z0| < δ we get

|f(z)− f(z0)| ≤ |f(z)− fn0(z)|+ |fn0(z)− fn0(z0)|+ |fn0(z0)− f(z0)| ≤
ϵ

3
+
ϵ

3
+
ϵ

3
= ϵ

and f is continuous at z0.

From the notion of uniform convergence of a sequence of functions we move to the notion of
uniform convergence of a series of functions (through the sequence of partial sums).

Definition. Let fn : A → C for every n. We take the partial sums sn : A → C, where sn(z) =
f1(z) + · · · + fn(z) for every z ∈ A. Let also s : A → C. We say that the series of functions∑+∞

n=1 fn converges to its sum s uniformly in A if the sequence of functions (sn) converges to
the function s uniformly in A.
We denote

+∞∑
n=1

fn
u
= s on A.

As in the case of a sequence of functions, we have that, if
∑+∞

n=1 fn converges to its sum s
uniformly in A, then

∑+∞
n=1 fn(z) = s(z) for every z ∈ A, i.e.

∑+∞
n=1 fn converges to its sum s

pointwise in A.

Proposition 2.4. Let
∑+∞

n=1 fn converge to its sum s uniformly in A and let z0 ∈ A. If every fn is
continuous at z0, then s is continuous at z0. In particular, if every fn is continuous in A, then s is
continuous in A.

Proof. We consider the partial sums sn = f1 + · · · + fn. Then every sn is continuous at z0 and
proposition 2.3 implies that s is continuous at z0.

Finally, we have a basic criterion for uniform convergence of a series of functions.

Weierstrass test. Let |fn(z)| ≤ Mn for every n and every z ∈ A. If the series (of non-negative
terms)

∑+∞
n=1Mn converges, i.e. if

∑+∞
n=1Mn < +∞, then

∑+∞
n=1 fn converges uniformly in A.

Proof. For every z ∈ A we have
∑+∞

n=1 |fn(z)| ≤
∑+∞

n=1Mn < +∞ and hence
∑+∞

n=1 fn(z)
converges (as a series of complex numbers). Therefore, we may define the function s : A → C
with s(z) =

∑+∞
n=1 fn(z) for every z ∈ A. Now we consider the partial sums sn = f1 + · · ·+ fn

and then for every z ∈ A we have

|sn(z)− s(z)| =
∣∣∣ n∑
k=1

fk(z)−
+∞∑
k=1

fk(z)
∣∣∣ = ∣∣∣ +∞∑

k=n+1

fk(z)
∣∣∣ ≤ +∞∑

k=n+1

|fk(z)| ≤
+∞∑

k=n+1

Mk.

Since this is true for every z ∈ A, we get

sup{|sn(z)− s(z)| | z ∈ A} ≤
+∞∑

k=n+1

Mk → 0 when n→ +∞,
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because
∑+∞

n=1Mn < +∞. Therefore, (sn) converges to s uniformly in A and hence
∑+∞

n=1 fn
converges to its sum s uniformly in A.

Exercises.

2.2.1. Prove that
∑+∞

n=−∞
1

(z+n)2
converges for every z ∈ C \Z and that for every compact setK

the series converges uniformly inK \ Z.

2.2.2. (i) If K ⊆ C \ T is compact, prove that there is r with 0 < r < 1 (r depends on K) so that
for every z ∈ K either |z| ≤ r or |z| ≥ 1

r holds.
(ii) Prove that

∑+∞
n=0

zn

z2n+1
converges uniformly in every compactK ⊆ C \ T.

2.2.3. (i) If Re z > −1
2 , prove that

∣∣ z
z+1

∣∣ < 1. If K ⊆ {z | Re z > −1
2} is compact, prove that

there is r with 0 < r < 1 (r depends onK) so that
∣∣ z
z+1

∣∣ ≤ r for every z ∈ K.
(ii) Prove that

∑+∞
n=0(

z
z+1)

n converges for every z in the halfplane {z | Re z > −1
2} and uniformly

in every compact subset of this halfplane.
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Chapter 3

Curvilinear integrals.

3.1 Integrals of complex functions over an interval.

We shall extend the notion of integral of a real function over an interval to the notion of integral
of a complex function over an interval.

Definition. Let f : [a, b] → C and let u = Re f : [a, b] → R και v = Im f : [a, b] → R be the
real and imaginary parts of f . We say that f is (Riemann) integrable over [a, b] if u, v are both
(Riemann) integrable over [a, b] and in this case we define the (Riemann) integral of f over [a, b]
to be ∫ b

a
f(t) dt =

∫ b

a
u(t) dt+ i

∫ b

a
v(t) dt. (3.1)

Since the numbers
∫ b
a u(t) dt and

∫ b
a v(t) dt are real, we see that

Re
∫ b

a
f(t) dt =

∫ b

a
Re f(t) dt, Im

∫ b

a
f(t) dt =

∫ b

a
Im f(t) dt.

Now let us take any subdivision∆ = {t0, . . . , tn} of [a, b] and any choice Ξ = {ξ1, . . . , ξn} of
intermediate points ξk ∈ [tk−1, tk] and the corresponding Riemann sum

∑n
k=1 f(ξk)(tk − tk−1).

If w(∆) = max1≤k≤n(tk − tk−1) is the width of the subdivision∆, then we know that

lim
w(∆)→0

n∑
k=1

u(ξk)(tk − tk−1) =

∫ b

a
u(t) dt, lim

w(∆)→0

n∑
k=1

v(ξk)(tk − tk−1) =

∫ b

a
v(t) dt.

Multiplying the second relation with i, adding and using (3.1), we find

lim
w(∆)→0

n∑
k=1

f(ξk)(tk − tk−1) =

∫ b

a
f(t) dt.

Example 3.1.1. If f is piecewise-continuous in [a, b], then u = Re f and v = Im f are also
piecewise-continuous in [a, b]. Hence u, v are integrable, and f is also integrable over [a, b].

The following propositions are analogous to similar well-known propositions about integrals of
real functions and can be proved easily by the reader. One should decompose every complex func-
tion into its real and imaginary parts and use the analogous properties for real functions together
with (3.1).

Proposition 3.1. Let f1, f2 : [a, b] → C be integrable over [a, b] and λ1, λ2 ∈ C. Then λ1f1 +
λ2f2 : [a, b] → C is integrable over [a, b] and∫ b

a
(λ1f1(t) + λ2f2(t)) dt = λ1

∫ b

a
f1(t) dt+ λ2

∫ b

a
f2(t) dt.
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Proposition 3.2. Let f : [a, c] → C and a < b < c. If f is integrable over [a, b] and in [b, c], then
f is integrable over [a, c] and∫ c

a
f(t) dt =

∫ b

a
f(t) dt+

∫ c

b
f(t) dt.

Proposition 3.3. If f1, f2 : [a, b] → C are integrable over [a, b], then f1f2 : [a, b] → C is
integrable over [a, b].

The proof of the next proposition is not entirely trivial.

Proposition 3.4. Let f : [a, b] → C be integrable over [a, b]. Then |f | : [a, b] → R is integrable
over [a, b] and ∣∣∣ ∫ b

a
f(t) dt

∣∣∣ ≤ ∫ b

a
|f(t)| dt.

Equality |
∫ b
a f(t) dt| =

∫ b
a |f(t)| dt holds if and only if there is some halfline l with vertex 0 so

that f(t) ∈ l for every continuity point t of f .

Proof. Let u = Re f , v = Im f . Then u, v are integrable over [a, b] hence |f | =
√
u2 + v2 is

integrable over [a, b]. Now we have two cases.
(i) If

∫ b
a f(t) dt = 0, then |

∫ b
a f(t) dt| ≤

∫ b
a |f(t)| dt becomes 0 ≤

∫ b
a |f(t)| dt and it is clearly

true.
(ii) Let

∫ b
a f(t) dt ̸= 0. We consider any polar representation of the number

∫ b
a f(t) dt, i.e.∫ b

a
f(t) dt =

∣∣∣ ∫ b

a
f(t) dt

∣∣∣(cos θ + i sin θ) =
∣∣∣ ∫ b

a
f(t) dt

∣∣∣ z,
where θ is any value of the argument of

∫ b
a f(t) dt and where we set z = cos θ + i sin θ. We

observe that
|z| = | cos θ + i sin θ| = 1.

Now, ∣∣∣ ∫ b

a
f(t) dt

∣∣∣ = z−1

∫ b

a
f(t) dt =

∫ b

a
(z−1f(t)) dt. (3.2)

The left side of (3.2) is real and hence its right side is also real and thus equal to its real part! Hence∣∣∣ ∫ b

a
f(t) dt

∣∣∣ = Re
∫ b

a
(z−1f(t)) dt =

∫ b

a
Re(z−1f(t)) dt ≤

∫ b

a
|z−1f(t)| dt

=

∫ b

a
|f(t)| dt.

(3.3)

Now assume |
∫ b
a f(t) dt| =

∫ b
a |f(t)| dt.

In case (i), we have
∫ b
a |f(t)| dt = 0 and this is equivalent to f(t) = 0 at every continuity point t

of f .
In case (ii), we see from (3.3) that |

∫ b
a f(t) dt| =

∫ b
a |f(t)| dt is equivalent to

∫ b
a Re(z

−1f(t)) dt =∫ b
a |z

−1f(t)| dt. This is equivalent to Re(z−1f(t)) = |z−1f(t)| at every continuity point t of f .
The last equality is equivalent to Re(z−1f(t)) ≥ 0 and Im(z−1f(t)) = 0 and this is equivalent
to z−1f(t) ≥ 0 and this is equivalent to f(t) being a non-negative multiple of the fixed z (with
|z| = 1).
Thus, in both cases we get that |

∫ b
a f(t) dt| =

∫ b
a |f(t)| dt if and only there is a halfline l with

vertex 0 so that f(t) ∈ l for every continuity point t of f .
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3.2 Curvilinear integrals of complex functions.

We recall that every continuous complex function γ : [a, b] → C, where [a, b] is any interval,
is called curve in the complex plane.

The set of the values of a curve γ, i.e. the set γ∗ = {γ(t) | t ∈ [a, b]} ⊆ C is the trajectory of
the curve and it is a compact and connected subset ofC, since γ is continuous and [a, b] is compact
and connected. The points γ(a) and γ(b) are the endpoints, the initial and the final endpoint,
respectively, of the curve. The variable t ∈ [a, b] is the parameter and [a, b] is the parametric
interval of the curve. When the parameter t increases in [a, b], the variable point γ(t) moves on
the trajectory γ∗ in a definite direction (from the initial to the final endpoint) which is the so-called
direction of the curve. Finally,

z = γ(t), t ∈ [a, b],

is the parametric equation of the curve γ.
If the endpoints of the curve γ coincide, i.e. γ(a) = γ(b), then we say that the curve is closed.

If γ : [a, b] → A is a curve, where A ⊆ C, then γ(t) ∈ A for all t ∈ [a, b] or, equivalently, the
trajectory γ∗ is contained in A. Then we say that the curve is in A.

The term curve for the continuous function γ is justified by the fact that the shape of its trajec-
tory γ∗ is, usually, what in everyday language we call curve in the plane. Sometimes we use the
term curve for the trajectory γ∗ even though this is not typically correct. The problem is that there
are cases of different curves γ1, γ2 with the same trajectory γ1∗ = γ2

∗.

Example 3.2.1. If z0, z1 ∈ C, then γ : [a, b] → C with the parametric equation

z = γ(t) =
t− a

b− a
z1 +

b− t

b− a
z0, t ∈ [a, b],

is a curve whose trajectory γ∗ is the linear segment [z0, z1]. Its initial and final endpoints are z0
and z1, respectively.
The same linear segment [z0, z1] is the trajectory of another curve γ0 : [0, 1] → C with the para-
metric equation

z = γ0(t) = tz1 + (1− t)z0, t ∈ [0, 1].

Example 3.2.2. If r > 0, then γ : [0, 2π] → C with parametric equation

z = γ(t) = z0 + r(cos t+ i sin t), t ∈ [0, 2π],

is a closed curve whose trajectory γ∗ is the circleCz0(r). The direction of this curve is the so-called
positive direction of rotation around z0: the counterclockwise rotation.
If we consider γ1 : [0, 2π] → C with parametric equation

z = γ1(t) = z0 + r(cos(2t) + i sin(2t)), t ∈ [0, 2π],

then we get a different curve. But the trajectories of the two curves, γ and γ1, coincide: the circle
Cz0(r). The direction of the two curves is the same: the positive direction of rotation around z0.
But the first curve goes around z0 only once, while the second curve goes around z0 twice.

Let γ : [a, b] → C be a curve and let x = Re γ and y = Im γ be the real and imaginary parts
of γ. I.e.

γ(t) = x(t) + iy(t) = (x(t), y(t)), t ∈ [a, b].

If γ is differentiable at t0 ∈ [a, b] or, equivalently, if x, y are differentiable at t0, then

γ′(t0) = x′(t0) + iy′(t0) = (x′(t0), y
′(t0))

is the tangent vector of the trajectory γ∗ at its point γ(t0). If γ′(t0) ̸= 0, then the vector γ′(t0)
determines the tangent line of the trajectory γ∗ at its point γ(t0) and its direction is the same as the
direction of the curve.
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Remark. Strictly speaking, at its endpoints, γ(a), γ(b), the curve can only have tangent halflines;
not tangent lines. If t0 = a and γ′(a) ̸= 0, then the vector γ′(a) determines the tangent halfline
of the tracectory at the endpoint γ(a) with direction coinciding with the direction of the curve. If
t0 = b and γ′(b) ̸= 0, then the vector −γ′(b) determines the tangent halfline of the tracectory at
the endpoint γ(b) with direction opposite to the direction of the curve.

If at some t0 ∈ (a, b) the one-sided derivatives γ′−(t0) ̸= 0 and γ′+(t0) ̸= 0 exist but they are
not equal, then the tangent halflines of the trajectory at its point γ(t0) may not be opposite and so
there may be no tangent line of the trajectory at this point: one of the halflines is determined by
γ′+(t0) and the other by −γ′−(t0).

We know that, if the curve γ : [a, b] → C is continuously differentiable, i.e. if γ′ : [a, b] → C
is continuous in [a, b], then the length of the curve, denoted l(γ), is equal to

l(γ) =

∫ b

a
|γ′(t)| dt. (3.4)

Example 3.2.3. If γ : [a, b] → C has parametric equation

z = γ(t) =
b− t

b− a
z0 +

t− a

b− a
z1, t ∈ [a, b],

then its length is equal to

l(γ) =

∫ b

a
|γ′(t)| dt =

∫ b

a

∣∣∣z1 − z0
b− a

∣∣∣ dt = ∣∣∣z1 − z0
b− a

∣∣∣ ∫ b

a
dt = |z1 − z0|.

Example 3.2.4. If r > 0 and γ : [0, 2π] → C has parametric equation

z = γ(t) = z0 + r(cos t+ i sin t), t ∈ [0, 2π],

then its length is equal to

l(γ) =

∫ b

a
|γ′(t)| dt =

∫ 2π

0
|r(− sin t+ i cos t)| dt =

∫ 2π

0
r dt = 2πr.

The same formula (3.4) gives the length of the curve γ if it is piecewise continuously differen-
tiable. This means that there is a subdivision a = t0 < t1 < . . . < tn−1 < tn = b of the parametric
interval [a, b] so that the restriction of γ in every [tk−1, tk] is continuously differentiable. (Strictly
speaking, at the division points tk the derivative of γ may not exist; the two one-sided derivatives
should exist at these points.)

Another useful terminology is the following. A curve γ : [a, b] → C is called regular if it is
continuously differentiable and γ′(t) ̸= 0 for every t ∈ [a, b]. This means that, when t increases
in [a, b], the tangent line at the point γ(t) of the trajectory moves continuously. We also have the
piecewise regular curves. The meaning is obvious.

At this point we shall make the following convention for the rest of this course:

Al our curves will be piecewise continuously differentiable.
Now let γ1 : [a, b] → C be a curve. We consider any σ : [c, d] → [a, b] which is one-

to-one in the interval [c, d] and onto [a, b], has continuous derivative in [c, d] and has σ′(s) > 0
for every s ∈ [c, d]. Thus, σ is strictly increasing in [c, d] and σ(c) = a, σ(d) = b. Every
such σ is called change of parameter. Then γ2 = γ1 ◦ σ : [c, d] → C is continuous in [c, d]
and hence it is a new curve. We say that γ2 is a reparametrization of γ1: the parameter of γ1
is t ∈ [a, b] and the parameter of γ2 is s ∈ [c, d]. The curves γ1, γ2 have the same trajectory,
the same endpoints and the same direction. Since σ′ is continuous and > 0, the two curves are
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simultaneously (piecewise) continuously differentiable and simultaneously (piecewise) regular.
The lengths of γ1, γ2 are equal:

l(γ2) =

∫ d

c
|γ2′(s)| ds =

∫ d

c
|γ1′(σ(s))||σ′(s)| ds

=

∫ d

c
|γ1′(σ(s))|σ′(s) ds =

∫ b

a
|γ1′(t)| dt = l(γ1).

Wemay define the following binary relation between curves: γ1 ∼ γ2 if γ2 is a reparametriza-
tion of γ1. It is not difficult to prove that this binary relation between curves is an equivalence
relation, i.e. it satisfies the following three properties:
(i) γ ∼ γ.
(ii) γ1 ∼ γ2 ⇒ γ2 ∼ γ1.
(iii) γ1 ∼ γ2, γ2 ∼ γ3 ⇒ γ1 ∼ γ3.
Indeed: (i) Let γ : [a, b] → C be any curve. We consider the change of parameter id : [a, b] →
[a, b], defined by id(t) = t, and then γ = γ ◦ id : [a, b] → C. Thus, γ ∼ γ. (ii) Let γ1 ∼ γ2.
Then γ2 = γ1 ◦ σ where σ : [c, d] → [a, b] is a change of parameter. But then σ−1 : [a, b] → [c, d]
is also a change of parameter and γ1 = γ2 ◦ σ−1. Therefore γ2 ∼ γ1. (iii) Let γ1 ∼ γ2 and
γ2 ∼ γ3. Then γ2 = γ1 ◦ σ and γ3 = γ2 ◦ τ , where σ : [c, d] → [a, b] and τ : [e, f ] → [c, d]
are changes of parameter. But then χ = σ ◦ τ : [e, f ] → [a, b] is a change of parameter and
γ3 = γ2 ◦ τ = (γ1 ◦ σ) ◦ τ = γ1 ◦ χ. Therefore γ1 ∼ γ3.

It is of some value to note that if we have a curve γ : [a, b] → C with parametric interval [a, b]
and we are given an arbitrary interval [c, d], then there is a reparametrization of γ with parametric
interval [c, d] instead of [a, b]. We can do this if we can find an appropriate change of parameter
σ : [c, d] → [a, b]. There are many such σ, but a simple one is

t = σ(s) =
d− s

d− c
a+

s− c

d− c
b, s ∈ [c, d].

Therefore, if for some reason (and we shall presently see that there is such a reason) we do not dis-
tinguish curves which are reparametrizations of each other, then the parametric interval of a curve
is of no particular importance: we may consider a reparametrization of a given curve changing the
given parametric interval to any other which we might prefer.

For every curve γ : [a, b] → C we consider the curve ¬ γ : [a, b] → C given by

(¬ γ)(t) = γ(a+ b− t), t ∈ [a, b].

Then ¬ γ is called opposite of γ. The curves γ and ¬ γ have the same trajectory but opposite
directions. Their lengths are equal:

l(¬ γ) =
∫ b

a
|(¬ γ)′(t)| dt =

∫ b

a
|γ′(a+ b− t)| dt = −

∫ a

b
|γ′(s)| ds =

∫ b

a
|γ′(s)| ds = l(γ).

If the curves γ1 : [a, b] → C and γ2 : [b, c] → C have γ1(b) = γ2(b), then we say that γ1, γ2
(in this order) are successive and then we may define the curve γ1

·
+ γ2 : [a, c] → C by

(γ1
·
+ γ2)(t) =

{
γ1(t), if a ≤ t ≤ b

γ2(t), if b ≤ t ≤ c

The curve γ1
·
+ γ2 is called sum of γ1 and γ2. Since γ1 and γ2 are (piecewise) continuously

differentiable, γ1
·
+ γ2 is also piecewise continuously differentiable. The trajectory (γ1

·
+ γ2)

∗ is
the union of the trajectories γ1∗ and γ2∗.

Of course, the sum of two curves can be generalized to the sum of more than two curves
provided that these are successive.
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Example 3.2.5. Every polygonal line can be considered as the trajectory of a piecewise regular
curve. This curve is the sum of successive curves each of which has as its trajectory a corresponding
linear segment of the polygonal line.

Through the operation of summation of successive curves, we may consider successive curves
as one curve (synthesis) and, conversely, we may consider one curve as a sum of successive curves
(analysis).

The length of the sum of successive curves equals the sum of their lengths:

l(γ1
·
+ γ2) =

∫ c

a
|(γ1

·
+ γ2)

′(t)|dt =
∫ b

a
|(γ1

·
+ γ2)

′(t)|dt+
∫ c

b
|(γ1

·
+ γ2)

′(t)|dt

=

∫ b

a
|γ1′(t)|dt+

∫ c

b
|γ2′(t)|dt = l(γ1) + l(γ2).

Now we shall extend the notion of integral of a complex function over an interval to the notion
of integral of a complex function over a curve.

Definition. Let γ : [a, b] → C be a curve and let f : γ∗ → C be continuous in the trajectory
γ∗ = {γ(t) | t ∈ [a, b]}. Then f ◦ γ : [a, b] → C is continuous in [a, b]. Thus, (f ◦ γ)γ′ is
piecewise continuous in [a, b] and hence integrable over [a, b]. We define the curvilinear integral
of f over γ by ∫

γ
f(z) dz =

∫ b

a
(f ◦ γ)(t)γ′(t) dt =

∫ b

a
f(γ(t))γ′(t) dt

We shall usually write ∮
γ
f(z) dz

when γ is closed.

Example 3.2.6. Let γ : [a, b] → C be the curve with parametric equation z = γ(t) = (1− t)z0 +
tz1, t ∈ [0, 1]. The trajectory of γ is the linear segment [z0, z1] having direction from z0 to z1.
If f : [z0, z1] → C is continuous in [z0, z1], then the curvilinear integral

∫
γ f(z) dz is denoted∫

[z0,z1]
f(z) dz. I.e.∫

[z0,z1]
f(z) dz =

∫
γ
f(z) dz = (z1 − z0)

∫ 1

0
f((1− t)z0 + tz1) dt.

This is the curvilinear integral of f over the linear segment [z0, z1] from z0 to z1.

Example 3.2.7. Let r > 0 and γ : [0, 2π] → C be the curve with parametric equation z = γ(t) =
z0+r(cos t+i sin t), t ∈ [0, 2π]. The trajectory of γ is the circleCz0(r)with the positive direction
of rotation around z0. If f : Cz0(r) → C is continuous in the circle Cz0(r), then the curvilinear
integral

∮
γ f(z) dz is denoted

∮
Cz0 (r)

f(z) dz. I.e.,∮
Cz0 (r)

f(z) dz =

∮
γ
f(z) dz =

∫ 2π

0
f
(
z0 + r(cos t+ i sin t)

)
r(− sin t+ i cos t) dt.

This is the curvilinear integral of f over the circle Cz0(r) with the positive direction of rotation.

An important concrete instance of the previous example is the following.

Example 3.2.8. If n ∈ Z, we know that∫ 2π

0
sin(nt) dt = 0,

∫ 2π

0
cos(nt) dt =

{
2π, if n = 0

0, if n ̸= 0
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Therefore, if n ∈ Z, we get∮
Cz0 (r)

(z − z0)
n dz =

∫ 2π

0
rn(cos t+ i sin t)nr(− sin t+ i cos t) dt

= irn+1

∫ 2π

0
(cos t+ i sin t)n(cos t+ i sin t) dt

= irn+1

∫ 2π

0

(
cos((n+ 1)t) + i sin((n+ 1)t)

)
dt

=

{
2πi, if n = −1

0, if n ̸= −1

The following propositions are easy to prove.

Proposition 3.5. Let γ : [a, b] → C be a curve, f1, f2 : γ∗ → C be continuous in γ∗ and λ1, λ2 ∈
C. Then ∫

γ
(λ1f1(z) + λ2f2(z)) dz = λ1

∫
γ
f1(z) dz + λ2

∫
γ
f2(z) dz.

Proof. An application of proposition 3.1 and of the definition of the curvilinear integral.

Proposition 3.6. Let γ : [a, b] → C be a curve and f : γ∗ → C be continuous in γ∗. If |f(z)| ≤M
for every z ∈ γ∗, then ∣∣∣ ∫

γ
f(z) dz

∣∣∣ ≤Ml(γ).

Proof.∣∣∣ ∫
γ
f(z) dz

∣∣∣ = ∣∣∣ ∫ b

a
f(γ(t))γ′(t) dt

∣∣∣ ≤ ∫ b

a
|f(γ(t))||γ′(t)| dt ≤M

∫ b

a
|γ′(t)| dt =Ml(γ).

The first inequality uses proposition 3.4.

Proposition 3.7. Let γ : [a, b] → C be a curve and fn, ϕ : γ∗ → C be continuous in γ∗ and let
f : γ∗ → C. If fn → f uniformly in γ∗, then∫

γ
fn(z)ϕ(z) dz →

∫
γ
f(z)ϕ(z) dz. (3.5)

Proof. Because of uniform convergence, f is continuous in γ∗. Therefore, the existence of the
integrals

∫
γ fn(z)ϕ(z) dz and

∫
γ f(z)ϕ(z) dz is assured.

Since ϕ is continuous in the compact set γ∗, there isM so that |ϕ(z)| ≤ M for every z ∈ γ∗. If
we setMn = supz∈γ∗ |fn(z)− f(z)|, then proposition 3.6 implies∣∣∣ ∫

γ
fn(z)ϕ(z) dz −

∫
γ
f(z)ϕ(z) dz

∣∣∣ = ∣∣∣ ∫
γ
(fn(z)− f(z))ϕ(z) dz

∣∣∣ ≤MnMl(γ).

SinceMn → 0, we get that
∫
γ fn(z)ϕ(z) dz →

∫
γ f(z)ϕ(z) dz.

We may rewrite (3.5) in the form

lim
n→+∞

∫
γ
fn(z)ϕ(z) dz =

∫
γ

lim
n→+∞

fn(z)ϕ(z) dz

of an interchange between the symbols limn→+∞ and
∫
γ . This interchange under the assumption

of uniform convergence is the content of proposition 3.7.
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Proposition 3.8. Let γ : [a, b] → C be a curve and fn, ϕ : γ∗ → C be continuous in γ∗ and let
s : γ∗ → C. If

∑+∞
n=1 fn = s uniformly in γ∗, then

+∞∑
n=1

∫
γ
fn(z)ϕ(z) dz =

∫
γ
s(z)ϕ(z) dz. (3.6)

Proof. We consider the partial sums sn = f1 + · · ·+ fn and apply proposition 3.7 to them. Then
n∑
k=1

∫
γ
fk(z)ϕ(z) dz =

∫
γ

n∑
k=1

fk(z)ϕ(z) dz =

∫
γ
sn(z)ϕ(z) dz →

∫
γ
s(z)ϕ(z) dz. (3.7)

I.e. the series (of numbers)
∑+∞

n=1

∫
γ fn(z)ϕ(z) dz converges to (the number)

∫
γ s(z)ϕ(z) dz.

As in the case of (3.5), we may rewrite (3.6) in the form

+∞∑
n=1

∫
γ
fn(z)ϕ(z) dz =

∫
γ

+∞∑
n=1

fn(z)ϕ(z) dz,

since
∑+∞

n=1 fn(z) = s(z) for every z ∈ γ∗. Again, this interchange between the symbols
∑+∞

n=1

and
∫
γ under the assumption of uniform convergence is the content of proposition 3.8.

Proposition 3.9. Consider the curves γ1 : [a, b] → C and γ2 : [c, d] → C and let γ2 be a
reparametrization of γ1. Let also f : γ1

∗ = γ2
∗ → C be continuous. Then∫

γ2

f(z) dz =

∫
γ1

f(z) dz.

Proof. There is a change of parameter σ : [c, d] → [a, b] so that γ2(s) = γ1(σ(s)) for all s ∈ [c, d].
Then ∫

γ2

f(z) dz =

∫ d

c
f(γ2(s))γ2

′(s) ds =

∫ d

c
f(γ1(σ(s)))γ1

′(σ(s))σ′(s) ds

=

∫ b

a
f(γ1(t))γ1

′(t) dt =

∫
γ1

f(z) dz

after a change of parameter in the third integral.

At this point we observe that replacing a curve γ1 with a reparametrization γ2 of it does not
alter certain quantities related to the curve: its trajectory, its endpoints, its direction, its length, the
number of times it covers its trajectory and, more important, the curvilinear integrals of continuous
functions defined over its trajectory. Since in this course we shall use curves only to evaluate
curvilinear integrals, we conclude that there is no reason to actually distinguish between a curve
and its reparametrizations. Therefore, when we have a geometric object C which we would call,
in everyday language, curve in the plane, e.g. a linear segment or a circle or a polygonal line, and
a continuous function f : C → C, we can give a meaning to∫

C
f(z) dz

by specifying a continuous γ : [a, b] → C, i.e. a curve, with trajectory γ∗ coinciding with C,
with endpoints coinciding with the endpoints of C and a specific assigned direction. The use of
different curves, which are reparametrizations of the particular γ we have chosen, will not alter the
value of the integral. In fact we have already seen two examples of this situation. One is the∫

[z0,z1]
f(z) dz
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for which we use any parametric equation with trajectory equal to the linear segment [z0, z1] and
direction from z0 to z1. The simplest such parametric equation is z = γ(t) = (1 − t)z0 + tz1,
t ∈ [0, 1]. The second example is the ∮

Cz0 (r)
f(z) dz

for which we use any parametric equation with trajectory equal to the circleCz0(r) and which cov-
ers this circle once and in the positive direction of rotation around z0. The simplest such parametric
equation is z = γ(t) = z0 + r(cos t+ i sin t), t ∈ [0, 2π].

Proposition 3.10. Let γ1 : [a, b] → C and γ2 : [b, c] → C be two curves so that γ1(b) = γ2(b) and
let f : γ1

∗ ∪ γ2∗ → C be continuous. Then∫
γ1

·
+γ2

f(z) dz =

∫
γ1

f(z) dz +

∫
γ2

f(z) dz.

Proof. f is continuous in the trajectory (γ1
·
+ γ2)

∗ = γ1
∗ ∪ γ2∗ of γ1

·
+ γ2. Hence∫

γ1
·
+γ2

f(z) dz =

∫ c

a
f
(
(γ1

·
+ γ2)(t)

)
(γ1

·
+ γ2)

′(t) dt

=

∫ b

a
f(γ1(t))γ1

′(t) dt+

∫ c

b
f(γ2(t))γ2

′(t) dt =

∫
γ1

f(z) dz +

∫
γ2

f(z) dz.

The second equality uses proposition 3.2.

Proposition 3.11. Consider the curve γ : [a, b] → C and let f : γ∗ → C be continuous. Then∫
¬ γ
f(z) dz = −

∫
γ
f(z) dz.

Proof. f is continuous in the trajectory (¬ γ)∗ = γ∗. Hence∫
¬ γ

f(z) dz =

∫ b

a
f((¬ γ)(t))(¬ γ)′(t) dt = −

∫ b

a
f(γ(a+ b− t))γ′(a+ b− t) dt

=

∫ a

b
f(γ(s))γ′(s) ds = −

∫ b

a
f(γ(s))γ′(s) ds = −

∫
γ
f(z) dz.

after a simple change of parameter in the third integral.

Example 3.2.9. Let γ be the curve describing the linear segment [z0, z1] from z0 to z1. Then ¬ γ
describes the same segment from z1 to z0. Therefore,∫

[z0,z1]
f(z) dz =

∫
γ
f(z) dz,

∫
[z1,z0]

f(z) dz =

∫
¬ γ

f(z) dz.

Hence ∫
[z1,z0]

f(z) dz = −
∫
[z0,z1]

f(z) dz.

Exercises.

3.2.1. Consider an open set Ω ⊆ C and a curve γ : [a, b] → Ω and prove that there is δ > 0 so that
|γ(t)− z| ≥ δ for every t ∈ [a, b] and every z /∈ Ω.
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3.2.2. Calculate
∫
γ |z| dz, where γ is each of the following curves with initial endpoint −i and

final endpoint i. (i) γ(t) = it for t ∈ [−1, 1]. (ii) γ(t) = cos t + i sin t for t ∈ [−π
2 ,

π
2 ]. (iii)

γ(t) = − cos t+ i sin t for t ∈ [−π
2 ,

π
2 ].

3.2.3. (i) If n ∈ Z, n ≥ 0, prove that
∫
γ z

n dz =
zn+1
1 −zn+1

0
n+1 , where z0, z1 are the initial and the

final endpoint of γ.
(ii) Are there polynomials pn(z) so that pn(z) → 1

z uniformly in the circle C0(1)? Think in terms
of curvilinear integrals over the circle C0(1).

3.2.4. Let f be continuous in the ring {z | 0 < |z| < r0} or in the ring {z | r0 < |z| < +∞}. We
define M(r) = max{|f(z)| | |z| = r} and assume that rM(r) → 0 when r → 0 or r → +∞,
respectively. If γr(t) = r(cos t + i sin t) for t1 ≤ t ≤ t2, then prove that

∫
γr
f(z) dz → 0 when

r → 0 or r → +∞, respectively.

3.2.5. Let f : Dz0(R) → C be continuous. Prove that limr→0

∮
Cz0 (r)

f(z)
z−z0 dz = 2πif(z0).

3.2.6. Let γ : [a, b] → C be a curve and f : γ∗ → C be continuous in γ∗. Consider any subdivision
∆ = {t0, . . . , tn} of [a, b] and any choice Ξ = {ξ1, . . . , ξn} of intermediate points ξk ∈ [tk−1, tk].
Then we say that ∆∗ = {z0, . . . , zn}, where zk = γ(tk), is a subdivision of the trajectory γ∗ and
that Ξ∗ = {η1, . . . , ηn}, where ηk = γ(ξk), is a choice of intermediate points on the trajectory (ηk
is between zk−1 and zk on the trajectory). We say that

∑n
k=1 f(zk)(ηk−ηk−1) is the corresponding

Riemann sum. If w(∆∗) = max1≤k≤n |zk − zk−1| is the width of the subdivision ∆∗, then prove
that limw(∆∗)→0

∑n
k=1 f(zk)(ηk − ηk−1) =

∫
γ f(z) dz.

3.2.7. Let f : Ω → C be continuous in the open set Ω and let [an, bn], [a, b] ⊆ Ω for every n. If
an → a and bn → b, prove that

∫
[an,bn]

f(z) dz →
∫
[a,b] f(z) dz.

3.2.8. Let f : Ω → C be continuous in the open set Ω and γ be a curve in Ω. Prove that for every
ϵ > 0 there is a polygonal curve σ in Ω so that |

∫
σ f(z) dz −

∫
γ f(z) dz| < ϵ.
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Chapter 4

Holomorphic functions.

4.1 Differentiability and holomorphy.

Definition. Let f : A→ C and z0 be an interior point of A. We say that f is differentiable at z0
if limz→z0

f(z)−f(z0)
z−z0 exists and is a complex number. We call this limit derivative of f at z0 and

denote it
f ′(z0) =

df

dz
(z0) = lim

z→z0

f(z)− f(z0)

z − z0
.

Example 4.1.1. The constant function c is differentiable at every point of C and its derivative is
the constant function 0. Indeed, for every z0 we have dc

dz (z0) = limz→z0
c−c
z−z0 = limz→z0 0 = 0.

Example 4.1.2. The function z is differentiable at every point ofC and its derivative is the constant
function 1: for every z0 we have dz

dz (z0) = limz→z0
z−z0
z−z0 = limz→z0 1 = 1.

Example 4.1.3. Let f : C → C be the function f(z) = z. We take an arbitrary z0 and we shall
prove that the limz→z0

f(z)−f(z0)
z−z0 = limz→z0

z−z0
z−z0 does not exist, i.e. f is not differentiable at z0.

Let z0 = x0 + iy0. The limit of f(z)−f(z0)z−z0 when z → z0 on the horizontal line containing z0 is

lim
x→x0

(x+ iy0)− (x0 + iy0)

(x+ iy0)− (x0 + iy0)
= lim

x→x0

x− x0
x− x0

= lim
x→x0

1 = 1

and the limit of f(z)−f(z0)z−z0 when z → z0 on the vertical line containing z0 is

lim
y→y0

(x0 + iy)− (x0 + iy0)

(x0 + iy)− (x0 + iy0)
= lim

y→y0

−iy + iy0
iy − iy0

= lim
y→y0

(−1) = −1.

Since these two limits are different, the limz→z0
z−z0
z−z0 does not exist.

The proofs of the following four propositions are identical with the proofs of the well-known
analogous propositions for real functions of a real variable and we omit them.

Proposition 4.1. If f : A → C is differentiable at the interior point z0 of A, then f is continuous
at z0.

Proposition 4.2. If f, g : A → C are differentiable at the interior point z0 of A, then f + g, f −
g, fg : A → C are also differentiable at z0. Furthermore, if g(z) ̸= 0 for all z ∈ A, then
f
g : A→ C is differentiable at z0. Finally,

(f + g)′(z0) = f ′(z0) + g′(z0), (f − g)′(z0) = f ′(z0)− g′(z0),

(fg)′(z0) = f ′(z0)g(z0) + f(z0)g
′(z0),

(f
g

)′
(z0) =

f ′(z0)g(z0)− f(z0)g
′(z0)

(g(z0))2
.
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Proposition 4.3. If f : A → B is differentiable at the interior point z0 of A and g : B → C is
differentiable at the interior point w0 = f(z0) of B, then g ◦ f : A → C is differentiable at z0.
Also,

(g ◦ f)′(z0) = g′(w0)f
′(z0).

Proposition 4.4. Let f : A→ B be one-to-one fromA ontoB and let f−1 : B → A be the inverse
function. Let also z0 be an interior point of A and w0 = f(z0) be an interior point of B. If f is
differentiable at z0 and f ′(z0) ̸= 0 and f−1 is continuous at w0, then f−1 is differentiable at w0

and
(f−1)′(w0) =

1

f ′(z0)
.

Example 4.1.4. Starting with the derivatives of the constant function c and the function z and using
the usual algebraic rules for derivatives, we get that every polynomial function is differentiable at
every point of C and that its derivative is another polynomial function: if p(z) = a0 + a1z +
a2z

2 + · · ·+ anz
n, then p′(z) = a1 + 2a2z + · · ·+ nanz

n−1.

Example 4.1.5. Every rational function is differentiable at every point of its domain of definition
and its derivative is another rational function.

Example 4.1.6. If h(z) = (z2 − 3z + 2)15 − 3(z2 − 3z + 2)2, then by the chain rule we get
h′(z) = 15(z2 − 3z + 2)14(2z − 3)− 6(z2 − 3z + 2)(2z − 3).

Definition. Let f : A → C and z0 be an interior point of A. We say that f is holomorphic (or
analytic) at z0 if there is r > 0 so thatDz0(r) ⊆ A and f is differentiable at every point ofDz0(r).

The notion of holomorphy is stronger than the notion of differentiability: for a function to be
holomorphic at a point it is necessary for it to be differentiable at this point and at all nearby points.

Example 4.1.7. Every polynomial function is holomorphic at every point of C.

Example 4.1.8. Every rational function is holomorphic at every point of its domain of definition.

Example 4.1.9. Let f : C → C be the function f(z) = |z|2.
We have limz→0

f(z)−f(0)
z−0 = limz→0 z = 0 and f is differentiable at 0 with f ′(0) = 0.

We take an arbitrary z0 ̸= 0 and we shall prove that the limz→z0
f(z)−f(z0)

z−z0 = limz→z0
|z|2−|z0|2
z−z0

does not exist and therefore f is not differentiable at z0.
Let z0 = x0 + iy0. The limit of f(z)−f(z0)z−z0 when z → z0 on the horizontal line containing z0 is

lim
x→x0

|x+ iy0|2 − |x0 + iy0|2

(x+ iy0)− (x0 + iy0)
= lim

x→x0

x2 − x0
2

x− x0
= lim

x→x0
(x+ x0) = 2x0

and the limit of f(z)−f(z0)z−z0 when z → z0 on the vertical line containing z0 is

lim
y→y0

|x0 + iy|2 − |x0 + iy0|2

(x0 + iy)− (x0 + iy0)
= lim

y→y0

y2 − y0
2

iy − iy0
= −i lim

y→y0
(y + y0) = −2iy0.

Since z0 ̸= 0, these two limits are different and the limz→z0
|z|2−|z0|2
z−z0 does not exist.

We conclude that f is differentiable only at 0 and that it is nowhere holomorphic.

Definition. The set of points at which f is holomorphic is called domain of holomorphy of f .

Proposition 4.5. Let f : A → C and B ⊆ A be the set of the points at which f is differentiable.
Then the domain of holomorphy of f is the interior of B. In particular, the domain of holomorphy
of f is an open set.
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Proof. LetU be the domain of holomorphy of f . If z ∈ U , there is r > 0 so that f is differentiable
at every point of Dz(r) and hence Dz(r) ⊆ B. Thus z is an interior point of B, i.e. z ∈ B◦.
Conversely, let z ∈ B◦. Then there is r > 0 so thatDz(r) ⊆ B, and so f is differentiable at every
point of Dz(r). Therefore f is holomorphic at z, i.e. z ∈ U .

Example 4.1.10. The domain of holomorphy of any polynomial function is C.

Example 4.1.11. The domain of holomorphy of any rational function is its domain of definition.

Example 4.1.12. The domain of holomorphy of both functions f(z) = z and f(z) = |z|2 is the
empty set.

Definition. Let f : A→ C and Ω ⊆ A be an open set. We say that f is holomorphic (or analytic)
in Ω if it is holomorphic at every point of Ω or, equivalently, if Ω is a subset of the domain of
holomorphy of f .

Clearly, the largest open set Ω in which f is holomorphic is its domain of holomorphy. It is
also clear that if f is differentiable at every point of an open set Ω, then f is holomorphic in Ω.

Definition. Let f : D∞(r) → C. We consider the function g : D0(r) → C defined as

g(w) = f(1/w), for every w with |w| < r.

We say that f is differentiable or holomorphic at ∞ if g is differentiable or holomorphic, respec-
tively, at 0.

We observe that g(0) = f(∞) and that the inverse functions w = 1
z and z = 1

w map each of
the neighborhoods D∞(r) = {z | |z| > 1

r} ∪ {∞} and D0(r) = {w | |w| < r} onto the other.
Now we shall see that the condition of differentiability of f at ∞, i.e. the differentiability of g at
0, can be translated into an equivalent condition in terms of f itself.

Proposition 4.6. Let f : D∞(r) → C. Then f is differentiable at ∞ if and only if

lim
z→∞

z(f(z)− f(∞)) ∈ C. (4.1)

Moreover, f is holomorphic at∞ if and only if, besides (4.1), f is differentiable at every complex
number in a neighborhood of ∞.

Proof. Let g(w) = f(1z ) be the function considered in the above definition. Through the change of
variable w = 1

z , we have
g(w)−g(0)
w−0 = z(f(z)− f(∞)). Thus, the existence of limw→0

g(w)−g(0)
w−0

is equivalent to the existence of limz→∞ z(f(z)− f(∞)). In fact the two limits are equal.

It is easy to see that differentiability of f at∞ implies continuity of f at∞.

Example 4.1.13.We shall check the differentiability (and hence holomorphy) of polynomial and
rational functions. We recall the notation and the results of examples 1.4.1, 1.4.2 and 1.4.3.
A polynomial function p is continuous only if it is a constant p(z) = a0 and provided we define
p(∞) = a0. In this case it is also differentiable at∞, since

lim
z→∞

z(p(z)− p(∞)) = lim
z→∞

0 = 0.

A rational function r is continuous only if n ≤ m, where n and m are the degrees of its numer-
ator and denominator. If n = m, then we define r(∞) = an

bn
and then, after some algebraic

manipulations, we get

lim
z→∞

z(r(z)− r(∞)) = lim
z→∞

z
(anzn + · · ·+ a1z + a0
bnzn + · · ·+ b1z + b0

− an
bn

)
=
an−1bn − anbn−1

b2n
.
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If n < m, then we define r(∞) = 0 and then we get

lim
z→∞

z(r(z)− r(∞)) = lim
z→∞

z
anz

n + · · ·+ a1z + a0
bmzm + · · ·+ b1z + b0

=

{
an
bn+1

, if n+ 1 = m

0, if n+ 1 < m

Thus, if polynomial or rational functions are continuous at∞, they are also holomorphic at∞.

Exercises.

4.1.1. Check the differentiability of the functions Re z, Im z and |z|.

4.1.2. Let Ω be open and f : Ω → C. We take Ω∗ = {z | z ∈ Ω} and f∗ : Ω∗ → C given by
f∗(z) = f(z) for every z ∈ Ω∗. Prove that Ω∗ is open and that, if f is differentiable at z0 ∈ Ω,
then f∗ is differentiable at z0 ∈ Ω∗.

4.1.3. Consider open sets U, V and f : V → U , g : U → C, h : V → C so that h is one-to-one
and h = g ◦ f . If h is differentiable at w0 ∈ V , g is differentiable at z0 = f(w0), g′(z0) ̸= 0 and
f is continuous at w0, prove that f is differentiable at w0 and f ′(w0) =

h′(w0)
g′(z0)

.

4.1.4. (i) If p is a polynomial of degree n with roots z1, . . . , zn, prove p′(z)
p(z) = 1

z−z1 + · · ·+ 1
z−zn

for every z ̸= z1, . . . , zn. Then prove that, if the roots of p are contained in a closed halfplane,
then the roots of p′ are contained in the same halfplane. Conclude that the roots of p′ are contained
in the smallest convex polygon which contains the roots of p.
(ii) For every a and every n ∈ N, n ≥ 2 prove that the equation 1 + z + azn = 0 has at least one
root z ∈ D0(2).

4.1.5. (i) Let a1, . . . , an be distinct and q(z) = (z − a1) · · · (z − an). If the polynomial p has
degree < n, prove p(z)

q(z) =
∑n

k=1
p(ak)

q′(ak)(z−ak) for every z ̸= a1, . . . , an.
(ii) Let a1, . . . , an be distinct. Prove that for every c1, . . . , cn there is a unique polynomial p of
degree < n so that p(ak) = ck for every k = 1, . . . , n.

4.1.6. Let f have continuous derivative in a neighborhood of z0. Prove that f(zn)−f(z
′
n)

zn−z′n
→ f ′(z0)

if zn → z0, z′n → z0 and zn ̸= z′n for every n.

4.2 The Cauchy-Riemann equations.

Now we shall relate the differentiability of f : A → C, as a function of z = x + iy, at some
interior point z0 = x0+iy0 ofAwith the partial derivatives of u = Re f and v = Im f as functions
of (x, y) at the same point (x0, y0).

Theorem 4.1. Let f : A → C and z0 = (x0, y0) be an interior point of A and let u, v be the real
and imaginary part of f . If f is differentiable at z0, then u, v have partial derivatives with respect
to x and y at (x0, y0) and

∂u

∂x
(x0, y0) =

∂v

∂y
(x0, y0),

∂u

∂y
(x0, y0) = −∂v

∂x
(x0, y0). (4.2)

Proof. We assume

lim
z→z0

f(z)− f(z0)

z − z0
= f ′(z0) = µ+ iν, µ, ν ∈ R. (4.3)

Since the limit of f(z)−f(z0)z−z0 exists when z tends to z0, the limits of the same expression when z
tends to z0 on the horizontal line containing z0 as well as on the vertical line containing z0 also
exist and have the same value:

lim
x→x0

f(x, y0)− f(x0, y0)

x− x0
= µ+ iν, lim

y→y0

f(x0, y)− f(x0, y0)

iy − iy0
= µ+ iν. (4.4)

39



From the first limit in (4.4) we get limx→x0
u(x,y0)+iv(x,y0)−u(x0,y0)−iv(x0,y0)

x−x0 = µ+ iν, and hence

∂u

∂x
(x0, y0) = lim

x→x0

u(x, y0)− u(x0, y0)

x− x0
= µ,

∂v

∂x
(x0, y0) = lim

x→x0

v(x, y0)− v(x0, y0)

x− x0
= ν.

(4.5)

From the second limit in (4.4) we find limy→y0
u(x0,y)+iv(x0,y)−u(x0,y0)−iv(x0,y0)

iy−iy0 = µ + iν, and
hence

∂v

∂y
(x0, y0) = lim

y→y0

v(x0, y)− v(x0, y0)

y − y0
= µ,

∂u

∂y
(x0, y0) = lim

x→x0

u(x0, y)− u(x0, y0)

y − y0
= −ν.

(4.6)

Comparing (4.5) and (4.6) we get (4.2).

The equalities (4.2) are called (system of) Cauchy-Riemann equations at the point (x0, y0).
We observe that, if f is differentiable at z0, then (4.3), (4.5) and (4.6) imply

f ′(z0) =
∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0) =

∂v

∂y
(x0, y0)− i

∂u

∂y
(x0, y0).

The next result is the converse of theorem 4.1 but with extra assumptions.

Theorem 4.2. Let f : A → C and z0 = (x0, y0) be an interior point of A and let u, v be the real
and the imaginary part of f . If u, v have partial derivatives with respect to x and y at every point
of some neighborhood of (x0, y0) and if these partial derivatives are continuous at (x0, y0) and if
they satisfy the system of C-R equations at (x0, y0), then f is differentiable at z0.

Proof. Using the C-R equations, we define the real numbers µ and ν by:

µ =
∂u

∂x
(x0, y0) =

∂v

∂y
(x0, y0), ν = −∂u

∂y
(x0, y0) =

∂v

∂x
(x0, y0). (4.7)

Now take an arbitrary ϵ > 0. Since ∂u
∂x ,

∂u
∂y are continuous at (x0, y0), there is r > 0 so that∣∣∣∂u

∂x
(x, y)− µ

∣∣∣ < ϵ

4
,

∣∣∣∂u
∂y

(x, y) + ν
∣∣∣ < ϵ

4
for every (x, y) ∈ D(x0,y0)(r). (4.8)

We take any (x, y) ∈ D(x0,y0)(r) and we write

u(x, y)− u(x0, y0) = u(x, y)− u(x0, y) + u(x0, y)− u(x0, y0). (4.9)

By the mean value theorem, there is x′ between x and x0 so that

u(x, y)− u(x0, y) =
∂u

∂x
(x′, y)(x− x0) (4.10)

and y′ between y and y0 so that

u(x0, y)− u(x0, y0) =
∂u

∂y
(x0, y

′)(y − y0). (4.11)

The x′, y′ depend on x, y, but the points (x′, y), (x0, y′) belong to D(x0,y0)(r). Therefore, (4.8)
implies ∣∣∣∂u

∂x
(x′, y)− µ

∣∣∣ < ϵ

4
,

∣∣∣∂u
∂y

(x0, y
′) + ν

∣∣∣ < ϵ

4
. (4.12)
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Combining (4.9), (4.10) and (4.11), we find

u(x, y)− u(x0, y0)−
(
µ(x− x0)− ν(y − y0)

)
=

(
u(x, y)− u(x0, y)− µ(x− x0)

)
+

(
u(x0, y)− u(x0, y0) + ν(y − y0)

)
=

(∂u
∂x

(x′, y)− µ
)
(x− x0) +

(∂u
∂y

(x0, y
′) + ν

)
(y − y0)

and, because of (4.12),∣∣u(x, y)− u(x0, y0)−
(
µ(x− x0)− ν(y − y0)

)∣∣
≤

∣∣∣∂u
∂x

(x′, y)− µ
∣∣∣|x− x0|+

∣∣∣∂u
∂y

(x0, y
′) + ν

∣∣∣|y − y0|

<
ϵ

4
|x− x0|+

ϵ

4
|y − y0| <

ϵ

2

√
(x− x0)2 + (y − y0)2.

(4.13)

In the same manner, for the function v we get∣∣v(x, y)− v(x0, y0)−
(
ν(x− x0) + µ(y − y0)

)∣∣ < ϵ

2

√
(x− x0)2 + (y − y0)2. (4.14)

The inequalities (4.13) and (4.14) hold at every (x, y) ∈ D(x0,y0)(r).
We observe that the expressions inside the absolute values of the left sides of (4.13) and (4.14) are,
respectively, the real and the imaginary part of the number

f(z)− f(z0)− (µ+ iν)(z − z0) = f(x, y)− f(x0, y0)− (µ+ iν)
(
(x− x0) + i(y − y0)

)
.

Therefore, (4.13) and (4.14) imply

|f(z)− f(z0)− (µ+ iν)(z − z0)| < ϵ
√

(x− x0)2 + (y − y0)2 = ϵ|z − z0|

for every z ∈ Dz0(r) and hence |
f(z)−f(z0)

z−z0 − (µ+ iν)| < ϵ for every z ∈ Dz0(r), z ̸= z0. Thus,
limz→z0

f(z)−f(z0)
z−z0 = µ+ iν, and f is differentiable at z0 with f ′(z0) = µ+ iν.

Example 4.2.1. The real and the imaginary parts of the function f(z) = z2 are u(x, y) = x2 − y2

and v(x, y) = 2xy. We find ∂u
∂x(x, y) = 2x, ∂u∂y (x, y) = −2y, ∂v∂x(x, y) = 2y and ∂v

∂y (x, y) = 2x
and we see that the partial derivatives are continuous in the whole plane and they satisfy the C-R
equations at every point. Theorem 4.2 implies that f(z) = z2 is differentiable at every point and
f ′(z) = ∂u

∂x(x, y) + i ∂v∂x(x, y) = 2x+ i2y = 2z.

Example 4.2.2.We reconsider the function f(z) = z of example 4.1.3. Its real and imaginary
parts are u(x, y) = x and v(x, y) = −y. The partial derivatives ∂u

∂x(x, y) = 1, ∂u∂y (x, y) = 0,
∂v
∂x(x, y) = 0 and ∂v

∂y (x, y) = −1 do not satisfy the C-R equations at any point (x, y). Theorem
4.1 implies that f is not differentiable at any point.

Example 4.2.3.We reconsider the function f(z) = |z|2 of example 4.1.9. Its real and imaginary
parts are u(x, y) = x2+y2 and v(x, y) = 0. The partial derivatives are ∂u∂x(x, y) = 2x, ∂u∂y (x, y) =
2y, ∂v∂x(x, y) = 0 and ∂v

∂y (x, y) = 0 and they satisfy the C-R equations only at the point (0, 0).
Theorem 4.1 implies that f is not differentiable at any point besides, perhaps, the point (0, 0).
Now, since the partial derivatives are continuous and satisfy the C-R equations at (0, 0), theorem
4.2 implies that f is differentiable at 0 and f ′(0) = ∂u

∂x(0, 0) + i ∂v∂x(0, 0) = 0 + i0 = 0.

Example 4.2.4.We shall see that the assumption of continuity of the partial derivatives of u, v at
(x0, y0) in theorem 4.2 is crucial. We consider the function

f(z) = f(x, y) =


xy√
x2+y2

, if (x, y) ̸= (0, 0)

0, if (x, y) = (0, 0)
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Then its real and imaginary parts are

u(x, y) =


xy√
x2+y2

, if (x, y) ̸= (0, 0)

0, if (x, y) = (0, 0)
v(x, y) = 0.

It is clear that ∂v∂x(x, y) = 0 and ∂v
∂y (x, y) = 0 and the partial derivatives of v are continuous at

every (x, y). Moreover,

∂u

∂x
(x, y) =

{
y3

(x2+y2)3/2
, if (x, y) ̸= (0, 0)

0, if (x, y) = (0, 0)

∂u

∂y
(x, y) =

{
x3

(x2+y2)3/2
, if (x, y) ̸= (0, 0)

0, if (x, y) = (0, 0)

The partial derivatives of u are continuous at every (x, y) ̸= (0, 0) but they are not continuous at
(0, 0). For instance, the limit of y3

(x2+y2)3/2
when (x, y) tends to (0, 0) on the line with equation

y = x does not exist: limx→±0
x3

(x2+x2)3/2
= ±1/

√
8.

We will see now that f is not differentiable at 0, even though u, v do satisfy the C-R equations at
0. In fact the limit of f(z)−f(0)z−0 =

(xy)/
√
x2+y2

x+iy when z tends to 0 on the line with equation y = x

is limx→0
x2/

√
x2+x2

x+ix = 1
(1+i)

√
2
limx→0

x
|x| and it does not exist.

The next proposition is a corollary of theorem 4.2. It is the form of theorem 4.2 in which this
is usually applied.

Proposition 4.7. Let f : A→ C, let u, v be the real and the imaginary part of f and let Ω ⊆ A be
open. If u, v have partial derivatives which are continuous and which satisfy the C-R equations at
every point of Ω, then f is holomorphic in Ω.

Proof. We take an arbitrary z ∈ Ω and a neighborhood of z which is contained in Ω. Theorem
4.2 implies that f is differentiable at z. Thus f is differentiable at every point of Ω and, since Ω is
open, f is holomorphic in Ω.

We recall that region means: open and connected.

Theorem 4.3. Let f : Ω → C be holomorphic in the region Ω. If f ′(z) = 0 for every z ∈ Ω, then
f is constant in Ω.

First proof. Using f ′ = ∂u
∂x + i ∂v∂x = ∂v

∂y − i∂u∂y , we find

∂u

∂x
=
∂v

∂x
=
∂v

∂y
=
∂u

∂y
= 0 on Ω. (4.15)

We take any linear segment [z1, z2] in Ω and its parametric equation γ(t) = (1 − t)z1 + tz2,
t ∈ [0, 1]. By the mean value theorem, there is t0 ∈ (0, 1) so that

u(z2)− u(z1) = (u ◦ γ)(1)− (u ◦ γ)(0) = d(u ◦ γ)
dt

(t0)

=
∂u

∂x
(γ(t0))(x2 − x1) +

∂u

∂y
(γ(t0))(y2 − y1),

where z1 = x1 + iy1 and z2 = x2 + iy2. From (4.15) we find u(z2) = u(z1). Thus, the values
of u at the endpoints of any line segment in Ω are equal. Now we take arbitrary z′, z′′ ∈ Ω. Then
there is a polygonal line inside Ω which connects the two points z′ and z′′. The values of u at
the endpoints of every line segment of the polygonal line are equal and hence u(z′) = u(z′′).
Therefore u is constant in Ω. Clearly, the same is true for the function v and hence for f = u+ iv.
Second proof. We take arbitrary z, w ∈ Ω. SinceΩ is a region, there is a curve γ : [a, b] → Ω such
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that γ(a) = z, γ(b) = w. In fact we may choose γ to have a polygonal line in Ω as its trajectory.
Then we have

f(w)− f(z) = (f ◦ γ)(b)− (f ◦ γ)(a) =
∫ b

a
(f ◦ γ)′(t) dt =

∫ b

a
f ′(γ(t))γ′(t) dt = 0

because f ′(γ(t)) = 0 for every t ∈ [a, b]. We conclude that f(w) = f(z) for every w, z ∈ Ω and
hence f is constant in Ω.

Let A ⊆ C and f : A→ C with u = Re f : A→ R and v = Im f : A→ R. Then f = u+ iv
in A. Let z0 = x0 + iy0 = (x0, y0) be an interior point of A. Then, if the functions u, v have
partial derivatives with respect to x and y at the point z0, is is trivial to prove that at the point z0
we have

∂f

∂x
=
∂u

∂x
+ i

∂v

∂x
,

∂f

∂y
=
∂u

∂y
+ i

∂v

∂y
. (4.16)

Definition.We define the following differential operators:

∂

∂z
=

1

2

( ∂

∂x
− i

∂

∂y

)
,

∂

∂z
=

1

2

( ∂

∂x
+ i

∂

∂y

)
. (4.17)

Applying the differential operators ∂
∂z and

∂
∂z we just defined to f of the discussion above and

using (4.16), we have at the point z0:

∂f

∂z
=

1

2

(∂u
∂x

+
∂v

∂y

)
+
i

2

(∂v
∂x

− ∂u

∂y

)
,

∂f

∂z
=

1

2

(∂u
∂x

− ∂v

∂y

)
+
i

2

(∂v
∂x

+
∂u

∂y

)
.

(4.18)

From the second of equations (4.18) we see that the system of C-R equations at the point z0 is
equivalent to the single equation

∂f

∂z
= 0

at z0. Moreover, if the system of C-R equations is satisfied, then the first equation (4.18) implies

∂f

∂z
=
∂u

∂x
+ i

∂v

∂x
= f ′

at z0. We summarize.

Proposition 4.8. If f : A→ C is differentiable at the interior point z0 of A then ∂f
∂z (z0) = f ′(z0)

and ∂f
∂z (z0) = 0. Conversely, if ∂f∂x and ∂f

∂y exist in a neighborhood of the point z0 and they are
continuous at z0 and if ∂f∂z (z0) = 0, then f is differentiable at z0.

Proof. Trivial. The converse is a restatement of theorem 4.2.

Sometimes a function f : A→ C, withA ⊆ C, is given to us through an expression f(x, y) as
a function of two real variables and we are interested in finding an expression f(z) of the function
in terms of the single complex variable z. We then write x = z+z

2 , y = z−z
2i and hence

f(x, y) = f
(z + z

2
,
z − z

2i

)
. (4.19)

In general, even after performing various algebraic simplifications we end up with an expression
in terms of both variables z and z. In order to end up with the occurence of z only, it is reasonable
to impose the condition that the derivative of f(x, y) with respect to z vanishes. From (4.19) and
a formal chain rule we get

∂f

∂z
=

1

2

(∂f
∂x

+ i
∂f

∂y

)
.
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This is exactly the second differential operator (4.17) applied to f and we saw that the condition
∂f
∂z = 0 is equivalent to the system of C-R equations. We conclude that the function f(x, y) is a
function of the single variable z if and only if its real and imaginary parts satisfy the C-R equations.

Exercises.

4.2.1. Solve exercise 4.1.1 under the light of C-R equations.

4.2.2. (i) Prove thatF (x, y) =
√

|xy| satisfies the C-R equations at 0 but that it is not differentiable
at 0.
(ii) Prove that the function with G(x, y) = x2y

x4+y2
if (x, y) ̸= (0, 0) and with G(0, 0) = 0 satisfies

the C-R equations at 0, that G(z)−G(0)
z−0 has a limit when z → 0 on every line which contains 0, but

that G is not differentiable at 0.

4.2.3. Let f : A → C and z0 be an interior point of A, let u, v be the real and the imaginary part
of f and let ∂u∂x ,

∂u
∂y ,

∂v
∂x ,

∂v
∂y exist in a neighborhood of z0 and be continuous at z0.

(i) If limz→z0 Re
f(z)−f(z0)

z−z0 exists and is a real number, prove that f is differentiable at z0.
(ii) If limz→z0

∣∣f(z)−f(z0)
z−z0

∣∣ exists and is a real number, prove that either f is differentiable at z0 or
f is differentiable at z0.

4.2.4. Let f : Ω → C be holomorphic in the region Ω and let u, v be the real and the imaginary
part of f .
(i) If either u or v is constant in Ω, prove that f is constant in Ω.
(ii) More generally, if for some line l it is true that f(z) ∈ l for every z ∈ Ω, prove that f is
constant in Ω.
(iii) Consider (ii) using a circle C instead of a line l.

4.2.5. This exercise juxtaposes the notion of differentiability of a function of two real variables,
which we learn in multivariable calculus, and the notion of differentiability of a function of one
complex variable, which we learn in complex analysis: to distinguish between them we call the
first R-differentiability and the second C-differentiability.
We recall from multivariable calculus that a real valued u : A → R, where A ⊆ R2, is R-
differentiable at the interior point (x0, y0) of A if there are a, b ∈ R so that

lim
(x,y)→(x0,y0)

u(x, y)− u(x0, y0)− (a(x− x0) + b(y − y0))

((x− x0)2 + (y − y0)2)1/2
= 0.

In this case we have that ∂u∂x(x0, y0) = a and ∂u
∂y (x0, y0) = b.

We also recall that a vector valued f = (u, v) : A → R2, where A ⊆ R2, is R-differentiable at
the interior point (x0, y0) of A if its real valued components u and v are both R-differentiable at
(x0, y0), i.e. if there are a, b, c, d ∈ R so that

lim
(x,y)→(x0,y0)

u(x, y)− u(x0, y0)− (a(x− x0) + b(y − y0))

((x− x0)2 + (y − y0)2)1/2
= 0,

lim
(x,y)→(x0,y0)

v(x, y)− v(x0, y0)− (c(x− x0) + d(y − y0))

((x− x0)2 + (y − y0)2)1/2
= 0.

In this case we have that ∂u∂x(x0, y0) = a, ∂u∂y (x0, y0) = b, ∂v∂x(x0, y0) = c, ∂v∂y (x0, y0) = d and that

the R-derivative of f is the 2× 2 matrix
[
a b
c d

]
.

Prove that f = (u, v) = u + iv : A → C = R2, where A ⊆ C = R2, is C-differentiable at the
interior point z0 = (x0, y0) of A, i.e. that the limz→z0

f(z)−f(z0)
z−z0 exists and is a complex number,

if and only if f isR-differentiable at z0 = (x0, y0) and itsR-derivative is an antisymmetric matrix:[
a −b
b a

]
. In this case the C-derivative and the R-derivative of f are related by f ′(z0) = a+ ib.
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4.2.6. Consider the functions zn, zn, |z|2 and, using the differential operator ∂
∂z , examine whether

they are functions of z only or, equivalently, whether they are holomorphic.

4.2.7. Let f : A→ C and z0 be an interior point of A. If ∂f∂x and ∂f
∂y exist in a neighborhood of the

point z0 and are continuous at z0, prove that limr→0
1

2πir2

∮
Cz0 (r)

f(z) dz = ∂f
∂z (z0).

4.3 Conformality.

Definition. Let f : A→ C be continuous in A and γ : [a, b] → A be a curve. Thus the trajectory
of γ is contained in the domain of definition of f . We define the function

f(γ) = f ◦ γ : [a, b] → C,

which is continuous in [a, b]. Then f(γ) is a curve and we call it image of γ through f .

Now we take f : A→ C and an interior point z0 of A. Let f be differentiable at z0 and

f(z0) = w0, f ′(z0) ̸= 0.

We also take any curve γ : [t0, b) → A with γ(t0) = z0. Then γ has z0 as its initial point and its
trajectory is contained in A. We also assume that

γ′(t0) ̸= 0

i.e. that γ has a non-zero tangent vector at the point z0. The image curve f(γ) : [t0, b) → C has
f(γ)(t0) = (f ◦ γ)(t0) = f(γ(t0)) = f(z0) = w0 as its initial point and its tangent vector at w0

is
f(γ)′(t0) = (f ◦ γ)′(t0) = f ′(γ(t0))γ

′(t0) = f ′(z0)γ
′(t0) ̸= 0. (4.20)

From (4.20) we have two conclusions. The first is that

|f(γ)′(t0)| = |f ′(z0)||γ′(t0)|.

Thus, the length of the tangent vector of f(γ) at its initial point w0 equals the length of the tangent
vector of γ at its initial point z0 multiplied with the factor |f ′(z0)| > 0. We express this as:
f multiplies the lengths of tangent vectors at z0 with the factor |f ′(z0)| > 0 or, in other words, f
expands the tangent vectors at z0 by the factor |f ′(z0)| > 0.

The second conclusion is that

arg f(γ)′(t0) = arg f ′(z0) + arg γ′(t0). (4.21)

Thus, the argument of the tangent vector of f(γ) at its initial point w0 equals the argument of the
tangent vector of γ at its initial point z0 increased by the angle arg f ′(z0). We express this as:
f increases the arguments of the tangent vectors at z0 by the angle arg f ′(z0) or, in other words,
f rotates the tangent vectors at z0 through the angle arg f ′(z0).

We observe that the expansion and the rotation of the tangent vectors at z0 is uniform over all
these vectors: independently of their direction all these tangent vectors are expanded by the same
factor and they are rotated through the same angle. Since, any two of these tangent vectors are
rotated by f through the same angle, we conclude that their relative angle remains unchanged!

Indeed, let us consider two of the above curves, γ1 and γ2. The angle between their tangent
vectors at z0 is arg γ2′(t0))− arg γ1′(t0)) and the angle between the tangent vectors of f(γ1) and
f(γ2) at w0 is arg f(γ2)′(t0)− arg f(γ1)′(t0). From (4.21) for γ1 and γ2 we get

arg f(γ2)′(t0)− arg f(γ1)′(t0) = arg γ2′(t0)− arg γ1′(t0).
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Therefore, the angle between the tangent vectors of f(γ1) and f(γ2) atw0 equals the angle between
the tangent vectors of γ1 and γ2 at z0. We express this as:
f preserves the angles between tangent vectors at z0.

This last property of f is called conformality of f at z0 and holds, as we just saw, under the
assumption that f is differentiable at z0 and f ′(z0) ̸= 0.

Exercises.

4.3.1. Consider the holomorphic function w = f(z) = az + b with a ̸= 0.
(i) Prove that f is ono-to-one from C onto C.
(ii) Prove that f maps lines and circles onto lines and circles, respectively.
(iii) Consider two lines with equations kx+ ly = m and k′x+ l′y = m′. Which is the condition
for the two lines to intersect? Under this condition, find their intersection point and the angle of
the two lines at this point. Then find the equations of the images of the two lines through f and
find their intersection point and their angle at this point. Confirm the conformality of f .

4.3.2. Consider the holomorphic function w = z2.
(i) With any fixed u0, v0 ∈ R, consider the hyperbolas with equations x2− y2 = u0 and 2xy = v0
on the z-plane (z = x + iy). Do they intersect and at which points? Find the angle of the two
hyperbolas at their common points.
(ii) With any fixed x0, y0 ∈ R, x0, y0 ̸= 0, consider the parabolas with equations u = 1

4y02
v2−y02

and u = − 1
4x02

v2+x0
2 on the w-plane (w = u+ iv). Do they intersect and at which points? Find

the angle of the two parabolas at their common points.

4.3.3. Let f : U → C be holomorphic in the open set U , let γ be a curve in U and Γ = f(γ)
be the image of γ through f . If ϕ : Γ∗ → C is continuous in Γ∗, prove that

∫
Γ ϕ(w) dw =∫

γ ϕ(f(z))f
′(z) dz.
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Chapter 5

Examples of holomorphic functions.

5.1 Linear fractional transformations.

Definition. Every rational function of the form T (z) = az+b
cz+d is called linear fractional transfor-

mation. We assume that ad− bc ̸= 0.

It is easy to show that ad− bc ̸= 0 if and only if the function T is not constant.
In order to have the full picture of the definition of a linear fractional transformation T , we

have to say something about the values of T at the roots of the denominator and at ∞. There are
two cases. If c = 0, then because of ad− bc ̸= 0 we have ad ̸= 0 and then T (z) = a

dz +
b
d for all

z ∈ C. Since a
d ̸= 0, we have that T (∞) = ∞. Thus

T (z) =

{
a
dz +

b
d , if z ∈ C

∞, if z = ∞
if c = 0. (5.1)

If c ̸= 0, then the denominator has z = −d
c as its root, which, because of ad− bc ̸= 0, is not a root

of the numerator. Hence T (−d
c ) = ∞. Also T (∞) = a

c . Thus

T (z) =


az+b
cz+d , if z ∈ C, z ̸= −d

c

∞, if z = −d
c

a
c , αν z = ∞

if c ̸= 0. (5.2)

We conclude that every linear fractional transformation (l.f.t.) is a function T : Ĉ → Ĉ and,
even though we write T (z) = az+b

cz+d , we must have in mind the full formulas (5.1) and (5.2).

Proposition 5.1. Every l.f.t. is one-to-one from Ĉ onto Ĉ.

Proof. Trivial.

In the course of the proof of proposition 5.1 we find the formula of the inverse l.f.t. of T :

T−1(z) =
dz − b

−cz + a
.

We also see easily that the composition of two l.f.t. is another l.f.t. Indeed, if T (z) = az+b
cz+d

and S(z) = a′z+b′

c′z+d′ , then

(S ◦ T )(z) = a′T (z) + b′

c′T (z) + d′
=
a′ az+bcz+d + b′

c′ az+bcz+d + d′
=

(a′a+ b′c)z + (a′b+ b′d)

(c′a+ d′c)z + (c′b+ d′d)
.
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We observe that

(a′a+ b′c)(c′b+ d′d)− (a′b+ b′d)(c′a+ d′c) = (a′d′ − b′c′)(ad− bc) ̸= 0.

The identity function I(z) = z is clearly a l.f.t. with a = d = 1, b = c = 0.
Based on this discussion we have:

Proposition 5.2. The set of all l.f.t. is a group with the binary operation of composition. The
neutral element is the identity function.

Proof. Trivial.

Proposition 5.3. Every l.f.t. is holomorphic in Ĉ except at the point at which it takes the value∞.

Proof. This is a special case of example 4.1.13.

We shall make a comment on a interesting relation between circles and lines. We observe that
the equations of circles and lines can be unified in the following manner: if α, β, γ ∈ R, w ∈ C,
w ̸= 0, α2 + β2 ̸= 0 and β2|w|2 ≥ 4αγ, then the equation

α|z|2 + β Re(wz) + γ = 0

is the equation of a line, ifα = 0, and the equation of a circle, ifα ̸= 0. In fact, ifα = 0, then β ̸= 0
and the equation becomes Re(wz) = − γ

β and this is the equation of a line. If α ̸= 0, the equation

becomes |z+ β
2αw|

2 = β2|w|2−4αγ
4α2 . This is the equation of the circle with center− β

2αw and radius√
β2|w|2−4αγ

2|α| . Conversely, every circle and every line have equations of this form. If, for instance,
we take the equation Re(wz) = c of a line, with w ∈ C, w ̸= 0, and c ∈ R, we may write it in the
form α|z|2 + β Re(wz) + γ = 0 by taking α = 0, β = 1 and γ = −c. If we take the equation
|z − z0| = r of a circle with z0 ∈ C and r ≥ 0, we may write it as |z|2 − 2Re(z0z) + |z0|2 = r2.
This becomes α|z|2 + β Re(wz) + γ = 0 by taking α = 1, γ = |z0|2 − r2 and: β = −2 and
w = z0, in case z0 ̸= 0, or β = 0 and w = 1, in case z0 = 0. In all cases the choices of the
parameters satisfy the restrictions: α, β, γ ∈ R, w ∈ C, w ̸= 0, α2 + β2 ̸= 0 and β2|w|2 ≥ 4αγ.

This consideration of the equations of a line and a circle as special cases of one equation permits
us to unify the notions of circle and line into the single notion of generalized circle in C. If we
attach the point∞ to any line (and leave circles unchanged), then we are talking about generalized
circles in Ĉ.

Now, an important property of every l.f.t. is that it maps generalized circles in Ĉ onto gener-
alized circles in Ĉ. To prove it we consider three special cases first.

Example 5.1.1. Every function T (z) = z + b is a l.f.t. with a = 1, c = 0, d = 1 and, for an
obvious reason, it is called translation by b.
Every such T is holomorphic inC, one-to-one fromC ontoC and T (∞) = ∞. It is trivial to prove
that T maps lines in Ĉ onto lines in Ĉ and circles in C onto circles in C.

Example 5.1.2. Every function T (z) = az with a ̸= 0 is a l.f.t. with b = c = 0, d = 1 and it is
called homothety with center 0.
Evet such T rotates points around 0 through the fixed angle arg a. Indeed, if w = T (z) = az, then
argw = arg z + arg a. Moreover, T multiplies distances between points by the fixed factor |a|.
Indeed, if w1 = T (z1) = az1 and w2 = T (z2) = az2, then |w1 − w2| = |a||z1 − z2|.
Also T is holomorphic inC, one-to-one fromC ontoC and also T (∞) = ∞ and it is easy to prove
that T maps lines in Ĉ onto lines in Ĉ and circles in C onto circles in C.

Example 5.1.3. The function T (z) = 1
z is a l.f.t. with a = d = 0, c = b = 1 and it is called

inversion with respect to the circle T = C0(1).
The inversion T is holomorphic in Ĉ \ {0}, one-to-one from Ĉ \ {0,∞} onto Ĉ \ {0,∞} and also
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T (0) = ∞ and T (∞) = 0. Moreover, it is easy to show that T maps (i) lines in Ĉ which do not
contain 0 onto circles in C which contain 0, (ii) lines in Ĉ which contain 0 onto lines in Ĉ which
contain 0, (iii) circles in C which contain 0 onto lines in Ĉ which do not contain 0 and (iv) circles
in C which do not contain 0 onto circles in C which do not contain 0.

Proposition 5.4. Every l.f.t. is a composition of finitely many translations, homotheties and inver-
sions.

Proof. Let T (z) = az+b
cz+d .

If c = 0, then T (z) = a′z + b′, where a′ = a
d ̸= 0 and b′ = b

d . If we consider the homothety
T1(z) = a′z and the translation T2(z) = z + b′, then T = T2 ◦ T1.
If c ̸= 0, then

T (z) =
a
c (cz + d) + (b− ad

c )

cz + d
=
a

c
+
bc− ad

c2
1

z + d
c

.

If we consider the translation T1(z) = z + d
c , the inversion T2(z) = 1

z , the homothety T3(z) =
bc−ad
c2

z and the translation T4(z) = z + a
c , then T = T4 ◦ T3 ◦ T2 ◦ T1.

Proposition 5.5. Every l.f.t. maps generalized circles in Ĉ onto generalized circles in Ĉ.

Proof. A corollary of proposition 5.4 and of the examples 5.1.1, 5.1.2 and 5.1.3.

Proposition 5.6. Take the distinct z1, z2, z3 ∈ Ĉ and the distinct w1, w2, w3 ∈ Ĉ. Then there is a
unique l.f.t. T so that T (zj) = wj for j = 1, 2, 3.

Proof. We consider the l.f.t. S which, depending on whether one of z1, z2, z3 is∞ or not, has the
formula

S(z) =


z2−z3
z2−z1

z−z1
z−z3 , if z1, z2, z3 ̸= ∞

z−z1
z2−z1 , if z3 = ∞
z−z1
z−z3 , if z2 = ∞
z2−z3
z−z3 , if z1 = ∞

The l.f.t. S has values: S(z1) = 0, S(z2) = 1, S(z3) = ∞.
There is a similar l.f.t. R with values: R(w1) = 0, R(w2) = 1, R(w3) = ∞.
Then the l.f.t. T = R−1 ◦ S has values: T (z1) = w1, T (z2) = w2, T (z3) = w3.
To prove the uniqueness of T with T (z1) = w1, T (z2) = w2, T (z3) = w3 we consider the
previous l.f.t S,R and then the l.f.t. Q = R ◦ T ◦ S−1 has values: Q(0) = 0, Q(1) = 1,
Q(∞) = ∞. Since Q(∞) = ∞, we get that Q has the form Q(z) = az + b with a ̸= 0. Now
from Q(0) = 0, Q(1) = 1 we find a = 1, b = 0 and hence Q is the identity l.f.t. I with I(z) = z.
Thus R ◦ T ◦ S−1 = I and hence T = R−1 ◦ S.

When we apply the previous results we should bear in mind that every three distinct points in
Ĉ belong to a unique generalized circle in Ĉ.

Example 5.1.4. The l.f.t. which maps the triple i, 2, 1 onto the triple 0, 1,∞ is

w = T (z) =
2− 1

2− i

z − i

z − 1
=

2 + i

5

z − i

z − 1
=

(2 + i)z + (1− 2i)

5z − 5
.

The points i, 2, 1 in the z-plane are not co-linear and hence belong to a circle A. The points 0, 1 in
the w-plane belong to the real axis m. Thus the points 0, 1,∞ belong to the line B = m ∪ {∞}
in Ĉ. Now, T maps the circle A in the z-plane onto some generalized circle T (A) in the w-plane.
Since A contains i, 2, 1, T (A) must contain the images of i, 2, 1, i.e. 0, 1,∞. Thus T (A) = B.
If we want to determine the circle A = Cz0(r) which contains i, 2, 1, we have to find z0, r so
that i, 2, 1 satisfy the equation |z − z0| = r: we just solve a system of three equations in three
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real unknowns: x0, y0, r. But there is a second and probably easier way to find the equation of A.
Indeed, w belongs tom if and only if Imw = 0 if and only if Im (2+i)z+(1−2i)

5z−5 = 0 (and z ̸= 1) if
and only if |z|2−3Re((1−i)z) = −2 (and z ̸= 1) if and only if |z− 3

2(1+i)|
2 = −2+ 9

4 |1+i|
2 = 5

2

(and z ̸= 1) if and only if z belongs to C3(1+i)/2

(√
5/2

)
except 1. Since z = 1 is mapped onto

w = ∞, we have that w belongs to B if and only if z belongs to the circle C3(1+i)/2

(√
5/2

)
. We

conclude that A = C3(1+i)/2

(√
5/2

)
.

Exercises.

5.1.1. Find l.f.t. T so that T (1) = i, T (i) = 0, T (−1) = −i. Find T (T) and T (D).

5.1.2. Find l.f.t. T so that T (D) = {z | Im z > 0}, T (i) = 1, T (1) = 0, T (a) = −1, where a ∈ T.
Can a be an arbitrary point of T?

5.1.3. (i) Let T1(z) = a1z+b1
c1z+d1

and T2(z) = a2z+b2
c2z+d2

. Prove that T1, T2 are the same function if and
only if there is λ ̸= 0 so that a2 = λa1, b2 = λb1, c2 = λc1, d2 = λd1.
(ii) Prove that every l.f.t. T can take the form T (z) = az+b

cz+d with ad− bc = 1.

5.1.4. LetA be a generalized circle of the z-plane Ĉ andB be a generalized circleB of thew-plane
Ĉ. Then, in an obvious way,A splits Ĉ into two disjoint setsA+ andA− and, similarly,B splits Ĉ
into two disjoint sets B+ and B−. Now, let T be a l.f.t. and let T (A) = B. Assume that z0 ∈ A+

and w0 = T (z0) ∈ B+. Prove that T (A+) = B+ and T (A−) = B−.

5.1.5. A point z ∈ Ĉ is called fixed point of the l.f.t. T if T (z) = z. If the l.f.t. T is not the identity
(in which case T has infinitely many fixed points), prove that T has either one or two fixed points
in Ĉ. In each case, which are the images through T of the generalized circles which contain its
fixed points?
Apply the above to each of: T (z) = z + 2, T (z) = 2z − 1, T (z) = z−1

z+1 and T (z) = 3z−4
z−1 .

5.1.6. (i) The points a, b ∈ Ĉ are called symmetric with respect to Cz0(r) if either a = z0, b = ∞
or a = ∞, b = z0 or a, b ∈ C are on the same halfline with vertex z0 and |a − z0||b − z0| = r2.
Observe that either a, b coincide with one and the same point ofCz0(r) or a, b are on different sides
of Cz0(r). Given a ∈ Ĉ \ {z0,∞}, describe a geometric construction “with ruler and compass” of
its symmetric point, b ∈ Ĉ \ {z0,∞}, with respect to Cz0(r). Prove that a, b are symmetric with
respect to Cz0(r) if and only if b = z0 +

r2

a−z0 .
(ii) The points a, b ∈ Ĉ are called symmetric with respect to the line l̂ = l ∪ {∞} in Ĉ if either
a = b = ∞ or a, b ∈ C are symmetric with respect to l. Prove that a, b are symmetric with respect
to l̂ if and only if b = z1 +

z2−z1
z2−z1 (a− z1), where z1, z2 are two distinct fixed points of the line l.

(iii) We take a l.f.t. w = T (z) and generalized circles A in the z-plane Ĉ and B in the w-plane Ĉ.
Prove that, if T maps A onto B, then T maps symmetric points with respect to A onto symmetric
points with respect to B.
(iv) Find l.f.t. T so that T (C0(1)) = Ci(3), T (i) = 3 + i, T (12) = 0.

5.1.7. The l.f.t. w = T (z) is called real if it maps the real line (with∞) in the z-plane Ĉ onto the
real line (with∞) in the w-plane Ĉ.
(i) Prove that the l.f.t. T is real if and only if there are a, b, c, d ∈ R with ad − bc ̸= 0 so that
T (z) = az+b

cz+d .
(ii) If the l.f.t. T is real and T (z) = az+b

cz+d , with a, b, c, d ∈ R, ad− bc ̸= 0, we define signT to be
the sign of ad− bc. Using exercise 5.1.3(i), prove that signT is well defined.
(iii) Prove that, if the l.f.t. T is real, then T−1 is real, and that, if the l.f.t. S, T are real, then S ◦ T
is real. Also prove that signT−1 = signT and sign(S ◦ T ) = signS signT .
(iv) Take a real l.f.t. T . Prove that T maps the upper halfplane onto the upper halfplane (and the
lower onto the lower) if and only if signT = +1 and that T maps the upper halfplane onto the
lower halfplane (and the lower onto the upper) if and only if signT = −1.
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5.1.8. (i) Let z0 ∈ D and |λ| = 1 and consider the l.f.t. T (z) = λ z−z0
1−z0z . Prove that T (T) = T and

T (z0) = 0. Find T (D).
(ii) Let z0 ∈ D and let T be a l.f.t. such that T (T) = T and T (z0) = 0. Prove that there is λ with
|λ| = 1 so that T (z) = λ z−z0

1−z0z .
(iii) Let a, b ∈ D and let T be a l.f.t. such that T (T) = T and T (a) = b. Prove that there is λ with
|λ| = 1 so that T (z)−b

1−bT (z) = λ z−b
1−az .

5.1.9. Consider H+ = {z | Im z > 0} and H− = {z | Im z < 0}.
(i) Let z0 ∈ H+ and |λ| = 1 and consider the l.f.t. T (z) = λ z−z0z−z0 . Prove that T (R ∪ {∞}) = T
and T (z0) = 0. Find T (H+).
(ii) Let z0 ∈ H+ and let T be a l.f.t. such that T (R ∪ {∞}) = T and T (z0) = 0. Prove that there
is λ with |λ| = 1 so that T (z) = λ z−z0z−z0 .

5.1.10. Consider distinct z1, z2, z3, z4 ∈ Ĉ. We define the double ratio of z1, z2, z3, z4 (in this
order) to be

(z1, z2, z3, z4) =



z1−z3
z1−z4

z2−z4
z2−z3 , if z1, z2, z3, z4 ∈ C

z2−z4
z2−z3 , if z1 = ∞
z1−z3
z1−z4 , if z2 = ∞
z2−z4
z1−z4 , if z3 = ∞
z1−z3
z2−z3 , if z4 = ∞

(i) Prove that (T (z1), T (z2), T (z3), T (z4)) = (z1, z2, z3, z4) for every l.f.t. T and every distinct
z1, z2, z3, z4 ∈ Ĉ.
(ii) Prove that the distinct z1, z2, z3, z4 ∈ Ĉ belong to the same generalized circle if and only if
(z1, z2, z3, z4) ∈ R \ {0}.
(iii) If (z1, z2, z3, z4) = λ, find all values (depending on λ) which result from this double ratio
after all rearrangements of z1, z2, z3, z4.

5.1.11. Prove that the group of all l.f.t. is simple, i.e. that its only normal subgroups are itself and
{I}, where I is the identity l.f.t.

5.2 The exponential function.

Definition.We define the exponential function exp : C → C by

exp z = ex(cos y + i sin y), z = x+ iy.

If z ∈ R, i.e. z = x+i0, then exp z = ex(cos 0+i sin 0) = ex = ez . This implies that we may
use the symbol ez instead of exp z without the danger of contradiction, in the case that z is real,
between the symbol ez as we just defined it and the symbol ez as we know it from infinitesimal
calculus. Therefore, we define

ez = exp z = ex(cos y + i sin y), z = x+ iy.

Proposition 5.7. (i) |ez| = eRe z for all z.
(ii) arg ez = {Im z + k2π | k ∈ Z} for all z.
(iii) ez = ez for all z.
(iv) For all z1, z2:

ez1ez2 = ez1+z2 .

(v) ez2 = ez1 ⇔ z2 − z1 = k2πi, k ∈ Z.
(vi) ez ̸= 0 for all z.
(vii) If w ̸= 0, then:

ez = w ⇔ z ∈ ln |w|+ i argw.
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Proof. (i) If z = x+ iy, then |ez| = |ex|| cos y + i sin y| = ex.
(ii) From ez = ex(cos y + i sin y) and |ez| = ex we get ez = |ez|(cos y + i sin y).
(iii) ez = ex(cos y − i sin y) = ex(cos(−y) + i sin(−y)) = ez .
(iv) We have

ez1ez2 = ex1(cos y1 + i sin y1)ex2(cos y2 + i sin y2)
= ex1+x2(cos(y1 + y2) + i sin(y1 + y2)) = ez1+z2 ,

since z1 + z2 = (x1 + x2) + i(y1 + y2).
(v) If z2 − z1 = k2πi with k ∈ Z, then ez2 = ez1ek2πi = ez1(cos(k2π) + i sin(k2π)) = ez1 .
Conversely, let ez2 = ez1 and z2 − z1 = x + iy. Then ex(cos y + i sin y) = ez2−z1 = ez2

ez1 = 1
and hence ex = 1, cos y = 1 and sin y = 0. Therefore, x = 0 and y = k2π with k ∈ Z. Thus,
z2 − z1 = k2πi with k ∈ Z.
(vi) For all z = x+ iy we have |ez| = ex > 0.
(vii)We takew ̸= 0 and z = x+iy. Then the equalityw = ez becomesw = ex(cos y+i sin y) and
it just means that its right side is one of the polar representations ofw. Hence,w = ez is equivalent
to ex = |w| and y ∈ argw. Now, ex = |w| is equivalent to x = ln |w|, where ln : (0,+∞) → R is
the usual logarithmic function from infinitesimal calculus. Hence, for every w ̸= 0, the equation
ez = w has infinitely many solutions: if r = |w| and θ is any of the values of argw, then the
solutions of ez = w are given by

z = ln r + i(θ + 2πk) with k ∈ Z.

Since the set of all θ + 2πk, k ∈ Z, is argw, the set of all solutions is ln |w|+ i argw.

Parts (v), (vi) and (vii) of proposition 5.7 imply that the exponential function exp : C → C\{0}
is onto C \ {0} but not one-to-one. In fact exp is periodic with period 2πi.

Based on the equality eiy = cos y+i sin y, we may write the polar representations of any z ̸= 0
in an equivalent form:

z = r(cos θ + i sin θ) ⇔ z = reiθ.

The second form is simpler and we shall use it extensively in the rest of the course. For instance,
we may rewrite the examples 3.2.7 and 3.2.8 as follows.

Example 5.2.1. Using the parametric equation z = γ(t) = z0 + reit, t ∈ [0, 2π], for the circle
Cz0(r), we have ∮

Cz0 (r)
f(z) dz =

∮
γ
f(z) dz =

∫ 2π

0
f(z0 + reit)ireit dt.

Example 5.2.2. If n ∈ Z, we have∫ 2π

0
eint dt =

∫ 2π

0
(cos(nt) + sin(nt)) dt =

{
2π, if n = 0

0, if n ̸= 0

Therefore, if n ∈ Z, we get∮
Cz0 (r)

(z − z0)
n dz =

∫ 2π

0
rneintireit dt = irn+1

∫ 2π

0
ei(n+1)t dt =

{
2πi, if n = −1

0, if n ̸= −1

Proposition 5.8. The exponential function exp : C → C \ {0} is holomorphic in C. Moreover

exp′ = exp .
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Proof. The real and imaginary parts of exp z are u(x, y) = ex cos y and v(x, y) = ex sin y. There-
fore, u, v have partial derivatives

∂u

∂x
(x, y) = ex cos y,

∂u

∂y
= −ex sin y, ∂v

∂x
= ex sin y,

∂v

∂y
= ex cos y,

which are continuous and satisfy the system of C-R equations in C and hence exp is holomorphic
in C. To calculate the derivative of exp we write

exp′ z =
∂u

∂x
(x, y) + i

∂v

∂x
(x, y) = ex cos y + iex sin y = ex(cos y + i sin y) = exp z.

Thus, exp′ = exp.

We shall now examine the mapping properties of the function w = ez . We write z = x + iy
and w = u+ iv.

If z = x+ iy varies on the horizontal line hy in the z-plane which intersects the y-axis at the
fixed point iy, then w = ez = ex(cos y + i sin y) varies on the halfline ry in the w-plane with
vertex 0 (without 0) which forms angle y with the positive u-semiaxis. Also, if z varies on the
horizontal line hy from left to right, i.e. when x increases from−∞ to+∞, thenw = ez varies on
the halfline ry from 0 to∞. If y increases by∆y > 0, i.e. if the horizontal line hy moves upward,
then the corresponding halfline ry rotates in the positive direction around 0 through an angle ∆y.
If 0 < ∆y < 2π, then the open horizontal zone in the z-plane between the lines hy and hy+∆y is
mapped onto the angular region in the w-plane between the halflines ry and ry+∆y. If ∆y = 2π,
then the halflines ry and ry+∆y coincide and then the open horizontal zone in the z-plane between
the lines hy and hy+∆y is mapped onto the whole w-plane without the halfline ry = ry+∆y (and
without 0). In this case, if the horizontal zone includes at least one of its two boundary lines, then
its image is the whole w-plane (without 0). If ∆y > 2π, then the horizontal zone in the z-plane
between the lines hy and hy+∆y is mapped onto the whole w-plane (without 0) “with repetitions”.

If the point z = x+ iy varies on the vertical line vx in the z-plane which intersects the x-axis
at the fixed point x, then w = ez = ex(cos y+ i sin y) varies on the circle C0(e

x), call it cx, in the
w-plane. Also, if z moves upward on the vertical line vx, i.e. if y increases from−∞ to+∞, then
w = ez covers the circle cx infinitely many times in the positive direction. If y increases over an
interval of length 2π, then w = ez describes the whole circle cx once in the positive direction. If y
increases over an interval of length∆y < 2π, then w = ez moves in the positive direction over an
arc of central angle∆y. While, if∆y > 2π, then w = ez moves in the positive direction covering
the whole circle cx “with repetitions”. If x increases by∆x > 0, i.e. if the vertical line vx moves to
the right, then the circle cx with radius ex becomes the circle cx+∆x with radius ex+∆x = exe∆x.
The vertical zone in the z-plane between the lines vx and vx+∆x is mapped onto the ring in the
w-plane between the circles cx and cx+∆x.

We may combine the above results. For instance, if we consider the rectangle

Π = {x+ iy |x1 < x < x2, y1 < y < y2}

in the z-plane with sides parallel to the two main axes, then Π is the intersection of the horizontal
zone between the lines hy1 and hy2 and the vertical zone between the lines vx1 and vy2 . If y2−y1 <
2π, then Π is mapped onto the “circular rectangle”

R = {reiθ | ex1 < r < ex2 , y1 < θ < y2},

in thew-plane, which is the intersection of the angular region between the halflines ry1 and ry2 and
the open ring between the circles cx1 and cx2 . If y2−y1 = 2π, then the “circular rectangle”R is the
open ring between the circles cx1 and cx2 without its linear segment which belongs to the halfline
ry1 = ry2 . Of course, in this case if Π in the z-plane includes at least one of its horizontal sides,
then its image R in the w-plane is the whole open ring between the circles cx1 and cx2 . Finally,
if we assume that y2 − y1 > 2π, then Π in the z-plane is mapped onto the whole ring R in the
w-plane “with repetitions”.
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Exercises.

5.2.1. Prove that |ez − 1| ≤ e|z| − 1 ≤ |z|e|z|.

5.2.2. Let z → ∞ on any halfline. Depending on the halfline, study the existence of the lim ez in
Ĉ. Which characteristic of the halfline determines the existence and the value of the limit?

5.2.3. Find the images through the exponential function of: {x+ iy | a < x < b, θ < y < θ+ π},
{x+ iy | a < x < b, θ < y < θ+2π}, {x+ iy |x < b, θ < y < θ+ π}, {x+ iy |x < b, θ < y <
θ + 2π}, {x+ iy | a < x, θ < y < θ + π}, {x+ iy | a < x, θ < y < θ + 2π}.

5.2.4. Every horizontal and every vertical line in the z-plane are perpendicular. Also, every halfline
with vertex 0 and every circle with center 0 in the w-plane are perpendicular. How do these facts
relate to the conformality of the function w = ez?

5.2.5.We define the functions

cos z =
eiz + e−iz

2
, sin z =

eiz − e−iz

2i
, tan z =

sin z
cos z

, cot z =
cos z
sin z

.

(i) Prove that these functions are extensions in C of the well known trigonometric functions in R.
Find their domains of definition and their periods. Prove that
· sin2 z + cos2 z = 1,
· sin(z + w) = sin z cosw + cos z sinw, cos(z + w) = cos z cosw − sin z sinw,
· | cos(x+ iy)|2 = cos2 x+ sinh2 y, | sin(x+ iy)|2 = sin2 x+ sinh2 y.
(ii) Prove that these functions are holomorphic in their domains of definition and find their deriva-
tives.
(iii) Study the function w = sin z in the vertical zone {x + iy | − π

2 < x < π
2 } and the function

w = cos z in the vertical zone {x+ iy | 0 < x < π}. Examine the images through these functions
of the various horizontal linear segments (of length π) and the various vertical lines inside these
two vertical zones.

5.3 Branches of the logarithmic function.

In the last section we proved, for every w ̸= 0, the equivalence

ez = w ⇔ z ∈ ln |w|+ i argw. (5.3)

Definition. For every w ̸= 0 we denote

logw = ln |w|+ i argw

and logw is called logarithm of w.
The elements of the set logw are called values of the logarithm of w and the particular element

Logw = ln |w|+ iArgw

is called principal logarithm of w.

If r = |w| and if θ is any of the values of the argument ofw, i.e. ifw = r(cos θ+i sin θ) = reiθ

is any of the polar representations of w, then

logw = {ln r + i(θ + k2π) | k ∈ Z}.

Of course, (5.3) takes the form

ez = w ⇔ z ∈ logw,

and says that logw is the set of all solutions of ez = w.
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Example 5.3.1. (i) Log 1 = 0 and log 1 = {i2kπ | k ∈ Z}.
(ii) Log(−1) = iπ and log(−1) = {i(2k + 1)π | k ∈ Z}.
(iii) Log i = iπ2 and log i = {i(2k + 1

2)π | k ∈ Z}.
(iv) Log(−3i) = ln 3− iπ2 and log(−i) = {ln 3 + i(2k − 1

2)π | k ∈ Z}.
(v) Log(1 + i) = ln

√
2 + iπ4 and log(1 + i) = {ln

√
2 + i(2k + 1

4)π | k ∈ Z}.
(vi) Log(1− i

√
3) = ln 2− iπ3 and log(1− i

√
3) = {ln 2 + i(2k − 1

3)π | k ∈ Z}.

For any fixed w ̸= 0 there are infinitely many values z of logw, and any two of them differ
by an integral multiple of i2π. All values z of logw have the same real part x = ln |w| and hence
they are on the same vertical line vx with equation x = ln |w|, and the vertical differences between
them are the integral multiples of 2π. Therefore, every vertical segment of the line vx, which has
length 2π and includes only one of its endpoints, contains exactly one value z of logw. Moreover,
every horizontal zone, which has vertical width 2π and includes only one of its boundary lines
(either the upper or the lower one), contains exactly one value z of logw for every w ̸= 0. More
precisely, if we consider any θ0 and the horizontal zone

Zθ0 = {x+ iy | θ0 < y ≤ θ0 + 2π} or Zθ0 = {x+ iy | θ0 ≤ y < θ0 + 2π},

then this zoneZθ0 contains exactly one value z of logw = ln |w|+i argw : the one with imaginary
part y equal to the (unique) value θ of argw which is such that

θ0 < θ ≤ θ0 + 2π or θ0 ≤ θ < θ0 + 2π,

respectively. Fro instance, if we consider the special zone determined by θ0 = −π which contains
its upper boundary line, i.e.

Z−π = {x+ iy | − π < y ≤ π},

then, for every w ̸= 0, the unique value of logw which is contained in this zone is the principal
logarithm z = Logw.

Proposition 5.9. For all w1, w2 ̸= 0:

log(w1w2) = logw1 + logw2.

Proof. We have

log(z1z2) = ln |z1z2|+ i arg(z1z2) = ln |z1|+ ln |z2|+ i arg z1 + i arg z2 = log z1 + log z2,

using the analogous property of the function ln in (0,+∞) and proposition 1.1.

It is already clear that the exponential function w = exp z = ez from C onto C \ {0} is not
one-to-one. In fact, it is infinity-to-one since there are infinitely many values of z corresponding to
the same value of w ̸= 0. Therefore, there is no inverse of the exponential function. If we want to
produce some kind of inverse of the exponential function, we may take any w in the range C \ {0}
of the function and select one value of z out of the infinitely many in C which satisfy the ez = w.
There are many instances of this method at a more elementary level. Let us consider for instance
the function y = x2 from (−∞,+∞) onto [0,+∞), which is not one-to-one in (−∞,+∞). We
take any y ∈ [0,+∞) (the range of y = x2) and find one x such that x2 = y. There are exactly
two such x: x =

√
y and x = −√

y. Therefore, one might say that we have only two choices
for the inverse function: the choice x =

√
y for every y ∈ [0,+∞) and the choice x = −√

y for
every y ∈ [0,+∞). But this is not correct. We may choose x =

√
y for some y ∈ [0,+∞) and

x = −√
y for the remaining y ∈ [0,+∞), forming, for instance, the inverse function

x =

{√
y, if 0 ≤ y ≤ 1

−√
y, if 1 < y < +∞
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It is obvious that there are infinitely many such inverse functions, depending on the particular
choice we make between x =

√
y and x = −√

y for each value of y. Nevertheless, there is
a criterion which reduces the number of our inverse functions to exactly two: the criterion of
continuity! We observe that the last function, with the double formula, is not continuous. On
the contrary, the function x =

√
y for every y ∈ [0,+∞) and the function x = −√

y for every
y ∈ [0,+∞) are both continuous. To prove that these are the only continuous inverse functions is
a simple exercise in real analysis. Indeed, assume that there is some continuous inverse function
x = f(y) of y = x2 defined in [0,+∞) (the range of y = x2). I.e. f : [0,+∞) → R is continuous
in [0,+∞) and f(y)2 = y for every y ∈ [0,+∞). Let there be y1, y2 > 0 with y1 ̸= y2 such
that f(y1) =

√
y1 and f(y2) = −√

y2. Since f is continuous in the interval [y1, y2] or [y2, y1] and
its values at the endpoints are opposite, there is some y in this interval so that: f(y) = 0. This is
impossible, because y > 0 and either f(y) = √

y > 0 or f(y) = −√
y < 0. Therefore, there are

no such y1, y2 > 0 and hence we have exactly two cases: either f(y) =
√
y for every y ≥ 0 or

f(y) = −√
y for every y ≥ 0. We may say that there are exactly two continuous branches of the

square root in [0,+∞): the branch x =
√
y and the branch x = −√

y.
Now let us go back to the determination of possible inverses of the exponential function.

Definition. Let A ⊆ C \ {0}, f : A→ C. We say that f is a continuous branch of logw in A if
(i) f is continuous in A and
(ii) for every w ∈ A we have f(w) ∈ logw or, equivalently, ef(w) = w.

Proposition 5.10 gives many useful examples of continuous branches of the logarithm.

Proposition 5.10. Let θ0 ∈ R, We consider the set

Aθ0 = {reiθ | 0 < r < +∞, θ0 < θ < θ0 + 2π},

in the w-plane (i.e. C without the halfline with vertex 0 which forms angle θ0 with the positive
u-semiaxis) and the open horizontal zone

Zθ0 = {x+ iy | −∞ < x < +∞, θ0 < y < θ0 + 2π}

in the z-plane. We define the function

f : Aθ0 → Zθ0

as follows: for every w ∈ Aθ0 we take f(w) to be the unique value of logw in the zone Zθ0 . It is
clear that f satisies (ii) of the above definition for the set Aθ0 . Moreover, f is also continuous in
Aθ0 and hence satisfies (i) of the above definition. Thus, f is a continuous branch of logw in Aθ0 .

Proof. Assume that f is not continuous at somew inAθ0 . Then there is a sequence (wn) inAθ0 so
thatwn → w and f(wn) ̸→ f(w). This implies that there is δ > 0 so that |f(wn)−f(w)| ≥ δ > 0
for infinitely many n. These infinitely many n define a subsequence of (wn). Now we ignore the
rest of the sequence (wn) and concentrate on the specific subsequence. For simplicity we rename
the subsequence and call it (wn) again. Therefore, we have a sequence (wn) in Aθ0 such that

wn → w and |f(wn)− f(w)| ≥ δ > 0 for every n. (5.4)

We set z = f(w) ∈ Zθ0 and zn = f(wn) ∈ Zθ0 for every n. Then ez = w and ezn = wn for
every n and (5.4) becomes

ezn → ez and |zn − z| ≥ δ > 0 for every n. (5.5)

The real parts of the zn are equal to ln |wn| and, since ln |wn| → ln |w|, the real parts of the zn are
bounded. Moreover, since zn ∈ Zθ0 , the imaginary parts of the zn are also bounded. Therefore, the
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sequence (zn) is bounded and the Bolzano-Weierstrass theorem implies that there is a subsequence
(znk

) so that
znk

→ z′. (5.6)

for some z′. Since all znk
belong to Zθ0 , we see that z′ belongs to the closed zone

Zθ0 = {x+ iy | −∞ < x < +∞, θ0 ≤ y ≤ θ0 + 2π}.

From (5.5) and (5.6) we get that ez′ = ez and |z′−z| ≥ δ. Therefore, z′ and z differ by a non-zero
integral multiple of i2π. But this is impossible, because z belongs to the open zone Zθ0 and z′
belongs to the closed zone Zθ0 .
Thus f is continuous at every w in Aθ0 .

Our study of the mapping properties of the exponential function in the previous section gives
the following information about the mapping properties of the continuous branch f : Aθ0 → Zθ0
of logw, which is defined in proposition 5.10: f maps the halflines in Aθ0 with vertex 0 (without
0) onto the horizontal lines in Zθ0 and the circles with center 0 (without their point on the halfline
which is excluded from Aθ0) onto the vertical segments of Zθ0 .

Choosing any real θ0, we have defined a continuous branch of logw in the subset Aθ0 of the
w-plane, whose range is the zone Zθ0 of the z-plane. If, instead of θ0, we consider θ0 + k2π with
any k ∈ Z, then the domain A = Aθ0+k2π remains the same but the range, i.e. the zone Zθ0+k2π,
moves vertically by k2π. The various zones Zθ0+k2π are successive and cover the whole z-plane
(except for their boundary lines with equations y = θ0 + k2π). We summarize:
If we exclude from the w-plane a halfline with vertex 0, then in the remaining open set A there
are infinitely many continuous branches of logw defined. Each of them maps A onto some open
horizontal zone of the z-plane of width 2π. These various open zones, which correspond to the var-
ious continuous branches of logw (in the same set A), are mutually disjoint, successive and cover
the z-plane (except for their boundary lines). Of course, if we change the original halfline which
determines the setA, then the corresponding zones and the corresponding continuous branches of
logw also change.

Example 5.3.2. One particular example of a continuous branch of logw is defined when we choose
θ0 = −π. Then the set

A−π = {reiθ | 0 < r < +∞,−π < θ < π}

is the w-plane without the negative u-semiaxis (where w = u+ iv) and the range of the branch is
the zone

Z−π = {x+ iy | −∞ < x < +∞,−π < y < π}.

It is obvious that this branch is the function which maps every w ∈ A−π onto the principal value
z = Logw of logw. I.e. we get the so-called principal branch of logw

Log : A−π → Z−π.

We must keep in mind that in the same set A−π of the w-plane, besides the principal branch, there
are infinitely many other continuous branches of logw defined. Each of them maps A−π in a
corresponding zone Z−π+k2π, with k ∈ Z, which is Z−π moved vertically by k2π. This branch
results from the principal branch z = Logw by adding the constant ik2π and its formula is

z = Logw + i2kπ.

We skip the proof of proposition 5.11, since it is a special case of proposition 5.14.
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Proposition 5.11. Let A ⊆ C \ {0} and f : A→ C be any continuous branch of logw in A. If w0

is an interior point of A, then f is differentiable at w0 and

f ′(w0) =
1

w0
.

Hence f is holomorphic in the interior of A.

Therefore, every continuous branch of logw in an open set A ⊆ C \ {0} can be called holo-
morphic branch of logw in A.

Example 5.3.3.We have defined infinitely many continuous branches of logw in the open set
which results when we exclude any halfline with vertex 0 from the w-plane. All these branches
are holomorphic branches of logw. In particular the principal branch

Log : A−π → Z−π

is holomorphic in A−π.

We skip the proof of proposition 5.12, since it is a special case of proposition 5.15.

Proposition 5.12. Let A ⊆ C \ {0} and f1, f2 : A→ C.
(i) If f1 is a continuous branch of logw in A and f2(w)− f1(w) = ik2π for every w ∈ A, where
k is a fixed integer, then f2 is also a continuous branch of logw in A.
(ii) If, morever, A is connected and f1, f2 are continuous branches of logw in A, then f2(w) −
f1(w) = ik2π for every w ∈ A, where k is a fixed integer. In particular, if f1(w0) = f2(w0) for
some w0 ∈ A, then f1(w) = f2(w) for every w ∈ A.

Thus, if we know one continuous branch of logw in the connected set A, then we find ev-
ery other possible continuous branch of logw in A by adding to the known branch an arbitrary
constant of the form ik2π with k ∈ Z.

Example 5.3.4. LetA = A−π be thew-plane without the negative u-semiaxis (wherew = u+iv).
We want to find a continuous branch of logw in A having value z = 0 when w = 1.
We already know that the principal branch Log of the logarithm has value z = Log 1 = 0 atw = 1.
Since A is connected, there is no other such continuous branch of logw in A.
Now, in the same set A = A−π we want to find a continuous branch of logw taking the value
z = i4π at w = 1.
SinceA is connected the branch we are looking for has the form z = Logw+ ik2π for some fixed
integer k. We try w = 1 in this equality and get k = 2.

Example 5.3.5. Let A = A0 = {reiθ | 0 < r < +∞, 0 < θ < 2π} be the w-plane without the
positive u-semiaxis (wherew = u+ iv). We want to find a continuous branch of logw inA taking
the value z = i(π2 + 4π) at w = i.
We consider the horizontal zones in the z-plane which correspond to the set A, i.e.

Z0+k2π = {x+ iy | −∞ < x < +∞, k2π < y < 2π + k2π} with k ∈ Z

and choose the one which contains the value z = i(π2 + 4π). This zone corresponds to k = 2:

Z4π = {x+ iy | −∞ < x < +∞, 4π < y < 6π}.

Then we consider the continuous branch f of logw which maps A onto Z4π:

f(w) = ln r + iθ for w = reiθ and r = |w| > 0, 4π < θ < 6π,

where θ is the unique value of argw which is contained in the interval (4π, 6π).
Since A is connected, there is no other such continuous branch of logw in A.
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Proposition 5.13. There is no continuous branch of logw defined in any circle C0(r) and hence
in any set A which contains such a circle.

Proof. Assume that there is a continuous branch of logw inC0(r), i.e. f : C0(r) → C continuous
in C0(r) and such that ef(w) = w for every w ∈ C0(r).
We consider the principal branch Log which is continuous in the w-plane without the negative
u-semiaxis. Therefore, Log is continuous in B = C0(r) \ {−r}.
Hence, both f and Log are continuous branches of logw in B. Since B is connected, there is a
fixed integer k so that

Logw = f(w) + ik2π for every w ∈ B. (5.7)

We consider two sequences (w′
n) and (w′′

n) in B such that w′
n → −r on the upper semicircle of B

andw′′
n → −r on the lower semicircle ofB. The continuity of f inC0(r) implies f(w′

n) → f(−r)
and f(w′′

n) → f(−r) and hence f(w′
n)− f(w′′

n) → 0. From (5.7) we get Logw′
n − Logw′′

n → 0.
But Logw′

n → ln r + iπ and Logw′′
n → ln r − iπ and we arrive at a contradiction.

Example 5.3.6. There is no continuous branch of logw in any ring with center 0 neither inC\{0}

Now, we introduce a slight generalization of the notion of the branch of logw, i.e. we define
the notion of the branch of log g(w).

Definition. Let A ⊆ C, f : A → C and g : A → C \ {0} be continuous in A. We say that f is a
continuous branch of log g(w) in A if
(i) f is continuous in A and
(ii) for every w ∈ A we have f(w) ∈ log g(w) or, equivalently, ef(w) = g(w).

We just state and prove the following results which are analogous to propositions 5.11 and
5.12.

Proposition 5.14. Let A ⊆ C, g : A → C \ {0} be continuous in A and f : A → C be any
continuous branch of log g(w) in A. If w0 is an interior point of A and g is differentiable at w0,
then f is differentiable at w0 and

f ′(w0) =
g′(w0)

g(w0)
.

Hence, if g is holomorphic in the interior of A, then f is also holomorphic in the interior of A.

Proof. We set z0 = f(w0) and z = f(w) for every w ∈ A. Then ez0 = g(w0) and ez = g(w).
Since f is continuous, w → w0 implies z → z0. Therefore, using the derivative of the exponential
function at z0, we see that

f(w)− f(w0)

w − w0
=

z − z0
ez − ez0

g(w)− g(w0)

w − w0
→ g′(w0)

ez0
=
g′(w0)

g(w0)
when w → w0.

Thus f is differentiable at w0 and f ′(w0) =
g′(w0)
g(w0)

.

Proposition 5.15. Let A ⊆ C, g : A→ C \ {0} be continuous in A and f1, f2 : A→ C.
(i) If f1 is a continuous branch of log g(w) in A and f2(w) − f1(w) = ik2π for every w ∈ A,
where k is a fixed integer, then f2 is also a continuous branch of log g(w) in A.
(ii) If, morever, A is connected and f1, f2 are continuous branches of log g(w) inA, then f2(w)−
f1(w) = ik2π for every w ∈ A, where k is a fixed integer. In particular, if f1(w0) = f2(w0) for
some w0 ∈ A, then f1(w) = f2(w) for every w ∈ A.
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Proof. (i) The continuity of f1 inA implies the continuity of f2 inA. We also have ef1(w) = g(w)
for every w ∈ A and hence ef2(w) = ef1(w)+ik2π = ef1(w)eik2π = g(w)1 = g(w) for every
w ∈ A. Therefore, f2 is a continuous branch of log g(w) in A.
(ii) We consider the function k : A→ C defined by

k(w) =
1

i2π
(f2(w)− f1(w)) for every w ∈ A.

Since for every w ∈ A both f2(w) and f1(w) are values of log g(w), we have that k(w) is an
integer. I.e. k : A → Z. Also, since both f1, f2 are continuous in A, k is continuous in A. Now,
k is a continuous real function in the connected set A, and hence it has the intermediate value
property. But since its only values are integers, it is constant in A. Therefore, there is a fixed
integer k so that 1

i2π (f2(w) − f1(w)) = k or, equivalently, f2(w) − f1(w) = ik2π for every
w ∈ A.
If f2(w0) = f1(w0) for some w0 ∈ A, then the integer k is 0 and we get that f2(w) = f1(w) for
every w ∈ A.

Exercises.

5.3.1. Prove that for every z ̸= 0 we have exp(log z) = {z} and log(exp z) = {z+k2πi | k ∈ Z}.

5.3.2. If A is any of the sets {w | r1 ≤ |w| ≤ r2} \ [−r2,−r1], {w | 0 < |w| ≤ r2} \ [−r2, 0),
{w | r1 ≤ |w| < +∞} \ (−∞,−r1], find Log(A).

5.3.3.Work on the following in both cases: θ0 = −π and θ0 = 0.
Consider Aθ0 , i.e. the w-plane without the halfline with vertex 0 which forms angle θ0 with the
positive u-semiaxis. Consider also θ1, θ2 with θ0 < θ1 < θ2 < θ0 + 2π as well as r1, r2 with
0 < r1 < r2 < +∞. Draw the set P = {w = reiθ | r1 < r < r2, θ1 < θ < θ2} and its images
through the various continuous branches of logw in Aθ0 .

5.3.4. Let P = {reiθ | 1 < r < 2,−3π
4 < θ < 3π

4 }, Q = {w = reiθ | 1 < r < 2, π4 < θ < 7π
4 }.

We know that there is a continuous branch f of logw in P and a continuous branch g of logw in
Q. Is it possible for f and g to coincide in P ∩Q?

5.3.5. Look back at exercise 1.2.1 and prove that

Log(z1z2) =


Log z1 + Log z2, if −π < Arg z1 + Arg z2 ≤ π

Log z1 + Log z2 + 2πi, if −2π < Arg z1 + Arg z2 ≤ −π
Log z1 + Log z2 − 2πi, if π < Arg z1 + Arg z2 ≤ 2π

Are there any other possible values of Arg z1 + Arg z2?

5.3.6. Define wa = ea Logw for every w ∈ D1(1), and prove that limx→+∞
(
1 + z

x

)x
= ez for

every z.

5.3.7. Let A ⊆ C \ {0}. If A is connected and if f1, f2 are two different continuous branches of
logw in A, prove that f1(A) ∩ f2(A) = ∅. (Observe how this result is confirmed by the special
case of A being C without a halfline with vertex 0 in which case the various continuous branches
of logw in A map A onto disjoint horizontal zones.)

5.3.8. Let A ⊆ C and g : A → C \ {0} be continuous in A. If there is a continuous branch
f : g(A) → C of the logarithm in g(A), prove that f ◦ g : A → C is a continuous branch of
log g(w) in A.

5.3.9. Let a < b. Discuss the geometric meaning of the number Log z−b
z−a for every z with Im z > 0.
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5.4 Powers and branches of roots.

If n ∈ N, n ≥ 2, the function
w = zn

is holomorphic in the z-plane C and we shall examine some mapping properties of this function.
We work with polar representations:

z = reiθ, w = rneinθ.

If θ ∈ R is constant and r varies in (0,+∞), i.e. if z moves on the halfline rθ in the z-plane
with vertex 0 (without 0) which forms angle θ with the positive x-semiaxis, then w = zn moves
on the halfline rϕ in the w-plane with vertex 0 (without 0) which forms angle ϕ = nθ with the
positive u-semiaxis. Also, if z moves on the halfline rθ from 0 to ∞, then w = zn moves on the
halfline rϕ from 0 to ∞. If θ increases by ∆θ > 0, i.e. if the halfline rθ turns in the positive
direction through an angle ∆θ, then the corresponding halfline rϕ turns in the positive direction
through an angle∆ϕ = n∆θ. If 0 < ∆θ < 2π

n , then the angular region in the z-plane between the
halflines rθ and rθ+∆θ is mapped onto the angular region in the w-plane between the halflines rϕ
and rϕ+∆ϕ. If∆θ = 2π

n , then the halflines rϕ and rϕ+∆ϕ coincide and then the angular region in the
z-plane between the halflines rθ and rθ+∆θ is mapped in the whole w-plane without the halfline
rϕ = rϕ+∆ϕ. In this case, if the original angular region includes at least one of its boundary
halflines, then its image is the whole w-plane (without 0). If ∆θ > 2π

n , then the angular region
in the z-plane between the halflines rθ and rθ+∆θ is mapped onto the whole w-plane (without 0)
“with repetitions”.

If r ∈ (0,+∞) is constant and θ varies in R, i.e. if the point z moves on the circle C0(r)
in the z-plane, then w = zn moves on the circle C0(r

n) in the w-plane. Also, if z covers C0(r)
once in the positive direction, i.e. if θ increases in an interval of length 2π, then w = zn covers
C0(r

n) n times in the positive direction. If θ increases in an interval of length 2π
n , then w = zn

covers C(0; rn) once in the positive direction. If z moves on C0(r) in the positive direction over
an arc with central angle ∆θ < 2π

n , then w = zn moves on C0(r
n) in the positive direction over

an arc with central angle n∆θ. If∆θ > 2π
n , then w = zn covers C(0; rn) in the positive direction

“with repetition”. If r increases, i.e. if the circle C(0; r) expands, then the corresponding circle
C(0; rn) also expands. The ring in the z-plane between the circles C(0; r1) and C(0; r2), where
0 < r1 < r2, is mapped onto the ring in the w-plane between the circles C(0; r1n) and C(0; r2n).

In the proof of the following propostion as well as in the whole course, we shall use the symbol
n
√
x only to denote the unique nonnegative n-th root of a nonnegative real number x.

Proposition 5.16. If w ̸= 0 and n ∈ N, n ≥ 2, the equation zn = w has exactly n solutions.

Proof. We consider a polar representation w = ReiΘ of w and a polar representation z = reiθ of
the unknown z. Then the equation zn = w takes the equivalent form rneinθ = ReiΘ and this is
equivalent to rn = R and nθ = Θ+ k2π, k ∈ Z. Solving for r and θ, we find the solutions of the
equation zn = w:

zk =
n
√
Rei(

Θ
n
+k 2π

n
), k ∈ Z.

It is trivial to see that two solutions zk are the same if and only if the corresponding values of k
differ by a multiple of n. Hence, the n numbers

zk =
n
√
Rei(

Θ
n
+k 2π

n
), k = 0, 1, . . . , n− 1,

are the distinct solutions of zn = w.

We easily see that the solutions of zn = w are the vertices of a regular n-gon inscribed in the
circle C0(

n
√
R), where R = |w|.
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Definition. Let w ̸= 0. We call n-th root of w the set {z0, z1, . . . , zn−1}, where z0, z1, . . . , zn−1

are the n solutions of the equation zn = w. We denote this set by

w
1
n = {z0, z1, . . . , zn−1}.

If w = 0, we define
0

1
n = {0},

since 0 is the only solution of zn = 0.
Every element of the n-root of w is called a value of the n-root of w.

Note that, as in the case of the argument, the n-th root of a complex number is a set.
The following equivalence is clear:

zn = w ⇔ z ∈ w
1
n .

Definition. The n-th root of 1, i.e. the set of solutions of zn = 1, is called n-th root of unity and
each of its elements is called a value of the n-th root of unity.

Since 1 = 1ei0 is a polar representation of 1, the values of the n-th root of unity are zk =

ei(
0
n
+k 2π

n
) = eik

2π
n , k = 0, 1, . . . , n − 1. Obviously, one of them is z0 = 1 and, if we denote

z1 = ei
2π
n by the symbol ωn,

ωn = ei
2π
n ,

we find that the values of the n-th root of unity are

1, ωn, ω
2
n, . . . , ω

n−1
n .

We saw that w
1
n has exactly n values which are on the vertices of a regular n-gon inscribed

in the circle C(0; n
√

|w|) of the z-plane. Therefore, every arc of this circle with central angle 2π
n ,

which includes only one of its endpoints, contains exactly one of the values of w
1
n . Thus, every

angular set in the z-plane with vertex 0 and angle 2π
n , which includes only one of its boundary

halflines, contains, for every w ̸= 0, exactly one value of w
1
n . In particular, if we consider any θ0

and the angular set

Aθ0 =
{
reiθ

∣∣∣ r > 0, θ0 < θ ≤ θ0 +
2π

n

}
or Aθ0 =

{
reiθ

∣∣∣ r > 0, θ0 ≤ θ < θ0 +
2π

n

}
,

then Aθ0 contains exactly one value of w
1
n .

Clearly, the function w = zn from C \ {0} onto C \ {0} is n-to-one and has no inverse.

Definition. Let A ⊆ C \ {0} and f : A→ C \ {0}. We say that f is a continuous branch of w
1
n

in A if
(i) f is continuous in A and
(ii) for every w ∈ A we have f(w) ∈ w

1
n or, equivalently, f(w)n = w.

Proposition 5.17 gives many examples of continuous branches of w
1
n .

Proposition 5.17. Let ϕ0 ∈ R. We consider the set

Aϕ0 = {seiϕ | s > 0, ϕ0 < ϕ < ϕ0 + 2π},

in the w-plane (i.e. C without the halfline with vertex 0 which forms angle ϕ0 with the positive
u-semiaxis) and the angular region

Bϕ0/n =
{
reiθ

∣∣∣ r > 0,
ϕ0
n
< θ <

ϕ0
n

+
2π

n

}
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in the z-plane. We define the function

f : Aϕ0 → Bϕ0/n

as follows: for every w ∈ Aϕ0 we take f(w) to be the unique value of w
1
n in the angular region

Bϕ0/n. It is clear that f satisfies (ii) of the above definition for the set Aϕ0 . Moreover, f is also
continuous in Aϕ0 and hence satisfies (i) of the above definition. Therefore, f is a continuous
branch of w

1
n in Aϕ0 .

Proof. Assume that f is not continuous at some w in Aϕ0 . Then there is a sequence (wk) in Aϕ0
so that wk → w and f(wk) ̸→ f(w). Then there is δ > 0 so that |f(wk) − f(w)| ≥ δ > 0 for
infinitely many k. These infinitely many k define a subsequence of (wk). Now we ignore the rest
of the sequence (wk) and concentrate on the specific subsequence. For simplicity we rename the
subsequence and call it (wk) again. Therefore, we have a sequence (wk) in Aϕ0 such that

wk → w and |f(wk)− f(w)| ≥ δ > 0 for every k. (5.8)

We set z = f(w) ∈ Bϕ0/n and zk = f(wk) ∈ Bϕ0/n for every k. Then zn = w and znk = wk for
every k and (5.8) becomes

znk → zn and |zk − z| ≥ δ > 0 for every k. (5.9)

Since |zk|n → |z|n and hence |zk| → |z|, we get that the sequence (zk) is bounded and the
Bolzano-Weierstrass theorem implies that there is a subsequence (zkm) so that

zkm → z′ (5.10)

for some z′. Since all zkm belong to Bϕ0/n, we have that z
′ belongs to the closed angular region

Bϕ0/n =
{
z = reiθ

∣∣∣ r ≥ 0,
ϕ0
n

≤ θ ≤ ϕ0
n

+
2π

n

}
From (5.9) and (5.10) we get z′n = zn and |z′ − z| ≥ δ. This is impossible, because z belongs to
Bϕ0/n and z′ belongs to Bϕ0/n.
Thus f is continuous at every w in Aϕ0 .

From the mapping properties of the function w = zn we get the following for the mapping
properties of the continuous branch f : Aϕ0 → Bϕ0/n of w

1
n defined in proposition 5.17. The

function f maps the halflines in Aϕ0 with vertex 0 (without 0) onto the halflines in Bϕ0/n with
vertex 0 (without 0) and the circular arcs in Aϕ0 with center 0 onto the circular arcs in Bϕ0/n with
center 0.

Choosing any real ϕ0, we have defined a continuous branch of w
1
n in the subset Aϕ0 of the

w-plane, whose range is the angular region Bϕ0/n of the z-plane. If, instead of ϕ0, we consider
ϕ0 + k2π with any k = 0, 1, . . . , n − 1, then the set A = Aϕ0+k2π remains the same but the
range, i.e. the angular region B(ϕ0+k2π)/n rotates through the angle k 2π

n . The n angular regions
B(ϕ0+k2π)/n with k = 0, 1, . . . , n − 1 are successive and cover the z-plane (except for their n
boundary halflines with vertex 0). We summarize:
If we exclude from the w-plane any halfline with vertex 0, then in the remaining open set A there
are n continuous branches of w

1
n defined. Each of them maps A onto some open angular region

of the z-plane with vertex 0 and angle 2π
n . These various angular regions, which correspond

to the various continuous branches of w
1
n (in the same set A), are mutually disjoint, successive

and cover the z-plane (except for their boundary halflines). Of course, if we change the original
halfline which determines the setA, then the corresponding angular regions and the corresponding
branches of w

1
n also change.
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Example 5.4.1.We get a concrete example of a continuous branch of w
1
n when we consider ϕ0 =

−π. Then the set
A−π = {seiϕ | s > 0,−π < ϕ < π}

is thew-plane without the negative u-semiaxis (wherew = u+iv) and the range of the continuous
branch of w

1
n is the angular region

B−π/n =
{
reiθ

∣∣∣ r > 0,−π
n
< θ <

π

n

}
.

This branch is given by

z = n
√
s ei

ϕ
n for w = seiϕ with − π < ϕ < π.

Clearly,
z = n

√
|w| ei

Argw
n .

On the same set A−π of the w-plane, besides the above continuous branch of w
1
n , we may de-

fine n continuous branches of w
1
n . Each of them maps A−π onto a corresponding angular region

B(−π+k2π)/n with k = 0, 1, . . . , n − 1, which results by rotating B−π/n in the positive direc-
tion through the angle k 2π

n . This branch results from the original branch by multiplication by the
constant eik

2π
n and it is given by

z = n
√
s ei(

ϕ
n
+k 2π

n
) for w = seiϕ with − π < ϕ < π.

We skip the proof of proposition 5.18, since it is a special case of proposition 5.20.

Proposition 5.18. Let A ⊆ C \ {0} and f : A → C \ {0} be a continuous branch of w
1
n in A. If

w0 is an interior point of A, then f is differentiable at w0 and

f ′(w0) =
f(w0)

nw0
.

Hence f is holomorphic in the interior of A.

Therefore, every continuous branch of w
1
n in an open set A ⊆ C \ {0} can be called holo-

morphic branch of w
1
n in A.

Example 5.4.2.We have defined n distinct continuous branches of w
1
n in the open set A which

results when we exclude any halfline with vertex 0 from the w-plane. All these branches are
holomorphic branches of w

1
n in A.

We skip the proof of proposition 5.19, since it is a special case of proposition 5.21.

Proposition 5.19. Let A ⊆ C \ {0} and f1, f2 : A → C \ {0}. Let also ωn be the principal n-th
root of unity.
(i) If f1 is a continuous branch of w

1
n in A and f2(w)

f1(w)
= ωkn for every w ∈ A, where k =

0, 1, . . . , n− 1 is fixed, then f2 is also a continuous branch of w
1
n in A.

(ii) If, moreover, A is connected and f1, f2 are continuous branches of w
1
n in A, then f2(w)

f1(w)
= ωkn

for every w ∈ A, where k = 0, 1, . . . , n − 1 is fixed. In particular, if f1(w0) = f2(w0) for some
w0 ∈ A, then f1(w) = f2(w) for every w ∈ A.

Thus, if we know one continuous branch of w
1
n in the connected set A, then we can find every

other possible continuous branch of w
1
n in A by multiplying the known branch with any constant

n-th root of unity.

64



Example 5.4.3. LetA = A−π = {seiϕ | s > 0,−π < ϕ < π} be thew-plane without the negative
u-semiaxis (where w = u+ iv). We want to find a continuous branch of the square root w

1
2 in A

taking the value z = 1 at w = 1.
From the example 5.4.1 we already know the continuous branch of the square root which maps A
onto the angular region

B−π/2 =
{
reiθ

∣∣∣ r > 0,−π
2
< θ <

π

2

}
,

i.e. onto the right halfplane of the z-plane, which is given by

z =
√
s ei

ϕ
2 for w = seiϕ with − π < ϕ < π.

Since A is connected, there is no other continuous branch of the square root in A taking the value
z = 1 at w = 1.

Example 5.4.4. Let A = A−π = {seiϕ | s > 0,−π < ϕ < π} again. Now we want to find a
continuous branch of the square root w

1
2 in A taking the value z = −1 at w = 1.

In the previous example we found one continuous branch of the square root in A. Since A is
connected, there are exactly two continuous branches of the square root in A. We consider the
principal square root of 1, i.e. ω2 = ei

2π
2 = eiπ = −1. (Trivial: the square roots of 1 are the

solutions of z2 = 1, i.e. the numbers 1,−1.) Then the second continuous branch of the square
root in A is given by

z =
√
s ei

ϕ
2 ω2 = −

√
s ei

ϕ
2 for w = seiϕ with − π < ϕ < π,

i.e. the opposite of the previous branch. This branch maps A onto the angular region

B(−π+2π)/2 = Bπ/2 =
{
reiθ

∣∣∣ r > 0,
π

2
< θ <

3π

2

}
,

i.e. onto the left halfplane of the z-plane.

Now, we introduce a slight generalization of the notion of continuous branch of w
1
n , i.e. we

define the notion of continuous branch of g(w)
1
n .

Definition. Let A ⊆ C, f : A → C and g : A → C \ {0} be continuous in A. We say that f is a
continuous branch of g(w)

1
n in A if

(i) f is continuous in A and
(ii) for every w ∈ A we have f(w) ∈ g(w)

1
n or, equivalently, f(w)n = g(w).

Proposition 5.20. Let A ⊆ C, g : A → C \ {0} be continuous in A and f : A → C be any
continuous branch of g(w)

1
n inA. If w0 is an interior point ofA and g is differentiable at w0, then

f is differentiable at w0 and

f ′(w0) =
g′(w0)f(w0)

ng(w0)
.

Hence, if g is holomorphic in the interior of A, then f is also holomorphic in the interior of A.

Proof. We set z0 = f(w0) and z = f(w) for every w ∈ A. Then zn0 = g(w0) and zn = g(w).
Since f is continuous, w → w0 implies z → z0. Therefore, using the derivative of the exponential
function at z0, we see that

f(w)− f(w0)

w − w0
=

z − z0
zn − zn0

g(w)− g(w0)

w − w0
→ g′(w0)

nzn−1
0

=
g′(w0)f(w0)

ng(w0)
when w → w0.

Thus f is differentiable at w0 and f ′(w0) =
g′(w0)f(w0)
ng(w0)

.
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Proposition 5.21. Let A ⊆ C g : A→ C \ {0} be continuous in A and f1, f2 : A→ C \ {0}. Let
also ωn be the principal n-th root of unity.
(i) If f1 is a continuous branch of g(w)

1
n in A and f2(w)

f1(w)
= ωkn for every w ∈ A, where k =

0, 1, . . . , n− 1 is fixed, then f2 is also a continuous branch of g(w)
1
n in A.

(ii) If, moreover, A is connected and f1, f2 are continuous branches of g(w)
1
n in A, then f2(w)

f1(w)
=

ωkn for every w ∈ A, where k = 0, 1, . . . , n − 1 is fixed. In particular, if f1(w0) = f2(w0) for
some w0 ∈ A, then f1(w) = f2(w) for every w ∈ A.

Proof. (i) The continuity of f1 inA implies the continuity of f2 inA. We also have f1(w)n = g(w)
for every w ∈ A and hence f2(w)n = f1(w)

n(ωkn)
n = g(w)(ωnn)

k = g(w) for every w ∈ A.
Thus, f2 is a continuous branch of g(w)

1
n in A.

(ii) Since for every w ∈ A the two numbers f2(w), f1(w) are values of g(w)
1
n , we have that(f2(w)

f1(w)

)n
=
f2(w)

n

f1(w)n
=
g(w)

g(w)
= 1.

Hence for everyw ∈ A the number f2(w)f1(w)
is an n-th root of unity and f2

f1
: A→ {1, ωn, . . . , ωn−1

n }.
Now, the function f2

f1
is continuous inA andA is connected, hence the set f2f1 (A) is also connected.

Since f2
f1
(A) ⊆ {1, ωn, . . . , ωn−1

n }, the set f2f1 (A) contains only one point. I.e.
f2
f1

is constant in A
and hence f2(w)

f1(w)
= ωkn in A, where k = 0, 1, . . . , n− 1 is fixed.

In case f2(w0) = f1(w0), then the integer k is 1 and we get f2(w) = f1(w) for every w ∈ A.

Exercises.

5.4.1. Find (−1)
1
2 , (−1)

1
3 , (−1)

1
4 , i

1
2 , i

1
3 , i

1
4 , (1−i

√
3

2 )
1
2 , (1−i

√
3

2 )
1
3 , (1−i

√
3

2 )
1
4 .

5.4.2. (i) Find the values of log i2 and 2 log i and observe that log i2 ̸= 2 log i.
(ii) Find the values of log i

1
2 and 1

2 log i and observe that log i
1
2 = 1

2 log i. Generalizing, prove that
for every w ̸= 0 and every n ∈ N we have logw

1
n = 1

n logw.

5.4.3. Let w ̸= 0 and z be any of the values of w
1
n . Prove that w

1
n = {z, zωn, zω2

n, . . . , zω
n−1
n }

or, equivalently, w
1
n = z1

1
n .

5.4.4. The set C∗ = C \ {0} is a group under multiplication of complex numbers.
(i) Prove that, if n ∈ N, n ≥ 2, then the n-th root of unity, {1, ωn, ω2

n, . . . , ω
n−1
n }, is a subgroup

of C∗.
(ii) Let z = ωkn be any of the values of the n-th root of unity and ⟨z⟩ = {zm |m ∈ Z} be
the group generated by z. Prove that z is a generator of {1, ωn, ω2

n, . . . , ω
n−1
n } or, equivalently,

⟨z⟩ = {1, ωn, ω2
n, . . . , ω

n−1
n } if and only if gcd{k, n} = 1.

(iii) Prove that {1, ωn, ω2
n, . . . , ω

n−1
n } has no subgroups other than {1} and itself if and only if n

is a prime number.

5.4.5. Look at exercise 4.3.2. Consider the curves on the z-plane with equations x2 − y2 = α and
2xy = β. If the two curves intersect at a point (x0, y0), find in two ways their angle at this point.

5.4.6. Prove that there is no continuous branch of w
1
n in any circle C0(r) and hence in any set A

which contains such a circle.

5.4.7. Let f : C \ (−∞, 0] → C be given by

f(u, v) =


√√

u2+v2+u
2 + i

√√
u2+v2−u

2 , if u ∈ R, v > 0
√
u, if u > 0, v = 0√√
u2+v2+u

2 − i

√√
u2+v2−u

2 , if u ∈ R, v < 0
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where w = u+ iv = (u, v).
(i) prove that f(w)2 = w for everyw ∈ C\(−∞, 0] as well as that f coincides with the continuous
branch of the square root which we saw in the example 5.4.3.
(ii) Prove that f is one-to-one and onto {z | Re z > 0}.
(iii) Prove that f is continuous in C \ (−∞, 0], using either the formula of f or sequences and the
identity in (i).
(iv) Prove that f is holomorphic in C \ (−∞, 0].

5.4.8. Find the continuous branches of the square root in C \ [0,+∞).

5.4.9. Find the continuous branches of the cube root in C \ (−∞, 0].

5.4.10. Let g : A → C \ {0} be continuous, let f : A → C be a continuous branch of log g in A
and let n ∈ N, n ≥ 2. Prove that h : A→ C with h = e

1
n
f is a continuous branch of g

1
n in A.

5.4.11. (i) Considering a continuous branch of (w+1)
1
2 in C\ (−∞,−1] and a continuous branch

of (w − 1)
1
2 in C \ [1,+∞), prove that there is a continuous branch of (w2 − 1)

1
2 in Ω = C \

((−∞,−1]∪ [1,+∞)), i.e. f : Ω → C continuous in Ω so that f(w)2 = w2−1 for every w ∈ Ω.
(ii) Considering a continuous branch of (w + 1)

1
2 in C \ (−∞,−1] and a continuous branch of

(w−1)
1
2 in C\ (−∞, 1], prove that there is a continuous branch of (w2−1)

1
2 in Ω′ = C\ [−1, 1],

i.e. f : Ω′ → C continuous in Ω′ so that f(w)2 = w2 − 1 for every w ∈ Ω′. This is more difficult
than (i).
(iii) What is the possible relation between two continuous branches of (w2 − 1)

1
2 in the same set,

either Ω or Ω′?
(iv) Prove that there is no continuous branch of (w2 − 1)

1
2 in any circle which surrounds one of

the points ±1 but not the other.
(v) Prove that the continuous branches of (w2 − 1)

1
2 in Ω and in Ω′ are holomorphic.

5.4.12. Prove that we can define a holomorphic branch f of (1 − w)
1
2 + (1 + w)

1
2 in the region

A which results when we exclude from C two non-intersecting halflines, one with vertex +1 and
another with vertex −1. Prove that every such f satisfies f(w)4 − 4f(w)2 + 4w2 = 0 for every
w ∈ A. How many such branches f exist in A?

5.4.13. (i) Prove that wa ∈ exp(a logw) for every w ̸= 0 and every a ∈ Z.
(ii) Generalizing (i), we define wa = ea logw = {eaz | z ∈ logw} for every w ̸= 0 and every
a ̸∈ Z. (Thus, wa is a set.)
(iii) Find (1−i

√
3

2 )
1
2 , i

1
4 and draw 2i, i

√
2.

(iv) Prove that wa+b ⊆ wawb, wa−b ⊆ wa

wb and wab ⊆ (wa)b.
(v) Let A ⊆ C \ {0} and f : A → C be a continuous branch of logw. Then g : A → C
with g(w) = eaf(w) for every w ∈ A is called a continuous branch of wa in A. Prove that g is
differentiable at every interior point w0 of A and g′(w0) =

ag(w0)
w0

. Therefore, if we can define a
holomorphic branch of logw in the open set A ⊆ C \ {0}, then we can also define a holomorphic
branch of wa in A.

5.4.14. Prove that there is a unique holomorphic branch f of (1 − w)i = ei log(1−w) in D0(1) so
that f(0) = 1. Then prove that there are c1, c2 > 0 so that c1 < |f(w)| < c2 for everyw ∈ D0(1).
Find the best such c1, c2.

5.4.15. Look at exercise 5.2.5. We define

arccosw = {z | cos z = w}, arcsinw = {z | sin z = w}, arctanw = {z | tan z = w}.

(i) Prove that arccosw and arcsinw are non-empty sets for every w and that arctanw is non-empty
for every w ̸= ±i and empty for w = ±i.
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(ii) Express arccos, arcsin and arctan in terms of log.
(iii) It should be clear from exercise 5.2.5 thatw = sin z is one-to-one from {x+iy | − π

2 < x < π
2 }

onto Ω = C \ ((−∞,−1] ∪ [1,+∞)). Prove that the inverse function g0 is a continuous branch
of arcsinw in Ω, i.e. g0 is continuous in Ω and sin g0(w) = w for every w ∈ Ω. Describe all
continuous branches g of arcsinw in Ω and prove that they are holomorphic in Ω with g′(w) =

1/(1− w2)
1
2 for every w ∈ Ω, where at the denominator appears a specific continuous branch of

(1− w2)
1
2 in Ω.

(iv) From exercise 5.2.5 again, it is clear that w = cos z is one-to-one from {x+ iy | 0 < x < π}
onto Ω = C \ ((−∞,−1] ∪ [1,+∞)). Prove that the inverse function h0 is a continuous branch
of arccosw in Ω, i.e. h0 is continuous in Ω and cosh0(w) = w for every w ∈ Ω. Describe all
continuous branches h of arccosw in Ω and prove that they are holomorphic in Ω with h′(w) =

−1/(1 − w2)
1
2 for every w ∈ Ω, where at the denominator appears a specific continuous branch

of (1− w2)
1
2 in Ω.

(v) Prove that the function w = tan z is one-to-one from {x + iy | − π
2 < x < π

2 } onto U =
C \ {iv | v ≤ −1 or 1 ≤ v}. Prove that the inverse function k0 is a continuous branch of arctanw
in U , i.e. k0 is continuous in U and tan k0(w) = w for every w ∈ U . Describe all continuous
branches k of arctanw in U and prove that they are holomorphic in U with k′(w) = 1

1+w2 for
every w ∈ U .

5.4.16. Considering appropriate continuous branches of w
1
2 , evaluate

∫
γ

1
w1/2 dw for both curves

γ1(t) = eit, t ∈ [0, π], and γ2(t) = e−it, t ∈ [0, π].

5.5 Functions defined by curvilinear integrals.

5.5.1 Indefinite integrals.

Definition. Let Ω ⊆ C be a region and f, F : Ω → C. We say that F is a primitive of f in Ω if
F ′(z) = f(z) for every z ∈ Ω.

Proposition 5.22. Let Ω ⊆ C be a region and f : Ω → C be continuous. The following are
equivalent.
(i) For every closed curve γ in Ω we have

∮
γ f(z) dz = 0.

(ii) If γ1, γ2 are any two curves in Ω with the same endpoints, then
∫
γ1
f(z) dz =

∫
γ2
f(z) dz.

(iii) There is a primitive of f in Ω.

Proof. (iii)⇒ (i) Let F : Ω → C be any primitive of f in Ω. We take an arbitrary curve γ :
[a, b] → Ω with γ(a) = γ(b). Then∮

γ
f(z) dz =

∮
γ
F ′(z) dz =

∫ b

a
F ′(γ(t))γ′(t) dt =

∫ b

a
(F ◦ γ)′(t) dt

= (F ◦ γ)(b)− (F ◦ γ)(a) = F (γ(b))− F (γ(a)) = 0.

(i)⇒ (ii) Assume that the curves γ1, γ2 in Ω have the same endpoints. Then the curve γ = γ1
·
+

(¬ γ2) is a closed curve in Ω and then∫
γ1

f(z) dz −
∫
γ2

f(z) dz =

∫
γ1

f(z) dz +

∫
¬ γ2

f(z) dz =

∮
γ
f(z) dz = 0.

Therefore,
∫
γ1
f(z) dz =

∫
γ2
f(z) dz.

(ii)⇒ (iii) We consider an arbitrary fixed z0 ∈ Ω. Then for every z ∈ Ω there is at least one curve
γ in Ω with initial point z0 and final point z. We define the function F : Ω → C by

F (z) =

∫
γ
f(ζ) dζ. (5.11)
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This formula defines F (z) uniquely, since the value of the curvilinear integral depends only on the
point z and not on the particular curve γ which we use to join z0 to z.
Now we shall prove that F is a primitive of f in Ω. We take an arbitrary z ∈ Ω and a disc
Dz(r) ⊆ Ω. We also take a curve γ in Ω with initial point z0 and final point z. Then the value of
F (z) is given by (5.11). Now we consider any w ∈ Dz(r) and the curve γ

·
+ [z, w]. This curve is

in Ω and has initial point z0 and final point w. Therefore,

F (w) =

∫
γ

·
+[z,w]

f(ζ) dζ =

∫
γ
f(ζ) dζ +

∫
[z,w]

f(ζ) dζ. (5.12)

From (5.11) and (5.12) we get

F (w)−F (z)−f(z)(w−z) =
∫
[z,w]

f(ζ) dζ−f(z)
∫
[z,w]

dζ =

∫
[z,w]

(f(ζ)−f(z)) dζ. (5.13)

Now, since f is continuous, for every ϵ > 0 there is δ > 0 so that |f(z′) − f(z)| < ϵ for every
z′ ∈ Ω with |z′ − z| < δ. Taking w ∈ Dz(r) with |w− z| < δ we automatically have |ζ − z| < δ
for every ζ ∈ [z, w] and hence (5.13) implies

|F (w)− F (z)− f(z)(w − z)| =
∣∣∣ ∫

[z,w]
(f(ζ)− f(z)) dζ

∣∣∣ ≤ ϵ|w − z|.

Therefore,
∣∣F (w)−F (z)

w−z − f(z)
∣∣ < ϵ for every w with |w − z| < δ and hence F ′(z) = f(z).

Definition. Let Ω ⊆ C be a region and f : Ω → C be continuous. If either one of the equivalent
conditions (i), (ii) of proposition 5.22 is satisfied, then as we saw in the proof of (ii)⇒ (iii) of
proposition 5.22, we may define a function F : Ω → C by choosing a fixed point z0 ∈ Ω and
setting F (z) =

∫
γ f(ζ) dζ for every z ∈ Ω, where γ is an arbitrary curve in Ω with initial point

z0 and final point z.
Now, any function F : Ω → C of the form

F (z) =

∫
γ
f(ζ) dζ + c for every z ∈ Ω,

where γ is an arbitrary curve in Ω with fixed (but otherwise arbitrary) initial point z0 and final
point z and where c is an arbitrary constant, is called indefinite integral of f in Ω.

The crucial condition for the existence of an indefinite integral is (ii) (or its equivalent (i))
of proposition 5.22. As soon as this is satisfied, then by changing the base point z0 ∈ Ω or the
constant c we get different indefinite integrals F .

In the proof of proposition 5.22 we saw that every indefinite integral of f is a primitive of f .
The converse is also true. Indeed, let F be any primitive of f in the regionΩ, i.e. let F ′(z) = f(z)
for every z ∈ Ω. Proposition 5.22 implies that condition (ii) is satisfied and, if we take any curve
γ : [a, b] → Ω with initial point a fixed z0 ∈ Ω and final point z ∈ Ω, then∫

γ
f(ζ) dζ =

∫
γ
F ′(ζ) dζ =

∫ b

a
F ′(γ(t))γ′(t) dt =

∫ b

a
(F ◦ γ)′(t) dt

= (F ◦ γ)(b)− (F ◦ γ)(a) = F (z)− F (z0).

(5.14)

Therefore, F has the form
F (z) =

∫
γ
f(ζ) dζ + F (z0)

and hence it is an indefinite integral of f in Ω.
We summarize. Let f : Ω → C be continuous in the region Ω. Then the notion of primitive

of f in Ω coincides with the notion of indefinite integral of f in Ω. Moreover, the existence of a

69



primitive or, equivalently, of an indefinite integral of f inΩ is equivalent to the validity of condition
(ii) or (i) of proposition 5.22.

Regarding the number of possible primitives of f in Ω we may easily see that, if there is at
least one primitive F of f in Ω, then all others are of the form F + c for an arbitrary constant c.
Indeed, it is obvious that F + c is a primitive of f in Ω. Conversely, if G is a primitive of f in Ω,
then we have (G− F )′(z) = G′(z)− F ′(z) = f(z)− f(z) = 0 for every z ∈ Ω. Now, theorem
4.3 implies that G− F is a constant in Ω.

Since it is useful for calculations of curvilinear integrals, we state relation (5.14) as a separate
proposition.

Proposition 5.23. Let f, F : Ω → C and let F be a primitive of the continuous f in the region Ω.
Then for every curve γ in Ω with initial endpoint z1 and final endpoint z2 we have∫

γ
f(z) dz = F (z2)− F (z1).

Example 5.5.1. Every polynomial function p(z) = a0 + a1z + · · · + anz
n has the primitive

a0z +
a1
2 z

2 + · · ·+ an
n+1z

n+1 in C. Therefore, we have∮
γ
p(z) dz =

∮
γ
(a0 + a1z + · · ·+ anz

n) dz = 0

for every closed curve γ.
In particular, if n ∈ Z, n ≥ 0, we have

∮
γ(z − z0)

n dz = 0 for every closed curve γ. A very
special case of this, with the circle Cz0(r), we saw in examples 3.2.8 and 5.2.2.

Example 5.5.2. The exponential function ez has the primitive ez in C. Hence∮
γ
ez dz = 0

for every closed curve γ.

Example 5.5.3. Let z0 ∈ C and n ∈ N, n ≥ 2. Then the function 1
(z−z0)n has the primitive

− 1
(n−1)(z−z0)n−1 in C \ {z0}. Therefore,∮

γ

1

(z − z0)n
dz = 0, n ∈ N, n ≥ 2,

for every closed curve γ in C \ {z0}.
A very special case of this, with the circle Cz0(r), we saw in examples 3.2.8 and 5.2.2.

Example 5.5.4. The function 1
z−z0 (the case n = 1 of the previous example) has no primitive in

C \ {z0} or even in any open ring Dz0(r1, r2) = {z | r1 < |z − z0| < r2}.
Indeed, if 1

z−z0 had a primitive in Dz0(r1, r2), then we would have
∮
γ

1
z−z0 dz = 0 for every

closed curve γ in Dz0(r1, r2). Now, if we take a radius r so that r1 < r < r2 and the curve
γ : [0, 2π] → Dz0(r1, r2) with parametric equation γ(t) = z0 + reit, then we have∮

γ

1

z − z0
dz =

∮
Cz0 (r)

1

z − z0
dz =

∫ 2π

0

1

reit
rieit dt = 2πi ̸= 0.

In fact, we did exactly the same calculation in example 5.2.2.

The following result is important.
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Proposition 5.24. Let g : Ω → C \ {0} be holomorphic in the region Ω and let g′ be continuous
in Ω. Then a holomorphic branch of log g exists in Ω if and only if

∮
γ
g′(z)
g(z) dz = 0 for every closed

curve γ in Ω.

Proof. Assume that there is a holomorphic branch of log g in Ω, i.e. there is F : Ω → C holo-
morphic in Ω so that eF (z) = g(z) for every z ∈ Ω. Then F ′(z)eF (z) = g′(z) for every z ∈ Ω

and hence F ′(z) = g′(z)
g(z) for every z ∈ Ω. Therefore, F (z) is a primitive of g

′(z)
g(z) in Ω and thus,∮

γ
g′(z)
g(z) dz = 0 for every closed curve γ in Ω.

Conversely, assume
∮
γ
g′(z)
g(z) dz = 0 for every closed curve γ in Ω. Then g′(z)

g(z) has a primitive in

Ω, i.e. there is F : Ω → C so that F ′(z) = g′(z)
g(z) for every z ∈ Ω. Now,

d

dz

(
g(z)e−F (z)

)
= g′(z)e−F (z) − g(z)F ′(z)e−F (z) = 0

for every z ∈ Ω. This implies that, for some constant c, we have g(z)e−F (z) = c for every z ∈ Ω.
Since c ̸= 0, there is a constant d so that ed = c and we finally get that

eF (z)+d = g(z) for every z ∈ Ω.

Now the function F + d is a holomorphic branch of log g in Ω.

In the next chapter we shall prove that for every holomorphic g the derivative g′ is automatically
continuous. Therefore, a posteriori the assumption in proposition 5.24 that g′ is continuous is
unnecessary.

Example 5.5.5. If the region Ω ⊆ C \ {z0} contains a circle Cz0(r), then there is no holomorphic
branch of log(z − z0) in Ω. In fact, example 5.5.4 shows that

∮
Cz0 (r)

1
z−z0 dz ̸= 0.

Example 5.5.6. Let g : Ω → C \ {0} be holomorphic in the region Ω and let g′ be continuous in
Ω and suppose that there is a halfline with vertex 0 so that g(Ω) ⊆ C \ l.
We know that a holomorphic branch of logw exists in C \ l. If f : C \ l → C is such a branch,
then ef(w) = w for every ∈ C\ l. This implies that ef(g(z)) = g(z) for every z ∈ Ω and this means
that the function f ◦ g : Ω → C is a holomorphic branch of log g in Ω. From proposition 5.24 we
also get that

∮
γ
g′(z)
g(z) dz = 0 for every closed curve γ in Ω.

5.5.2 Integrals with parameter.

Lemma 5.1. Let n ∈ N and γ be any curve. If ϕ : γ∗ → C is continuous in the trajectory γ∗, we
define the function f : C \ γ∗ → C by

f(z) =

∫
γ

ϕ(ζ)

(ζ − z)n
dζ for every z /∈ γ∗.

Then f is holomorphic in the open set C \ γ∗ and

f ′(z) = n

∫
γ

ϕ(ζ)

(ζ − z)n+1
dζ for every z /∈ γ∗.

Proof. We take any z ∈ C \ γ∗. Since C \ γ∗ is open, there is δ > 0 so thatDz(δ) ⊆ C \ γ∗. We
consider the smaller circle Dz(

δ
2) and we have

|ζ − w| ≥ δ

2
for every ζ ∈ γ∗ and every w ∈ Dz

(δ
2

)
. (5.15)
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Now for every w ∈ Dz(
δ
2) we get

f(w)− f(z) =

∫
γ

ϕ(ζ)

(ζ − w)n
dζ −

∫
γ

ϕ(ζ)

(ζ − z)n
dζ =

∫
γ

( 1

(ζ − w)n
− 1

(ζ − z)n

)
ϕ(ζ) dζ,

hence

f(w)− f(z)

w − z
− n

∫
γ

ϕ(ζ)

(ζ − z)n+1
dζ =

∫
γ

( 1
(ζ−w)n − 1

(ζ−z)n

w − z
− n

(ζ − z)n+1

)
ϕ(ζ) dζ. (5.16)

To simplify the notation, we temporarily set A = ζ − w and B = ζ − z, and, to estimate the
parenthesis in (5.16), we use the algebraic identity

1
An − 1

Bn

B −A
− n

Bn+1
= (B −A)

( 1

AnB2
+

2

An−1B3
+ · · ·+ n− 1

A2Bn
+

n

ABn+1

)
.

From (5.15) we have that |A| ≥ δ
2 and |B| ≥ δ

2 for every ζ ∈ γ∗ and w ∈ Dz(
δ
2) and hence∣∣∣ 1

An − 1
Bn

B −A
− n

Bn+1

∣∣∣ ≤ |B −A|
( 1

|A|n|B|2
+ · · ·+ n

|A||B|n+1

)
≤ |w − z|1 + 2 + · · ·+ (n− 1) + n

( δ2)
n+2

≤ |w − z| n
22n+2

δn+2
.

(5.17)

Now, γ∗ is compact and ϕ is continuous in γ∗ and hence there isM ≥ 0 so that |ϕ(ζ)| ≤ M for
every ζ ∈ γ∗. Therefore, (5.16) and (5.17) imply∣∣∣f(w)− f(z)

w − z
− n

∫
γ

ϕ(ζ)

(ζ − z)n+1
dζ

∣∣∣ ≤ |w − z| n
22n+2

δn+2
M l(γ)

for every w ∈ Dz(
δ
2). Thus, limw→z

f(w)−f(z)
w−z = n

∫
γ

ϕ(ζ)
(ζ−z)n+1 dζ and f is differentiable at z

with f ′(z) = n
∫
γ

ϕ(ζ)
(ζ−z)n+1 dζ.

Observe that lemma 5.1 justifies the change of order of the operations of integration and dif-
ferentiation with respect to the parameter z:

f ′(z) =
d

dz
f(z) =

d

dz

∫
γ

ϕ(ζ)

(ζ − z)n
dζ =

∫
γ

d

dz

( ϕ(ζ)

(ζ − z)n

)
dζ = n

∫
γ

ϕ(ζ)

(ζ − z)n+1
dζ.

Proposition 5.25. Let γ be any curve and ϕ : γ∗ → C be continuous in the trajectory γ∗. Then
the function f : C \ γ∗ → C defined by

f(z) =

∫
γ

ϕ(ζ)

ζ − z
dζ for every z /∈ γ∗

is infinitely many times differentiable in the open set C \ γ∗ and

f (n)(z) = n!

∫
γ

ϕ(ζ)

(ζ − z)n+1
dζ for every z /∈ γ∗.

Proof. Successive application of lemma 5.1.

Exercises.

5.5.1. Let f, g : Ω → C be holomorphic in Ω and let f ′, g′ be continuous in Ω.
(i) If |f(z)− 1| < 1 for every z ∈ Ω, prove that

∮
γ
f ′(z)
f(z) dz = 0 for every closed curve γ in Ω.

(ii) If |f(z)− g(z)| < |g(z)| for every z ∈ Ω, prove that
∮
γ
f ′(z)
f(z) dz =

∮
γ
g′(z)
g(z) dz for every closed

curve γ in Ω.
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5.5.2. Let γ be any curve and ϕ : γ∗ → C be continuous in the trajectory γ∗. We know that the
function f(z) =

∫
γ
ϕ(ζ)
ζ−z dζ is holomorphic in C \ γ∗. Prove that f is holomorphic at∞.

5.5.3. Let f : R → C be continuous in R and let
∫ +∞
−∞

|f(t)|
1+|t| dt < +∞. Prove that the function

F (z) =
∫ +∞
−∞

f(t)
t−z dt is holomorphic in C \ R.

5.5.4. Let f : R → C be continuous in R and
∫ +∞
−∞ |f(t)|eM |t| dt < +∞ for every M > 0.

Prove that the functions F (z) =
∫ +∞
−∞ f(t)etz dt, G(z) =

∫ +∞
−∞ f(t) cos tz dt and H(z) =∫ +∞

−∞ f(t) sin tz dt are holomorphic in C.

5.5.5. Find the domains of holomorphy of the functions f(z) =
∫ 1
0

1
1+tz dt, g(z) =

∫ 1
−1

etz

1+t2
dt

and h(z) =
∫ +∞
0

etz

1+t2
dt, k(z) =

∫ +∞
0 e−tz

2
dt.

5.6 Functions defined by power series.

Definition. Every series of the form

+∞∑
n=0

an(z − z0)
n = a0 + a1(z − z0) + a2(z − z0)

2 + · · ·

is called power series with center z0 and coefficients an. The R ∈ [0,+∞] defined by

R =
1

lim n
√

|an|

is called radius of convergence of the power series. (Of course we understand that R = 0 if
lim n

√
|an| = +∞ and R = +∞ if lim n

√
|an| = 0.)

Proposition 5.26. Let
∑+∞

n=0 an(z − z0)
n be a power series with radius of convergence R.

If R = 0, then the series converges only at z0. If R > 0, then
(i) The power series converges absolutely at every z ∈ Dz0(R).
(ii) The power series diverges at every z ̸∈ Dz0(R).
(iii) The power series converges uniformly in every closed disc Dz0(r) with r < R.
(iv) The sum s(z) =

∑+∞
n=0 an(z − z0)

n, which is defined as a function s : Dz0(R) → C, is
holomorphic in Dz0(R). The derivative of s in Dz0(R) is the sum t(z) =

∑+∞
n=1 nan(z − z0)

n−1

of the power series which results from
∑+∞

n=0 an(z − z0)
n by formal termwise differentiation.

Proof. If z = z0, then the power series consists only of its constant term a0 and hence converges.
If z ̸= z0, then by the definition of R we get

lim n
√

|an(z − z0)n| = lim n
√

|an| |z − z0| =
|z − z0|
R

.

The root test of Cauchy for general series implies that the power series converges absolutely if
|z − z0| < R and diverges if |z − z0 > R and this is the content of (i) and (ii).
(iii) Let 0 < r < R. We consider any R′ so that r < R′ < R. Then lim n

√
|an| < 1

R′ and hence
there is n0 so that n

√
|an| ≤ 1

R′ for every n ≥ n0. Then for every z ∈ Dz0(r) we have

|an(z − z0)
n| = |an| |z − z0|n ≤

( r

R′

)n
for every n ≥ n0.

Since r
R′ < 1, we have

∑+∞
n=0(

r
R′ )n < +∞ and the test of Weierstrass implies that the power

series
∑+∞

n=0 an(z − z0)
n converges uniformly in Dz0(r).

(iv) Besides
∑+∞

n=0 an(z − z0)
n, we also consider the power series

∑+∞
n=1 nan(z − z0)

n−1. The
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second power series results from the first by formal termwise differentiation. We shall prove that
the second series converges at every z ∈ Dz0(R) and that its sum is the derivative of the sum s of
the first series at every z ∈ Dz0(R).
Since n

√
n→ 1, we have

lim n
√

|nan| = lim n
√
n n
√

|an| = lim n
√

|an|

and the radius of convergence of the series
∑+∞

n=1 nan(z−z0)n is alsoR. Thus,
∑+∞

n=1 nan(z−z0)n
and hence

∑+∞
n=1 nan(z − z0)

n−1 converges at every z ∈ Dz0(R).
We define t(z) =

∑+∞
n=1 nan(z − z0)

n−1 at every z ∈ Dz0(R).
Now at every z, w ∈ Dz0(R) we have s(w) − s(z) =

∑+∞
n=0 an((w − z0)

n − (z − z0)
n). For

simplicity, we shall set temporarily B = w − z0 and A = z − z0 and then we have

s(w)− s(z) = (w − z)

+∞∑
n=1

an(B
n−1 +Bn−2A+ · · ·+BAn−2 +An−1)

and hence

s(w)− s(z)

w − z
− t(z) =

+∞∑
n=2

an(B
n−1 +Bn−2A+ · · ·+BAn−2 +An−1 − nAn−1)

= (w − z)
+∞∑
n=2

an(B
n−2 + 2Bn−3A+ · · ·+ (n− 2)BAn−3 + (n− 1)An−2).

(5.18)

Now we fix z ∈ Dz0(R) and take δ =
R−|z−z0|

2 > 0. We also set R1 = |z − z0|+ δ = R− δ. If
w ∈ Dz(δ), then |B| ≤ R1 and |A| ≤ R1 and (5.18) implies

∣∣∣s(w)− s(z)

w − z
− t(z)

∣∣∣ ≤ |w − z|
+∞∑
n=2

n2|an|Rn−2
1 .

Since lim n
√

|n2anRn1 | =
R1
R < 1, the last sum is a finite number independent of w ∈ Dz(δ).

Therefore, limw→z
s(w)−s(z)
w−z = t(z) and s is differentiable at z with s′(z) = t(z).

If R is the radius of convergence of
∑+∞

n=0 an(z − z0)
n, then the open disc Dz0(R) is called

disc of convergence of the power series.
IfR = 0 then the disc of convergence is empty and the power series converges only at the center

z0. If R = +∞ then the disc of convergence is the whole z-plane. In this case the power series
converges (absolutely) at every z. If 0 < R < +∞, then the power series converges (absolulety)
at every z ∈ Dz0(R) and diverges at every z outside the closed disc Dz0(R). There is no general
result for the convergence at the points z ∈ Cz0(R): the series may converge at some points of the
circle and diverge at its remaining points. If 0 < R ≤ +∞, the power series converges uniformly
in every smaller closed disc Dz0(r) with r < R and its sum s(z) is a holomorphic function in
Dz0(R). In fact the derivative of the sum s(z) of the power series is the function t(z) which is
the sum of the power series we get by formal termwise differentiation of the original power series.
We saw that the differentiated power series has the same disc of convergence as the original series.
Therefore, we may repeat our arguments: the function t(z) is holomorphic in Dz0(R) and its
derivative, i.e. the second derivative of s(z), is the sum of the power series which we get by a
second formal termwise differentiation of the original power series. We conclude that the function
s(z) is infinitely many times differentiable in the disc of convergenceDz0(R) and

s(k)(z) =

+∞∑
n=k

n(n− 1) · · · (n− k + 1)an(z − z0)
n−k for every z ∈ Dz0(R).
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Example 5.6.1. For the power series
∑+∞

n=1
zn

n we get lim n

√
| 1n | = lim 1

n
√
n
= 1, and henceR = 1.

The disc of convergence is D. If s is the function defined by the power series in D, then s′(z) =∑+∞
n=1 z

n−1 = 1
1−z for every z ∈ D. We observe that−Log(1− z) is defined and is holomorphic

in D. Its derivative is 1
1−z and its value at 0 is 0. Since the functions s(z) and −Log(1− z) have

the same derivative in the region D and the same value at 0, we conclude that

+∞∑
n=1

zn

n
= −Log(1− z) for every z ∈ D.

We shall come back to this identity later, whenwe study the Taylor series of the function−Log(1−
z) in D.

Example 5.6.2. For
∑+∞

n=1
zn

n2 we get lim n

√
| 1
n2 | = lim 1

( n
√
n)2

= 1, and hence R = 1. The disc of
convergence is D.

Example 5.6.3. For
∑+∞

n=0
zn

n! we have lim n

√
| 1n! | = lim 1

n√
n!

= 0, and hence R = +∞. The
disc of convergence is C. If s is the function defined by the power series in C, then s′(z) =∑+∞

n=1
zn−1

(n−1)! =
∑+∞

n=0
zn

n! = s(z) for every z ∈ C. Nowwe have that d
dz (e

−zs(z)) = −e−zs(z)+
e−zs′(z) = 0 for every z ∈ C. Since the value of e−zs(z) at 0 is 1, we find that e−zs(z) = 1 for
every z ∈ C and thus

+∞∑
n=0

zn

n!
= ez for every z.

We shall reprove this identity later, when we study the Taylor series of the function ez .

Example 5.6.4. For
∑+∞

n=1 n!z
n we have lim n

√
|n!| = lim n

√
n! = +∞, and hence R = 0. The

power series converges only at 0.

Definition. Every series of the form

n=−1∑
−∞

an(z − z0)
n = · · ·+ a−3

(z − z0)3
+

a−2

(z − z0)2
+

a−1

z − z0

is called power series of second type with center z0 and coefficients an. The R ∈ [0,+∞]
defined by

R = lim m
√
|a−m|

is called radius of convergence of the power series.

The usual power series of the form
∑+∞

n=0 an(z−z0)n are also called power series of first type,
to distinguish them from the power series of second type.

We observe that a power series of second type has no meaning at z0, in the same way that any
power series of first type (with an ̸= 0 for at least one n ≥ 1) has no meaning at∞. On the other
hand, if z = ∞, then a power series of second type becomes

∑n=−1
−∞ 0 = 0 and hence converges

with sum 0.
From now on in these notes we shall use the notations

Dz0(R,+∞) = {z |R < |z − z0|}, Dz0(R,+∞) = {z |R ≤ |z − z0|}

for the open and the closed unbounded ring with center z0 and internal radius R. We also use

Dz0(R1, R2) = {z |R1 < |z − z0| < R2}, Dz0(R1, R2) = {z |R1 ≤ |z − z0| ≤ R2}

to denote the open and the closed bounded ring with center z0, internal radius R1 and external
radius R2.
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Proposition 5.27. Let
∑n=−1

−∞ an(z − z0)
n be a power series of second type with radius of con-

vergence R.
If R = +∞, then the series converges only at ∞. If R < +∞, then
(i) The power series converges absolutely at every z ∈ Dz0(R,+∞).
(ii) The power series diverges at every z ̸∈ Dz0(R,+∞).
(iii) The power series converges uniformly in every Dz0(r,+∞) with r > R.
(iv) The sum s(z) =

∑n=−1
−∞ an(z − z0)

n, defined as a function s : Dz0(R,+∞) → C, is holo-
morphic inDz0(R,+∞). The derivative of s inDz0(R,+∞) is t(z) =

∑n=−1
−∞ nan(z − z0)

n−1,
i.e. the sum of the power series which results from

∑n=−1
−∞ an(z − z0)

n by formal termwise dif-
ferentiation. Finally, the function s is also differentiable at ∞.

Proof. The easiest way is to reduce a power series of second type to a power series of first type
with the simple change of variable

w =
1

z − z0
.

Then the power series
∑n=−1

−∞ an(z − z0)
n takes the form

n=−1∑
−∞

anw
−n =

+∞∑
m=1

a−mw
m

of a power series of first type with center 0. We also observe that z varies in the unbounded ring
Dz0(R,+∞) if and only if w varies in the punctured disc D0(

1
R) \ {0}. Also, z varies in the

unbounded ring Dz0(r,+∞) if and only if w varies in the punctured disc D0(
1
r ) \ {0}. Now

we can use everything we know about the series
∑+∞

m=1 a−mw
m from proposition 5.26 to get the

corresponding results about the series
∑n=−1

−∞ an(z − z0)
n. For example, the differentiability of∑n=−1

−∞ an(z − z0)
n results from the differentiability of

∑+∞
m=1 a−mw

m and the differentiability
of the function w = 1

z−z0 . We leave all the details to the reader. We shall only say a few things
about the differentiability of s(z) =

∑n=−1
−∞ an(z−z0)n at∞, using again the transformed power

series s∗(w) =
∑+∞

m=1 a−mw
m. Since s(∞) = 0 and s∗(0) = 0, we have

lim
z→∞

z(s(z)− s(∞)) = lim
z→∞

zs(z) = lim
w→0

1 + z0w

w
s∗(w) = lim

w→0

s∗(w)

w
= s′∗(0) = a−1.

Therefore, s is differentiable at∞

If R is the radius of convergence of
∑n=−1

−∞ an(z − z0)
n, then the open ring Dz0(R,+∞) is

called ring of convergence of the power series.
If R = +∞ then the ring of convergence is empty and the power series converges only at

∞. If R = 0 then the disc of convergence is the whole z-plane without z0. In this case the
power series converges (absolutely) at every z ̸= z0. If 0 < R < +∞, then the power series
converges (absolutely) at every z ∈ Dz0(R,+∞) and diverges at every z inside the open disc
Dz0(R). There is no general result for the convergence at the points z ∈ Cz0(R): the series may
converge at some points of the circle and diverge at its remaining points. If 0 ≤ R < +∞, the
power series converges uniformly in every smaller closed ring Dz0(r,+∞) with r > R and its
sum s(z) is a holomorphic function in Dz0(R,+∞). In fact the derivative of the sum s(z) of the
power series is the function t(z) which is the sum of the power series we get by formal termwise
differentiation of the original power series. The differentiated power series has the same ring of
convergence as the original series. Therefore, we may repeat our arguments: the function t(z) is
holomorphic in Dz0(R,+∞) and its derivative, i.e. the second derivative of s(z), is the sum of
the power series which we get by a second formal termwise differentiation of the original power
series. We conclude that the function s(z) is infinitely many times differentiable in the ring of
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convergence Dz0(R,+∞) and

s(k)(z) =

n=−1∑
−∞

n(n− 1) · · · (n− k + 1)an(z − z0)
n−k for every z ∈ Dz0(R,+∞).

Example 5.6.5.
∑n=−1

−∞
zn

−n =
∑+∞

m=1
1

mzm has ring of convergence D0(1,+∞).

Example 5.6.6.
∑n=−1

−∞
zn

n2 =
∑+∞

m=1
1

m2zm
has ring of convergence D0(1,+∞).

Example 5.6.7.
∑n=−1

−∞
zn

(−n)! =
∑+∞

m=1
1

m!zm has ring of convergence D0(0,+∞) = C \ {0}.

Example 5.6.8.
∑n=−1

−∞ (−n)!zn =
∑+∞

m=1
m!
zm has empty ring of convergence and converges only

at∞.

Definition.We consider a series of the form

+∞∑
−∞

an(z − z0)
n = · · ·+ a−2

(z − z0)2
+

a−1

z − z0
+ a0 + a1(z − z0) + a2(z − z0)

2 + · · ·

which consists of a power series of first type and a power series of second type. We assume
that an ̸= 0 for at least one n < 0 and for at least one n > 0. Then the original series is
called power series of third type with center z0 and coefficients an. The radius of convergence
R1 of

∑n=−1
−∞ an(z − z0)

n and the radius of convergence R2 of
∑+∞

n=0 an(z − z0)
n are called

radii of convergence of our power series. We say that
∑+∞

−∞ an(z − z0)
n converges at z if both∑n=−1

−∞ an(z − z0)
n and

∑+∞
n=0 an(z − z0)

n converge at z, and we say that
∑+∞

−∞ an(z − z0)
n

diverges at z in all other cases.

A power series of third type with center z0 has no meaning at the points z0 and∞.
A power series of third type is a combination of a power series of first type and a power series

of second type. Therefore, we expect that the properties of a power series of this new type are a
combination of properties of power series of the two previous types. Indeed, the next result is a
direct combination of propositions 5.26 and 5.27 and we omit the proof.

Proposition 5.28. Let
∑+∞

−∞ an(z− z0)n be a power series of third type with radii of convergence
R1, R2.
If R2 ≤ R1, then the series diverges at every z, except in the case 0 < R1 = R2 = R < +∞ and
then it may converge only at some z ∈ Cz0(R). If R1 < R2, then
(i) The power series converges absolutely at every z ∈ Dz0(R1, R2).
(ii) The power series diverges at every z ̸∈ Dz0(R1, R2).
(iii) The power series converges uniformly in every Dz0(r1, r2) with R1 < r1 < r2 < R2.
(iv) The sum s(z) =

∑+∞
−∞ an(z − z0)

n, defined as a function s : Dz0(R1, R2) → C, is holomor-
phic inDz0(R1, R2). The derivative of s inDz0(R1, R2) is t(z) =

∑+∞
−∞ nan(z− z0)n−1, i.e. the

sum of the power series which results from
∑+∞

−∞ an(z− z0)
n by formal termwise differentiation.

If R1 < R2, then Dz0(R1, R2) is called ring of convergence of
∑+∞

−∞ an(z − z0)
n.

Example 5.6.9.We consider
∑n=−1

−∞
2n

−nz
n + 1 +

∑+∞
n=1

1
n2 z

n.
Then

∑n=−1
−∞

2n

−nz
n has radius of convergence 1

2 and 1 +
∑+∞

n=1
1
n2 z

n has radius of convergence
1. Therefore, D0(

1
2 , 1) is the ring of convergence of

∑n=−1
−∞

2n

−nz
n + 1 +

∑+∞
n=1

1
n2 z

n.

Exercises.

5.6.1. Find the discs of convergence of
∑+∞

n=1 anz
n when an = n13, an = 1

n5 , an = 1
nn , an =

nlnn, an = (lnn)n, an = n!
nn , an = (n!)2

nn , an = (n!)2

(2n)! .
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5.6.2. Find the rings of convergence of
∑n=−1

−∞ anz
n when an = n3, an = 1

n2 , an = 1
2n , an = 3n,

an = 1
(−n)!nn .

5.6.3. Find the ring of convergence and the sum of
∑n=−1

−∞ (−1)nzn +
∑+∞

n=1(
1
2i)

n+1zn.

5.6.4. (i) Write 1
z−1 as a power series with disc of convergence D0(1) and as power series with

ring of convergence D0(1,+∞).
(ii) Write 1

(z−3)(z−4) as a power series with disc of convergenceD0(3), as a power series with ring
of convergence D0(3, 4) and as a power series with ring of convergence D0(4,+∞).

5.6.5. If m ∈ N, using the geometric power series
∑+∞

n=0 z
n, write 1

(1−z)m as a power series∑+∞
n=0 anz

n, and determine its disc of convergence.

5.6.6. Find the radius of convergence of 1 +
∑+∞

n=1
a(a+1)···(a+n−1)b(b+1)···(b+n−1)

1·2···n·c(c+1)···(c+n−1) zn, where c ̸=
0,−1,−2, . . . . This power series is called hypergeometric series with parameters a, b, c. Prove
that the function w = F (z; a, b, c), which is defined by the hypergeometric series in its disc of
convergence, is a solution of the differential equation z(1−z)w′′+(c−(a+b+1)z)w′−abw = 0.

5.6.7. (i) Prove that, if two power series of the type
∑+∞

n=0 an(z − z0)
n with positive radii of

convergence define the same function in the intersection of their discs of convergence, then the
two series coincide, i.e. they have the same coefficients an.
(ii) Prove a result analogous to (i) for two power series of the type

∑n=−1
−∞ an(z − z0)

n.
(iii) Can you prove now the analogous result for two power series of the type

∑+∞
−∞ an(z− z0)

n ?

5.6.8. Let 0 < R < +∞.
(i) If

∑+∞
n=0 an(z − z0)

n converges absolutely for some z ∈ Cz0(R), prove that it converges
absolutely for every z ∈ Dz0(R).
(ii) If

∑+∞
n=0 an(z − z0)

n converges for some z ∈ Cz0(R), prove that it converges absolutely for
every z ∈ Dz0(R).

5.6.9. LetR′,R′′ andR be the radii of convergence of
∑+∞

n=0 an
′(z−z0)n,

∑+∞
n=0 an

′′(z−z0)n and∑+∞
n=0(an

′ + an
′′)(z− z0)

n, respectively. If R′ ̸= R′′, prove that R = min{R′, R′′}. If R′ = R′′,
prove that R ≥ R′ = R′′.

5.6.10. Let R be the radius of convergence of
∑+∞

n=1 an(z − z0)
n. If 0 < R < +∞, find the radii

of convergence of
∑+∞

n=1 n
kan(z − z0)

n,
∑+∞

n=1 n!an(z − z0)
n,

∑+∞
n=1

an
n! (z − z0)

n.

5.6.11. Let k ∈ N, k ≥ 2. Find the z at which
∑+∞

n=1
zkn

n converges.

5.6.12. Find the z at which
∑+∞

n=1 z
n! converges.

5.6.13. Let 0 < b < 1. Find the ring of convergence of
∑+∞

n=−∞ bn
2
zn.

5.6.14. If
∑+∞

n=0 an(z − z0)
n = s(z) for every z ∈ Dz0(R) and |a1| ≥

∑+∞
n=2 n|an|Rn−1, prove

that s is one-to-one in Dz0(R).
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Chapter 6

Local behaviour and basic properties of
holomorphic functions.

6.1 The theorem of Cauchy for triangles.

Let∆ be a closed triangular region. When we write∮
∂∆

f(z) dz

we mean the curvilinear integral over a curve γ with trajectory γ∗ = ∂∆ which describes the
triangle ∂∆, the boundary of ∆, once and in the positive direction. For instance, if z1, z2, z2 are
the vertices of the triangle in the order which agrees with the positive direction of ∂∆, then a valid
curve is γ = [z1, z2]

·
+ [z2, z3]

·
+ [z3, z1]. Hence,∮

∂∆
f(z) dz =

∫
[z1,z2]

f(z) dz +

∫
[z2,z3]

f(z) dz +

∫
[z3,z1]

f(z) dz.

Of course there are analogous statements for integrals∮
∂R
f(z) dz,

when R is a closed rectangular region or, more generally, a closed convex polygonal region.

The theoremofCauchy-Goursat. Let f : Ω → C be holomorphic in an open setΩwhich contains
the closed triangular region ∆. Then ∮

∂∆
f(z) dz = 0.

Proof. We write I =
∮
∂∆ f(z) dz, and we have to show that I = 0.

Let ∆ = ∆(z1, z2, z3) be the given closed triangular region with vertices z1, z2, z3 written in the
order which agrees with the positive direction of ∂∆. We take the pointsw3, w1, w2, which are the
midpoints of the linear segments [z1, z2], [z2, z3], [z3, z1], respectively. Then the closed triangular
region ∆(z1, z2, z3) splits into the four closed triangular regions ∆(1) = ∆(z1, w3, w2), ∆(2) =
∆(w3, z2, w1),∆(3) = ∆(w1, z3, w2) and∆(4) = ∆(w3, w1, w2) and we define the corresponding
curvilinear integrals: I(1) =

∮
∂∆(1) f(z) dz, I(2) =

∮
∂∆(2) f(z) dz, I(3) =

∮
∂∆(3) f(z) dz and

I(4) =
∮
∂∆(4) f(z) dz. Now, we analyse each of the four integrals into three integrals over the

three linear segments of the corresponding triangle, and then we add the resulting twelve integrals
and observe the cancellations which occur between integrals over pairs of linear segments with
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opposite directions. We end up with six integrals over six successive linear segments which add
up to give the three linear segments of the original triangle ∂∆. The result is

I = I(1) + I(2) + I(3) + I(4).

This implies |I| ≤ |I(1)|+ |I(2)|+ |I(3)|+ |I(4)| and hence |I(j)| ≥ 1
4 |I| for at least one j. Now

we take the corresponding closed triangular region ∆(j) and, for simplicity, we denote it ∆1. We
also denote I1 the corresponding integral I(j). We have proved that there is a closed triangular
region ∆1 contained in the original ∆ such that, if I =

∮
∂∆ f(z) dz and I1 =

∮
∂∆1

f(z) dz,
then |I1| ≥ 1

4 |I|. We also observe that diam∆1 = 1
2 diam∆. We may continue inductively and

produce a sequence of closed triangular regions∆n and the corresponding sequence of curvilinear
integrals In =

∮
∂∆n

f(z) dz so that:
(i)∆ ⊇ ∆1 ⊇ · · · ⊇ ∆n ⊇ ∆n+1 ⊇ · · · ,
(ii) |In| ≥ 1

4n |I|,
(iii) diam∆n = 1

2n diam∆.
Now, (i), (iii) and proposition 1.16 imply that there is a (unique) point z contained in all ∆n. In
particular, z ∈ ∆ and hence f is differentiable at z. If we take an arbitrary ϵ > 0, then there is
δ > 0 so that |f(ζ)−f(z)ζ−z − f ′(z)| < ϵ for every ζ with 0 < |ζ − z| < δ. Thus,

|f(ζ)− f(z)− f ′(z)(ζ − z)| ≤ ϵ|ζ − z| for every ζ with |ζ − z| < δ. (6.1)

Because of (iii), there is some large n so that diam∆n < δ. Since z ∈ ∆n and diam∆n < δ, we
get |ζ − z| ≤ diam∆n < δ for every ζ ∈ ∂∆n ⊆ ∆n and now (6.1) and (iii) imply

|f(ζ)− f(z)− f ′(z)(ζ − z)| ≤ ϵ|ζ − z| ≤ ϵ diam∆n =
ϵ

2n
diam∆ for every ζ ∈ ∂∆n.

Therefore,∣∣∣ ∮
∂∆n

(f(ζ)− f(z)− f ′(z)(ζ − z)) dζ
∣∣∣ ≤ ϵ

2n
diam∆ l(∂∆n) ≤

3ϵ

4n
(diam∆)2. (6.2)

Since f(z) + f ′(z)(ζ − z) is a polynomial function of ζ, example 5.5.1 shows that∮
∂∆n

(f(z) + f ′(z)(ζ − z)) dζ = 0

and (6.2) becomes |In| = |
∮
∂∆n

f(ζ) dζ| ≤ 3ϵ
4n (diam∆)2. Finally, (ii) implies |I| ≤ 3ϵ(diam∆)2

and since ϵ > 0 is arbitrary, we conclude that I = 0.

6.2 Primitives and the theorem of Cauchy in convex regions.

Proposition 6.1. Let f : Ω → C be holomorphic in the convex region Ω. Then f has a primitive
in Ω.

Proof. We fix z0 ∈ Ω. Then for every z ∈ Ω the linear segment [z0, z] is contained in Ω and we
define F : Ω → C by

F (z) =

∫
[z0,z]

f(ζ) dζ.

We shall prove that F is a primitive of f in Ω. We take arbitrary z, w ∈ Ω and consider the
closed triangular region ∆ with vertices z0, z, w. Since Ω is convex, ∆ is contained in Ω and the
Cauchy-Goursat theorem implies

∮
∂∆ f(z) dz = 0, i.e.∫

[z0,z]
f(ζ) dζ +

∫
[z,w]

f(ζ) dζ +

∫
[w,z0]

f(ζ) dζ = 0.
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Therefore F (w)− F (z) =
∫
[z,w] f(ζ) dζ and hence

F (w)−F (z)− f(z)(w− z) =

∫
[z,w]

f(ζ) dζ − f(z)

∫
[z,w]

dζ =

∫
[z,w]

(f(ζ)− f(z)) dζ. (6.3)

Since f is continuous, for every ϵ > 0 there is δ > 0 so that |f(z′) − f(z)| < ϵ for every z′ ∈ Ω
with |z′ − z| < δ. Taking w ∈ Ω with |w − z| < δ we automatically have |ζ − z| < δ for every
ζ ∈ [z, w] and (6.3) implies

|F (w)− F (z)− f(z)(w − z)| =
∣∣∣ ∫

[z,w]
(f(ζ)− f(z)) dζ

∣∣∣ ≤ ϵ|w − z|.

Therefore,
∣∣F (w)−F (z)

w−z −f(z)
∣∣ < ϵ for everyw with 0 < |w−z| < δ and henceF ′(z) = f(z).

The theorem of Cauchy in convex regions. Let f : Ω → C be holomorphic in the convex region
Ω. Then ∮

γ
f(z) dz = 0

for every closed curve γ in Ω.

Proof. Direct from propositions 5.22 and 6.1.

Now we shall decribe a very useful technique to handle curvilinear integrals of holomorphic
functions. Every closed curve γ we shall refer to will be visually simple, for instance a circle or a
triangle or a rectangle, and we shall be able to distinguish between the points inside γ and the points
outside γ. We assume that γ surrounds every point inside it once and in the positive direction and
that it does not surround the points outside it. The points inside γ form the region inside γ and the
points outside γ form the region outside γ. Then γ∗ is the common boundary of the region inside
γ and the region outside γ. We shall concentrate on two characteristic cases.
First case. Let f : Ω → C be holomorphic in the open set Ω and let γ be a closed curve in Ω. We
want to evaluate

∮
γ f(z) dz.

IfΩ is convex, then
∮
γ f(z) dz = 0. So let us assume thatΩ is not convex. To continue, we assume

that the region inside γ, call it D, is contained in Ω, and hence f is holomorphic in D as well as
in ∂D = γ∗. Now our technique is the following. We split D into specific disjoint open sets
E1, . . . , Em so that their boundaries ∂E1, . . . , ∂Em are trajectories of closed curves σ1, . . . , σm,
so that D = E1 ∪ · · · ∪ Em and, finally, so that, when we analyse in an appropriate way each of
σ1, . . . , σm in successive subcurves and drop those subcurves which appear as pairs of opposite
curves, the remaining subcurves can be summed up to give the original curve γ. The result is:∮

γ
f(z) dz =

∮
σ1

f(z) dz + · · ·+
∮
σm

f(z) dz.

In fact we applied this technique in the proof of the theorem of Cauchy-Goursat.
Now, if the various E1, . . . , Em can be chosen so that each E1, . . . , Em is contained in a corre-
sponding convex open subset of Ω, then we conclude that∮

γ
f(z) dz =

∮
σ1

f(z) dz + · · ·+
∮
σm

f(z) dz = 0 + · · ·+ 0 = 0.

Second case. Let f : Ω → C be holomorphic in the open set Ω and let γ, γ1, . . . , γn be n + 1
closed curves in Ω. We want to relate the integrals

∮
γ f(z) dz,

∮
γ1
f(z) dz, . . . ,

∮
γn
f(z) dz.

We assume that the regions inside γ1, . . . , γn are disjoint and that they are all contained in the
region inside γ. Let us call D the intermediate region, i.e. the set consisting of the points which
are inside γ and outside every γ, . . . , γn, i.e. the intersection of the region inside γ and the regions
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ouside γ1, . . . , γn. We further assume thatD is a subset of Ω, and hence f is holomorphic inD as
well as in ∂D = γ∗ ∪ γ∗1 ∪ · · · ∪ γ∗n. Now, here is the technique. We splitD into specific disjoint
open sets E1, . . . , Em so that their boundaries ∂E1, . . . , ∂Em are trajectories of closed curves
σ1, . . . , σm, so that E = E1 ∪ · · · ∪ Em and, finally, so that, when we analyse in an appropriate
way each of σ1, . . . , σm in successive subcurves and drop those subcurves which appear as pairs
of opposite curves, the remaining subcurves can be summed up to give γ as well as the opposites
of γ1, . . . , γn. The result is:∮

γ
f(z) dz −

∮
γ1

f(z) dz − · · · −
∮
γn

f(z) dz =

∮
σ1

f(z) dz + · · ·+
∮
σm

f(z) dz.

If the various E1, . . . , Em can be chosen so that each E1, . . . , Em is contained in a corresponding
convex open subset of Ω, then

∮
γ f(z) dz −

∮
γ1
f(z) dz − · · · −

∮
γn
f(z) dz = 0 + · · · + 0 = 0

and hence ∮
γ
f(z) dz =

∮
γ1

f(z) dz + · · ·+
∮
γn

f(z) dz.

Corollary 6.1. Let C,C1, . . . , Cn be n + 1 circles and let D,D1, . . . , Dn be the corresponding
open discs. Assume that D1, . . . , Dn are disjoint and that they are all contained in D. Consider
also the closed regionM = D \ (D1 ∪ · · · ∪Dn). If f : Ω → C is holomorphic in an open set Ω
which containsM , then ∮

C
f(z) dz =

∮
C1

f(z) dz + · · ·+
∮
Cn

f(z) dz.

Instead of circles we may consider rectangles or triangles or any combination of the three shapes.

Proof. Clear after the previous discussion.

Exercises.

6.2.1. Let γR be the closed curve which is the sum of the linear segment [0, R], the arc of the circle
C0(R) from R to Rei

π
4 in the positive direction and the linear segment [Rei

π
4 , 0]. Also, let σR be

the curve wich describes only the above arc from R to Rei
π
4 .

(i) Prove that
∫
σR
e−z

2
dz → 0 when R→ +∞.

(ii) Using γR appropriately together with the formula
∫ +∞
0 e−t

2
dt =

√
π
2 , prove the formulas for

the so-called Fresnel integrals:
∫ +∞
0 sin t2 dt =

∫ +∞
0 cos t2 dt =

√
π

2
√
2
.

6.2.2. Let y,R > 0 and γR,y be the closed curve which is the sum of the linear segments [−R,R],
[R,R+ iy], [R+ iy,−R+ iy] and [−R+ iy,−R].
(i) If y > 0 is constant, prove that

∫
[R,R+iy] e

−z2 dz → 0 and
∫
[−R+iy,−R] e

−z2 dz → 0 when
R→ +∞.
(ii) Using γR,y appropriately, prove that

∫ +∞
−∞ e−(x+iy)2 dx does not depend on y ∈ [0,+∞).

(iii) Using the formula
∫ +∞
0 e−x

2
dt =

√
π
2 , prove that

∫ +∞
−∞ e−x

2 cos(2xy) dx =
√
πe−y

2 for
every y ≥ 0 (and hence for every y ≤ 0 also). This identity is very important for harmonic
analysis.

6.3 Cauchy’s formulas for circles and infinite differentiability.

Cauchy’s formula for circles. Let f : Ω → C be holomorphic in an open set Ω containing the
closed disc Dz0(R). Then

f(z) =
1

2πi

∮
Cz0 (R)

f(ζ)

ζ − z
dζ for every z ∈ Dz0(R).
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Proof. Let z ∈ Dz0(R). We consider any open discDz(r) with r < R− |z− z0|. ThenDz(r) ⊆
Dz0(R) and the function f(ζ)

ζ−z is holomorphic in the open set Ω \ {z} which contains the closed
region between the circles Cz(r) and Cz0(R). Corollary 6.1 implies∮

Cz0(R)

f(ζ)

ζ − z
dζ =

∮
Cz(r)

f(ζ)

ζ − z
dζ. (6.4)

Now, we have
∮
Cz(r)

1
ζ−z dζ =

∫ 2π
0

1
reit

ireit dt = 2πi and hence∮
Cz(r)

f(ζ)

ζ − z
dζ − 2πif(z) =

∮
Cz(r)

f(ζ)− f(z)

ζ − z
dζ. (6.5)

We take ϵ > 0. Since f is continuous at z, there is δ > 0 so that |f(ζ)−f(z)| < ϵ for every ζ ∈ Ω
with |ζ − z| < δ. Therefore, if r < δ, (6.5) implies∣∣∣ ∮

Cz(r)

f(ζ)

ζ − z
dζ − 2πif(z)

∣∣∣ ≤ ϵ

r
2πr = 2πϵ.

Since ϵ is arbitrary, we conclude that limr→0

∮
Cz(r)

f(ζ)
ζ−z dζ = 2πif(z). Now, letting r → 0 in

(6.4), we get
∮
Cz0 (R)

f(ζ)
ζ−z dζ = 2πif(z).

A particular instance of the formula of Cauchy is when we take z = z0, the center of the circle
Cz0(R). Using the parametric equation ζ = z0 +Reit, t ∈ [0, 2π], we get

f(z0) =
1

2π

∫ 2π

0
f(z0 +Reit) dt

and this is calledmean value property of the holomorphic function f .

Cauchy’s formula for derivatives and circles. Let f : Ω → C be holomorphic in an open set
Ω containing the closed disc Dz0(R). Then f is infinitely many times differentiable at every z ∈
Dz0(R) and

f (n)(z) =
n!

2πi

∮
Cz0 (R)

f(ζ)

(ζ − z)n+1
dζ for every z ∈ Dz0(R) and every n ∈ N.

Proof. Proposition 5.25 says that 1
2πi

∮
Cz0(R)

f(ζ)
ζ−z dζ is an infinitely many times differentiable

function of z in the discDz0(R). On the other hand, Cauchy’s formula says that this function coin-
cides with the function f(z) in the same disc. Therefore f(z) is infinitely many times differentiable
inDz0(R). Moreover, the derivatives of f(z) are the same as the derivatives of 1

2πi

∮
Cz0 (R)

f(ζ)
ζ−z dζ

and these are given by the formulas in proposition 5.25.

Example 6.3.1. Let n ∈ N. Then∮
Cz0 (R)

1

(ζ − z)n
dζ = 0, for every z ̸∈ Dz0(R).

To see this we observe that the circle Cz0(R) is contained in a slightly larger open disc Dz0(R
′)

which does not contain z: it is enough to takeR < R′ < |z−z0|. Then the discDz0(R
′) is a convex

region and 1
(ζ−z)n is a holomorphic function of ζ in Dz0(R

′). Now the result is an application of
the theorem of Cauchy in convex regions.
On the other hand, we have∮

Cz0 (R)

1

(ζ − z)n
dζ =

{
2πi, if n = 1

0, if n ≥ 2
for every z ∈ Dz0(R).

This is a simple application of Cauchy’s formula (for a function and its derivatives) to the constant
function 1. The special case z = z0 we have already seen in examples 3.2.8 and 5.2.2.
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Theorem 6.1. Let f : Ω → C be holomorphic in the open set Ω. Then f is infinitely many times
differentiable in Ω.

Proof. Let z0 ∈ Ω. We take a closed disc Dz0(R) ⊆ Ω and then f is infinitely many times
differentiable in Dz0(R) and hence at z0.

It is time to recall the remark after proposition 5.24. The assumption of continuity of the
derivative in proposition 5.24 is superfluous. The same we may say for the hypothesis in example
5.5.6 and in exercise 5.5.1.

Cauchy’s estimates. Let f : Ω → C be holomorphic in an open set containing the closed disc
Dz0(R). If |f(ζ)| ≤M for every ζ ∈ Cz0(R), then

|f (n)(z0)| ≤
n!M

Rn
for every n ∈ N.

Proof. Direct application of Cauchy’s formulas.

Exercises.

6.3.1. Evaluate
∮
C0(r)

z2+1
z(z2+4)

dz for 0 < r < 2 and for 2 < r < +∞.

6.3.2. Ifn ∈ N, evaluate
∮
C0(1)

ez

zn dz and
∫ 2π
0 ecos θ sin(nθ−sin θ) dθ,

∫ 2π
0 ecos θ cos(nθ−sin θ) dθ.

6.3.3. If n ∈ N, evaluate
∮
C0(1)

eiz

zn dz,
∮
C0(1)

sin z
zn dz,

∮
C0(1)

ez−e−z

zn dz,
∮
C1(

1
2
)

Log z
(z−1)n dz.

6.3.4. Let f : C → C be holomorphic in C and assume that there are A,M and n ∈ N so that
|f(z)| ≤ A+M |z|n for every z. Prove that f (n+1)(z) = 0 for every z and that f is a polynomial
function of degree ≤ n.

6.3.5. Let f : Dz0(R) → C be continuous in Dz0(R) and holomorphic in Dz0(R). Prove that
f(z) = 1

2πi

∮
Cz0 (R)

f(ζ)
ζ−z dζ for every z ∈ Dz0(R).

6.3.6. Let f : Ω → C be holomorphic in an open set containing the closed disc Dz0(R) and let
0 < r < R. If |f(z)| ≤M for every z ∈ Cz0(R), find an upper bound for |f (n)| inDz0(r), which
depends only on n, r,R,M and not on f or z0.

6.3.7. Let f : Dz0(R) → C be holomorphic in Dz0(R). If |f(z)| ≤ 1
R−|z−z0| for every z ∈

Dz0(R), find the smallest possible upper bound for |f (n)(z0)|, which depends only on n,R and
not on f or z0.

6.3.8. Let f : D → C be holomorphic and bounded in D. Prove that f(w) = 1
π

∫∫
D

f(z)
(1−zw)2 dxdy

for every w ∈ D.

6.4 Morera’s theorem.

Theorem 6.1 and proposition 5.22 imply the following corollary. Let f : Ω → C be continuous
in the region Ω. If

∮
γ f(z) dz = 0 for every closed curve γ in Ω, then f is holomorphic in Ω.

Indeed, since
∮
γ f(z) dz = 0 for every closed curve γ inΩ, we get that f has a primitive, say F , in

Ω. This means that F ′ = f inΩ and hence F is holomorphic inΩ. Therefore, F is infinitely many
times differentiable in Ω and then f is also infinitely many times differentiable in Ω. In particular,
f is holomorphic in Ω.

The next theorem proves the same result with weaker assumptions.
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Morera’s theorem. Let f : Ω → C be continuous in the open set Ω. If
∮
∂∆ f(z) dz = 0 for every

closed triangular region ∆ in Ω, then f is holomorphic in Ω.

Proof. Let z0 ∈ Ω. We consider a disc Dz0(R) ⊆ Ω. This disc is a convex set and we have that∮
∂∆ f(z) dz = 0 for every closed triangular region∆ inDz0(R). Then the proof of proposition 6.1
applies and we get that f has a primitive, sayF , inDz0(R). This means thatF ′ = f inDz0(R) and
hence F is holomorphic inDz0(R). Therefore, F is infinitely many times differentiable inDz0(R)
and f is also infinitely many times differentiable in Dz0(R). In particular, f is holomorphic in
Dz0(R) and hence at z0.

Exercises.

6.4.1. Let f : Ω → C and l be a line. If f is continuous in the open set Ω and holomorphic in Ω\ l,
prove that f is holomorphic in Ω.

6.5 Liouville’s theorem. The fundamental theorem of algebra.

Liouville’s theorem. If f : C → C is holomorphic and bounded in C, then f is constant in C.

Proof. There is M ≥ 0 so that |f(z)| ≤ M for every z. We take any z0 and apply Cauchy’s
estimate for n = 1 with an arbitrary circle Cz0(R) and we find that |f ′(z0)| ≤ M

R . Letting
R→ +∞, we get f ′(z0) = 0. Since z0 is arbitrary, we conclude that f is constant.

Fundamental theorem of algebra. Every polynomial of degree ≥ 1 has at least one root in C.

Proof. Let p be a polynomial of degree ≥ 1 and assume that p has no root in C.
We consider the function f = 1

p , which is holomorphic in C, and we see easily that it is also
bounded in C. Indeed, since limz→∞ p(z) = ∞, we have limz→∞ f(z) = 0, and hence there is
R > 0 so that |f(z)| ≤ 1 for every z with |z| > R. Since |f | is continuous in the compact disc
D0(R), there isM ′ ≥ 0 so that |f(z)| ≤M ′ for every z with |z| ≤ R. TakingM = max{M ′, 1},
we have that |f(z)| ≤M for every z and hence f is bounded.
Liouville’s theorem implies that f and hence p is constant and we arrive at a contradiction.

Having proved that a polynomial p has a root z1, we may prove in a purely algebraic way
that z − z1 is a factor of p, i.e. there is a polynomial p1 so that p(z) = (z − z1)p1(z) for every
z. If p1 is of degree ≥ 1, then it has a root z2 and, as before, there is a polynomial p2 so that
p1(z) = (z−z2)p2(z) and hence p(z) = (z−z1)(z−z2)p2(z) for every z. Continuing inductively,
we conclude that, if n ≥ 1 is the degree of p, there are z1, . . . , zn so that

p(z) = c(z − z1) · · · (z − zn) for every z

where c is a constant. It is clear that c is the coefficient of the monomial of highest degree of p.
We have proved that every polynomial p of degree n ≥ 1 has exactly n roots in C.

Exercises.

6.5.1.We say that z, w are symmetric with respect to T if either z = 0, w = ∞ or z = ∞, w = 0
or z, w ∈ C, z = 1

w .
Let r = p

q be a non-constant rational function so that the polynomials p, q have no common root
and so that |r(z)| = 1 for every z ∈ T. Prove that, if a ∈ C \ {0} is a root of p of multiplicity
k, then b = 1

a is a root of q of multiplicity k and conversely. I.e. the roots of p and the roots of q
form pairs of points symmetric with respect to T. (In particular, p and q have the same degree.)

6.5.2. If f : C → C is holomorphic in C and Re f is bounded in C, prove that f is constant in C.
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6.6 Maximum principle.

Maximum principle. Let f : Ω → C be holomorphic in the region Ω,M = sup{|f(z)| | z ∈ Ω}.
If there is z0 ∈ Ω so that |f(z0)| =M , then f is constant in Ω.

Proof. We take any z ∈ Ω for which |f(z)| =M . We consider an open discDz(R) ⊆ Ω and any
r with 0 < r < R. We apply Cauchy’s formula and we get

f(z) =
1

2πi

∮
Cz(r)

f(ζ)

ζ − z
dζ =

1

2πi

∫ 2π

0

f(z + reit)

reit
ireit dt =

1

2π

∫ 2π

0
f(z + reit) dt.

Since |f(z + reit)| ≤M for every t ∈ [0, 2π], we have

M = |f(z)| =
∣∣∣ 1
2π

∫ 2π

0
f(z + reit) dt

∣∣∣ ≤ 1

2π

∫ 2π

0
|f(z + reit)| dt ≤M. (6.6)

Hence, 1
2π

∫ 2π
0 |f(z + reit)| dt =M and, since |f(z + reit)| is a continuous function of t, we get

|f(z+ reit)| =M for every t ∈ [0, 2π]. Now, r is arbitrary in the interval (0, R) and we find that
|f(z + reit)| =M for every t ∈ [0, 2π] and every r ∈ (0, R). So we get

|f(w)| =M for every w ∈ Dz(R).

We proved that, if |f(z)| =M for a z ∈ Ω, then this equality holds in a neighborhood of z. Now
we define

B = {z ∈ Ω | |f(z)| =M}, C = {z ∈ Ω | |f(z)| < M}

and it is clear that B ∪ C = Ω and B ∩ C = ∅.
If z ∈ B, then |f(z)| = M and hence the same is true at every point in a neighborhood of z.
Therefore some neighborhood of z contains no point of C and, thus, z is not a limit point of C.
Moreover, if C contains a limit point z of B, then |f(z)| < M and there is a sequence (zn) in B
so that zn → z. Then |f(zn)| = M for every n and by the continuity of f we have |f(z)| = M
which is wrong. Therefore C contains no limit point of B.
If both B and C are non-empty, then they form a decomposition of Ω. But Ω is connected and,
since z0 ∈ B, we get that C = ∅. Therefore,

|f(z)| =M for every z ∈ Ω. (6.7)

Now we shall prove that f is constant in Ω. IfM = 0, then clearly f = 0 in Ω. Let us assume that
M > 0. If u and v are the real and the imaginary part of f , then (6.7) says that u2 + v2 = M2 in
Ω and hence u∂u∂x + v ∂v∂x = 0 and u∂u∂y + v ∂v∂y = 0 in Ω. Using the C-R equations, we get

u
∂u

∂x
+ v

∂v

∂x
= 0, v

∂u

∂x
− u

∂v

∂x
= 0 in Ω.

Viewing this as a system with unknowns ∂u∂x ,
∂v
∂x , we see that its determinant is u2+v2 =M2 > 0,

and we find that ∂u∂x = 0 and ∂v
∂x = 0 in Ω. Therefore, f ′ = ∂u

∂x + i ∂v∂x = 0 in Ω and hence f is
constant in the region Ω.

Maximum principle. Let f : Ω → C be holomorphic in the bounded region Ω and continuous in
Ω. Then either f is constant in Ω or |f | has a maximum value, sayM , attained at a point of ∂Ω
and |f(z)| < M for every z ∈ Ω. In every case, |f | has a maximum value which is attained at a
point of ∂Ω.
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Proof. If f is constant in Ω, then |f | is also constant, say M , in Ω. Then, obviously, M is the
maximum value of |f | and it is attained (everywhere and hence) at every point of ∂Ω.
Nowwe assume that f is not constant inΩ. This implies that f is not constant inΩ either. (If f = c
in Ω, then for every z ∈ Ω there is a sequence (zn) in Ω so that zn → z and then, by continuity,
we get c = f(zn) → f(z) and hence f(z) = c for every z ∈ Ω.)
Now, |f | is continuous in the compact set Ω and hence attains its maximum value, sayM , at some
point z0 ∈ Ω. I.e. we have |f(z0)| =M and |f(z)| ≤M for every z ∈ Ω.
If any such z0 belongs to Ω, then the previous maximum principle implies that f is constant in Ω
and we arrive at a contradiction. We conclude that z0 ∈ ∂Ω and |f(z)| < M for every z ∈ Ω.

Exercise 6.6.3 refers to the case of an unbounded region Ω.

Exercises.

6.6.1. Prove the minimum principle. Let f : Ω → C be holomorphic in the region Ω and let
m = inf{|f(z)| | z ∈ Ω}. If there is z0 ∈ Ω so that |f(z0)| = m, then either m = 0 (and hence
f(z0) = 0) orm > 0 and then f is constant in Ω.

6.6.2. Let f be holomorphic inD and continuous inD, let |f(z)| > 1 for every z ∈ T and f(0) = 1.
Does f have a root in D?

6.6.3. State and prove the second maximum principle in the case of an unbounded region Ω. In
this case we must include the point∞ in Ω.

6.6.4. Let f : Ω → C be holomorphic in the bounded region Ω and limz→ζ f(z) = 0 for every
ζ ∈ ∂Ω. Prove that f is constant 0 in Ω.
In the case of an unbounded region Ω, we must include the point∞ in ∂Ω.

6.6.5. Let f : Ω → C be holomorphic in the region Ω and K = sup{Re f(z) | z ∈ Ω}. If there is
z0 ∈ Ω so that Re f(z0) = K, prove that f is constant in Ω.

6.6.6. Prove the fundamental theorem of algebra using the maximum principle.

6.6.7. Let fn, f : Ω → C be holomorphic in the bounded regionΩ and continuous inΩ. If fn → f
uniformly in ∂Ω, prove that fn → f uniformly in Ω.
In the case of an unbounded region Ω, we must include the point∞ in ∂Ω.

6.6.8. LetR be a square region with center z0. Let f : R→ C be holomorphic inR and continuous
in R. If |f(z)| ≤ m for every z in one of the four sides of R and |f(z)| ≤ M for every z in the
other three sides of R, prove that |f(z0)| ≤

4
√
mM3.

6.6.9. Let Ω = {x + iy | − π
2 < y < π

2 } and f(z) = ee
z . Then f is holomorphic in Ω and

continuous in Ω = {x+ iy | − π
2 ≤ y ≤ π

2 }. Prove that |f(x− iπ2 )| = |f(x+ iπ2 )| = 1 for every
x ∈ R and that limx→+∞ f(x) = +∞. Does this contradict the maximum principle?

6.6.10. Let f : Ω → C be holomorphic in the bounded region Ω and continuous in Ω. If |f | is
constant in ∂Ω, prove that either f has at least one root in Ω or f is constant in Ω.

6.6.11. Let f : Ω → C be holomorphic in the bounded region Ω and continuous in Ω. If Re f = 0
in ∂Ω, prove that f is constant in Ω.

6.6.12. (i) Let f : Ω → C be holomorphic and non-constant in the region Ω. For every µ > 0
prove that {z ∈ Ω | |f(z)| < µ} ∩ Ω = {z ∈ Ω | |f(z)| ≤ µ}.
(ii) Let p be a polynomial of degree n ≥ 1. Prove that for every µ > 0 the set {z | |p(z)| < µ} has
at most n connected components and each of them contains at least one root of p. How do these
connected components behave when µ→ 0+ and when µ→ +∞?
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6.6.13. Let f : Ω → C be holomorphic and non-constant in the bounded region Ω. If we assume
that lim supΩ∋z→ζ |f(z)| ≤M for every ζ ∈ ∂Ω, prove that |f(z)| < M for every z ∈ Ω.
In the case of an unbounded region Ω, we must include the point∞ in ∂Ω.

6.6.14. Let f : Ω → C be holomorphic in the bounded region Ω and continuous in Ω. If U is an
open set so that U ⊆ Ω, prove that sup{|f(z)| | z ∈ ∂U} ≤ sup{|f(z)| | z ∈ ∂Ω}. If equality
holds, prove that f is constant in Ω.

6.6.15. Let f : D0(R1, R2) → C be holomorphic inD0(R1, R2) and a ∈ R. Prove that |z|a|f(z)|
has no maximum value in D0(R1, R2), except if a ∈ Z and there is c so that f(z) = cz−a for
every z ∈ D0(R1, R2).

6.6.16. The three circles theorem of Hadamard. Let f : Dz0(R1, R2) → C be holomorphic in
Dz0(R1, R2) and let M(r) = max{|f(z)| | z ∈ Cz0(r)} for R1 < r < R2. Prove that lnM(r)
is a convex function of ln r in (R1, R2). I.e. prove that, if R1 < r1 < r < r2 < R2 and
ln r = (1− t) ln r1 + t ln r2 for 0 < t < 1, then lnM(r) ≤ (1− t) lnM(r1) + t lnM(r2).

6.6.17. The three lines theorem. Let f : K → C be holomorphic and bounded in the vertical
zone K = {x + iy |X1 < x < X2} and let M(x) = sup{|f(x + iy)| | − ∞ < y < +∞}
for X1 < x < X2. Prove that lnM(x) is a convex function of x in (X1, X2). I.e. prove that,
if X1 < x1 < x < x2 < X2 and x = (1 − t)x1 + tx2 for 0 < t < 1, then lnM(x) ≤
(1− t) lnM(x1) + t lnM(x2).

6.6.18. The Phragmén-Lindelöf theorem. Let f : Ω → C be holomorphic in the bounded region
Ω, let ϕ : Ω → C be holomorphic and bounded inΩ and let ϕ have no root inΩ. Let alsoA∩B = ∅
and A ∪B = ∂Ω. If
(i) lim supΩ∋z→ζ |f(z)| ≤M for every ζ ∈ A and
(ii) lim supΩ∋z→ζ |f(z)||ϕ(z)|ϵ ≤M for every ζ ∈ B and every ϵ > 0,
then prove that |f(z)| ≤M for every z ∈ Ω.
If, moreover, f is non-constant in Ω, prove that |f(z)| < M for every z ∈ Ω.

6.7 Taylor series and Laurent series.

Proposition 6.2. Let f : Ω → C be holomorphic in the open set Ω, z0 ∈ Ω and let Dz0(R)
be the largest disc with center z0 which is contained in Ω. Then there is a unique power series∑+∞

n=0 an(z − z0)
n so that

f(z) =

+∞∑
n=0

an(z − z0)
n for every z ∈ Dz0(R).

The coefficients are given by

an =
f (n)(z0)

n!
=

1

2πi

∮
Cz0 (r)

f(ζ)

(ζ − z0)n+1
dζ for 0 < r < R.

Proof. We take z ∈ Dz0(R), and then |z − z0| < R. If |z − z0| < r < R, then z ∈ Dz0(r) and,
according to the formula of Cauchy, we have

f(z) =
1

2πi

∮
Cz0 (r)

f(ζ)

ζ − z
dζ. (6.8)

Now for every ζ ∈ Cz0(r) we have | z−z0ζ−z0 | =
|z−z0|
r < 1 and hence

1

ζ − z
=

1

(ζ − z0)− (z − z0)
=

1

ζ − z0

1

1− z−z0
ζ−z0

=
1

ζ − z0

+∞∑
n=0

(z − z0
ζ − z0

)n
.
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Therefore, (6.8) becomes

f(z) =
1

2πi

∮
Cz0 (r)

f(ζ)

ζ − z0

+∞∑
n=0

(z − z0
ζ − z0

)n
dζ.

The test of Weierstrass implies that
∑+∞

n=0

(
z−z0
ζ−z0

)n converges, as a series of functions of ζ, uni-
formly in Cz0(r). Indeed, | z−z0ζ−z0 |

n = ( |z−z0|r )n for every ζ ∈ Cz0(r) and
∑+∞

n=0(
|z−z0|
r )n < +∞.

Hence,

f(z) =
+∞∑
n=0

1

2πi

∮
Cz0 (r)

f(ζ)

(ζ − z0)n+1
dζ (z − z0)

n. (6.9)

Now, we observe that the radius r has been chosen to satisfy the inequality |z − z0| < r < R and
hence the integrals 1

2πi

∫
Cz0 (r)

f(ζ)
(ζ−z0)n+1 dζ depend a priori on z. But there are two reasons that

these integrals actually do not depend on the value of r in the interval (0, R) and hence on z. The
first reason is that from the formulas of Cauchy for the derivatives we get

1

2πi

∮
Cz0 (r)

f(ζ)

(ζ − z0)n+1
dζ =

f (n)(z0)

n!
.

The second reason is that f(ζ)
(ζ−z0)n+1 is, as a function of ζ, holomorphic in Dz0(R) \ {z0}, and

because of corollary 6.1, we have

1

2πi

∮
Cz0 (r1)

f(ζ)

(ζ − z0)n+1
dζ =

1

2πi

∮
Cz0 (r2)

f(ζ)

(ζ − z0)n+1
dζ when 0 < r1 < r2 < R.

We conclude from (6.9) that

f(z) =

+∞∑
n=0

an(z − z0)
n for every z ∈ Dz0(R), (6.10)

where an = f (n)(z0)
n! = 1

2πi

∮
Cz0 (r)

f(ζ)
(ζ−z0)n+1 dζ for 0 < r < R.

Regarding uniqueness, assume that f(z) =
∑+∞

n=0 bn(z − z0)
n for every z ∈ Dz0(R). Then, if

0 < r < R, the series
∑+∞

n=0 bn(z − z0)
n converges uniformly in Cz0(r) and we get

2πiak =

∮
Cz0 (r)

f(ζ)

(ζ − z0)k+1
dζ =

∮
Cz0 (r)

1

(ζ − z0)k+1

+∞∑
n=0

bn(ζ − z0)
n dζ

=

+∞∑
n=0

bn

∮
Cz0 (r)

(ζ − z0)
n−k−1 dζ = 2πibk.

The last equality uses the calculation in example 5.2.2.
Finally, we get that bk = ak for every k and we conclude that the power series which satisfies
(6.10) is unique.

Definition. The power series
∑+∞

n=0 an(z − z0)
n with an = f (n)(z0)

n! = 1
2πi

∮
Cz0 (r)

f(ζ)
(ζ−z0)n+1 dζ

for 0 < r < R is called Taylor series of f in the disc Dz0(R), the largest open disc with center
z0 which is contained in the domain of holomorphy of f .

Example 6.7.1. The function f(z) = 1
1−z is holomorphic in C \ {1} and the largest open disc

with center 0 which is contained in C \ {1} is D0(1). To find the Taylor series of f in D0(1) we
calculate the derivatives f (n)(z) = n!

(1−z)n+1 for every n ≥ 0. Thus, an = f (n)(0)
n! = 1 for every

n ≥ 0 and the Taylor series of f is
∑+∞

n=0 z
n. I.e. 1

1−z =
∑+∞

n=0 z
n for every z ∈ D0(1). Of

course, this is already known.
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Example 6.7.2. The function f(z) = 1
1+z2

= 1
(z+i)(z−i) is holomorphic in the open setC\{i,−i}

and the largest open disc with center 0 which is contained in C \ {i,−i} is D0(1). To find the
Taylor series of f inD0(1)we calculate the derivatives of f . Wewrite f(z) = − 1

2i(
1
i−z+

1
i+z ) and

get f (n)(z) = − 1
2i(

n!
(i−z)n+1 + (−1)n n!

(i+z)n+1 ) for every n ≥ 0. Hence an = f (n)(0)
n! = 1+(−1)n

2in

for every n ≥ 0. If n is odd, then an = 0. If n is even, then an = 1
in = (−1)

n
2 and the Taylor

series of f is
∑+∞

k=0(−1)kz2k. I.e. 1
1+z2

=
∑+∞

k=0(−1)kz2k for every z ∈ D0(1).
We may find the same formula if we use the Taylor series of 1

1−z , i.e.
1

1−z =
∑+∞

n=0 z
n. We

replace z with−z2 and find 1
1+z2

=
∑+∞

n=0(−1)nz2n. From the moment that we have found some
power series which coincides with our function in D0(1), then, because of uniqueness, this is the
Taylor series of our function.

Example 6.7.3. The exponential function f(z) = ez is holomorphic in C and the largest open disc
with center 0 which is contained in C isD0(+∞) = C. The derivatives of f are f (n)(z) = ez for
every n ≥ 0 and the coefficients of the Taylor series of f are an = f (n)(0)

n! = 1
n! for every n ≥ 0.

Thus, the Taylor series of f is
∑+∞

n=0
1
n!z

n and we have

ez =
+∞∑
n=0

1

n!
zn for every z.

Example 6.7.4. The function f(z) = cos z, defined in exercise 5.2.5, is holomorphic in C and
the largest open disc with center 0 which is contained in C is D0(+∞) = C. The derivatives of
f are f (n)(z) = (−1)

n
2 cos z for even n and f (n)(z) = (−1)

n+1
2 sin z for odd n. Therefore, the

coefficients of the Taylor series are an = f (n)(0)
n! = (−1)

n
2

n! for even n and an = f (n)(0)
n! = 0 for

odd n. Thus, the Taylor series of f is
∑+∞

k=0
(−1)k

(2k)! z
2k and we have

cos z =
+∞∑
k=0

(−1)k

(2k)!
z2k for every z.

In the same manner we can prove that

sin z =
+∞∑
k=1

(−1)k−1

(2k − 1)!
z2k−1 for every z.

Another way to find the Taylor series of cos z and sin z is through the definitions of the two func-
tions and the Taylor series of ez . For instance:

cos z =
eiz + e−iz

2
=

1

2

+∞∑
n=0

1

n!
(iz)n +

1

2

+∞∑
n=0

1

n!
(−iz)n =

+∞∑
n=0

in(1 + (−1)n)

2n!
zn

=

+∞∑
k=0

i2k

(2k)!
z2k =

+∞∑
k=0

(−1)k

(2k)!
z2k.

The power series we found coincides with the function cos z in the largest open disc with center
0 which is contained in the domain of holomorphy of cos z and, because of uniqueness, this is the
Taylor series of cos z.

Example 6.7.5. The function f(z) = −Log(1 − z) is defined and holomorphic in C \ [1,+∞).
The largest disc with center 0 in C \ [1,+∞) is D. The derivatives of f are f (n)(z) = (n−1)!

(1−z)n for

every n ≥ 1. Thus, a0 = 0 and an = f (n)(0)
n! = 1

n for every n ≥ 1 and the Taylor series of f is∑+∞
n=1

zn

n . I.e.

−Log(1− z) =

+∞∑
n=1

zn

n
for every z ∈ D.

90



Proposition 6.3. Let f : Ω → C be holomorphic in the open set Ω and let Dz0(R1, R2) be a
largest open ring with center z0 which is contained in Ω. Then there is a unique power series∑+∞

−∞ an(z − z0)
n so that

f(z) =

+∞∑
−∞

an(z − z0)
n for every z ∈ Dz0(R1, R2).

The coefficients are given by

an =
1

2πi

∮
Cz0 (r)

f(ζ)

(ζ − z0)n+1
dζ for R1 < r < R2.

Proof. We take z ∈ Dz0(R1, R2), and then R1 < |z − z0| < R2. We choose any r1, r2 so that
R1 < r1 < |z − z0| < r2 < R2. Then z ∈ Dz0(r1, r2) and

f(z) =
1

2πi

∮
Cz0 (r2)

f(ζ)

ζ − z
dζ − 1

2πi

∮
Cz0 (r1)

f(ζ)

ζ − z
dζ. (6.11)

To prove (6.11), we consider an open discDz(r) with r < min{r2−|z− z0|, |z− z0|− r1}. Then
Dz(r) ⊆ Dz0(r1, r2) and we apply corollary 6.1 to

f(ζ)
ζ−z , which is a holomorphic function of ζ in

Dz0(R1, R2) \ {z}. We get∮
Cz0 (r2)

f(ζ)

ζ − z
dz −

∮
Cz0(r1)

f(ζ)

ζ − z
dz =

∮
Cz(r)

f(ζ)

ζ − z
dζ.

Now as in the proof of Cauchy’s formula for circles, we have limr→0

∮
Cz(r)

f(ζ)
ζ−z dζ = 2πif(z)

and the proof of (6.11) is complete.
For every ζ ∈ Cz0(r2) we have

1

ζ − z
=

1

(ζ − z0)− (z − z0)
=

1

ζ − z0

1

1− z−z0
ζ−z0

=
1

ζ − z0

+∞∑
n=0

(z − z0
ζ − z0

)n
,

because | z−z0ζ−z0 | =
|z−z0|
r2

< 1. Similarly, for every ζ ∈ Cz0(r1) we have

1

ζ − z
=

1

(ζ − z0)− (z − z0)
= − 1

z − z0

1

1− ζ−z0
z−z0

= − 1

z − z0

+∞∑
n=0

(ζ − z0
z − z0

)n
because | ζ−z0z−z0 | =

r1
|z−z0| < 1. Hence (6.11) becomes

f(z) =
1

2πi

∮
Cz0 (r2)

f(ζ)

ζ − z0

+∞∑
n=0

(z − z0
ζ − z0

)n
dζ +

1

2πi

∮
Cz0 (r1)

f(ζ)

z − z0

+∞∑
n=0

(ζ − z0
z − z0

)n
dζ.

Because of uniform convergence of the series inside these two integrals, we get

f(z) =

+∞∑
n=0

1

2πi

∮
Cz0 (r2)

f(ζ)

(ζ − z0)n+1
dζ (z − z0)

n

+

+∞∑
n=0

1

2πi

∮
Cz0 (r1)

f(ζ)(ζ − z0)
n dζ

1

(z − z0)n+1
.

In the last series we change n+ 1 to −n and get

f(z) =
+∞∑
n=0

1

2πi

∮
Cz0 (r2)

f(ζ)

(ζ − z0)n+1
dζ (z − z0)

n

+

n=−1∑
−∞

1

2πi

∮
Cz0 (r1)

f(ζ)

(ζ − z0)n+1
dζ (z − z0)

n.

(6.12)
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Now, f(ζ)
(ζ−z0)n+1 is, as a function of ζ, holomorphic in Dz0(R1, R2), and another application of

corollary 6.1 implies that∮
Cz0 (r1)

f(ζ)

(ζ − z0)n+1
dζ =

∮
Cz0 (r2)

f(ζ)

(ζ − z0)n+1
dζ for R1 < r1 < r2 < R2.

Therefore the coefficients of both series in (6.12) do not depend on the values of r1, r2, and we
replace both radii with any r with R1 < r < R2. We proved that

f(z) =

+∞∑
−∞

an(z − z0)
n for every z ∈ Dz0(R1, R2), (6.13)

where an = 1
2πi

∮
Cz0 (r)

f(ζ)
(ζ−z0)n+1 dζ for R1 < r < R2.

Regarding uniqueness, assume that f(z) =
∑+∞

−∞ bn(z − z0)
n for every z ∈ Dz0(R1, R2). We

take any r with R1 < r < R2, and then
∑+∞

−∞ bn(z − z0)
n converges uniformly in Cz0(r) Then

2πiak =

∮
Cz0 (r)

f(ζ)

(ζ − z0)k+1
dζ =

∮
Cz0 (r)

1

(ζ − z0)k+1

+∞∑
−∞

bn(ζ − z0)
n dζ

=

+∞∑
−∞

bn

∮
Cz0 (r)

(ζ − z0)
n−k−1 dζ = 2πibk

and the power series
∑+∞

−∞ bn(z − z0)
n satisfying (6.13) is unique.

Definition. The power series
∑+∞

−∞ an(z− z0)n with an = 1
2πi

∮
Cz0 (r)

f(ζ)
(ζ−z0)n+1 dζ forR1 < r <

R2 is called Laurent series of f in the ringDz0(R1, R2), a largest open ring with center z0 which
is contained in the domain of holomorphy of f .

Example 6.7.6. The function f(z) = 1
z is holomorphic inC\{0}. The ringD0(0,+∞) = C\{0}

is the largest open ring with center 0 which is contained in C \ {0}. To find the Laurent series of
f in D0(0,+∞) we evaluate the coefficients an. We take any r with 0 < r < +∞, and then

an =
1

2πi

∮
C0(r)

1/ζ

ζn+1
dζ =

1

2πi

∮
C0(r)

1

ζn+2
dζ for every n.

If n ̸= −1, then an = 0 and, if n = −1, then a−1 = 1. Therefore, the Laurent series of f in
D0(0,+∞) is

∑+∞
−∞ anz

n = z−1 and hence we have the obvious identity 1
z = z−1 for every

z ∈ D0(0,+∞).

In the following examples we shall use the uniqueness of the Laurent series to find the Laurent
series of certain functions without evaluating integrals: we find in an indirect way a power series
which coincides with the function in a specific ring and then, because of uniqueness, this is the
Laurent series of the function in the ring.

Example 6.7.7. The function f(z) = 1
1−z is holomorphic in the open set C \ {1}. We have seen

that the largest open disc with center 0 which is contained in C \ {1} isD0(1) and that the Taylor
series of f in this disc is

∑
n=0 z

n.
Another largest open ring with center 0 which is contained in C \ {1} is D0(1,+∞). To find the
Laurent series of f in this ring, we may evaluate the coefficients an using their formulas with the
integrals. But we can do something simpler. If z ∈ D0(1,+∞), then |1z | < 1 and hence

1

1− z
= −1

z

1

1− 1
z

= −1

z

+∞∑
n=0

(1
z

)n
= −

n=−1∑
−∞

zn.

Because of uniqueness, the Laurent series of f in D0(1,+∞) is −
∑n=−1

−∞ zn.
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Example 6.7.8. The function f(z) = 1
(z−1)(z−2) is holomorphic in C \ {1, 2}. There is a largest

open disc and two largest open rings with center 0which are contained inC\{1, 2} : the discD0(1)
and the rings D0(1, 2) and D0(2,+∞). To find the corresponding Taylor and Laurent series we
write f as a sum of simple fractions: f(z) = 1

z−2 − 1
z−1 .

If z ∈ D0(1), then |z| < 1 and | z2 | < 1, and hence

f(z) = −1

2

1

1− z
2

+
1

1− z
= −1

2

+∞∑
n=0

(z
2

)n
+

+∞∑
n=0

zn =

+∞∑
n=0

(
1− 1

2n+1

)
zn.

Therefore, the Taylor series of f in D0(1) is
∑+∞

n=0(1−
1

2n+1 )z
n.

If z ∈ D0(1, 2), then |1z | < 1 and | z2 | < 1, and hence

f(z) = −1

2

1

1− z
2

− 1

z

1

1− 1
z

= −1

2

+∞∑
n=0

(z
2

)n
− 1

z

+∞∑
n=0

(1
z

)n
= −

n=−1∑
−∞

zn −
+∞∑
n=0

1

2n+1
zn.

Therefore, the Laurent series of f in D0(1, 2) is −
∑n=−1

−∞ zn −
∑+∞

n=0
1

2n+1 z
n.

If z ∈ D0(2,+∞), then |1z | < 1 and |2z | < 1, and hence

f(z) =
1

z

1

1− 2
z

− 1

z

1

1− 1
z

=
1

z

+∞∑
n=0

(2
z

)n
− 1

z

+∞∑
n=1

(1
z

)n
=

n=−2∑
−∞

( 1

2n+1
− 1

)
zn.

Therefore, the Laurent series of f in D0(2,+∞) is
∑n=−2

−∞ ( 1
2n+1 − 1)zn.

Example 6.7.9. The function f(z) = e
1
z is holomorphic in C \ {0}. ThenD0(0,+∞) = C \ {0}

is the only largest open ring with center 0which is contained inC\{0}. We find the Laurent series
of f inD0(0,+∞) using the Taylor series of ez in C. In the identity ez =

∑+∞
n=0

1
n!z

n we replace
z with 1

z and we find

e
1
z =

n=−1∑
−∞

1

(−n)!
zn + 1 for every z ̸= 0.

Therefore, the Laurent series of f in D0(0,+∞) is
∑n=−1

−∞
1

(−n)!z
n + 1.

Exercises.

6.7.1. Let 0 < |a| < |b|. Find the three Laurent series with center 0, the two Laurent series with
center a and the two Laurent series with center b of the function z

(z−a)(z−b) .

6.7.2. Find the Taylor series of 1
1+z2

with center any a ∈ R.

6.7.3. Find the Taylor series with center 1 of the holomorphic branch of z
1
2 with value 1 at 1.

6.7.4. Let f be holomorphic in Dz0(R) and let
∑+∞

n=0 an(z − z0)
n be the Taylor series of f .

(i) Prove that, if 0 ≤ r < R, then 1
2π

∫ 2π
0 |f(z0 + reit)|2 dt =

∑+∞
n=0 |an|2r2n.

(ii) If |f(z)| ≤M for every z ∈ Dz0(R), prove that
∑+∞

n=0 |an|2R2n ≤M2.
(iii) If g is also holomorphic in Dz0(R) with Taylor series

∑+∞
n=0 bn(z − z0)

n, prove that, if 0 ≤
r < R, then 1

2π

∫ 2π
0 f(z0 + reit) g(z0 + reit) dt =

∑+∞
n=0 anbnr

2n.

6.7.5. Let f be holomorphic inDz0(R1, R2). Prove that there are functions f1 and f2 so that f2 is
holomorphic inDz0(R2) and f1 is holomorphic inDz0(R1,+∞) and so that f(z) = f1(z)+f2(z)
for every z ∈ Dz0(R1, R2). Prove that, if f is bounded in Dz0(R1, R2), then f1, f2 are bounded
in Dz0(R1, R2).
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6.7.6. LetΩ ⊆ C be an open set and letD0(R,+∞) = {z | |z| > R} be the largest ring of this kind
which is contained in Ω (i.e. R is the smallest possible). Let f : Ω ∪ {∞} → C be holomorphic
in Ω. Prove that f is holomorphic also at ∞ if and only if the Laurent series of f in D0(R,+∞)
is of the form

∑n=−1
−∞ anz

n + a0. Observe that f(∞) = a0.

6.7.7. Prove that 1
cos z = 1 +

∑+∞
k=1

E2k
(2k)!z

2k for |z| < π
2 , where the numbers E2k satisfy the

recursive relations E2n −
(

2n
2n−2

)
E2n−2 +

(
2n

2n−4

)
E2n−4 − · · · + (−1)n−1

(
2n
2

)
E2 + (−1)n = 0.

Evaluate E2, E4, E6, E8. The numbers E2k are called Euler constants.

6.7.8. Let Ω = {x + iy |A < y < B}, let f : Ω → C be holomorphic in the horizontal zone Ω
and let f be periodic with period 1, i.e. f(z + 1) = f(z) for every z ∈ Ω.
(i) Prove that there are cn, n ∈ Z, so that f(z) =

∑+∞
−∞ cne

2πinz for every z ∈ Ω and find formulas
for the coefficients cn.
(ii) Prove that the series in (i) converges uniformly in every smaller zone {x + iy | a < y < b}
with A < a < b < B.

6.7.9. (i) Prove that e
w
2
(z− 1

z
) = b0(w)+

∑+∞
n=1 bn(w)(z

n+ (−1)n

zn ) for every z ̸= 0, where bn(w) =
1
π

∫ π
0 cos(nt− w sin t) dt for n ∈ N0.

(ii) Ifm,n ∈ N0, prove that 1
2πi

∫
C0(1)

(z2±1)m

zm+n+1 dz =

{
(±1)p(n+2p)!
p!(n+p)! ifm = n+ 2p, p ∈ N0

0, otherwise
(iii) The function bn(w) is called Bessel function of the first kind. Find the Taylor series of bn(w)
with center 0.

6.7.10. Let I be an open interval in R. The function f : I → C is called real analytic in I
if for every t0 ∈ I there are ϵ > 0 and an ∈ C, n ∈ N0, so that (t0 − ϵ, t0 + ϵ) ⊆ I and
f(t) =

∑+∞
n=0 an(t− t0)

n for every t ∈ (t0 − ϵ, t0 + ϵ).
Prove that, if f is real analytic in I , then there is an open set Ω ⊆ C so that I ⊆ Ω and so that f
can be extended as a function f : Ω → C holomorphic in Ω.

6.8 Roots and the principle of identity.

Let f : Ω → C be holomorphic in the open set Ω and take z0 ∈ Ω. We consider the largest
open disc Dz0(R) which is contained in Ω and the Taylor series of f in this disc. Then

f(z) =

+∞∑
n=0

an(z − z0)
n = a0 + a1(z − z0) + a2(z − z0)

2 + · · · for every z ∈ Dz0(R).

We assume that z0 is a root of f or, equivalently, that a0 = 0 and we distinguish between two
cases.
First case: an = 0 for every n.
Then, obviously, f(z) = 0 for every z ∈ Dz0(R), i.e. f is identically 0 in Dz0(R). Because of
the formulas for an, the condition an = 0 for every n is equivalent to f (n)(z0) = 0 for every n.
Second case: an ̸= 0 for at least one n.
We consider the smallest n ≥ 1 with an ̸= 0 and let this be N . I.e. a0 = a1 = . . . = aN−1 = 0
and aN ̸= 0. This is equivalent to f(z0) = f (1)(z0) = . . . = f (N−1)(z0) = 0 and f (N)(z0) ̸= 0.
Then we have

f(z) = (z− z0)
N

+∞∑
n=N

an(z− z0)
n−N = (z− z0)

N
+∞∑
n=0

aN+n(z− z0)
n for every z ∈ Dz0(R).

The power series
∑+∞

n=0 aN+n(z− z0)
n = aN + aN+1(z− z0)+ aN+2(z− z0)

2+ · · · converges
in the disc Dz0(R) and defines a holomorphic function g : Dz0(R) → C. Then

f(z) = (z − z0)
Ng(z) for every z ∈ Dz0(R),
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and thus g(z) = f(z)
(z−z0)N for every z ∈ Dz0(R) \ {z0}. We observe that f(z)

(z−z0)N is a holomorphic
function in Ω \ {z0} and not only in Dz0(R) \ {z0}. Therefore, we may consider g as defined in
Ω\{z0}with the same formula: g(z) = f(z)

(z−z0)N . We also recall that g is defined, through its power

series, at z0 and it is holomorphic inDz0(R) ⊆ Ω. In fact its value at z0 is g(z0) = aN = f (N)(z0)
N ! .

Thus, the formula of g : Ω → C, as a function holomorphic in Ω, can be written:

g(z) =


f(z)

(z−z0)N , if z ∈ Ω \ {z0}

aN = f (N)(z0)
N ! , if z = z0

(6.14)

Since g(z0) = aN ̸= 0 and since g is continuous at z0, there is r with 0 < r ≤ R so that g(z) ̸= 0
for every z ∈ Dz0(r), and (6.14) implies

f(z) ̸= 0 for every z ∈ Dz0(r) \ {z0}.

Definition. Let f : Ω → C be holomorphic in the open set Ω and let z0 ∈ Ω with f(z0) = 0. Also,
let

∑+∞
n=0 an(z − z0)

n be the Taylor series of f at z0.
If an = 0 for every n, then we say that z0 is a root of f of multiplicity +∞.
If a0 = a1 = . . . = aN−1 = 0 and aN ̸= 0, then we say that z0 is a root of f of multiplicity N .
In case f(z0) = a0 ̸= 0 we say that z0 is a root of f of multiplicity 0.

We saw that, if z0 is a root of f of infinite multiplicity, then f is identically 0 in the largest
disc with center z0 which is contained in the domain of holomorphy of f . If z0 is a root of f of
finite multiplicity, then there is some discDz0(r) which contains no other root of f besides z0 and
hence we say that the root z0 is isolated. Moreover, if the multiplicity of z0 isN , then the function
g(z) = f(z)

(z−z0)N , which is holomorphic in Ω\{z0}, can be defined at z0 as g(z0) = aN = f (N)(z0)
N !

and then it is holomorphic in Ω. In other words, we can factorize (z− z0)N from f(z), i.e. we can
write f(z) = (z − z0)

Ng(z) with a function g holomorphic in Ω. This is a striking generalization
of the analogous factorization for polynomials: is z0 is a root of the polynomial p(z) of multiplicity
N , then we write p(z) = (z − z0)

Nq(z), where q(z) is another polynomial.

Example 6.8.1. The function ez3 − 1 is holomorphic in C and its Taylor series with center 0 is∑+∞
n=1

1
n! z

3n. Therefore, ez3 − 1 = z3
∑+∞

n=1
1
n! z

3(n−1) = z3
∑+∞

n=0
1

(n+1)! z
3n = z3g(z) for ev-

ery z, where g is the function defined by the power series
∑+∞

n=0
1

(n+1)! z
3n. Now g is holomorphic

in C with g(0) = 1 ̸= 0, hence 0 is a root of ez3 − 1 of multiplicity 3.

Lemma 6.1. Let f : Ω → C be holomorphic in the region Ω and let z0 ∈ Ω with f(z0) = 0. If z0
is a root of f of infinite multiplicity, then f is identically 0 in Ω.

Proof. f is identically 0 in some disc with center z0. We define

B = {z ∈ Ω | f is identically 0 in some disc with center z}

and the complementary set C = Ω \ B. Obviously, B ∪ C = Ω and B ∩ C = ∅. Also, B ̸= ∅,
since z0 ∈ B.
If z ∈ B, then f is identically 0 in some disc Dz(r), and if we take any w ∈ Dz(r), then f
is identically 0 in some small disc Dw(r

′) ⊆ Dz(r). Thus every w ∈ Dz(r) belongs to B, i.e.
Dz(r) ⊆ B and z is not a limit point of C.
Now, let z ∈ C. Then f is identically 0 in no disc with center z, and hence z is not a root of infinite
multiplicity of f . Therefore, there is a discDz(r) in which the only possible root of f is its center
z. Then this disc contains no w ∈ B and z is not a limit point of B.
Thus, none of B,C contains a limit point of the other. Since B ̸= ∅, we must have C = ∅,
otherwise B,C would form a decomposition of Ω. Hence Ω = B and f is identically 0 in Ω.
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Principle of identity. Let f : Ω → C be holomorphic in the region Ω. If the roots of f have an
accumulation point in Ω, i.e. if there is a sequence (zn) of roots of f so that zn → z with z ∈ Ω
and zn ̸= z for every n, then f is identically 0 in Ω.

Proof. Since f is continuous at z and zn → z, we have 0 = f(zn) → f(z) and hence f(z) = 0.
If z is a root of finite multiplicity of f , then there would be some discDz(r) in which the only root
of f is its center z. This is wrong, since Dz(r) contains, after some index, all roots zn and these
are different from z. Therefore, z is a root of infinite multiplicity of f , and lemma 6.1 implies that
f is identically 0 in Ω.

Lemma 6.1 and the principle of identity can be stated for a non-connected open set Ω. Then
the result of lemma 6.1 holds in the connected component of Ω which contains the root of infinite
multiplicity z0 and the result of the principle of identity holds in the connected component of Ω
which contains the accumulation point of the roots of f .

Instead of speaking only about the roots of f , i.e. the solutions of the equation f(z) = 0, we
may state our results for the solutions of the equation f(z) = w for any fixed w. The results are
the same as before. We just consider the function g(z) = f(z) − w, and then the solutions of
f(z) = w are the same as the roots of g. For instance, if z0 is a solution of f(z) = w of infinite
multiplicity, then f is constantw in some discDz0(R) and, if z0 is a solution of f(z) = w of finite
multiplicity N , then in some disc Dz0(r) the function f takes the value w only at the center z0.
Then lemma 6.1 says that, if f is holomorphic in the region Ω and z0 is a solution of f(z) = w
of infinite multiplicity, then f is constant w in Ω. And the principle of identity says that, if f is
holomorphic in the region Ω and the solutions of f(z) = w have an accumulation point in Ω, then
f is constant w in Ω.

The principle of identity has another equivalent form.

Principle of identity. Let f : Ω → C be holomorphic in the region Ω. If some compact K ⊆ Ω
contains infinitely many roots of f , then f is identically 0 in Ω.

Proof. Let us assume the previous principle of identity and let us suppose that some compact
K ⊆ Ω contains infinitely many roots of f . Then there is a sequence (zn) of roots of f inK with
distinct terms. SinceK is compact, there is a subsequence (znk

) so that znk
→ z for some z ∈ K.

But then z ∈ Ω is an accumulation point of roots of f and hence f is identically 0 in Ω.
Conversely, let us assume the present form of the principle of identity and let us suppose that the
roots of f have an accumulation point in Ω. Then there is a sequence (zn) of roots of f so that
zn → z with z ∈ Ω and zn ̸= z for every n. We take a compact disc Dz(r) ⊆ Ω and then this
disc contains infinitely many of the roots zn. Hence f is identically 0 in Ω.

Example 6.8.2. Assume that there is f holomorphic in C so that f( 1n) =
n
n+1 for every n ∈ N.

Wewrite f( 1n) =
1

1+ 1
n

and compare the functions f(z) and 1
1+z . Both are holomorphic inC\{−1}

and their difference f(z)− 1
1+z has roots at the points

1
n which have 0 as their accumulation point.

Since 0 ∈ C \ {−1} and C \ {−1} is connected, we have that f(z) − 1
1+z is identically 0 in this

set, i.e. f(z) = 1
1+z for every z ̸= −1. Since we assume that f is holomorphic at −1, we get

limz→−1
1

1+z = limz→−1 f(z) = f(−1) and we arrive at a contradiction.

Example 6.8.3. Assume that there is some f holomorphic in C \ {0} so that f(x) =
√
x for every

x ∈ (0,+∞) or even for every x in some subinterval (a, b) of (0,+∞).
We consider the continuous branch g of z

1
2 in the open set A = C \ (−∞, 0] which has value 1 at

z = 1. The function g is given by

g(z) =
√
r ei

θ
2 for z = reiθ with r > 0 and − π < θ < π.
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We see that f(x) =
√
x = g(x) for every x ∈ (a, b). Hence f − g is holomorphic in the region A

and has roots at all points of (a, b). We conclude that f − g is identically 0 in A. I.e.

f(z) =
√
r ei

θ
2 for z = reiθ with r > 0 and − π < θ < π.

Since f is holomorphic in C \ {0}, it is continuous at every point of (−∞, 0), e.g. at −1.
We take points z = reiθ converging to −1 from the upper halfplane. This means that r → 1 and
θ → π−. Then we have f(−1) = limr→1,θ→π−

√
r ei

θ
2 = ei

π
2 = i.

Now we take points z = reiθ converging to −1 from the lower halfplane. This means that r → 1

and θ → −π+. Then we have f(−1) = limr→1,θ→−π+
√
r ei

θ
2 = e−i

π
2 = −i.

We arrive at a contradiction.

Exercises.

6.8.1. Let f be holomorphic in the disc Dz0(R) and let z0 be a root of multiplicity N ≥ 1 of f .
Discuss the behavior of any primitive F of f at z0.

6.8.2. Is there any f holomorphic in C which satisfies one of the following?
(i) f( 1n) = (−1)n for every n ∈ N.
(ii) f( 1n) =

1+(−1)n

n for every n ∈ N.
(iii) f( 1

2k ) = f( 1
2k+1) =

1
k for every k ∈ N.

6.8.3. Is there any f holomorphic in C \ {0} so that f(x) = |x| for every x ∈ R \ {0}?

6.8.4. Let f , g be holomorphic in the region Ω and 0 ∈ Ω. If f , g have no root in Ω and
f ′( 1n)/f(

1
n) = g′( 1n)/g(

1
n) for every n ∈ N, what do you conclude about f , g?

6.8.5. Let f, g : Ω → C be holomorphic in the region Ω. If fg = 0 in Ω, prove that either f = 0
in Ω or g = 0 in Ω.

6.8.6. Let f, g : Ω → C be holomorphic in the region Ω. If f g is holomorphic in Ω, prove that
either g = 0 in Ω or f is constant in Ω.

6.8.7. (i) Let the region Ω be symmetric with respect to R, i.e. z ∈ Ω for every z ∈ Ω. If Ω ̸= ∅,
prove that Ω ∩ R ̸= ∅. Let also f : Ω → C be holomorphic in Ω and assume that f(z) ∈ R for
every z ∈ Ω ∩ R. Prove that f(z) = f(z) for every z ∈ Ω.
(ii) Let the region Ω ⊆ C \ {0} be symmetric with respect to T, i.e. 1

z ∈ Ω for every z ∈ Ω. If
Ω ̸= ∅, prove that Ω∩T ̸= ∅. Let also f : Ω → C be holomorphic in Ω and assume that f(z) ∈ T
for every z ∈ Ω ∩ T. Prove that f(1z ) =

1

f(z)
for every z ∈ Ω.

(iii) Let f : C → C be holomorphic in C and let f(z) ∈ T for every z ∈ T. Prove that there is c
with |c| = 1 and n ∈ N0 so that f(z) = czn for every z.

6.8.8. (i) Let z0 ∈ D and T : D → C be defined by T (z) = z−z0
1−z0z for z ∈ D. Prove that T

is holomorphic in D and continuous in D. Also prove that T (z) ∈ D for every z ∈ D and that
T (z) ∈ T for every z ∈ T.
(ii) Let z1, . . . , zn ∈ D and |c| = 1 and B : D → C be defined by B(z) = c

∏n
k=1

z−zk
1−zkz for

z ∈ D. Prove that B is holomorphic in D and continuous in D. Also prove that B(z) ∈ D for
every z ∈ D and that B(z) ∈ T for every z ∈ T.
(iii) Prove the converse of (ii). I.e. let f : D → C be holomorphic in D and continuous in D and
let f(z) ∈ D for every z ∈ D and f(z) ∈ T for every z ∈ T. If f is non-constant, prove that there
is n ∈ N and z1, . . . , zn ∈ D and c with |c| = 1 so that f(z) = c

∏n
k=1

z−zk
1−zkz for every z ∈ D.

6.8.9. Let f, g : C → C be holomorphic in C and |f(z)| ≤ |g(z)| for every z. Prove that there is
µ so that f(z) = µg(z) for every z.
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6.8.10. Let f : D → C be holomorphic in D. Prove that there is a sequence (zn) in D so that
|zn| → 1 and (f(zn)) is bounded.

6.8.11.Many of the results of this section hold also for the point∞.
(i) Let Ω ⊆ C be an open set containing some ring D0(R,+∞) = {z | |z| > R} and let f :
Ω ∪ {∞} → C be holomorphic in Ω as well as at ∞. Then, according to exercice 6.7.7, the
Laurent series of f in D0(R,+∞) is of the form

∑n=−1
−∞ anz

n + a0 and also f(∞) = a0.
If an = 0 for every n ≤ 0, we say that∞ is a root of f of multiplicity +∞, and in this case prove
that f is identically 0 in the connected component of Ω which contains D0(R,+∞).
If a0 = a1 = . . . = a−N+1 = 0 and a−N ̸= 0, we say that∞ is a root of f of multiplicityN , and
in this case prove that ∞ is an isolated root of f , i.e. there is some r ≥ R so that f has no root in
D0(r,+∞).
Of course, if a0 ̸= 0, we say that∞ is a root of f of multiplicity 0.
If∞ is an accumulation point of roots of f , prove that f is identically 0 in the connected component
of Ω which contains D0(R,+∞).
Prove that∞ is a root of f of multiplicityN if and only if 0 is a root of g of multiplicityN , where
g is defined by g(w) = f( 1

w ).
(ii) Let r = p

q be a rational function and let n be the degree of the polynomial p and m be the
degree of the polynomial q. If n ≤ m, prove that∞ is a root of r of multiplicitym− n.

6.9 Isolated singularities.

Definition.We say that z0 is an isolated singularity of f if there is some discDz0(R) so that f is
holomorphic in Dz0(R) \ {z0}.

If z0 is an isolated singularity of f , then f has a Laurent series inDz0(0, R) = Dz0(R) \ {z0}.
I.e.

f(z) =

+∞∑
−∞

an(z − z0)
n for every z ∈ Dz0(R) \ {z0}.

Definition. Let z0 be an isolated singularity of f and let
∑+∞

−∞ an(z − z0)
n be the Laurent series

of f in Dz0(R) \ {z0}.
If an = 0 for every n < 0, then we say that z0 is a removable singularity of f .
If an ̸= 0 for at least one n < 0 and there are only finitely many n < 0 such that an ̸= 0, then we
say that z0 is a pole of f .
If an ̸= 0 for infinitely many n < 0, then we say that z0 is an essential singularity of f .

Let us start with the case of a removable singularity z0. Then

f(z) =
+∞∑
n=0

an(z − z0)
n for every z ∈ Dz0(R) \ {z0}.

The power series
∑+∞

n=0 an(z − z0)
n converges at every z ∈ Dz0(R) and defines a holomorphic

function in Dz0(R) with value a0 at z0. The function f may not be defined at z0 or it may be
defined at z0 with a value f(z0) either equal to a0 or not equal to a0. Now, in any case, we define
(or redefine) f at z0 to be f(z0) = a0. Then we have

f(z) =
+∞∑
n=0

an(z − z0)
n for every z ∈ Dz0(R).

and f becomes holomorphic in Dz0(R).
We summarize. If z0 ∈ Ω is a removable singularity of f , then f can be defined (or redefined)

appropriately at z0 so that it becomes holomorphic in a disc with center z0. The Laurent series

98



of f at z0 reduces to a power series of first type and this power series is the Taylor series of the
(extended) f in a disc with center z0.

Here is a useful test to decide if an isolated singularity is removable without calculating the
Laurent series of the function.

Riemann’s criterion. Let z0 be an isolated singularity of f . If limz→z0(z − z0)f(z) = 0, then z0
is a removable singularity of f .

Proof. Let f(z) =
∑+∞

−∞ an(z − z0)
n for every z ∈ Dz0(R) \ {z0}. We take any ϵ > 0 and then

there is δ > 0 so that |z − z0||f(z)| ≤ ϵ for every z ∈ Dz0(R) with 0 < |z − z0| < δ. Now, we
consider any r with 0 < r < min{δ,R, 1} and any n < 0. Then we have

|an| =
∣∣∣ 1

2πi

∮
Cz0 (r)

f(ζ)

(ζ − z0)n+1
dζ

∣∣∣ ≤ 1

2π

ϵ

rn+2
2πr = ϵr−n−1 = ϵr|n|−1 ≤ ϵ.

Since ϵ > 0 is arbitrary, we get an = 0 for every n < 0 and z0 is a removable singularity of f .

In the case of an isolated singularity z0 for f , sometimes we know that the limz→z0 f(z) exists
and it is finite or that f is bounded close to z0. In both cases we have that limz→z0(z−z0)f(z) = 0
is satisfied and we conclude that z0 is a removable singularity of f .

Example 6.9.1. The function f(z) = z2−3z+2
z−2 is holomorphic in C\{2}. Since limz→2 f(z) = 1,

the point 2 is a removable singularity of f . If we define f(2) = 1, then f , now defined in C, is
holomorphic in C. The formula of the extended f is

f(z) =

{
z2−3z+2
z−2 , if z ̸= 2

1, if z = 2
=

{
z − 1, if z ̸= 2

1, if z = 2

I.e. the extended f is the simple function z − 1 in C.
To find the Laurent series of the original f with center 2 we write f(z) = z2−3z+2

z−2 = z − 1 =
1 + (z − 2) for every z ∈ D2(0,+∞). The Laurent series has no negative powers of z − 2 and
we see again that 2 is a removable singularity of f .

Now we consider the case of a pole z0 of f . Let
∑+∞

−∞ an(z − z0)
n be the Laurent series of f

in the ringDz0(R) \ {z0} and then there is a largestm ≥ 1 so that a−m ̸= 0. LetN be this largest
m. Then we have

f(z) =
a−N

(z − z0)N
+ · · ·+ a−1

z − z0
+

+∞∑
n=0

an(z − z0)
n for every z ∈ Dz0(R) \ {z0}

with a−N ̸= 0. We may write this as

f(z) =
1

(z − z0)N

+∞∑
n=0

an−N (z − z0)
n for every z ∈ Dz0(R) \ {z0}.

Since the power series
∑+∞

n=0 an−N (z − z0)
n converges in the discDz0(R), it defines a holomor-

phic function g : Dz0(R) → C and we have

f(z) =
g(z)

(z − z0)N
for every z ∈ Dz0(R) \ {z0}.

Observe that
g(z0) = a−N ̸= 0.

Definition. Let z0 ∈ Ω be a pole of f and let N be the largest m ≥ 1 such that a−m ̸= 0. Then
we say that z0 is a pole of f of order N or of multiplicity N .
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We saw that, if z0 is a pole of f order N , then there is a function g holomorphic in some disc
Dz0(R) so that

g(z0) ̸= 0 and f(z) =
g(z)

(z − z0)N
for every z ∈ Dz0(R) \ {z0}. (6.15)

It is easy to see the converse. Indeed, let g be holomorphic in Dz0(R) and let (6.15) hold. We
consider the Taylor series

∑+∞
n=0 bn(z − z0)

n of g and then for z ∈ Dz0(R) \ {z0} we have

f(z) =
1

(z − z0)N

+∞∑
n=0

bn(z − z0)
n =

b0
(z − z0)N

+ · · ·+ bN−1

z − z0
+

+∞∑
n=0

bn+N (z − z0)
n.

The last power series is the Laurent series of f in Dz0(R) \ {z0} and since b0 = g(z0) ̸= 0, we
have that z0 is a pole of f of order N .

Since g(z0) ̸= 0 and g is continuous at z0, we have that g does not vanish at any point of some
disc Dz0(r) with 0 < r ≤ R. Then h(z) = 1

g(z) is holomorphic in Dz0(r) and (6.15) implies that
1

f(z) = (z− z0)
Nh(z) for every z ∈ Dz0(r) \ {z0}. Therefore, z0 is a removable singularity of 1

f .
Moreover, if we define 1

f to take the value 0 at z0, then we have 1
f (z) = (z − z0)

Nh(z) for every
z ∈ Dz0(r) and, since h(z0) ̸= 0, then z0 is a root of the extended 1

f of multiplicity N . It is easy
to prove in a similar way the converse, and we conclude that z0 is a pole of f of order N if and
only if it is a root of 1

f of mutiplicity N .

Example 6.9.2.Many times we meet functions of the form f = p
q , where p and q are holomorphic

in a neighborhood of z0. If p and q are polynomials, then f is a rational function.
Let z0 be a root of p and q of multiplicityM ≥ 0 and N ≥ 0, respectively. In this case we saw
that there are holomorphic functions p1 and q1 in a neighborhood Dz0(R) of z0 so that p(z) =
(z − z0)

Mp1(z) and q(z) = (z − z0)
Nq1(z) for every z ∈ Dz0(R) and also p1(z0) ̸= 0 and

q1(z0) ̸= 0. (Of course we consider the case that none of p, q is identically 0.) Then there is r with
0 < r ≤ R so that p1(z) ̸= 0 and q1(z) ̸= 0 for every z ∈ Dz0(r), and then we have

f(z) =
p(z)

q(z)
= (z − z0)

M−N p1(z)

q1(z)
= (z − z0)

M−Ng(z) for every z ∈ Dz0(r) \ {z0},

where the function g(z) = p1(z)
q1(z)

is holomorphic in Dz0(r) and g(z0) = p1(z0)
q1(z0)

̸= 0. Now we
have two cases. If M ≥ N , then z0 is a removable singularity of f , and f (after we extend it
appropriately at z0) is holomorphic at z0 and z0 is a root of f of multiplicityM −N . IfM < N ,
then z0 is a pole of order N −M of f .

Here are some concrete instances of this example.

Example 6.9.3. The function f(z) = z2−3z+2
(z−2)2

is holomorphic in C \ {2}.
Since z2 − 3z + 2 = (z − 2)(z − 1), we have f(z) = z−1

z−2 for z ̸= 2. The function g(z) = z − 1
is holomorphic in C and g(2) = 1 ̸= 0. Therefore, 2 is a pole of f of order 1. To find the Laurent
series of f inD2(0,+∞) we write f(z) = 1+(z−2)

z−2 = 1
z−2 + 1 and the Laurent series is 1

z−2 + 1.

Example 6.9.4. The function f(z) = ez−1
z3

is holomorphic in C \ {0}.
The Taylor series of ez − 1 with center 0 is z + 1

2! z
2 + 1

3! z
3 + · · · . Hence ez − 1 = zg(z) with

g(z) = 1 + 1
2! z +

1
3! z

2 + · · · . The function g is holomorphic in C and g(0) = 1 ̸= 0 and we
have f(z) = g(z)

z2
for z ̸= 0. Therefore, 0 is a pole of f of order 2. The Laurent series of f in

D0(0,+∞) is 1
z2

+ 1/(2!)
z + 1

3! +
1
4! z + · · · .

Example 6.9.5. The function cot z = cos z
sin z is holomorphic in C \ {kπ | k ∈ Z}.

The points kπ, k ∈ Z, are isolated singularities of cot z and we shall prove that they are all poles
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of order 1. We fix k ∈ Z. The Taylor series of sin z with center kπ results from the Taylor series
of sin z with center 0, as follows

sin z = sin((z − kπ) + kπ) = cos kπ sin(z − kπ) = (−1)k sin(z − kπ)

= (−1)k
(
(z − kπ)− 1

3!
(z − kπ)3 + · · ·

)
= (−1)k(z − kπ)− (−1)k

3!
(z − kπ)3 + · · · .

Therefore, sin z = (z − kπ)q1(z) for every z, where the function q1 is holomorphic in C with
q1(kπ) = (−1)k. Hence, cot z = cos z

(z−kπ)q1(z) = g(z)
z−kπ with g(z) = cos z

q1(z)
and g is holomorphic in

the disc Dkπ(π) and g(kπ) = cos kπ
q1(kπ)

= 1. Therefore, kπ is a pole of cot z of order 1.
(Observe that Dkπ(π) is the largest open disc with center kπ which is contained in the domain of
holomorphy of g because it is the largest open disc with center kπ which does not contain any root
of q1. This is true because q1(z) = sin z

z−kπ vanishes at every lπ with l ∈ Z, l ̸= k.)
The Laurent series of cot z in Dkπ(0, π) is cot z = 1

z−kπ + g′(kπ) + 1
2g

′′(kπ)(z − kπ) + · · · .

For the determination of poles there is a criterion similar to the criterion of Riemann for re-
movable singularities.

Proposition 6.4. Let z0 be an isolated singularity of f . Then z0 is a pole of f if and only if
limz→z0 f(z) = ∞.

Proof. There is a disc Dz0(R) so that f is holomorphic in Dz0(R) \ {z0}.
If z0 is a pole of orderN of f , then we saw that there is a function g holomorphic inDz0(R) so that
g(z0) ̸= 0 and f(z) = g(z)

(z−z0)N for every z ∈ Dz0(R) \ {z0}. This implies limz→z0 f(z) = ∞.
Conversely, let limz→z0 f(z) = ∞. Then there is r with 0 < r ≤ R so that f(z) ̸= 0 for every
z ∈ Dz0(r) \ {z0}. Then the function

h(z) =
1

f(z)
for every z ∈ Dz0(r) \ {z0} (6.16)

is holomorphic inDz0(r)\{z0}. Since limz→z0 h(z) = limz→z0
1

f(z) = 0, the criterion of Riemann
implies that z0 is a removable singularity of h. Therefore, we may define h appropriately at z0 so
that it becomes holomorphic inDz0(r): we set h(z0) = limz→z0 h(z) = 0. It is clear that z0 is the
only root of (the extended) h in Dz0(r) and, if N is the multiplicity of this root, then

h(z) = (z − z0)
Nh1(z) for every z ∈ Dz0(r), (6.17)

where h1 is holomorphic in Dz0(r) and has no root in Dz0(r). Thus, the function

g(z) =
1

h1(z)
for z ∈ Dz0(r) (6.18)

is holomorphic inDz0(r) and, clearly, has no root inDz0(r). Now (6.16), (6.17) and (6.18) imply
f(z) = g(z)

(z−z0)N for every z ∈ Dz0(r) \ {z0} with g(z0) ̸= 0 and z0 is a pole of f of orderN .

There is one more test for the case of a pole which also determines the exact order of the pole.

Proposition 6.5. Let z0 be an isolated singularity of f . Then z0 is a pole of f of order N ≥ 1 if
and only if the limz→z0(z − z0)

Nf(z) exists and it is finite and ̸= 0.

Proof. If z0 is a pole of f of orderN , then we repeat the beginning of the proof of proposition 6.4
and we get that limz→z0(z − z0)

Nf(z) = limz→z0 g(z) = g(z0) ̸= 0.
Conversely, let limz→z0(z − z0)

Nf(z) be finite and ̸= 0. Riemann’s criterion implies that the
function g(z) = (z−z0)Nf(z), which is holomorphic in some ringDz0(R)\{z0}, can be extended
at z0 by setting g(z0) = limz→z0 g(z) = limz→z0(z − z0)

Nf(z) ̸= 0, and the extended g is
holomorphic in Dz0(R). Therefore, there is a g holomorphic in Dz0(R) with g(z0) ̸= 0 so that
f(z) = g(z)

(z−z0)N for every z ∈ Dz0(R) \ {z0} and z0 is a pole of f of order N .
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Finally, for the case of an essential singularity we have the following result.

Proposition 6.6. Let z0 be an isolated singularity of f . Then z0 is an essential singularity of f if
and only if the limz→z0 f(z) does not exist.

Proof. By the criterion of Riemann, z0 is a removable singularity if and only if the limz→z0 f(z)
exists and it is finite. Proposition 6.4 says that z0 is a pole if and only if limz→z0 f(z) = ∞.

Example 6.9.6. In example 6.7.8 we saw that
∑n=−1

−∞
1

(−n)! z
n + 1 is the Laurent series of e

1
z in

D0(0,+∞). Hence 0 is an essential singularity of e
1
z .

Therefore, the limz→0 e
1
z does not exist. We can see this without proving first that 0 is an essential

singularity of e
1
z . In fact, proving that the limz→0 e

1
z does not exist is another way to see that

0 is an essential singularity of e
1
z . Indeed, if z = x tends to 0 on the positive x-semiaxis, then

|e
1
z | = e

1
x → +∞, and hence e

1
z → ∞. If z = x tends to 0 on the negative x-semiaxis, then

|e
1
z | = e

1
x → 0, and hence e

1
z → 0. Thus, the limz→0 e

1
z does not exist.

Definition. Let z0 be an isolated singularity of f and let
∑+∞

−∞ an(z − z0)
n be the Laurent series

of f in the ring Dz0(0, R) = Dz0(R) \ {z0}. Then
∑n=−1

−∞ an(z − z0)
n is called the singular

part of the Laurent series of f or, simply, the singular part of f at z0. Also,
∑+∞

n=0 an(z − z0)
n is

called the regular part of the Laurent series of f or, simply, the regular part of f at z0.

We have seen that in the case of a removable singularity z0 the singular part of f at z0 is zero
and the Laurent series of f at z0 consists only of its regular part. In the case of a pole z0 of f of
order N the singular part at z0 is a finite sum of the form

∑N
n=1

a−n

(z−z0)n with a−N ̸= 0. In this
case the singular part is a rational function whose denominator is (z − z0)

N . In the case of an
essential singularity z0 the singular part at z0 has infinitely many terms.

We should note that the power series
∑n=−1

−∞ an(z−z0)n, i.e. the singular part of f , converges
in Dz0(0,+∞) ∪ {∞} = Ĉ \ {z0}. Its value at∞ is 0.

If we subtract from f its singular part at its singularity z0, then we get

f(z)−
n=−1∑
−∞

an(z − z0)
n =

+∞∑
n=0

an(z − z0)
n,

which is a power series of first type and hence converges in the discDz0(R), including the center
z0. Therefore, z0 is a removable singularity of the function F (z) = f(z) −

∑n=−1
−∞ an(z − z0)

n

and if we define F to have value F (z0) = a0 at z0, then this function is holomorphic in Dz0(R).
We shall now establish the well known analysis of a rational function into a sum of simple

fractions.

Proposition 6.7. Let r = p
q be a rational function. We assume that the polynomials p, q have no

common roots (and hence no common factors), that the degree of p is n, the degree of q ism and
that z1, . . . , zk are the roots of q with corresponding multiplicitiesm1, . . . ,mk. Then

r(z) = p1

( 1

z − z1

)
+ · · ·+ pk

( 1

z − zk

)
+ p0(z),

where p1, . . . , pk are polynomials without constant terms and of degreesm1, . . . ,mk, respectively,
and p0 is either the null polynomial, if n < m, or a polynomial of degree n−m, if n ≥ m.

Proof. We saw in example 6.9.2 that every zj is a pole of r of degreemj . Therefore, the singular
part of r at zj has the form

∑mj

l=1
a−l

(z−z0)l
with a−mj ̸= 0. This has the form pj(

1
z−zj ), where pj

is the polynomial pj(z) =
∑mj

l=1 a−lz
l without constant term and of degreemj . Now we subtract

from r all its singular parts at the points z1, . . . , zk and consider the function

p0(z) = r(z)−
(
p1

( 1

z − z1

)
+ · · ·+ pk

( 1

z − zk

))
.
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This function is a rational function defined in the set C \ {z1, . . . , zk} and its only possible poles
are the points z1, . . . , zk. We observe, though, that every zj is a removable singularity of r(z) −
pj(

1
z−zj ) and that all terms p1( 1

z−z1 ), . . . , pk(
1

z−zk ), besides pj(
1

z−zj ), are holomorphic at zj .
Therefore, every zj is a removable singularity of the function p0. In other words, the rational
function p0 has no poles and hence it is a polynomial. Now, we have the identity

r(z) = p1

( 1

z − z1

)
+ · · ·+ pk

( 1

z − zk

)
+ p0(z)

and we consider two cases. If n < m, then limz→∞ r(z) = 0 and, since limz→∞ pj(
1

z−zj ) = 0

for every j, we have that limz→∞ p0(z) = 0. Thus, p0 is the null polynomial. If n ≥ m, then
c = limz→∞

r(z)
zn−m is a complex number ̸= 0. Since limz→∞ pj(

1
z−zj )/z

n−m = 0 for every j, we

have that limz→∞
p0(z)
zn−m = c ̸= 0. Thus the polynomial p0 has degree n−m.

Exercises.

6.9.1. Is 0 an isolated singularity of 1
sin(1/z) ?

6.9.2. Find the isolated (non-removable) singularities of: 1
z2+5z+6

, 1
(z2−1)2

, ez−1
z , ez−1

z3
, z2

sin z ,
1

sin z ,
tan z, 1

sin2 z , e
z + e1/z , 1

ez−1 . Which of the singularities are poles and what is their order?

6.9.3. Find the initial four terms of the Laurent series at 0 of the functions: cot z, 1
sin z ,

z
sin2 z ,

1
ez−1 .

6.9.4. Prove that an isolated singularity of f(z) cannot be a pole of ef(z).

6.9.5. Let z0 be an isolated singularity of f , which is not constant in any neighborhood of z0. If
there is s ∈ R so that limz→z0 |z − z0|s|f(z)| ∈ [0,+∞], prove that z0 is either a removable
singularity or a pole of f and that there ism ∈ Z so that

lim
z→z0

|z − z0|s|f(z)|


= 0, if s > m

= +∞, if s < m

∈ (0,+∞), if s = m

6.9.6. Let f be holomorphic in Dz0(R) \ {z0} and let either Re f or Im f be bounded either from
above or from below in Dz0(R) \ {z0}. Prove that z0 is a removable singularity of f .

6.9.7. Let f be holomorphic in D0(R) \ {z0}, where R > 1 and |z0| = 1, and let z0 be a pole of
f . If f(z) =

∑+∞
n=0 anz

n is the Taylor series of f in D0(1), prove that an
an+1

→ z0.

6.9.8. Let Ω be a region so that every point of Ω is either a point of holomorphy or an isolated
singularity of f . If the roots of f have an accumulation point in Ω, which is not an essential
singularity of f , prove that f is identically 0 in Ω.

6.9.9. (i) Let z0 be an essential singularity of f and let w ∈ C. Prove that for every r > 0 the
function 1

f−w is not bounded in Dz0(r) \ {z0}.
(ii) Prove the Casorati-Weierstrass theorem. If z0 is an essential singularity of f , then for every
w there is a sequence (zn) with zn → z0 and zn ̸= z0 for every n so that f(zn) → w.

6.9.10. (i) Prove that every 2kπi, k ∈ Z, is a pole of 1
ez−1 of order 1.

(ii) Prove that 1
ez−1 = 1

z − 1
2 +

∑+∞
k=1(−1)k−1 Bk

(2k)!z
2k−1 for |z| < 2π, where the numbers Bk

satisfy the recursive relations 1
(2k+1)! −

1
2(2k)! +

∑k
ν=1

(−1)ν−1Bν

(2ν)!(2k−2ν+1)! = 0, k ≥ 1. Evaluate
B1, B2, B3. The numbers Bk are called Bernoulli constants.
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6.9.11. Look at exercises 6.7.7 and 6.8.11. We shall extend what we said in this section to the case
of the point∞.
(i) We say that∞ is an isolated singularity of f if f is holomorphic in some ringD0(R,+∞). Let∑+∞

−∞ anz
n be the Laurent series of f in this ring. If an = 0 for every n ≥ 1, then we say that∞

is a removable singularity of f . If an ̸= 0 for at least one n ≥ 1 and for only finitely many n ≥ 1,
then we say that ∞ is a pole of f . Finally, if an ̸= 0 for infinitely many n ≥ 1, then we say that
∞ is an essential singularity of f .
Prove that∞ is a removable singularity of f if and only if limz→∞

f(z)
z = 0.

Prove that∞ is a pole of f if and only if limz→∞ f(z) = ∞.
Let ∞ be a pole of f and let N be the largest n ≥ 1 with an ̸= 0. Then we say that ∞ is a pole
of f of order N . Prove that ∞ is a pole of f of order N if and only if there is a g holomorphic in
D0(R,+∞)∪{∞} so that g(∞) ̸= 0 and f(z) = zNg(z) for every z ∈ D0(R,+∞). Moreover,
prove that∞ is a pole of f of orderN if and only if the limz→∞

f(z)
zN

exists and it is finite and ̸= 0.
Prove that∞ is an essential singularity of f if and only if the limz→∞ f(z) does not exist.
(ii) Let r = p

q be a rational function and let n be the degree of the polynomial p and m be the
degree of the polynomial q. Prove that ∞ is a removable singularity of r ifm ≥ n and that it is a
pole of r of order n −m if n > m. In particular, a polynomial p of degree n ≥ 1 has a pole of
order n at∞.
(iii) What kind of an isolated singularity is∞ for the functions ez , e

1
z , z2e

1
z , sin z, sin 1

z , z
5 sin 1

z ?
(iv) What kind of an isolated singularity is∞ for any holomorphic branch of ((z− 1)(z− 2))

1
2 in

the region C \ [1, 2].
(v) Is∞ an isolated singularity of 1

sin z or of tan z?

6.10 The open mapping theorem.

Open mapping theorem. Let f : Ω → C be holomorphic in the region Ω. If f is not constant in
Ω, then f(U) is open for every open U ⊆ Ω.

Proof. Let U ⊆ Ω be open. We shall prove that f(U) is also open, i.e. that every w0 ∈ f(U) is
an interior point of f(U).
Since w0 ∈ f(U) there is some z0 ∈ U so that f(z0) = w0. Since U is open, there is r > 0 so that
Dz0(r) ⊆ U . Since f is non-constant in Ω, the solution z0 of the equation f(z) = w0 is isolated.
Therefore, we may take r small enough so that f(z) = w0 has no solution in Dz0(r) except z0.
This means that f(z) ̸= w0 for every z ∈ Dz0(r) \ {z0}. In particular, f(z) ̸= w0 for every
z ∈ Cz0(r). Now, the function |f(z) − w0| is continuous and real-valued and the circle Cz0(r)
is compact. Therefore, the restriction of |f(z) − w0| in Cz0(r) attains a minimum value at some
point of Cz0(r) which is a positive number. We denote ϵ this minimum and we have:

ϵ = min
z∈Cz0 (r)

|f(z)− w0| > 0. (6.19)

Now, we consider any w /∈ f(Dz0(r)). Again, the function |f(z) − w| is continuous and real-
valued and the disc Dz0(r) is compact. Therefore the restriction of |f(z) − w| in Dz0(r) attains
a minimum value at some point of Dz0(r) which is positive. But now we can say more: the
function 1

f(z)−w is holomorphic in Dz0(r) and continuous in Dz0(r). The second version of the
maximum principle implies that the function 1

|f(z)−w| , restricted in Dz0(r), attains its maximum
value at the boundary Cz0(r). Equivalently, the function |f(z)− w|, restricted in Dz0(r), attains
its minimum value at the boundary Cz0(r). Since one of the values of |f(z) − w| in Dz0(r) is
|f(z0)− w| = |w0 − w|, we get

|w0 − w| ≥ min
z∈Cz0 (r)

|f(z)− w|. (6.20)
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Now, we have
|f(z)− w| ≥ |f(z)− w0| − |w0 − w|. (6.21)

We combine (6.19), (6.20) and (6.21) and get

|w0 − w| ≥ min
z∈Cz0 (r)

|f(z)− w| ≥ min
z∈Cz0 (r)

|f(z)− w0| − |w0 − w| = ϵ− |w0 − w|.

Thus
|w0 − w| ≥ ϵ

2
.

We have proved that any w /∈ f(Dz0(r)) satisfies |w0 − w| ≥ ϵ
2 . This implies that every w ∈

Dw0(
ϵ
2) belongs to f(Dz0(r)). I.e.

Dw0

( ϵ
2

)
⊆ f(Dz0(r)) ⊆ f(U)

and w0 is an interior point of f(U).

Exercises.

6.10.1. Prove the first maximum principle using the open mapping theorem.

6.11 Local mapping properties.

Proposition 6.8. Let f : Ω → C be holomorphic in the region Ω and let z0 ∈ Ω with f ′(z0) ̸= 0.
Then there is an open set U ⊆ Ω containing z0 so that W = f(U) is an open set containing
w0 = f(z0) and the function f : U →W is one-to-one. Moreover, the function f−1 :W → U is
holomorphic inW .

Proof. We consider the Taylor series
∑+∞

n=0 an(z−z0)n of f in its disc of convergenceDz0(R) ⊆
Ω. We know that the differentiated series

∑+∞
n=1 nan(z−z0)n−1 converges absolutely in the same

disc, i.e.
∑+∞

n=1 n|an||z − z0|n−1 < +∞ for every z ∈ Dz0(R). Therefore, the power series∑+∞
n=1 n|an|(z − z0)

n−1 converges in the disc Dz0(R) and defines a continuous function in this
disc. In particular, we have that limz→z0

∑+∞
n=1 n|an|(z − z0)

n−1 = |a1| or, equivalently,

lim
z→z0

+∞∑
n=2

n|an|(z − z0)
n−1 = 0.

Since a1 = f ′(z0) ̸= 0, there is a small enough r > 0 so that

+∞∑
n=2

n|an|rn−1 < |a1|.

We shall see now that f : Dz0(r) → C is one-to-one. Assume that this is not the case and that
there are z1, z2 ∈ Dz0(r) so that z1 ̸= z2 and f(z1) = f(z2). Then

∑+∞
n=0 an(z1 − z0)

n =∑+∞
n=0 an(z2 − z0)

n and hence

a1 =
+∞∑
n=2

an((z1−z0)n−1+(z1−z0)n−2(z2−z0)+ · · ·+(z1−z0)(z2−z0)n−2+(z2−z0)n−1).

This implies |a1| ≤
∑+∞

n=2 n|an|rn−1 and we arrive at a contradiction. Since f ′ is continuous at z0
and f ′(z0) ̸= 0, by taking a smaller r > 0 if necessary, we may suppose that f ′(z) ̸= 0 for every
z ∈ Dz0(r). Now we take U = Dz0(r). From the open mapping theorem we have that the set
W = f(U) = f(Dz0(r)) is open and we have proved that f : U → W is one-to-one and hence
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the inverse mapping f−1 : W → U is defined. Now it is easy to see that this inverse mapping is
continuous inW . Indeed let w ∈ W . Then there is (a unique) z ∈ U so that f(z) = w. We take
any ϵ > 0 small enough so thatDz(ϵ) ⊆ U . Then the set f(Dz(ϵ)) is open and contains w. Hence
there is δ > 0 so thatDw(δ) ⊆ f(Dz(ϵ)). Then for every w′ ∈ Dw(δ) the (unique) z′ ∈ U which
satisfies f(z′) = w′ is contained inDz(ϵ). This says that for every w′ ∈W with |w′ −w| < δ we
have |f−1(w′) − f−1(w)| = |z′ − z| < ϵ and the function f−1 : W → U is continuous at every
w ∈W . Now, proposition 4.4 implies that f−1 :W → U is holomorphic inW .

Theorem 6.2. Let f : Ω → C be holomorphic in the regionΩ and let z0 ∈ Ω and w0 = f(z0). Let
z0 be a solution of f(z) = w0 of multiplicityN . Then there is an open set U ⊆ Ω containing z0 so
thatW = f(U) is an open set containing w0 = f(z0) and the function f : U →W is N -to-one.

Proof. We know that there is a disc Dz0(R) and a function g holomorphic in Dz0(R) so that
f(z)−w0 = (z− z0)

Ng(z) for every z ∈ Dz0(R) and g(z0) ̸= 0. By the continuity of g we have
that there is r ≤ R so that g(z) ̸= 0 for every z ∈ Dz0(r). Hence the function

g′

g is holomorphic
in Dz0(r) and the theorem of Cauchy in convex regions implies that

∮
γ
g′(z)
g(z) dz = 0 for every

closed curve γ in Dz0(r). Now, proposition 5.24 implies that there is a holomorphic branch of
log g in Dz0(r), i.e. that there is a holomorphic k : Dz0(r) → C so that ek(z) = g(z) for every
z ∈ Dz0(r). Now the function ϕ : Dz0(r) → C defined by ϕ(z) = ek(z)/N for every z ∈ Dz0(r)
is a holomorphic branch of g1/N in Dz0(r). Indeed, we have ϕ(z)N = ek(z) = g(z) for every
z ∈ Dz0(r).
We have proved that there is a function ϕ : Dz0(r) → C holomorphic in Dz0(r) so that ϕ(z)N =
g(z) for every z ∈ Dz0(r).
Now we consider the function h : Dz0(r) → C defined by h(z) = (z − z0)ϕ(z). This is holo-
morphic in Dz0(r) and we have that f(z) − w0 = h(z)N for every z ∈ Dz0(r). Moreover,
h′(z) = ϕ(z) + (z − z0)ϕ

′(z) and hence h′(z0) = ϕ(z0) ̸= 0. Therefore, we may apply proposi-
tion 6.8 and get that there is an open set U0 ⊆ Dz0(r) containing z0 so thatW0 = h(U0) is an open
set containing h(z0) = 0 and the function h : U0 → W0 is one-to-one. Now, we consider a disc
D0(r0) ⊆ W0 and the open set U = h−1(D0(r0)) ⊆ U . Then h : U → D0(r0) is holomorphic
in U , onto D0(r0) and one-to-one in U . Moreover, we have that f(z) − w0 = h(z)N for every
z ∈ U . Since the N -th power w = ζN maps the disc D0(r0) onto the disc D0(r

N
0 ) and in an

N -to-one manner, we conclude that f : U →W is N -to-one, whereW is the discDw0(r
N
0 ).

In the proof of theorem 6.2 if we take any linear segment [w0, w] in the disc Dw0(r
N
0 ), where

w is a point of the circle Cw0(r
N
0 ), then, through the mapping w = w0 + ζN , this linear segment

corresponds to N linear segments [0, z1], . . . [0, zN ] in the disc D0(r0), where z1, . . . , zN are N
points on the circle C0(r0). These N linear segments form N successive angles at 0 all equal to
2π
N . Now the one-to-one function h−1 : D0(r0) → U maps these linear segments onto N curves
γ1, . . . , γN with common initial endpoint z0 and N corresponding final endpoints on ∂U . Since
h′(z0) ̸= 0, the conformality of h at z0 implies that γ1, . . . , γN formN successive angles at z0 all
equal to 2π

N . TheN successive “angular” regions U1, . . . , UN in U between the curves γ1, . . . , γN
are mapped by h onto the corresponding succesive angular regionsA1, . . . , AN inD0(r0) between
the linear segments [0, z1], . . . [0, zN ] and these are then mapped by the mapping w = w0 + ζN

onto the same region B = Dw0(r
N
0 ) \ [w0, w]. We conclude that f , which is the composition of

the two mappings, maps each of U1, . . . , UN in U onto B and in an one-to-one manner.

Exercises.

6.11.1. Let f be holomorphic inD0(R), f ′(0) ̸= 0 and n ∈ N. Prove that there is r > 0 and there
is g holomorphic in D0(r) so that f(zn) = f(0) + (g(z))n for every z ∈ D0(r).

6.11.2. Let Ω1,Ω2 be two regions, let f : Ω1 → Ω2 and g : Ω2 → C be non-constant functions
and let h = g ◦ f .
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(i) If f, h are holomorphic in Ω1, is g holomorphic in Ω2?
(ii) If g, h are holomorphic in Ω2,Ω1, respectively, is f holomorphic in Ω1?

6.11.3. If f is holomorphic and one-to-one in C, prove that there are a ̸= 0 and b so that f(z) =
az + b for every z.
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Chapter 7

Global behaviour of holomorphic
functions.

7.1 Rotation number or index of a closed curve with respect to a
point.

Definition. Let A ⊆ C, h : A → R and g : A → C \ {0} be continuous in A. We say that h is a
continuous branch of arg g(w) in A if
(i) h is continuous in A and
(ii) for every w ∈ A we have h(w) ∈ arg g(w) or, equivalently, g(w) = |g(w)|eih(w).

We recall the notion of a continuous branch of log g(w). We say that f : A→ C is a continuous
branch of log g(w) if f is continuous in A and f(w) ∈ log g(w) or, equivalently, ef(w) = g(w)
for every w ∈ A.

Proposition 7.1. Let A ⊆ C and g : A → C \ {0} be continuous in A. Then there is a one-to-
one correspondence between continuous branches of log g(w) in A and continuous branches of
arg g(w) in A.

Proof. If h : A → R is a continuous branch of arg g(w) in A, then the function f : A → C,
defined by

f(w) = ln |g(w)|+ ih(w) for every w ∈ A, (7.1)

is a continuous branch of log g(w) in A. Indeed, it is clear that f is continuous in A and also

ef(w) = eln |g(w)|eih(w) = |g(w)|eih(w) = g(w)

for every w ∈ A.
Conversely, if f : A → R is a continuous branch of log g(w) in A, then the function h : A →
C, defined through (7.1), is a continuous branch of arg g(w) in A. Indeed, it is clear that h is
continuous in A and also

eih(w) = ef(w)e− ln |g(w)| =
g(w)

|g(w)|

and hence g(w) = |g(w)|eih(w) for every w ∈ A.

In other words, relation (7.1) says that, if we have a continuous branch f of log g(w) in A,
then the imaginary part h of f is a continuous branch of arg g(w) in A. Conversely, if we have
a continuous branch h of arg g(w) in A, then the function f with imaginary part h and real part
ln |g(w)| is a continuous branch of log g(w) in A.

The next result is analogous to proposition 5.15 and their proofs are almost identical.
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Proposition 7.2. Let A ⊆ C, g : A→ C \ {0} be continuous in A and h1, h2 : A→ C.
(i) If h1 is a continuous branch of arg g(w) in A and h2(w) − h1(w) = k2π for every w ∈ A,
where k is a fixed integer, then h2 is also a continuous branch of arg g(w) in A.
(ii) If, morever,A is connected and h1, h2 are continuous branches of arg g(w) inA, then h2(w)−
h1(w) = k2π for every w ∈ A, where k is a fixed integer. In particular, if h1(w0) = h2(w0) for
some w0 ∈ A, then h1(w) = h2(w) for every w ∈ A.

Proof. (i) The continuity of h1 in A implies the continuity of h2 in A. We also have g(w) =
|g(w)|eih1(w) for every w ∈ A and hence |g(w)|eh2(w) = |g(w)|eih1(w)+ik2π = g(w) for every
w ∈ A. Therefore, h2 is a continuous branch of arg g(w) in A.
(ii) We consider the function k : A→ C defined by

k(w) =
1

2π
(h2(w)− h1(w)) for every w ∈ A.

Since for every w ∈ A both h2(w) and h1(w) are values of arg g(w), we have that k(w) is an
integer. I.e. k : A → Z. Also, since both h1, h2 are continuous in A, k is continuous in A.
Now, k is a continuous real function in the connected set A, and hence it has the intermediate
value property. But since its only values are integers, it is constant in A. Therefore, there is a
fixed integer k so that 1

2π (h2(w)− h1(w)) = k or, equivalently, h2(w)− h1(w) = k2π for every
w ∈ A.
If h2(w0) = h1(w0) for some w0 ∈ A, then the integer k is 0 and we get that h2(w) = h1(w) for
every w ∈ A.

We consider any curve
γ : [a, b] → C.

We recall that γ is continuous and piecewise continuously differentiable in [a, b]. I.e. there is a
succession of points a = t0 < t1 < · · · < tn−1 < tn = b so that γ is continuously differentiable
in every [tk−1, tk].

We consider an arbitrary fixed

z0 /∈ γ∗ = {γ(t) | t ∈ [a, b]},

i.e. such that z0 ̸= γ(t) for every t ∈ [a, b] and we define the function f : [a, b] → C by

f(t) =

∫ t

a

γ′(s)

γ(s)− z0
ds for every t ∈ [a, b].

The function f is continuous in [a, b] and differentiable at every point of continuity of γ′(t)
γ(t)−z0 , i.e.

in every (tk−1, tk). In fact we have

f ′(t) =
γ′(t)

γ(t)− z0
for t in any (tk−1, tk).

Therefore, in each (tk−1, tk) we have

d

dt

(
(γ(t)− z0)e

−f(t)) = γ′(t)e−f(t) − (γ(t)− z0)f
′(t)e−f(t) = 0

and hence (γ(t) − z0)e
−f(t) is constant in each (tk−1, tk) with a constant value which a priori

depends on k. Since this function is continuous on [a, b], it is constant in [a, b]. Hence there is
c ∈ C so that

(γ(t)− z0)e
−f(t) = c for every t ∈ [a, b].

Since c ̸= 0, there is d ∈ C so that ed = c, and thus

ef(t)+d = γ(t)− z0 for every t ∈ [a, b].
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Now we redefine the function f : [a, b] → C by adding the constant d to the original f , i.e.

f(t) =

∫ t

a

γ′(s)

γ(s)− z0
ds+ d for every t ∈ [a, b] (7.2)

and we have
ef(t) = γ(t)− z0 for every t ∈ [a, b].

In other words, the function f(t) is a continuous branch of log(γ(t)− z0) in [a, b].
The real part of f(t) is ln |γ(t)−z0| and, if we denote h(t) the imaginary part of f(t), we have

f(t) = ln |γ(t)− z0|+ ih(t) for every t ∈ [a, b] (7.3)

and h : [a, b] → R is a continuous branch of arg(γ(t)− z0) in [a, b].
We have proven the existence of a continuous branch h of arg(γ(t) − z0) in [a, b]. Then the

function h + k2π, where k is an arbitrary, but constant, integer, is also a continuous branch of
arg(γ(t)− z0) in [a, b]. Moreover, since [a, b] is connected, these are all the continuous branches
of arg(γ(t)− z0) in [a, b].

Now, let h be any continuous branch of arg(γ(t)− z0) in [a, b]. We consider the expression

h(b)− h(a)

and we observe that this expression is independent of the particular choice of h. Indeed, if h1 is
another continuous branch of arg(γ(t) − z0) in [a, b], then there is a constant integer k so that
h1 = h+ k2π in [a, b] and hence

h1(b)− h1(a) = (h(b) + k2π)− (h(a) + k2π) = h(b)− h(a).

Definition. Let h : [a, b] → R be any continuous branch of arg(γ(t)−z0) in [a, b]. One such choice
is given through (7.2) and (7.3). Then we call total increment of argument or total increment
of angle over the curve γ with respect to z0 the expression

∆ arg(γ − z0) = h(b)− h(a).

Now let us consider the important special case when the curve γ : [a, b] → C is closed, i.e.
when γ(b) = γ(a). This implies that γ(b)−z0 = γ(a)−z0 and hence ln |γ(b)−z0| = ln |γ(a)−z0|
and that h(b) and h(a) differ by some integer multiple of 2π: indeed, both h(b), h(a) are values
of arg(γ(b)− z0) = arg(γ(a)− z0). Therefore the expresion ∆ arg(γ − z0) = h(b)− h(a) is an
integer multiple of 2π.

Definition. Let the curve γ : [a, b] → C be closed and let z0 /∈ γ∗. Then the integer

n(γ; z0) =
∆ arg(γ − z0)

2π

is called rotation number or index of γ with respect to z0.

It is easy to see the geometric content of the notion of rotation number or index of a closed
curve γ with respect to z0. For every t ∈ [a, b] the number h(t) is one of the values of the angle
of γ(t)− z0. When t increases in the parametric interval [a, b], the angle h(t) varies continuously
from h(a) to h(b). Since ∆ arg(γ − z0) = h(b) − h(a) = k2π for a certain integer k, the
number n(γ; z0) = ∆ arg(γ−z0)

2π = h(b)−h(a)
2π = k shows the number of complete rotations of the

continuously moving point γ(t) around z0.

Proposition 7.3. Let the curve γ : [a, b] → C be closed and let z0 /∈ γ∗. Then

n(γ; z0) =
1

2πi

∮
γ

1

z − z0
dz.
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Proof. We use the notation of the previous discussion and we get

n(γ; z0) =
∆ arg(γ − z0)

2π
=
h(b)− h(a)

2π
.

Since γ is closed, we have that ln |γ(b)− z0| = ln |γ(a)− z0| and (7.2) and (7.3) imply

n(γ; z0) =
f(b)− f(a)

2πi
=

1

2πi

∫ b

a

γ′(s)

γ(s)− z0
ds =

1

2πi

∮
γ

1

z − z0
dz

and the proof is complete.

Example 7.1.1.We take n ∈ Z and consider the closed curve γ : [0, 2π] → C with parametric
equation γ(t) = z0 + reint. It is clear that, if n ̸= 0 and t increases in the interval [0, 2π], then
γ(t) describes |n| times the circle Cz0(r) in the positive direction, if n > 0, and in the negative
direction, if n < 0. In the case n = 0, then γ(t) describes |n| = 0 times the circle Cz0(r) since it
stays still at the point z0 + r. All these agree with the result of the calculation:

n(γ; z0) =
1

2πi

∮
γ

1

z − z0
dz =

1

2πi

∫ 2π

0

1

reint
rineint dt = n.

The next result is just a special case, with g(z) = z − z0, of proposition 5.24.

Proposition 7.4. Let Ω ⊆ C \ {z0} be a region. Then a holomorphic branch of log(z − z0) exists
in Ω if and only if n(γ; z0) = 0 for every closed curve γ in Ω.

Proof. Obvious from proposition 5.24.

Example 7.1.2.We consider the region Ω = C \ l, where l is any halfline with vertex z0. We
know that a holomorphic branch of log(z − z0) exists in Ω and hence

∮
γ

1
z−z0 dz = 0 for every

closed curve γ in Ω. Of course, now this can be restated as n(γ; z0) = 0 for every closed curve
γ in Ω. Recalling the geometric content of the index, we conclude that every closed curve γ in Ω
performs no complete rotations around z0. This is geometrically clear: since γ is in Ω, it does not
intersect the halfline l with vertex z0, and hence it cannot make any complete rotation around z0.

Proposition 7.5. Let γ be any closed curve. Then the integer valued function

n(γ; · ) : C \ γ∗ → Z

is constant in every connected component of the open set C \ γ∗. We also have that n(γ; z) = 0
for every z in the unbounded connected component of C \ γ∗.

Proof. Proposition 5.25 implies that n(γ; z) = 1
2πi

∮
γ

1
ζ−z dζ is a holomorphic function of z in

C \ γ∗. Now, let Ω be any connected component of C \ γ∗. Then Ω is a region and the function
n(γ; z) is continuous and integer valued in Ω. Since n(γ; z) has the intermediate value property
in Ω it has to be constant in Ω.
Since γ∗ is bounded, it is contained in some discD0(R). Then the connected ringD0(R,+∞) is
contained in C \ γ∗ and hence it is contained in (exactly) one of the connected components, call it
Ω, of C \ γ∗. Therefore, Ω is the unbounded connected component of C \ γ∗ and we shall prove
that n(γ; z) = 0 for every z ∈ Ω. If z ∈ D0(R,+∞), then the function 1

ζ−z of ζ is holomorphic
in the disc D0(R) which contains γ. Therefore, c = n(γ; z) =

∮
γ

1
ζ−z dζ = 0.

Proposition 7.5 says that if z1, z2 are in the same connected component of the complement of
the trajectory of the closed curve γ, then the number of complete rotations of γ around z1 is equal
to the number of complete rotations of γ around z2.
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Example 7.1.3.We take any n ∈ Z, n ̸= 0, and the closed curve γ : [0, 2π] → C with γ(t) =
z0 + reint. This is the curve in example 7.1.1. Then γ∗ = Cz0(r) and its complement has two
connected components: the disc Dz0(r) and the ring Dz0(r,+∞). Observe that, if z ̸= z0, then
it is not trivial to evaluate n(γ; z) using the formula n(γ; z) = 1

2πi

∮
γ

1
ζ−z dζ and the parametric

equation of γ. On the contrary, the calculation for z = z0 is trivial and we did it in example 7.1.1:
n(γ, z0) = 0. Therefore,

n(γ; z) = n(γ; z0) = n, if z ∈ Dz0(r).

Also, Dz0(r,+∞) is the unbounded connected component of the complement of γ∗ and hence

n(γ; z) = 0, if z ∈ Dz0(r,+∞).

No calculation!

The proofs of the next three propositions are immediate applications of the integral represen-
tation of the index given in proposition 7.3. We omit them.

Proposition 7.6. Let γ1 and γ2 be closed curves with the same endpoints. Then γ1
·
+ γ2 is defined

and it is also a closed curve. Let z not be on the trajectory (γ1
·
+ γ2)

∗ = γ∗1 ∪ γ∗2 . Then

n(γ1
·
+ γ2; z) = n(γ1; z) + n(γ2; z).

Proposition 7.7. If the closed curve γ2 is a reparametrization of the closed curve γ1 and z is not
on the common tracectory γ∗1 = γ∗2 , then

n(γ2; z) = n(γ1; z).

Proposition 7.8. Let γ be a closed curve. Then ¬ γ is also a closed curve. Let z not be on the
trajectory (¬ γ)∗ = γ∗. Then

n(¬ γ; z) = −n(γ; z).

Definition. Let γ be a closed curve and z /∈ γ∗. We say that γ surrounds z if n(γ; z) ̸= 0.

Cauchy’s formula for derivatives and closed curves in convex regions. Let f : Ω → C be
holomorphic in the convex region Ω and γ be a closed curve in Ω. Then for all n ∈ N0 we have

n(γ; z)f (n)(z) =
n!

2πi

∮
γ

f(ζ)

(ζ − z)n+1
dζ for every z ∈ Ω \ γ∗.

Proof. The function F : Ω \ {z} → C defined by F (ζ) = f(ζ)−f(z)
ζ−z is holomorphic in Ω \ {z}.

Since z is a root of f(ζ) − f(z), the singularity z is removable. Therefore, we may define F at
z with F (z) = limζ→z

f(ζ)−f(z)
ζ−z = f ′(z) and then F becomes holomorphic in Ω. Now we apply

the theorem of Cauchy in convex regions and get∮
γ

f(ζ)− f(z)

ζ − z
dζ =

∮
γ
F (ζ) dζ = 0

for every z ∈ Ω \ γ∗. This implies∮
γ

f(ζ)

ζ − z
dζ = f(z)

∮
γ

1

ζ − z
dζ = f(z)2πin(γ; z) (7.4)

for every z ∈ Ω \ γ∗. This is the result of the statement in the case n = 0.
Now, we consider a small disc Dz(r) ⊆ C \ γ∗. This is possible, since z belongs to the open set
C \ γ∗. The disc Dz(r) is connected and hence it is contained in one connected component of
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C \ γ∗. Therefore, the index n(γ;w) is a constant function of w inDz(R), i.e. n(γ;w) = n(γ; z)
for every w ∈ Dz(r). Now we write (7.4) with w ∈ Dz(r) in the place of z:∮

γ

f(ζ)

ζ − w
dζ = f(w)2πin(γ; z).

We differentiate n times both sides with respect to w and get

n!

∮
γ

f(ζ)

(ζ − w)n+1
dζ = f (n)(w)2πin(γ; z).

Finally, we put w = z and we have the result of the statement for general n.

A particular instance of the last result is Cauchy’s formula for derivatives and circles. Indeed,
in the case when the curve γ is the circle Cz0(R) described once in the positive direction we have
n(γ; z) = 1 for all z ∈ Dz0(R). We originally proved the result in the case of a circle, using
corollary 6.1. We now have a “new” proof using that z is a removable singularity of f(ζ)−f(z)ζ−z .
We have also introduced the notion of the index of a closed curve. This new proof together with the
introduction of the notion of index allows us to generalize the case of a circle to the case of a closed
curve. There is still a restriction in the sense that the curve has to be contained in a convex region
in which the function is holomorphic. This is because our proof is based on Cauchy’s theorem in
convex regions. In this chapter we shall try to drop the restriction of convexity.

Exercises.

7.1.1. (i) Consider closed curves γ1, γ2 and z not on their trajectories. Assume that there are succes-
sive points w(1)

1 , . . . , w
(1)
n , w

(1)
n+1 = w

(1)
1 of γ∗1 and successive points w

(2)
1 , . . . , w

(2)
n , w

(2)
n+1 = w

(2)
1

of γ∗2 and curves σ1, . . . , σn, σn+1 = σ1 so that every σj goes from w
(1)
j to w(2)

j and so that, for
each j = 1, . . . , n, the part of γ1 between w

(1)
j , w

(1)
j+1, the part of γ2 between w

(2)
j , w

(2)
j+1, σj and

σj+1 are all in a convex subregion Dj of C \ {z}. Prove that n(γ1; z) = n(γ2; z).
(ii) Take a point z and two halflines l,m with vertex z. Let A ∈ l, A ̸= z and B ∈ m, B ̸= z.
Consider any curve γ1 from A to B in one of the two angular regions defined by l,m and any
curve γ2 from B to A in the second angular region defined by l,m. Consider the closed curve
γ = γ1

·
+ γ2. Using appropriately a small circle with center z, prove that n(γ; z) = ±1.

7.1.2. (i) Let g1, g2 : A→ C\{0} be continuous inA and h1, h2 : A→ C be continuous branches
of arg g1, arg g2 in A. Prove that h1 + h2 is a continuous branch of arg(g1g2) in A.
(ii) If γ1, γ2 are closed curves in C \ {0} then γ1γ2 is a closed curve in C \ {0}. Prove that
∆ arg(γ1γ2) = ∆ arg γ1 +∆ arg γ2.
(iii) Consider closed curves γ1, γ2 : [a, b] → C \ {0} such that |γ1(t)− γ2(t)| < |γ2(t)| for every
t ∈ [a, b]. Prove that n(γ1; 0) = n(γ2; 0).

7.2 Homotopy.

Definition. Let γ0, γ1 : [a, b] → C be two curves. We say that γ1 is homotopic to γ0 if there is a
continuous function

F : [a, b]× [0, 1] → C

so that
F (t, 0) = γ0(t), F (t, 1) = γ1(t) for every t ∈ [a, b].

The function F is called a homotopy from γ0 to γ1.
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For each s ∈ [0, 1] the function γs : [a, b] → C, given by γs(t) = F (t, s) for t ∈ [a, b], is a
curve. We shall call it intermediate curve between γ0 and γ1.

Since [a, b]× [0, 1] is compact, the homotopy F is uniformly continuous. Thus for every ϵ > 0
there is δ > 0 so that |F (t′, s′)− F (t′′, s′′)| < ϵ when

√
(t′ − t′′)2 + (s′ − s′′)2 < δ. Therefore,

is |s′ − s′′| < δ then we have |γs′(t) − γs′′(t)| < ϵ for every t ∈ [a, b], i.e. the curves γs′ and
γs′′ are uniformly close. We see that when s increases in [0, 1] the curves γs form a continuously
varying family of curves, starting with γ0 and ending with γ1.

We have to observe that although we have agreed to assume that all our curves, and hence γ0
and γ1, are piecewise continuously differentiable, the intermediate curves γs of a homotopy need
not be piecewise continuously differentiable: the homotopy F is only assumed to be continuous.

If all curves γs are closed, i.e. if F (a, s) = F (b, s) for every s ∈ [0, 1], then we say that F is
a homotopy with closed intermediate curves. If all curves γs have the same initial endpoint and
the same final endpoint, i.e. if F (a, s) is constant and F (b, s) is constant for s ∈ [0, 1], then we
say that F is a homotopy with fixed endpoints.

If all curves γs are in the same set A, then we say that F is a homotopy in A.
We may defined a relation between curves in a set A: we write γ0 ≡ γ1 if there is a homotopy

from γ0 to γ1. It is easy to see that this is an equivalence relation. (i) Every curve γ : [a, b] → A is
homotopic to itself through the homotopy F : [a, b] × [0, 1] → A given by F (t, s) = γ(t). (ii) If
F : [a, b]× [0, 1] → A is a homotopy from γ0 to γ1, i.e. if F (t, 0) = γ0(t) and F (t, 1) = γ1(t) for
t ∈ [a, b], then the function G : [a, b]× [0, 1] → A given by G(t, s) = F (t, 1− s) is a homotopy
from γ1 to γ0. In fact G is continuous and G(t, 0) = γ1(t) and G(t, 1) = γ0(t) for t ∈ [a, b]. (iii)
If F : [a, b]× [0, 1] → A is a homotopy from γ0 to γ1, i.e. if F (t, 0) = γ0(t) and F (t, 1) = γ1(t)
for t ∈ [a, b] and, if G : [a, b] × [0, 1] → A is a homotopy from γ1 to γ2, i.e. if G(t, 0) = γ1(t)
and G(t, 1) = γ2(t) for t ∈ [a, b], then H : [a, b]× [0, 1] → A, given by

H(t, s) =

{
F (t, 2s), t ∈ [a, b], s ∈ [0, 12 ]

G(t, 2s− 1), t ∈ [a, b], s ∈ [12 , 1]

is a homotopy from γ0 to γ2. Indeed, H is continuous and H(t, 0) = γ0(t) and H(t, 1) = γ2(t)
for t ∈ [a, b].

Furthermore, the previous argument shows that the relation of homotopy with closed interme-
diate curves and the relation of homotopy with fixed endpoints are both equivalence relations.

Example 7.2.1. If the set A is convex, every two curves in A are homotopic in A. Indeed, let
γ0, γ1 : [a, b] → A be two curves inA. Since γ0(t), γ1(t) ∈ A andA is convex, the linear segment
[γ0(t), γ1(t)] is contained in A. Now, if we define F : [a, b]× [0, 1] → C by

F (t, s) = (1− s)γ0(t) + sγ1(t),

then F is continuous and all its values are in A. Moreover, F (t, 0) = γ0(t) and F (t, 1) = γ1(t)
for t ∈ [a, b]. Therefore, F is a homotopy from γ0 to γ1 in A. It is easy to see that, if γ0 and γ1 are
closed, then all intermediate curves are closed. Also, if γ0 and γ1 have the same initial endpoint
and the same final endpoint, then all intermediate curves have the same initial endpoint and the
same final endpoint.

Theorem 7.1. Let f : Ω → C be holomorphic in the open set Ω.
(i) Let γ0, γ1 be two curves inΩ with the same initial endpoint and the same final endpoint. If there
is a homotopy in Ω, with fixed endpoints, between γ0 and γ1, then∫

γ0

f(z) dz =

∫
γ1

f(z) dz.

(ii) Let γ0, γ1 be two closed curves in Ω. If there is a homotopy in Ω, with closed intermediate
curves, between γ0 and γ1, then ∮

γ0

f(z) dz =

∮
γ1

f(z) dz.
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Proof. (i) Let F : [a, b] × [0, 1] → Ω be the homotopy in Ω from γ0 to γ1. Then the subset
F ([a, b]× [0, 1]) of Ω is compact and there is ϵ > 0 so that

|z − w| ≥ ϵ for every z ∈ F ([a, b]× [0, 1]) and every w ∈ Ωc. (7.5)

Since F is uniformly continuous, there is δ > 0 so that

|F (t′, s′)− F (t′′, s′′)| < ϵ if |t′ − t′′| < δ and |s′ − s′′| < δ. (7.6)

We take points a = t0 < t1 < . . . < tn−1 < tn = b and 0 = s0 < s1 < . . . < sm−1 < sm = 1
so that tk − tk−1 < δ and sl − sl−1 < δ for all k and l. Then (7.5) and (7.6) imply that every
rectangle [tk−1, tk]× [sl−1, sl] is mapped by F in the disc DF (tk−1,sl−1)(ϵ) which is contained in
Ω. Thus, f is holomorphic in this disc and its curvilinear integral over any closed curve in this disc
is equal to 0. If we denote γ0,k and γ1,k the restrictions of γ0 and γ1 in [tk−1, tk], then for every
k = 1, . . . , n we have∫

γ0,k

f(z) dz +

∫
[F (tk,s1),F (tk−1,s1)]

f(z) dz

= −
∫
[F (tk−1,s1),F (tk−1,0)]

f(z) dz −
∫
[F (tk,0),F (tk,s1)]

f(z) dz

and∫
[F (tk−1,sl−1),F (tk,s1−1)]

f(z) dz +

∫
[F (tk,sl),F (tk−1,sl)]

f(z) dz

= −
∫
[F (tk−1,sl),F (tk−1,sl−1)]

f(z) dz −
∫
[F (tk,sl−1),F (tk,sl)]

f(z) dz for l = 2, . . . ,m− 1

and∫
[F (tk−1,sm−1),F (tk,sm−1)]

f(z) dz −
∫
γ1,k

f(z) dz

= −
∫
[F (tk−1,1),F (tk−1,sm−1)]

f(z) dz −
∫
[F (tk,sm−1),F (tk,1)]

f(z) dz.

Adding these m equalities and then adding for k = 1, . . . , n and considering cancellations, we
find ∫

γ0

f(z) dz−
∫
γ1

f(z) dz

=

m∑
l=1

∫
[F (b,sl−1),F (b,sl)]

f(z) dz +

m∑
l=1

∫
[F (a,sl),F (a,sl−1)]

f(z) dz.

(7.7)

Since all intermediate curves have the same initial endpoint and the same final endpoint, we see
that all linear segments [F (b, sl−1), F (b, sl)] and [F (a, sl), F (a, sl−1)] are single point sets and
hence all integrals in the right side of (7.7) are equal to 0. Hence

∫
γ0
f(z) dz =

∫
γ1
f(z) dz.

(ii) Since all intermediate curves are closed, we have F (a, s) = F (b, s) for every s ∈ [0, 1].
Therefore, the linear segments [F (b, sl−1), F (b, sl)] and [F (a, sl), F (a, sl−1)] are opposite and,
again, the right side of (7.7) are equal to 0. Hence

∮
γ0
f(z) dz =

∮
γ1
f(z) dz.

Proposition 7.9. Let γ0, γ1 be two closed curves inC\{z}. If there is a homotopy inC\{z}, with
closed intermediate curves, between γ0 and γ1, then

n(γ0; z) = n(γ1; z).
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Proof. We apply theorem 7.1 to the function f(ζ) = 1
ζ−z which is holomorphic in C \ {z}.

Exercises.

7.2.1. A set A ⊆ C is called arcwise connected if every two points in A can be joined by some
curve in A.
LetA be arcwise connected and γ1(t) = z1 and γ2(t) = z2 be two constant curves inA. If a curve
γ is homotopic in A to γ1, prove that γ is homotopic in A to γ2.

7.2.2. If γ is a closed curve in C \ {0}, prove that γ is homotopic in C \ {0} to a closed curve
whose trajectory is contained in the circle C0(1).

7.2.3. (i) Let f be continuous in D0(R). We define γ(t) = f(Reit) for every t ∈ [0, 2π]. Prove
that, if n(γ;w) ̸= 0, then w ∈ f(D0(R)). I.e. {w |w is surrounded by γ} ⊆ f(D0(R)).
(ii) Using the result of (i), prove the fundamental theorem of algebra.

7.2.4. Let p ∈ A and let Mp(A) be the set of all closed curves with both of their endpoints at p.
If γ1, γ2 ∈ Mp(A), then clearly γ1

·
+ γ2 ∈ Mp(A). Also, if γ ∈ Mp(A), then ¬ γ ∈ Mp(A).

HenceMp(A) is a group whose neutral element is the constant curve γp(t) = p.
(i) Prove that the relation of homotopy in A with closed intermediate curves and fixed endpoints
(= p) is an equivalence relation inMp(A). The set of all equivalence classes is denotedHp(A) =
{[γ] | γ ∈ Mp(A)}.
(ii) If γ, γ1, γ2 ∈ Mp(A), we define [γ1] + [γ2] = [γ1

·
+ γ2] and −[γ] = [¬γ]. Prove that these

are well-defined and thatHp(A) with these operations is a group, whose neutral element is [γp].
(iii) IfA is arcwise connected (see exercise 7.2.1), prove that for every p, q ∈ A the groupsHp(A)
andHq(A) are isomorphic. In this case we writeH(A).
(iv) Prove thatH(C) ∼= {0},H(C \ {0}) ∼= Z,H(C0(1)) ∼= Z.

7.2.5. Let z1, z2, z3, w1, w2, w3 be distinct points. Is it possible to join every zk with every wj
with simple curves γkj which are mutually disjoint?

7.3 Combinatorial results for curves and square nets.

Lemma 7.1. Let Σ = {σ1, . . . , σn} be a set of curves (not necessarily closed) and let A =
{a1, . . . , am} be the set of their endpoints (m ≤ 2n). We assume that for every point of A the
number of the curves inΣ that arrive at this point is the same as the number of the curves inΣ that
leave from this point. Then we can partition Σ into subsets Σ1, . . . ,Σk so that each Σj consists of
successive curves and the sum γj of the curves in Σj is a closed curve.

Proof. We describe the following algorithm for the partitioning of Σ.
We start with σ1. The final endpoint of σ1 is the initial endpoint of at least one curve in Σ. If the
final endpoint of σ1 coincides with its initial endpoint, then σ1 is closed and we stop the process. If
this is not the case, then, renumbering if necessary the curves σ2, . . . , σn, we may assume that the
final endpoint of σ1 coincides with the initial endpoint of σ2. If the final endpoint of σ2 coincides
with the initial endpoint of σ1, then the sum of σ1, σ2 is a closed curve and we stop the process. If
the final endpoint of σ2 coincides with its initial endpoint, then σ2 is a closed curve and we stop
the process. If the final endpoint of σ2 is not the initial point of either σ1 or σ2, then renumbering
if necessary the curves σ3, . . . , σn, we may assume that the final endpoint of σ2 coincides with
the initial endpoint of σ3. Then, exactly as before, we examine whether the final endpoint of σ3
coincides with the initial endpoint of σ1 or of σ2 or of σ3. Then, respectively, the sum of σ1, σ2, σ3
or the sum of σ2, σ3 or σ3 by itself is a closed curve and we stop the process. If the final endpoint
of σ3 is not the initial endpoint of either σ1 or σ2 or σ3, then renumbering if necessary the curves
σ4, . . . , σn, we may assume that the final endpoint of σ3 coincides with the initial endpoint of
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σ4. Now, it is clear that this process will eventually stop, because we have only finitely many
curves. Therefore, we shall eventually find successive curves σ1, σ2, . . . , σk−1, σk (1 ≤ k ≤
n) so that the final endpoint of σk coincides with the initial endpoint of one of the same curves
σ1, σ2, . . . , σk−1, σk. Let the final endpoint of σk coincide with the initial endpoint of σl for some l
with 1 ≤ l ≤ k. Then the sum of σl, σl+1, . . . , σk−1, σk is a closed curve and we stop the process.
Now we set Σ1 = {σl, σl+1, . . . , σk−1, σk} and call γ1 the closed curve which is the sum of
σl, σl+1, . . . , σk−1, σk. Then we drop the curves of Σ1 from Σ, i.e. we consider the set Σ′ =
Σ \ Σ1 = {σ1, . . . , σl−1, σk+1, . . . , σn}.
Each endpoint of the curves in Σ′ is one of the points of A = {a1, . . . , am}, say it is aj . Then the
number of the curves in Σ that arrive at aj is the same as the number of the curves in Σ that leave
from aj . But the curves σl, σl+1, . . . , σk−1, σk are successive and hence if one of them arrives at
aj then the next one leaves from aj . Therefore, the remaining curves ofΣ′ have the same property:
the number of the curves in Σ′ that arrive at aj is the same as the number of the curves in Σ′ that
leave from aj . Thus Σ′ has the same property as the original Σ.
Now we continue our algorithm with Σ′. We find a subset Σ2 of Σ′ which consists of successive
curves and we call γ2 the closed curve which is the sum of the curves in Σ2. Then we drop the
curves of Σ2 from Σ′, i.e. we consider the set Σ′′ = Σ′ \Σ2 = Σ \ (Σ1 ∪Σ2). We go on until we
exhaust the original Σ.

Lemma 7.2. We take any δ > 0 and two perpendicular lines. For each of them we consider all its
parallel lines at distances equal to integermultiples of δ. The result is a net of closed square regions
of sidelength δ which cover the plane and have disjoint interiors. We choose any of those closed
square regions, sayQ1, . . . , Ql. We consider the closed boundary curves ∂Q1, . . . , ∂Ql with their
positive direction. Each of them is the sum of four corresponding linear segments, considered as
curves with the same direction. We drop the linear segments (with necessarily opposite directions)
which are common to any two neighboring square regions from among the Q1, . . . , Ql and we
consider the setΣ = {σ1, . . . , σn} of all the remaining linear segments, i.e. those which belong to
only one ofQ1, . . . , Ql. Then we can partition Σ into subsets Σ1, . . . ,Σk so that each Σj consists
of successive linear segments and the sum γj of the linear segments in Σj is a closed curve.

Proof. It is enough to prove that Σ has the property described in lemma 7.1, i.e. that for every
point of intersection a of our lines the number of the curves in Σ that arrive at a is the same as
the number of the curves in Σ that leave from a. This can be done easily, considering cases for
the number, 0 or 1 or 2 or 3 or 4, of the squares among Q1, . . . , Ql which have a as one of their
corners.

Lemma 7.3. LetΩ be an open set andK ⊆ Ω be compact. Then there is δ > 0 so that |z−w| ≥ 2δ
for every z ∈ K and every w ∈ Ωc. For this δ > 0 we consider the net of closed square regions
of lemma 7.2 and we take all closed square regionsQ1, . . . , Ql of the net which intersectK. Then
Q1, . . . , Ql are contained inΩ. As in lemma 7.2, we consider the setΣ = {σ1, . . . , σn} of all linear
segments which belong to only one of Q1, . . . , Ql and we partition Σ into subsets Σ1, . . . ,Σk so
that each Σj consists of successive linear segments and the sum γj of the linear segments in Σj is
a closed curve. Then γ∗1 ∪ · · · ∪ γ∗k ⊆ Ω \K (i.e. every γj is in Ω \K) and the distance of every
z ∈ γ∗1 ∪ · · · ∪ γ∗k from K is ≤ δ

√
2. Moreover, for every f : Ω → C holomorphic in Ω and for

every z ∈ K, we have

f(z) =
k∑
j=1

1

2πi

∮
γj

f(ζ)

ζ − z
dζ. (7.8)

Proof. Each of the closed square regions Q1, . . . , Ql, say Qm, intersects K and its diameter is
equal to

√
2δ. Therefore, the distance of every point of Qm from K is ≤

√
2δ. Since

√
2δ < 2δ,

we have that Qm is contained in Ω.
Consider any of the linear segments σ1, . . . , σn, say σj . Now, σj belongs to one of Q1, . . . , Ql,
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say Qm. Since Qm is contained in Ω, we have that σj is also contained in Ω. Moreover, the
distance of every point of Qm from K is ≤

√
2δ and hence the distance of every point of σj

from K is ≤
√
2δ. If σj intersects K, then both closed square regions of our net which lie on the

two sides of σj intersect K and hence both are among Q1, . . . , Ql. This is impossible because σj
belongs to only one ofQ1, . . . , Ql. Therefore, σj does not intersectK and hence it is contained in
Ω \K. Finally, since each of γ1, . . . , γk is the sum of certain of the σ1, . . . , σn, we have proved
that γ∗1 ∪ · · · ∪ γ∗k ⊆ Ω \K and that the distance of every z ∈ γ∗1 ∪ · · · ∪ γ∗k fromK is ≤ δ

√
2.

Now we take any z ∈ K. Then z belongs to one Q1, . . . , Ql, say Qm. Let us assume that z is an
interior point ofQm. Since the closed square regionQm is contained inΩ, there is a slightly larger
open square region Q′ which is also contained in Ω. Now f is holomorphic in the convex region
Q′ and Cauchy’s formula in section 7.1 says that

f(z) =
1

2πi

∮
∂Qm

f(ζ)

ζ − z
dζ, (7.9)

because the index of ∂Qm with respect to z is equal to 1. Now we take any closed square region
Qp with p ̸= m. Then z is not contained in Qp and again we may find an open square region
Q′ slightly larger than Qp which is contained in Ω and which does not contain z. Then f(ζ)

ζ−z is a
holomorphic function of ζ in the convex region Q′ and hence

0 =
1

2πi

∮
∂Qp

f(ζ)

ζ − z
dζ for p ̸= m. (7.10)

We add (7.9) and (7.10) and we get

f(z) =
l∑

p=1

1

2πi

∮
∂Qp

f(ζ)

ζ − z
dζ. (7.11)

Now we split the integral over each ∂Qp in four integrals over the boundary linear segments of
∂Qp and we get 4l integrals. We recall that if a linear segment belongs to two neighboring closed
square regions, then it appears twice among the integrals with opposite directions and hence the two
integrals cancel. Therefore, the remaining integrals will be only over the boundary linear segments
which belong to exactly one of Q1, . . . , Ql, i.e. the linear segments of the set Σ = {σ1, . . . , σn}.
Thus (7.11) becomes

f(z) =
∑
σ∈Σ

1

2πi

∫
σ

f(ζ)

ζ − z
dζ.

The subsets Σ1, . . . ,Σk form a partition of Σ and hence

f(z) =
k∑
j=1

∑
σ∈Σj

1

2πi

∫
σ

f(ζ)

ζ − z
dζ.

Finally, since γj is the sum of the successive linear segments σ ∈ Σj , we end up with (7.8).
Now we consider the case when z is a boundary point of Qm. Then we may consider a variable
point z′ in the interior of Qm so that z′ → z. We have proved (7.8) for z′, i.e.

f(z′) =
k∑
j=1

1

2πi

∮
γj

f(ζ)

ζ − z′
dζ.

Proposition 5.25 implies the continuity of the right side as a function of z′. Therefore, taking the
limit as z′ → z, we end up again with (7.8).
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7.4 The theorem of Cauchy in general open sets.

Definition. Let σ1, . . . , σn be any curves (not necessarily closed) and k1, . . . , kn be any integers.
Then we say that the curves σ1, . . . , σn considered k1, . . . , kn times, respectively, form a chain Σ.
The integer kj is calledmultiplicity of the corresponding σj in the chain Σ. If every σj is closed,
then Σ is called closed chain or cycle. If every σj is in a set A, then we say that Σ is in A.

If a curve σ is not among the curves which constitute a chain Σ, we may include it among
those curves by assigning multiplicity 0 to σ. And now we may introduce the algebraic structure
of a module in the set of all chains in the following manner. If Σ′ and Σ′′ are two chains, we
may assume that they are formed by the same collection σ1, . . . , σn of curves (since some of the
curves may have multiplicity 0 in one of the two chains). If k′1, . . . , k′n and k′′1 , . . . , k′′n are the
corresponding multiplicities in the chainsΣ′ andΣ′′, then we defineΣ′+Σ′′ to be the chain which
consists of σ1, . . . , σn with multiplicities k′1 + k′′1 , . . . , k

′
n + k′′n. Moreover, if k is an integer and

Σ is a chain formed by the collection σ1, . . . , σn of curves with multiplicities k1, . . . , kn, then we
define kΣ to be the chain formed by σ1, . . . , σn with multiplicities kk1, . . . , kkn. It is very easy
to show that, under this addition of chains and this multiplication of chains and integers, the set of
chains is a Z-module. The opposite−Σ of a chain Σ is (−1)Σ and the neutral element of addition
is the chain which contains no curve (or any curves with multiplicities 0).

If Σ is a chain formed by the curves σ1, . . . , σn with multiplicities k1, . . . , kn, we immediately
see that, under the above definitions of addition andmultiplication, we haveΣ = k1σ1+· · ·+knσn.
Here we consider each σj as a chain consisting of only one curve with multiplicity 1.

We shall not go into this algebraic point of view, since it does not have much to offer in our
study of complex analysis. We shall keep in mind, though, the definition and notation of Σ′ +Σ′′

and kΣ and from time to time we shall feel free to make certain mild algebraic comments.

Definition. Let Σ be a chain formed by the curves σ1, . . . , σn with multiplicities k1, . . . , kn and
let ϕ : σ∗1 ∪ · · · ∪ σ∗n → C be continuous on σ∗1 ∪ · · · ∪ σ∗n. We define the curvilinear integral of
ϕ over Σ by ∫

Σ
ϕ(z) dz =

n∑
j=1

kj

∫
σj

ϕ(z) dz.

If Σ is a cycle, we usually write ∮
Σ
ϕ(z) dz.

It is very easy to show that∫
Σ′+Σ′′

ϕ(z) dz =

∫
Σ′
ϕ(z) dz +

∫
Σ′′
ϕ(z) dz,

∫
kΣ
ϕ(z) dz = k

∫
Σ
ϕ(z) dz.

These two relations say that integration “respects” the “linearity” of the module structure of the set
of chains.

Definition. LetΣ be a cycle formed by the closed curves σ1, . . . , σn with multiplicities k1, . . . , kn.
For every z which does not belong to σ∗1 ∪ · · · ∪ σ∗n we define the rotation number or index of
the chain Σ with respect to z by

n(Σ; z) =
n∑
j=1

kjn(σj ; z).

We may say that n(Σ; z) is the total number of rotations around z of the curves forming Σ,
taking into account their multiplicities.
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Combining the last two definitions, we easily see that the index of a cycle is given by the same
integral form which gives the index of a closed curve:

n(Σ; z) =
1

2πi

∮
Σ

1

ζ − z
dζ.

Indeed,

n(Σ; z) =
n∑
j=1

kjn(σj ; z) =
n∑
j=1

kj
1

2πi

∮
σj

1

ζ − z
dζ =

1

2πi

∮
Σ

1

ζ − z
dζ.

The following definition is basic.

Definition. LetΣ be a cycle in the open setΩ. We say thatΣ is null-homologous inΩ if n(Σ; z) =
0 for every z ∈ Ωc.

In other words, a cycle Σ in Ω is null-homologous in Ω if Σ is in Ω and the total number of
rotations of the curves forming Σ, taking into account their multiplicities, around every point of
the complement of Ω is zero.

Lemma 7.4. Let Ω be open, δ,R > 0 andK = {z ∈ Ω | |z| ≤ R, |z−w| ≥ δ for every w ∈ Ωc}.
ThenK is a compact subset of Ω.

Proof. SinceK ⊆ D0(R), the setK is bounded.
Now, let zn ∈ K for every n and zn → z. If we prove that z ∈ K, then K is closed and hence
compact. We have |zn| ≤ R for every n and thus |z| ≤ R. For everyw ∈ Ωc we have |zn−w| ≥ δ
for every n and hence |z − w| ≥ δ. Therefore z ∈ K.

The setK of lemma 7.4 is the intersection of the closed discD0(R) and of the set of all points
of Ω whose distance from Ωc is ≥ δ.

The theorem of Cauchy in general open sets. Let f : Ω → C be holomorphic in the open set Ω.
If the cycle Σ is null-homologous in Ω, then∮

Σ
f(z) dz = 0.

Proof. Let Σ consist of the closed curves σ1, . . . , σn with multiplicities k1, . . . , kn.
Since σ∗1 ∪ · · · ∪ σ∗n is a compact subset of Ω, there is δ > 0 so that every point of σ∗1 ∪ · · · ∪ σ∗n
has a distance ≥ 2δ from Ωc and there is R > 0 so that σ∗1 ∪ · · · ∪ σ∗n is contained in the closed
disc D0(R). Now, we consider the set

K = {z ∈ Ω | |z| ≤ R, |z − w| ≥ 2δ for every w ∈ Ωc}

of lemma 7.4 (with 2δ instead of δ). ThenK is a compact subset ofΩwhich contains σ∗1∪· · ·∪σ∗n.
With the same δ and with this set K we form the closed curves γ1, . . . , γk in Ω \ K, which are
described in lemma 7.3. According to lemma 7.3 we have

f(z) =
k∑
l=1

1

2πi

∮
γl

f(ζ)

ζ − z
dζ for every z ∈ σ∗1 ∪ · · · ∪ σ∗n.

Hence ∮
Σ
f(z) dz =

n∑
j=1

kj

∮
σj

f(z) dz =
n∑
j=1

kj

∮
σj

( k∑
l=1

1

2πi

∮
γl

f(ζ)

ζ − z
dζ

)
dz.
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Changing appropriately the order of sums and integrals, we end up with∮
Σ
f(z) dz = −

k∑
l=1

∮
γl

( n∑
j=1

kj
1

2πi

∮
σj

1

z − ζ
dz

)
f(ζ) dζ

and hence∮
Σ
f(z) dz = −

k∑
l=1

∮
γl

( n∑
j=1

kj n(σj ; ζ)
)
f(ζ) dζ = −

k∑
l=1

∮
γl

n(Σ; ζ)f(ζ) dζ. (7.12)

Now we consider the index n(Σ; ζ) =
∑n

j=1 kj n(σj ; ζ) when, as in the integrals in (7.12), ζ
belongs to any of γ∗1 , . . . , γ∗k . Since every such ζ is in Ω \ K, either ζ ̸∈ D0(R) or the distance
of ζ from Ωc is < 2δ. If ζ ̸∈ D0(R), then, since Σ is in D0(R), we have that n(Σ; ζ) = 0. If the
distance of ζ from Ωc is < 2δ, then there is w ∈ Ωc so that |ζ − w| < 2δ. Then every point of the
linear segment [ζ, w] has distance < 2δ from w and hence from Ωc. Thus [ζ, w] is not contained
in K which implies that [ζ, w] is in the complement of σ∗1, . . . , σ∗n. Since [ζ, w] is connected and
it is contained in the complement of every σ∗j we have that

n(σj ; ζ) = n(σj ;w) for every j = 1, . . . , n.

Therefore

n(Σ; ζ) =
n∑
j=1

kj n(σj ; ζ) =
n∑
j=1

kj n(σj ;w) = n(Σ;w) = 0

because w ∈ Ωc and Σ is null-homologous in Ω. Now (7.12) implies∮
Σ
f(z) dz = −

k∑
l=1

∮
γl

n(Σ; ζ)f(ζ) dζ = −
k∑
l=1

∮
γl

0 f(ζ) dζ = 0,

because we proved that n(Σ; ζ) = 0 for every ζ in γ∗1 , . . . , γ∗k .

It is interesting to see that the assumption of our last result is at the same time a special case
of it. Indeed, if we take any w ∈ Ωc, then the function f(z) = 1

z−w is holomorphic in Ω and the
theorem of Cauchy implies that

∮
Σ

1
z−w dz = 0. But this says that n(Σ;w) = 0. In other words,

we have the following situation. The assumption that Σ is null-homologous in Ω is equivalent to
the validity of the theorem of Cauchy for the very particular holomorphic functions of the form
f(z) = 1

z−w for every w ∈ Ωc. Therefore the real content of the theorem of Cauchy is that the
validity of

∮
Σ f(z) dz = 0 for the special holomorphic functions in Ω of the form f(z) = 1

z−w for
every w ∈ Ωc implies its validity for every function f which is holomorphic in Ω.

Example 7.4.1. Let γ be any closed curve in the convex region Ω and let w ∈ Ωc. Then w
is contained in the unbounded connected component of C \ γ∗ and proposition 7.5 implies that
n(γ;w) = 0. Hence γ is null-homologous in Ω. Now the theorem of Cauchy for general open sets
says that

∮
γ f(z) dz = 0 for every f : Ω → C which is holomorphic in Ω. We conclude that the

theorem of Cauchy for convex regions is a corrolary of the theorem of Cauchy for general open
sets.

Example 7.4.2.We consider the open set Dz0(R1, R2) with 0 ≤ R1 < R2 ≤ +∞ and the
closed curve γ which describes the circle Cz0(r), with R1 < r < R2, once and in the posi-
tive direction. This curve is not null-homologous in Dz0(R1, R2). Indeed, z0 is in the comple-
ment of Dz0(R1, R2) and n(γ; z0) = 1

2πi

∮
Cz0 (r)

1
z−z0 dz = 1. Therefore, we do not expect that∮

γ f(z) dz = 0 is true for every f which is holomorphic in Dz0(R1, R2). In fact, this is certainly
not true for f(z) = 1

z−z0 which is holomorphic in Dz0(R1, R2).
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Example 7.4.3.We consider the same open set Dz0(R1, R2) as in the previous example and an
arbitrary closed curve γ in Dz0(R1, R2). We shall see how we can evaluate

∮
γ f(z) dz with a

minimum of effort for any f holomorphic inDz0(R1, R2). It is clear that, depending on the specific
curve γ, it may be difficult to evaluate the integral using a parametric equation of γ.
Let us assume that the shape of the trajectory and the direction of γ allow us to count the number
of rotations of γ around z0, i.e. we assume that we know the integer k = n(γ; z0). Since the
disc Dz0(R1) is one of the two connected components of the complement of Dz0(R1, R2), we
have that n(γ; z) = k for every z ∈ Dz0(R1). On the other hand, we have that n(γ; z) = 0
for every z in the unbounded connected component of the complement of Dz0(R1, R2), which is
Dz0(R2,+∞). Now we take a closed curve γ1 in Dz0(R1, R2) such that the

∮
γ1
f(z) dz may be

much easier to evaluate than the original
∮
γ f(z) dz. For instance, we may consider γ1 to describe

the circle Cz0(r) with R1 < r < R2 once and in the positive direction. In this case we have that
n(γ1; z) = 1 for every z ∈ Dz0(R1) and n(γ1; z) = 0 for every z ∈ Dz0(R2,+∞).
Now we form the cycle Σ from γ with mutiplicity 1 and from γ1 with multiplicity −k, i.e.

Σ = 1 γ + (−k) γ1.

and we have:

n(Σ; z) = 1n(γ; z) + (−k)n(γ1; z) = k + (−k) = 0 for every z ∈ Dz0(R1),

n(Σ; z) = 1n(γ; z) + (−k)n(γ1; z) = 0 + 0 = 0 for every z ∈ Dz0(R2,+∞).

Therefore, Σ is null-homologous in Dz0(R1, R2) and the theorem of Cauchy implies

0 =

∮
Σ
f(z) dz = 1

∮
γ
f(z) dz + (−k)

∮
γ1

f(z) dz

and hence ∮
γ
f(z) dz = k

∮
γ1

f(z) dz = k

∮
Cz0 (r)

f(z) dz.

We see that the evaluation of
∮
γ f(z) dz has been reduced to the evaluation of the possibly much

simpler integral
∮
Cz0 (r)

f(z) dz and the evaluation of the index n(γ; z0).
We shall generalize this technique in the following sections and chapters.

Exercises.

7.4.1. Let f be holomorphic inD0(1)\{0}. If the closed curve γ is inD0(1)\{0} and n(γ; 0) = 0,
evaluate

∮
γ f(z) dz.

7.4.2. Let f be holomorphic in C and let f(1) = 6, f(−1) = 10. Prove that, if γ is any closed
curve in C \ {−1, 1}, then 1

2πi

∮
γ
f(z)
z2−1

dz can take every integral value.

7.4.3. Let f(z) = (1z +
a
z3
)ez for z ̸= 0. Find all the values of a so that

∮
γ f(z) dz = 0 for every

closed curve γ in C \ {0}.

7.4.4. (i) Find all possible values of
∮
γ

2z−1
z2−z dz, where γ is an arbitrary closed curve in C \ {0, 1}.

(ii) Find all possible values of
∫
γ

2z−1
z2−z dz, where γ is an arbitrary curve in C \ {0, 1} with initial

endpoint −i and final endpoint i.

7.4.5. Find all possible values of
∮
γ

cos z
z2−πz dz, where γ is an arbitrary closed curve in C \ {0, π}.

7.4.6. Let f be holomorphic in the open set Ω and γ be a closed curve null-homologous in Ω. If
|f(ζ)| ≤ 1 for every ζ ∈ γ∗, z0 ∈ Ω and n(γ; z0) ̸= 0, prove that |f(z0)| ≤ 1.
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7.5 The residue theorem.

Definition. Let z0 be an isolated singularity of f and let
∑+∞

−∞ an(z − z0)
n be the Laurent series

of f in the ringDz0(R)\{z0}. Then the coefficient a−1 is called residue of f at z0 and we denote

Res(f ; z0) = a−1.

We know that

Res(f ; z0) = a−1 =
1

2πi

∮
Cz0 (r)

f(ζ) dζ for 0 < r < R.

Example 7.5.1. If z0 is a removable singularity of f , then an = 0 for every n < 0 and in particular
Res(f ; z0) = 0.

Example 7.5.2. Every function of the form f(z) = 1
(z−z0)N with N ≥ 2 has residue 0 at z0.

Example 7.5.3. If z0 is a pole of f of order N ≥ 1, then we can find “easily” the residue of f at
z0. In this case there is a g holomorphic in a disc Dz0(R) so that g(z0) ̸= 0 and f(z) = g(z)

(z−z0)N

for every z ∈ Dz0(R) \ {z0}. From the Taylor series
∑+∞

n=0 bn(z − z0)
n of g we see that

Res(f ; z0) = bN−1 =
g(N−1)(z0)

(N − 1)!
.

For instance, if N = 1, then Res(f ; z0) = g(z0) and, if N = 2, then Res(f ; z0) = g′(z0).

Example 7.5.4. A particular case of the previous example is a rational function r = p
q when z0

is a root of the polynomial q of multiplicity N and not a root of the polynomial p. Then q(z) =
(z − z0)

Nq1(z), where q1 is a polynomial with q1(z0) ̸= 0. The rational function r1 = p
q1

is
holomorphic at z0 and r1(z0) ̸= 0. For some R > 0 we have

r(z) =
r1(z)

(z − z0)N
for every z ∈ Dz0(R) \ {z0}.

According to the previous example,

Res(r; z0) =
r1

(N−1)(z0)

(N − 1)!
.

If N = 1, then Res(r; z0) = r1(z0) = p(z0)
q1(z0)

. Differentiating q(z) = (z − z0)q1(z), we get
q′(z) = q1(z) + (z − z0)q

′
1(z), and hence q1(z0) = q′(z0). Thus

Res(r; z0) =
p(z0)

q′(z0)
.

IfN = 2, then Res(r; z0) = r1
′(z0) =

p′(z0)q1(z0)−p(z0)q1′(z0)
q1(z0)2

. We take q(z) = (z−z0)2q1(z) and
differentiate twice. We get q′′(z) = 2q1(z)+4(z−z0)q′1(z)+(z−z0)2q′′1(z), and hence q1(z0) =
(1/2)q′′(z0). We differentiate a third time: q′′′(z) = 6q′1(z) + 6(z − z0)q

′′
1(z) + (z − z0)

2q′′′1 (z).
Hence q′1(z0) = (1/6)q′′′(z0) and

Res(r; z0) =
(1/2)p′(z0)q

′′(z0)− (1/6)p(z0)q
′′′(z0)

(1/4)q′′(z0)2
.

The residue theorem. Let f be holomorphic, except for isolated singularities, in the open set Ω
andΣ be a cycle null-homologous inΩ so that no isolated singularity of f is in the trajectory of any
of the closed curves forming Σ. Then n(Σ; z) ̸= 0 for at most finitely many isolated singularities
z of f and hence the sum

∑
z sing. of f n(Σ; z) Res(f ; z), extended over all isolated singularities

of f in Ω, is finite. Moreover,
1

2πi

∮
Σ
f(ζ) dζ =

∑
z sing. of f

n(Σ; z) Res(f ; z).
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Proof. Let us assume that n(Σ; z) ̸= 0 for infinitely many isolated singularities z of f in Ω. Then
there is a sequence (zn) of distinct isolated singularities of f in Ω so that n(Σ; zn) ̸= 0 for every
n. Since the trajectories of the curves which form Σ are bounded sets, Σ is in some disc D0(R).
Hence n(Σ; z) = 0 for every z outsideD0(R). Thus, the sequence (zn) is inD0(R). The Bolzano-
Weierstrass theorem implies that there is a subsequence (znk

) so that znk
→ z for some z. Then z

is a limit point of Ω.
If z ∈ Ω, then either f is holomorphic at z or z is an isolated singularity of f . In any case, there
are no isolated singularities of f in a neighborhood of z, except perhaps z itself. This contradicts
znk

being distinct and znk
→ z.

If z ∈ ∂Ω and hence z ∈ Ωc, then n(Σ; z) = 0. Now there is a disc Dz(r) which does not
intersect any of the trajectories of the curves which form Σ. Since Dz(r) is connected, we have
that n(Σ;w) = 0 for every w ∈ Dz(r). But this contradicts znk

→ z and n(Σ; znk
) ̸= 0 for all k.

In any case we arrive at a contradiction and thus n(Σ; z) ̸= 0 for at most finitely many isolated
singularities z of f in Ω. Therefore, the sum

∑
z sing. of f n(Σ; z) Res(f ; z) is finite.

Let z1, . . . , zn be the isolated singularities of f in Ω with n(Σ; zk) ̸= 0 for k = 1, . . . , n. I.e.
n(Σ; z) = 0 for every other isolated singularity z of f in Ω.
We define the integers

p1 = n(Σ; z1), . . . , pn = n(Σ; zn)

and then ∑
z sing. of f

n(Σ; z) Res(f ; z) =
∑

z∈{z1,...,zn}

n(Σ; z) Res(f ; z) =
n∑
k=1

pk Res(f ; zk).

Therefore, it is enough to prove

1

2πi

∮
Σ
f(ζ) dζ =

n∑
k=1

pk Res(f ; zk). (7.13)

Since every z1, . . . , zn is an isolated singularity, there are disjoint closed discs Dzk(rk) for k =
1, . . . , n so that each of them contains no singularity of f except its center. We denote γk the
closed curve which describes the circle Czk(rk) once and in the positive direction. We consider
the cycleΣ′ which is formed fromΣ (i.e. from the closed curves ofΣwith the same multiplicities)
and from γ1, . . . , γn with multiplicities −p1, . . . ,−pn. I.e.

Σ′ = Σ+ (−p1) γ1 + · · ·+ (−pn) γn.

Finally, we consider the open set

Ω′ = Ω \ {z ∈ Ω | z singularity of f}.

Clearly, f is holomorphic in Ω′ and we shall prove that the cycle Σ′ is null-homologous in Ω′, i.e.
n(Σ′; z) = 0 for every z /∈ Ω′. If z /∈ Ω′, then either z /∈ Ω or z = z1, . . . , zn or z is any other
isolated singularity of f in Ω.
If z /∈ Ω, then n(Σ; z) = 0 (because Σ is null-homologous in Ω) and n(γk; z) = 0 for every
k = 1, . . . , n (because Dzk(rk) ⊆ Ω and z ̸∈ Ω). Therefore

n(Σ′; z) = n(Σ; z)− p1n(γ1; z)− · · · − pnn(γn; z) = 0− p10− · · · − pn0 = 0.

If z = zk0 for some k0 = 1, . . . , n, thenn(Σ; z) = n(Σ; zk0) = pk0 andn(γk0 ; z) = n(γk0 ; zk0) =
1 and n(γk; z) = n(γk; zk0) = 0 for every k = 1, . . . , k0 − 1, k0 + 1, . . . , n. Therefore

n(Σ′; z) = n(Σ; z)− p1n(γ1; z)− · · · − pk0−1n(γk0−1; z)

− pk0n(γk0 ; z)− pk0+1n(γk0+1; z)− · · · − pnn(γn; z)

= pk0 − p10− · · · − pk0−10− pk01− pk0+10− · · · − pn0 = 0.
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If z is any isolated singularity of f inΩ different from z1, . . . , zn, then n(Σ; z) = 0 and n(γk; z) =
0 for every k = 1, . . . , n. Therefore

n(Σ′; z) = n(Σ; z)− p1n(γ1; z)− · · · − pnn(γn; z) = 0− p10− · · · − pn0 = 0.

We proved that Σ′ is null-homologous in Ω′.
Now, f is holomorphic in Ω′ and the theorem of Cauchy implies

∮
Σ′ f(ζ) dζ = 0 and hence∮

Σ
f(ζ) dζ =

n∑
k=1

pk

∮
γk

f(ζ) dζ =
n∑
k=1

pk

∮
Czk

(rk)
f(ζ) dζ = 2πi

n∑
k=1

pk Res(f ; zk)

and we proved (7.13).

The residue theorem is a powerful tool for the evaluation of integrals, because it reduces this
evaluation to the location of the isolated sinularities of the function to be integrated, to the evalu-
ation of the corresponding residues and to the calculation of the number of rotations of the cycle
around each isolated singularity. In many cases all these are quite easy. Let us see some charac-
teristic examples.

Example 7.5.5. Evaluation of
∫ +∞
−∞ r(x) dx, where r = p

q is a rational function, deg q ≥ deg p+2
and q has no real roots.
Let p(x) = anx

n+ · · ·+a1x+a0, with an ̸= 0, and q(x) = bmx
m+ · · ·+b1x+b0, with bm ̸= 0,

and m ≥ n + 2. Then r is continuous in R and the generalized integral
∫ +∞
−∞ r(x) dx converges.

To see this, we observe that limz→∞
p(z)
anzn

= 1 and limz→∞
q(z)
bmzm

= 1. Hence there is R0 > 0 so
that 1

2 ≤ | p(z)anzn
| ≤ 2 and 1

2 ≤ | q(z)bmzm
| ≤ 2 when |z| ≥ R0. Therefore,

|r(z)| ≤ 4
|an|
|bm|

1

|z|m−n =
C

|z|m−n when |z| ≥ R0, (7.14)

where C = 4 |an|
|bm| . Now, sincem− n ≥ 2, we have that∫ −R0

−∞
|r(x)| dx ≤ C

∫ −R0

−∞

1

|x|m−n dx < +∞,

∫ +∞

R0

|r(x)| dx ≤ C

∫ +∞

R0

1

xm−n dx < +∞.

Thus, the integrals
∫ −R0

−∞ r(x) dx,
∫ +∞
R0

r(x) dx converge absolutely and so they converge. More-
over, r is continuous in [−R0, R0] and the integral

∫ +∞
−∞ r(x) dx converges.

The roots of q are contained either in the upper halfplane or in the lower halfplane defined by the
x-axis. We shall consider only the roots in the upper halfplane and let them be z1, . . . , zM , where
M ≤ m. We take any R > R0 so that z1, . . . , zM are contained in the disc D0(R), i.e.

R > max{R0, |z1|, . . . , |zM |}.

We apply the residue theorem with r = p
q which is holomorphic in C except for the roots of q and

with the closed curve γR which is the sum of the linear segment [−R,R], with parametric equation
z = x, x ∈ [−R,R], and of the curve σR, with parametric equation z = Reit, t ∈ [0, π], which
describes the upper semicircle of C0(R) from R to −R.
The trajectory of γR contains no isolated singularity of r. When we evaluate n(γR; z)Res(r; z)
we consider only the isolated singularities z of r with n(γR; z) ̸= 0: these are z1, . . . , zM . In fact,
γR rotates around each of z1, . . . , zM once and in the positive direction:

n(γR; z1) = . . . = n(γR; zM ) = 1.

Then the residue theorem implies

1

2πi

∮
γR

r(z) dz = Res(r; z1) + · · ·+ Res(r; zM ).
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We have
∮
γR
r(z) dz =

∫
[−R,R] r(z) dz +

∫
σR
r(z) dz and hence∫ R

−R
r(x) dx =

∫
[−R,R]

r(z) dz = 2πi(Res(r; z1) + · · ·+ Res(r; zM ))−
∫
σR

r(z) dz. (7.15)

Since R > R0, (7.14) together withm− n− 1 ≥ 1 imply∣∣∣ ∫
σR

r(z) dz
∣∣∣ ≤ C

Rm−n πR =
Cπ

Rm−n−1
→ 0 when R→ +∞

and from (7.15) we get∫ +∞

−∞
r(x) dx = 2πi(Res(r; z1) + · · ·+ Res(r; zM )).

Thus, to evaluate
∫ +∞
−∞ r(x) dx we need only to find the residues of r at the poles z1, . . . , zM of r

in the upper halfplane.

Example 7.5.6. Evaluation of pv
∫ +∞
−∞ r(x) dx, where r = p

q is a rational function, deg q =
deg p+ 1 and q has no real root.
Let p(x) = anx

n + · · · + a1x + a0, with an ̸= 0, and q(x) = bn+1x
n+1 + · · · + b1x + b0,

with bn+1 ̸= 0. It easy to see that the generalized integral
∫ +∞
−∞ r(x) dx does not converge.

Indeed, we recall the estimates in the previous example: 1
2 |an||z|

n ≤ |p(z)| ≤ 2|an||z|n and
1
2 |bn+1||z|n+1 ≤ |q(z)| ≤ 2|bn+1||z|n+1 when |z| ≥ R0. Thus, |r(z)| ≥ 1

4
|an|

|bn+1|
1
|z| = c

|z|

when |z| ≥ R0, where c = 1
4

|an|
|bn+1| > 0. Therefore, for real z = x we have that |r(x)| ≥ c

x when
x ≥ R0. Now, r has constant sign in [R0,+∞). If r is positive in [R0,+∞), then

∫ +∞
R0

r(x) dx ≥
c
∫ +∞
R0

1
x dx = +∞ and, if r is negative in [R0,+∞), then

∫ +∞
R0

r(x) dx ≤ −c
∫ +∞
R0

1
x dx = −∞.

Similarly,
∫ −R0

−∞ r(x) dx is either +∞ or −∞.
Since the generalized integral diverges, we examine its principal value, i.e.

pv
∫ +∞

−∞
r(x) dx = lim

R→+∞

∫ R

−R
r(x) dx.

We observe that

r(z)− an
bn+1

1

z
=

(an−1bn+1 − anbn)z
n + · · ·+ (a0bn+1 − anb1)z − anb0

bn+1zn+2 + · · ·+ b1z2 + b0z
.

This is a rational function whose denominator has degree two units larger than the degree of its
numerator. According to the previous example, there is R0 > 0 so that∣∣∣r(z)− an

bn+1

1

z

∣∣∣ ≤ 4
|an−1bn+1 − anbn|

|bn+1|
1

|z|2
=

C

|z|2
when |z| ≥ R0, (7.16)

with C = 4 |an−1bn+1−anbn|
|bn+1| . As in the previous example, we consider the roots z1, . . . , zM of q

in the upper halfplane and we take R > max{R0, |z1|, . . . , |zM |}. We apply the residue theorem
with r = p

q and with the same closed curve γR and we get

1

2πi

∮
γR

r(z) dz = Res(r; z1) + · · ·+ Res(r; zM ).

Now,
∮
γR
r(z) dz =

∫
[−R,R] r(z) dz +

∫
σR
r(z) dz and hence∫ R

−R
r(x) dx = 2πi(Res(r; z1) + · · ·+ Res(r; zM ))−

∫
σR

r(z) dz

= 2πi(Res(r; z1) + · · ·+ Res(r; zM ))−
∫
σR

(
r(z)− an

bn+1

1

z

)
dz

− an
bn+1

∫
σR

1

z
dz.

(7.17)
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The last term is an
bn+1

∫
σR

1
z dz = an

bn+1

∫ π
0

1
Reit

iReit dt = iπ an
bn+1

. Since R > R0, we have from
(7.16) that ∣∣∣ ∫

σR

(
r(z)− an

bn+1

1

z

)
dz

∣∣∣ ≤ C

R2
πR =

Cπ

R
→ 0 when R→ +∞

and (7.17) implies

pv
∫ +∞

−∞
r(x) dx = 2πi(Res(r; z1) + · · ·+ Res(r; zM ))− iπ

an
bn+1

.

Example 7.5.7. Evaluation of pv
∫ +∞
−∞ r(x) dx, where r = p

q is a rational function, deg q ≥
deg p+ 1 and q has real roots, all with multiplicity 1.
Let p(x) = anx

n+· · ·+a1x+a0, with an ̸= 0, and q(x) = bmx
m+· · ·+b1x+b0, with bm ̸= 0, and

m ≥ n+1. We assume that the real roots of q are x1, . . . , xn with x1 < . . . < xn and that these are
not roots of p. We take ϵ0 > 0 so that the intervals [x1− ϵ0, x1+ ϵ0], . . . , [xn− ϵ0, xn+ ϵ0] around
the real roots of q are disjoint. In order for

∫ +∞
−∞ r(x) dx to converge, the generalized integrals∫ xk

xk−ϵ0 r(x) dx and
∫ xk+ϵ0
xk

r(x) dx must converge for every xk. This is not correct. Indeed, we
write r(z) = p(z)

(z−xk)qk(z) = gk(z)
z−xk , where qk is a polynomial with qk(xk) ̸= 0 and where gk = p

qk
is a rational function holomorphic at xk. Since limz→xk gk(z) = gk(xk) ̸= 0, there is ϵk with
0 < ϵk ≤ ϵ0 so that |gk(z)| ≥ 1

2 |gk(xk)| for every z with |z−xk| ≤ ϵk. Hence, |r(z)| ≥ 1
2

|gk(xk)|
|z−xk|

for every z with 0 < |z − xk| ≤ ϵk. The function r has constant sign in (xk, xk + ϵk]. If r is
positive in (xk, xk + ϵk], then

∫ xk+ϵk
xk

r(x) dx ≥ |gk(xk)|
2

∫ xk+ϵk
xk

1
x−xk dx = +∞ and, similarly,

if r is negative in (xk, xk + ϵk], then
∫ xk+ϵk
xk

r(x) dx ≤ − |gk(xk)|
2

∫ xk+ϵk
xk

1
x−xk dx = −∞. Thus,

the generalized integral
∫ xk+ϵk
xk

r(x) dx does not converge. Similarly,
∫ xk
xk−ϵk r(x) dx does not

converge either. This is why we examine the principal value of
∫ +∞
−∞ r(x) dx, i.e.

pv
∫ +∞

−∞
r(x) dx = lim

R→+∞,ϵ→0+

(∫ x1−ϵ

−R
r(x) dx+

∫ x2−ϵ

x1+ϵ
r(x) dx+ · · ·

· · ·+
∫ xn−ϵ

xn−1+ϵ
r(x) dx+

∫ R

xn+ϵ
r(x) dx

)
= lim

R→+∞,ϵ→0+
I(R, ϵ).

(7.18)

To evaluate I(R, ϵ) we use a variant of the curve γR in the two previous examples. We consider

R > max{R0, |z1|, . . . , |zM |, xn + 1,−x1 + 1}, ϵ < min{1, ϵ0, Im z1, . . . , Im zM},

where z1, . . . , zM are the roots of q in the upper halfplane. Now, we consider the closed curve γR,ϵ,
the sum of the linear segments [−R, x1 − ϵ], [x1 + ϵ, x2 − ϵ], . . . , [xn−1 + ϵ, xn − ϵ], [xn + ϵ, R],
of the curve σR, which describes the upper semicircle of C0(R) from R to −R, and of the curves
σ1,ϵ, . . . , σn,ϵ, where each σk,ϵ describes the upper semicircle of the corresponding Cxk(ϵ) from
xk− ϵ to xk+ ϵ. The curve γR,ϵ rotates once and in the positive direction around each of the roots
z1, . . . , zM of q and no times around each of the remaining roots of q. The residue theorem implies
that ∮

γR,ϵ

r(z) dz = 2πi(Res(r; z1) + · · ·+ Res(r; zM )),

and hence

I(R, ϵ) = 2πi(Res(r; z1) + · · ·+ Res(r; zM ))−
∫
σR

r(z) dz

−
∫
σ1,ϵ

r(z) dz − · · · −
∫
σn,ϵ

r(z) dz.

(7.19)
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Now, xk is a pole of r of order 1 and r can be written r(z) = ck
z−xk + fk(z) for z ̸= xk in a disc

with center xk, where fk is holomorphic at xk and ck = Res(r;xk). Since fk is bounded in a
disc with center xk, there isMk ≥ 0 and ϵ′k > 0 so that |fk(z)| ≤ Mk for |z − xk| ≤ ϵ′k. Thus,
0 < ϵ ≤ ϵ′k implies |

∫
σk,ϵ

fk(z) dz| ≤Mkπϵ and hence limϵ→0+

∫
σk,ϵ

fk(z) dz = 0. Therefore,∫
σk,ϵ

r(z) dz = ck

∫
σk,ϵ

1

z − xk
dz +

∫
σk,ϵ

fk(z) dz

= −πick +
∫
σk,ϵ

fk(z) dz → −πick when ϵ→ 0 + .

(7.20)

The limit of
∫
σR
r(z) dz when R→ +∞ has been evaluated in the previous two examples:

lim
R→+∞

∫
σR

r(z) dz =

{
0, ifm ≥ n+ 2

iπ an
bn+1

, ifm = n+ 1
(7.21)

Now, (7.18), (7.19), (7.20) and (7.21) imply

pv
∫ +∞

−∞
r(x) dx = 2πi(Res(r; z1) + · · ·+ Res(r; zM ))

+ πi(Res(r;x1) + · · ·+ Res(r;xn))−

{
0, ifm ≥ n+ 2

iπ an
bn+1

, ifm = n+ 1

Example 7.5.8. Evaluation of
∫ +∞
−∞ r(x) cosx dx,

∫ +∞
−∞ r(x) sinx dx (or of their principal values),

where r = p
q is a rational function, deg q ≥ deg p + 1, the real roots of q (if they exist) have

multiplicity 1 and, also, the coefficients of p, q are real numbers.
Since the coefficients of p, q are real, we have that r(x) ∈ R for every x ∈ R which is not a root
of q. Hence,∫ +∞

−∞
r(x) cosx dx = Re

∫ +∞

−∞
r(x)eix dx,

∫ +∞

−∞
r(x) sinx dx = Im

∫ +∞

−∞
r(x)eix dx

and we evaluate
∫ +∞
−∞ r(x)eix dx (or its principal value).

The method of evaluation has been described already in the previous three examples. We use either
the curve γR or the curve γR,ϵ and we evaluate the residues of r(z)eiz at the roots of q.
We shall concentrate on the important specific generalized integral

∫ +∞
0

sinx
x dx = 1

2

∫ +∞
−∞

sinx
x dx.

(Equality holds because sinx
x is even.) We shall evaluate pv

∫ +∞
−∞

eix

x dx instead of
∫ +∞
−∞

sinx
x dx.

Observe that eixx = cosx
x +i sinxx diverges at 0 because its real part cosxx diverges at 0. The imaginary

part sinx
x converges at 0 and, in fact, if we define sinx

x at 0 to have value limx→0
sinx
x = 1, then it

becomes continuous at 0.
The function eiz

z is holomorphic in C except for a pole at 0 of order 1. We consider the closed
curve γR,ϵ which is the sum of the linear segments [−R,−ϵ] and [ϵ, R], of the curve σR, which
describes the upper semicircle of C0(R) from R to −R, and of the curve σϵ, which describes the
upper semicircle of C0(ϵ) from −ϵ to ϵ. Then γR,ϵ does not rotate around the pole 0 of eizz . The
residue theorem implies

∮
γR,ϵ

eiz

z dz = 0 and hence∫ −ϵ

−R

eix

x
dx+

∫ R

ϵ

eix

x
dx = −

∫
σR

eiz

z
dz −

∫
σϵ

eiz

z
dz. (7.22)

Now,
∫
σR

eiz

z dz =
∫ π
0
eiReit

Reit
iReit dt = i

∫ π
0 e

−R sin t+iR cos t dt and∣∣∣ ∫
σR

eiz

z
dz

∣∣∣ ≤ ∫ π

0
e−R sin t dt = 2

∫ π/2

0
e−R sin t dt ≤ 2

∫ π/2

0
e−

2R
π
t dt

=
π

R
(1− e−R) → 0 when R→ +∞.

(7.23)
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For the second inequality we used the well known inequality sin t ≥ 2t
π for 0 ≤ t ≤ π

2 . From the
Laurent series of eizz at 0 we see that eizz = 1

z + h(z) for z ̸= 0, where h is holomorphic in C.
Now, h is bounded in a neighborhood of 0, i.e. there isM ≥ 0 so that |h(z)| ≤ 1 when |z| ≤ 1.
Hence, for ϵ ≤ 1 we have |

∫
σϵ
h(z) dz| ≤Mπϵ→ 0 when ϵ→ 0+. Therefore∫

σϵ

eiz

z
dz =

∫
σϵ

1

z
dz +

∫
σϵ

h(z) dz

= −πi+
∫
σϵ

h(z) dz → −πi when ϵ→ 0 + .

(7.24)

Finally, (7.22), (7.23) and (7.24) imply

pv
∫ +∞

−∞

eix

x
dx = lim

ϵ→0+,R→+∞

(∫ −ϵ

−R

eix

x
dx+

∫ R

ϵ

eix

x
dx

)
= πi.

Since cosx
x is odd and sinx

x is even, we get
∫ −ϵ
−R

eix

x dx+
∫ R
ϵ

eix

x dx = 2i
∫ R
ϵ

sinx
x dx and hence∫ +∞

0

sinx
x

dx = lim
ϵ→0+,R→+∞

∫ R

ϵ

sinx
x

dx =
π

2
.

Example 7.5.9.We shall evaluate
∫ +∞
0

lnx
x2+4

dx.
We consider the holomorphic branch of the logarithm, which we shall denote log z, in the open
region A which is C without the negative y-semiaxis (with 0) and which takes the value 0 at 1.
This branch is given by

log z = ln r + iθ for z = reiθ with r > 0 and − π

2
< θ <

3π

2
.

The function log z
z2+4

is holomorphic in A except for the point 2i which is a pole of order 1. Indeed,
we write log z

z2+4
= (log z)/(z+2i)

z−2i = g(z)
z−2i and we have that g(z) = log z

z+2i is holomorphic in A with
g(2i) = π

8 − ln 2
4 i. Moreover, Res( log z

z2+4
; 2i) = g(2i) = π

8 − ln 2
4 i.

Now we consider the closed curve γR,ϵ of the previous example. The residue theorem implies∮
γR,ϵ

log z
z2 + 4

dz = 2πiRes
( log z
z2 + 4

; 2i
)
=
π ln 2
2

+
π2

4
i,

and hence∫ −ϵ

−R

ln |x|+ iπ

x2 + 4
dx+

∫ R

ϵ

lnx
x2 + 4

dx =
π ln 2
2

+
π2

4
i−

∫
σR

log z
z2 + 4

dz −
∫
σϵ

log z
z2 + 4

dz.

Thus,

2

∫ R

ϵ

lnx
x2 + 4

dx+ iπ

∫ R

ϵ

1

x2 + 4
dx =

π ln 2
2

+
π2

4
i−

∫
σR

log z
z2 + 4

dz −
∫
σϵ

log z
z2 + 4

dz.

Taking real parts, we get

2

∫ R

ϵ

lnx
x2 + 4

dx =
π ln 2
2

− Re
∫
σR

log z
z2 + 4

dz − Re
∫
σϵ

log z
z2 + 4

dz. (7.25)

We estimate: ∣∣∣ ∫
σR

log z
z2 + 4

dz
∣∣∣ ≤ lnR+ π

R2 − 4
πR→ 0 when R→ +∞ (7.26)
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and ∣∣∣ ∫
σϵ

log z
z2 + 4

dz
∣∣∣ ≤ ln ϵ+ π

4− ϵ2
πϵ→ 0 when ϵ→ 0 + . (7.27)

From (7.25), (7.26) and (7.27) we have∫ +∞

0

lnx
x2 + 4

dx = lim
ϵ→0+,R→+∞

∫ R

ϵ

lnx
x2 + 4

dx =
π ln 2
4

.

Example 7.5.10.We shall evaluate
∫ +∞
0

xa−1

x+1 dx when 0 < a < 1.
We write x2 instead of x:∫ +∞

0

xa−1

x+ 1
dx = 2

∫ +∞

0

x2a−1

x2 + 1
dx = 2

∫ +∞

0

xb

x2 + 1
dx (7.28)

with b = 2a− 1 and −1 < b < 1.
We consider the holomorphic branch log z of the previous example in the same region A. The
function h(z) = eb log z is holomorphic in A and, if z = x is real, we have h(x) = eb lnx = xb.
The function h(z)

z2+1
is holomorphic in A except for a pole at i of order 1. Indeed, we write h(z)

z2+1
=

h(z)/(z+i)
z−i = g(z)

z−i and we have that g(z) = h(z)
z+i is holomorphic in A with g(i) = h(i)

2i = e
bπ
2 i

2i .

Moreover, Res( h(z)
z2+1

; i) = g(i) = e
bπ
2 i

2i . Now we consider the same closed curve γR,ϵ of the
previous example. The residue theorem implies

∮
γR,ϵ

h(z)
z2+1

dz = 2πiRes( h(z)
z2+1

; i) = πe
bπ
2
i, and

hence ∫ −ϵ

−R

h(x)

x2 + 1
dx+

∫ R

ϵ

h(x)

x2 + 1
dx = πe

bπ
2
i −

∫
σR

h(z)

z2 + 1
dz −

∫
σϵ

h(z)

z2 + 1
dz.

Thus, ∫ R

ϵ

h(−x)
x2 + 1

dx+

∫ R

ϵ

h(x)

x2 + 1
dx = πe

bπ
2
i −

∫
σR

h(z)

z2 + 1
dz −

∫
σϵ

h(z)

z2 + 1
dz

and

(ebπi + 1)

∫ R

ϵ

xb

x2 + 1
dx = πe

bπ
2
i −

∫
σR

h(z)

z2 + 1
dz −

∫
σϵ

h(z)

z2 + 1
dz. (7.29)

Now we estimate: ∣∣∣ ∫
σR

h(z)

z2 + 1
dz

∣∣∣ ≤ Rb

R2 − 1
πR→ 0 when R→ +∞ (7.30)

and ∣∣∣ ∫
σϵ

h(z)

z2 + 1
dz

∣∣∣ ≤ ϵb

1− ϵ2
πϵ→ 0 when ϵ→ 0 + . (7.31)

From (7.29), (7.30) and (7.31) we get∫ +∞

0

xb

x2 + 1
dx = lim

ϵ→0+,R→+∞

∫ R

ϵ

xb

x2 + 1
dx =

πe
bπ
2
i

ebπi + 1
=

π

2 cos( bπ2 )
.

Finaly, (7.28) implies ∫ +∞

0

xa−1

x+ 1
dx =

π

sin aπ
.

We shall evaluate
∫ +∞
0

xa−1

x+1 dx in a different way.
We consider the holomorphic branch of the logarithm, which we shall denote log z again, in the
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region B which is C without the positive x-semiaxis (with 0) and which takes the value iπ at −1.
This branch is given by

log z = ln r + iθ for z = reiθ with r > 0 and 0 < θ < 2π.

The function h(z) = e(a−1) log z is holomorphic in B, and hence h(z)
z+1 is holomorphic in B except

at the point −1 which is a pole of order 1. Indeed, we have Res(h(z)z+1 ;−1) = h(−1) = e(a−1)πi.
We also consider the closed curve γR,ϵ,δ which is the sum of the curve σR,δ, which describes the
arc of C0(R) from Reiδ to Rei(2π−δ) in the positive direction, of the curve σϵ,δ, which describes
the arc of C0(ϵ) from ϵei(2π−δ) to ϵeiδ in the negative direction, of the linear segment [ϵeiδ, Reiδ]
and of the linear segment [Rei(2π−δ), ϵei(2π−δ)]. The residue theorem implies that

∮
γR,ϵ,δ

h(z)
z+1 dz =

2πiRes(h(z)z+1 ;−1) = 2πie(a−1)πi and hence∫
[ϵeiδ,Reiδ ]

h(z)

z + 1
dz +

∫
[Rei(2π−δ),ϵei(2π−δ)]

h(z)

z + 1
dz

= 2πie(a−1)πi −
∫
σR,δ

h(z)

z + 1
dz −

∫
σϵ,δ

h(z)

z + 1
dz.

(7.32)

We have
∫
[ϵeiδ ,Reiδ ]

h(z)
z+1 dz = eiaδ

∫ R
ϵ

ra−1

reiδ+1
dr. Keeping ϵ and R fixed, we take the limit when

δ → 0+. Clearly, eiaδ → 1. Also,
∫ R
ϵ

ra−1

reiδ+1
dr →

∫ R
ϵ

ra−1

r+1 dr. We can see this as follows:

∣∣∣ ∫ R

ϵ

ra−1

reiδ + 1
dr −

∫ R

ϵ

ra−1

r + 1
dr
∣∣∣ ≤ ∫ R

ϵ

∣∣∣ ra−1

reiδ + 1
− ra−1

r + 1

∣∣∣ dr
= |eiδ − 1|

∫ R

ϵ

ra

|reiδ + 1|(r + 1)
dr ≤ |eiδ − 1|

∫ R

ϵ
ra dr → 0 when δ → 0 + .

Therefore, ∫
[ϵeiδ,Reiδ]

h(z)

z + 1
dz →

∫ R

ϵ

ra−1

r + 1
dr when δ → 0 + . (7.33)

We also have
∫
[Rei(2π−δ),ϵei(2π−δ)]

h(z)
z+1 dz = −eia(2π−δ)

∫ R
ϵ

ra−1

re−iδ+1
dr. Keeping ϵ andR fixed, we

take the limit when δ → 0+. Clearly, eia(2π−δ) → ei2aπ. Also,
∫ R
ϵ

ra−1

re−iδ+1
dr →

∫ R
ϵ

ra−1

r+1 dr.
This is proved in the same way as the previous analogous limit. Therefore,∫

[Rei(2π−δ),ϵei(2π−δ)]

h(z)

z + 1
dz → −ei2aπ

∫ R

ϵ

ra−1

r + 1
dr when δ → 0 + . (7.34)

Now we estimate: ∣∣∣ ∫
σR,δ

h(z)

z + 1
dz

∣∣∣ ≤ Ra−1

R− 1
(2π − 2δ)R ≤ 2πRa

R− 1
. (7.35)

and ∣∣∣ ∫
σϵ,δ

h(z)

z + 1
dz

∣∣∣ ≤ ϵa−1

1− ϵ
(2π − 2δ)ϵ ≤ 2πϵa

1− ϵ
. (7.36)

Using (7.35) and (7.36), from (7.32) we get∣∣∣ ∫
[ϵeiδ,Reiδ]

h(z)

z + 1
dz +

∫
[Rei(2π−δ),ϵei(2π−δ)]

h(z)

z + 1
dz − 2πie(a−1)πi

∣∣∣ ≤ 2πRa

R− 1
+

2πϵa

1− ϵ
.

Now, letting δ → 0+, from (7.33) and (7.34) we get∣∣∣(1− ei2aπ)

∫ R

ϵ

ra−1

r + 1
dr − 2πie(a−1)πi

∣∣∣ ≤ 2πRa

R− 1
+

2πϵa

1− ϵ
.
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Finally, we let ϵ→ 0+ and R→ +∞ and we conclude that∫ +∞

0

xa−1

x+ 1
dx = lim

ϵ→0+,R→+∞

∫ R

ϵ

ra−1

r + 1
dr =

2πie(a−1)πi

1− ei2aπ
=

π

sin aπ
.

Example 7.5.11. Evaluation of
∫ 2π
0 r(sin θ, cos θ) dθ, where r(s, t) is a rational function of two

variables.
We parametrize C0(1) with z = eiθ, θ ∈ [0, 2π], and we have cos θ = 1

2(z+
1
z ), sin θ =

1
2i(z−

1
z )

and dz
dθ = ieiθ = iz. Hence∫ 2π

0
r(sin θ, cos θ) dθ =

1

i

∮
C0(1)

r
(z2 + 1

2z
,
z2 − 1

2iz

) 1

z
dz.

The function s(z) = r( z
2+1
2z , z

2−1
2iz )1z is a rational function of z. We apply the residue theorem

after we evaluate the residues of s at its poles in the disc D0(1).

Exercises.

7.5.1. Find the singular parts as well as the residues of 1
z2+5z+6

, 1
(z2−1)2

, ez + e1/z , cos z−1
z4

at their
isolated singularities.

7.5.2. Find the residues of 1
sin z , tan z,

1
sin2 z ,

1
ez−1 at their isolated singularities.

7.5.3. If f = gh, where g is holomorphic at z0 and h has a pole of order 1 at z0, prove that
Res(f ; z0) = g(z0)Res(h; z0).

7.5.4. Evaluate
∫ +∞
−∞

1
x2+1

dx,
∫ +∞
−∞

1
(x2+1)(x2+4)

dx,
∫ +∞
−∞

1
(x2+1)2

dx,
∫ +∞
−∞

x4

1+x8
dx.

7.5.5. Evaluate pv
∫ +∞
−∞

x+1
x2+1

dx, pv
∫ +∞
−∞

x3

x4−4x2+5
dx, pv

∫ +∞
−∞

x2+3
x(x2+1)

dx.

7.5.6. Evaluate
∫ +∞
−∞

cosx
(x2+1)(x2+4)

dx,
∫ +∞
−∞

x3 sinx
x4+1

dx, pv
∫ +∞
−∞

sinx
x(x2+1)

dx.

7.5.7. Evaluate
∫ 2π
0

1
(1−a cos θ)2 dθ,

∫ 2π
0

cos 2θ
1−2a cos θ+a2 dθ when 0 < a < 1,

∫ π/2
0

1
a+sin2 x dx when

|a| > 1.

7.5.8. Evaluate
∫ +∞
0

xa

x2+3x+2
dx when −1 < a < 1.

7.5.9. Evaluate
∫ +∞
0

lnx
(x2+1)(x2+4)

dx,
∫ +∞
0

ln2 x
x2+1

dx,
∫ +∞
0

ln(1+x2)
x1+a dx when 0 < a < 2.

7.5.10. Evaluate
∫ +∞
−∞

cosx
ex+e−x dx.

7.5.11. Evaluate
∫ +∞
0

1
x3+8

dx,
∫ +∞
0

x
x4+16

dx, using
∫ +∞
0

xa−1

x+1 dx = π
sin aπ .

7.5.12. Evaluate
∫ 2π
0

1
2+cos θ dθ.

7.5.13. If z1, . . . , zN ∈ D0(R) are distinct and f is holomorphic in an open set containingD0(R),
prove that

∮
C0(R)

f(z)
(z−z1)···(z−zn) dz = 2πi(f(z1) + · · ·+ f(zN )).

7.5.14. If n ∈ N, evaluate
∮
C0(n)

tanπz dz.

7.5.15. Let r = p
q be a rational function with deg q ≥ deg p+2. If z1, . . . , zn are the distinct roots

of q, prove that
∑n

k=1 Res(r; zk) = 0.
What is the value of

∑n
k=1 Res(r; zk) if deg q = deg p+ 1?

7.5.16. If f(z) = ez+(1/z), prove that Res(f ; 0) =
∑+∞

n=0
1

n!(n+1)! .
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7.5.17. (i) If n ∈ N, prove that there is M ≥ 0 independent of n so that | cot z| ≤ M for every
z ∈ ∂Rn, where Rn is the square region with corners at the points ±(n+ 1

2)π ± i(n+ 1
2)π.

(ii) Prove that
∮
∂Rn

cot z
z2

dz → 0 when n→ +∞.
(iii) Prove that

∑+∞
n=1

1
n2 = π2

6 .
(iv) Let f be holomorphic in C except for poles z1, . . . , zN and let limz→∞ zf(z) = 0. Prove that
limn→+∞

∑n
k=−n f(k) = −

∑N
j=1 Res(f(z) cot z; zj).

(v) Find the sum
∑+∞

n=1
1

n2+a2
, where a > 0, and the sum

∑+∞
−∞

1
(n+a)2

, where a /∈ Z.

7.5.18. Let p, q be polynomials with deg q ≥ deg p + 2. For each m ∈ N let Im be the square
region with corners at (m+ 1

2)(±1± i).
(i) Prove that

∮
∂Im

1
sinπz

p(z)
q(z) dz → 0 whenm→ +∞.

(ii) Prove the same result if deg q = deg p+ 1.

7.5.19. Let −1 < ν < 1 and n ∈ N. Prove that
∮
C0(n+

1
2
)
eiνπz

sinπz
1

z−a dz → 0 when n→ +∞.

7.5.20. (i) Let p, q be polynomials with deg q ≥ deg p + 1 and q(k) ̸= 0 for every k ∈ Z. Prove
that limm→+∞

∑m
k=−m

p(k)
q(k) is equal to the sum of the residues of −π cotπz p(z)q(z) at the roots of q.

Also, prove that limm→+∞
∑m

k=−m(−1)k p(k)q(k) is equal to the sum of the residues of −π 1
sinπz

p(z)
q(z)

at the roots of q.
(ii) Prove π cotπw = limm→+∞

∑m
k=−m

1
w−k = 1

w +
∑+∞

k=−∞( 1
w−k + 1

k ) if w /∈ Z.
(iii) Prove π2

sin2 πw =
∑+∞

k=−∞
1

(w−k)2 if w /∈ Z.

(iv) Prove
∑+∞

k=1
1

a+bk2
= − 1

2a +
π

2
√
ab

eπ
√

a/b+e−π
√

a/b

eπ
√

a/b−e−π
√

a/b
if ab > 0.

(v) Prove
∑+∞

k=1
(−1)k

a+bk2
= − 1

2a −
π√
ab

1

eπ
√

a/b−e−π
√

a/b
if ab > 0.

7.6 The argument principle. The theorem of Rouché.

Definition. A function f is calledmeromorphic in the open set Ω if it is holomorphic in Ω except
at certain points in Ω which are poles of f .

Let f be meromorphic in the open set Ω. If w ∈ C, we shall denote Aw the set of solutions of
f(z) = w, i.e.

Aw = {z ∈ Ω | f(z) = w}.

If f is not constant in any connected component of Ω, then the solutions of f(z) = w are isolated
points.

Also, letting f have the value ∞ at each of its poles in Ω, so that f becomes continuous at its
poles considered as a function from Ω to Ĉ, we denote A∞ the set of solutions of f(z) = ∞, i.e.

A∞ = {z ∈ Ω | f(z) = ∞} = {z ∈ Ω | z is a pole of f}.

The argument principle. Let w ∈ C. We assume that f is meromorphic in the open set Ω and
that it is not constant in any connected component of Ω. We also consider Σ to be a cycle null-
homologous in Ω so that no element of Aw ∪ A∞ is in the trajectory of any of the closed curves
forming Σ. Then n(Σ; z) ̸= 0 for at most finitely many elements of Aw ∪A∞ and hence the sums∑

z∈Aw
n(Σ; z)m(z) and

∑
z∈A∞

n(Σ; z)m(z), wherem(z) is the corresponding multiplicity of
z ∈ Aw ∪A∞, are finite. Moreover,

n(f(Σ);w) =
1

2πi

∮
Σ

f ′(ζ)

f(ζ)− w
dζ =

∑
z∈Aw

n(Σ; z)m(z)−
∑
z∈A∞

n(Σ; z)m(z). (7.37)
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Proof. We apply the residue theorem to the function f ′

f−w . The isolated singularities of this func-
tion are the elements of Aw ∪A∞.
Ifm(z) is the multiplicity of z ∈ Aw, then there is a g holomorphic in some neighborhood Dz(r)
of z so that f(ζ) − w = (ζ − z)m(z)g(ζ) when ζ ∈ Dz(r) and also g(z) ̸= 0. We have
f ′(ζ) = m(z)(ζ − z)m(z)−1g(ζ) + (ζ − z)m(z)g′(ζ) when ζ ∈ Dz(r). Also, since g(z) ̸= 0,
we may assume that r is small enough so that g(ζ) ̸= 0 when ζ ∈ Dz(r). Therefore

f ′(ζ)

f(ζ)− w
=
m(z)

ζ − z
+
g′(ζ)

g(ζ)
when ζ ∈ Dz(r) \ {z}.

Since g′

g is holomorphic in Dz(r), we have that z is a pole of f ′

f−w of order 1 with residuem(z).
Ifm(z) is the order of z ∈ A∞, there is a g holomorphic in some neighborhoodDz(r) of z so that
f(ζ)−w = g(ζ)

(ζ−z)m(z) when ζ ∈ Dz(r) and also g(z) ̸= 0. We have f ′(ζ) = −m(z) g(ζ)

(ζ−z)m(z)+1 +

g′(ζ)
(ζ−z)m(z) when ζ ∈ Dz(r). Also, since g(z) ̸= 0, we may assume that r is small enough so that
g(ζ) ̸= 0 when ζ ∈ Dz(r). Hence

f ′(ζ)

f(ζ)− w
=

−m(z)

ζ − z
+
g′(ζ)

g(ζ)
when ζ ∈ Dz(r) \ {z}.

Since g′

g is holomorphic inDz(r), we have that z is a pole of f ′

f−w of order 1 with residue −m(z).
Now, the residue theorem implies the second equality in (7.37). The first equality is a matter of
a simple change of variable. If ζ = γ(t), t ∈ [a, b], is the parametric equation of any curve γ
forming Σ, then the parametric equation of f(γ) is η = f(γ(t)), t ∈ [a, b], and hence:

n(f(γ);w) =
1

2πi

∮
f(γ)

1

η − w
dη =

1

2πi

∫ b

a

f ′(γ(t))γ′(t)

f(γ(t))− w
dt =

1

2πi

∮
γ

f ′(ζ)

f(ζ)− w
dζ.

The rest is simple if we recall thatΣ = n1γ1+· · ·+nkγk and f(Σ) = n1f(γ1)+· · ·+nkf(γk).

The geometric content of the argument principle is described as follows. The number of ro-
tations of f(Σ) around w is equal to the total number of rotations of Σ around the solutions of
f(z) = w minus the total number of rotations of Σ around the poles of f . When we count the
solutions of f(z) = w and the poles of f we take into account their multiplicities. We countm(z)
points at every point z ∈ Aw ∪A∞ which has multiplicitym(z).

If f has no pole in Ω, i.e. if f is holomorphic in Ω, then the argument principle says that the
number of rotations of f(Σ) around w is equal to the total number of rotations of Σ around the
solutions of f(z) = w. In fact, if Σ is such that for every z not in the trajectories of the curves
forming Σ we have either n(Σ; z) = 1 or n(Σ; z) = 0, then the number of rotations of f(Σ)
around w is equal to the number of solutions of f(z) = w which are surrounded by Σ.

The theorem of Rouché. Let w ∈ C. We assume that f, g : Ω → C are holomorphic in the open
set Ω and that they are not constant in any connected component of Ω. We also consider Σ to be
a cycle null-homologous in Ω. If |f(z)− g(z)| < |g(z)− w| for every z in the trajectories of the
closed curves forming Σ, then∑

z∈Aw,f

n(Σ; z)mf (z) =
∑

z∈Aw,g

n(Σ; z)mg(z),

where mf (z) and mg(z) are the corresponding multiplicities and Aw,f = {z ∈ Ω | f(z) = w},
Aw,g = {z ∈ Ω | g(z) = w}.

Proof. We observe that the condition |f(z)− g(z)| < |g(z)−w| for every z in the trajectories of
the closed curves forming Σ implies that no element of Aw,f ∪ Aw,g is in these trajectories. Now
(7.37) implies

1

2πi

∮
Σ

f ′(ζ)

f(ζ)− w
dζ =

∑
z∈Aw,f

n(Σ; z)mf (z),
1

2πi

∮
Σ

g′(ζ)

g(ζ)− w
dζ =

∑
z∈Aw,g

n(Σ; z)mg(z).
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Hence∑
z∈Aw,f

n(Σ; z)mf (z)−
∑

z∈Aw,g

n(Σ; z)mg(z) =
1

2πi

∮
Σ

( f ′(ζ)

f(ζ)− w
− g′(ζ)

g(ζ)− w

)
dζ. (7.38)

The function h = f−w
g−w is holomorphic inΩ except for the elements ofAw,g, which are either poles

or removable singularities of h. From (7.37) again we have

n(h(Σ); 0) =
1

2πi

∮
Σ

h′(ζ)

h(ζ)
dζ. (7.39)

Since h′

h = f ′

f−w − g′

g−w , from (7.38) and (7.39) we find∑
z∈Aw,f

n(Σ; z)mf (z)−
∑

z∈Aw,g

n(Σ; z)mg(z) = n(h(Σ); 0).

Now, our hypothesis says that |h(z)− 1| < 1 for every z in the trajectories of the curves forming
Σ. I.e. the curves forming h(Σ) are in the disc D1(1) and hence n(h(Σ); 0) = 0.

Example 7.6.1.We shall find the number of roots of f(z) = z7 − 2z5 + 6z3 − z + 1 in D.
We consider g(z) = 6z3 and we have

|f(z)− g(z)| = |z7 − 2z5 − z + 1| ≤ |z|7 + 2|z|5 + |z|+ 1 = 5 < 6|z|3 = |g(z)|

for every z ∈ T. Now we apply the theorem of Rouché with w = 0 and Σ consisting of only the
curve γ which describesT once and in the positive direction. We have n(γ; z) = 1 for every z ∈ D
and n(γ; z) = 0 for every z ̸∈ D. The only solution of g(z) = 0 in D is z = 0 with multiplicity
mg(0) = 3. Therefore ∑

z∈A0,g

n(γ; z)mg(z) =
∑

z∈A0,g∩D
mg(z) = 3.

Also ∑
z∈A0,f

n(γ; z)mf (z) =
∑

z∈A0,f∩D
mf (z).

The theorem of Rouché implies
∑

z∈A0,f∩Dmf (z) = 3 and hence f has three roots in D.

Exercises.

7.6.1. Let f be holomorphic in Dz0(R), let 0 < r < R and assume that there is no solution of
f(z) = w in Cz0(r). If k ∈ N, what is the content of 1

2πi

∮
Cz0 (r)

f ′(z)
f(z)−w z

k dz?

7.6.2. Let f be holomorphic in D and continuous in D and let |f(z)| < 1 for every z ∈ T. Prove
that the equation f(z) = zn has exactly n solutions in D.

7.6.3. Find the number of roots of
(i) z4 − 6z + 3 in D0(1, 2).
(ii) z4 + 8z3 + 3z2 + 8z + 3 in {z | Re z > 0}.
7.6.4. Let z1, . . . , zn ∈ D. In C \

{
1
z1
, . . . , 1

zk

}
we consider the function f(z) =

∏n
k=1

z−zk
1−zk z .

(i) Prove that f(z) ∈ D for every z ∈ D and that f(z) ∈ T for every z ∈ T.
(ii) Find the index with respect to 0 of the curve with parametric equation z = f(eit), t ∈ [0, 2π].
(iii) Prove that for every w ∈ D the equation f(z) = w has exactly n solutions in D.

7.6.5. Let λ > 1. Prove that the equation λ− z = e−z has exactly one solution in {z | Re z > 0}
and that this solution is real. How does this solution behave when λ→ 1+?

7.6.6. Prove that the set of all meromorphic functions in the region Ω is an algebraic field.

7.6.7. Let f(z) =
∑+∞

n=0 anz
n for z ∈ D and let F ⊆ D be compact with 0 ∈ F . If µ =

inf{|f(z)| | z ∈ ∂F} andm is the number of roots of f inF , prove that µ ≤ |a0|+|a1|+· · ·+|am|.
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Chapter 8

Simply connected regions and the
theorem of Riemann.

8.1 Uniform convergence in compact sets and holomorphy.

Lemma 8.1. Let Ω ⊆ C be open andK ⊆ Ω be compact. Then there is ϵ > 0 so that |z−w| ≥ 2ϵ
for every z ∈ K and every w ∈ Ωc. Then the set K ′ = {z′ | |z′ − z| ≤ ϵ for some z ∈ K} is a
compact subset of Ω which containsK.

Proof. It is clear thatK ⊆ K ′ ⊆ Ω.
SinceK is bounded, there isM so that |z| ≤M for every z ∈ K. If z′ ∈ K ′, then there is z ∈ K
so that |z′ − z| ≤ ϵ and then |z′| ≤ |z′ − z|+ |z| ≤ ϵ+M . HenceK ′ is bounded.
Finally, let (z′n) be a sequence inK ′ and z′n → z′. For each n there is zn ∈ K so that |z′n−zn| ≤ ϵ.
Since K is compact, there is a subsequence (znk

) so that znk
→ z for some z ∈ K. From

|z′nk
− znk

| ≤ ϵ we get |z′ − z| ≤ ϵ and hence z′ ∈ K ′. ThereforeK ′ is closed.

The theorem of Weierstrass. Let every fn be holomorphic in the open set Ω ⊆ C. If fn → f
uniformly in every compact subset of Ω, then f is also holomorphic in Ω and for every k ∈ N we
have that f (k)n → f (k) uniformly in every compact subset of Ω.

Proof. We take any z0 ∈ Ω. Then there is a closed disc Dz0(R) contained in Ω and for every n
we have

fn(z) =
1

2πi

∮
Cz0 (R)

fn(ζ)

ζ − z
dζ for every z ∈ Dz0(R).

Since Cz0(R) is a compact subset of Ω, we have that fn → f uniformly in Cz0(R). We also have
that fn(z) → f(z) for every z ∈ Dz0(R). Hence

f(z) =
1

2πi

∮
Cz0 (R)

f(ζ)

ζ − z
dζ for every z ∈ Dz0(R).

The right side of this equality is a holomorphic function of z in Dz0(R) and hence the left side,
f(z), is also holomorphic in Dz0(R). Therefore, f is holomorphic at every z0 ∈ Ω.
Now letK ⊆ Ω be compact. Then there is ϵ > 0 so that |z − w| ≥ 2ϵ for every z ∈ K and every
w ∈ Ωc. We consider the set K ′ = {z′ | |z′ − z| ≤ ϵ for some z ∈ K} of lemma 8.1. This K ′ is
a compact subset of Ω and hence fn → f uniformly inK ′. We also observe that for every z ∈ K
we have Cz(ϵ) ⊆ K ′. Then we apply the formula of Cauchy for derivatives and we get for every
z ∈ K that

|f (k)n (z)− f (k)(z)| =
∣∣∣ k!
2πi

∮
Cz(ϵ)

fn(ζ)− f(ζ)

(ζ − z)k+1
dζ

∣∣∣ ≤ k!

2π

supζ∈Cz(ϵ) |fn(ζ)− f(ζ)|
ϵk+1

2πϵ

≤ k!

ϵk
sup
ζ∈K′

|fn(ζ)− f(ζ)|.
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Hence,
sup
z∈K

|f (k)n (z)− f (k)(z)| ≤ k!

ϵk
sup
ζ∈K′

|fn(ζ)− f(ζ)| → 0

and so f (k)n → f (k) uniformly inK.

The theorem ofHurwitz. Let every fn be holomorphic in the regionΩ ⊆ C and fn → f uniformly
in every compact subset of Ω. If fn(z) ̸= 0 for every n and every z ∈ Ω, then either f(z) ̸= 0 for
every z ∈ Ω or f(z) = 0 for every z ∈ Ω.

Proof. The theorem of Weierstras implies that f is holomorphic in Ω. We assume that f is not
identically 0 in Ω and we shall prove that f(z) ̸= 0 for every z ∈ Ω.
We take any z0 ∈ Ω. Even if f(z0) = 0, we know that z0 is an isolated root of f and hence
there is r > 0 so that f(ζ) ̸= 0 for every ζ ∈ Cz0(r). By the continuity of f we get that there is
some δ > 0 so that |f(ζ)| ≥ δ for every ζ ∈ Cz0(r). Now, we have that fn → f uniformly in
Cz0(r) and the theorem of Weierstrass implies that also f ′n → f ′ uniformly in Cz0(r). Therefore,
f ′n
fn

→ f ′

f uniformly in Cz0(r) and hence

1

2πi

∮
Cz0 (r)

f ′n(ζ)

fn(ζ)
dζ → 1

2πi

∮
Cz0 (r)

f ′(ζ)

f(ζ)
dζ.

By the argument principle, the left side is equal to the number of roots of fn in the discDz0(r) and
hence it is equal to 0. Thus, the right side is also equal to 0 and, by the argument principle again,
there is no root of f in the disc Dz0(r). In particular, f(z0) ̸= 0.

Definition. Let A ⊆ C and F be a collection of functions defined in the set A.
(i) We say that F is bounded at some z ∈ A if there isM so that |f(z)| ≤M for every f ∈ F .
(ii) We say that F is equicontinuous at some z ∈ A if for every ϵ > 0 there is δ > 0 so that
|f(w)− f(z)| < ϵ for every w ∈ A with |w − z| < δ and for every f ∈ F .

We observe that if F is equicontinuous at some z ∈ A, then every f ∈ F is continuous at z
and that δ depends on ϵ but not on f , i.e. δ is uniform over f ∈ F .

Lemma 8.2. LetA ⊆ C and (fn) be a sequence of continuous functions inA. If fn → f uniformly
in every compact subset of A, then f is continuous in A.

Proof. Take any z ∈ A and a sequence (zm) in A with zm → z. ThenK = {zm |m ∈ N} ∪ {z}
is a compact subset of A and hence fn → f uniformly in K. Since every fn is continuous in K,
we have that f is also continuous inK. Thus, f(zm) → f(z) and so f is continuous at z.

Lemma 8.3. LetA ⊆ C. Then there is a countable L ⊆ A so that for every z ∈ A and every δ > 0
there is w ∈ L with |w − z| < δ. In other words, there is a countable L ⊆ A so that A ⊆ L.

Proof. We consider the countable set M = {x + iy |x, y ∈ Q} and let M = {zn |n ∈ N}
be any enumeration of M . For every n,m ∈ N such that Dzn(

1
m) ∩ A ̸= ∅ we take a point

wn,m ∈ Dzn(
1
m) ∩A. Then the set L of all such wn,m is a countable subset of A.

Now take any z ∈ A and any δ so that 0 < δ ≤ 3. Then there is zn ∈M so that |z − zn| < δ
3 and

there ism ∈ N so that 1
m+1 <

δ
3 ≤ 1

m . Then z ∈ Dzn(
1
m) and hence Dzn(

1
m) ∩ A ̸= ∅. Now we

have |z − wn,m| ≤ |z − zn|+ |zn − wn,m| < δ
3 + 1

m ≤ δ
3 + 2

m+1 < δ.

The theorem of Arzela-Ascoli. Let A ⊆ C and F be a collection of continuous functions in A.
Then the following are equivalent:
(i) For every sequence (fn) in F there is a subsequence (fnk

) and a function f continuous in A
so that fnk

→ f uniformly in every compact subset of A.
(ii) F is equicontinuous and bounded at every z ∈ A.
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Proof. (i)⇒ (ii) Assume that F is not bounded at some z ∈ A. Then there is a sequence (fn) in
F so that |fn(z)| → +∞. Then there is a subsequence (fnk

) and a function f continuous in A so
that fnk

→ f uniformly in every compact subset of A. One such compact set is {z} and we get
that fnk

(z) → f(z), arriving at a contradiction.
Now assume that F is not equicontinuous at some z ∈ A. Then there is ϵ > 0 so that for every
n ∈ N there is zn ∈ A and fn ∈ F so that |zn− z| < 1

n and |fn(zn)− fn(z)| ≥ ϵ. Then there is a
subsequence (fnk

) and a function f continuous in A so that fnk
→ f uniformly in every compact

subset of A. Since znk
→ z, the setK = {znk

| k ∈ N} ∪ {z} is a compact subset of A and hence
fnk

→ f uniformly inK. Now

ϵ ≤ |fnk
(znk

)− fnk
(z)| ≤ |fnk

(znk
)− f(znk

)|+ |f(znk
)− f(z)|+ |f(z)− fnk

(z)|
≤ sup

ζ∈K
|fnk

(ζ)− f(ζ)|+ |f(znk
)− f(z)|+ sup

ζ∈K
|fnk

(ζ)− f(ζ)|.

We arrive at a contradiction because supζ∈K |fnk
(ζ)− f(ζ)| → 0 and f(znk

) → f(z).
(ii)⇒ (i) Let (fn) be a sequence in F . We consider the countable set L ⊆ A which is described
in Lemma 8.3. Let

L = {wm |m ∈ N}.
The set {fn(w1) |n ∈ N} is bounded. Hence there is a subsequence (fn,1) of (fn) so that
fn,1(w1) → ζ1 for some ζ1 ∈ C. Similarly, the set {fn,1(w2) |n ∈ N} is bounded. Hence
there is a subsequence (fn,2) of (fn,1) so that fn,2(w2) → ζ2 for some ζ2 ∈ C. Similarly,
the set {fn,2(w3) |n ∈ N} is bounded. Hence there is a subsequence (fn,3) of (fn,2) so that
fn,3(w3) → ζ3 for some ζ3 ∈ C. We continue inductively and we find

f1 f2 f3 . . . fn . . .
f1,1 f2,1 f3,1 . . . fn,1 . . .
f1,2 f2,2 f3,2 . . . fn,2 . . .
...

...
...

...
f1,m f2,m f3,m . . . fn,m . . .
...

...
...

...

so that the sequence in every row is a subsequence of the sequence in the previous row and so that
fn,m(wm) → ζm for some ζm ∈ C. Now we consider the diagonal sequence (fn,n). For everym,
(fn,n) is, after the value m of the index n, a subsequence of (fn,m) and hence fn,n(wm) → ζm.
Therefore, (fn,n) is a subsequence of (fn) and limn→+∞ fn,n(w) exists in C for every w ∈ L.
Now we take any z ∈ A. Since F is equicontinuous at z, for every ϵ > 0 there is δ > 0 so that
|f(w)− f(z)| < ϵ

3 for every w ∈ A with |w − z| < δ and every f ∈ F . From the basic property
of L we have that there is w ∈ L so that |w− z| < δ. Since (fn,n(w)) is a Cauchy sequence, there
is n0 so that |fn′,n′(w)− fn′′,n′′(w)| < ϵ

3 for every n′, n′′ ≥ n0. Therefore, for every n′, n′′ ≥ n0
we have

|fn′,n′(z)− fn′′,n′′(z)| ≤ |fn′,n′(z)− fn′,n′(w)|+ |fn′,n′(w)− fn′′,n′′(w)|

+ |fn′′,n′′(w)− fn′′,n′′(z)| < ϵ

3
+
ϵ

3
+
ϵ

3
= ϵ.

This means that (fn,n(z)) is a Cauchy sequence in C and hence limn→+∞ fn,n(z) exists in C.
Now we define the function f : A→ C by

f(z) = lim
n→+∞

fn,n(z) for every z ∈ A.

We consider any compact setK ⊆ A and we shall prove that fn,n → f uniformly inK. Assume
on the contrary that this is not true. Then there is ϵ > 0 and a subsequence (fnk,nk

) of (fn,n) and
a sequence (zk) inK so that

|fnk,nk
(zk)− f(zk)| ≥ ϵ for every k. (8.1)
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Since K is compact, there is a subsequence (zkl) of zk which converges to some z ∈ K. For
simplicity of notation we shall ignore all the terms of (zk) which do not belong to (zkl) and we
shall assume that zk → z for some z ∈ K. Now, since F is equicontinuous at z, there is δ > 0 so
that |fnk,nk

(w)− fnk,nk
(z)| < ϵ

3 for every w ∈ A with |w− z| < δ and every k. Taking the limit
as k → +∞, we get that |f(w)− f(z)| ≤ ϵ

3 for every w ∈ A with |w− z| < δ. Now, if k is large
enough, we have that |zk − z| < δ and |fnk,nk

(z)− f(z)| < ϵ
3 and then we get

|fnk,nk
(zk)− f(zk)| ≤ |fnk,nk

(zk)− fnk,nk
(z)|+ |fnk,nk

(z)− f(z)|+ |f(zk)− f(z)|

<
ϵ

3
+
ϵ

3
+
ϵ

3
= ϵ.

This contradicts (8.1) and hence fn,n → f uniformly in K. Finally, lemma 8.2 implies that f is
continuous in A.

Definition. Let A ⊆ C and F be a collection of functions defined in the set A. We say that F is
locally bounded at some z ∈ A if there are δ > 0 andM so that |f(w)| ≤ M for every w ∈ A
with |w − z| < δ and for every f ∈ F .

The theorem of Montel. Let Ω ⊆ C be open and F be a collection of holomorphic functions in
Ω. Then the following are equivalent:
(i) For every sequence (fn) in F there is a subsequence (fnk

) and a function f holomorphic in Ω
so that fnk

→ f uniformly in every compact subset of Ω.
(ii) F is locally bounded at every z ∈ Ω.

Proof. (i)⇒ (ii) Assume thatF is not locally bounded at some z ∈ Ω. Then for every n ∈ N there
is zn ∈ Ω and fn ∈ F with |zn − z| < 1

n and |fn(zn)| > n. Now, there is a subsequence (fnk
)

of (fn) and a function f holomorphic in Ω so that fnk
→ f uniformly in every compact subset of

Ω. Since zn → z, the set K = {zn |n ∈ N} ∪ {z} is a compact subset of Ω and hence fnk
→ f

uniformly inK. But

sup
ζ∈K

|fnk
(ζ)− f(ζ)| ≥ |fnk

(znk
)− f(znk

)| ≥ |fnk
(znk

)| − |f(znk
)| → +∞− |f(z)| = +∞

and we arrive at a contradiction.
(ii)⇒ (i) By the Arzela-Ascoli theorem and by the theorem of Weierstrass it is enough to prove
that F is bounded and equicontinuous at every z ∈ Ω. Obviously, local boundedness of F implies
that F is bounded at every z ∈ Ω. Now we take any z0 ∈ Ω and then there is r > 0 and M so
that |f(z)| ≤ M for every z ∈ Dz0(r) and every f ∈ F . Thus, for every z ∈ Dz0(

r
2) and every

f ∈ F we have

|f ′(z)| =
∣∣∣ 1

2πi

∮
Cz0 (r)

f(ζ)

(ζ − z)2
dζ

∣∣∣ ≤ 1

2π

M

(r/2)2
2πr =

4M

r
.

This implies that for every z ∈ Dz0(
r
2) and every f ∈ F we have

|f(z)− f(z0)| =
∣∣∣ ∫

[z0,z]
f ′(ζ) dζ

∣∣∣ ≤ 4M

r
|z − z0|.

Hence, for every ϵ > 0 we may take δ = min{ rϵ
4M ,

r
2} and then for every z ∈ Dz0(δ) and every

f ∈ F we get |f(z)− f(z0)| ≤ 4M
r |z − z0| < 4M

r δ ≤ ϵ. Thus, F is equicontinuous at z0.

Exercises.

8.1.1. Let (fn) be a sequence of functions holomorphic in the region Ω ⊆ C which is locally
bounded at every z ∈ Ω. If every fn has no roots in Ω and fn(z0) → 0 for some z0 ∈ Ω, prove
that fn → 0 uniformly in every compact subset of Ω.
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8.1.2. Let (fn) be a sequence of functions holomorphic in the region Ω ⊆ C which is locally
bounded at every z ∈ Ω and let E ⊆ Ω have an accumulation point in Ω. If limn→+∞ fn(z) is a
complex number for every z ∈ E, prove that (fn) converges to some function uniformly in every
compact subset of Ω.

8.1.3. Let (fn) be a sequence of functions holomorphic in the open set Ω ⊆ C. If limn→+∞ fn(z)
is a complex number for every z ∈ Ω, prove that there is an open setH ⊆ Ω so that Ω ⊆ H and so
that (fn) converges to some function uniformly in every compact subset ofH . (Note: This needs
the theorem of Baire.)

8.1.4. LetΩ ⊆ C be a region and (fn) be a sequence of functions holomorphic inΩwith Re fn > 0
in Ω for every n.
(i) If (fn(z0)) is bounded for some z0 ∈ Ω, prove that there is a subsequence (fnk

)which converges
to some function uniformly in every compact subset of Ω.
(ii) If (fn(z0)) is unbounded for some z0 ∈ Ω, prove that there is a subsequence (fnk

) so that
fnk

→ ∞ uniformly in every compact subset of Ω.

8.1.5. Let fn, f be holomorphic in Dz0(R) and fn → f uniformly in every compact subset of
Dz0(R). If fn(z) =

∑+∞
k=0 ak,n(z − z0)

k and f(z) =
∑+∞

k=0 ak(z − z0)
k are the corresponding

Taylor series, prove that ak,n → ak for every k.

8.1.6. Let F be a collection of functions holomorphic inDz0(R). We denote ak(f) = f (k)(z0)
k! the

k-th Taylor coefficient of each f ∈ F . Prove that the following are equivalent:
(i) For every sequence (fn) in F there is a subsequence (fnj ) which converges to some function
uniformly in every compact subset of Dz0(R).
(ii) There areMk ≥ 0 so that lim supk→+∞

k
√
Mk ≤ 1

R and |ak(f)| ≤ Mk for every k and every
f ∈ F .

8.1.7. A theorem of Montel. Let −∞ < a < x0 < b < +∞ and f be bounded and holomorphic
in the vertical hafzone Ω = {z = x + iy | a < x < b, y > 0}. If f(x0 + iy) → A ∈ C when
y → +∞, prove that for every ϵ > 0we have supx∈[a+ϵ,b−ϵ] |f(x+ iy)−A| → 0when y → +∞.

8.1.8. LetM ≥ 0 and Ω ⊆ C be open and F be the collection of all functions f holomorphic in Ω
with

∫∫
Ω |f(x, y)|2 dxdy ≤M . Prove that F is locally bounded at every z ∈ Ω.

8.1.9. Let F be a collection of holomorphic functions in the open set Ω ⊆ C with the property: for
every sequence (fn) inF there is a subsequence (fnk

)which converges to some function uniformly
in every compact subset of Ω. Prove that the collection F ′ = {f ′ | f ∈ F} has the same property.
Is the converse true?

8.1.10. Let Ω ⊆ C be open, Dz0(r) ⊆ Ω, fn, f be holomorphic in Ω and fn → f uniformly in
Cz0(r). If f has no root in Cz0(r) and has exactly k roots in Dz0(r), prove that every fn, after
some value of the index n, has exactly k roots in Dz0(r).

8.1.11. Let (fn) be a sequence of holomorphic functions in the region Ω ⊆ C so that fn → f
uniformly in every compact subset of Ω. If every fn has at most k roots in Ω, prove that either f
has also at most k roots in Ω or that f is identically 0 in Ω.

8.1.12. Prove that for every R > 0 there is N so that for every n ≥ N the polynomial 1 + z
1! +

z2

2! + · · ·+ zn

n! has no root in D0(R).

8.1.13. Let fn, f be holomorphic in the open set Ω ⊆ C and fn → f uniformly in every compact
subset of Ω. Prove that {z ∈ Ω | f(z) = 0} = Ω ∩

∩+∞
n=1

(∪+∞
k=n{z ∈ Ω | fk(z) = 0}

)
.
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8.2 Conformal equivalence.

If Ω ⊆ C is a region and f is holomorphic and not constant in Ω, then, by the open mapping
theorem, f(Ω) is also a region.

Proposition 8.1. Let f be holomorphic and one-to-one in the region Ω ⊆ C. Then f(Ω) is also a
region, f ′(z) ̸= 0 for every z ∈ Ω and f−1 is holomorphic in f(Ω).
Proof. If f ′(z0) = 0 for some z ∈ Ω, then theorem 6.2 implies that there is N ≥ 2 so that f is
N -to-one in some open set U ⊆ Ω containing z0. Hence f ′(z) ̸= 0 for every z ∈ Ω.
Now let w0 ∈ f(Ω) and consider the unique z0 ∈ Ω so that f(z0) = w0. Then proposition 6.8
implies that there are two open sets, U ⊆ Ω and W ⊆ f(Ω) with z0 ∈ U and w0 ∈ W so that
f−1 :W → U is holomorphic. Thus f−1 is holomorphic at every w0 ∈ f(Ω).

Definition. Let f be holomorphic and one-to-one in the region Ω ⊆ C. Since f ′(z) ̸= 0 for every
z ∈ Ω, we say that f is a conformal mapping of Ω.
Definition. Two regions Ω1,Ω2 ⊆ C are called conformally equivalent if there is f : Ω1 → Ω2

holomorphic and one-to-one from Ω1 onto Ω2 or, equivalently, if there is a conformal mapping of
Ω1 onto Ω2.

If f : Ω1 → Ω2 is holomorphic and one-to-one from Ω1 onto Ω2, then f−1 : Ω2 → Ω1 is
also holomorphic and one-to-one from Ω2 onto Ω1. It is easy to see that conformal equivalence
between regions in C is an equivalence relation.

The Schwarz lemma. Let f : D → D be holomorphic in D and f(0) = 0. Then
(i) |f(z)| ≤ |z| for every z ∈ D,
(ii) |f ′(0)| ≤ 1.
If equality holds in (i) for at least one z ∈ D \ {0} or in (ii), then there is a constant c with |c| = 1
so that f(z) = cz for every z ∈ D.

Proof. Since f(0) = 0, the function f(z)
z has a removable singularity at 0 and we may define the

function g by

g(z) =

{
f(z)
z , if z ∈ D, z ̸= 0

f ′(0), if z = 0

Then g is holomorphic in D.
We take any z ∈ D and we take any r so that |z| < r < 1. By the maximum principle we
have |g(z)| ≤ max{|g(ζ)| | |ζ| = r}. But, when |ζ| = r we have |g(ζ)| = |f(ζ)|

|ζ| ≤ 1
r . Hence,

|g(z)| ≤ 1
r and since this is true for every r with |z| < r < 1, we conclude that |g(z)| ≤ 1. Of

course this implies (i) and (ii).
Now, assume that equality holds in (i) for at least one z ∈ D\{0} or in (ii). Then |g(z)| = 1 for at
least one z ∈ D and the maximum principle implies that g is a constant c in D with |c| = 1. Hence
f(z) = cz for every z ∈ D.

Example 8.2.1. Let z0 ∈ D and |λ| = 1. We consider the function T : Ĉ → Ĉ given by

T (z) =


λ z−z0

1−z0 z , if z ∈ C, z ̸= 1
z0

∞, if z = 1
z0

− λ
z0
, if z = ∞

Then T is a linear fractional transformation and hence it is one-to-one from Ĉ onto Ĉ and holo-
morphic in Ĉ \ { 1

z0
}. The inverse function T−1 : Ĉ → Ĉ is given by

T−1(w) =


µ w−w0

1−w0 w
, if w ∈ C, w ̸= 1

w0

∞, if w = 1
w0

− µ
w0
, if w = ∞
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where µ = 1
λ and w0 = −λz0. Since |µ| = 1 and w0 ∈ D, the inverse function T−1 is of the same

form as T .
For simplicity, we shall follow the same practice as with all l.f.t. and we shall write

T (z) = λ
z − z0
1− z0 z

the formula of T , understanding that T ( 1
z0
) = ∞ and T (∞) = − λ

z0
whenever this is needed.

We easily see that
T (D) = D, T (T) = T.

Indeed,

1− |T (z)|2 = 1− |z − z0|2

|1− z0 z|2
=

1 + |z|2|z0|2 − |z|2 − |z0|2

|1− z0 z|2
=

(1− |z|2)(1− |z0|2)
|1− z0 z|2

,

from which we have that |T (z)| < 1 if |z| < 1, that |T (z)| = 1 if |z| = 1 and that |T (z)| > 1 if
|z| > 1. These imply that T (D) ⊆ D, T (T) ⊆ T and T (Ĉ \ D) ⊆ Ĉ \ D. But, since T is onto Ĉ,
all these inclusions are equalities.
Another simple property of T is

T (z0) = 0.

We also have T ′(z) = λ 1−|z0|2
(1−z0 z)2 for every z ̸= 1

z0
. Thus, T ′(z0) =

λ
1−|z0|2 and hence

Arg(T ′(z0)) = Argλ.

If we restrict T in D we see that T is a conformal mapping of D onto D.

The next proposition describes all conformal mappings ofD ontoD: they are just the functions
T of example 8.2.1.

Proposition 8.2. Let z0 ∈ D and θ0 ∈ (−π, π]. Then the function T : D → D given by

T (z) = eiθ0
z − z0
1− z0 z

for every z ∈ D

is a conformal mapping of D onto D. Moreover, T is the unique conformal mapping of D onto D
satisfying T (z0) = 0 and Arg(T ′(z0)) = θ0.

Proof. From the discussion in example 8.2.1 we have all properties of the function T . Therefore,
we only have to prove the uniqueness of T . So let S be another conformal mapping of D onto D
satisfying S(z0) = 0 and Arg(S′(z0)) = θ0.
Then the function f = S ◦ T−1 : D → D is holomorphic in D and satisfies f(0) = 0 and
f ′(0) = S′(z0)

T ′(z0)
> 0. By the Schwarz lemma we get |f ′(0)| ≤ 1.

But also the function g = T ◦ S−1 : D → D is holomorphic in D and satisfies g(0) = 0 and
g′(0) > 0. Again, by the Schwarz lemma we get |g′(0)| ≤ 1.
Now, the functions f and g are mutually inverse and hence g′(0) = 1

f ′(0) . Therefore, |f
′(0)| =

|g′(0)| = 1 and the Schwarz lemma implies that there is some c with |c| = 1 so that f(w) = cw
for every w ∈ D. Now, c = f ′(0) > 0 implies c = 1. Hence, f(w) = w for every w ∈ D and
finally S(z) = T (z) for every z ∈ D.

Exercises.

8.2.1. Let f be a conformal mapping of the region Ω ⊆ C onto D with f(z0) = 0 for some z0 ∈ Ω
and let g : Ω → D be holomorphic in Ω with g(z0) = 0. Prove that |g′(z0)| ≤ |f ′(z0)|. What can
you conclude if |g′(z0)| = |f ′(z0)|?
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8.2.2. Let f : D → D be holomorphic in D. Prove that:
(i)

∣∣ f(z1)−f(z2)
1−f(z2)f(z1)

∣∣ ≤ ∣∣ z1−z2
1−z2z1

∣∣ for every z1, z2 ∈ D.

(ii) |f ′(z)|
1−|f(z)|2 ≤ 1

1−|z|2 for every z ∈ D.
Prove that, if equality holds in (i) for at least one pair of z1, z2 ∈ D with z1 ̸= z2 or in (ii) for at
least one z ∈ D, then there is z0 ∈ D and λ with |λ| = 1 so that f(z) = λ z−z0

1−z0 z for every z ∈ D
and then equalities in (i) and (ii) hold identically.

8.2.3. (See exercise 8.2.2.) For every curve γ : [a, b] → D we define the hyperbolic length of γ
by lh(γ) =

∫ b
a

|γ′(t)|
1−|γ(t)|2 dt.

(i) If f : D → D is holomorphic in D, and γ is a curve in D, prove that lh(f(γ)) ≤ lh(γ). If,
moreover, f is conformal onto D, prove that lh(f(γ)) = lh(γ).
(ii) If z1, z2 ∈ D and z1 ̸= z2, prove that among all curves in D with endpoints z1 and z2 the
one with the smallest hyperbolic length is the arc of the circle which contains z1, z2 and which is
orthogonal to T. This smallest hyperbolic length is called hyperbolic distance of z1, z2 and it is

equal to dh(z1, z2) = 1
2 ln

1+
∣∣ z1−z2
1−z2z1

∣∣
1−
∣∣ z1−z2
1−z2z1

∣∣ .
8.2.4. (See exercise 8.2.3.) Let f : D → D be holomorphic in D. Consider sequences (z′n) and
(z′′n) in D so that z′n → 1 and so that dh(z′n, z′′n) ≤ M for every n. Prove that z′′n → 1. Also, if
f(z′n) → 1, prove that f(z′′n) → 1.

8.2.5. Find all f : D → D holomorphic in D with f(0) = 1
2 and f ′(0) = 3

4 .

8.2.6. Prove that for everyM,N with 0 < M < N there isP = P (M,N) < N with this property:
if f is holomorphic in Dz0(R) with |f(z0)| < M and |f(z)| < N for every z ∈ Dz0(R), then
|f(z)| < P for every z ∈ Dz0(

R
2 ).

8.3 Simply connected regions and the theorem of Riemann.

Definition. The region Ω ⊆ C is called simply connected if n(γ; z) = 0 for every closed curve γ
in Ω and every z ∈ Ωc.

If the region Ω is simply connected, then, of course, n(Σ; z) = 0 for every cycle Σ in Ω and
every z ∈ Ωc.

Example 8.3.1. Every convex region Ω is simply connected.

Example 8.3.2. If l is any halfline, then the region C \ l is simply connected.

Example 8.3.3. The regionΩ = Dz0(R1, R2)with 0 ≤ R1 < R2 ≤ +∞ is not simply connected.
Indeed, if R1 < r < R2, the closed curve γ in Ω which describes the circle Cz0(r) once in the
positive direction has n(γ; z0) = 1.

Example 8.3.4. A set A ⊆ C is called star-shaped if there is a specific z0 ∈ A so that [z0, z] ⊆ A
for every z ∈ A (see also exercise 1.6.6). The point z0 is called center of A. A star-shaped set
A may have many centers, but this does not mean that all points of A are centers. For example,
every convex set A is star-shaped and every point of A is a center of A. On the other hand, if l
is a halfline, then the set A = C \ l is star-shaped and the centers of A are only the points of the
halfline which is opposite to l and with the same vertex.
Now, let Ω be any open star-shaped set and let z0 be a center of Ω. If γ is a closed curve in Ω
and z ∈ Ωc, then we consider the halfline lz with vertex z which is opposite to the halfine with
vertex z going through z0. The halfline lz is contained inΩc and hence in the unbounded connected
component of C\γ∗. So z is contained in the unbounded connected component of C\γ∗ and thus
n(γ; z) = 0. Therefore every open star-shaped set is simply connected.
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Example 8.3.5. The region Ω = C \
(
D0(1) ∪ (−∞,−1]

)
is not star-shaped but it is simply

connected. Indeed, if γ is a closed curve in Ω, then Ωc = D0(1)∪ (−∞,−1] is connected and it is
contained in the unbounded connected component of C\γ∗. Hence n(γ; z) = 0 for every z ∈ Ωc.

The theorem ofCauchy in simply connected regions. If f is holomorphic in the simply connected
region Ω ⊆ C, then for every cycle Σ in Ω we have∫

Σ
f(z) dz = 0.

Proof. Immediate from the theorem of Cauchy in general open sets.

In the same manner we have versions of Cauchy’s formulas for derivatives of any order, of
the residue theorem, of the argument principle and of the theorem of Rouché for regions Ω which
are simply connected. In all these cases we do not have to assume that the cycles Σ in Ω are null-
homologous in Ω: every cycle in a simply connected region Ω is automatically null-homologous
in Ω.

Proposition 8.3. Let the region Ω ⊆ C be simply connected. Then
(i) every f holomorphic in Ω has a primitive in Ω.
(ii) for every holomorphic g : Ω → C \ {0} there is a holomorphic branch of log g in Ω.

Proof. (i) An application of proposition 5.22 and the theorem of Cauchy in simply connected
regions.
(ii) An application of proposition 5.24 and the theorem of Cauchy in simply connected regions.

Proposition 8.4. Let the regionsΩ1,Ω2 ⊆ C be conformally equivalent. IfΩ1 is simply connected,
then Ω2 is also simply connected.

Proof. Let f : Ω1 → Ω2 be holomorphic and one-to-one from Ω1 onto Ω2.
Assume that Ω2 is not simply connected. Then there is some closed curve γ in Ω2 and some
w0 ∈ Ωc2 so that n(γ;w0) ̸= 0. This implies that the holomorphic function h in Ω2, given by
h(w) = 1

w−w0
, has no primitive in Ω2. We consider the holomorphic function g in Ω1, given

by g(z) = h(f(z))f ′(z). Since Ω1 is simply connected, proposition 8.3 implies that there is a
primitive, say G, of g in Ω1, i.e G′(z) = g(z) for every z ∈ Ω1. Then we define the holomorphic
functionH in Ω2 by H(w) = G(f−1(w)) and we have

H ′(w) = G′(f−1(w))(f−1)′(w) = g(f−1(w))(f−1)′(w)

= h(w)f ′(f−1(w))(f−1)′(w) = h(w)

for every w ∈ Ω2. We have arrived at a contradiction.

The theorem of Riemann. Let Ω ⫋ C be a simply connected region, z0 ∈ Ω and θ0 ∈ (−π, π].
Then there is a unique conformal mapping f of Ω onto D with f(z0) = 0 and Arg(f ′(z0)) = θ0.

Proof. Step 1. We take any a ∈ Ωc. Since the function z − a is holomorphic in Ω and has no
root in Ω, proposition 8.3 implies that there is a holomorphic branch g of log(z − a) in Ω. I.e.
g : Ω → C is holomorphic in Ω and eg(z) = z − a for every z ∈ Ω.
Now, g is one-to-one in Ω. Indeed, if g(z1) = g(z2), then eg(z1) = eg(z2) and hence z1 = z2.
We consider w′

0 = g(z0) + 2πi and then we have w′
0 /∈ g(Ω). Indeed, if w′

0 ∈ g(Ω), then there
are zn ∈ Ω so that g(zn) → w′

0. Hence

zn − a = eg(zn) → ew
′
0 = eg(z0)+2πi = eg(z0) = z0 − a
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and thus zn → z0. Then g(zn) → g(z0)which impliesw′
0 = g(z0) andwe arrive at a contradiction.

Since w′
0 /∈ g(Ω), there is r0 > 0 so that |g(z)− w′

0| > r0 for every z ∈ Ω.
We consider the function χ : Ω → D given by

χ(z) =
r0

g(z)− w′
0

for every z ∈ Ω.

Then χ is holomorphic and one-to-one in Ω. In particular, χ′(z0) ̸= 0.
Now we consider the function R : D → D given by

R(w) =
|χ′(z0)|
χ′(z0)

eiθ0
w − χ(z0)

1− χ(z0)w
for every w ∈ D.

(Look again at example 8.2.1 and at proposition 8.2 for the properties of this kind of functions.
They appear many times in this proof.) Then the function h = R ◦χ : Ω → D is holomorphic and
one-to-one in Ω and satisfies h(z0) = R(χ(z0)) = 0 and h′(z0) = R′(χ(z0))χ

′(z0) =
|χ′(z0)|eiθ0
1−|χ(z0)|2

and hence Arg(h′(z0)) = θ0.
Step 2. We consider the set

F = {h |h : Ω → D, h is holomorphic and one-to-one in Ω, h(z0) = 0,Arg(h′(z0)) = θ0}.

The result of step 1 implies that F is non-empty. We also define

α = sup{|h′(z0)| |h ∈ F}.

Since, h′(z0) ̸= 0 for every h ∈ F , we have that α > 0 (but perhaps α = +∞).
There is a sequence (hn) in F so that |h′n(z0)| → α. For every h ∈ F we have that |h(z)| < 1
for every z ∈ Ω and hence F is obviously locally bounded at every z ∈ Ω. Montel’s theorem
implies that there is a subsequence (hnk

) and a function f holomorphic in Ω so that hnk
→ f

uniformly in every compact subset of Ω. Since hnk
(z0) = 0 for every nk, we get f(z0) = 0. The

theorem of Weierstrass implies that h′nk
→ f ′ uniformly in every compact subset of Ω. Hence,

h′nk
(z0) → f ′(z0) and thus |f ′(z0)| = α and Arg(f ′(z0)) = θ0. Since f ′(z0) ̸= 0, we have

that f is not constant in Ω. Now, for every z ∈ Ω we have |hnk
(z)| < 1 for every nk and hence

|f(z)| ≤ 1. If |f(z)| = 1 for some z ∈ Ω, the maximum principle implies that f is constant in
Ω and we just saw that this is wrong. Therefore, f : Ω → D. Next, we take any z1, z2 ∈ Ω with
z1 ̸= z2. Since hnk

(z2) → f(z2), we get that hnk
− hnk

(z2) → f − f(z2) uniformly in every
compact subset of Ω and hence in every compact subset of Ω \ {z2}. Each hnk

is one-to-one in Ω
and so hnk

−hnk
(z2) has no root in Ω \ {z2}. Since f − f(z2) is not identically 0 in Ω \ {z2}, the

theorem of Hurwitz implies that f − f(z0) has no root in Ω \ {z2}. Thus f(z1)− f(z2) ̸= 0 and
we conclude that f is one-to-one in Ω.
We proved that there is f ∈ F with |f ′(z0)| = α.
Step 3. Assume that there is some b ∈ D \ f(Ω).
We consider the function T : D → D given by

T (w) =
w − b

1− bw
for every w ∈ D

and then the function ϕ = T ◦ f : Ω → D. Then ϕ is holomorphic and one-to-one in Ω. Since
f(z) ̸= b for every z ∈ Ω, we have that ϕ(z) ̸= 0 for every z ∈ Ω. But Ω is simply connected and
so proposition 8.3 implies that there is a holomorphic branch of logϕ and hence a holomorphic
branch ψ of ϕ1/2 in Ω. I.e. there is ψ : Ω → D which is holomorphic in Ω and satisfies

ψ(z)2 = ϕ(z) for every z ∈ Ω.
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It is easy to see that ψ is one-to-one in Ω, because ϕ is one-to-one in Ω.
Now we consider the function S : D → D given by

S(w) =
|ψ′(z0)|
ψ′(z0)

eiθ0
w − ψ(z0)

1− ψ(z0)w
for every w ∈ D

and then the function h = S ◦ ψ : Ω → D. Then h is holomorphic and one-to-one in Ω. We also
see easily that h(z0) = S(ψ(z0)) = 0 and h′(z0) = S′(ψ(z0))ψ

′(z0) = |ψ′(z0)|eiθ0
1−|ψ(z0)|2 and hence

Arg(h′(z0)) = θ0. Thus, h ∈ F .
Now we have altogether that f, ϕ, ψ, h : Ω → D, that T, S : D → D and that

ϕ = T ◦ f, h = S ◦ ψ, ϕ = F ◦ ψ,

where F : D → D is given by F (w) = w2 for every w. All these functions, except F , are
one-to-one. We consider now the holomorphic function Φ : D → D, given by

Φ = T−1 ◦ F ◦ S−1,

and then we have
f = Φ ◦ h.

Now, Φ(0) = (T−1 ◦ F ◦ S−1)(0) = (T−1 ◦ F )(ψ(z0)) = T−1(ϕ(z0)) = f(z0) = 0 and

|f ′(z0)| = |Φ′(h(z0))||h′(z0)| = |Φ′(0)||h′(z0)|. (8.2)

Then the Schwartz lemma implies that |Φ′(0)| ≤ 1.
If |Φ′(0)| = 1, then there is c with |c| = 1 so that Φ(z) = cz for every z ∈ D. This implies that
F (w) = T (cS(w)) for every w ∈ D. This is wrong because the right side is one-to-one in D. We
conclude that |Φ′(0)| < 1 and (8.2) implies that

|h′(z0)| > |f ′(z0)| = α.

This contradicts the definition of α and the fact that h ∈ F . Therefore, there is no b ∈ D \ f(Ω)
and hence f is onto D.
We proved the existence of a function f : Ω → D which is conformal from Ω onto D and which
satisfies f(z0) = 0 and Arg(f ′(z0)) = θ0.
Step 4. To prove the uniqueness of f , we repeat the argument in the proof of proposition 8.2. Let
f1, f2 : Ω → D be conformal from Ω onto D with f1(z0) = f2(z0) = 0 and Arg(f ′1(z0)) =
Arg(f ′2(z0)) = θ0.
Then the function f = f2 ◦ f−1

1 : D → D is holomorphic in D and satisfies f(0) = 0 and
f ′(0) =

f ′2(z0)
f ′1(z0)

> 0. By the Schwarz lemma we get |f ′(0)| ≤ 1.
The function g = f1 ◦ f−1

2 : D → D is also holomorphic in D and satisfies g(0) = 0 and
g′(0) =

f ′1(z0)
f ′2(z0)

> 0. Again, by the Schwarz lemma we get |g′(0)| ≤ 1.
But the functions f and g are mutually inverse and hence g′(0) = 1

f ′(0) . Therefore, |f ′(0)| =
|g′(0)| = 1 and the Schwarz lemma implies that there is some c with |c| = 1 so that f(w) = cw
for every w ∈ D. Now, c = f ′(0) > 0 implies c = 1. Hence, f(w) = w for every w ∈ D and
finally f2(z) = f1(z) for every z ∈ D.

Proposition 8.5. Every simply connected region Ω ⫋ C is conformally equivalent with D. The
simply connected region C is conformally equivalent only with itself.

Proof. The first part is a simple application of the theorem of Riemann.
If C is conformally equivalent with some simply connected region Ω ⫋ C, then, by the first part,
C is conformally equivalent with D. Thus, there is a holomorphic f : C → D which is one-to-one
in C. But Liouville’s theorem implies that f is constant and we arrive at a contradiction.
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Exercises.

8.3.1. Are the regionsD0(1, 3)\ [1, 3] andC\
(
(−∞,−2]∪ [−1

2 ,
1
2 ]∪ [2,+∞)

)
simply connected?

Which are the possible values of
∫
γ(z +

1
z ) dz, where γ is a closed curve (i) in the first set? (ii) in

the second set?

8.3.2. Let f be holomorphic in the simply connected region Ω except for isolated singularities in
Ω. Prove that (i) and (ii) are equivalent:
(i) e

∫
γ f(z) dz = 1 for every closed curve γ in Ω whose trajectory contains no isolated singularity

of f .
(ii) Res(f ; z) ∈ Z for every isolated singularity z of f in Ω.
If f satisfies (i), (ii) and it is holomorphic at z0 ∈ Ω, define F (z) = e

∫
γ f(ζ) dζ for every z ∈ Ω,

where γ is any curve in Ω from z0 to z and whose trajectory contains no isolated singularity of f .
Prove that F is well-defined and holomorphic in Ω except for the isolated singularities of f .
Prove that every point in Ω is either a point of holomorphy or a pole of F if and only if all isolated
singularities of f in Ω are simple poles of f .

8.3.3. Let H+ = {z | Im z > 0}, z0 ∈ H+, θ0 ∈ (−π, π]. Find the unique conformal mapping f
of H+ onto D with f(z0) = 0 and Arg(f ′(z0)) = θ0.

8.3.4. Find a conformal mapping of {z | Re z > 0, Im z > 0} onto D.

8.3.5. (i) Find a conformal mapping between two angular regions.
(ii) Find a conformal mapping between an angular region and an open zone.
(iii) Find a conformal mapping between an angular region and the intersection of two open discs
or the intersection of an open disc and an open halfplane.

8.3.6. Find a conformal mapping f
(i) between Ĉ \ [−1, 1] and D, with f(∞) = 0.
(ii) between Ĉ \ τ and D, with f(∞) = 0, where τ is the arc of T with endpoints e−ia and eia
(0 < a < π).

8.3.7. Find a conformal mapping of [−1, 1]× [−1, 1] onto D0(1).

8.3.8. Prove that there is no conformal mapping of D onto D \ {0}.

8.3.9. Let H+ = {z | Im z > 0} and let f : H+ → H+ be holomorphic in H+. Prove that:
(i)

∣∣f(z1)−f(z2)
f(z1)−f(z2)

∣∣ ≤ ∣∣ z1−z2
z1−z2

∣∣ for every z1, z2 ∈ H+.

(ii) |f ′(z)|
Im f(z) ≤

1
Im z for every z ∈ H+.

Prove that, if equality holds in (i) for at least one pair of z1, z2 ∈ H+ with z1 ̸= z2 or in (ii) for
at least one z ∈ H+, then there is z0 ∈ H+ and λ with |λ| = 1 so that f(z)−if(z)+i = λ z−z0

z−z0 for every
z ∈ H+ and then equalities in (i) and (ii) hold identically.

8.3.10. Let H+ = {z | Im z > 0} and let f : H+ → D be holomorphic in H+ with f(i) = 0.
Prove that |f(z)| ≤ | i−zi+z | for every z ∈ H+ and |f ′(i)| ≤ 1

2 .

8.3.11. Let Ω ⊆ C be a simply connected region, z0 ∈ Ω and f, g be conformal mappings of Ω
onto D with f(z0) = g(z0) for some z0 ∈ Ω. Find a relation between f, g.

8.3.12. Let Ω1,Ω2 ⊆ C be two regions and f be a conformal mapping of Ω1 onto Ω2. If (zn) is in
Ω1 and zn → z ∈ ∂Ω1, prove that every limit point of (f(zn)) belongs to ∂Ω2. Is it necessary for
(f(zn)) to converge?

8.3.13. (i) Let f, g : D → Ω be holomorphic in D so that f is one-to-one in D and onto Ω. If
f(0) = g(0), prove that g(D0(r)) ⊆ f(D0(r)) for every r with 0 < r < 1.
(ii) LetΩ = {w = u+iv | −1 < u < 1}. Find the conformalmapping f ofD ontoΩwith f(0) = 0

and f ′(0) > 0. If g : D → Ω is holomorphic in D with g(0) = 0, prove that |g(z)| ≤ 2
π ln

1+|z|
1−|z|

for every z ∈ D.
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8.3.14. Let Ω ⊆ D be a simply connected region, 0 ∈ Ω and let F be the collection of all holomor-
phic f : Ω → D with f(0) = 0 and which are one-to-one in Ω. We fix a ∈ D \ {0} and we define
m = sup{|f(a)| | f ∈ F}. Prove that there is f0 ∈ F so that |f0(a)| = m and that such a f0 is a
conformal mapping of Ω onto D.

8.3.15. Let Ω ⫋ C be a simply connected region so that z ∈ Ω for every z ∈ Ω. Let z0 ∈
Ω ∩ R and let f be the conformal mapping of Ω onto D with f(z0) = 0 and f ′(z0) > 0. Let
Ω+ = {z ∈ Ω | Im z > 0}, Ω− = {z ∈ Ω | Im z < 0}, D+ = {z ∈ D | Im z > 0} and
D− = {z ∈ D | Im z < 0}. Prove that f(Ω+) = D+, f(Ω−) = D− and f(Ω ∩ R) = (−1, 1).
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Chapter 9

Isolated singularities and roots.

9.1 Isolated singularities in the complex plane.

Let us generalize slightly the argument at the end of section 6.9. We consider a function f in
C with a finite number of isolated singularities z1, . . . , zn and holomorphic in the rest of C. The
singular part of f at zj has the form

sj(z) =
k=−1∑
−∞

aj,k(z − zj)
k =

+∞∑
k=1

aj,−k
(z − zj)k

and converges in Ĉ \ {zj}. We consider the function

h(z) = f(z)− (s1(z) + · · ·+ sn(z)).

Then h is holomorphic in the set C \ {z1, . . . , zn} and its only possible singularities are the points
z1, . . . , zn. We observe that every zj is a removable singularity of f(z)− sj(z) and that all terms
s1(z), . . . , sn(z), besides sj(z), are holomorphic at zj . Therefore, every zj is a removable singu-
larity of the function h. So the function h has no isolated singularities and hence it is holomorphic
in C. Now, we have the identity

f(z) = s1(z) + · · ·+ sn(z) + h(z),

which gives the general form of a holomorphic function in C with the exception of finitely many
isolated singularities.

We shall generalize this to the case of a holomorphic function f in C with the exception of
infinitely many isolated singularities. In this case, i.e. if the terms of the sequence (zn) are the
distinct isolated singularities of f in C, it is necessary that zn → ∞. In the opposite case there
would be a subsequence of (zn) converging to some z ∈ C and then this z would be a non-isolated
singularity of f .

We may obviously try to form the infinite sum

+∞∑
n=1

sn(z),

but this is doomed to failure in the general case since there is no guarantee that this series converges.
The next theorem shows that we may subtract a suitable “correction term” from each sn(z) so as
to make the series convergent.

The theorem of Mittag-Leffler. Let the terms of the sequence (zn) be distinct with zn → ∞. For
each zn we consider a power series of the form sn(z) =

∑k=−1
−∞ an,k(z − zn)

k, which converges
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in Ĉ \ {zn}.
(i) Then there are polynomials qn so that the series of functions

+∞∑
n=1

(sn − qn)

has the property: for every compact set K there is n0 so that
∑+∞

n=n0+1(sn − qn) converges
uniformly inK.
(ii) If the polynomials qn satisfy (i) then the function F =

∑+∞
n=1(sn − qn) is holomorphic in C

with the exception of the terms of (zn) and its singular part at each zn is sn. Moreover, the most
general holomorphic function in C with the exception of the terms of (zn) and whose singular part
at each zn is sn is of the form

f = F + h =

+∞∑
n=1

(sn − qn) + h,

where h is an arbitrary function holomorphic in C. We also have that

f ′ =

+∞∑
n=1

(s′n − q′n) + h′.

Proof. (i) If zn = 0, we just take qn = 0. If zn ̸= 0, then the function sn is holomorphic in the
discD0(|zn|) and so its Taylor series at 0 converges to it uniformly in the smaller discD0(|zn|/2).
Hence there is a partial sum qn of this Taylor series so that

sup
z∈D0(|zn|/2)

|sn(z)− qn(z)| ≤
1

2n
.

Of course qn is a polynomial.
Now let K be any compact set. Since K is bounded, there is R > 0 so that K ⊆ D0(R). Since
zn → ∞, there is n0 so that |zn| ≥ 2R and henceK ⊆ D0(|zn|/2) for every n ≥ n0 + 1. Thus

sup
z∈K

|sn(z)− qn(z)| ≤
1

2n
for every n ≥ n0 + 1.

The test of Weierstrass implies that
∑+∞

n=n0+1(sn − qn) converges uniformly inK.
(ii) We assume that the polynomials qn satisfy (i) and we take any z ∈ C. Since {z} is compact,
there is n0 so that

∑+∞
n=n0+1(sn(z)−qn(z)) converges. So if z is not equal to any of z1, . . . , zn0−1,

then the sum
∑+∞

n=1(sn(z)− qn(z)) is finite and we define the function F : C\{zn |n ∈ N} → C
by

F =

+∞∑
n=1

(sn − qn).

If z is not equal to any of the terms of (zn), then, because of zn → ∞, there is a closed discDz(r)
which contains no term of (zn). Then there is n0 so that

∑+∞
n=n0+1(sn − qn) converges uniformly

inDz(r) and so it defines a function holomorphic inDz(r). But the finite sum
∑n0

n=1(sn− qn) is
also holomorphic inDz(r) and hence F is holomorphic inDz(r). Moreover, by the uniform con-
vergence of

∑+∞
n=n0+1(sn−qn) inDz(r), we have that the series of the derivatives also converges

uniformly in Dz(r) and hence

F ′(z) =

+∞∑
n=1

(s′n(z)− q′n(z)).
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This equality holds at every z which is not equal to any of the terms of {zn}.
If z = zk for some k, then there is a closed disc Dzk(r) which contains only the term zk of (zn).
Then there is n0 so that

∑+∞
n=n0+1(pn − qn) converges uniformly in Dzk(r) and so it defines a

function holomorphic inDzk(r). But the finite sum
∑n0

n=1(sn−qn) is holomorphic inDzk(r)\{zk}
with singular part sk at zk. So F has the singular part sk at zk.
We conclude thatF is holomorphic inCwith the exception of the terms of (zn) and that its singular
part at each zn is sn.
Now let us consider an arbitrary holomorphic function f in C with the exception of the terms of
(zn) and whose singular part at each zn is sn. Then the function h = f − F is holomorphic in C
and hence f = F + h.

The theorem of Mittag-Leffler describes the most general holomorphic function in C with the
exception of preassigned isolated singularities and corresponding preassigned singular parts. In
fact, the actual theorem of Mittag-Leffler is restricted to the case of meromorphic functions, i.e. to
the case that all isolated singularities are poles.

Example 9.1.1.We consider the function 1
sin z , which is meromorphic inC. Its poles are the points

nπ, n ∈ Z. Since sin z = z − z3

3! + · · · is the Taylor series of sin z at 0 we have, for each n ∈ Z,
that

sin z = (−1)n sin(z − nπ) = (−1)n(z − nπ)− (−1)n(z − nπ)3

3!
+ · · · = (z − nπ)g(z)

where g is holomorphic in C with g(nπ) = (−1)n. So the function h = 1
g is holomorphic at nπ

with h(nπ) = (−1)n and

1

sin z
=

h(z)

z − nπ
=

(−1)n

z − nπ
+ h′(0) +

h′′(0)

2!
(z − nπ) + · · ·

in a neighborhood of nπ. This says that nπ is a pole of order 1 of 1
sin z and the singular part at nπ

is sn(z) = (−1)n

z−nπ .
Now we take n ̸= 0 and we write the Taylor series of (−1)n

z−nπ at 0:

(−1)n

z − nπ
=

(−1)n+1

nπ

1

1− z/(nπ)
=

(−1)n+1

nπ
+

(−1)n+1

(nπ)2
z +

(−1)n+1

(nπ)3
z2 + · · · .

We consider the polynomial qn to be the constant term of this Taylor series, i.e. qn(z) = (−1)n+1

nπ .
If n = 0, we just take qn = 0.
Now we examine the uniform convergence of the series

+∞∑
n∈Z

(sn(z)− qn(z)) =
1

z
+

∑
n∈Z\{0}

(−1)n
( 1

z − nπ
+

1

nπ

)
.

IfK is a compact set, then there is R so thatK ⊆ D0(R). Now, if n0 + 1 ≥ 2R
π and z ∈ K, then

for every n with |n| ≥ n0 + 1 we have that |z − nπ| ≥ |n|π − |z| ≥ |n|π −R ≥ |n|π
2 and hence∣∣∣(−1)n

( 1

z − nπ
+

1

nπ

)∣∣∣ = |z|
|n|π|z − nπ|

≤ 2R

n2π2
when z ∈ K and |n| ≥ n0 + 1.

By the test of Weierstrass,
∑+∞

n∈Z,|n|≥n0+1(−1)n
(

1
z−nπ + 1

nπ

)
converges uniformly inK.

Now the theorem of Mittag-Leffler implies that

1

sin z
=

1

z
+

∑
n∈Z\{0}

(−1)n
( 1

z − nπ
+

1

nπ

)
+ h(z),
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where h is holomorphic in C. We shall determine the function h.
We differentiate the series to get

cos z
sin2 z

=
1

z2
+

∑
n∈Z\{0}

(−1)n

(z − nπ)2
+ h′(z) =

∑
n∈Z

(−1)n

(z − nπ)2
+ h′(z).

The function cos z
sin2 z is 2π-periodic and it is easy to prove that

∑
n∈Z

(−1)n

(z−nπ)2 is also 2π-periodic.
Indeed,∑

n∈Z

(−1)n

(z + 2π − nπ)2
=

∑
n∈Z

(−1)n

(z − (n− 2)π)2
=

∑
n∈Z

(−1)n+2

(z − nπ)2
=

∑
n∈Z

(−1)n

(z − nπ)2
.

Therefore, h′ is 2π-periodic.
We restrict now our investigation in a period-zone A = {z+ iy | − π ≤ x ≤ π}. Again, it is easy
to prove that cos z

sin2 z → 0 when z → ∞ in A. Indeed, if z = x+ iy and |x| ≤ π, then we have∣∣∣ cos z
sin2 z

∣∣∣ = sinh2 y + cos2 x
(sinh2 y + sin2 x)2

≤ sinh2 y + 1

sinh4 y
→ 0 when y → ±∞.

The same is true for
∑

n∈Z
(−1)n

(z−nπ)2 . To see this we take ϵ > 0 and then there is n0 so that∑
n∈Z,|n|≥n0+1

1

(|n| − 1)2π2
<
ϵ

2
.

If z ∈ A, i.e. if z = x+ iy and |x| ≤ π, then |z − nπ| ≥ |x− nπ| ≥ (|n| − 1)π and hence∣∣∣ ∑
n∈Z,|n|≥n0+1

(−1)n

(z − nπ)2

∣∣∣ ≤ ∑
n∈Z,|n|≥n0+1

1

|z − nπ|2
≤

∑
n∈Z,|n|≥n0+1

1

(|n| − 1)2π2
<
ϵ

2
.

Since 1
(z−nπ)2 → 0 when z → ∞, we have that there is y0 > 0 so that∣∣∣ ∑

n∈Z,|n|≤n0

(−1)n

(z − nπ)2

∣∣∣ < ϵ

2

when z = x+ iy and |x| ≤ π, |y| > y0. Thus∣∣∣∑
n∈Z

(−1)n

(z − nπ)2

∣∣∣ ≤ ∣∣∣ ∑
n∈Z,|n|≤n0

(−1)n

(z − nπ)2

∣∣∣+ ∣∣∣ ∑
n∈Z,|n|≥n0+1

(−1)n

(z − nπ)2

∣∣∣ < ϵ

2
+
ϵ

2
= ϵ

when z = x+ iy and |x| ≤ π, |y| > y0.
We conclude that h′(z) → 0when z → ∞ inA. This implies that h′ is bounded in the period-zone
A and since h′ is 2π-periodic we have that h′ is bounded in C. By the theorem of Liouville, h′ is
constant in C. But since h′(z) → 0 when z → ∞ in A, we find that h′ = 0 in C. This implies that
h is constant in C.
Now we go back to 1

sin z = 1
z +

∑
n∈Z\{0}(−1)n

(
1

z−nπ + 1
nπ

)
+ h(z). We observe that the terms

1
sin z and

1
z are odd functions. The same is true for

∑
n∈Z\{0}(−1)n

(
1

z−nπ + 1
nπ

)
. Indeed,∑

n∈Z\{0}

(−1)n
( 1

−z − nπ
+

1

nπ

)
= −

∑
n∈Z\{0}

(−1)n
( 1

z + nπ
− 1

nπ

)
= −

∑
n∈Z\{0}

(−1)−n
( 1

z − nπ
+

1

nπ

)
= −

∑
n∈Z\{0}

(−1)n
( 1

z − nπ
+

1

nπ

)
.
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Hence h is an odd constant function and this implies that h = 0 in C. So we end up with the
identity

1

sin z
=

1

z
+

∑
n∈Z\{0}

(−1)n
( 1

z − nπ
+

1

nπ

)
.

In exactly the same manner we can prove the identity

cot z =
cos z
sin z

=
1

z
+

∑
n∈Z\{0}

( 1

z − nπ
+

1

nπ

)
from which, by differentiation, we get

1

sin2 z
=

∑
n∈Z

1

(z − nπ)2
.

Exercises.

9.1.1. Express
∑

n∈Z
1

z2−n2π2 in closed form.

9.1.2. Find the values of
∑+∞

n=1
1
n2 ,

∑+∞
n=1

1
n4 ,

∑+∞
n=1

1
n6 through the Laurent series of cot z.

9.1.3. Express
∑

n∈Z
1

(z−nπ)2+a2 in closed form.

9.2 Infinite products.

Let (zn) be a sequence in C. The expression

+∞∏
n=1

zn

is called infinite product of the z1, z2, . . . . We consider three cases.
First case. zn ̸= 0 for every n.
We denote pn = z1 · · · zn the n-th partial product of the z1, z2, . . . . If pn → p for some p ∈ Ĉ,
we write

+∞∏
n=1

zn = p

and we say that p is the product of the z1, z2, . . . . If p ̸= 0 and p ̸= ∞, we say that the infinite
product converges to p. If p = 0 or p = ∞, we say that the infinite product diverges to 0 or to∞,
respectively. If the sequence (pn) does not have a limit, we say that the infinite product diverges.

Example 9.2.1. Let zn = 1 + 1
n for every n. Then

pn =
(
1 +

1

1

)
· · ·

(
1 +

1

n

)
=

2

1

3

2
· · · n

n− 1

n+ 1

n
= n+ 1.

Hence pn → ∞ and so
∏+∞
n=1(1 +

1
n) = ∞. In this case the infinite product diverges to∞.

Since all pn are real, we may also say that pn → +∞ and that the infinite product diverges to+∞.

Example 9.2.2. Let zn = 1− 1
n+1 for every n. Then

pn =
(
1− 1

2

)
· · ·

(
1− 1

n+ 1

)
=

1

2

2

3
· · · n− 1

n

n

n+ 1
=

1

n+ 1
.

So pn → 0 and
∏+∞
n=1(1−

1
n+1) = 0. In this case the infinite product diverges to 0.
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Example 9.2.3. Let zn = 1− 1
(n+1)2

for every n. Then

pn =
(
1− 1

22

)
· · ·

(
1− 1

(n+ 1)2

)
=

1 · 3
22

2 · 4
32

· · · (n− 1)(n+ 1)

n2
n(n+ 2)

(n+ 1)2
=

1

2

n+ 2

n+ 1
.

Therefore pn → 1
2 and so

∏+∞
n=1(1−

1
(n+1)2

) = 1
2 . In this case the infinite product converges to

1
2 .

Second case. There ism so that zn ̸= 0 for every n ≥ m+ 1 and zn = 0 for at least one n ≤ m.
If the infinite product

∏+∞
n=m+1 zn does not have a limit we say that the infinite product

∏+∞
n=1 zn

diverges. Now let
∏+∞
n=m+1 zn = p′ for some p′ ∈ Ĉ. If p′ ̸= 0 and p′ ̸= ∞, then

∏+∞
n=m+1 zn

converges to p′, and we say that
∏+∞
n=1 zn converges to p =

(∏m
n=1 zn

)
p′ = 0p′ = 0. If p′ = 0,

then
∏+∞
n=m+1 zn diverges to 0, and we say that

∏+∞
n=1 zn diverges to p =

(∏m
n=1 zn

)
0 = 00 = 0.

If p′ = ∞, then
∏+∞
n=m+1 zn diverges to∞, and we say that

∏+∞
n=1 zn diverges.

Third case. There are infinitely many n so that zn = 0.
Then we say that

∏+∞
n=1 zn diverges.

Therefore, the infinite product
∏+∞
n=1 zn converges if and only if there ism so that zn ̸= 0 for

every n ≥ m + 1 and the partial products zm+1 · · · zn converge (as n → +∞) to some complex
number ̸= 0. Moreover, if

∏+∞
n=1 zn converges, its value is equal to 0 if and only if zn = 0 for at

least one n.

Proposition 9.1. If
∏+∞
n=1 zn converges, then zn → 1.

Proof. There ism so that zn ̸= 0 for every n ≥ m+1 and
∏+∞
n=m+1 zn = p′ where p′ ̸= 0,∞. If

n ≥ m+ 1, we set p′n = zm+1 · · · zn and we have that p′n → p′. Thus, zn = p′n
p′n−1

→ p′

p′ = 1.

From now on we shall use the symbol

+∞∏
n=1

(1 + an)

for the infinite product. According to the previous discussion, convergence of the infinite product
implies that an → 0.

There are two simple inequalities which play some role in the study of infinite products. The
first is:

1 + a1 + · · ·+ an ≤ (1 + a1) · · · (1 + an) ≤ ea1+···+an when 0 ≤ a1, . . . , an. (9.1)

The left is easily proved by induction and the right is based on the well-known 1 + x ≤ ex. The
second inequality is:

1− a1 − · · · − an ≤ (1− a1) · · · (1− an) when 0 ≤ a1, . . . , an ≤ 1. (9.2)

This is proved also by induction.

Lemma 9.1. Let an ≥ 0 for every n. Then
∏+∞
n=1(1 + an) converges if and only if

∑+∞
n=1 an

converges.

Proof. We set pn = (1 + a1) · · · (1 + an) for every n. Then the sequence (pn) is increasing and
we have pn ≥ 1 for every n. Then p = limn→+∞ pn exists and 1 ≤ p ≤ +∞. We also denote
s =

∑+∞
n=1 an and we have 0 ≤ s ≤ +∞. Taking the limit in (9.1) we find

1 + s ≤ p ≤ es.

Thus, p < +∞ if and only if s < +∞.
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Example 9.2.4.
∏+∞
n=1(1 +

1
n) = +∞, because

∑+∞
n=1

1
n = +∞.∏+∞

n=1(1 +
1
n2 ) converges, because

∑+∞
n=1

1
n2 < +∞.

We say that the infinite product
∏+∞
n=1(1 + an) converges absolutely if the infinite product∏+∞

n=1(1 + |an|) converges or, equivalently, if the series
∑+∞

n=1 |an| converges.

Criterion of absolute convergence. If
∏+∞
n=1(1 + an) converges absolutely, then it converges.

Proof. Since
∑+∞

n=1 |an| < +∞, we have that an → 0 and so at most finitely many an are equal
to −1.
At first we assume that

∑+∞
n=1 |an| < 1. Then an ̸= −1 for every n. We denote

pn = (1 + a1) · · · (1 + an), Pn = (1 + |a1|) · · · (1 + |an|).

Then, if n < m, we have

|pm − pn| =
∣∣∣ m∏
k=1

(1 + ak)−
n∏
k=1

(1 + ak)
∣∣∣ = ∣∣∣ n∏

k=1

(1 + ak)
( m∏
k=n+1

(1 + ak)− 1
)∣∣∣

=

n∏
k=1

|1 + ak|
∣∣∣ m∏
k=n+1

(1 + ak)− 1
∣∣∣ ≤ n∏

k=1

(1 + |ak|)
( m∏
k=n+1

(1 + |ak|)− 1
)

=
m∏
k=1

(1 + |ak|)−
n∏
k=1

(1 + |ak|) = Pm − Pn.

(9.3)

Since
∏+∞
n=1(1 + |an|) converges, we have that (Pn) is a Cauchy sequence. So the last inequality

implies that (pn) is also a Cauchy sequence and hence converges. We only have to show that
limn→+∞ pn ̸= 0. We write

|pn| =
n∏
k=1

|1 + ak| ≥
n∏
k=1

(1− |ak|) ≥ 1−
n∑
k=1

|ak| ≥ 1−
+∞∑
k=1

|ak| > 0,

where for the second inequality we use (9.2). Thus, limn→+∞ |pn| ≥ 1−
∑+∞

k=1 |ak| > 0.
Now we consider the case

∑+∞
n=1 |an| ≥ 1. Then there is m so that

∑+∞
n=m+1 |an| < 1 and from

the first case we have that
∏+∞
n=m+1(1+an) converges. Hence

∏+∞
n=1(1+an) also converges.

Proposition 9.2. Let an : A→ C be bounded functions inA and let
∑+∞

n=1 |an| converge uniformly
in A. Then

∏+∞
n=1(1 + an) converges uniformly in A.

Proof. Since
∑+∞

n=1 |an(z)| converges for every z ∈ A, we have that
∏+∞
n=1(1+an(z)) converges

absolutely and so it converges for every z ∈ A. We define p : A→ C by

p(z) =

+∞∏
n=1

(1 + an(z)) for every z ∈ A.

The uniform convergence of
∑+∞

n=1 |an| in A implies that there isM so that
∑+∞

n=1 |an(z)| ≤ M
for every z ∈ A.
We set pn(z) =

∏n
k=1(1 + ak(z)), Sn(z) =

∑n
k=1 |ak(z)| and S(z) =

∑+∞
k=1 |ak(z)|. We apply

(9.3) and we get

|pm(z)− pn(z)| ≤
n∏
k=1

(1 + |ak(z)|)
( m∏
k=n+1

(1 + |ak(z)|)− 1
)

for n < m and z ∈ A. We apply the right side of (9.1) and then we letm→ +∞ to find

|p(z)− pn(z)| ≤ eSn(z)
(
eS(z)−Sn(z) − 1

)
≤ eM

(
eS(z)−Sn(z) − 1

)
= eM

(
e|S(z)−Sn(z)| − 1

)
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for every n and z ∈ A. Therefore,

sup
z∈A

|p(z)− pn(z)| ≤ eM
(
esupz∈A |S(z)−Sn(z)| − 1

)
for every n. Since Sn → S uniformly in A, we have that pn → p uniformly in A.

Now we state the analogue of the theorem ofWeierstrass for the uniform convergence of series
of holomorphic functions in compact sets.

Theorem 9.1. Let Ω ⊆ C be open and (an) be a sequence of holomorphic functions in Ω. If∏+∞
n=1(1 + an) converges uniformly in every compact subset of Ω then it defines a function

p =

+∞∏
n=1

(1 + an),

which is holomorphic in Ω. Moreover, p(z) = 0 if and only if an(z) = −1 for at least one n.
Finally, if none of the an is identically −1 in any connected component of Ω, we have that

p′

p
=

+∞∑
n=1

a′n
1 + an

(9.4)

at every point in Ω which is not a root of p. The series in (9.4) has the property: for every compact
K ⊆ Ω there is n0 so that

∑+∞
n=n0+1

a′n
1+an

converges uniformly inK.

Proof. Every pn =
∏n
k=1(1+ak) is holomorphic inΩ. Since pn → p uniformly in every compact

subset of Ω the theorem of Weierstrass implies that p is holomorphic in Ω. Moreover, for every
z ∈ Ω we have p(z) =

∏+∞
n=1(1+an(z)) and, since the product converges, we have that p(z) = 0

if and only if an(z) = −1 for at least one n.
Now, let us assume that none of the an is identically −1 in any connected component of Ω. Then
every root of the function 1 + an is isolated and hence the set of the roots of 1 + an is countable.
From the first part of the theorem we have that the set of the roots of p is also countable and hence
p is not identically 0 in any connected component of Ω. In particular, the roots of p are isolated
and if we take any compact K ⊆ Ω then there are only finitely many roots, say z1, . . . , zm, of
p in K. Now, by the convergence of the infinite product, for each j = 1, . . . ,m, there is nj so
that an(zj) ̸= −1 for every n ≥ nj + 1. If we set n0 = max{n1, . . . , nm}, then we have that
an(zj) ̸= −1 for every n ≥ n0 + 1 and for every j = 1, . . . ,m. Moreover, since p has no root in
K other than z1, . . . , zm, we have that an(z) ̸= −1 for every n ≥ n0 + 1 and for every z ∈ K.
Now we consider the infinite product q =

∏+∞
n=n0+1(1 + an) and the partial products qn =∏n

k=n0+1(1 + ak). Of course, we have that qn → q uniformly in K and also q′n → q′ uni-
formly in K. We also have that q has no root in K and so there is δ > 0 so that |q(z)| ≥ δ for
every z ∈ K. These imply that q

′
n
qn

→ q′

q uniformly in K. On the other hand, it is trivial to show
that

q′n
qn

=

n∑
k=n0+1

a′k
1 + ak

(9.5)

and hence we have that
∑+∞

n=n0+1
a′n

1+an
converges uniformly inK.

At last, from pn =
∏n0
k=1(1 + ak) qn and from p =

∏n0
k=1(1 + ak) q, we also get

p′n
pn

=

n0∑
k=1

a′k
1 + ak

+
q′n
qn
,

p′

p
=

n0∑
k=1

a′k
1 + ak

+
q′

q
(9.6)

at every point in K which is not a root of p. From (9.5) and (9.6) we get (9.4) at every z ∈ K
which is not a root of p. SinceK is an arbitrary compact subset of Ω, we conclude that (9.4) holds
at every point in Ω which is not a root of p.
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As we have shown in the proof of the argument principle, the roots of p are simple poles of p
′

p

and at the same time they are simple poles of finitely many of the terms a′n
1+an

. Hence, we may say
that (9.4) holds also at the roots of p.

9.3 Holomorphic functions in the complex plane.

We know that every non-zero polynomial of degree n can be written as

p(z) = c(z − z1)
m1 · · · (z − zk)

mk

where z1, . . . , zk are the distinct roots of p and m1, . . . ,mk are the corresponding multiplicities.
In particular,m1 + · · ·+mk = n.

Let f be a non-zero function holomorphic in the region Ω and let z1, . . . , zk be all the roots of
f in Ω with corresponding multiplicitiesm1, . . . ,mk. We know that we can factorize (z − z1)

m1

from f , i.e. that f(z) = (z − z1)
m1g(z) for every z ∈ Ω, where g is holomorphic in Ω with

g(z1) ̸= 0. Now g has roots z2, . . . , zn with corresponding multiplicitiesm2, . . . ,mn. Similarly,
g(z) = (z−z2)m2h(z) for every z ∈ Ω, where h is holomorphic inΩwith h(z1), h(z2) ̸= 0. Now
h has roots z3, . . . , zn with corresponding multiplicitiesm3, . . . ,mn. Continuing inductively, we
get that

f(z) = (z − z1)
m1 · · · (z − zk)

mkF (z)

for every z ∈ Ω, where F is holomorphic and has no roots in Ω. If we do not want to show the
multiplicities of the roots except for the (possible) root at 0 we may simply write

f(z) = zm(z − z1) · · · (z − zn)F (z),

where m ≥ 0 is the multiplicity of the root 0 and z1, . . . , zn are the remaining (not necessarily
distinct) non-zero roots of f in Ω.

The question now is to generalize this situation in case f has infinitely many roots 0, z1, z2, . . . .
In this case the corresponding infinite product zm(z − z1)(z − z2) · · · may not converge.

To prepare for what will follow, we rewrite the last identity in the form

f(z) = zm
(
1− z

z1

)
· · ·

(
1− z

zn

)
F (z),

where the new F is the previous F multiplied by the non-zero number (−1)nz1 · · · zn. We also
note that if the region is simply connected, e.g. if Ω = D or Ω = C, then, since F has no roots in
Ω, there is a holomorphic branch g of F in Ω. So the last identity becomes

f(z) = zm
(
1− z

z1

)
· · ·

(
1− z

zn

)
eg(z)

for every z ∈ Ω, where g is holomorphic in Ω. This is the most general form of a holomorphic
function in the simply connected regionΩwith finitelymany preassigned roots (and no other roots).

In the following discussion we shall concentrate only in the case Ω = C.

Lemma 9.2. We have |ez − 1| ≤ 8
7 |z| for every z with |z| ≤ 1

4 .

Proof. Since 2k−1 ≤ k! when k ≥ 1, we get

|ez − 1| =
∣∣∣ +∞∑
k=1

zk

k!

∣∣∣ ≤ +∞∑
k=1

|z|k

k!
= |z|

+∞∑
k=1

|z|k−1

k!
≤ |z|

+∞∑
k=1

|z|k−1

2k−1
=

|z|
1− |z|

2

≤ 8

7
|z|

when |z| ≤ 1.
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We set

p0(z) = 1− z, pm(z) = (1− z)ez+
z2

2
+···+ zm

m when m ≥ 1.

Lemma 9.3. For everym ≥ 0 we have

|pm(z)− 1| ≤ 3|z|m+1

m+ 1
when |z| ≤ 1

2
.

Proof. Form = 0 we have |p0(z)− 1| = |z| ≤ 3|z|.
Now letm ≥ 1. If |z| ≤ 1

2 , then by the Taylor series of −Log(1− z) in the disc D0(1) we get

∣∣∣Log(1− z) + z +
z2

2
+ · · ·+ zm

m

∣∣∣ = ∣∣∣ +∞∑
k=m+1

zk

k

∣∣∣ ≤ +∞∑
k=m+1

|z|k

k
≤ |z|m+1

m+ 1

+∞∑
k=0

|z|k

=
|z|m+1

(m+ 1)(1− |z|)
≤ 2|z|m+1

m+ 1
.

Since 2|z|m+1

m+1 ≤ 1
(m+1)2m ≤ 1

4 when |z| ≤ 1
2 , lemma 9.2 implies

|pm(z)− 1| = |eLog(1−z)+z+
z2

2
+···+ zm

m − 1| ≤ 8

7

2|z|m+1

m+ 1
≤ 3|z|m+1

m+ 1
.

Theorem 9.2. Let (zn) be a sequence of non-zero numbers so that zn → ∞.
(i) Then there are integersmn ≥ 0 so that

+∞∑
n=1

1

mn + 1

( R

|zn|

)mn+1
< +∞

for every R > 0.
(ii) If the integersmn satisfy (i) then the function F (z) =

∏+∞
n=1 pmn(

z
zn
) is holomorphic in C and

its only roots are the terms of (zn). The multiplicity of each zk as a root of F is the same as the
number of its appearances as a term of (zn). Moreover, the most general holomorphic function in
C, whose only roots, besides 0, are the terms of (zn) and so that the multiplicity of each zk as a
root of f is the same as the number of its appearances as a term of (zn), is of the form

f(z) = zmeg(z)
+∞∏
n=1

pmn

( z

zn

)
= zmeg(z)

+∞∏
n=1

(
1− z

zn

)
e

z
zn

+ 1
2
( z
zn

)2+···+ 1
mn

( z
zn

)mn
,

wherem ≥ 0 and g is an arbitrary function holomorphic in C. We also have that

f ′(z)

f(z)
=
m

z
+ g′(z) +

+∞∑
n=1

( 1

z − zn
+

1

zn
+

z

z2n
+ · · ·+ zmn−1

zmn
n

)
at every z which is not a root of f .

Proof. (i) We may considermn = n and then, since zn → ∞, for every R > 0 there is n0 so that
|zn| ≥ 2R for every n ≥ n0 + 1. This implies that

+∞∑
n=n0+1

1

n+ 1

( R

|zn|

)n+1
≤

+∞∑
n=n0+1

1

(n+ 1)2n+1
< +∞.
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(ii) Let the integers mn satisfy (i). We consider any compact K ⊆ C and then there is R > 0 so
thatK ⊆ D0(R). Now lemma 9.3 implies that for every z ∈ K we have

+∞∑
n=1

∣∣∣pmn

( z

zn

)
− 1

∣∣∣ ≤ 3

+∞∑
n=1

1

mn + 1

( R

|zn|

)mn+1
< +∞.

From proposition 9.2 we get that the infinite product

+∞∏
n=1

pmn

( z

zn

)
=

+∞∏
n=1

(
1 +

(
pmn

( z

zn

)
− 1

))
converges uniformly inK. Since this is true for an arbitrary compactK ⊆ C, theorem 9.1 implies
that the infinite product defines a function

F (z) =
+∞∏
n=1

pmn

( z

zn

)
holomorphic in C. It is clear that the roots of F are the roots of pmn , i.e. the terms of (zn). Also,
the multiplicity of each zk as a root of F is the same as the number of its appearances as a term of
(zn). Theorem 9.1 also implies that

F ′(z)

F (z)
=

+∞∑
n=1

( 1

z − zn
+

1

zn
+

z

z2n
+ · · ·+ zmn−1

zmn
n

)
at every z which is not a root of F .
Now let f be any holomorphic function inC, whose only roots, besides 0, are the terms of (zn) and
so that themultiplicity of each zk as a root of f is the same as the number of its appearances as a term
of (zn). Letm ≥ 0 be the multiplicity of 0 as a root of f . Then the function f(z)

zmF (z) is holomorphic

in C and has no roots. So there is some function g holomorphic in C so that f(z)
zmF (z) = eg(z) for

every z.
Finally, from f(z) = zmeg(z)F (z) we easily get that

f ′(z)

f(z)
=
m

z
+ g′(z) +

F ′(z)

F (z)

and the proof is over.

There is an important special case of theorem 9.2. It is the case when all integersmn ≥ 0 can
be taken to be equal to the same integer h ≥ 0. This means that

1

|zn|h+1
< +∞.

If this is true for some integer h ≥ 0 and we consider the smallest such h then the most general
holomorphic function in C, whose only roots, besides 0, are the terms of (zn) and so that the
multiplicity of each zk as a root of f is the same as the number of its appearances as a term of (zn),
is of the form

f(z) = zmeg(z)
+∞∏
n=1

ph

( z

zn

)
= zmeg(z)

+∞∏
n=1

(
1− z

zn

)
e

z
zn

+ 1
2
( z
zn

)2+···+ 1
h
( z
zn

)h ,

wherem ≥ 0 and g is an arbitrary function holomorphic in C.
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Example 9.3.1. The function sin z is holomorphic in C and its roots are the numbers nπ, n ∈ Z.
Each root is of multiplicity 1. For the non-zero roots we have that∑

n∈Z\{0}

1

|nπ|
= +∞,

∑
n∈Z\{0}

1

|nπ|2
< +∞.

Thus, we may use h = 1 in order to apply theorem 9.2 and we get that

sin z = zeg(z)
∏

n∈Z\{0}

(
1− z

nπ

)
e

z
nπ

for some g holomorphic in C. We also have that

cos z
sin z

=
1

z
+ g′(z) +

∑
n∈Z\{0}

( 1

z − nπ
+

1

nπ

)
.

Now, one of the last formulas of section 9.1 implies that g′(z) = 0 for every z and so g is constant
in C. Then eg is a constant, say c, and then we have that

sin z
z

= c
∏

n∈Z\{0}

(
1− z

nπ

)
e

z
nπ

for every z. Both sides of this equality are holomorphic in C and setting z = 0 to it we get c = 1.
Therefore,

sin z = z
∏

n∈Z\{0}

(
1− z

nπ

)
e

z
nπ
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