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Chapter 1

The complex plane.

1.1 The complex plane.

We are familiar with the set C of all complex numbers
z=x+ 1y, z,y € R,
which we add and multiply as follows:
(x1 +iy1) + (x2 +iy2) = (w1 + 22) +i(y1 + y2),

(z1 +iy1) (z2 + iy2) = (w122 — y1y2) + i(21y2 + T2y1).

In particular:
i =—1.

With these operations of addition and multiplication, C is an algebraic field and R is a subfield
of C. We shall prove later that, besides the polynomial equation 22 + 1 which has as solutions the
complex numbers £i, every polynomial equation with coefficients in C is solvable in C. In other
words, we shall prove that C is an algebraically closed field.

In the following we shall only review a few basic things and fix some terminology and notation.

We identify the complex number z = x + iy with the pair (x, %) of R? and write

z=x+iy = (z,y).

It is customary to use symbols like z, y, u, v, t, £, n for real numbers and symbols like z, w, ¢ for
complex numbers. For instance, we write z = x + iy, w = u + v, { = & + in.
For every z = (x,y) = x + iy we write

Rez=2x, Imz=vy, z=(v,—y) =x—1iy, |z|]=vVx>+y>

for the real part, the imaginary part, the conjugate and the absolute value (or modulus) of z,
respectively.

The geometrical model for C is the cartesian plane with two perpendicular axes: every z =
(xz,y) = x+iy corresponds to the point of the plane with abscissa x and ordinate y. The horizontal
axis of all points (x,0) is the real axis and, through the identification = (z,0), it represents R
as a subset of C. The vertical axis of all points iy = (0, y) is the imaginary axis.

We recall that the cartesian equation of the general line in the plane is

ax + by = c,

where a,b,c € R, a® +b? # 0. If we set z = x + iy and w = a + ib # 0, then the above equation
takes the form
Re(wz) = c.
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Similarly, the defining inequalities ax + bc < c and ax + bc > c of the two halfplanes on the
two sides of the line with equation ax+by = ¢ become Re(wz) < cand Re(wz) > ¢, respectively.
We shall denote
[21,22] = {(1 — t)Zl + tz9 ‘ 0<t< 1}

the linear segment joining the points z1, 25.
When we say interval we mean a linear segment on the real line: [a, b] C R.
The euclidean distance between the points z; = (x1,y1) and za = (x2,y2) is

\/(162 — SU1)2 + (y2 — y1)2 = |z — 21].

Therefore, the circle, the open disc and the closed disc with center z = (x, y) and radius r > 0 are
the sets

Co(r) ={wllw—z[=r}, D.(r)={w|lw—2zl<r}, Di(r)={w|lw-2z<r}

For the unit circle, the open unit disc and the closed unit disc with center 0 we have the special
symbols: B
T = Cy(1), D = Dy(1), D = Do(1).

The real part and the imaginary part of a complex function f : A — C are the functions
u=Ref:A—Randv=1Imf:A— R,respectively, defined by

u(z) =Re f(2) = 5(f(2) + T, o(z) =Im f(2) = 2-(f(2) ~ F=).

Of course, we have

f(z) =u(z) +iv(z) = (u(z),v(2)), z € A.

We attach one extra element (not a complex number) to C, which we call infinity and denote
00, and we form the set R
C = CU{oo}.

The set C is called extended C or extended complex plane.
We extend in C the usual algebraic operations between complex numbers, as follows:

Z+0=0+2=00, —00=00, Z2—00=00—2=00.
. 1 1 z 00
zoo=o00z=00 if2z#0, ocwoo=00, — =0, —=o00, — =0, — =o0.
00 0 00 z

0 =00, |oo|=+o00.
The expressions
oo 0
o0 +400, o0o—o00, 0Ooo, 000, —, =
oo 0

are not defined and they are called indeterminate forms.

1.2 Argument and polar representation.

The trigonometric functions sin and cos are defined and their properties are studied in the theory
of functions of a real variable. In particular, we know that sin and cos are periodic with smallest
positive period 27

sin(f + 27) = sin 6, cos(f + 2m) = cos¥.

We also know the following result. Let I be any interval of length 27 which contains only one
of its endpoints, e.g. [0,27) or (—, 7]. Then for every a,b € R with a? + b? = 1 there exists a
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unique 6 € I so that cos@ = a and sinf = b. Equivalently, for every ¢ € C with |(| = 1 there
exists a unique 6 € [ so that { = cosd + isiné.
Therefore, the function
cos+isin: R — T

is periodic with 27 as smallest positive period and its restriction
cos+isin: [ — T

to any interval I of length 27 which contains only one of its endpoints is one-to-one and onto T.
Thus, for every ( € T the equation cos @ + isinf = ( has infinitely many solutions in R and
exactly one solution in each interval I of length 27 which contains only one of its endpoints. If 6
is any of these solutions, then the set of all solutions is {0 + k27 | k € Z}.

Definition. For every z € C, z # 0, we have é € T and then the set of all solutions of the

equation cos 0 + i sinf = é is called argument or angle of z and is denoted arg z:

argz = {0 € R‘ cosf +isinf = é} .
The unique solution of this equation in the interval (—m, 1| is called principal argument or prin-
cipal angle of z and it is denoted Arg z:
0=Argz &  cosf+isinf = |Z7‘, —mT <0<,

Each of the elements of arg z is called a value of the argument of z.

We must be careful: arg z is a set while Arg z is a number, one of the elements of arg z. In fact

argz = {Argz + k27 |k € Z}.

Examples. (i) Arg3 = 0, arg3 = {k27 | k € Z},
(ii) Arg(4i) = , arg(4i) = {5 + k2n |k € Z},
(iil) Arg(—2) = m, arg(—2) = {m + k27 | k € Z},
(iv) Arg(l +1i) = Z,arg(1 4+ 1) = {5 + k27 | k € Z},
(v) Arg(—1 —iv/3) = 4 arg(—1 — iV/3) = {4 + k2n | k € Z}.

It is obvious that the argument of any nonzero z is a (two-sided) arithmetical progression of
step 2m. Therefore, it is also obvious that, if we have any nonzero z; and 23, then their arguments
are either identical sets or disjoint sets. Equivalently, either the arguments of z; and z3 have exactly
the same values or their arguments have no common value. More precisely, any nonzero z; and zo
have the same argument if and only if each of them is a multiple of the other by a positive number
or, equivalently, if and only if 27 and 2, belong to the same halfline with vertex 0. Moreover, if z;
and z3 belong to different halflines with vertex 0, their arguments have no common value.

The following identity is equivalent to the addition formulas of sin and cos:

cos(f1 + 62) + isin(61 + 62) = (cos Oy + isinby)(cos by + isinby).
A direct consequence by induction is the familiar formula of de Moivre:
cos(nf) + isin(nd) = (cosh + isinh)"

foralln € Z.
For any two nonempty subsets A and B of C we define

A+B={a+blac A,be B}, AB={abla€ Abe B}.
We also write

a+B={a+blbe B}, aB={ab|be B}, —B={-b|be B}.
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Proposition 1.1. For every nonzero z, and z5 we have
arg(z129) = arg z1 + arg zo.
Proof. Take any 0 € arg z; +arg z». Then there are 1 € arg z; and 05 € arg 25 so that 0 = 61 +0-.
By the addition formulas,
Z1 79 Z1%9

cosf + isinf = (cos @y + isinby)(coshs + isinfy) = ﬁﬁ = ﬁ
Z1| |%2 Z1%9

Therefore, 0 € arg(z;122).
Conversely, take any 6 € arg(z;z2). We consider any 01 € arg z; and set f3 = 6 — ;. Then

. cosf 4 isinf z122 | 21 29
cos o +isinfy = — = t I
00891 +ZSIH01 |2122‘ |21‘ ’Z2|
Therefore, 65 € arg 29 and, thus, 8§ = 61 + 6, € arg z; + arg zo. O

We must stress that arg(z120) = argz; + arg zs is an equality between sets. The similar
equality between numbers, Arg(z122) = Arg z1 + Arg 29, is not true in general.

Example 1.2.1. Arg(—1) + Arg(—1) = 7 + m = 27, while Arg((—1)(—1)) = Argl = 0.

The equalities |z122| = |21]|22| and arg(z122) = argz; + argzs express the well-known
rule: when two complex numbers are multiplied, their absolute values are multiplied and their
arguments (or angles) are added.

Definition. /¢ is clear by now that for any nonzero z we may write
z=r(cosf +isinf), r=|z|, 0 € argz.

This is called a polar representation of z. There are infinitely many polar representations of z,
one for each value 0 of its argument. The polar representation with 0 = Arg z is called principal
polar representation of z.

Remark. We do not define argument or angle or polar representation for the number 0.
Exercises.

1.2.1. Which are all the possible values of Arg(z122) — Argz; — Arg 22 ?

1.2.2. Prove that arg % = argZz = —arg z and arg(—z) = 7 + arg z. (Note that these are equalities
between sets.)

1.2.3. Prove the following statement for any nonzero z, z; and zs. Itis true that z = z; 29 ifand only
if the triangle 7(0, 1, z1) with vertices 0, 1, z; is similar to the triangle 7°(0, z2, z) with vertices
0, 22, z (0 corresponding to 0, 1 corresponding to zo and z; corresponding to z). This expresses
the geometric visualization of the operation of multiplication in C.

1.3 Sequences, neighborhoods, open sets, closed sets.

Definition. We say that the sequence (z,) in C converges to z € C if for every € > 0 there is ng
so that |z, — z| < € for all n > ny. We denote this by

lim 2z, ==z or Zn — 2 when n — 400.
n—400

We say that the sequence (zy) in C diverges to oo if for every R > 0 there is ng so that |z,| > R
forall n > ng. We denote this by

Iim z, = or Zn — 00 When n — +o00.
n—-+o00



The definition of convergence is formally identical to the analogous definition for sequences
in R. We shall make a comment regarding the case of divergence to oo and, specifically, on the
difference between the use of oo in the framework of complex analysis and the use of oo in the
framework of real analysis. The terms of a sequence (x,,) on the real line move unboundedly away
from 0 in exactly two distinct directions: either to the right or to the left and then we say that z,, —
~+o00 or x, — —o0, respectively. On the complex plane there aren’t any two particularly prefered
directions. The term z,, of a complex sequence can move away from 0 either on halflines (i.e. in
infinitely many directions) or on spiral-like curves or in any other arbitrary manner. Therefore,
we simply say that z,, — co. We shall come back at this point when we comment on the equality
L o

Relating the notions of convergence and divergence for complex sequences to the similar no-
tions for real sequences, we observe that

2y — 2 & |zn — 2| =0, Zn — 00 & |zp| = Fo0.
This is clear from the corresponding definitions.

Example 1.3.1. The sequence ((—2)") does not have a limit as a real sequence since its subse-
quences of the odd and the even indices have the different limits —oo and 4-co. But as a complex
sequence ((—2)™) tends to oo, because |(—2)"| = 2" — +o0.
Proposition 1.2. Let z,, — z and w,, — w, where z,w € @ Then, provided the result in each
case is not an indeterminate form, we have

Zn z

Zn Fw, =zt w, zpw, = 2w, — — —, Z, = Z, |z — 2|
wy, W

Moreover, if z, = xy + iy, and z = x + iy, then
Zn =2z & Tnp =T, Yp — Y.

Proof. The proofs of the first three properties are identical to the proofs of the analogous properties
for real sequences. For the fourth and fifth properties we write

Zn =z =len—2[ =0, |z = 2]l < |20 — 2| = 0.
Moreover, from
|20 — 2| < |z — 2| + yn — yl, |zn — 2| <l2n — 2], |yn —yl < |2n — 2]
we get the last equivalence. O

Let us comment on the equality % = 00. In R the expression % is an indeterminate form, since
i — 400 when z,, — 0+ and ﬁ — —oo when x,, — 0—. But in C signs do not play the same

role as in R. In C only the absolute value of i is significant and we see that, when z,, — 0, then

|1 = 1 — 400 and hence -
Zn Zn

B — 00.
Example 1.3.2. Let us consider the geometric progression (z").
If |z| < 1, then |z™ — 0| = |z|™ — 0 and hence 2" — 0.

If |z| > 1, then |z"| = |2|™ — 400 and hence 2" — occ.
Ifz=1,thenz" =1 — 1.

Finally, let |z| = 1, z # 1 and assume that z” — w. Since |z"| = |z|™ = 1 for every n, we find
that |w| = 1. From 2" — w we have z = ZZ:I — @ = 1 and we arrive at a contradiction.
Thus:
— 0, if|z] <1
n —1, ifz=1
— 00, if|z] > 1

has no limit, if|z| =1,z #1



The open disc D, (r) is also called r-neighborhood of z. It is useful to have a similar notation
to take care of points which are “close” to co. We say that the set

Doo(r) = {w||w] > 1/r} U {oo}
is an r-neighborhhod of co.

Proposition 1.3. z € C is the limit of a sequence (zy,) if and only if every neighborhood D, (¢) of
z contains all terms of the sequence after some index.

Proof. Trivial. O

Definition. Let A C C and z € C.

We say that z is an interior point of A if some neighborhood of z is contained in A.

We say that z is a boundary point of A if every neighborhood of z intersects both A and A°€.
We say that z is a limit point of A if every neighborhood of z intersects A.

We say that z is an accumulation point of A if every neighborhood of z intersects A at a point
different from z.

Definition. Let A C C. We define

A° = {z € C| z is an interior point of A},
0A = {z € C| z is a boundary point of A},
A = {z € C|z is a limit point of A}.

The sets A°, 0A and A are called interior, boundary and closure of A, respectively.

Here is a comment regarding co. We say that oo is a limit point of a set A if every neighborhood
of oo intersects A. If we look at the exact shape of the neighborhoods of co, we realize that oo is a
limit point of A if and only if there are points of A arbitrarily far away from 0, i.e. if and only if A
is an unbounded set. Also, since any neighborhood of oo can intersect A only at points different
from oo (since A C C), we realize that oo is a limit point of A if and only if it is an accumulation
point of A. Moreover, we may accept that every neighborhood of oo intersects A€ since it (the
neighborhood) contains co. After these thoughts we conclude that (i) an unbounded set has oo
as a limit point, as an accumulation point and as a boundary point (ii) a bounded set does not
have o either as a limit point or as an accumulation point or as a boundary point. Nevertheless,
when we talk about limit points, boundary points, accumulation points of a set A we consider only
complex numbers and when we write 4, A we do not include oo in these sets even if the set A is
unbounded. If in some particular statement we want to consider oo as a limit point or accumulation
point or boundary point of a particular set A, then we have to state this clearly.

If A C C, the complement of A with respect to C is denoted A°.

Proposition 1.4. Let A C C. Then
(i) 0A = 0(A°).

(iij) A° C A C A

(iii) A\ A° = A.

(iv) A° = A\ 0A.

v) A= AUOA.

Proof. (i) From the definition of a boundary point it is clear that the boundary points of A are the
same as the boundary points of A°. In other words, the sets A and O( A¢) have the same elements.
(i) If z € A°, then there is a neighborhood of z which is contained in A and hence z € A (since 2z
is the center of its neighborhood). Therefore, A° C A.

If z € A, then every neighborhood of z intersects A and hence z € A. Therefore, A C A.

(iii) Let z € A\ A°. Since 2z € A, every neighborhood of z interects A. Since z ¢ A°, there is
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no neighborhood of z which is contained in A and hence every neighborhood of z intersects A°.
Therefore, z € 0A.

Conversely, let 2 € OA. Then every neighborhood of z intersects A and hence z € A. Also every
neighborhood of z intersects A which means that there is no neighborhood of z which is contained
in A and hence z ¢ A°.

(iv) and (v) are straightforward corollaries of (ii) and (iii). O

Part (iv) of proposition 1.4 says that A° results from A when we take away from it the boundary
points of A which belong to A. Also, (v) says that A results from A when we attach to it the
boundary points of A which do not belong to A. In other words, the set A \ A° consists of the
boundary points of A which belong to A and the set A \ A consists of the boundary points of A
which do not belong to A.

Example 1.3.3. We consider a relatively simple curve C' which divides the plane in three subsets:
the set A, of the points on one side of C, the set A of points on the other side of C' and the set
of points of C'. For instance C' can be a circle or an ellipse or a line or a closed polygonal line
(the circumference of a rectangle, for instance). Just looking at these shapes on the plane, we
understand that A = A4;, 0A; = C and A; = A; UC. We have analogous results for Ay and
also C° =0,0C =C and C = C.

Proposition 1.5. Let A C C. Then z is a limit point of A or, equivalently, = € A if and only if
there is a sequence (zy,) in A so that z, — z.

Proof. Let z € A. Then every neighborhhod of z intersects A and hence for every n € N there is
some z, € D.(1) N A. Then the sequence (z,) is in A and also |z, — z| < 2 — 0.

Conversely, if (z,,) is in A and z,, — z, then for every ¢ > 0 the neighborhood D, (¢€) contains all
terms of (z,) after some index. Thus, every neighborhood of z intersects A and hence z € A. [

Definition. Let A C C.
We say that A is open if it consists only of its interior points.
We say that A is closed if it contains all its limit points.

In other words, A is open if and only if A = A°, and A is closed if and only if A = A

Proposition 1.6. Let A C C.
(i) A is open if and only if it contains none of its boundary points.
(ii) A is closed if it contains all its boundary points.

Proof. (i) Immediate from (iv) of proposition 1.4.
(i) Immediate from (v) of proposition 1.4. O

Example 1.3.4. In example 1.3.3 the sets A1, A are open and the sets A1 U C, Ao U C and C are
closed.

Proposition 1.7. Let A C C. Then A° is open and A, OA are closed.

Proof. Let z € A°, i.e. thereis r > 0 so that D,(r) C A. Now we take any w € D,(r). It
is geometrically clear that there is some s > 0 so that D,,(s) C D,(r) and hence D, (s) C A.
Therefore w is an interior point of A, i.e. w € A°. We proved that D, (r) C A° and hence z is an
interior point of A°. Therefore, every point of A° is an interior point of A° and A° is open.

Now let z be a limit point of A. We take any r > 0 and then D, () intersects A. We consider
any w € D,(r) N A. Again, there is some s > 0 so that D,,(s) C D,(r). Since w € A, Dy (s)
intersects A and hence D, (r) also intersects A. Therefore, every neighborhood of z intersects A
and hence z is a limit point of A4, i.e. z € A. We proved that every limit point of A belongs to A
and A is closed.

Finally, let z be a limit point of 0 A. We take any r > 0 and then D, (r) intersects 0 A. We consider
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any w € D,(r) N OA. Again, there is some s > 0 so that D,,(s) C D.(r). Since w € JA, Dy, (s)
intersects both A and A€ and hence D, (r) also intersects both A and A°. Thus every neighborhood
of z intersects both A and A and hence z is a boundary point of 4, i.e. z € 0A. We proved that
every limit point of 0 A belongs to 0A and 0A is closed. O

Proposition 1.8. Let A C C. Then A is closed if and only if'it contains the limit of every convergent
sequence in A.

Proof. Let Abe closed. If (z,,) isin A and 2z, — z, then z € A (proposition 1.5) and hence » € A.
Conversely, assume that A contains the limit of every convergent sequence in A. If z € A, there
is a sequence (z,) in A so that z, — z and from our assumption we get that z € A. Therefore, A
is closed. O

Proposition 1.9. Let A C C. Then A is closed if and only if A€ is open.

Proof. Based on proposition 1.6 and since A and A¢ have the same boundary points, we have the
following successive equivalent statements: A is closed if and only if A contains all boundary
points of A if and only if A contains all boundary points of A€ if and only if A° contains no
boundary point of A€ if and only if A€ is closed. O

The complement of the complement of a set is the set itself and hence: A is open if and only if
A€ is closed.

Exercises.
1.3.1. Prove that the limit in C of every sequence is unique.

1.3.2. Prove formally, using neighborhoods, that open discs are open and that closed discs and
circles are closed.

1.3.3. Prove that {2 |n € N} is not a closed set, while {0} U {2 | n € N} is a closed set.

1.3.4. Prove formally, using sequences, that closed discs, circles, lines and closed halfplanes are
closed sets.

1.3.5. Is the open segment (a, b) an open set?
1.3.6. Prove that both C and () are open and closed.

1.3.7. Prove that A is the smallest closed set which contains A, and that A° is the largest open set
which is contained in A.

1.3.8. Prove that the union of any open sets is open, that the intersection of any closed sets is closed,
that the intersection of finitely many open sets is open, and that the union of finitely many closed
sets is closed.

1.3.9. We define the diameter of A to be diam A = sup{|z — w| |z, w € A}. Prove that diam A =
diam A.

1.3.10. We define the distance of z from A to be d(z, A) = inf{|z — w| |w € A}. Prove that
() d(z, A) = d(z, A).

(i) d(2,A) =0 & 2 € 4.

(iii) |d(z, A) — d(w, A)| < |z — w].

1.3.11. Let A, B be closed and disjoint. Prove that there are U, V' open and disjoint so that A C U
and BCV.



1.4 Limits and continuity of functions.

Definition. Let ACC, f: A —> C, 29 € C be an accumulation point of A. We say that wy € C
is a limit of f at 2, and denote

A, () = wo,

if for every € > 0 there is 6 > 050 that f(z) € Dy, (€) for every z € D, (5) N A, z # 2.

There are four cases, depending on whether 2y, wg are complex numbers or co and we have
corresponding formulations of the above definition of limit:
(i) z0, wo € C. Then lim,_,, f(z) = wy if for every e > 0 there is § > 0 so that | f(z) — wq| < €
for every z € Awith 0 < |z — 2| < §.
(ii) zp € C,wp = oo. Thenlim,_,,, f(z) = coifforevery R > Othereisd > Osothat|f(z)| > R
for every z € Awith 0 < |z — 29| < 6.
(iii) zop = oo, wyp € C. Then lim,_,~ f(2) = wy if for every ¢ > 0 there is » > 0 so that
|f(2) — wo| < € forevery z € Awith |z| > r.
(iv) 20 = wo = 00. Then lim,_,+, f(z) = oo if for every R > 0 there is > 0 so that | f(2)| > R
for every z € A with |z| > r.

Definition. Let A C C, f : A — Cand zg € A. We say that f is continuous at zq if for every
€ > 0 thereis 0 > 0 so that f(z) € Dy (€) for every z € D,,(6) N A or, equivalently, if for
every € > 0 there is 6 > 0 so that |f(z) — f(z0)| < € for every z € Awith |z — z| < 0.

If z9 € A is not an accumulation point of A (i.e. it is an isolated point of A), then we may
easily see that f is automatically continuous at zg. On the other hand, if zy € A is an accumulation
point of A, then f is continuous at z if and only if lim,_,., f(x) = f(z0).

Definition. Let A C C, f : A — C. We say that f is continuous in A if it is continuous at every
point of A.

Proposition 1.10. Let A, B CC, 20 € A, f: A— Bandg: B — C. If f is continuous at z,
and g is continuous at wo = f(zp), then go f : A — C is continuous at z.

Proof. The proof is exactly the same as the proof of the analogous result for real functions of a
real variable. O

All simple algebraic properties of limits and of continuity which hold for real functions of a
real variable also hold for complex functions of a complex variable. (Look back at proposition 1.2
for the case of sequences.) For instance, the limit of the sum is the sum of the limits (except in the
case of an indeterminate form). We do not bother to repeat the formal arguments. The proofs are
identical with the proofs in the real case.

Nevertheless, we mention the two results which restate the notions of limit and continuity of a
function in terms of sequences. Again, the proofs are identical with the proofs in the real case and
we omit them.

Proposition 1.11. Let A CC, f: A — C, 2 € C be an accumulation point of A and wy € C.
The following are equivalent.

(i) hmz—)zo f(Z) = Wo-

(ii) For every (zp) in A\ {zo} with z,, — zo we have f(z,) — w.

Proposition 1.12. Let A C C, f : A — C and zy € A. The following are equivalent.
(i) f is continuous at z.
(ii) For every (zp) in A with z, — zo we have f(z,) — f(z0).



Example 1.4.1. Let us consider any polynomial function
p(2) = an2™ + an_12" -+ a1z + ag,

where ag, . .., a, € Cand a,, # 0. The domain of definition of p is C.
For every zp € C we have

lim p(z) = p(z0)-

zZ—20
To prove it we use the well-known algebraic rules of limits and the trivial limits: lim,_,,, ¢ = ¢
and lim,_, ,, z = zp.
Therefore, p is continuous in C.
If the degree of pis > 1,1.e. n > 1 and a,, # 0, then

lim p(z) = o0

Z—00

since p(z) = 2"(ap + an-11 4+ -+ + ap=) — coa, = oo.
If the degree of p is 0, then the function is constant: p(z) = ag for all z. Hence

lim p(z) = ao.

Example 1.4.2. Now we consider a rational function

p(z)  anz" +---+arz+ag
q(z)  bpz™m A+ -+ biz+ by’

where ag, ..., an,bg,...,b; € Cand a, # 0 and b,, # 0. The domain of definition of r is
C\{z1,...,2s}, where z1, ..., zs are the roots of the polynomial g. We know that 0 < s < m.
If zp € C and ¢(zp) # 0, then using the algebraic rules of limits, we get:

zhﬁrrzlo r(z) = r(20).
Therefore 7 is continuous in its domain of definition.
Writing r in the form r(2) = 2"~ (a,, + an,lé + o aozin)/(bm + bm,1% + o+ boz%), we
can prove that

oo, ifn>m

lim r(z) = ifn=m

an
Z—00 E,

0, ifn<m
Finally, let zg € C and g(z9) = 0. Thus zy is any of the roots z1, .. ., z5s of ¢. Then z — 2 divides
q(2), and there is k > 1 and a polynomial q1(z) so that ¢(z) = (2 — 20)¥q1(2) and ¢1(20) # 0.
This means that the multiplicity of the root zy of ¢(z) is k. There is also [ > 0 and a polynomial
p1(z) so that p(2) = (2 — 20)'p1(2) and p1(z9) # 0. Indeed, if p(z0) = 0, then [ > 1 is the
multiplicity of zg as a root of p(z) and, if p(zp) # 0, we take | = 0 (and say that the multiplicity
of g as a root of p(z) is zero) and p1(z) = p(z). Thus for every z different from the roots of ¢(z)
we have

r(z) = (2 — Zo)lfkpl(z) and  pi1(20) # 0, q1(20) # 0.
q1(2)
Now Z igg; is neither oo nor 0, and hence
0, ifk > 1
: _ ) pi(20)  ieq
Jim 7(z) = Gtz 1R =1
0, ifk <l



Definition. Let A C Cand f : AU {0} — C. We say that f is continuous at oo if for every
€ > 0thereis R > 0 so that |f(z) — f(o0)| < € forall z € Awith |z| > R.

Therefore, if A is unbounded, i.e. if oo is an accumulation point of A, then f is continuous at co
ifand only if lim,_,~ f(2) = f(oc0). If A is bounded, then it is easy to see that f is automatically
continuous at co. It has to be stressed that for f to be continuous at oo it is necessary that its value
f(o0) be a complex number.

Example 1.4.3. If p is a polynomial as in example 1.4.1, then p is continuous at co only if it is a
constant polynomial p(z) = ag and provided we define its value at oo to be p(c0) = ay.

Similarly, if 7 is a rational function as in example 1.4.2, then r is continuous at co only if n < m
and provided we define 7(c0) = §* or r(co) = 0 depending on whether n = m or n < m,

respectively.
Exercises.

1.4.1. Prove that the limit of a function is unique.

1.42.Let AC Cand f : A — C. Prove that the following are equivalent.
(i) f is continuous in A.

(ii) For every open set W there is an open set U so that f~1(W) = U N A.
(iii) For every closed set F there is a closed set G so that f~1(F) = G' N A.

1.5 Compactness.

Definition. We say that M C C is compact if every sequence in M has at least one subsequence
converging to a point of M.

Example 1.5.1. Take M = (a, b] and the sequence z, = a + b_T“ Since 2z, — a, every subse-
quence of (z,) converges to a. Hence (z,,) is contained in M but has no subsequence converging
to a point of M. Therefore, M is not a compact set.

Example 1.5.2. Take M = {z||z| > 1} and the sequence z, = 2". Since z, — o0, every
subsequence of (z,,) diverges to co. Thus (z,,) is in M but has no subsequence converging to an
element of M. Therefore, M is not compact.

In general, to prove that a set M is not compact is a relatively easy problem: it is enough to
find a specific sequence in M which has no subsequence converging to a point of M. But to prove
that a set M is compact is usually a harder problem: we have to take the general sequence in M
and prove that it has a subsequence converging to an element of M.

Example 1.5.3. Let M C C be finite, i.e. M = {w1,...,wn}.

We consider an arbitrary sequence (z,) in M. Then at least one of the elements of M appears
infinitely often as a term of the sequence. L. there is a subsequence (2, ) of (z,) with all its
terms equal to the same w;. This subsequence is constant z,, = w; and hence converges to w;.
Thus, every sequence in M has at least one subsequence converging to an element of M and M
is compact.

Proposition 1.13. If M C C is compact, then it is bounded and closed.

Proof. Assume that M is not bounded. Then for every n € N there is z, € M so that |z,| > n.
Then the sequence (z,,) is in M and, since M is compact, there is a subsequence (zy, ) of (z,) so
that z,,, — z for some z € M. This implies |2,, | — |z|. But |z,,| > ny for every k and hence
|2, | = +o00. We arrive at a contradiction and we conclude that A/ is bounded.

Now, take any sequence (z,) in M so that z,, — z. Since M is compact, there is a subsequence
(zn,) of (2) so that z,, — 2’ for some 2’ € M. From z, — z we get z,, — z and, due to
the uniqueness of limit, we get 2/ = 2. Thus z € M. Therefore, the limit of every convergent
sequence in M belongs to M and M is closed. O
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Proposition 1.14. Let N C M C C. If M is compact and N is closed, then N is compact.

Proof. Take any sequence (z,) in N. Then (z,) is in M and, since M is compact, there is a
subsequence (zy, ) of (2,) so that z,, — z for some z € M. Since (2, ) isin N and N is closed,
we have z € N. Therefore, every sequence in N has a subsequence converging to an element of
N and N is compact. O

Proposition 1.15 says that if two sets, one of them compact and the other closed, are disjoint,
then there is a positive distance between them.

Proposition 1.15. Let M, N C C with M N N = (. If M is compact and N is closed, there is
€ > 0so that |z — w| > e forevery z € M and w € N.

Proof. Assume that there is no € > 0 so that |z — w| > € for every z € M and w € N. Then for
every n € N there are z, € M and w,, € N so that |z, — w,| < % Since M is compact there is
a subsequence (zy, ) of (z,) so that z,, — z for some z € M. From

1
‘wnk72| < |an*wnk|+|znk*2| < nik+‘znkfz‘ —0

we get wy,, — 2. Since (wy, ) isin N and N is closed, we find z € N. This is impossible, because
M N N = (), and we arrive at a contradiction. ]

Proposition 1.16 is a generalization of the well known result for sequences of nested closed
and bounded intervals in R: if [a1,b1] 2 [a2,b2] 2 ... 2D [apn,by] D ..., there is x which belongs
to all [ay,, by) and, if moreover b, — a,, — 0, then x is unique.

Definition. We define the diameter of M C C to be
diam M = sup{|z — w|| z,w € M }.

Proposition 1.16. Let (K,) be a sequence of non-empty compact sets in C so that K,, 1 C K,
for every n. Then there is some point which belongs to all K,,. If moreover diam K, — 0, then
the common element of K, is unique.

Proof. For each n we take any z, € K,. Since K; is compact and the sequence (z,) is in K1,
there is a subsequence (zy, ) so that z,, — z for some z € K. We observe that, for each m, (zy,)
is in K, after the value of the index n = m. Thus (z,, ) is, after some value of the index k, in
K,,. Since K, is closed, we get z € K,,,. Therefore, z is in every K,,.

Now, let diam K,, — 0. If z, w belong to every K,,, then 0 < |z — w| < diam K, for every n.
This implies |z — w| = 0 and hence z = w. O

Bolzano-Weierstrass theorem. Every bounded sequence in C has a convergent subsequence.

Proof. Let (zy) be a bounded sequence with z,, = x, + iy,. Then (z,) is contained in some
rectangle M = [a, b] X [c, d].

Taking the midpoints “T‘H’ and # of [a, b] and [c, d], we can split M in four equal subrectangles.
The size of each of them is % of the size of M. Since (z,) is contained in M, at least one of the
four subrectangles contains infinitely many terms of (z,). We take one of the subrectangles with
this property and denote it My = [a1, b1] X [c1, d1]. We repeat with the rectangle M;. We split it in
four equal subrectangles with size equal to 1 of the size of M and denote M = [a, bo] X [c2, do]
whichever of these subrectangles contains infinitely many terms of (z,). Continuing inductively,
we produce a sequence of rectangles M; = [a;, bj] X [¢;, d;] with the following properties:

(i) every M contains infinitely many terms of (z,).

(i) a1 <a; < b <b_yand¢_1 < ¢ < dj < dj_y forevery l.

(iii) by — oy = %5 — Oand d; — ¢; = 45¢ — 0.

12



Since M; contains infinitely many terms of (z,,) there is a z,,, € M;. Since My contains infinitely
many terms of (z,) there is a z,,, € My with ny > ny. Since M3 contains infinitely many terms
of (zy,) there is a z,, € M3 with n3 > ny. Continuing inductively, we get a subsequence (zy,) of
(zp) so that z,,, € M, forevery [ > 1. Le.

a; < xp, by, ¢ <yn, < d; for every (. (1.1)

From (ii) we get that (q;) is increasing and bounded and that (b;) is decreasing and bounded and
hence the two sequences converge to two limits, which, due to (iii), coincide. The same is true for
the sequences (¢;) and (d;). We set

r= lim q = lim b, y= lim ¢ = lim d.
l—+00 l—+o00 l—+00 l—+o00
From (1.1) we get z,,, — x and y,, — vy and hence z,,, = z = = + iy. O

Definition. We say that the sequence (z,) is a Cauchy sequence if for every e > 0 there is ng so
that |z, — zm| < € for every n,m > ny.

Proposition 1.17. Every Cauchy sequence converges.

Proof. Let (z;,) be a Cauchy sequence. Then we easily see that (z,,) is bounded. Indeed, there is
ng so that |z, — z,,| < 1 for every n,m > ng. This implies that |z, — z,,,| < 1 for every n > ng
and hence |z,,| < |zp,| + 1 for every n > ng. Therefore,

|2n| < max{|z1],..., |2no—1l, |2ne| + 1} for every n.

The Bolzano-Weierstrass theorem implies that there is a subsequence (zy, ) so that z,, — z for
some z. Now, we have that |z, — 2,,, | — 0, because (z,) is a Cauchy sequence, and hence

|2k — 2| < |2k — 2ny| + |20, — 2| — 0.
Therefore, 2, — 2. ]

This property of C, i.e. that every Cauchy sequence in C converges to some point of C, is
called completeness of C.

Theorem 1.1 is very useful for the determination of compact sets. Theorem 1.1 complements
proposition 1.13.

Theorem 1.1. M C C is compact if and only if it is bounded and closed.

Proof. Proposition 1.13 proves one direction.

Assume that M is bounded and closed. We take any sequence (z,,) in M. Since M is bounded,
(zn,) is also bounded and the Bolzano-Weierstrass theorem implies that there is a subsequence
(zn,, ) so that z,, — z for some z. Since (zy, ) is in M and M is closed, we get z € M.

Thus, every sequence in M has a subsequence converging to a point in M and M is compact. [J

Example 1.5.4. All closed rectangles and all closed discs are compact.

Proposition 1.18. Let M C Cand f : M — C. If f is continuous in M and M is compact, then
f(M) is compact.

Proof. Let (wy,) be an arbitrary sequence in f(M). It is enough to prove that (wy,) has a subse-
quence converging to a point of f(M).

For each n there is z, € M so that f(z,) = w,. Then (z,) is in M, and, since M is compact,
there is a subsequence (z,, ) so that z,, — z for some z € M. Since f is continuous in M, we

get wy, :f(znk)_)f(z)ef(M) O
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Proposition 1.19. Every non-empty compact subset of R has a maximal and a minimal element.

Proof. Let M C R be non-empty and compact. Since M is non-empty and bounded, v = sup M
is in R. Then for every € > 0 there is x € M so thatu — e < z < wand hence x € D,(¢€). Thus u
is a limit point of M and, since M is closed, u € M. Therefore u is the maximal element of M.

The proof for the existence of a minimal element is similar. O

Theorem 1.2 generalizes the familiar analogous theorem for continuous f : [a, b] — R.

Theorem 1.2. Let M C Cand f : M — R. If f is continuous in M and M is compact, then f is
bounded and has a maximum and a minimum value.

Proof. Proposition 1.18 implies that f(A) C R is compact. Now proposition 1.19 says that f (M)
is bounded and has a maximal and a minimal element. O

Exercises.

1.5.1. Let My,..., M, C C. If My, ..., M, are compact, prove that My U - - - U M, is compact.
1.5.2. Let A, B C C. If A is compact and B is closed, prove that A N B is compact.

1.5.3. Let zp € C, M C C be non-empty and closed and N C C be non-empty and compact.
Prove that there is z; € M so that |z — zo| = inf{|z — 20| | 2 € M }.
Prove that there are z; € M and w; € N so that |21 — wi| = inf{|z —w||z € M,w € N}.

1.5.4. Let M C C be bounded. Prove that M and OM are compact.

155.Let M C Cand f : M — C. If f is continuous in M and M is compact, prove that f is
uniformly continuous in M.

1.5.6. Let Abe bounded and f : A — C be continuous. Prove that there is a continuous ' : A — C
so that ' = f in A if and only if f is uniformly continuous in A.

1.5.7. Prove the following restatement of the Bolzano-Weierstrass theorem: every bounded infinite
set has at least one accumulation point.

1.6 Connectedness.

Definition. Let A C C. We say that B, C form a decomposition of A if (i) BU C = A, (ii)
BnNC =0, (iii) B#0, C #0, (iv) none of B, C contains a limit point of the other.

When (i), (ii), (iii) hold we say that B, C' form a partition of A. We may restate (iv) as follows:
BNC=BnC=0.

Example 1.6.1. We consider the closed discs B = Dy(1), C = D3(1) and their union A = BUC.
It is clear that B, C' form a decomposition of A.

If we consider the open discs B = Dg(1), C' = D2(1) and A = B U C, then the discs B, C are
tangent but, again, they form a decomposition of A.

If we take the closed disc B = Dy(1), the open disc C = Dy(1) and A = B U C, then the discs
B, C are tangent and they do not form a decomposition of A: B contains the limit point 1 of C'.

Definition. Let A C C. We say that A is connected if there is no decomposition of A, i.e. there is
no pair of sets B, C with the properties (i)-(iv) of the above definition.

Example 1.6.2. The first two sets A of example 1.6.1 are not connected since each admits a specific
decomposition. But we cannot decide at this moment if the third set A of example 1.6.1 is connected
or not. We know that the specific B, C related to this A do not form a decomposition of A. To
decide that A is connected we must prove that, not only the specific pair, but an arbitrary pair
does not form a decomposition of A.
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Example 1.6.3. It is obvious that ) as well as any {z} is a connected set. These sets do not even
have a partition, since for a set to have a partition it is necessary that it has at least two elements.

Lemma 1.1. Let A, B,C C C with BN C = () and assume that none of B, C contains a limit
point of the other. If A is connected and A C B U C, then either A C Bor A C C.

Proof. We define
B, =ANB, Ci=AnNnC.

Clearly, BjuC; = Aand BN Cy = 0.

Now let z € By. Then z € B, and hence z is not a limit point of C'. Then there is » > 0 so that
D.(r) N C = {) and, since C; C C, we get D,(r) N Cy = 0. Thus, z is not a limit point of C;.
We conclude that By does not contain any limit point of C';. Symmetrically, C; does not contain
any limit point of B;.

If By # () and Cy # (), then By, C form a decomposition of A and this contradicts the connect-
edness of A. Hence, either By = () or C'; = () and thus either A C C or A C B, respectively []

Proposition 1.20. Let 3 be a collection of connected subsets of C all of which have a common
point. Then | 4.5, A is connected.

Proof. We set U = J 4y, A and we shall prove that U is connected.

Let zy be a common point of all A € .

We assume that U is not connected. Then there are B, C' which form a decomposition of U. Since
zp € U, we have that zg € B or 29 € C. Assume that zg € B (the proof is the same if zg € C).
Forevery A € ¥ we have A C U and hence A C B U C'. According to lemma 1.1, every A € ¥
is contained either in B or in C. Butifany A € ¥ is contained in C, it cannot contain zy which is
in B. Therefore every A € ¥ is contained in B. Thus U = (J 45, A is contained in B, i.e. U C B
and we arrive at a contradiction since C # ().

Hence U is connected. O

Proposition 1.21. Let A C C. If A is connected, then A is connected.

Proof. Let A not be connected. Then there are B, C' which form a decomposition of A.

Since A C A, wehave A C BUC. Lemma 1.1 implies that A C Bor A C C. Let A C B. (The
proofis similar if A C C.)

Every point of A is a limit point of A and hence a limit point of B (since A C B). Therefore no
point of A belongs to C (since C does not contain limit points of B). This is wrong since C' # 0.
Hence A is connected. O

Proposition 1.22. Let A C Cand let f : A — C be continuous in A. If A is connected, then f(A)
is connected.

Proof. Assume that f(A) is not connected. Then there are B’, C’ which form a decomposition of
f(A). We consider the inverse images of B’, C’, i.e. the sets

B=f'(B)={beAlfB) e B}, C=f(C)={cecA|f(c)eC.

Itisclearthat BUC = A, BNC =0, B #0,C # 0.

Now, let B contain a limit point b of C'. Then there is a sequence (c,,) in C' so that ¢,, — b. Since
f is continuous at b, we get f(c,) — f(b). The sequence (f(cy)) is in C’ and thus f(b) is a limit
point of C’. But f(b) € B’ and we arrive at a contradiction, because B’ does not contain any limit
point of C’. Hence B does not contain any limit point of C'. Symmetrically, C' does not contain
any limit point of B.

Therefore B, C' form a decomposition of A. This is wrong since A is connected and hence f(A)
is connected. O
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Definition. Let a,b € C and r > 0. Every finite set {zo,...,zn} C Cwith zo = a, z, = b
and |z—1 — zi| < r forevery k = 1,...,nis called r-succession of points which joins a,b. If,
moreover, z, € A forevery k =0, ..., n, we say that the r-succession of points is in A.

Theorem 1.3. Let K C C be compact. Then K is connected if and only if for every z,w € K and
every r > ( there is an r-succession of points in K which joins z,w.

Proof. Assume K is connected. We take any z,w € K and any r > 0 and let there be no r-
succession of points in & which joins z, w.
We define the sets

B = {b € K |there is an r-succession of points in X which joins z, b},

C = {c € K| there is no r-succession of points in K which joins z, c}.

It is clear that BUC = K, BN C =), B # () (since z € B) and C # () (since w € C).

Assume that B contains a limit point b of C. Then (since b € B) there is an r-succession of points
in K which joins z, b and, also, (since b is a limit point of C') there is ¢ € C so that |b — ¢| < 7.
If to the r-succession of points of K which joins z, b we attach c (as a final point after b), then we
get an r-succession of points in K which joins z, c. This is wrong since ¢ € C. Hence B does not
contain any limit point of C.

Now assume that C' contains a limit point ¢ of B. Then (since c is a limit point of B) thereis b € B
so that |b — ¢| < r and (since b € B) there is an r-succession of points in K which joins z, b. If
to the r-succession of points in K which joins z, b we attach c (as a final point after b), then we
get an r-succession of points in K which joins z, ¢. This is wrong since ¢ € C'. Hence C does not
contain any limit point of B.

We conclude that B, C' form a decomposition of K and this is wrong since K is connected.
Therefore there is an r-succession of points in K which joins z, w.

Conversely, assume that for every z, w € K and every r > 0 there is an r-succession of points in
K which joins z, w.

We assume that K is not connected. Then there are B, C' which form a decomposition of K.

Let z be a limit point of B. Since B C K, z is a limit point of K and, since K is closed, we get
z € K. Now, z ¢ C (because C' does not contain any limit point of B) and we get that z € B.
Thus B contains all its limit points and it is closed. Finally, since B C K and K is compact, B is
also compact. Symmetrically, C' is also compact.

Now B, C are compact and disjoint and proposition 1.15 implies that there is > 0 so that |b—c| >
r for every b € B and ¢ € C. Since B # 0, C' # (), we consider ¥’ € B and ¢ € C. Then it
is easy to see that there is no r-succession of points in K which joins ¥, ¢/, and we arrive at a

contradiction. Indeed, assume that there is an r-succession {zo, ..., 2z, } in K so that zyp = ¥/,
zn = and |zp_1 — zx| < rforeveryk =1,...,n. Since zy € B, z,, € C, itis clear that there is
k so that z;,_1 € B, 2z, € C. Then |z;_1 — 2| < r contradicts that we have |b — ¢| > r for every
be B,ceC. O

Example 1.6.4. Every polygonal line is connected.
Proposition 1.23. 4 set I C R is connected if and only if it is an interval.

Proof. Let I be connected. If I is not an interval, then there are x1, 29 € I and x ¢ I so that
1 < x < x2. Thenthesets B = I N (—oo0,x) and C = I N (z,+0o0) form a decomposition of 1
and we have a contradiction. Thus [ is an interval.

Conversely, let I be an interval.

If I has only one element, then it is connected.

If I = [a,b] with @ < b, then [a, b] is compact and if we take any x,y in [a, ] and any r > 0,
it is clear that we can find an r-succession of points in [a, b] which joins = and y. Thus [a, b] is
connected.
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If I is an interval of any other type, we can find a sequence of intervals I,, = [ay, b,] which
increase and their union is /. Then each I, is connected and proposition 1.20 implies that [ is also
connected. O

Proposition 1.24. Let A C C and f : A — R be continuous in A. If A is connected, then f has
the intermediate value property in A.

Proof. f(A) is a connected subset of R and hence it is an interval. Now, let u, us be values of f
in A, i.e. uj,us are in the interval f(A). Then every u with u; < u < wug is also in the interval
f(A). Thus, every number between the values ug, ug of f in A is also a value of f in A. O

A special case of proposition 1.24 is the well known intermediate value theorem saying that if’
f + I — Ris continuous in the interval I C R, then it has the intermediate value property in 1.

Definition. Let A C C. We say that A is polygonally connected if for every two points of A there
is a polygonal line in A which joins those two points.

Proposition 1.25. Let A C C. If A is polygonally connected, then it is connected.

Proof. We fix any zg € A. For every z € A there is a polygonal line [, in A which joins zg and z.
Then I, C A for every z € A and hence |, 4. € A. Conversely, since every z € A is a point
of I, we have that A C |J, 4 [.. Therefore A = J,, [.. Now, every [, is connected and since
all [, have the point zg in common, we conclude that A is connected. ]

Example 1.6.5. Every ring between two circles is a connected set.

Example 1.6.6. Every convex set A C C is polygonally connected and hence connected. Indeed,
if we take any two points in A the linear segment which joins them is contained in A.
For instance, all discs and all rectangles are connected sets.

Example 1.6.7. The set A = Dg(1) U Dy(1) in examples 1.6.1 and 1.6.2 is connected, since it is
polygonally connected.

Theorem 1.4. Let A C C be open. Then A is connected if and only if it is polygonally connected.

Proof. 1f A is polygonally connected, proposition 1.25 implies that it is connected.

Conversely, let A be connected. We take z,w € A and we assume that there is no polygonal line
in A which joins z, w.

We define the sets

B = {b € A|there is a polygonal line in A which joins z, b},
C = {c € A|there is no polygonal line in A which joins z, c}.

Itis clear that BUC = A, BNC =), B # () (since z € B) and C # () (since w € C).

We assume that B contains a limit point b of C'. Then (since b € B) there is a polygonal line in A
which joins z,b. Since A is open, there is 7 > 0 so that Dy(r) C A and (since b is a limit point
of C) there is ¢ € Dy(r) N C. If to the polygonal line in A which joins z, b we attach (as last) the
linear segment [b, c| (which is contained in Dy(r) and hence in A), we get a polygonal line in A
which joins z, c. This is wrong, since ¢ € C. Therefore, B does not contain any limit point of C.

Now we assume that C' contains a limit point ¢ of B. Since A is open, there is » > 0 so that
D.(r) C A. Then (since c is a limit point of B) there is b € D.(r) N B. As before, (since b € B)
there is a polygonal line in A which joins z, b and, if to this we attach the linear segment [b, c]
(which is contained in D.(r) and hence in A), we get a polygonal line in A which joins z, c¢. This
is wrong, since ¢ € C. Therefore, C' does not contain any limit point of B.

We conclude that B, C' form a decomposition of A and we arrive at a contradiction because A is
connected.

Therefore, there is a polygonal line in A which joins z, w. O
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Definition. 4n open and connected A C C is called region. The closure A of a region A is called
closed region.

Definition. Let A C C. We say that C C A is a connected component of A if C is connected and
has the following property: if C C C" C A and C' is connected, then C = C'.

In other words, C' is a connected component of A if it is a connected subset of A and there is
no strictly larger connected subset of A.

Let us see a characteristic property of connected components. Let C' be a connected component
of A and let B be any connected subset of A so that C' N B # (). Then C' U B is connected (being
the union of connected sets with a common point) and C' C C'U B C A. Since C'is a connected
component of A, we get C'U B = C' and hence B C C. In oher words, a connected component of
A swallows every connected subset of A intersecting it.

Let C, Oy be different connected components of A and assume that C'; N Cy # (). Since Cy
is a connected subset of A which intersects the connected component Cs of A, we get C; C Cs.
Symmetrically, Co C Cy and hence C; = C5. This is a contradiction and we get C; N Coy = ().
We conclude that different connected components of A are disjoint.

Proposition 1.26. Let A C C. Then A is the union of its (mutually disjoint) connected components.

Proof. We shall prove that every point of A belongs to a connected component of A.
We take z € A and define C, to be the union of all connected subsets B of A which contain z.
(For instance, such a setis {z}.) Le.

C, = U{B | B is connected C A and z € B}.

Now C., is a subset of A and it contains z. It is also connected, since it is the union of connected
sets B with z as a common point. If C, € ¢’/ C A and C’ is connected, then C’ is one of the
connected subsets B of A which contain z and hence C’ C C,. Thus C, = C’. Therefore C, is a
connected component of A and it contains z. O

It is obvious that A is connected if and only if A is the only connected component of A.

Example 1.6.8. We take the set A = Dy(1) U D3(1). The discs Dy(1) and D3(1) are connected
subsets of A. Applying lemma 1.1 with B = Dy(1) and C' = D3(1), we see that any connected
subset of A is contained either in Dy(1) or in D3(1). Le. there is no connected subset of A strictly
larger than either Dy(1) or D3(1).

Therefore the discs Do(1) and D3(1) are the connected components of A.

Example 1.6.9. We take the set Z and any n € Z. Then {n} is a connected set. Let {n} C C' C Z
and C" # {n}. Then C" = {n} U (C"\ {n}) and it is clear that the sets {n} and C" \ {n} forma
decomposition of C’. Thus C” is not connected and hence {n} is a connected component of Z.

Proposition 1.27. Let A C C. If A is closed, then every connected component of A is closed.

Proof. Let C be a connected component of A. Since C' C A and A is closed, we get C C C C A.
Proposition 1.21 implies that C' is connected and, since C' is a connected component of A, we get

that C' = C. Therefore C is closed. O

Proposition 1.28. Let A C C. If A is open, then every connected component of A is open.

Proof. Let C be a connected component of A and let z € C. Then z € A and, since A is open,
there is 7 > 0 so that D,(r) C A. Since D,(r) is a connected subset of A and intersects the
connected component C' of A, we see that D, (r) C C. Thus, z is an interior point of C.

Therefore C' is open. O

Propositions 1.26 and 1.28 imply that every open set is the union of disjoint regions.
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Exercises.

1.6.1. Find the connected components of the complements of a circle, of a triangle and of a linear
segment. Also of: {0} U {2 [n e N} [0, JUUN[E, 14+ 4], U Co(1+2),Q x Q.

n
1.6.2. Prove that the following sets are connected. {z +isinz |z € R}, {z+isinl |0 <z <1},
{z+isinl|0<z<1}U[—i,d]
1.6.3. Find a simple example of (i) two connected sets whose intersection is not connected, (ii) a
connected set A such that J A is not connected, (iii) a connected set A such that A° is not connected.
1.6.4. Let A be aregion and z1, ..., 2, € A. Prove that A\ {z1,...,2,} is a region.
1.6.5.Let A C Cand A C D C A. If A is connected, prove that D is connected.

1.6.6. A C C is called star-shaped if there is a specific point zg € A so that for every z € A the
linear segment [z, 2| is contained in A. Prove that a star-shaped A is polygonally connected and
hence connected.

1.6.7. Let A,, C C be connected and A, N A, 11 # () for all n. Prove that U;ﬁ A,, is connected.
1.6.8. If B C C is open and closed, prove that either B = () or B = C.

1.6.9. Let A C C be connected (not necessarily compact). Prove that for every » > 0 and every
z,w € A there is an r-succession of points in A which joins z, w.

1.6.10. (i) Let A be closed. Prove that A is connected if and only if there are no closed B, C' such
that BUC = A, BNC =0,B#0,C #0.

(ii) Let A be open. Prove that A is connected if and only if there are no open B, C' such that
BUC=A,BNC=0,B#0,C #0.

1.6.11. Prove that A is connected if and only if the only continuous functions f : A — Z are the
constant functions.

1.6.12. Let A be a region and let every point of B C A be an isolated point of B. Prove that A\ B
is connected.

1.6.13. (i) Let A,, be compact so that A, 11 C A, for every n € N and so that every two points of
A,, can be joined by some %-succession of points in A,,. Prove that ﬂ:ﬁ A, is connected.

(ii) Let F' be compact and let z, w € F belong to different connected components of F'. Prove that
there is a decomposition B, C' of F'sothat z € Bandw € C.
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Chapter 2

Series.

2.1 Series of numbers.

Definition. I/ (z,) is a sequence of complex numbers, the expression

“+o0
21tz 2zt or Zzn

n=1

is called series of complex numbers or, simply, complex series. If all numbers z, are real, we
say series of real numbers or real series.

The s, = z1 + - - - + 2, are the partial sums of the series E:ﬁ Zn.

We say that the series Z:{i’i zpn, converges if the sequence (sy,) converges and then the limit s of
(sn) is called sum of the series and we write

—+00

E Zp = S.

n=1

We say that the series Z:g z, diverges if (s,,) diverges. If (s,,) diverges to 0o, then we say that

:3 zn, diverges to co and that oo is the sum of the series and we write

n=1

We note that the sum of a complex series can be either a complex number or co. Only a real
series can have sum equal to +oo or —co. Therefore, when we write :;3 Zp = 400 or —00, we
accept that all z,, are real and that the series diverges to +o0o or —oo as a real series. Of course, if

a real series diverges to 400 or —oo, then as a complex series it diverges to co.

0, ifc=0

Example 2.1.1. We have S 7% ¢ =
P 2n-1 {oo, ifc 0

Example 2.1.2. To examine the geometric series Z:{i% z" weusethe formulal +z+4+---+2" =

n+1 . . . .
1_1Z_ ; for its partial sums, and we find that its sum is
_ 1 if 1
too T 1-z 1 ’Z’ <
Zz" = 00, if|z] >1lorz=1
n=0

it does not exist, if|z|=1,2z#1

The usual simple algebraic rules, which hold for real series, hold also for complex series. We
mention them without proofs. The proofs for the complex case are identical with the proofs in the
real case.
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Proposition 2.1. If Z:ﬁ zn, converges, then z, — 0.

Proposition 2.2. Provided the right sides of the following formulas exist and they are not indeter-
minate forms, we have

+oo +o0o +oo +o0 +oo +o0o +oo
E (zn + wy) = g Zn + E Wy, E Az = A E Zn, E Zn = g Zn-
n=1 n=1 n=1 n=1 n=1 n=1 n=1

o0

Moreover, if z, = x, + iyn, then Z:Zl zn, converges if and only if Z:{i’i Tpn and Z:{g Yn

converge, and
—+oc0 oo +o0
g Zn = E Ty + 1 E UYn -
n=1 n=1 n=1

Regarding the comparison theorems, we may say that, since these are based on order relations

which can be expressed only between real numbers, when we write :{3 Zn < :3 Wy, as a
consequence of z,, < w,, we accept that all z,,, w,, are real and then we just apply the well-known

comparison theorems for real series.

Cauchy criterion. The series Z:g zn, converges if and only if for every € > (O there is ng so that
| D ket 2kl = [Zma1 + -+ zn| < € for every m,n withn > m > ny.

Proof. We consider the partial sums s,, = 21+ - -+ 2,. The series Z;fg zn, converges if and only
if (s, ) converges or, equivalently, if (s,,) is a Cauchy sequence. That (s,,) is a Cauchy sequence
means that for every € > 0 there is ng so that

|Zma1 + -+ =21+ +2) — (214 F 2m)| =50 —sm| <€
for every n, m withn > m > ny. O

Definition. We say that 3> z, converges absolutely if the (real) series > > |2,| converges,
ie if SN |2,] < 4o0.

Criterion of absolute convergence. If Z:g zn, converges absolutely, then it converges and
+oo +00
D an| <D fenl
n=1 n=1

Proof. Let 31> |2, converge and take any ¢ > 0. From the Cauchy criterion we have that there
is ng so that |z,,4+1| + -+ + |zn| < € and hence |z, 41 + -+ + 2z,| < € for every m,n with
n > m > ng. The Cauchy criterion, again, implies that Z;:g Zp, converges.

Now we take the partial sums s, = z1 + -+ - + 2z, and S,, = |21| + - - - + |2n|. We have |s,| < S,
for all n and, taking the limit of this as n — o0, we finish the proof. O

Ratio test of d’ Alembert. Let z,, # 0 for all n.

(i) If lim |Z’;%‘ < 1, then Z:g zn, converges absolutely.

(ii) If lim ‘%} > 1, theniz:fg 2p, diverges.

(iii) If lim "i—:l‘ <1<lim ‘i—:ﬂ then there is no general conclusion.

Proof. (i) We consider any a such that H\Z;—ﬂ < a < 1. Then there is ng so that ‘Z;—:W <a
for every n > ng. Therefore, for every n > ng + 1 we have

ZTL0+1

Zn ‘

Zn—1

Zn—l’

Zn—2

’2n|:: "ZRJ < aninﬂznolzzcan7

Z o
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where ¢ = \zno |/a™. Since 0 < a < 1, the geometric series Y ' a” converges and, by compar-
ison, 319 | z,,| also converges.
(i1) There is ng so that |Z"+1 ’ > 1 for every n > ng. Therefore, for every n > ng + 1 we have

This implies that z,, /4 0 and Z+°° zn diverges

iii) For the series 7> 1 and L we have that | {1 n+1 — 1 and 1/"721) — 1. The
n=1n 1/n
first series diverges and the second converges O

Root test of Cauchy. (i) If Tim {/|z,| < 1, then 3> 2, converges absolutely.

(i) If Tim {/]2,] > 1, then > 2, diverges.

(iii) If lim ¥/|z,| = 1, then there is no general conclusion.

Proof. (i) We consider any a such that lim {/|z,| < a < 1. Then there is ng so that {/|z,| < a
and hence |z, | < a” for every n > nyg. Since 0 < a < 1, the geometric series Y, a™ converges
and, by comparison, Z 2] |zn| also converges.

(if) We have {/|z,| > 1 for infinitely many n. Therefore, |z,| > 1 for infinitely many n and
hence z,, /4 0. Thus, > zn diverges.

(iii) For the series >_/° oﬁ % and 3% nlz we have {/|2| — 1and { | »| — 1. The first series
diverges and the second converges. O

Applying the ratio test and the root test to specific series Z:{i’i zn, we find very often that the
limits limy,— 4o | i | and limy, 400 {/]2n] exist. We know (and we used it in the proofs of parts

(iii) of both tests) that in this case: lim = lim = lim.

Example 2.1.3. To the series Z:ﬁo f; we apply the ratio test. If z = 0, the series obviously

(1)

converges absolutely. If z # 0, then | = Sy | = +1

absolutely for every z.

Now we apply the root test. We have {/ |%L] = J\;J? — % = 0 < 1 and we arrive at the same

— 0 < 1. Hence the series converges

conclusion as before.

Example 2.1.4. We consider Z+°° 22 and we apply the ratio test. If z = 0, the series obviously

%} — |z|. Hence, if 0 < |z| < 1, the series

converges absolutely and, if |z| > 1, the series diverges.

converges absolutely. If z # 0, then ‘

Now we apply the root test. We have {/|25| — |z|. Therefore, if |2| < 1, the series converges

absolutely and, if |z| > 1, the series diverges.

If |z| = 1, none of the two tests applies. But we observe that 5"+ ‘—‘ — < +o0in
this case, and Z:{oﬁ fl > converges absolutely.

Conclusion: S 27 Z converges absolutely if [z| < 1, and diverges if [z| > 1.

Example 2.1.5. We consider +°°1 Zn and we apply the ratio test. If z = 0, the series obviously
converges absolutely. If z # 0, then ‘71247/2“‘ — |z|. Hence, if 0 < |z| < 1, the series

converges absolutely and, if |z| > 1, the series diverges.
Now we apply the root test. We have {/|2-| — |z|. Therefore, if |2| < 1, the series converges

absolutely and, if |z| > 1, the series diverges.

If |z| = 1, none of the two tests applies. If z = 1, the series becomes > 1 and diverges. If
2| =1,z # 1, then 3125 |2 = 32720 L = 00, and )27 2 does not converge absolutely.
In fact, exercise 2.1.10 (iv) shows that the series converges in this case. In general, when a series
is convergent but not absolutely convergent we say that it is conditionally convergent.
Conclusion: > Z~ converges absolutely if |z| < 1, diverges if |z| > 1 or z = 1, and converges

conditionally if |z| = 1, z # 1.
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Exercises.

2.1.1. Which of the series 1% (£ + 5, Foo(n g i), S0 I sntoe L too 1

n=1\92n ne n=1 np2 » n=1 2+44n> n=1 n+i°
+o0 1

n=1 n24+in

converge?

2.1.2. Find the sum of the series Z:ﬁ’i n(—1)""! if we consider it as a complex series and also if
we consider it as a real series.

2.1.3. Apply the ratio test whenever possible: "1 p3jn, St nl sntoc (49" g~too (20)"nt

n=1 jn> n=1 n! n=1 nn >
oo (249)"n! N~too ernl oo (D2 sotoo (4)M(n))2 gtoo | (344)(644) (944)--(3nti)
n=1"nr > 2un=1 nr > 2un=1 @n)1> 2en=1 (@)l > 2en=1 (34+41)(3180)(3+120)--(3F4ni)"
. ; 5
Apply the root test whenever possible: ¥ nnin, 370 (JekLyn §oboc(ndiyIn S T2y
Z+Oo ng( Z)n +oo (2431)™ +o00 n—+i
n=1 > n=1 nmn H n=1 (%-‘rl)"

2.1.4. 1 5129 |2, < 400, prove that 3" 2, (cos né + i sinnd) converges.

2.1.5. Let z, = =z, + ty, for all n. Prove that Z:{i’i zn, converges absolutely if and only if
Zn 1 Tns Z;’g yn, converge absolutely.

2.1.6. Let |a,, |[r™ < Mn* for all n. Prove that 3" a,,2" converges for every z with |z| < r.

2n

2.1.7. Find all z for which Zn 1 Togm

converges.

218.Let 0 < 0y < g and assume for every n that arg z, has a value in [—6p, 6p]. Prove that
Z:g zpn, converges if and only if it converges absolutely. Prove that Z:ﬁ zn = oo if and only
if >0 |20 = +o00.

+002
nln

2.1.9. Find a series Z:{i’i 2, which converges and is such that ) diverges.

2.1.10. Consider the sequences (ay,), (zy,) and the partial sums s, = z1 + -+ + 2y,

(i) Provethat > ;'\ arzk = D p_pi1(@k — Gkg1)Sk + Gny1Sn — Gmy15m for every n, m with
n > m. This is the summation by parts formula due to Abel.

(ii) Prove the Dirichlet test: if (a,,) is real and decreasing and a,, — 0 and if (s,,) is bounded,
then Z::i‘i nZp CONVETZES.

(iii) Prove the Abel test: if (a,,) is real and decreasing and bounded below and if (s, ) converges,
ie. if Z:{i‘i 2, converges, then Z:ﬁ pZp, CONVETEZES.

iv) If (ay,) is real and decreasing and a,, — 0, prove that $"7°° a,,2™ converges for every z with
(iv) g p n=0 g ry

|z| <1,z # 1.

(v) Check the conditional convergence and the absolute convergence of the series: :{i’j %,
+oo _ ™ +o00 i +00 ;n—1 +00 n—1 1
n=2 nlogn’> £«n=2 n(logn)2’ Zn 1t Sln* En 1? ( COSE).

2.1.11.Let s,, = 21 + -+ + 2z, for all n. If (an415,) converges and if :Z“Xi( — Qnt1)Sn

converges, prove that > "> a,,2, converges. In particular: if (s,) is bounded, if a,, — 0 and if
:3 |an, — an+t1| < +o0, prove that Zzg 2y CONVETZeES.
What is the relation of all these with the tests of Dirichlet and Abel in the previous exercise?

2.2 Sequences and series of functions.

Definition. Let f,, : A — C for every nand f : A — C. We say that the sequence of functions
(fn) converges fo the function f uniformly in A if sup{|f.(z) — f(2)||z € A} — 0. We denote

fo = f on A.

Equivalently, f, = f in A if for every € > 0 there is ng so that |f,(z) — f(2)| < € for every
n > ng and every z € A.
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It is easy to see that, if (f,) converges to f uniformly in A, then f,(z) — f(z) for every
z € A, ie. (f,) converges to f pointwise in A. Indeed, for every z € A we have

0 <[fn(2) = f(2)] < sup{|fu(w) = f(w)||w e A} = 0.

Proposition 2.3. Let ( f,,) converge to f uniformly in A and let zy € A. If every f, is continuous
at zg, then f is continuous at zg. In particular, if every f, is continuous in A, then f is continuous
in A.

Proof. Let e > 0. Then there is ng so that | f,,(2) — f(2)| < § for every n > ng and every z € A.
In particular, we have | f,(2) — f(2)| < § for every z € A. Since f,, is continuous at zo, there
is § > 0o that [ f,,,(2) — fno(20)| < § forevery z € A with |z — 2| < 4.

Hence, for every z € A with |z — 2| < 0 we get

) = F0)| < 1£(2) = Fuo )] + g (2) = Fuo (20)] + g 20) = F(20)| < 5+ 5+ 5 =

and f is continuous at zg. O

From the notion of uniform convergence of a sequence of functions we move to the notion of
uniform convergence of a series of functions (through the sequence of partial sums).

Definition. Let f,, : A — C for every n. We take the partial sums s, : A — C, where s,(z) =
fi(z) + -+ fu(2) forevery z € A. Letalso s : A — C. We say that the series of functions
Z:{i’j fn converges to its sum s uniformly in A if the sequence of functions (sy,) converges to
the function s uniformly in A.

We denote

+oo
an Zs onA.
n=1

As in the case of a sequence of functions, we have that, if Z:{i’i fn converges to its sum s
uniformly in A, then 3"1% f,,(2) = s(z) forevery z € A, ie. 32 f, converges to its sum s

pointwise in A.

Proposition 2.4. Let Z:{i’i fn converge to its sum s uniformly in A and let zg € A. If every f, is
continuous at zg, then s is continuous at zy. In particular, if every f, is continuous in A, then s is
continuous in A.

Proof. We consider the partial sums s, = f; + --- + f,. Then every s, is continuous at zy and
proposition 2.3 implies that s is continuous at 2. O

Finally, we have a basic criterion for uniform convergence of a series of functions.

Weierstrass test. Let | f,,(z)| < M, for every n and every z € A. If the series (of non-negative
terms) "2 M, converges, i.e. if S5 M, < 400, then ">} f,, converges uniformly in A.

Proof. For every z € A we have Y% [f,.(2)] < Y2/% M,, < +oc and hence > f,(2)
converges (as a series of complex numbers). Therefore, we may define the function s : A — C
with s(z) = Tfi’j fn(z) for every z € A. Now we consider the partial sums s, = f1 + - + fn
and then for every z € A we have

n +o00 +oo +oo +o00
su(2) = s(2) = | Y Sel2) = Do fu@)| = | X fu@)| < X 1RGN M
k=1 k=1 k=n+1 k=n+1 k=n+1
Since this is true for every z € A, we get
+o0
sup{|sn(z) —s(2)[[z€ A} < > My —0  whenn — 400,
k=n+1
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because YT M,, < +oo. Therefore, (s,) converges to s uniformly in A and hence > 7 fn
converges to 1ts sum s uniformly in A.

Exercises.

2.2.1. Prove that 3" Zﬁn)g
the series converges uniformly in K \ Z.

converges for every z € C \ Z and that for every compact set K

2.2.2. (i) If K C C\ T is compact, prove that there is » with 0 < r < 1 (r depends on K)) so that
for every z € K either |z| < rorlz| > 1 holds.

(i1) Prove that Z converges umformly in every compact K C C\ T.

n=0 z2n+1

2.2.3. (i) If Rez > —1, prove that }Zjl} < 1. IfK C {z| Rez > —3} is compact, prove that

there is » with 0 < r < 1 (r depends on K) so that ‘ pam

(ii) Prove that "> “o(557)" converges for every  in the halfplane {~ | Re z > — 3} and uniformly
in every compact subset of this halfplane.

‘<rf0reveryz€K
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Chapter 3

Curvilinear integrals.

3.1 Integrals of complex functions over an interval.

We shall extend the notion of integral of a real function over an interval to the notion of integral
of a complex function over an interval.

Definition. Let f : [a,b] — Candletu = Re f : [a,b] - Rxarv =1Im [ : [a,b] — R be the
real and imaginary parts of f. We say that f is (Riemann) integrable over [a, b] if u, v are both
(Riemann) integrable over [a,b] and in this case we define the (Riemann) integral of f over |a, b]

to be ) ) )
/f(t)dt:/ u(t)dt+z’/ ot) dt. 3.1)

Since the numbers fab u(t) dt and f;’ v(t) dt are real, we see that

Re/abf(t)dt:/abRef(t)dt, Im/abf(t)dt:/ablmf(t)dt.

Now let us take any subdivision A = {to, ..., t,} of [a, b] and any choice = = {&;,...,&,} of
intermediate points &, € [tx_1, t;] and the corresponding Riemann sum >, f (&) (tx — tr—1)
If w(A) = max;<p<p(tx — tx—1) is the width of the subdivision A, then we know that

n

n b b
i D@t~ = [uwdn tm St = [ o

w(A)—0 1

Multiplying the second relation with ¢, adding and using (3.1), we find

n b
w(lAiI)n_)O;f(gk)(tk ) = / f(t) d.

Example 3.1.1. If f is piecewise-continuous in [a,b], then v = Re f and v = Im f are also
piecewise-continuous in [a, b]. Hence u, v are integrable, and f is also integrable over [a, b].

The following propositions are analogous to similar well-known propositions about integrals of
real functions and can be proved easily by the reader. One should decompose every complex func-
tion into its real and imaginary parts and use the analogous properties for real functions together
with (3.1).

Proposition 3.1. Let f1, fo : [a,b] — C be integrable over |a,b] and A1, Ao € C. Then \1f1 +
X fa i [a,b] — C is integrable over [a, b] and

b b b
/(/\1f1(t)+>\2f2(t))dt=)\1/ fl(t)dt-i-)\z/ fa(t) dt.

26



Proposition 3.2. Let f : [a,c] — Cand a < b < c. If f is integrable over [a, b] and in [b, c|, then
f is integrable over [a, c| and

/acf(t)dt:/abf(t)dtJr/bcf(t)dt.

Proposition 3.3. If f1, fo : [a,b] — C are integrable over [a,b], then fifs : [a,b] — Cis
integrable over |a, b).

The proof of the next proposition is not entirely trivial.

Proposition 3.4. Let f : [a,b] — C be integrable over [a,b]. Then |f| : [a,b] — R is integrable

over [a, b| and . .
[ o] < [

Equality | f; f(t)dt] = ff | f(t)| dt holds if and only if there is some halfline | with vertex 0 so
that f(t) € l for every continuity point t of f.

Proof. Letu = Re f, v = Im f. Then u, v are integrable over [a, b] hence |f| = Vu? + v? is
integrable over [a, b]. Now we have two cases.

) If [ f(t)dt = 0, then | [* f(t)dt| < [V|f(t)]dt becomes O < [”|f(t)|dt and it is clearly
true.

(ii) Let ff f(t)dt # 0. We consider any polar representation of the number ff f(t)dt,ie.

/bf(t)dt—’/bf(t)dt‘(cosﬁ—irisinﬁ)—‘/bf(t)dt‘z,

where 0 is any value of the argument of f; f(t) dt and where we set z = cosf + isinf. We
observe that
|z| = |cosf + isinf| = 1.

Now,

‘/abf(t) dt‘ =27 /abf(t) dt = /ab(z‘lf(t))dt. 3.2)

The left side of (3.2) is real and hence its right side is also real and thus equal to its real part! Hence

/abf(t) | :Re/ab(z_lf(t))dt:/bRe(z_lf(t))dt</ab]z_lf(t)dt

b a
- / ()] dt.

Now assume | fab f(t)dt| = f: |f(t)] dt.

In case (i), we have f; | f(t)| dt = 0 and this is equivalent to f(¢) = 0 at every continuity point ¢
of f.

In case (ii), we see from (3.3) that | ff f(t)dt| = ff |f(t)] dt is equivalent to ff Re(z71f(t)) dt =
f; |z=1f(t)| dt. This is equivalent to Re(2~1f(t)) = |z~Lf(t)| at every continuity point ¢ of f.
The last equality is equivalent to Re(2 ! f(t)) > 0 and Im(z~! f(¢)) = 0 and this is equivalent
to =1 f(t) > 0 and this is equivalent to f(t) being a non-negative multiple of the fixed z (with
|z| =1).

Thus, in both cases we get that | ff f)dt] = f: |f(t)| dt if and only there is a halfline [ with
vertex 0 so that f(t) € [ for every continuity point ¢ of f. O

(3.3)

27



3.2 Curvilinear integrals of complex functions.

We recall that every continuous complex function ~y : [a,b] — C, where [a, b] is any interval,
is called curve in the complex plane.

The set of the values of a curve v, i.e. the set v* = {~(¢) |t € [a,b]} C C is the trajectory of
the curve and it is a compact and connected subset of C, since - is continuous and [a, b] is compact
and connected. The points y(a) and ~(b) are the endpoints, the initial and the final endpoint,
respectively, of the curve. The variable ¢ € [a,b] is the parameter and [a, ] is the parametric
interval of the curve. When the parameter ¢ increases in [a, b], the variable point (¢) moves on
the trajectory v* in a definite direction (from the initial to the final endpoint) which is the so-called
direction of the curve. Finally,

z =(t), t € [a,b],

is the parametric equation of the curve ~.

If the endpoints of the curve 7 coincide, i.e. y(a) = ~y(b), then we say that the curve is closed.
If v : [a,b] — Aisacurve, where A C C, then y(t) € A forallt € [a,b] or, equivalently, the
trajectory v* is contained in A. Then we say that the curve is in A.

The term curve for the continuous function - is justified by the fact that the shape of its trajec-
tory v* is, usually, what in everyday language we call curve in the plane. Sometimes we use the
term curve for the trajectory v* even though this is not typically correct. The problem is that there
are cases of different curves -1, 2 with the same trajectory v1* = 2.

Example 3.2.1. If zg, z; € C, then v : [a, b] — C with the parametric equation

t—a b—t
Z:’Y(t):bfazl b—a

20, t € |a,b],

is a curve whose trajectory v* is the linear segment [z, z1]. Its initial and final endpoints are z
and z1, respectively.
The same linear segment [z, z1] is the trajectory of another curve 7y : [0,1] — C with the para-
metric equation

z=(t) =tz1 + (1 — )20, t €[0,1].

Example 3.2.2. If > 0, then 7y : [0, 2] — C with parametric equation
z =(t) = z0 + r(cost + isint), t € [0, 2],

is a closed curve whose trajectory v* is the circle C., (). The direction of this curve is the so-called
positive direction of rotation around zg: the counterclockwise rotation.
If we consider 7, : [0, 27] — C with parametric equation

z =7(t) = 29 + r(cos(2t) + isin(2t)), t € [0, 2],

then we get a different curve. But the trajectories of the two curves, v and 1, coincide: the circle
C,(r). The direction of the two curves is the same: the positive direction of rotation around z(.
But the first curve goes around zg only once, while the second curve goes around z( twice.

Let~y : [a,b] — C be a curve and let x = Re~y and y = Im+y be the real and imaginary parts
of v. Le.

V(t) = a(t) +iy(t) = (z(t),y(t),  t€lab].
If ~y is differentiable at t( € [a, b] or, equivalently, if z, y are differentiable at ¢(, then
' (to) = 2'(to) + 1y’ (to) = (2’ (t0),y' (o))

is the tangent vector of the trajectory v* at its point y(tp). If 7/(t9) # 0, then the vector v/ (o)
determines the tangent line of the trajectory v* at its point () and its direction is the same as the
direction of the curve.
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Remark. Strictly speaking, at its endpoints, y(a), y(b), the curve can only have tangent halflines;
not tangent lines. If ty = a and 7/(a) # 0, then the vector 7/(a) determines the tangent halfline
of the tracectory at the endpoint y(a) with direction coinciding with the direction of the curve. If
to = band v/(b) # 0, then the vector —/(b) determines the tangent halfline of the tracectory at
the endpoint ~(b) with direction opposite to the direction of the curve.

If at some ¢y € (a, b) the one-sided derivatives v (ty) # 0 and 7/, (o) # 0 exist but they are
not equal, then the tangent halflines of the trajectory at its point y(¢y) may not be opposite and so
there may be no tangent line of the trajectory at this point: one of the halflines is determined by
7/ (to) and the other by —v" (t).

We know that, if the curve v : [a, b] — C is continuously differentiable, i.e. if v : [a,b] — C
is continuous in [a, b], then the length of the curve, denoted I(+y), is equal to

b
«w=/www. (3.4)

Example 3.2.3. If v : [a, b] — C has parametric equation

b—t t—a

P e e t € [a,b],

z=7(t) =

then its length is equal to

uwa[wwwzlb

Example 3.2.4. If r > 0 and 7 : [0, 27r] — C has parametric equation

b
Z1 — % Z1 — %
1 Oldt: ! 0‘/ dt = |z1 — 2.
b—a b—a 1/,

z="(t) = 29+ r(cost + isint), t €[0,2n],

then its length is equal to
2m
0

b 27
I(y) = / |y ()] dt = / |r(—sint + icost)| dt = / rdt = 27r.
a 0

The same formula (3.4) gives the length of the curve ~ if it is piecewise continuously differen-
tiable. This means that there is a subdivisiona = tg < t; < ... < ty—1 < t, = bofthe parametric
interval [a, b] so that the restriction of v in every [t;_1, tx] is continuously differentiable. (Strictly
speaking, at the division points ¢, the derivative of v may not exist; the two one-sided derivatives
should exist at these points.)

Another useful terminology is the following. A curve 7y : [a,b] — C is called regular if it is
continuously differentiable and 7/(¢) # 0 for every ¢ € [a,b]. This means that, when ¢ increases
in [a, b], the tangent line at the point ~y(¢) of the trajectory moves continuously. We also have the
piecewise regular curves. The meaning is obvious.

At this point we shall make the following convention for the rest of this course:

Al our curves will be piecewise continuously differentiable.

Now let 1 : [a,b] — C be a curve. We consider any o : [¢,d] — [a,b] which is one-
to-one in the interval [c, d| and onto [a, b], has continuous derivative in [c, d] and has o/(s) > 0
for every s € [c,d]. Thus, o is strictly increasing in [c,d] and o(c) = a, o(d) = b. Every
such o is called change of parameter. Then vo = 71 0 o : [¢,d] — C is continuous in [c, d]
and hence it is a new curve. We say that s is a reparametrization of ~y;: the parameter of ~;
ist € [a,b] and the parameter of -y is s € [c,d]. The curves 71,2 have the same trajectory,
the same endpoints and the same direction. Since ¢’ is continuous and > 0, the two curves are
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simultaneously (piecewise) continuously differentiable and simultaneously (piecewise) regular.
The lengths of 1, 72 are equal:

I(72) /72 rds—/m Dllo’(s)] ds
/71 I’ (5) ds—/ (1) dt = 1(m).

We may define the following binary relation between curves: v; ~ 7, if 75 is a reparametriza-
tion of ~1. It is not difficult to prove that this binary relation between curves is an equivalence
relation, i.e. it satisfies the following three properties:

@y~

i)y~ = 2~

(i) y1 ~72, Y2~ = N~

Indeed: (i) Let v : [a,b] — C be any curve. We consider the change of parameter id : [a,b] —
[a, b], defined by id(t) = ¢, and then v = vy oid : [a,b] — C. Thus, v ~ ~. (ii) Let y; ~ 2.
Then 42 = 1 o o where o : [¢,d] — [a, b] is a change of parameter. But then o~ : [a, b] — [c, d]
is also a change of parameter and 7; = 79 o o~ !. Therefore vo ~ ;. (iii) Let 41 ~ 72 and
Yo ~ 3. Then 75 = 71 o o and y3 = 2 o 7, where o : [¢,d] — [a,b] and 7 : [e, f] — [c,d]
are changes of parameter. But then x = o o7 : [e, f] — [a,b] is a change of parameter and
v3 =207 = (y100) 07T =~ 0 X. Therefore y; ~ 3.

It is of some value to note that if we have a curve v : [a, b] — C with parametric interval [a, b]
and we are given an arbitrary interval [c, d], then there is a reparametrization of v with parametric
interval [c, d] instead of [a, b]. We can do this if we can find an appropriate change of parameter
o : [c,d] — [a,b]. There are many such o, but a simple one is

d—s s—c

t:U(s):d_ca+Eb, s € [c, d].

Therefore, if for some reason (and we shall presently see that there is such a reason) we do not dis-
tinguish curves which are reparametrizations of each other, then the parametric interval of a curve
is of no particular importance: we may consider a reparametrization of a given curve changing the
given parametric interval to any other which we might prefer.

For every curve v : [a, b] — C we consider the curve = : [a, b] — C given by

(=) () =~(a+b—1), t € |a,b].

Then =~ is called opposite of . The curves v and - have the same trajectory but opposite
directions. Their lengths are equal:

/| (t)| dt = /]7 (a+b—1t)|dt = /|fy |ds—/ 1Y (s)|ds = 1(v).

If the curves 71 : [a,b] — Cand 2 : [b,¢] — C have v1(b) = ~v2(b), then we say that 1, yo

(in this order) are successive and then we may define the curve ~y; + Y2 : [a,c] — C by

m(t), ifa<t<b
v(t), ifb<t<c

(71 +72) () = {

The curve v, + o is called sum of 1 and 2. Since ; and o are (piecewise) continuously

differentiable, v; + 2 is also piecewise continuously differentiable. The trajectory (y; + v2)* i
the union of the trajectories 1 * and vo*.

Of course, the sum of two curves can be generalized to the sum of more than two curves
provided that these are successive.
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Example 3.2.5. Every polygonal line can be considered as the trajectory of a piecewise regular
curve. This curve is the sum of successive curves each of which has as its trajectory a corresponding
linear segment of the polygonal line.

Through the operation of summation of successive curves, we may consider successive curves
as one curve (synthesis) and, conversely, we may consider one curve as a sum of successive curves
(analysis).

The length of the sum of successive curves equals the sum of their lengths:

. c . b . c .
I+ 70) = / (31 + 2 (D)t = / (31 + o) (D)t + /b (1 4 2 (D))t
b c
- / I ()]t + /b e (D)t = 1(31) + 1(72).

Now we shall extend the notion of integral of a complex function over an interval to the notion
of integral of a complex function over a curve.

Definition. Let v : [a,b] — C be a curve and let f : v* — C be continuous in the trajectory
v = {v(t)|t € [a,b]}. Then f o~ : [a,b] — C is continuous in [a,b]. Thus, (f o)y is
piecewise continuous in [a, b] and hence integrable over [a, b]. We define the curvilinear integral
of f over v by

b b
/ f(2) dz = / (f o) () (t) dt = / SO () () d

We shall usually write
f f(z)dz
.

Example 3.2.6. Let 7 : [a, b] — C be the curve with parametric equation z = y(t) = (1 — ¢)zp +
tz1, t € [0,1]. The trajectory of -y is the linear segment [z, z1] having direction from zj to z1.
If f : [20,21] — C is continuous in [zo, z1], then the curvilinear integral f,y f(2) dz is denoted

f[ZO,Zl] f(z)dz. Le.

when 7y is closed.

1
/[Zo,zﬂf(Z)dZ:[/f(Z)dZ: (2120)/0 F((1 =)z + tz1) dt.

This is the curvilinear integral of f over the linear segment [z, z1] from zg to z;.

Example 3.2.7. Let 7 > 0 and y : [0, 27r] — C be the curve with parametric equation z = y(t) =
zo+r(cost+isint), t € [0, 27]. The trajectory of v is the circle C., (r) with the positive direction
of rotation around zp. If f : C,(r) — C is continuous in the circle C(r), then the curvilinear
integral . f(2) dz is denoted fczo (i f(2)dz Le.,

2m
7{ f(z)dz:%f(z) dz:/ f(z0 + r(cost + isint))r(—sint + icost) dt.
Cyo(r) ~ 0

This is the curvilinear integral of f over the circle C.,(r) with the positive direction of rotation.
An important concrete instance of the previous example is the following.

Example 3.2.8. If n € Z, we know that

2 2 92 ifn =0
/ sin(nt) dt = 0, / cos(nt) dt = ™ 1 "
0 0 0, ifn#0
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Therefore, if n € Z, we get

2m
f (z—2z0)"dz = / "(cost +isint)"r(—sint + icost) dt
Co(7)

2w

it (cost + isint)"(cost + isint) dt

271'
— n+1

/i
it

cos((n + 1)t) + isin((n + 1)t)) dt

) 2mi, ifn=-1
o, ifn#£ -1

The following propositions are easy to prove.

Proposition 3.5. Let v : [a,b] — C be a curve, f1, fo : v* — C be continuous in v* and A, s €
C. Then

/(Alfl(z) efa(z))dz = Ay / fi(z)dz + Ao / fa(z) dz
gl v gl
Proof. An application of proposition 3.1 and of the definition of the curvilinear integral. O

Proposition 3.6. Let vy : [a,b] — Cbea curveand [ : v* — C be continuous inv*. If | f(z)] < M
for every z € ¥, then

|| 1) e < naicy

Proof.
| [ f)az| - () dt] < /\f DI (¢ |dt<M/ Y ()] dt = Mi().
.
The first inequality uses proposition 3.4. O

Proposition 3.7. Let v : [a,b] — C be a curve and f,, ¢ : v* — C be continuous in v* and let
7" = C. If f, = f uniformly in v*, then

/ Fu(2)0(2) dz — [y F(2)0(2) d=. (3.5)

Proof. Because of uniform convergence, f is continuous in v*. Therefore, the existence of the
integrals [ fn(2)¢(z)dz and [ f(2)$(2) dz is assured.

Since ¢ is continuous in the compact set v*, there is M so that |¢(z)| < M for every z € v*. If
we set My, = sup,c.« | fn(2) — f(2)], then proposition 3.6 implies

| /7 fal2)6(2) d - / F0() d:| = | / £(0) = F2)6(e) &2 < ML)

Since M, — 0, we get that [ f.(2)8(2) dz — [ f(2)¢(2) d. O

We may rewrite (3.5) in the form

lim / fu)ol2)dz = [ tim_f,(2)6(:) d2

n——+oo y n——+o0o

of an interchange between the symbols lim,,_, ., and fv' This interchange under the assumption
of uniform convergence is the content of proposition 3.7.
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Proposition 3.8. Let v : [a,b] — C be a curve and f,,, ¢ : v* — C be continuous in v* and let
s:v*=>C. If :g n = S uniformly in v*, then

“+o0o
fn(2)p(2)dz = | s(2)p(z)dz. (3.6)
> /

Proof. We consider the partial sums s, = f1 + - -- + f,, and apply proposition 3.7 to them. Then

fr(2)p(2) dz = k(2)p(2)dz = | sn(2)p(2)dz — | s(z)p(z)dz.  (3.7)
>/ [3s / /

Le. the series (of numbers) > fv fn(2)p(2) dz converges to (the number) fv s(2)p(z)dz. O

As in the case of (3.5), we may rewrite (3.6) in the form

+00 +oo
n(2)p(2)dz = n(2)0(2) dz,
;AfUd) A;¥<w>

since Z:g fn(z) = s(z) for every z € v*. Again, this interchange between the symbols
and f7 under the assumption of uniform convergence is the content of proposition 3.8.

—+00
n=1

Proposition 3.9. Consider the curves v1 : [a,b] — C and v2 : [c,d] — C and let 2 be a
reparametrization of 1. Let also f : v1* = ~o* — C be continuous. Then

jC2f(z)dz:: 71f(z)dz.

Proof. There is a change of parameter o : ¢, d] — [a, b] so thaty,(s) = y1(o(s)) forall s € [, d].
Then

d d
/f@WZ/ﬂmwﬂ@®=/ﬂ%W$M%®W®ﬁ

b
=/ﬂwmwwﬁ= f(2)de

after a change of parameter in the third integral. O

At this point we observe that replacing a curve ~; with a reparametrization -5 of it does not
alter certain quantities related to the curve: its trajectory, its endpoints, its direction, its length, the
number of times it covers its trajectory and, more important, the curvilinear integrals of continuous
functions defined over its trajectory. Since in this course we shall use curves only to evaluate
curvilinear integrals, we conclude that there is no reason to actually distinguish between a curve
and its reparametrizations. Therefore, when we have a geometric object C' which we would call,
in everyday language, curve in the plane, e.g. a linear segment or a circle or a polygonal line, and
a continuous function f : C' — C, we can give a meaning to

/Cf(z) dz

by specifying a continuous v : [a,b] — C, i.e. a curve, with trajectory v* coinciding with C,
with endpoints coinciding with the endpoints of C' and a specific assigned direction. The use of
different curves, which are reparametrizations of the particular v we have chosen, will not alter the
value of the integral. In fact we have already seen two examples of this situation. One is the

/[Zwﬂ f(z)dz
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for which we use any parametric equation with trajectory equal to the linear segment [z, z1] and
direction from zp to z;. The simplest such parametric equation is z = ~(t) = (1 — t)z¢ + tz1,
t € [0,1]. The second example is the

f f(z)dz
Czo (r)

for which we use any parametric equation with trajectory equal to the circle C., (r) and which cov-
ers this circle once and in the positive direction of rotation around zy. The simplest such parametric
equation is z = y(t) = zo + r(cost + isint), t € [0, 27].

Proposition 3.10. Let y; : [a,b] — C and v : [b,c] — C be two curves so that ~1(b) = v2(b) and
let f:v1* U™ — C be continuous. Then

/W.WQ f(z)dz = /nf<z)dz+/y2f(z)d""

Proof. f is continuous in the trajectory (71 + Y2)* =m* U* of 1 + ~2. Hence
(& . .
[ s@dz= [ 5o+ @)+ )@
Y1+72 a

b c
- / Fon ()’ (1) de + /b F(t)! (1) de = / s+ / fe)d

The second equality uses proposition 3.2. O

Proposition 3.11. Consider the curve v : [a,b] — C and let f : v* — C be continuous. Then

/ﬁyf(z)dz:—/vf(z)dz.

Proof. f is continuous in the trajectory (—+)* = ~*. Hence
b b
[ 1@d= [ sen®) 0=~ [ foarb-onarb-a
-y a a

a b
- /b F(/ () (s) ds = — / S/ () () ds = — / £(2) de.

after a simple change of parameter in the third integral. O

Example 3.2.9. Let «y be the curve describing the linear segment [zp, 21| from zg to z1. Then -~
describes the same segment from 27 to zg. Therefore,

/[20721} f(z)dz = Lf(z) dz, /[tho] f(z)dz = ﬁfyf(z) dz.

/{tho] f(z)dz = —/[20’21] f(z)dz.

Exercises.

Hence

3.2.1. Consider an open set 2 C C and a curve vy : [a, b] — € and prove that there is § > 0 so that
|v(t) — 2| > d for every t € [a,b] and every z ¢ €.

34



3.2.2. Calculate f,y |z| dz, where ~y is each of the following curves with initial endpoint —i and
final endpoint i. (i) () = it fort € [—1,1]. (ii) y(t) = cost +isint fort € [-T, T]. (iii)
y(t) = —cost +isint fort € [-F, F].

. n Al pntl —
323.() If n € Z, n > 0, prove that fv Z"dz = ST R where zg, z1 are the initial and the
final endpoint of ~.
(ii) Are there polynomials py, () so that p,,(2) — 1 uniformly in the circle Cp(1)? Think in terms
of curvilinear integrals over the circle Cp(1).

3.2.4. Let f be continuous in the ring {2 |0 < |z| < rg} orin the ring {z | rg < |z| < +00}. We
define M (r) = max{|f(2)|||z| = r} and assume that 7M (r) — 0 when r — 0 or r — +o0,
respectively. If 7, (t) = r(cost + isint) for t; <t < ta, then prove that f% f(2)dz — 0 when
r — 0 or r — +00, respectively.

r) z—20

3.2.5. Let f : D,,(R) — C be continuous. Prove that lim,_, szo( 1&gy = omif (20).

3.2.6. Lety : [a,b] — Cbeacurveand f : v* — C be continuous in y*. Consider any subdivision
A = {tg,...,t,} of [a,b] and any choice = = {£1, ..., &, } of intermediate points & € [tx—1, tx].
Then we say that A* = {z,..., z,}, where z; = y(tx), is a subdivision of the trajectory +v* and
that =% = {m1, ..., n,}, where nx = v(&k), is a choice of intermediate points on the trajectory (7
is between z;,_; and zj, on the trajectory). We say that > ;' _; f(zx)(nk —7nk—1) is the corresponding
Riemann sum. If w(A*) = max;<x<p |2x — 2k—1] is the width of the subdivision A*, then prove

that limy,(a<) 0 Dy f(26) (6 — me—1) = [, f(2) d2.

3.2.7. Let f : Q — C be continuous in the open set €2 and let [a,,, b,], [a,b] C Q for every n. If
a, — a and b, — b, prove that f[an by £ (2) dz = f[a y f(2) dz.

3.2.8. Let f : Q — C be continuous in the open set 2 and « be a curve in ). Prove that for every
e > 0 there is a polygonal curve o in Q so that | [ f(2) dz — [, f(z)dz| <e.
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Chapter 4

Holomorphic functions.

4.1 Differentiability and holomorphy.

Definition. Let f : A — C and zg be an interior point of A. We say that f is differentiable at 2,

iflim,_, %ﬁézo) exists and is a complex number. We call this limit derivative of f at 2y and
denote it of 1) — f(z0)
’ _ Y _ 1. Z) — 20 .
filz0) = 1~ (20) = lim ———"—= %

Example 4.1.1. The constant function c is differentiable at every point of C and its derivative is

the constant function 0. Indeed, for every zy we have %(zo) = lim,_,, _CO = lim,,,, 0 = 0.

c—c
Z—Z
Example 4.1.2. The function z is differentiable at every point of C and its derivative is the constant
function 1: for every zy we have %(2’0) = lim,_, , % =lim,,, 1 =1

Example 4.1.3. Let f : C — C be the function f(z) = Z. We take an arbitrary zy and we shall
f(z)=f(20)

Z—Z

Z—20

prove that the lim,_, . z_zg does not exist, i.e. f is not differentiable at z.

= hmz—>zo

Let z9 = x¢ + iyg. The limit of FE=1E0) \when 5 zp on the horizontal line containing zg is

z2—20

lim EE0) = (o tiyo) _ T T0
T—To (ac + Zy()) — (1’0 + Zyo) T—T0 T — T T—T0

and the limit of £&=10) when » zp on the vertical line containing zg is

zZ—20

. (zo +iy) — (o +iyo) .
lim - - = lim ———~—
y—yo (zo +iy) — (xo +iyo)  v—=vo iy — iyo Y=o

Z=20 does not exist.
z—20

Since these two limits are different, the lim,_, .,

The proofs of the following four propositions are identical with the proofs of the well-known
analogous propositions for real functions of a real variable and we omit them.

Proposition 4.1. If f : A — C is differentiable at the interior point zy of A, then f is continuous
at 2.

Proposition 4.2. If f, g : A — C are differentiable at the interior point zg of A, then f + g, f —
g9, fg : A — C are also differentiable at zy. Furthermore, if g(z) # 0 for all z € A, then
: A — C is differentiable at zy. Finally,

(f +9)(20) = f'(20) + ¢'(20), (f = 9)(20) = f'(20) — g'(20),

20) — f(20)g'(20)
(9(20))? '

Q [~

(f9)'(z0) = f'(20)9(20) + f(20)9' (20), <]gc>/(20) _ f'(20)g(
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Proposition 4.3. If f : A — B is differentiable at the interior point zy of Aand g : B — C is
differentiable at the interior point wo = f(zo) of B, then go f : A — C is differentiable at z.
Also,

(g0 f) (20) = g'(wo) f'(20)-

Proposition 4.4. Let f : A — B be one-to-one from A onto B and let f~' : B — A be the inverse
function. Let also zy be an interior point of A and wy = f(z0) be an interior point of B. If f is
differentiable at zg and f'(zy) # 0 and f~ is continuous at wo, then =1 is differentiable at wy
and

1
f—l / wo) = )
o0 =
Example 4.1.4. Starting with the derivatives of the constant function ¢ and the function z and using
the usual algebraic rules for derivatives, we get that every polynomial function is differentiable at
every point of C and that its derivative is another polynomial function: if p(z) = a9 + a1z +
az? + -+ ay2", then p/(2) = ay + 2a22 + - -+ + naz" L.

Example 4.1.5. Every rational function is differentiable at every point of its domain of definition
and its derivative is another rational function.

Example 4.1.6. If h(z2) = (22 — 3z + 2)!% — 3(22 — 32 + 2)2, then by the chain rule we get
R'(2) = 15(2% — 32 + 2)14(22 — 3) — 6(22 — 3z + 2)(22 — 3).

Definition. Let f : A — C and zy be an interior 