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Condenser capacity under multivalent holomorphic
functions

Michael Papadimitrakis and Stamatis Pouliasis

Abstract. We prove an inequality for the capacity of a condenser via a holo-
morphic function f , under a valency assumption on f , and we show that
equality occurs if and only if f has finite constant valency. Also, we generalize
a well known inequality for quasiregular mappings and we give a necessary
condition for the case of equality.
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1. Introduction

A condenser in the complex plane C is a pair (D, K) where D is a proper
subdomain of C and K is a compact subset of D. Let h be the solution of the
generalized Dirichlet problem on D \K with boundary values 0 on ∂D and 1 on
∂K. The function h is the equilibrium potential of the condenser (D, K). The
capacity of (D, K) is

Cap(D, K) =

∫
D\K

|∇h|2.

When D is a Greenian domain, the Green equilibrium energy of (D, K) is defined
by

I(D, K) = inf
µ

∫∫
GD(x, y)dµ(x)dµ(y),

where GD(x, y) is the Green function of D and the infimum is taken over all
unit Borel measures µ supported on K. When I(D, K) < +∞, the unique unit
Borel measure for which the above infimum is attained is the Green equilibrium
measure. See e.g. [5].

Let (D, K) be a condenser with positive capacity and f be a non-constant holo-
morphic function on the domain D. It is well known that

Cap(f(D), f(K)) ≤ Cap(D, K)
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and equality holds if and only if f is conformal (see [9]). In the present arti-
cle, we prove an inequality for the capacity of a condenser via a holomorphic
function f , which takes into account the valency of f on f(K). Suppose that
I(f(D), f(K)) < +∞ and let ν be the equilibrium measure of (f(D), f(K)). We
assume that each point on a particular subset of f(K) has at least p distinct
preimages on K and we prove that

1

Cap(D, K)
≤ 1

p

1

Cap(f(D), f(K))
−

− 1

2πp2

p∑
i=1

∫∫ ∑
f(a)=u
a∈D\L

n(a)GD(a, f−1
i (v))dν(u)dν(v),

where L is the union of p certain Borel subsets Li ⊂ K and the restriction fi of
f on Li is injective, i = 1, 2, ..., p. Also, we show that equality

Cap(f(D), f(K)) =
1

p
Cap(D, K)

holds if and only if f is a p to 1 function except possibly on a subset of f(D) with
zero logarithmic capacity. See Theorem 1. A similar inequality with an equality
statement has been proved by I. P. Mityuk [8] under different assumptions on
the condenser and the holomorphic function (see also [1, p. 153]).

Finally, we generalize a well known inequality for quasiregular mappings and we
give a necessary condition for the case of equality.

2. Background Material

We will say that a property holds nearly everywhere, if it holds everywhere except
on a Borel set of zero logarithmic capacity.

2.1. Green energy. We will use the following formula which relates the Green
energy with a Dirichlet integral:

(2.1)

∫∫
GD(x, y)dµ(x)dµ(y) =

1

2π

∫
D

|∇UD
µ (x)|2dx,

where

UD
µ (x) =

∫
GD(x, y)dµ(y)

is the Green potential of a measure µ with compact support on D; (see [5, p. 97]).
From the boundary behavior of the Green potential of the Green equilibrium
measure and (2.1) it follows that

(2.2) Cap(D, K) =
2π

I(D, K)
.
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2.2. Lindelöf Principle. Let f be a non-constant holomorphic function on
a Greenian domain D such that f(D) is Greenian. We denote by n(x) the
multiplicity of f at x ∈ D and by

v(u) =
∑

f(a)=u

n(a)

the valency of f at u ∈ f(D). If p is a positive integer, we will say that f is
nearly p to 1 if v(u) = p for nearly every u ∈ f(D). The following inequality is
known as the Lindelöf Principle (see e.g. [3])

(2.3) Gf(D)(u0, f(x)) ≥
∑

f(a)=u0

n(a)GD(a, x),

where x ∈ D and u0 ∈ f(D). If equality holds in (2.3) for a point x ∈ D, then it
holds for every point in D. Following [3, p. 447], we will denote by BL1 the class
of holomorphic functions for which equality holds in (2.3) for a point u0 ∈ f(D)
and for every x ∈ D. We will need the following result for the valency of a BL1

function.

Theorem 2.1. [3, p. 469] Let f be a non-constant holomorphic function on a
Greenian domain D such that f(D) is Greenian. If there exists u0 ∈ f(D) such
that equality holds in (2.3) for every x ∈ D and v(u0) = p < +∞ then f is nearly
p to 1 and v(u) ≤ p for every u ∈ f(D).

3. Condenser capacity inequality for multivalent
holomorphic functions

Let (D, K) be a condenser with positive capacity. Let f be a non-constant
holomorphic function on the domain D such that the condenser (f(D), f(K))
has positive capacity, let ν be the Green equilibrium measure of (f(D), f(K))
and let

E := supp(ν) \ f({x ∈ K : n(x) ≥ 2}).
For every u ∈ E let

Rf (u, K) := {x ∈ K : f(x) = u}.
For every u ∈ E, we denote by Nf (u, K) the cardinality of the set Rf (u, K).
Since f is holomorphic on D and K is a compact subset of D, the set {x ∈ K :
n(x) ≥ 2} has finite cardinality. We note that, since ν has finite Green energy,
it does not have point charges and therefore ν is concentrated on E.

We introduce the number

Vf (K) := min
u∈E

Nf (u, K).

From the measurable selection theorem for compact-valued multifunctions (see
[13, Corollary 5.2.5, p. 191]), there exist Borel sets Li ⊂ K, i = 1, 2, ..., Vf (K),
such that



4 Michael Papadimitrakis and Stamatis Pouliasis CMFT

• Li ∩ Lj = ∅, for every i 6= j,
• the restriction fi of f to Li is an injective Borel measurable function, for

every i = 1, 2, ..., Vf (K),
• f(Li) = E, for every i = 1, 2, ..., Vf (K).

The system of pairs (fi, Li)
Vf (K)
i=1 will be called a Vf (K)−selection of f on

L :=

Vf (K)⋃
i=1

Li.

Theorem 1. Let (D, K) be a condenser and let f be a non-constant holomorphic
function on the domain D. Suppose that (f(D), f(K)) has positive capacity and
let ν be its Green equilibrium measure. Let p = Vf (K) and let (fi, Li)

p
i=1 be a

Vf (K)−selection of f on L = ∪p
i=1Li. Then

1

Cap(D, K)
≤ 1

p

1

Cap(f(D), f(K))
−(3.1)

− 1

2πp2

p∑
i=1

∫∫ ∑
f(a)=u
a∈D\L

n(a)GD(a, f−1
i (v))dν(u)dν(v).

Equality

(3.2) Cap(f(D), f(K)) =
1

p
Cap(D, K)

holds if and only if f is nearly p to 1 on D.

Proof. We will pull back the measure ν on K p times via fi, i = 1, 2, ..., p. For
every i = 1, 2, ..., p, consider the measure

µi(E) = ν(fi(E)), Borel measurable E ⊂ Li.

Then µi is a unit Borel measure on K, i = 1, 2, ..., p. Let

µ =
1

p

p∑
i=1

µi.

Then µ is a unit Borel measure on K. From the minimizing property of the
Green equilibrium measure and Lindelöf’s Principle, we obtain

I(D, K)

≤
∫∫

K×K

GD(x, y)dµ(x)dµ(y)(3.3)

=
1

p2

p∑
i,j=1

∫∫
Li×Lj

GD(x, y)dµi(x)dµj(y)
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=
1

p2

p∑
i,j=1

∫∫
E×E

GD(f−1
i (u), f−1

j (v))dν(u)dν(v)

=
1

p2

p∑
j=1

∫∫
E×E

p∑
i=1

GD(f−1
i (u), f−1

j (v))dν(u)dν(v)

≤ 1

p2

p∑
j=1

∫∫
E×E

[
Gf(D)(u, v)(3.4)

−
∑

f(a)=u
a∈D\L

n(a)GD(a, f−1
j (v))

]
dν(u)dν(v)

=
1

p
I(f(D), f(K))

− 1

p2

p∑
j=1

∫∫
E×E

∑
f(a)=u
a∈D\L

n(a)GD(a, f−1
j (v))dν(u)dν(v).

Equality in (3.1) occurs if and only if we have equality in (3.3) and (3.4), that
is, if and only if µ is the equilibrium measure of (D, K) and f ∈ BL1.

Suppose that equality (3.2) holds. Then we obtain that the inequality (3.1) must
be equality, so f ∈ BL1, and

(3.5)

p∑
j=1

∫∫
E×E

∑
f(a)=u
a∈D\L

n(a)GD(a, f−1
j (v))dν(u)dν(v) = 0.

From equality (3.5) we obtain that {a ∈ D \ L : f(a) = u} = ∅ for ν−almost
every point u ∈ E. So v(u) = p for ν−almost every point u ∈ E. Moreover,
from Theorem 2.1, f is nearly p to 1 on D and v(u) ≤ p for every u ∈ f(D).

Suppose that f is nearly p to 1 on D. Since f is p to 1 on L, f−1(E) = L ⊂ K.

Therefore, U
f(D)
ν ◦ f is a bounded harmonic function on D \K. Since f is nearly

p to 1 on D, f ∈ BL1 (see [3, Theorem 23.1, p. 472]). Let u0 ∈ f(D) be such
that

(3.6) Gf(D)(u0, f(x)) =

p∑
i=1

GD(ai, x),

for every x ∈ D, where a1, ..., ap are the preimages of u0. From equality (3.6) and
the characterization of the regular boundary points via the Green function (see
[10, Theorem 4.4.9, p. 111]), we conclude that for every regular boundary point ζ
of D and every sequence D 3 xn → ζ, every accumulation point of the sequence
f(xn) must be a regular boundary point of f(D). Also, if Z is the set of irregular
boundary points of the open set C \ f(K), then f−1(Z) has zero logarithmic
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capacity (see [10, Corollary 3.6.6, p. 69]). Therefore, from the boundary behavior

of the Green potential of ν, we obtain that limx→ζ U
f(D)
ν (f(x)) = 0 for nearly

every point ζ ∈ ∂D and limx→ζ U
f(D)
ν (f(x)) = I(f(D), f(K)) for nearly every

point ζ ∈ K. If µK is the Green equilibrium measure of (D, K), then from the
extended maximum principle,

UD
µK

(x) =
I(D, K)

I(f(D), f(K))
U f(D)

ν (f(x)), x ∈ D \K.

Since the set {u ∈ f(D) : v(u) < p} has zero logarithmic capacity, it has zero
two dimensional Lebesgue measure. Also, the set f({x ∈ D : n(x) ≥ 2}) has zero
two dimensional Lebesgue measure, since it is at most countable. We conclude
that almost every u ∈ f(D) has exactly p distinct preimages on D. Therefore,
by (2.1) and the nonunivalent change of variables formula (see [2, p. 99]),

I(D, K) =
1

2π

∫
D\K

|∇UD
µK

(x)|2dx

=
I(D, K)2

I(f(D), f(K))2

1

2π

∫
D\K

|∇(U f(D)
ν ◦ f)(x)|2dx

=
I(D, K)2

I(f(D), f(K))2

1

2π

∫
D\K

|∇U f(D)
ν (f(x))|2|f ′(x)|2dx

=
I(D, K)2

I(f(D), f(K))2

1

2π

∫
f(D)\f(K)

∑
x∈f−1(u)

|∇U f(D)
ν (f(x))|2du

=
I(D, K)2

I(f(D), f(K))2

1

2π

∫
f(D)\f(K)

p|∇U f(D)
ν (u)|2du

= p
I(D, K)2

I(f(D), f(K))
.

Therefore, I(f(D), f(K)) = p I(D, K) and equality (3.2) follows from (2.2).

4. Condenser capacity inequality for two dimensional
quasiregular mappings

O. Martio [7] and J. Väisälä [14] proved similar inequalities for the conformal
capacity of condensers in Rn. If (Ω, C) is a condenser in Rn and F : Ω 7→ Rn is
a nonconstant quasiregular mapping, then

(4.1) Cap(F (Ω), F (C)) ≤ KI(F )

M(F, C)
Cap(Ω, C),

where Cap is the conformal capacity in Rn, KI(F ) is the inner dilatation of F
and M(F, C) is the minimal multiplicity of F on C (see [11, Theorem 10.11,
p. 57]). Also, see [4] and [12] for related results. For n = 2, we will prove a



00 (0000), No. 0 Condenser capacity under multivalent holomorphic functions 7

condenser capacity inequality for quasiregular mappings which is a consequence
of Theorem 1 and generalizes (4.1).

Let (Ω, C) be a condenser in C and let g : Ω 7→ C be a K−quasiregular mapping.
It is well known that g can be expressed as a composition of a K−quasiconformal
mapping φ on Ω with a holomorphic function f on φ(Ω) (see [6, Chapter VI]).
From Theorem 1, we obtain the following capacity inequality for quasiregular
mappings and a corresponding necessary condition for the case of equality.

Corollary 4.1. Let (Ω, C) be a condenser and let g = f ◦ φ : Ω 7→ C be a
non-constant K−quasiregular mapping, where φ is a K−quasiconformal mapping
on Ω and f is a holomorphic function on φ(Ω). Suppose that the condenser
(g(Ω), g(C)) has positive capacity and let ν be its Green equilibrium measure. Let
p = Vf (φ(C)) and let (fi, Li)

p
i=1 be a Vf (φ(C))−selection of f on L = ∪p

i=1Li.
Then

1

Cap(Ω, C)
≤ K

p

1

Cap(g(Ω), g(C))
−

− K
2πp2

p∑
i=1

∫∫ ∑
f(a)=u

a∈φ(Ω)\L

n(a)Gφ(Ω)(a, f−1
i (v))dν(u)dν(v).

If equality

(4.2) Cap(g(Ω), g(C)) =
K
p

Cap(Ω, C)

holds then g is nearly p to 1 on Ω.

Proof. Since

Cap(φ(Ω), φ(C)) ≥ Cap(f(φ(Ω)), f(φ(C))) = Cap(g(Ω), g(C)) > 0,

φ(Ω) is a Greenian domain. From the quasi-invariance of condenser capacity
under quasiconformal mappings and Theorem 1,

1

Cap(Ω, C)
≤ K

Cap(φ(Ω), φ(C))

≤ K
p

1

Cap(g(Ω), g(C))
−

− K
2πp2

p∑
i=1

∫∫ ∑
f(a)=u

a∈φ(Ω)\L

n(a)Gφ(Ω)(a, f−1
i (v))dν(u)dν(v).

If equality (4.2) holds then equality

Cap(φ(Ω), φ(C)) =
1

p
Cap(f(φ(Ω)), f(φ(C)))
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must be true and from Theorem 1 we obtain that f is nearly p to 1 on φ(Ω).
Therefore, since φ is a homeomorphism, g = f ◦ φ is nearly p to 1 on Ω.
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