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Let T = {eid: 0 < 6 < In) and L00 = L^iT), the space of all measurable essentially
bounded complex-valued functions defined on 7* equipped with the sup-norm. C(T)
is the closed subspace of L00 of all continuous functions. Also, //°°(r) is the closed
subspace of L°° of all functions which are boundary values of bounded holomorphic
functions defined in D = {zeC: \z\ < 1}.

It is well known that for every fe C(T), there exists a unique geH^iT) such that
ll/-£lleo = dist(/,#°°) = min {\\f- h || m:he if00}; see [2]. Hence the transformation of
best approximation is defined as

S:C(T) >#", S(f) = g.

The problem considered in this work is to find all continuity points of S. The
following theorem will be proved.

THEOREM 1. fe C{T) is a continuity point for S if and only if fe C(T) (1 H™.

This was a conjecture of V. V. Peller; see [4, 5]. Also see [3], for another proof of
the same and related results.

To prove this theorem, we shall make use of two lemmas.

LEMMA 1. Let fn,feC(T) (n = 1,2,3,...) and dn = \\fH-gJa = dist(fntH*>),
d = \\f-g\L = dist (/Iff00). / / 11/,-/IL - 0» then dn -> d.

Proof dn= H/.-^JL^ \\fn-g\L^ ll/n-/
d= U~g\L$ Wf-ZJL^ ll/-/nlL+ll/.-^L- Hence d^ liming.

The second lemma is an elaboration of a construction used in [1].
Let w: [0, S\ -> U, S > 0, be a continuous function with w(0) = 0, w(x) > 0, for

every xe(0,8], and
rs w(x) ,

^dx

Consider f:T-+C defined as

w(x),
ix) =leix) =; [0,

and arbitrarily defined on T\[e~iS, eiS] but continuous on T.
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Let g = S(f). Then d= \\f-g\\m > 0 and, as is well known, \Aeu)-g{eil)\ = d
for a.e. /.

LEMMA 2. Let f,g be as above.
Either (a) there is a sequence eitk -> 1 such that

in - , for all k,

\g{eitk)\->\,

or (b) there are two sequences, eiik -*• 1, eitk -> 1, such that

\g(eu'k)-g(eu'k)\^2dsm^.

Proof. Suppose that there exists <5l5 0 < Sx ^ 3, such that

Reg(eix)^ dsin- for a.e. xe[—S^S^. (1)
8

Assumef{eix) < \diox a.e. jce[ —<515<5J. This implies, since \f—g\ = da.e., that there
exists c> 0 so that

log \g(eix) I > CW(JC) for a.e. xe(0, <5J. (2)

On the other hand, (1) implies that Reg(z) ^ |^sin7r/8 for all zeD which are
close to the interval (e~iS\etSi). Hence argg(z) is well-defined and stays bounded as

This means that

constant + lhn (
e-»0 J £<\x\<5x

limargg(r)

= constant + lim iri^^i dx
e-»0 Je<x<31

 X

But, by (2), the last limit is + oo and we obtain a contradiction.
Similarly, the existence of a Sx such that Reg(eix) ^ — dsinn/S for a.e.
[—<$!, (5J gives a contradiction.
Hence there are two cases.
(a) For all 5X with 0 < dx ^ S, the set

— 31< x < dx: \Reg(eix)\ <

has positive measure.
Since \f{eix)—g{eix)\ = d a.e. and f{\) = 0, we can choose a sequence eitk -> 1 such

that

This is conclusion (a) of Lemma 2.
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(b) For all small enough dx, the two sets

— dx < x < dx:
I

and

— S1 < x < (5^ Reg(etx) ^ — dsin-

both have positive measure.
This clearly implies conclusion (b) of Lemma 2.

Proof of Theorem 1. A trivial general metric space argument shows that if
feC(T) fl //°° then/is a continuity point of S. This is based on the inequality

\\S(fn)-S(f)\\00 = ||S(/n)-/IL^ \\fn-S(fn)\\n+\\fn-f\\a<2\\fu-f\\nt

where we use that S(f) = /.
Suppose that/eC(r)\//°° and S(f) = g.
lfg$ C(T), take/n continuously differentiate on 7 with ||/n—/!!«, -• 0. By a well-

known theorem (see [1]), S(fn)eC(T) and/is not a continuity point of S.
So suppose geC(T), and without loss of generality/(I) = 0.
Consider the function w of Lemma 2.
Take intervals [ — Sn,Sn] with <5n|0, and functions <fineC(T) with the following

properties:

UJLa1-, (3)

Let/, =
Now we apply Lemma 2 to the functions/2n and —ifin+v If conclusion (b) holds

for infinitely many In, then for these In we have two sequences t'k 2n, t"k 2n -> 0 such
that

If we define B(x;f) = limE^oesssup{|7(.F)|:*-£ <y < x + e} then, by continuity
of g at 1, and by d2n -+d, we have l i m ^ ^ l ; ^ - ^ ^ dsinn/S.

Similarly, conclusion (a) of Lemma 2 for infinitely many 2n +1 implies

Hence suppose that conclusion (a) of Lemma 2 holds for eventually all n. Then
for some tk 2n -• 0 (k -* oo),

\g2n(e^n)\^d2n, (6)

( ^ - ) | < ^ 2 n s i n ^ . (7)
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Also, for some tk 2 n + 1 -> 0 (k -> oo),

+1(*
tt*.««+OI < ^2» + iSin | . (9)

Now (6)-(9) imply

as &-> oo. Thus

In all cases, continuity of g at 1 implies the existence of a sequence fn such that

lim max {£( 1; g2a -g) , 5(l;g2n+1-£)}></sin g.

This obviously contradicts ||gB—g\\x -> 0, and this is the end of the proof.

One can prove the following quantitative theorem.

THEOREM 2. Let feC(T) and g = S(f)eHco with d= \\f-g\\m. There is an
absolute constant c> 0 such that there exists a sequence fne C(T) with gn = S(fn) and
ll/n~/IL ~* 0» u m ll̂ n~ l̂loo ^ £d- The constant c can be taken as c = f sinrc/8.

Proof. In case geC(T), the proof of the previous theorem gives the result with
c = sin7r/8.

So let geH^XCCT), and take /„ continuously differentiable on T with
ll/n - / I L -> 0. Let gn = S(Jn). Then gn e C(T). Hence there exist fn< m e C(T) with

l l / n , m - / « L - 0 (W-00),

In case Em ||̂ n— g\\x > ififsin7r/8, a subsequence of/n gives the desired result.
But if Em ||̂ w— gWa < |^sin7r/8, then taking for each n a sufficiently large m (and

using dn -+ d), the sequence fnm gives the result.

REMARK. Let Am(T) be the space of boundary values of functions meromorphic
in D with at most m poles and bounded close to T. A similar transformation Sm can
be defined as

Sm(f) = g, feC(T), geAJT),

\\f-g\L = dist(f, Am(T)).

Exactly the same proof applies for the proof of the following.

THEOREM 3. fe C(T) is a continuity point of Sm if and only iffe C(T) n Am.
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