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Chapter 1

Normed spaces

1.1 Norms.

Let X be a linear space over the field F', where F' = R or F' = C.
We recall the operations:

A+B={a+blac AbeB}, z+A={z+alacA}, MM={\a|ac A}
for every A, B C X and every \ € F.

Definition. We say that the function

|-|: X =R

is a norm on X, if

@ |z =0,

(i) ||z =0 < =0,

(iii) [[Az] = |Al [,

() [z +yll < [lzll + llyll,
for every x,y € X and every A € F.

From the properties of the norm || - || we easily get
=2l =llzll, [ll=ll = llyll| <z £yl < lll + lyl

for every z,y € X.

Example 1.1.1. A trivial example of a normed space over F’ is the field F' itself with the absolute
value | - | : FF — R as a norm.

The norm || - || on X induces a metric on X, i.e. the function d : X x X — R defined by
d(z,y) = [lz -yl
for every z,y € X. This metric has the usual properties:
(ii) d(z,y) =0 & z =y,

(iif) d(y, z) = d(z,y),



(iv) d(z,z) < d(z,y) + d(y, 2)

forevery z,y, z € X.
The metric d induced by a norm as above has the additional properties

(V) d(z +y,z + z) = d(y, ), i.e. the metric is translation invariant,
(vi) d(A\x, \y) = || d(z,y), i.e. the metric is positive homogenuous.

Now as in any metric space we define neighborhoods of points, i.e. the open balls and the
closed balls

Bla;r) ={z e X ||z —all <r}, Blar)={re X|[lz—a| <r},

with center ¢ € X and radius r > 0.
Two easily proved identities are

x+ B(a;r) = B(x + a;r), AB(a;r) = B(\a; |A|r).

As in any metric space, we define the open subsets and the closed subsets of the normed space
X. The set A C X is open if for every a € A there is some r > 0 so that B(a;r) C A, i.e. if
every a € A is an interior point of A. The set A C X is closed if its complement A° = X \ A is
open.

It is well known that the special sets () and X are open and closed, that the union of open sets
is open and the intersection of closed sets is closed, and that the intersection of finitely many open
sets is open and the union of finitely many closed sets is closed.

We also have the notion of convergence of sequences in the normed space X. We say that the
sequence (x,,) in X converges to € X, and we denote this by x,, — =z, if for every € > 0 there
is ng € N so that |z, — z|| < € for every n > ng. Of course

T, =z in X & dzg,x)=|z,—2z] >0 in R.

Proposition 1.1. The linear space operations of a normed space X are continuous, i.e.
() ifx, > xandy, = yin X, then x, + y, —  + y in X.
(ii) if xtp, — xin X and A, — \in F, then \,z,, — Az in X.

Proof. These two properties are implied by the inequalities
[(@n +yn) — (@ +y)l| < [lon — [ + llyn =yl

[Anzn — Az|| < [An| |7 — 2| + [An — Al [[2]].

O
Proposition 1.2. The norm of a normed space X is continuous, i.e. if x,, — x in X, then ||z, | —
|z|| in R.
Proof. This is implied by the inequality ]||xn\| - HxH] < lzp — x| O

Proposition 1.3. Let X be a normed space and Y be a linear subspace of X. Then cl(Y'), the
closure of Y in X, is a linear subspace of X.

Proof. Leta,b e cl(Y)and \,x € F.

There are sequences (ay,), (by,) € Y so that a,, — a and b,, — b. By the continuity of the linear
space operations, we have that Aa,, + kb, — Aa + kb. Since Aa,, + kb, € Y for every n, we get
that Aa + kb € cl(Y).

So cl(Y) is a linear subspace of X. O



Proposition 1.4. Let X be a normed space.
(i) If A C X is open (closed), then x + A is open (closed).
(ii) If A C X is open (closed) and A # 0, then \A is open (closed).

Proof. (i) Let A be open. We take any b € x + A and then b — x € A. So there is » > 0 such that
B(b— x;r) C A, and then

B(b;r)=x+ B(b—x;r) Cx+ A.

Therefore x + A is open.

Now let A be closed. We take any sequence (by,) in « + A and we assume that b, — b. Then
(b, — ) isasequencein Aand b, —z — b— 2. Thusb—z € Aandsob € = + A.

Therefore x + A is closed.

(ii) The proof is similar. O

As in any metric space we have the notion of compactness for subsets of a normed space
X. We say that K C X is compact if every open covering of K has a finite subcovering of K.
This means that if K C J acA A, where every A € A is an open subset of X, then there are
Ai,..., A, € Asothat K C |J;_, Ay.

We know that K’ C X is compact if and only if every sequence in /& has some subsequence
which converges to an element of K.

We also know that every compact subset of X is closed and bounded (i.e. it is contained in
some ball). In general, the converse is not correct.

1.2 Holder and Minkowski inequalities.

Holder’s inequality for sums. Let p,q > 1 and % + % = 1, and let A, kg > O for every k € N.
M) IFS 12N < +ooand 312 ki < 400, then

Z)\kfik< (Z)‘p) /p<kz )1/q'

k=1

(i) If 31425 A < 400 and supy, ki < 400, then
—+00 —+00
Z /\klﬁlk < (Z)\k> Sup K.
k=1 k=1 k

Proof. (i) We observe that the function f(t) = 1 S+ l t has minimum value f(1) = 0 in
[0, 4+00). Le. t < 1tp+ 1 ; forevery ¢ > 0. Weuset = / and we get

1 1
Ak < =W 4 — g1
p q

for every A, k > 0.

IS0 )\p 725 K = 1, then, using the last inequality, we get
SIS
)\k/‘ﬁkS* )\z Iik—* *:1
k=1 P4 q
If0 < > /2 A < +ooand 0 < 372 ki < 400, then we set
X NP X N\ Va
=(2%)" B=(2+)
k=1 k=1



and we observe that 375 (2)” = 3727 (%)? = 1. Hence
ZAW = ABZE@ < AB.

If one of >°% Aos Sk . is equal to 0, the inequality of (i) is obvious: it becomes 0 < 0.
(ii) This is trivial. O

If p = q = 2, Holder’s inequality for sums is usually called Cauchy’s inequality.
If p,g > 1and 119 + % = 1, then p, q are called dual exponents. Since +%.o =0, the 1, +o0 are
also dual exponents.

Minkowski’s inequality for sums. Let p > 1, and let i, ki, > 0 for every k € N.
W) IfS 129N < +ooand 3125 kP < 400, then

(§(Ak+l€k ) <Z)\p) (ini)vp

(ii) If sup;, A\, < +o00 and sup,, Kk < +o0, then
sup(Ag + ki) < sup Ag + sup K.
k k k
Proof. (i) The inequality of (i) is an obvious equality when p = 1.

Now we take p > 1andq_p 1,andsof+f—1
Since 3720 AP < 400 and 3010 k) < 400, we get

+o0 “+oo “+oo
Z()\k + rg)P < 2071 Z)\i +2r71 Z Kjp < +00.
k=1 k=1 k=1

For the last inequality we used the trivial inequality
(A + k)P < 2P7H(\P 4 kP)

for A, k > 0, which can be proved using the convexity of the function ¢ in [0, +00). Then

“+00 “+00
Z()\k‘i‘l‘ik)p:zo\k‘f'ﬁk)(/\k‘i‘ﬁk Z)\k /\k—i-/ik -l-ZHk )\k—i-lik) -1
k=1 k=1 k=1

and, using Hoélder’s inequality for sums,

= X\ IR = 1/q
D (k4 rR)P < (ZAZ) (Z(Alﬂr/@k ) (Z ) (Z k»+/€k;)p) :
=1 =1 =1

k=1

If 3720 (Ag + k)P > 0, we divide the last inequality with ( S°725 (Ag + #,)P) Y% and we finish
the proof. If Z 21 (A + kg )? = 0, then the inequality of (i) is trivial: 0 < 0 + 0.
(ii) Trivial. O

Holder’s inequality for integrals. Let p, g > 1 and % +L1 =1 Let (Q, 3, ) be a measure space,
and f,g € M(Q,X) (i.e. f,gare ¥X-measurable in ) with f,g > 0 p-a.e. in €.
WD If [ [P dpu < +ooand [, g? dp < +o0, then

/g;fgdﬂg </prd/‘)l/p</ﬂquu)l/q~

(i) If |, f dp < 400 and ess-supg, g < 400, then

/Qfg dp < (/Qfdu> ess-supg, g-.
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Proof. If [, f?dp = [, g% dp = 1, then, using the inequality Ax < %D AP+ % k9, we get

1 1 11
/fgduﬁ/f”dﬂJr/quM:Jr:L
Q P Ja qa Jq P q

If0 < [, fPdu < +ooand 0 < [, g7 dp < 400, then we set

A= (fran)". = (fata)”

and we observe that [, (4)” du = [, (%)?du = 1. Hence

fyg
/Qfgdu AB/QABd,u_AB

If one of fQ fPdu, fQ g?dy is equal to 0, the inequality of (i) is obvious: it becomes 0 < 0.
(ii) Trivial. O

If p = ¢ = 2, Holder’s inequality for integrals is usually called Schwarz’s inequality or
Buniakowsky’s inequality.

Minkowski’s inequality for integrals. Let p > 1. Let (2, X, i) be a measure space, and f,g €
M(Q,X) (ie. f,gare X-measurable in ) with f,g > 0 p-a.e. in €.
(D If [ fPdp < +ocoand [ gP dp < 400, then

</Q(f+g)pd,u>1/p < (/prd,u)l/er (/Qgpdu)l/p.

(ii) If ess-supg, f < +oo and ess-supg, g < +00, then
ess-supq (f + g) < ess-supg, f + ess-supg, g.

Proof. (i) The inequality of (i) is an obvious equality when p = 1.

Now let p > 1 and g = ]%, sothat%—i— % =1.

Since [, [P dp < 400 and [, gP du < 400, using the inequality (X + k)P < 2P~ 1(A\P 4 kP), we
get

/(f+9)pd,u§2p_l/fpdu+2p_1/gpdu<+oo.
Q Q Q

Then
p — p—1 — p—1 p—1
/Q(f+g) dp /Q(f+g)(f+g) dp /Qf(f+g) du+/99(f+g) dp

and, using Hoélder’s inequality for integrals,

/Q(f+g)pdu§ (/Qf”du)l/p(/g(ﬂg)pdﬂ)l/q+ (/Qg”dﬂ)l/p(/ﬂ(f+g)”du)1/q-

If [(f + g)Pdp > 0, we divide the last inequality with ( [o,(f + g)? dp) 14 and we finish the
proof. If [,(f + g)? dpu = 0, then the inequality of (i) is trivial: 0 < 0 + 0.
(ii) Trivial. O



1.3 Subspaces, cartesian products, quotient spaces.

We shall now see three ways to produce new normed spaces from old ones. The first is to
consider a subspace of a normed space. The second is to consider the cartesian product of normed
spaces. And the third way is to consider the quotient space of a normed space over any subspace
of it.

Proposition 1.5. Let X be a normed space withnorm ||-|| : X — R, and let Y be a linear subspace
of X. Then the restriction || - || : Y — RisanormonY.
Proof. This is obvious. U

Definition. The linear subspace Y of the normed space X, equipped with the restriction on Y of
the norm on X, is called subspace of X.

We assume that X1, . .., X, are normed spaces (over the same F') with norms |- ||1, ..., |- ||m-
We consider the cartesian product X = X; x --- x X,,, and for every z = (x1,...,2py) € X =
X7 x -+ x X,, we define

(lzllf + -+ lzmllm) /P, 1< p < +oo,
[l =
max{[|lzifly, .- [[emllm}, = oo

Proposition 1.6. For every p € [1,+oo] the function || - ||, : X — R just defined is a norm on
X=Xy x---xX,.

Proof. All properties of the norm are trivially satisfied by || - ||, except for the last one, the triangle
inequality, which is implied by Minkowski’s inequality for sums. O

Definition. The norm || - ||,, just defined on the cartesian product X = X; x --- x X, of normed
spaces is called p-norm on X.

Example 1.3.1. We consider X; = ... = X,,, = Fwith|-|1 =... =] - |m = || and then we
get the cartesian product X = F' x --- x F' = F™ with the p-norm, which is defined for every
r=(A,..., ) EF XX F=F"by

lafl, = 4 PP+ PP, 1 < p < oo,
8 maX{’)‘l‘a"wp‘m’L p = +o00.
The case p = 2 gives the usual euclidean norm on F™.

Finally, we consider a normed space X and a linear subspace Z of X. We also consider the
quotient space
X/Z={z+Z|zve X}

The elements of X /Z are subsets of X: they are the parallel translations of Z.
We know from Linear Algebra (and we can easily prove) the following facts:

1. f¢e X/Z,then: { =+ 7 < z €.
2. If¢,ne X/ Z,then: ENn#D = £=mn.

.orx+Z=y+2Z & xz—ye .



Itis well known from Linear Algebra that the quotient space X /Z is a linear space with addition
and multiplication defined by

(+2)+Wy+2)=@+y)+Z, Xz+2)=(\)+Z

The zero element of X /Zis0+ Z = Z.

It is easy to show that the equality (z + Z) + (y + Z) = (x + y) + Z is not just a formal
definition; it is a true equality between subsets of X. If A = 0, then the same is true for the equality
Mex+Z)=x)+Z IfX=0,then0(z + Z) = (0x) + Z is not true as an equality between
sets: we have 0 (z + Z) = {0} and (0z) + Z = Z.

Now we define the function

I-llx/z: X/Z = R

by
1€llx/z = inf{||z[| |z € £}
forevery { € X /Z.

Proposition 1.7. If Z is a closed linear subspace of the normed space X, then the function ||-|| x /7"
X/Z — R just defined is a normon X / Z.

Proof. (i) It is obvious that [|{| x, > 0 forevery { € X /Z.

(i) If £ = Z, i.e. if  is the zero element of X' /Z, then 0 € £ and so 0 < [[{]|x,z < [|0]| = 0 and
hence [¢]1x /7 = 0.

Conversely, let ||| x/z = 0. Then there are z,, € § so that |[z,|| — 0, i.e. z, — 0. But{isa
closed subset of X, since it is a translation of the closed set Z. Hence 0 € £ andso{ =0+ 2 = Z,
the zero element of X /Z.

(iii) If A = 0, then 0§ = Z and so ||0¢||x/z = ||Z]|x/z = 0. Also, trivially |0[|{| x,z = 0. So
the equality [|0¢]|x /7 = |0][[{]| x z is correct.

Now let A # 0 and £ € X /Z. We take any x € £ and then we have Az € \¢. Therefore

IAEllx/z < Azl = [A[[lz].
Taking the infimum over all z € &, we find

1Al x/z < (A€l x ) z-
We apply this to % in the place of X and to A¢ in the place of &, and we get

1

<
el <

IAllx /2

and so
MIElx/z < 1Ml x )z

The two inequalities imply
1Al x /2 = (A€l x ) 2-
(iv)Let{,n € X/Z. We take any = € ¢ and any y € 1. Then z + y € £ + n and hence

1€+ nllx/z < llz +yll < llz]l + llyl-

Taking the infimum over all » € £ and, independently, over all y € n, we find

1€ +nllx/z < €llx/z + Inllx)z-



1.4 Banach spaces.

Definition. The normed space X is called Banach space if it is complete, i.e. if every Cauchy
sequence in X converges to an element of X.

Proposition 1.8. Let X be a normed space with norm || - ||. Then the following are equivalent.

(i) X is a Banach space.

(ii) For every sequence (z,,) in X: if S ||z || < +o0, then 3"t 2, converges to an element
of X.

Proof. Let X be complete and let :{i‘j |zn|| < +o00. We consider the partial sums s,, = z1 +
-+ -+ x,, and then for n < m we have

[8m = snll = 121+ + @l < 2nall + -+ lzm]| =0

when m,n — +oo. Thus (s,,) is a Cauchy sequence and so it converges to an element of X.
Conversely, we assume that (ii) holds. We take any Cauchy sequence () in X. Then for every
k there is nj, € N so that ||z, — 2, || < 7z when n,m > n;. We may choose nj, so that (ny,) is
strictly increasing and then ||z, , — 2p, || < # for every k. Thus

+0o0
1zl + Y sy = Tngll < +o0.
k=1

By our assumption, the series z,,, + > ;>3 (Zn, .1 — Tpn,) converges to some element x € X.
Observing the telescoping partial sums of the last series we get that z,, — x. Since (z,) is
Cauchy,

xp = (Tk —Tp,) +2p, >0+ =20

when k£ — +o0.
Therefore X is complete. O

Proposition 1.9. Let X be a Banach space and Y be a subspace of X. Then'Y is a Banach space
if and only if Y is closed.

Proof. Let Y be a Banach space. We take any sequence (y,,) in Y so that y, — y € X. Since
(yn) converges, it is a Cauchy sequence. But Y is complete, so (y,,) converges to an element of
Y. Since the limit of a sequence is unique, we get that y € Y.

Therefore Y is closed.

Conversely, let Y be closed. We take any Cauchy sequence (y,) in Y. Since X is complete,
yn — y for some y € X. Since Y is closed, we gety € Y.

Hence Y is complete. ]

Observe that in the first part of the last proof the assumption of the completeness of X was not
used. Therefore,

If Y is a complete subspace of a normed space X, then Y is closed in X.

Proposition 1.10. Let X, ..., X,, be Banach spaces with norms || - ||1,...,| - |[m. Then the
product space X = X1 x --- x Xy, equipped with any of the p-norms is a Banach space.

Proof. Let (z,,) be a Cauchy sequence in X, where z,, = (25,1, ..., Zp,m) for every n. Clearly,
for every j = 1,..., m we have

Zn; — Trjll; < llon — 21llp = 0



asn, k — +oo and so (z,,;) is a Cauchy sequence in X;. Thus z,, ; — x; for some z; € X;. We
consider the element x = (z1,...,z,,) € X and then

l2n = 2llp = ([2ns — 21|+ + [Znm — 2ml5) /P =0
when 1 < p < +0o0, and
[z — 2[00 = max{[|lzn1 — z1ll1, .., [Zpm — Tmllm} = 0

when p = 4-o0.
So X is complete. O

Proposition 1.11. Let X be a Banach space and Z be a closed subspace of X. Then X /Z is a
Banach space.

Proof. We consider ,, € X /Z so that

+o0
Z [énllx/z < +o0.
n=1

Since (€ lx/z = inf{||z||| = € &}, there is some x, € &, so that

1
[znll < lénllx/z + R

Therefore
+oo
> llznll < +oo.
n=1

Since X is a Banach space, the series Z:{i‘j T, converges to an element s € X, i.e.
1+ +Ty S

when n — +00. We considern =s+ 2 € X/Z. Thenz; + -+, €&+ -+ &, ands €
and hence (z1 + -+ x,) —s € (&1 + - - + &,) — n. Thus

[+ +&) —nllx/z < (@1 +-+x) =] =0

when n — +00. We conclude that the series Z:i’j &y, converges to an element of X /Z.
So X /Z is a Banach space. O

1.5 Linear isometries.

Definition. Let X, Y be normed spaces with norms || - ||x, || - ||y, and let T : X — Y be a linear
operator with the property

IT(@)[ly = =]l x
for every x € X. Then we say that T is a linear isometry of X into Y. It is clear that T'(z) = 0
implies x = 0, and so T' is one-to-one.
IfTisontoY,i.e. if T(X) =Y, then we say that T is a linear isometry of X onto Y. We also
say that X is linearly isometric to Y.

It is easy to see that the relation between normed spaces of being linearly isometric is an equiv-
alence relation.
A linear isometry 7' : X — Y is continuous. Indeed, if z,, —  in X, then
1T (zn) = T()lly = [T (zn — 2)[ly = l[#n —2[lx =0

and thus T'(z,,) — T(z) in Y.
If T is a linear isometry of X into Y, then we may “identify” every x € X with the corre-
sponding 7'(z) € Y and so we may “identify” X with the subspace 7'(X) of Y.

9



Proposition 1.12. Let X be a normed space with norm || - ||x, let Y be a linear space and let
T : X — Y be a linear operator which is one-to-one in X and onto Y. Then there is a norm on
Y so that T becomes a linear isometry of X onto Y.

Proof. We take any y € Y, we consider the unique 2z € X so that T'(x) = y, and we define

lylly = llzllx-

We can easily prove that the function || - |y : Y — R just defined is a norm on Y.
Of course, since T'(xz) = y, the equality ||y||y = ||z||x can be written || T(x)|ly = ||z||x and so
T is a linear isometry of X onto Y. U

In other words, when we have two isomorphic linear spaces and one of them has a norm, then
we can transfer this norm to the other linear space so that the two spaces become linearly isometric.

Example 1.5.1. Let X be a linear space of finite dimension and let {b1,...,b,,} be a basis of X.
We consider the normed space F'"" with any of the p-norms || - ||, 1 < p < 4-00. We also consider
the linear operator 7" : "™ — X defined for every (A1,...,\y,) € F™ by

T(>\17-~7)\m) =Mb1+ -+ A

Then T is one-to-one in /" and onto X, and so the p-norm on F™ can be transfered to a norm
| - |l - X — R. This norm is defined for every x = A1b; + - - - + Ay, by, € X by the formula

[zllp = 1Ak + -+ 4+ Ambmllp = [T (A1, -5 Am)lp = (A, -5 Am) [l
_ 0P )P 1 <p < oo,
max{|Ai],...,|Am|}, p = +00.

The norm || - ||, on X just defined is called p-norm on X with respect to the basis {b1, ..., bpy}.
Of course, if we change the basis of X, then we shall get a different norm on X: the coefficient
m-tuple (A1, ..., A\,,) of any z € X depends on the basis.

1.6 Equivalent norms.

Definition. Two norms || - || and ||| - ||| on the same linear space X are called equivalent if there
are constatns ¢, C' > 0 so that
cllz) < ]l < Cll]

for every x € X.

Proposition 1.13. Let || - ||, ||| - ||| be two norms on the linear space X . The following are equivalent.
(i) The norms are equivalent.
(ii) For every sequence (x,,) in X: |||z, || — 0 if and only if ||z, || — O.

Proof. Assume that the two norms are equivalent, i.e. that
cllzf] < [lz(l} < Cl]]
for every x € X, and let ||z, || — 0. Then
lzalll < Cllznll =0

and hence |||z, ||| — 0. In the same manner, if |||z, ||| — 0 we get that ||z,| — 0.
For the converse we assume that there is no ¢ > 0 so that ¢||x|| < |||«||| forevery 2z € X. Therefore,
for every n € N there is z,, € X so that 2|z, || > ||z |||. We consider the elements

1
Yn = 77— Tn
(e

10



for which we have )

=1, < -
lonll =1, Mgl <

Then |||y, ||| — 0 but ||y,|| # 0, and we get a contradiction to (ii). In the same manner we get a
contradiction to (ii) if there isno C' > 0 so that |||z||| < C||z|| for every x € X. O

So we see that, if two norms on the same linear space are equivalent, then a sequence (z,,)
converges to x with respect to one of the norms if and only if (x,,) converges to = with respect to
other norm.

Assume again that the norms || - || and ||| - ||| on the same linear space X are equivalent, i.e.
they satisfy c||z|| < |||z]]] < C||z|| for every z € X. If B(a;r) is a ball with respect to the norm
|| - || and D(a;r) is a ball with respect to the norm ||| - |||, then

D(a;cr) € B(a;r) C D(a; Cr).

Therefore, if a set A C X is open with respect to one of the norms, then A is open with respect
to the other norm. Since the closed sets are the complements of the open sets, the same is true for
closed subsets of X. And, since the notion of compact set depends solely on the notion of open
set, the same is true for compact subsets of X. Finally, if a set A is contained in a ball with respect
to one of the norms, then it is contained in a ball with respect to the other norm.

In other words, equivalent norms define the same convergent sequences (with the same limits)
and the same open, closed, compact, and bounded sets.

1.7 Finite dimensional normed spaces.

Proposition 1.14. Let X be a linear space of finite dimension. Then every two norms on X are
equivalent.

Proof. Let {by,...,by,} be a basis of X. We consider the 2-norm on X defined for every z =
Aby + -+ Ay, € X by

lzllz = (1Al + -+ )2,

We shall prove that every other norm || - || on X is equivalent to || - ||2.
Initially, for every x = A1b1 + - -+ + Anbm € X we get

lzll < Al lull -4 Pl [Bmll < (NoL1P -+ 1022 (AP -+ A 2) 2 = Ol

where C' = (||by||? + - - - + ||bm||?>)*/%. The second inequality above is Cauchy’s inequality.
Now assume that there is no ¢ > 0 so that ¢||z||2 < ||z|| for every x € X. Then, as in the proof of
proposition 1.13, we see that there is a sequence (x,,) in X so that

[znll2 =1, |lzall = 0.
If x, = A\p1b1 + - - - + Ay mbm, then from the last equality we get that
Pl 4+ Pl = 1

for every n.
Since the unit sphere of F™ is a compact set, there is a subsequence (xy, ) of (z,) so that

()‘nk,h ey /\nk,m) — ()\17 ceey )\m)
for some (A,...,\y,) € F™ satisfying
AP+ A =1

11



We consider the element
.Z':Albl—l—---—i-)\mbm

of X and then we have
2y, — 2l < At = Aal[01l] + -+ + [Angm — Al [[bm ]| — 0

and
||$nk - ng = (|/\nk,1 — )\1’2 4+t ‘)‘nk,m _ /\m‘2)1/2 0.

Hence z,,, — x with respect to both norms, and so
[zll2=1, [z =0.
This is impossible. O

Proposition 1.15. Let X be a normed space of finite dimension. Then,
(i) every closed and bounded subset of X is compact.
(ii) X is a Banach space.

Proof. (i) Let {b1,...,b} be a basis of X. Besides the norm || - || on X, we also consider the
2-norm on X defined for every x = A1b1 + - -+ + Ambm € X by

lzll2 = (1Al + -+ )2,

We also consider the linear operator
T:F"— X

defined for every (A1,...,\y,) € F™ by
T()\l, .. .,)\m) =AMb1 4+ + Anbm.

As we have already observed, T is one-to-one in F* and onto X . Moreover, 1" and T are linear
isometries between F™" and X, if we consider the two spaces equipped with their 2-norms.

Now, let X C X be closed and bounded (with respect to the norm || - ||). Since every two norms
on X are equivalent, K is closed and bounded with respect to the 2-norm on X. Now, since
T : F™ — X is a linear isometry with respect to the 2-norms on F™ and X, T~ !(K) is closed
and bounded in F™. But F'™ with its 2-norm is the standard euclidean space and so 7~ (K) is
compact. Therefore K = T(T~!(K)) is compact in X with respect to the 2-norm on X. Finally,
since the norm | - || and the 2-norm on X are equivalent, X is compact in X with respect to its
original norm || - ||.

(ii) Let (x,,) be a Cauchy sequence in X. Then (x,,) is bounded, i.e. it is contained in some closed
ball B(0; 7). By (i), this closed ball is compact and so (x,,) has a convergent subsequence. Since
(x,,) is a Cauchy sequence, it is convergent. O

Proposition 1.16. Let X be a normed space and let Y be a subspace of X of finite dimension.
Then'Y is closed.

Proof. Since Y is a normed space of finite dimension, it is a complete subspace of X and hence
closed in X. O

12



1.8 Completion.

Definition. Let X be a normed space. We say that the normed space X is a completion of X if X
is complete, i.e. a Banach space, and there is a linear isometry T : X — X so that T(X) is a
dense subspace of X.

In other words, a Banach space X is a completion of X if X is linearly isometric to a dense
subspace of X.

A trivial case is when X itself is complete. Then we may consider X = X, ie. X isa
completion of itself.

Theorem 1.1. Let X be a normed space. Then there is at least one completion of X. Moreover,
every two completions of X are linearly isometric.

Proof. We shall construct a completion X of X.
We first consider the set of all Cauchy sequences in X:

X = {(zp) | (z5,) is a Cauchy sequence in X }.
Then we consider a relation between Cauchy sequences:
(xn) = (yn) if zp—y, —0in X.

This is obviously an equivalence relation in X, and so we may consider the quotient space con-
sisting of all equivalence classes:

X ={[(@n)]|(zn) € X} = X/ =
We define algebraic operations in X:

[(@n)] + [(wn)] = [(&n + )], A(n)] = [(A2a)].

(It is easy to check that these are well defined.) Thus, X is a linear space over F.
If (x,,) is a Cauchy sequence in X, then it is easy to see that (||z,]|) is a Cauchy sequence in R
and so it converges to some real number. Hence we may define a norm on X by:

l@allx = tim_za.
(Again, it is easy to check that this is well defined and that it has the properties of a norm.) So X
is a normed space.

Next we consider the linear operator

T:X—>X
defined for every x € X by
T(x) = [(z)],
where () is, of course, the constant sequence x, z, x, . . .. Itis easy to see that 7" is a linear operator,

and that 7' is a linear isometry of X into X:
7@l = @)l = tim_[l] = al.

Now, take any [(x,,)] € X and any ¢ > 0. Since (z,,) is a Cauchy sequence in X, there is ng so
that ||z, — || < € for every n, m > ng. Therefore,

1(@n)] = T(@no )l = l(@n)] = [(@no)]lle = Il(@n = 2no)lle = Um lzn — 2, || < e

13



This means that 7'(X) is dense in X. -
Finally, let (¢,,) be a Cauchy sequence in X. Since 7'(X) is dense in X, for every n there is some
T, € X so that

1
an - T(l‘n)HY < ﬁ

Then we get

[zn = @m| = [T (20 — 2m)llx = 1T (zn) = T(zm)lx
< ”T(xn) - gnHY_}_ ||€n - gmHY"'_ Hfm - T(:Cm)Hy —0

when n,m — +o0 and so (xy,) is a Cauchy sequence in X. We now consider the element { =
[(x)] of X and we get

16m = Ellx < 6m = T(@m)llx + 1T (2m) = Ellx < % + [[(@m)] = [(za)]llx

where (x,,) is the constant sequence ,,, Ty, . ... SO

& ~ €l < -+ l(em — @)l = = + 1l — zall 50
when m — 4o0.
We conclude that every Cauchy sequence in X converges to an element of X,
Now, assume that X; and X, are two completions of X. Thus there are linear isometries 7} :
X — Xjand Ty : X — X so that T1(X) and T2(X) are dense subspaces of X1 and X .
We take any &; € X 1. Then there is a sequence (z,) in X so that 7} (x,,) — &1 in X1. So (T1(z,))
is a Cauchy sequence in X1, and since 7 is a linear isometry, (x,,) is a Cauchy sequence in X.
Now, since T% is a linear isometry, (T (z,,)) is a Cauchy sequence in X 2. But X is complete, and
so there is some & € X5 so that Ts(zy) — & in X. Now, this procedure defines a function

T: Y1 — YZ
so that for every &; € X1 we have

T (&) = &

Taking this procedure backwards from an arbitrary &, € X5 to & € X we see that 7T is one-to-
one in X; and onto Xs. It is also easy to check that 7" is a linear operator, and that it is a linear
isometry

1Tl = leals, = lm_[Ta(en)ly, = lm = lm [T, = 6,
Therefore, X1 and X5 are linearly isometric. O

1.9 Sequence spaces.

Definition. We define the following spaces whose elements are sequences in F':

¢ = {(M\x)| (\x) converges in F'}
C():{()\k)’)\k—}() in F}
1°° = {(Ax) | (\) is bounded}

+00
P = {()\k) ) ; |AklP < +oo}, 1 <p<+o0.
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The algebraic operations in all these spaces are defined component-wise as usual:
(M) + (k) = M + Re)y A(Ag) = (AAg).

These operations are well defined in these spaces, since if (\x), (k) are convergent, or convergent
to 0, or bounded, then (\; + ki), (A\x) are also convergent, or convergent to 0, or bounded.
Regarding the last space, we observe that if (\;) € [P, ie. if > 77, [Ax|P < +oo, then

“+o00 400
ST = AP AP < +oo
k=1 k=1

and hence (A\\;) € IP. Alsoif (A1), (ki) € 1P, ie. if 3725 AP < +ooand 3129 [wpl? < +oo,
then, as we saw in the proof of Minkowski’s inequality for sums,

+oo +oo +oo +oo
Z |Ax 4wl < Z(P\k! + [g])P < 2P Z |AplP +2p71 Z |kk|P < +o0,
k=1 k=1 k=1 k=1

and hence (A + ki) € IP.
Thus all these sequence spaces are linear spaces over F'.
We have the obvious inclusions

PCcyCecCl™.

We can also prove that
PCl ifl1<p<qg<+oo.

Indeed, if (A\g) € [P, then A\ — 0, and so there is kg so that |\;| < 1 for every & > kq. Then
+o0 +oo
DTS Y P < 4o,
k=ko k=ko

and so (\g) € 19.

Definition. If 1 < p < +o00, we consider the function || - ||, : I’ — R defined for every x = (\;) €
P by

Iz, = (212(1) ’/\k\p)l/p7 1<p<+oo,
b=
supy, [ Akl, p = +00.

Minkowski’s inequality for sums implies that || - ||,, is a norm on [?; it is the p-norm of (7.
Theorem 1.2. If 1 < p < 400, then [P with the norm || - ||,, is a Banach space.

Proof. We consider the case 1 < p < 4o0.
We take a Cauchy sequence () in IP. If z,, = (A, 1) for every n, then for every k& we have

Ak = Aml < 2 — 2mllp — 0

when n, m — +oo. Since F'is complete, for every k there is \;, € F' so that A, , — A\, when
n — +o0o, and we consider the sequence

x = (Ag)-

We take ng so that ||z, — x,||, < 1 for every n,m > ng. Then for every K and every n > ng
we get

K 1/p = 1/p
(D2 ) ™ < (D2 Aasl?) ™ = lzally < o = agllp + l2nllp < 1+ |zl
k=1 k=1
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Taking the limit first when n — 400 and next when K’ — +o0, we find
+o00 1/p
(D Iwl?) ™ < 1+ flanglp < +o00
k=1

and so x € [P.
Now we take any ¢ > 0 and a coresponding ng so that ||z,, — z,,||, < € for every n,m > ny.
Then for every K and every n, m > ng we get

K
(Z |)\n,k - )\ch
k=1

Taking the limit first when m — +oco and next when K' — +o00, we find

1/p B 1/p
p) < (Z|)‘n7k_)\m,k|p> = Hxn—xmnp <€
k=1

+o0o 1/p
o = 2llp = (3 g = M) " < e
k=1

for every n > ng. Thus x,, — x in [P,
Finally, let p = 400 and consider a Cauchy sequence (z,,) in {*°. If 2,, = (), ) for every n, then
for every k£ we have

Ak — Amkl < 12n — Tl — 0

when n, m — +4-00. Again, since F' is complete, for every £ there is A\;, € F'so that A\, i, — A
when n — +o00. Define

We take ng so that ||z, — Zp|lec < 1 for every n,m > ng. Then for every k and every n > ng
we have

|)‘n,k:| < znlloo < |l2n — xnoHoo + ”xnoHoo <1+ ||xnoHoo'
Taking the limit when n — +o0, we find
Akl < 14 |z lloo < +00

for every k, and so x € [*°.
Now we take any € > 0 and a coresponding 7 so that ||z, — z,,||cc < € for every n,m > ny.
Then for every k and every n, m > ng we get

Ak — Amk| < J2n — Zmlee <€
Taking the limit when m — +oo, we find
Ak — A <€
for every k and every n > ng. Thus ||z, — z||oc < € for every n > ng and so z,, — zin (. O

Now c and ¢y are linear subspaces of [*°, and so they are normed spaces equipped with the
restriction of the norm || - || on each of them.

Theorem 1.3. The spaces c, ¢y with the norm || - || are Banach spaces.

Proof. Since [*° is a Banach space, it is enough to prove that c, ¢ are closed in [*°.
Let (x,,) be a sequence in ¢ and z,, — x in [*°. Let z,, = (A, 1) for every n, and x = (\y).
For any € > 0 there is ng so that ||z,, — x|« < € for every n > ng. Then for every k we have

[Ano .k = Akl < [, — 2lloo <€
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Since (\p, k) is a Cauchy sequence in F', there is kg so that | \,,, k — An, 1| < € forevery k,1 > k.
Then
M = Ml < Ak = Ang kel + [Ang ke — Angl + [Anga — Ail < 3e

for every k,l > kg. Therefore x = (\y) is a Cauchy sequence in F' and so it belongs to c.
Now let (z,,) be a sequence in ¢y and =, — x in [*°. Let x,, = (A, 1) for every n, and z = (\).
For any € > 0 there is ng so that ||z, — x|l < € for every n > ng. Then for every k& we have

Anoke — Akl < J|@n, — 2|oo <€
Since A, — 0 when £ — +o0, there is kg so that |\, x| < € for every k > k. Therefore,
IAk| < [Ae — Mg el + | Ang el < 26
for every k > kg, and so x € cg. O

Definition. We define the sequence space
coo = {(A\x) | A\ = 0 after some value of k}.

It is obvious that ¢ is a linear subspace of all previous spaces c, ¢y, and [P, 1 < p < +o00. So
in each of these spaces cq is a subspace when we consider the norm of the space restricted to cqg.

Proposition 1.17. ¢y is a dense subspace of each of the spaces cg, and [P, 1 < p < +o0.

Proof. We take any = € cg, with z = ()\g), and any ¢ > 0. Since A\, — 0, there is kg so that
|A\k| < € for every k > ko. Now we take the sequence y = (ky), where k;, = A for k < kg, and
ki = 0for k > ko. Then y € cgg. Also, ki — A\, = 0for k < kg, and ki — A\, = — A for k > k.
Then

1y — @[loc = sup [k — Ak[ = sup [Ax| <

k k>ko

So ¢ is dense in ¢g.
Now let 1 < p < +00 and take any x € I7, with = (\), and any € > 0. Since 377 |\iP <
+00, there is kg so that sz’% |A\k|P < €P. Now, as before, we take the sequence y = (kj), where
K = A for k < ko, and k, = 0 for £ > kg. Then y € cog. Also, ki — A\, = 0 for & < ko, and
K — A\, = — g, for k > kq. Therefore,

ly — =z, = (io |kK — )\k\p)l/p = ( io \)\k|p)l/p <e.
k=1

k=ko
So ¢q is dense in [P, ]

The space cgp with the norm || - || is certainly not complete. To see this we consider any
element z of ¢y \ ¢gp. For example, we may take x to be any sequence in F' which converges to
0 and whose terms are all # 0. Since ¢ is dence in ¢y, there is a sequence () in cgo so that
xn, — x in ¢g. Then (z,,) is a Cauchy sequence in ¢y and hence in ¢ (since the two spaces have
the same norm) but it does not converge to an element of cqg.

In this case, ¢y is a completion of ¢gg with the norm || - |-

With exactly the same argument, we see that co with the norm || - ||, is not complete, and that,
in this case, {? is a completion of cyy with the norm || - ||,..
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1.10 Function spaces.

1.10.1 Bounded continuous functions.

Definition. We consider the space of all bounded functions f : A — F, where A is any non-empty

set:
B(A)={f|f:A— F isboundedin A}

If f, g are bounded in A and A € F, then f + g, Af are also bounded in A. So B(A) is a linear
space over F.

Definition. We consider the function || - ||, : B(A) — R defined for every f € B(A) by

[[fllu = sup{[f(a)| |a € A}

It is easy to see that || - ||,, is a norm on B(A); it is called uniform norm on B(A).
If f, — fin B(A), we say that ( f,,) converges to f uniformly in A.

Theorem 1.4. B(A) with the uniform norm is a Banach space.

Proof. Take (f,)in B(A) so that || f,, — fm|/w — 0 whenn,m — +oco. Then for every a € A we
have

[fnla) = fm(a)| <[l fn = finllu =0

when n, m — +o00, and so the sequence (f,,(a)) converges to some element of F'. We consider
f A — F defined for every a € A by

We consider ng so that || f, — fn||lw < 1 for every n,m > ng. Then for every a € A and every
n > ng we have

[fnl@)| < [ fnllu < 10 = Fuollu + [ fnollu <14l frgllu-

Taking the limit when n — +o0, we find

[f(@)] < T+ fnollu

foreverya € Aandso f € B(A).
Now we take any € > 0 and then there is ng so that || f,, — fim|l. < € for every n,m > ng. Then
for every n, m > ng and every a € A we have

[fn(@) = fm(@)| < [Ifn = fullu <€

Taking the limit when m — +o0, we get

[fula) = f(a)] <€
forevery n > ng and every a € A. So || f,, — f||lu < eforeveryn > ng,ie. f, — fin B(A). O

Definition. We consider the spaces of all continuous and of all bounded and continuous functions
f A — F,where A is any non-empty subset of a metric space or, more generally, of a topological
space:

C(4)
BC(A)

{f|f:A— F iscontinuous in A},
B(A)NC(A) ={f|f:A— F is bounded and continuous in A}.
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It is clear that both spaces are linear spaces and that BC'(A) is a linear subspace of B(A).
Therefore, we may consider the restriction on BC(A) of the uniform norm || - ||, on B(A), and
then BC'(A) becomes a subspace of B(A).

Theorem 1.5. Let A be a topological space. Then BC(A) with the uniform norm is a Banach
space.

Proof. It is enough to prove that BC(A) is a closed subspace of B(A).
We take any sequence (f,,) in BC(A) so that f,, — f for some f € B(A). We take any a € A
and any € > 0. Then there is ng so that

Fa®) = FO) < 1fu = fllu < 5

for every n > ng and every b € A. Since f,,, is continuous at a, there is some open U C A so that
a € U and

€
o 8) = fun(a)] <
for every b € U. Then

£(6) = F(@)] < 1£5) = Fuo )] + [ Fug () = fug(@)] + | frol@) = fl@)| S 5+ 5+ 5 =

forevery b € U. So f is continuous at any a € A. O

1.10.2 Measurable functions.

Now we consider any measurable space (€2, ), i.e. any non-empty set {2 and a o-algebra ¥ of
subsets of 2. We also consider the set of all functions f : 2 — F which are measurable with
respect to >

M(Q) = M(Q,2) ={f|f:Q— F is measurable with respect to X}.

Since the sum of measurable functions and the product of a number and a measurable function
are measurable functions we see that M (£2) is a linear space over F.

Now we also consider a measure £ on ¥, i.e. a measure space (£2, 3, i¢). As in the basic theory
of Measure and Integration, we consider equal every two functions in M (€2) which differ only in
a set of y-measure equal to 0.

Definition. We define the function spaces
L>(Q) = L2, 2, 1) = {f € M(Q)| f is essentially bounded in Q},
D) =@ = {f e M@| [ |fPdu<roc}. 1<p< o
Q

It is easy to see that the sum of essentially bounded functions and the product of a number and
an essentially bounded function are essentially bounded functions. Hence L°°(£2) is a linear space
over F'.

Regarding the space LP(2) with 1 < p < +o00, we have that, if f € LP((2), then

/ N / P dy < o0
Q Q

and hence \f € LP(Q). Also, if f,g € LP(Q2), then, as we saw in the proof of Minkowski’s
inequality for integrals,

/Q|f+g|pdu§2p_1/Q|f|pdu+2p_1/Q|g|pdu<+oo,

andso f + g € LP(2).
Therefore, the space LP(£2) is a linear space over F'.
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Definition. If 1 < p < +o00, we consider the function || - ||, : LP(Q2) — R defined for every
fe LP(Q) by

(Jo lFIPdu)?, 1< p < +oo,
11l =
ess-supg | f|, p = +o0.

Minkowski’s inequality for integrals shows that || - ||, is a norm on LP(£2); it is the p-norm of
LP(Q).

Theorem 1.6. L”(2) with the p-norm is a Banach space.

Proof. We first consider the case 1 < p < 4o0.

We take a sequence ( f,,) in LP(£2) so that || f,, — fm ||, — 0 when n, m — +o0.

For every k € N there is ny, so that || f,, — fillp < 2% for every n, m > nj. We may assume that
(n) is strictly increasing and so we have || fp, ., — fa, | < 2% for every k.

We consider the function

Sk = ‘fn1| + |fn2 - fm‘ +eeet |fnk - fnk—1| € Lp(Q)v

and we have that

1/p
(lfﬂm) = llswllp < Wfuallp + Mo = Sasllp + = + Mo = Fus

1 1
< HmeeriJF”'JFF <[ faullp + 1.

Since (sy) is an increasing sequence of non-negative functions, the monotone convergence theorem
implies that the function S = limg_, ;o sk : © — [0, +o0] satisfies fQ SPdy < +o0o. Hence,
S(z) < 400 for p-a.e. x € Q and so the series f,,, (x) + 3725 (fo, (¥) — fa,_, (z)) converges
absolutely for p-a.e. = € ). Therefore the limit

lim (fn1 (‘T) + (fnz (SC) - fnl (x)) +ee (fnk(x) - fnk—l(x))> = lim fnk(x)

k——+o0 k——+o0

exists in I for p-a.e. x € (0.
Now we consider the function f : {2 — F' defined for u-a.e. z € € by

flx) = lirnOO frp ().
We have

| far @)7 = | f (@) + (fag (%) = fn (@) + -+ (fa (2) = frey (@))]7 < sw(2)P < SP(2)

for p-a.e. x € Q, and hence | f|P < SP p-a.e. in Q. So

/|f|pd,u§/5’pdu<+oo,
Q Q

and thus f € LP()). Moreover, the dominated convergence theorem implies that

» 1/p
e =7l = ([ Ve = S d) =0
when & — +o0. Finally, since ( f,,) is a Cauchy sequence,

1 = Fllp < 1fx = faillp + [, = fllp = 0
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when k — +o00.
Now let p = 400 and take a Cauchy sequence ( f,,) in L>°(€2).
Considering the union of countably many appropriate sets of y-measure equal to 0, we see that

for p-a.e. = € Q and every n, m. Therefore, lim,,_, o fn(x) exists in F for u-a.e. x € Q. Now
we consider the function f defined for p-a.e. x € Q by

For any € > 0 there is ng so that

[fn(2) = fm(@)] < 1 fn = fmlloo <€

for p-a.e. © € Q2 and every n, m > ng. Taking the limit when m — +o0, we find that

[fn(z) = f(z)] < e

for py-a.e. x €  and every n > ng. Therefore ||f,, — f||c < € for every n > ng, and so f, — f
in L(€Q). O

A special case of the above is when {2 is a topological space. In this special case we may
consider X to be the smallest o-algebra which contains all open subsets of 2. This o-algebra
is denoted B(£2) and it is called o-algebra of the Borel subsets of (2. Since 5(f2) is a o-algebra
which contains all open subsets of €2, it also contains all closed subsets of €2, as well as all countable
intersections of open subsets of €2 and all countable unions of closed subsets of 2. The elements
of B(£2) are called Borel subsets of (2.

A measure p on 5(€2) is called Borel measure in 2. If 4 also satisfies 1 (K) < +oo for every
compact K C (, then it is called locally finite Borel measure.

Every continuous function f : 2 — F' is measurable with respect to B(£2). So if 4 is a Borel
measure in {2, we may consider the subset

CYNLPQ) = {f ‘ f:Q — F continuous in ) with / |fIPdu < +oo}
Q

of LP(Q2), which consists of all functions which are continuous and p-integrable in 2. Then C'(©2)N
LP(Q) is a subspace of LP(£2), and it is well known that C'(€2) N L”(€2) is dense in L?(€2). In other
words, LP(€2) is a completion of C'(2) N LP(2).

1.10.3 Differentiable functions.

Let U be an open subset of R? and let f : U — F. We take any multi-index o = (a1, . . ., og) € Nd
with length || = a1 + - - - + oy, and we consider the derivative of order |a| at any = € U:

N olelf olel ¢
D2 f(x) = oo T Ozt - - dxy? v

Definition. For every k € N U {+o00} we define the space
CH(U) = {f|f:U — F has continuous derivatives of order < k in U}.

We also define CO(U) = C(U).
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It is clear that all C*(U) are linear spaces over F, and that
C(U) c ck(U) c clu) c c(U)

for every k,l € Ng with k& > 1.
In the following we consider 1 to be the Lebesgue measure in U € R? and when we write
LP(U) we consider U with the Lebesgue measure m.

Definition. If £ € Ny and 1 < p < +00, we define the space
CrPP(U) = {f € C*(U) | D*f € LP(U) when |a| < k}.
If k € Ny and p = 400, we define the space
Ch(U) = {f € CKU) | D*f € BC(U) when |a| < k}.

Definition. Let k € Ny and 1 < p < +o00. We consider the function || - ||, : C*P(U) — R defined
for every f € C*P(U) by

/1y = {(Z'“’“ Jy 1D dm) 7, 1< p < oo,
S DS 123 b oo,
Of course, when we write || - ||,, we mean the uniform norm on BC(U).
Proposition 1.18. The function || - |1, : C’“’(U) — R is a norm on Ck,p(U)'

Proof. Let 1 < p < +00. Then, using Minkowski’s inequalities for sums and integrals, we get

1f + gllkp = ( > /U‘D@f—i—Dag‘Pdm)l/p

| <k

< (X [(f rswram)™ ( 10gpan) 1)
= ( Z /U‘Daf!pdm>1/p+ ( Z /U’Dag\pdm)l/p

lo| <k lo| <k
= [lfllep + lglk,p-
All other properties of the norm, as well as the case p = +0o0, are straightforward. O

Theorem 1.7. C*°°(U) is a Banach space.

Proof. If k = 0, then C%*°(U) = BC(U) and we already know that this is a Banach space.
So we take k > 1 and we consider a Cauchy sequence (f,,) in C*>°(U), i.e.

> D% fn = D* finllu — 0

lo| <k

when n, m — 4o00. Then for every o with || < k we have that | D*f,, — D fy,||, — 0 when
n,m — +oo, and so (D f,,) is a Cauchy sequence in BC'(U). Therefore, there is f, € BC(U)
so that D f,, — f, uniformly in U.

We take any = (x1,...,2;,...,24) € U and a small A € R so that the linear segment with
endpoints z and « + he; = (x1,...,2;+ h,...,z4) is contained in U. Then for every n we have
hafn
(@i, .oz +hoooxg) = faln, o xg, . 2g) = %(xl,...,:vj—i—t,...,md)dt.
0 J
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Because of uniform convegrence, when n — +oo the left side of this equality converges to

f(07---70) (1’1, RN i h,..., :L‘d) — f(07...70) (1‘1, ey Ty ,l‘d)

and the right side converges to

h
/ f(O,...,l,...,O)(xh"‘7:1:j +t7 ,.Td) dt7
0
where the 1 in the last multi-index appears at the j-th place. Thus
f(07.._70)(.%'1, s X+ h,... ,.I‘d)—f .,0) .1‘1, vy Ty ,$d)

/f 10(@, . rg L xg) dt

Since the integrated function is continuous in ¢, we may differentiate the integral with respect to h
at h = 0 and we get

9fo,..0
(%TJ)@) = f(0,..1,...,0) (x).
Therefore, if we define f = f then f(o ooy = 2 in -

In the same way, we can show mductlvely that for every « w1th |a| < k we have f, = D*finU.
Thus for every o with |«| < k we have || D® f,, — D f||, — 0 when n — +o0, and so

I fn = Fllkoo = D> IID*fn = D*fllu = 0

|| <k
when n — +o00. O

If 1 < p < +oo, then the normed spaces C*?(U) are not complete. We shall now say a few
things about the completion of each of these spaces.

Definition. Let X be a topological space and let f : X — F be continuous in X. The set

supp(f) = cl({z € X | f(x) # 0})

is called support of f.
If supp(f) is compact, then we say that f has compact support.

It is easy to see that X \ supp(f) is the largest open subset of X in which f is identically 0.

Definition. Let U C R? be open. We define the space
C(U)={f € C™(U)]|f has compact support C U}.

Lemma 1.1. Let X be a topological space, A € F and f,g : X — F be continuous in X. Then
supp(Af) C supp(f) and supp(f + g) < supp(f) U supp(g).

Proof. Trivial. O
Proposition 1.19. C2°(U) is a linear subspace of C*°(U).

Proof. From the last lemma it is obvious that, if f,g € C2°(U), then supp(Af), being a closed
subset of the compact supp( f), is a compact subset of U, and also supp( f+g), being a closed subset
of the compact supp( f) Usupp(g), is a compact subset of U. Therefore Af, f + g € C*(U). O
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If f: U — F has continuous derivatives D f in U for every a with |a| < k, then integration
by parts implies that

/ Df ¢dm = (—1)'6‘/ f D% dm
U U
for every o with |a| < k, and every ¢ € C2°(U).

Definition. Let 1 < p < +ooand f € LP(U). We say that the function f, € LP(U) is a weak
a-derivative of f in U if

/faqﬁdm:(—l)'a/fDacbdm
U U
for every ¢ € C°(U).

If a weak a-derivative of f exists, then it is unique. Indeed, if both f/,, f/ € LP(U) are weak
a-derivatives of f, then

/Uf;sbdm:(—U“'/UfD“czﬁdm:/UfZMm

and hence

/(f;—f;’wdm—o
U

for every ¢ € C°(U). This implies that f/, = f” m-a.e. in U'. Therefore, if f has derivative
D“ f in the usual sense and D* f € LP(U), then a function f, € LP(U) is a weak «a-derivative of
f if and only if f, = D f m-a.e. in U.

The weak derivatives f, are substitutes for the usual derivatives D* f whenever the function
f is not differentiable in the usual sense. We agree to denote D f the weak «a-derivative f,, even
when D? f does not exist in the usual sense.

Definition. Let k € Nand 1 < p < +oco. We call Sobolev space and denote WP (U) the set of
all functions f € LP(U) which have weak a-derivatives D f in LP(U) for every o with || < k.
We consider the function || - ||y, : W*P(U) — R defined for every f € W*P(U) by

o 1/p
I£lep = (3 [ 101 dm) ™.
jal<k 7Y
It is clear that || - ||, is a norm on W*P(U) and that C*?(U) is a subspace of W*?(U).
Proposition 1.20. W*?(U) with the norm || - ||, is a Banach space.

Proof. Let (f,) be a Cauchy sequence in W*P(U), i.e. ||fn — fmllkp — O when n,m — +oc.
Then for every a with |a| < k we have

1D fr = D fmllp < |l fn = fnllkp =0

when n,m — +o0. So, for every a with || < k we have that (D®f,,) is a Cauchy sequence in
LP(U) and hence there is some f, € LP(U) so that D f,, — fo in LP(U).

In particular, when o = (0, . .., 0) we have a function f = fq, . o) so that f,, — f in LP(U).
Now we consider any ¢ € C'2°(U) and then we have the equality

/UDafngbdm:(mla/Uan%dm

for every n. Using Holder’s inequality, with the dual exponents p and g, we have that

[ popisin= | fooim| =] [ (0f, = ) odm| < 10°5 = falhliol, 0

!This conclusion together with the fact that the space C'>°(U) is non-empty are taken for granted.
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/an%dm [ rorim| = [ (Fu= o dm| <115, = 110760, 0

when n — —+o0. Thus,
[ favdm =0l [ § D% dm.
U U

Since this holds for every ¢ € C2°(U), we have that f, is a weak a-derivative of f in LP(U), i.e.
= D*f.

So the function f € LP(U) has weak derivatives D f in LP(U) for every o with || < k. In other

words, f € WkP(U).

Finally, since D f,, — fo = D f in LP(U) for every o with |a| < k, we find that

/
= Flkn= (X [ 108 = D am) ™" = (5 10e g - 0 71p) "
la|<k la|<k
when n — +oc. Thus f,, — f in W*P(U). O

Proposition 1.21. > C*P(U) is a dense subspace of W*?(U).

Therefore the Sobolev space W*?(U) is a completion of C*?(UJ).

1.11 Measure spaces.

Let €2 be a non-empty set and ¥ be a o-algebra of subsets of {2. We recall from the basic course
on Measure and Integration that a function i : ¥ — F'is called real (if 7' = R) or complex (if
F = C) measure on ¥, if

+oo +oo
) =0, u(1J4) = n4)
j=1 j=1

for every pairwise disjoint A; € ¥, j € N. (In particular, the last series converges.) Note that a
real or complex measure does not take the values oo and co.
We define

A(Q) = A(Q,X) = {p| p is areal or complex measure on >}.

It is easy to see that, if y, v € A(Q2) and A € F, then u + v, \u € A(2). So A(Q) is a linear
space over F.

If a real or complex measure y satisfies ;1(A) > 0 for every A € ¥, then we say that p is a
non-negative real measure, and then 1 is a special case of a measure: a measure on X is a function
w2 X — [0, +o0] which satisfies p()) = 0 and p( ;r Aj) = Z; 1 (A;) for every pairwise
disjoint A; € ¥, j € N. Therefore, a measure 1 is a non-negative real measure if and only if
1() < 4o00.

Definition. Let (2, ) be a measurable space, and (. be a real or complex measure on 3. For every
A € ¥ we define

n
|| (A sup{ Z |(A ‘n e N, Ay,..., A, € X are pairwise disjoint, U Ay C A}.

m=1

Then |u|(A) is called total variation of . in A.

2We shall not prove (now) proposition 1.21. For the proof see the book “Sobolev Spaces” by Adams and Fournier.
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Lemma 1.2. Let K C C be finite. Then there is M C K, so that | Yo Al > & D ek [Al-

Proof. C is the union of
Q1 ={ | ReA>|ImA\|}, @Q2={)| ReA < —|ImA|},

Qs ={A|ImA>|Re)|}, Qs={N|Im)<—|Re}l}.
If Ay,..., An € Qq, then
1
|A1+~--+An|2Re(A1+---+An)=ReA1+---+Re>\n2E(IA1|+---+|An|).

The same is true if A, ..., A, all belong to one of @2, Q3, Q4.
Now, we split K in four pairwise disjoint subsets K1, Ko, K3, K4, so that each contains elements
of K in 1, Q2, @3, Q4, respectively. Then at least one of them, say M, satisfies

> N>y ZIM

AeM AEK

1 1 1
Al > —= A >—=> A== > [AL
‘%\;’ ﬁAEZM 4\/§§< 6Z

AEK

and so

O]

Theorem 1.8. If 11 is a complex measure on %, then |p| is a non-negative real measure on 3. In
particular, |p](Q) < +o0.

Proof. It is obvious that |u|(A) > 0 for every A € 3, and that |u|(0) =
Now let A', A2, ... € ¥ be pairwise disjoint, and A = [ J/°] A7.

We take pairwise dlSJOlDt Aq,..., A, € X with Um:l A,,, € A. We consider the A?n = AINA,,

and then .
An=\]J 4, |JA,cAl
j=1

m=1
Therefore,
n n  +oo n  +oo 400 n
S laAn)l = D3 alad)| < 30 ua)l = 303 (A, |<Z\M\AJ
m=1 m=1 j=1 m=1 j=1 j=1m=1

Taking the supremum of the left side, we get |u|(A4) < Zj:o‘f || (A7).
We take any .J, and for every j = 1,...,.J we take any \; < |u|(A7). Then there are pairwise
disjoint A7, ..., A}, € ¥ so that

U ahca, x <Y i)
m=1

m=1
Then A}, ..., A/ , are pairwise disjoint and their union is contained in A. Hence
J J ny
DN <D D (4] < Jul(4).
j=1 j=1m=1
Taking first the supremum over the Aj, ..., A; and then the limit when J — 400, we get that

S50 ul(A7) < [pl(A).
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We conclude that Z;’:ﬁ’ \u|(A7) = |u|(A), i.e. that |u| is a measure, and we still have to prove
that || () < +oc.
We assume that || (£2) = 400, and we claim that there are By, Bs, ... € 3 so that

Bi2B22B32 ..., |pl(Br) =400, [u(By)|=k-1

for every k. We take B; = () and we assume that we have proven the existence of the first
By, ..., By. Since |u|(By) = +oo, there are pairwise disjoint A1, ..., A, € ¥ so that

UA C By, Z\u m)| > 6(|u(B)| + k).

According to lemma 1.2, there are some of the Ay, ..., A,, which we may assume that they are
the Aq,..., A;, so that

l
> A (fGZw )l = |1(By)| + k.
m=1

We set S = Ulm:1 A,, C By, and then

l1(S)] > |(B)| + k.

Since |u|(S) +|p|(Bx \ S) = |u|(By) = +00, we have that either |u|(S) = oo or |p|(Bg\ S) =
+o0. In the first case we set By1 = S C By, and then |u(By41)| > |u(Bg)| + k > k. In the
second case we set Byy1 = By, \ S C By, and then |p(Bg11)| > |1(S)| — |u(Bg)| > k.
In any case we have proven the existence of an appropriate By and hence the claim.
Now we consider the pairwise disjoint A; = By \ Ba, Ay = By \ Bs, ... and the B, = z;’? By.
Then

“+o0o

H(B1) = 1(Buc) = (B \ Boc) = U An) = Y 1lAn)
- m=1
= lim 2 wAm) = dim (u(B1) — u(By))-

Therefore limy,_, o 4(Bg) = (Boo), i-e. |t(Bos)| = 400, and we arrive at a contradiction. [

Definition. If 11 is a complex measure on X, then the non-negative real measure |1 on ¥ is called
absolute variation of ;. and the number |u|(2) is called total variation of ..

Definition. We consider the function || - || : A(€2, ) — R defined for every u € A(2, %) by
el = 11 (€2)-
Proposition 1.22. || - || : A(Q,X) — R is a norm on A(Q, X).

Proof. Let ||| = 0. Then for every A € ¥ we have |u(A)| < |u|(2) = 0, and hence p(A) = 0.
Sopu=0.
Let u € A(Q,X) and A € F. We take pairwise disjoint Ay, ..., A, € ¥ and we have

Do 1O An)l = ALY [u(An)
m=1 m=1

Taking the supremum of both sides, we find || Au|| = ||| |-
Now let p, v € A(€2, X). For every pairwise disjoint Ay, ..., 4, € ¥ we have

n

Dot ) (A < Y |u(An)| + Z v (Am)| < [lpll + ]I
m=1

m=1

Taking the supremum of the left side, we get || + v|| < ||u|| + ||¥]|- O
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Theorem 1.9. A(€2, ) with the norm || - || is a Banach space.

Proof. Let (1) be a Cauchy sequence in A(€2, ). Then for every A € ¥ we have

’,un(A) - ,U/m(AN < ”,U% - Mm” —0

when n,m — +oc and so the limit lim,,_, ;  pn(A) exists in F'. Thus, we may consider the
function p : ¥ — F defined for every A € ¥ by

p(A) = lim pn(A).

n—-+o0o

Clearly, p(0) = limy,— oo pn (0) = 0.
Now we take pairwise disjoint A1, Az,... € Y and A = U 1 A;j. For every e > 0 there is ng so

that || ptr, — || < € for every n, m > ng. Since Z+ 1 Pno (A ) = Hn,y(A), there is Jy so that

J
fin(A) = 3 ting (4)] < ¢
j=1

for every J > Jy. If m > ng, then

J 400
(tna(A4) = pn(A))= 3 (pino(A43) = pmn(AD)| = | D (hino(A5) = i (45)
j=1 j=J+1
+oo
< D7 ltnol(Ay) = im(A3)] < Nty =t < .
j=J+1

Taking the limit when m — +oo we find

M&

(100 (4) = (A4)) = D (10 (A7) = 1l A4))| < €

1

<.
Il

and hence

Mk

(A ‘ < 2

j=1

for every J > Jy. Thus ZJ 1 1(A;) = u(A) and so p € A, X).

Finally, for any € > 0 we choose ng as before. We take pairwise disjoint Ay, ..., A € X, and
then for every n, m > ng we have

.

k
Z!un = b (A < [lpm = pm| < €.

We take the limit when m — 400 and we get

Zmn 4y <.

Considering the supremum of the left side, we get ||u,, — p|| < € for every n > ng. Therefore,
fn — pin A(Q,%). O

Definition. If 1 is a real measure on %, then the non-negative real measures j* = % (|p| + 1) and
poo= %(\ wu| — p) are called positive variation of 1 and negative variation of /..
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That these two real measures are non-negative follows from the definition of |x|(A): we have
|| (A) > |u(A)| for every A € X. The two identities

p=pt—pm, pl =gt 4T

are clear.
It is easy to prove for any complex measure y : ¥ — C that the functions Re g, Im o : ¥ — R
defined for every A € ¥ by

Rei(A) = Re(u(A)), Imp(A) =Im(u(A)),

are real measures on .. Also the function 7z : ¥ — C defined for every A € 3 by

i(A) = p(A),
is a complex measure on .. Moreover,
p=Repu+itImy, pw=Repu—:iImy,
|Rep| < |pf,  [Impl <[u|, |pl < [Rep|+[Impyl,
1+ pol < lpal + [p2l, 1= [pls Aul = |Al]pl.

A special case of the above is when (2 is a topological space, and X is the o-algebra 5(f2) of
the Borel subsets of (2. Then every real or complex measure on 5(2) is called real or complex
Borel measure in (2.

Definition. A real or complex Borel measure ;. on B(€2), i.e. an element of A(S2, B(2)) is called
regular, if for every A € B(2) and every € > 0 there are K,U C () so that K is compact, U is
open, and

KCACU, |p(U\K)<e.

The set of all regular Borel measures on 3(£2) is denoted
A (Q,B(2) ={p € A(Q,B()) | p is regular}.

Proposition 1.23. A,.(Q2, B(Q2)) is a linear subspace of A(2, B(£2)).
If p € A (Q,B(Q)), then |u| € A.(Q, B()).

Proof. Trivial. O

So we may consider A, (€2, B(2)) to be a subspace of A(2, B(£2)) with the total variation || - ||
as norm.

Proposition 1.24. A,.(Q2, B(2)) is a closed subspace of A(2, B(2)) and so it is a Banach space.

Proof. Let (u,,) be a sequence in A, (2, B(Q2)), and let p,, — p in A(, B(R2)).
We take any A € B(2) and any € > 0. Then there is ng so that ||x,, — p|| < €. Moreover, since
[in, is regular, there are K, U C (2 so that K is compact, U is open, and

KCACU, |un(U\K)<e.

Then
(U N\ K) < | = g (U N\ K) + g (U \ K) < = g |[(92) + | | (U \ K)
= |1t — pimg || + o (U \ K) < 2e.
Thus, p € A, (Q,B()). u
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1.12 Compact sets in infinite dimensional normed spaces.

Riesz’s lemma. Let X be a normed space, Y g X be a closed subspace of X, and 0 < t < 1.
Then there exists x € X so that ||z|| = 1 and inf,cy ||z — y|| > t.

Proof. To begin with, we observe that if ||z|| = 1 then, since 0 € Y, we have

inf ||z —y|| < ||z —0| = =1
Jof llo = yll < flo = Ol} = [

Now, we take any 2y € X \ Y and then, since Y is closed, there is » > 0 so that B(zq,r)NY = (.
This implies that

inf —yll>r>0.

inf flag —yl| = v

We denote dy = inf,cy ||zo — y|| and then there is yo € Y so that

do
7 > ||zo — yol| > do.

We set x = 72— and then ||z|| = 1. Also

lzo—yoll
O XA A B S
lzo — ol lzo — woll lzo — woll
for every y € Y. Thus, inf ey ||z — y|| > . O

We recall that for a subset A of a linear space X the set span(A), the linear span of A, is the
linear subspace of X generated by A or, equivalently, the smallest linear subspace of X containing
A or, equivalently, the set of all linear combinations of elements of A.

Proposition 1.25. Let X be a normed space with dim(X) = +oc. Then the closed ball B(0;1) is
not compact.

Proof. We take any z; € X with ||z;|| = 1. Then the subspace Y7 = span({x;}) is a one-
dimensional, and hence closed, subspace of X. By Riesz’s lemma there is x5 € X with ||z2|| =1
and infyey, ||z2 — y| > 3 and hence

A ES
-2
Then the subspace Yo = span({x1, z2}) is a two-dimensional, and hence closed, subspace of X.
By Riesz’s lemma there is 23 € X with ||3| = 1 and inf ey, ||z3 — y|| > 5 and hence

1 1
lzs —zall 2 5, llzs — 22l 2 5.
Continuing inductively, we generate a sequence (z,,) in B(0; 1) so that
7 — amll > 5
v =g
for every n, m with n # m. Obviously, this sequence has no convergent subsequence and so
B(0;1) is not compact. O

Proposition 1.26. Let X be a normed space with dim(X ) = +o00. Then every compact subset of
X has empty interior.

Proof. Let K C X be compact and assume that a is an interior point of K.
Then B(a;r) C K for some » > 0 and so B(a;r) is compact. But the function f : X — X
defined for every x € X by

fa)="(z—a)

is continuous in X and f(B(a;r)) = B(0;1). Therefore, B(0;1) is compact and we arrive at a
contradiction. So K has no interior points. O
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1.13 Series.

Definition. Let I be a non-empty set of indices and {c«; | i € I} a set of non-negative real numbers,
i.e. a; > 0 forevery i € I. We say that the series ) . _; «; converges if

S:sup{Zai

iceJ

J finite C I} < 400.

Then we also say that S'is the sum of the «;, i € I, and we write
Z Q; = S.
icl

Lemma 1.3. Let I be a non-empty set of indices and c; > 0 for everyi € 1. If ), v converges,
then the set Iy = {i € I | a; > 0} is countable.

Proof. We consider I,, = {i € I|a; > 1}, and then we have Iy = (J;>] I,. We take any finite
J C I,,, and then

1 card(J) < Zai <S.

n icJ
Thus, card(J) < n.S, and so I, is finite with card(Z,,) < nS. Therefore, I is countable. d
Definition. Let X be a normed space with norm || - || and let (x,,) be a sequence in X. We say that

the series Z:{i’i xy converges to s € X if x1 + - - -+ x, — s. Then we also say that s is the sum
of +°‘i x,, and we write

n=

+oo
>
n=1
Theorem 1.10. Let X be a Banach space with norm || - || and let {z;|i € 1} C X, where I is

a non-empty set of indices. If the series ), ; ||z;|| converges, then Iy = {i € I|xz; # 0} is
countable.

(i) If Io is finite, then ;. ; x; is just a finite sum.

(i) If card(Ip) = +oo and if {i1,4s,...} is any enumeration of Iy, then the series > 25 z;,
converges and the sum s = Z;;"l’ x;,, does not depend on the particular enumeration of Iy.

Proof. Lemma 1.3 implies that /j is countable.
(i) This is trivial.
(ii) We assume that card(lp) = +oo and that {i1,72,...} is any enumeration of ;. We also
consider the partial sums
n
Snp = Z Ly, -
k=1

Let

> llaill = 5.

iel
We take any € > 0 and then there is a finite .J C I so that

S—e<> |l < 8.

ieJ

If J' C I is finite and J N J’ = (, then

S—et ) laill <Y el + D el = Y llaill <5,

ieJ’ icJ ieJ’ ieJUJ’
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and so

D ]l <e.

ieJ’
Now, there is ng large enough so that J N {in,, ing+1, - - -} = 0. So if ng < n < m, then the sets
Jand J = {in+1,. ..,y } are disjoint and hence

m m
s =sall = | D= @] < 3 Mawll =3 el <
k=n-+1 k=n+1 ieJ’

Therefore, (s,,) is a Cauchy sequence in X and so it converges to some s € X. Le.

+oo

Z Ty, = S.

k=1
Finally, we consider any other enumeration {1, jo, ...} of Iy and we consider the corresponding
partial sums

n
tn = Z L+
k=1

Now, there is ng large enough so that J N {in,, ing+1,---} = O and J N {jngs Jng+1s- - -} = 0. So
if n > ny, then the difference

n n
Sp —tp = szk — ijk
k=1 k=1
contains only terms +x; with indices i € J’, where J’ C I is finite and J N J’ = (). Therefore, if

n > ng, then
lsn = tall = || 3 i) < D ol < e
ieJ’! ieJ’

Thus, s, — t, — 0, and since s,, — s, we also get t,, — s. O]

Definition. Let X be a normed space with norm || - || and let {z; |i € 1} C X, where I is a non-
empty set of indices.
(i) If the series 3, ||;|| converges, we say that the series ), ; x; converges absolutely.
(i) If Io = {i € I'|2; # 0} is countable and infinite, and if the series Y x;, converges in X
for every enumeration {i1, 12, ...} of Iy, and if the sum s of the last series does not depend on the
enumeration of Iy, then we say that the series ) ,_; x; converges unconditionally and that s is
its sum, and we write

Z Ty, = S.

il
So theorem 1.10 says that, in a Banach space, if a series converges absolutely then it converges
unconditionally.

1.14 Separable normed spaces.

Definition. Let X be a normed space. We say that X is separable if there is a countable subset of
X which is dense in X.

Proposition 1.27. All spaces [P, 1 < p < 400, and c, ¢y are separable, but [*° is not separable.
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Proof. We say that A € C is rational if Re A\, Im A € Q. It is obvious that the set of rational
complex numbers is countable and dense in C.
We consider the set

A=A{(k1,...,kk,0,0,...) |k € N,Kq,..., K arerational in F'}.

Then A is countable and it is a subset of every (P, 1 < p < 400, and of cj.
Let 1 < p < 400, and take any = () € [P and any € > 0. Then there is kg so that

+oo

eP
AP < —.
> Akl < 5

k=ko+1

Also, forevery k = 1,..., ko there is arational kj, € F so that |\ — k| < . We consider

e
21/pk(1J/p
the element y = (K1, ..., Kk, 0,0,...) € A, and then

ko 400
lz =yl =D e =P+ Y Pl <€
k=1 k=ko+1

and hence ||z — y||, < e. Thus A is dense in /P and so [? is separable.

Now, take any x = (\;) € ¢o and any € > 0. Then there is ko so that [A\z| < e for every
k > ko + 1. Also, for every k = 1,. .., ko there is a rational xj, € F' so that |\, — k| < €. Then
y=(K1,...,Kk,0,0,...) € Aand

H.%' - yHOO = Sup{’)‘l - /il‘?' c ’)‘ko - ﬁkoL ’/\k0+1’, ’)‘k0+2’7 .- } <e

Therefore A is dense in ¢ and so ¢ is separable.
For the space ¢ we consider the set

B ={(K1,...,Kks Ky K,...) |k € N K, K1,..., Ky are rational in F'}.

Then B is a countable subset of c.

Now we take any x = (\;) € cand any € > 0. If A = limg_, ;o Ak, then there is kg so that
A — A| < § forevery k > ko 4 1. Now, for every & = 1,. .., ko there is a rational k3, € I’ so
that [\ — | < e. Also, there is a rational x € F so that [\ — x| < § and hence

\)\k—nlg]/\k—)\\+\)\—/<a\<§+§:e

for every k > ko. Theny = (K1, ..., Kkg, K, K, . ..) € B and

”l’ - yHOO = sup{|)\1 - "11‘7 SR |>‘k0 - "iko‘7 |)‘k0+1 - ’{|7 ’)‘k0+2 - K"v .- } <e

Thus B is dense in ¢, and so c is separable.
Finally, assume that [*° has a countable and dense subset

C= {1‘1,.%’2, .o .},

where z,, = (\,, ;;) for every n.
For each k we consider \;, € F so that [A\;| < 1and |\ — A x| > 1, and we form the element
x = (A;) € [*°. Then

||.CC - anOO > |)‘n - )\n,n‘ >1

for every n. So there is no element of C' at a distance from «x less than 1 and we arrive at a
contradiction. O

33



so that for every A € X with u(A) < 400 and every e > 0 there is B € Z with u(BAA) < e.
Then every LP(Q,%, 1), 1 < p < 400, is separable.

Proposition 1.28. Let (€2, X, 1) be a measure space, and assume that there is a countable = C %

Proof. We take any f € LP(2, X, 1) and any € > 0. We know that there is a simple function

9= Mexa, € LP(Q, %, p)
k=1

sothat A\, € F, Ax € ¥ and pu(Ag) < +oo forevery k = 1,...,n and

(/Qlf—glpdu)l/p < %6-

We select 7 > 0 depending on € in a way to be made precise in a moment.
Forevery k = 1,...,n there is By € E so that u(BpAAy) < n and there is a rational k; € F' so
that |\, — kx| < 1. We consider the function

n
h=>_ kixs,
k=1

and we get

([ 1r=nraw)” ([ 1g-nran)”

+ 1M —/%\(/ |XAk|de)1/p
k=1 Q
" 1/p
+;\mk\(/glx,4k —ka\pdu)

1 n n
=5et Z Ak — ml (AR P+ [kl ((Br A AR)) P
k=1

*€+772 (Ar)) 1/p+771/p2\>\k|+77)
k=1

IN

A\
N =
o 5\\\
=

|

Al

i

Q

=

| /\

Since
n

1> (AP + 0P (M| +1m) = 0

k=1 k=1

when 7 — 04, we may select 7 so that the last sum is < % € and hence (fQ |f —hP du)l/p <e.
So the set

n
= {anxgk n € N,Kk1,...,k, arerational in F, By,..., B, € E}
k=1
is countable and dense in LP (2, X, p). O

It is known that if © is a Borel set in RY, if ¥ = B(f2), and if p = m is the Lebesgue
measure, then the collection = of the sets of the form B = P N {2, where P is any finite union
of parallelepipeds with rational vertices, has the assumed property in the last proposition. So the
corresponding spaces LP (€2, B(Q2), m), 1 < p < +o0, are separable.
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Chapter 2

Inner product spaces

2.1 Inner products.

Let X be a linear space over the field F', where F' = R or F' = C.

Definition. We say that the function
(): X xX = F

is an inner product on X, if

@) (z,z) =

(i) (z,xz) =0 & =0,

(i) (y,z) = (z,y),

() (Az,y) = A(z,y),

() (z1+22,y) = (21,9) + (22,9),

for every x,x1,x2,y € X and every A € F.

If F' = R, then of course (iii) becomes (y, x) = (z,y).

Properties (iv), (v) say that (-, -) is linear in the first variable. If we combine these two properties

with (iii) we get that (-, -) is conjugate-linear in the second variable:
Vi) (2, Ay) = Az, y),
(Vll) <9U7Z/1 + y2> - <.T,y1> + <.’L',y2>,

for every z,y,y1,y2 € X and every A € F.
Again, if F' = R, then (-, -) is linear in the second variable.
Using A = 0 in (iv) and (vi), we get

<0,Z/> = <$,0> =0

forevery z,y € X.
A very useful identity which results easily from (iv)-(vii) is

Az + ky, Az + Ky) = [A*(z,2) + 2Re(\F (z, ) + |£|* (v, y)

for every z,y € X and every A,k € F.
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Schwarz’s inequality. Let X be a linear space with an inner product (-, -). Then
[z, 9)* < (z,2) (. y)
forevery x,y € X.

Proof. Let (x,2z) = 0. Then z = 0, hence (x, y) = 0 and so Schwarz’s inequality becomes 0 < 0.
Now let (z, z) > 0. Then

AP (z, ) + 2Re(A (, 1) + (y,9) = Az +y, Az +y) >0

forevery A € F.
There is ;1 € F' so that || = 1 and p(z, y) = |(x,y)|. Taking A = tp with ¢ € R we get

2 (x, x) + 2t {z, y)| + (y,y) > 0

foreveryt € R. If weuset = — ‘éx’y§| in the last inequality, we get Schwarz’s inequality. O

Proposition 2.1. Let X be a linear space with an inner product (-,-). Then the function || - || :
X — R defined for every x € X by

lzll = v/ {z, z)
is anormon X.
Proof. All properties of the norm are easy to prove. For example, for the last property:
Hx+yH2 =(z+yz+y) = (r,z)+2Re((z,9) + (y,9) < (z,z) + 2[(z, )| + (4,9)
< (z,x) + 2/ (@, 2) (v, 9) + (w,9) = 2l® + 2]yl + lyl* = (=] + lly])?,
and hence ||z + y|| < ||| + [lyll. O

Definition. We say that the norm || - ||, which is defined by the inner product (-,-) as above, is the
norm induced by the inner product.

Now, Schwarz’s inequality takes the form

[z, )| <zl llyll-
Also, identity (2.1) becomes
Iha + wyl® = [APz]|* + 2Re(AR (z,)) + |x[||y]*.

Moreover, taking A = 1, = 1 and also A = 1,x = —1, and then adding the two resulting
identities, we get the parallelogram law:

lz + yl* + |z — ylI* = 2l|=]* + 2[lylI*.

Example 2.1.1. A trivial example of a normed space over F' is the field F' itself with the inner
product (\, k) = \R.

Proposition 2.2. The inner product of an inner product space X is continuous, i.e. if x,, — = and
Yyn — yin X, then (x,,yn) — (r,y) inR.

Proof. This is implied by
[(@ns yn) = (@) < [@n, yn) = (@, )+ (@0, y) — (@,9)| = (@0, yn — 9) + (20 — 2, 9)]
< lzallllyn = yll + lln — =([|ly]]-
O

Definition. Let X be an inner product space. If X with the norm induced by the inner product is
complete, then we say that X is a Hilbert space.

Hence, a Hilbert space is Banach space with a norm induced by an inner product.
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2.2 Subspaces, cartesian products.

Proposition 2.3. Let X be an inner product space with inner product (-,-) : X x X — F, and let
Y be a linear subspace of X. Then the restriction (-,-) : Y x Y — F'is an inner producton'Y .

Proof. Obvious. O

Definition. The linear subspace Y of an inner product space X, equipped with the restriction on
Y of the inner product on X, is called subspace of X.

Let X1,..., X,, be inner product spaces with inner products (-, -)1,..., (-, -)mm. We consider
the cartesian product X = X; x --- x X,,, and for every z = (x1,...,2m),y = (Y1,.-.,Ym) €
X = X1 x--- x X,, we define

<x’y> = <$1,y1>1 +eee <xm7ym>m~

Proposition 2.4. The function (-,-) : X x X — F just defined is an inner product on X =

X1 X x X
Proof. Trivial. O
Example 2.2.1. We consider X; = ... = X,;, = F with (\,k); = ... = (\, k), = A% and then

we get the cartesian product X = F' x - -- x F' = F™ with the inner product which is defined for
every z = (A,...,A\m),y = (K1,...,km) € F X --- X F=F"by

(T, y) = M RL+ -+ A Fom.-

This is the standard euclidean inner product on F™. Obviously, the norm induced by this inner
product is the euclidean norm on F":

(@,2) = MM A+ A A = M2+ A = 23

2.3 Linear isometries.

Definition. Let X, Y be inner product spaces with inner products (-, ) x, (-, -)y,andletT : X — Y
be a linear operator with the property

(T'(21), T(x2))y = (21, 22)x

for every x1,x9 € X. Then T is called linear isometry of X into Y.
IfTisontoY,ie. if T(X) =Y, then T is called linear isometry of X onto Y. We also say that
X is linearly isometric to Y.

Taking 1 = x9 = x € X, we see that if 7" : X — Y is a linear isometry, then
IT(@)ly = ll=llx

for every x € X, where the two norms are those which are induced by the inner products. In other
words, an “inner product” linear isometry is also a “norm” linear isometry. We shall immediately
see that the converse is also true. Indeed, assume that

1T (@)ly = llzllx
for every z € X. Then, taking x = x1 + x2, we get
IT(z0)I[§ +2Re((T(21), T(x2))y) + | T(22) [} = [lz1]1% + 2Re((1, z2)x) + [lz2]1%

37



and hence
Re((T'(z1), T(x2))y) = Re({x1, 72) x)

for every z1,29 € X. If F' = R, then of course we get
(T'(x1), T(x2))y = (T1,22) X

for every z1,x0 € X. If F' = C, then we use ix» in the place of x5 and we get

Im((T'(x1), T'(x2))y) = Im((z1, 22) x)

for every x1,xo € X. Therefore

(T'(21),T(22))y = (1, 72) x
for every z1, 0 € X.

Proposition 2.5. Let X be an inner product space with inner product (-,-)x, let Y be a linear
space and let T' : X — Y be a linear operator which is one-to-one in X and onto Y. Then there
is an inner product on 'Y so that T" becomes a linear isometry of X onto Y.

Proof. We take any y1,y2 € Y, we consider the unique 1,22 € X so that T'(z1) = y; and
T(z2) = y2 and we define

(Y1, y2)y = (71, 72) X"
It is easy to prove that the function (-, -}y : Y X Y — F just defined is an inner product on Y.
Then, since T'(z1) = y1, T'(z2) = y2, the equality (y1, y2)y = (z1, z2)x can be written

(T(z1), T(z2))y = (21, 72) X
and so 7 is a linear isometry of X onto Y. O

Thus, when we have two isomorphic linear spaces and one of them has an inner product, then
we can transfer this inner product to the other linear space so that the two spaces become linearly
isometric.

Example 2.3.1. Let X be a linear space of finite dimension and let {b1,...,b,,} be a basis of X.
We consider the inner product space F" with the euclidean inner product. We also consider the
linear operator 7" : " — X defined for every (A1,...,\y) € F™ by

T, Am) = A1b1 + -+ Ambim.

Then T is one-to-one in /™ and onto X, and so the euclidean inner product on " can be transfered
to an inner product (-,-) : X x X — F. This is defined for every x = A\1b1 + - - - + \pnby, and
y = K1b1 + - - - + Kmbp, in X by the formula

(CL‘, y> = <>\1b1 + o+ A, k1br - F ’imbm>
Ty ) TR o)

=(( A1y s Am)s (K1ye oy )
=MFEi+ -+ A B

The inner product on X just defined is called euclidean inner product on X with respect to the
basis {b1,...,bm}.
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2.4 Completion.

Definition. Let X be an inner product space. We say that the inner product space X is a completion
of X if X is complete, i.e. a Hilbert space, and there is a linear isometry T' : X — X so that
T'(X) is a dense subspace of X.

Theorem 2.1. Let X be an inner product space. Then there is at least one completion of X. More-
over, every two completions of X are linearly isometric.

Proof. This is just a variant of the proof of theorem 1.1. Again we consider the set X ofall Cauchy
sequences of X and then the same linear space X of the equivalence classes of Cauchy sequences.
Now, instead of defining the norm on X, we define the inner product by

()] () = 1lim (20, yn)-

n——+0o

It is obvious that the norm on X which is induced by the inner product just defined on X is the
same as the norm defined in the proof of theorem 1.1. Then the rest of the proof is the same as the
proof of theorem 1.1. The details are left to the interested reader. O

2.5 Examples.

Besides the finite dimensional Hilbert spaces with their euclidean inner products, we have the
following examples.

1. We have the sequence space

—+00

2= {()\k)‘ Sl < +oo}.

k=1

The inner product on /? is defined by
+00
y) =D AeFr
k=1

for every x = (A\),y = (ki) € [%. Of course, the norm induced by this inner product is the
2-norm of {?> which we know from the previous chapter:

V= (Soa)” = (3 mh) " = el
k=1

Schwarz’s inequality in this case is a special case of Holder’s inequality:

\wakk( yxk\) 2(5,@,2)”2.

Of course, with this inner product /2 is a Hilbert space.
2. Then we have the function space

20,50 = {f € M@ /|f\2du

The inner product on L?($2, ¥, ;1) is defined by

g>=/Qfgdu



for every f,g € L*(Q, %, u). Again, the norm induced by this inner product is the 2-norm of

L2(, %, p):
VD= ([ 7an)" = ([ 15 du) " =15l

As in the previous example, Schwarz’s inequality is a special case of Holder’s inequality:

[ rga < ([ 1rean) ([ oRan)"

Moreover, L?(Q, ¥, 1) with this inner product is a Hilbert space.
3. Finally, we have the Sobolev space 1W*2(U), which is also denoted H*(U), i.e.

H*(U) = Wh2(U).

We recall that H*(U) is the set of all functions f € L?(U) which have weak a-derivatives D f
in L2(U) for every a with |a| < k. The inner product on H*(U) is defined by
Goa=3 /U Def Dogdm.

|| <k

With this inner product, H*(U) is a Hilbert space.

2.6 Convex sets.

We know that a set K in a linear space X is convex if
a,be K, 0<t<1 = (1-tlat+tbe K.

The set
[a,b] ={(1 —t)a+tb|]0 <t <1}

is considered as the linear segment with endpoints a, b.

Proposition 2.6. Let X be an inner product space with inner product (-,-) and norm || - ||, let
K C X be convex and complete, and let xo € X. Then there is a unique yy € K so that

Ty — = inf ||zg — vy|.
lzo — yol| yeKHO yl|

Moreover,
Re({zo — %0,y — v0)) <0

foreveryy € K.
If X is a Hilbert space, we may only assume that K is convex and closed.

Proof. We denote
d= yiél}f( |lzo — yl|.
Then there is a sequence (y,,) in K so that
[0 — ynll = d

when n — +o00. Now, the parallelogram law implies

2[lzo — yull® + 2llz0 — ym* = (20 = yn) — (0 = ym)II” + (w0 — yn) + (20 — ym)|I?

= llyn — ymll* + 4on - WT%HZ

> |y — ym|® + 24°
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for every n, m. The last inequality is implied by ¥21¥= € K which is due to the convexity of K.
Taking the limit when n, m — 400, we find that

”yn - ymH — 0.

Thus, (y,,) is a Cauchy sequence in K and, since K is complete, there is yp € K so that y,, — yo.
Now [|zo — yn|| = [lzo — yol| and hence [|zg — yol| = d.
If we assume that y, € K and ||zo — (|| = d, then exactly as before we have

Yo + 40 |2
442 = 2ljwo — yol2 + 2z — all* = llyo — w612 + 4|0 — L = llyo — iol? + 4.

Therefore, ||yo — yp||?> < 0 and so yo = yj. This proves the uniqueness of yp.
Finally, we take any y € K and then for 0 < ¢ < 1 we have that (1 — ¢)yo + ty € K and hence

d* < [lzo — (1 = t)yo + ty)[I> = [[(zo — yo) — t(y — vo)?
= || — yol* — 2t Re({x0 — Yo,y — ¥o)) + t2[|y — vol®
=d* — 2tRe({xo — Y0,y — o)) + t*|ly — yol>.

When 0 < t < 1 we get
2Re((z0 — yo, ¥ — v0)) < tlly — ol

and taking the limit when ¢ — 0+ we conclude that Re({(xo — yo,y — yo)) < 0. O

2.7 Orthogonality.

Definition. Let X be an inner product space with inner product (-, -). Letx,y € X,and A, B C X.
(i) If (x,y) = 0, we say that x, y are orthogonal and we write

xz Ly.

(ii) If (x,a) = O for every a € A, we say that x, A are orthogonal and we write
x 1L A

(iii) If {(a, by = O for every a € A and every b € B, we say that A, B are orthogonal and we write
Al B.

It is obvious that
rxrlx = zx=0.

Therefore,
1l A z€eA = x=0,

ALB, AnB#0 = AnB={0}.

Proposition 2.7. Let X be an inner product space, let x,y, z € X and (y,,) be a sequence in X.
() Ifx Lyandx L z, then x L (A\y + kz) for every A,k € F.
(ii) If x Ly, for every n and y,, — y, then x L y.

Proof. Trivial. O

For a subset A of a normed space X the set clspan(A), the closed linear span of A, is the
closure of the linear span of A in X or, equivalently, the smallest closed subspace of X containing
A or, equivalently, the set of the limits of the linear combinations of elements of A.

41



Proposition 2.8. Let X be an inner product space, and let x € X and A, B C X.
(i) Ifz L A, then x L clspan(A).
(i) If A L B, then clspan(A) L clspan(B).

Proof. This is an easy corollary of proposition 2.7. O

Definition. Let X be an inner product space and A C X. We denote
At ={zeX|z 1L A}
We say that A~ is the subspace which is orthogonal to A.

Proposition 2.9. Let X be an inner product space and A, B C X.
(i) At is a closed subspace of X.

(ii) clspan(A) C (A+)*,

(iii) AC B = B+ C AL

(iv) (clspan(A))+ = AL

Proof. Trivial. O

2.8 Otrhogonal complements.

Definition. Let X be an inner product space. If Y, Z are subspaces of X and
Y+Z=X, Y 1Z

we say that each of Y, Z is the orthogonal complement of the other.

Proposition 2.10. Let X be an inner product space, and let Y, Z be subspaces of X. If each of
Y, Z is the orthogonal complement of the other, then Z = Y+ and Y = Z*. In particular, Y, Z
are closed.

Proof. Obviously, Y 1 Z implies Z C YL,

Now, let x € Y+. Since X = Y + Z, therearey € Y,z € Zsothatz = y + z. From x € yL
andzecY'twegety=o—2¢cY"  Hencey=0andsoz =z € Z. Thus, Y+ C Z.

The proof of Y = Z+ is symmetric. O

Proposition 2.11. Let X be an inner product space, and let Y be a subspace of X.

(i) Y has an orthogonal complement in X if and only if Y + Y+ = X.

(ii) If Y has an orthogonal complement in X, then Y is closed, its orthogonal complement is Y+,
and it is the orthogonal complement of Y+, i.e. Y = (Y 1)L

Proof. Clear from the definition and proposition 2.10. O

Theorem 2.2. Let X be an inner product space with inner product (-, -) and norm || - ||, let Y be a
complete subspace of X, and let xy € X. Then there is a unique yo € Y so that

— = inf — .
lzo — yol| yeyllwo yll
Moreover,
To—yo LY.

Thus
X=Y+Y"+

and so each of Y, Y+ is the orthogonal complement of the other. In particular, Y = (Y 1)+
If X is a Hilbert space, we may only assume that Y is a closed subspace of X.
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Proof. Every linear subspace is a convex set. So proposition 2.6 implies the existence of yq and
also that

Re((zo — 0,y — yo)) <0

for every y € Y. Since Y is a linear subspace, we have that y € Y if and only if y — yo € Y, and
so, replacing y — yo with y in the last inequality, we get

Re((zo — y0,4)) <0

for every y € Y. Now, replacing y with —y, we get Re((zp — yo,y)) > 0 forevery y € Y. So we
have that

Re((zo — v0,¥)) =0

foreveryy € Y.
If FF =R, then we get (xg — yo,y) = 0 foreveryy € Y andsozg —yo L Y.
If ' = C, then we replace y with 7y and we get

Im((zo — yo,)) =0

for every y € Y. Thus (x¢ — yo,y) = 0 forevery y € Y andso g —yo L Y.
If we set zp = x¢ — Yo, then we have xg = yg + 2o withyg € Y and zp € YL,
We conclude that X = Y + Y. All the rest are implied by proposition 2.11. O

Thus, every complete subspace of an inner product space (and hence every closed subspace of
a Hilbert space) has an orthogonal complement.

Proposition 2.12. Let X be an inner product space and A C X.
(i) If clspan( A) is complete, then clspan(A) = (A+)L.
(i) If X is a Hilbert space, then clspan(A) = (A+)~,.

Proof. (i) Since clspan(A) is a complete subspace of X, theorem 2.2 implies that (clspan(A))+ =

At is an orthogonal complement of clspan(A), and hence clspan(A) = (A+)L.
(ii) Immediate from (i). O

2.9 Orders.

The content of this section is very general and belongs to the Foundations of Set Theory.

Definition. Let A be a non-empty set and let < C A x A. We say that the set < is an order relation
in A, if for every a, a1, a2, a3 € A:

() (a,a) €<,

(ii) if (a1, a2) € < and (az,a1) € <, then a; = as,

(iii) if (al, ag) € < and (GQ, a3) € <, then (al, ag) e <.

If < is an order relation in A, we say that A is ordered by <.

Finally, if < is an order relation in A, we prefer to write

a=<a

instead of (a,a’) € <.

Thus, (i)-(iii) of the definition take the form
(i) a < a,
(ii) if a1 < a9 and ay < a1, then a; = ao,
(iii) if a1 < a9 and ay < as, then a1 < as.

Example 2.9.1. R with the usual order relation <.
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Example 2.9.2. N with the relation of divisibility /. Le. a/b if a divides b.

Example 2.9.3. If () is any non-empty set, we consider P((Q), the set of all subsets of (), and as
an order relation in P(()) we consider the relation of inclusion C.

In the first example, for every z,y € R we have either v+ < y or y < 2. In the second
example, though, we have neither 2/3 nor 3/2. Similarly, in the third example, if () contains at
least two elements g1, g2, then the elements {q; }, {g2} of P(Q) satisfy neither {¢;} C {¢2} nor

{e2} € {ar}-

Definition. Let A be ordered by <, and B C A. Then we say that B is totally ordered if every
b1, by € B satisfy either by < by or by < b;.

Definition. Let A be ordered by <, B C A, and a € A. Then a is called upper bound of B, if
b < aforeveryb € B.

Definition. Let A be ordered by <, and a € A. Then a is called maximal element of A, if there is
noa' € Asuchthata < a' and a # a'.

It is fairly standard to accept as an axiom the following statement.

Zorn’s Lemma. Let A be ordered by some order relation. If every totally ordered subset of A has
an upper bound in A, then A has at least one maximal element.

2.10 Orthonormal bases.

Definition. Let X be an inner product space with inner product (-, -) and norm || - ||, and let A C X.
(i) We say that A is orthogonal ifa # 0 foreverya € Aanda; L agforeveryay,as € A, a1 # as.
(ii) We say that A is orthenormal if ||a|| = 1 for every a € A and a; L as for every a1, as € A,

al 75 ag.

Of course, if A is orthonormal then it is orthogonal. Also, if A is orthogonal, then the set
A = {W%II a|a € A} is orthonormal.

Proposition 2.13. Let X be an inner product space, and A C X. If A is orthogonal, then it is
linearly independent.

Proof. Assume that ay,...,a, € Aand \q,..., A\, € F so that
Aar + -+ Apan = 0.
If we take the inner product of both sides with a; we find A\, = 0. ]

Definition. Let X be an inner product space, and A C X.

(i) We say that A is a maximal orthonormal set of X, if A is orthonormal and there is no or-
thonormal set A’ so that A G A'.

(ii) We say that A is an orthonermal basis of X, if A is orthonormal and clspan(A) = X.

It is easy to see that A is a maximal orthonormal set if and only if it is orthonormal and there is
nox # Osothatx L A. Also, A is an orthonormal basis if and only if it is orthonormal and every
x is the limit of linear combinations of elements of A.

Proposition 2.14. Let X be an inner product space, and A C X.

(i) If A is an orthonormal basis of X, then A is a maximal orthonormal set of X.

(i) If A is a maximal orthonormal set of X and X is a Hilbert space, then A is an orthonormal
basis of X.
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Proof. (i) Assume that A is an orthonormal basis of X and let = 1. A. Then z L clspan(A4) = X
and hence z = 0. So A is a maximal orthonormal set of X.

(ii) Assume that A is a maximal orthonormal set of X and take any € X. Since clspan(A) is a
closed subspace of the Hilbert space X, there are y, z € X so thaty € clspan(A), z L clspan(A)
and z = y + z. From z L clspan(A) we get z L A and, since A is a maximal orthonormal set of
X, we find z = 0. Therefore, x = y € clspan(A).

We conclude that X = clspan(A), i.e. A is an orthonormal basis of X. O

Theorem 2.3. Let X # {0} be an inner product space.

(i) There exists a maximal orthonormal set A in X.

(i) If Ag is any orthonormal set in X, then there exists a maximal orthonormal set A in X so that
Ag C A

If X is a Hilbert space, the maximal orthonormal set A in (i-ii) is an orthonormal basis of X.

Proof. Let (-,-) and || - || be the inner product and the norm of X.

(i) We consider the collection .4 of all orthonormal sets of X. If a # 0 is any element of X, then
{ Hg—”} is an element of .4 and so A is non-empty. We also consider .4 ordered by set inclusion.
Now, let B be any totally ordered subcollection of .A. We define

A= ] B
BeB

Every a € A belongs to some B € B and so ||a|]| = 1. Also, if aj,a2 € A and a; # ag, then
there are By, By € Bsothat a; € By and as € Bs. Since B is totally ordered, we have that either
By C By or B, C By, and hence both a1, as belong to one of By, Bs. Thus a; L as. Therefore,
A € Aand A is obviously an upper bound of 5.

Now, Zorn’s lemma implies that .A has a maximal element.

(ii) We consider the collection 4 of all orthonormal sets of X which contain Ay. Then Ay is an
element of .4 and so A is non-empty. Now we repeat the proof of (i). O

Bessel’s inequality. Let X be an inner product space with inner product (-, -) and norm || - ||, and
let A be an orthonormal set in X. Then

> laa)? <)
acA
for every x € X.

Proof. We take any finite B C A and we consider the element z = x — » . 5(«, a)a. Then for
every a’ € B we get

(z,d') = (z,a) = > (z,a)(a,d') = (x,d) — (z,d) = 0.
a€EB

So z L o forevery a’ € B and hence z L )" 5 (x,a)a. This implies

2 2 2
Jall? = ||+ >t aya]| = 102 + || St ada|| = | St @a =3 ey
a€EB a€eB a€eB

a€eB

Since this holds for every finite B C A, we conclude that 3, 4 [(z, a)|* < |||/ O

The theorem of F.Riesz and Fischer. Let X be a Hilbert space with inner product (-, -) and norm
|| - ||, let A be an orthonormal set in X, and let Ay € F, a € A. If > c 4 |Aa|® < 400, then the
series ) . 4 Aq @ converges unconditionally in X. If v = ) . 4 A4 a is the sum of the series, then
x € clspan(A), and

(i) (x,a) = A, for every a € A,

(D) 2] = Xgea [Aal,

(iii) (x,y) = Y 4ca Ma (y,a) forevery y € X.
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Proof. Due to lemma 1.3, from }_ . 4 |Aa|* < oo we get that the set Ay = {a € A| A, # 0}
is countable. Since the case of Ay being finite is trivial, we assume that Ay is infinite, and we

consider any enumeration {ay, ag, ...} of Ay. Then the set A,, = {ay,...,a,} is a finite subset
of A and hence .

S Ral?= D0 el <D Al

k=1 a€A, acA

This is true for every n and so

ZIMI2 <D Pal? < oo

a€A

We set s, = ) .1 Aq,ai for every n. Then for every n, m with n < m we get

m 2 m
Hsm_anz:H Z )\akakH = Z ‘)\ak‘2_>0

k=n+1 k=n+1

when n, m — +o00. Since X is a Hilbert space, there is x € X so that s,, — z, i.e.

—+00
T = g Aay Ok-
k=1

Obviously, s,, € span(A) for every n, and so x € clspan(A). Moreover, for every a € A we have
n
(x,a) = lim (sp,a) = lim Ay, (0K @ Z)‘“k ax,a) = Ag.

n—-+o0o n—-+o0o
k=1

If we consider any other enumeration {a}, a}, ...} of A, then again we have 2/ = 3% Aat @
for some 2’ € clspan(A), satisfying (z’, a) = \, for every a € A. Then

(' —x,a) = (2/,a) — (x,a) =A\g = Ag =0

foreverya € A. Thusz’ —x L Aandsoa’ —x L clspan(A). Since 2’ — z € clspan(A), we
conclude that 2’ — = = 0, i.e. 2’ = z, and so the sum of the series Z;:;"l’ Aq, @ does not depend
on the enumeration of Aq. Thus, the series Zae A A a converges unconditionally in X and

Zx\ a—:c—Z)\akak

acA
Now, for every y € X we get
00 o
(x,y) = lim (sp,y) = lim Ay, (Qk, Y Z)‘“k ag,y) = Z)‘“k (y,ax).

n—+400 n—-4o00
k=1

Since the sum (x,y) of > A4, (y, ay.) does not depend on the enumeration of Ay, we get that
the series ) _ 4 A4 (y, a) converges unconditionally, and

= ZMW

acA

This is the equality of (iii) and, setting y = x, we get the equality of (ii). O
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Definition. Let X be an inner product space with inner product (-, -), let A be an orthonormal set
in X and x € X. The numbers (z,a), a € A, are called Fourier coefficients of = with respect to
A, and the series ), 1(x,a)a is called Fourier series of = with respect to A.

Theorem 2.4. Let X be a Hilbert space with inner product (-,-) and norm || - ||, and let A be
an orthonormal basis of X. Then the Fourier series ) . ,{(x,a)a of every x € X converges
unconditionally in X and its sum is x, i.e.

Z(x,a}a =z
acA

Also,

() [l2* = Xaea Iz, @),

(i) (z,y) = > qgeal®,a) (y,a) foreveryy € X.
The last two equalities are called Parseval’s identities.

Proof. Bessel’s inequality and then the theorem of F.Riesz and Fischer imply that ) 1 (z,a) a
converges unconditionally in X. If
= Z(aj, a)a

a€A

is the sum of the series, then (2/,a) = (z,a) forevery a € A. So 2’ — z L A and, since A is a
maximal orthonormal set, we get ' = x. Thus ) _,(z,a) a = z, and then we get (i),(ii) from
the theorem of F.Riesz and Fischer. O

It is worth seeing that the two Parseval’s identities are equivalent. Indeed, if (ii) holds for every
x,y € X, then, setting y = x, we see that (i) holds for every z € X. Conversely, assume that (i)
holds for every x € X. Then it holds for z,y, z + v, i.e.

2> =) Ke,a)l?s Iyl =Y 1ol lz+yl?=)_ Kz +ya)f

a€A a€A a€A

The third equality implies

Jall? + 2Re((w, 1)) + ]2 = 3 (@, a) 2 +2 3" Re((w,a) ) + 3 [(y. )
acA a€A a€A

- Z Re((z,a) (y,a))

for every x,y € X. Now, if ' = R, then we have got (ii). If ' = C, then we replace y with iy
and we get
= Im((z,a) (y,a))

for every z,y € X. From the last two equalities we get (ii).

Therefore,

Example 2.10.1. In the space [> we consider the elements
en=1(0,...,0,1,0,...), meN,

where e,, has all its coordinates equal to 0 except for the n-th coefficient which is equal to 1. It is

trivial to see that
1, n=m,
<6n7 em> =

0, n#m.
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So the set A = {e,, |n € N} is orthonormal in /2.
If 2 = ()\,) € [? is orthogonal to A, then we have

A = (z,€,) =0

for every n and hence x = 0. Thus, A is a maximal orthonormal set in 12 and, since [? is a Hilbert
space, A is an orthonormal basis of 12. So for every z = (\,) € 12 we can write

“+o00 —+00
T = E (x,en)en = E AnCn.-
n=1 n=1

Also, Parseval’s identities for this particular orthonormal basis A = {e, |n € N} of /2 take, for
every z = (\,),y = (k) € [2, the form

+o0o “+oo
21> = [z en)l* =Y Il
n=1 n=1

00 +o00
<1:,y> = Z(a:,en> <y7 €n> = Z)‘nﬁn
n=1 n=1

In fact these identities are just the defining equalities for the norm and the inner product of /2.

Example 2.10.2. In the space L?(]0, 1]) with the Lebesgue measure of [0, 1], we consider the ele-
ments A
en(t) = 2™t n e Z.

Then we have

1 1 ' 1 _
<€m €m> = / en (t) em (t) dt = / eQm(n—m)t dt — , N m,
0 0 0, n#m.

Therefore, the set A = {e,, | n € Z} is orthonormal in L?([0, 1]). R
If f € L?([0, 1]), then the Fourier coefficient of f with respect to every e, is denoted f(n) and it
is equal to

f(n):<f7en>:/0 f(lt)en(lt)dt:/0 f)e ™ dt, nel.

It is known that A = {e,, |n € Z} is an orthonormal basis of L?(]0,1]). So every f € L*([0,1])
is equal to its Fourier series with respect to A, i.e.

f:Z<f76n>6n:Zf(n)en-

nez ne”L

Also, Parseval’s identities take, for every f,g € L?([0, 1]), the form

1 o~
[ 1sOR @ =117 = 1 e = 3 1 FoP

ne”L nez

1 . o -
Aﬂwwwwm=2mm@m:2mwm

nez neL
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2.11 Orthogonal projections.

Definition. Let X be an inner product space, and let Y be a subspace of X with an orthogonal
complement in X. Then we know from proposition 2.11 that Y + Y+ = X, that Y is closed, that
its orthogonal complement is Y+ and that Y is the orthogonal complement of Y+ in X.
We consider the function

Py X—-X

defined for every x € X by
Py(z) =y,

where z =y + z, withy € Y and z € Y+,
The function Py is called orthogonal projection of X onto Y.

Proposition 2.15. Let X be an inner product space with inner product (-, -) and norm || - ||, and
let Y be a subspace of X with an orthogonal complement in X. Then the orthogonal projection
Py : X — X has the following properties.

(i) Py is linear.

(ii) The range of Py is Y, i.e. R(Py) =Y, and its null space is Y+, i.e. N(Py) = Y+,

(iii) Py o Py = Py.

(iv) (Py (z1),x2) = (z1, Py (22)) for every z1, 22 € X.

W) | Py ()] < o] for every @ € X.

Proof. (i) Take x1,x2 € X. Then there are y1,y2 € Y and 21, 20 € Y+ sothat z = y1 + z1 and
To = ys+20. Now,y1 +y2 € Yand 21 + 20 € Y-, and 21 + 29 = (y1 + y2) + (21 + 22).
Therefore,

Py (x1 + x2) = y1 + y2 = Py (x1) + Py (x2).

Similarly, take z € X and A € F. Then therearey € Y and z € Y so that z = y + 2. Now,
Ay € Y and Az € Y1, and Az = Ay + \z. Therefore,

Py(\z) = Ay = APy (x).

(i) It is clear that R(Py') C Y. Now, takeany y € Y. Theny = y +0andy € Y,0 € Y. So
Py (y) = y and hence y € R(Py ). Therefore Y C R(Py).

Takeany 2 € Y. Thenz =0+ zand0 € Y, z € Y. So Py(z) = 0 and hence z € N(Py).
Therefore, Y+ C N(Py).

Conversely, let 2 € N(Py), i.e. Py(z) = 0. Thenz = 0+ zand z € Y and hence x € Y.
Therefore, N(Py) C YL,

(iii) We saw in the proof of (ii) that Py (y) = y for every y € Y. Now, for any z € X we have
that Py (z) € Y and hence Py (Py (z)) = Py (z).

(iv) Take x1, 22 € X. Then there are y;,y2 € Y and 21,22 € Y+ so that z; = y; + 21 and
T2 = Y2 + 22. Now,

(Py (1), 02) = (Y1, 92 + 22) = (y1,92) = (Y1 + 21, y2) = (@1, Py (22)).
(v) Take any = € X. Then there are y € Y and z € Y+ so that z = y + 2. Then
1Py ()12 = llyl® < llyll* + 1201 = lly + 2I* = [|l=[I.
O

It is clear from the proof of (ii) of proposition 2.15 that if we restrict - on Y then it is equal
to the identity operator of Y':

PY(y):y7 yEY
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Also, if we restrict Py- on Y then it is equal to the null operator of Y:
Py(z)=0, zeY™

Note that an orthogonal projection Py corresponds to a subspace Y which has an orthogonal
complement in X (i.e. Y1). In this case Y* also has an orthogonal complement in X (i.e. Y)
and so the orthogonal projection Py . is also defined. Proposition 2.15 describes the properties
of any orthogonal projection and hence of Py .. The following proposition describes some extra
properties of the pair of orthogonal projections Py and Py-. .

Proposition 2.16. Let X be an inner product space, and let Y be a subspace of X with an orthog-
onal complement in X. Then:

(i) Py + Py-1. = I, the identity operator of X.

(ii) Py1 o Py = Py o Py = 0, the null operator of X.

Proof. Take any = € X. Then therearey € Y and z € Y' so that z = y + 2.
() Py(z)+ Pyr(x)=y+2z ==
(ii) Pyj_ (Py (l‘)) = PyJ_ (y) = 0 and Py(PyJ_ (l‘)) = Py(z) =0. O]

The following proposition describes the properties which characterize orthogonal projections
among linear operators on an inner product space.

Proposition 2.17. Let X be an inner product space with inner product (-,-), and let P : X — X
be a linear operator. If P o P = P and (P(x1),x2) = (x1, P(x2)) for every x1,x9 € X, then
there is a subspace Y of X, which has an orthogonal complement in X, so that P = Py.

Proof. We consider the linear subspaces Y = R(P) and Z = N(P) of X.
Clearly, P(z) = 0 for every z € Z. Also, if y € Y, then y = P(x) for some z € X and so

Hence, for every y € Y and every z € Z we have

(y,2) = (P(y), 2) = (y, P(2)) = (y,0) =0,

andsoY 1 Z.
Now take any = € X and consider y = P(x) and z = x — P(z). Theny € Y and

i.e. z € Z. Obviously: x = y + z and we conclude that X =Y + Zand Y 1| Z. Therefore, Y, Z
are orthogonal complements of each other.

We just saw that for any z € X we have x = P(z) + z, where P(z) € Y and z € Z. Hence
Py (z) = P(x). O

We know from theorem 2.2 that every complete subspace of an inner product space has an
orthogonal complement and so defines a corresponding othogonal projection. Also, theorem 2.3
implies that every complete subspace of an inner product space has an orthonormal basis. Now we
shall describe the orthogonal projection on a complete subspace in terms of an orthonormal basis
of the subspace.

Proposition 2.18. Let X be an inner product space with inner product (-, -), let Y be a complete
subspace of X, and let A be any orthonormal basis of Y. Then for every x € X we have

Py(z) = Z(x, a) a.

a€A
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Proof. Take any z € X. Then therearey € Y and z € Y' so that z = y + 2.
Since a € Y for every a € A, we have that

(z,a) = (y + 2,a) = (y,a) + (z,a) = (y,a)

for every a € A. Hence

Py(x) =y = Z(y,a>a = Z(m,a} a.

a€A acA

2.12 Separable inner product spaces.

The theorem of Schmidt. Let X be a separable inner product space with dim(X ) = +oc.
(i) Every orthonormal basis of X is countable and infinite.

(ii) X has an orthonormal basis.

(iii) If X is complete, then X and I? are linearly isometric.

Proof. Let M be a countable and dense subset of X.

(i) If A is any orthonormal basis of X, then for every a € A we consider the ball B(a; @) and we
observe that these balls are pairwise disjoint.

Now, for every a € A there is z, € M N B(a; @), and we may consider the function 4 > a —
2, € M. This function is one-to-one in A, and so A is countable.

If A is finite, i.e. A = {a1,...,a,}, then X = clspan({ay,...,a,}) = span({a1,...,a,}) has
finite dimension. (We used that any subspace of finite dimension is closed.)

(ii) Now, let M = {x1, z2,x3,...}.

Let n; be the least natural number so that x,,, # 0. Then let ny be the least natural number so that
Zn, is not a multiple of x,,,. We continue inductively: if we have found n1, ..., ng_1, we let ny be
the natural number so that x,,, is not a linear combination of z,,,...,zy, . If this process stops
at some point, then there is N so that all 41, 2x+2,... are linear combinations of z1,...,xzxy.
Butthen X = clspan({x1,...,zn}) = span({z1,...,zx}) and so X is finite dimensional. Thus,
the above process does not end, and so we get the countable and infinite set

N ={xn,, Tn,,...} T M.

Since every x,,, is not a linear combination of x,,,, ..., x,,_,, the set N is linearly independent.
Now, take any z € X and any € > 0. Then there is z; € M so that || — z;|| < e. Then there
is k so that j < ny, and this implies that x; is a linear combination of z,,,, ..., 2y, ,. Therefore,

X = clspan(V).
For simplicity, we denote y;, = xy,,, i.e.

N = {yl,yg,. . }

We define .
a1 = 77— Y1,
[y
and then
{a1} is orthonormal, span({a;}) = span({y}).
Now assume that we have defined a1, . .., a;_1 so that
{a1,...,ax_1} is orthonormal, span({a,...,ax—1}) =span({y1,...,yk—1})-
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We denote
M1 =span({a,...,ax-1}) = span({y1, ..., yr—1})-

Then yj, ¢ Mj_1, and so yi — Par,_, (yx) # 0, where Py, is the orthogonal projection on the
finite dimensional subspace M_;. We define

1
ar = (yk — Py, (k)
1Yk — Pz, (g o
and then ay, is orthogonal to Mj_; with [jag|| = 1. Moreover, aj is a linear combination of
Y1, - .-, Y, and also yy, is a linear combination of ay, ..., ax. Thus
{ala sy A1, ak} is orthonormal, Span({ab ceey Ak—1, ak}) = Span({yla s Yk—1, yk})

Continuing inductively, we construct the set
A ={a,a9,...},
which is orthonormal and satisfies:
clspan(A) = clspan(N) = X.

Therefore, A is an orthonormal basis of X.
(iii) Let A = {aq, a2, ...} be any orthonormal basis of X. If x € X, then

—+o00
3 e )P = Jlz)? < +oo,
k=1

and so we may consider the function 7" : X — [? defined for every € X by

T(z) = ((z,a1), (z,a2),...).

It is easy to see that 7' is linear. Also, 7' is a linear isometry, since

+oo
IT@)I3 = {2, a)? = ||z
k=1

for every z € X. If (\;) € [?, then there is * € X so that (z,a;) = A for every k. Thus
T(z) = (\) and so T is onto [2.
O

This theorem is useful, because many classical Hilbert spaces are separable. For example
L%(Q, B(2), m) with a Borel set Q C R? and the Lebesgue measure m.
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Chapter 3

The dual of a normed space

3.1 Bounded linear functionals.

Definition. Let X be a normed space with norm || - ||, and let | : X — F be a linear functional on
X. Then [ is called bounded if there is C' > 0 so that

l(z)| < Cll]]
for every x € X.

Proposition 3.1. Let X be a normed space withnorm ||-||, and letl : X — F be a linear functional
on X. The following are equivalent:

(i) l is continuous in X.

(ii) N(1) is closed in X.

(iii) | is bounded.

(iv) l is continuous at 0 € X.

Proof. N(I) = I=1({0}) is the inverse image of a closed set, and so, if [ is continuous in X, then
N({) is closed in X.

Now, assume that N({) is closed in X. If | = 0, then [ is obviously bounded. So assume that I # 0.
Then there is xy € X so that [(x) = 1. Since N(/) is closed and z¢ ¢ N(!), there is » > 0 so that
B(xo;7) NN(l) = (. Now take any x € X with /() # 0. Then

l(xo—l(z))—l(xg)—iég—l—l—o.

Hence 2o — 5 € N(/) and so z¢ — @) ¢ B(xo;r). Thus HﬁH >r,ie. |I(z)| < 1|=|. This

z)
is obviously true when I(z) = 0, and we conclude that

1
I(z)] < =
[Uz)| < — ]

for every © € X. Therefore, [ is bounded.
If [ is bounded, then there is C' > 0 so that |I(z)| < C||z|| for every x € X. If 2, — 0in X, then

()| < Cllzn]l — 0,

and so I(z,) — 0in R. Hence [ is continuous at 0.
Finally, assume that [ is continuous at 0. If x,, — z in X, then z,, — x — 0 in X, and then
l(xn) —l(z) = l(zy, —x) — 0in R, and then /(x,,) — I(z) in R. So [ is continuous in X. O

Definition. Let X be a normed space. The set of all continuous or, equivalently, bounded linear
functionals on X is called dual space of X, and it is denoted X'.
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Proposition 3.2. Let X be a normed space with norm || - ||. Then X’ as a function space, with
the usual addition of functions and the usual multiplication of numbers and functions, is a linear
space.

Proof. 1fl,1l;,l5 : X — F and A € F, we consider the functions [1+1o : X — Fand Al : X — F
defined for every z € X by

(lh + o) (x) = li(z) + l2(x), (N)(x) = N(z).

It is known from Linear Algebra (and it is very easy to prove) that, if [, [1, [ are linear functionals,
then I; + lo and Al are also linear functionals. It is also clear that, if [, [, [ are continuous, then
{1 + 5 and Ml are also continuous. O

Usually we denote the elements of X’ with symbols like 2/, 3/ etc.

Definition. Let X be a normed space with norm || - ||. For every 2/ € X' we define

2’| = sup [a'(z)].
zeX,||z||<1

Proposition 3.3. Let X be a normed space with norm || - || and let x' € X'. Then ||2/| is the
smallest constant C' which satifies the inequality |2’ (x)| < C||x|| for every x € X.

Proof. Forevery x € X, x # 0, we have HH:JCTHH = 1, and then, by the definition of ||z’|| we get
/ / x /
@) = |+ () Il < el
e inequality |z/(z)| < ||2’||||x| is obviously satistied if z = 0, and so C' = ||2|| satisfies the
The inequality |2/(z)| < ||/|||||| is obviously satistied if z = 0, and so C' = ||2’| satisfies th

inequality |2'(z)| < C||z|| for every z € X.
Conversely, let C satisfy the inequality |2’(z)| < C||z|| for every x € X. Then we have |2/(z)| <
C for every z € X with ||z|| < 1,and so ||2/|| < C. O

So, if ' € X', then
|2’ ()| < ||2’||||z| forevery x € X.
Also,
|2/ (z)] < Clz| forevery z € X = ||| <C.

Proposition 3.4. Let X be a normed space with norm || - ||. The function || - || : X’ — R defined
above is a norm on X', and X' with this norm is a Banach space.

Proof. Obviously, ||2/|| > 0 for every 2’ € X'. Tt is also clear that ||z’|| = 0 if 2’ = 0.
If 2/ € X" and ||2/|| = 0, then 2/(x) = 0 for every = € X, and so 2’ = 0.
For every € X and every 2/, 2, € X’ we have

(@) + a2) ()] < [ ()] + |25(2)| < [2h izl + sl = Azl + lzs Dl

Hence ||z} + 25| < (|2} ]| + [|l25]].
For every 2/ € X' and every \ € F we have

Al = sup [(A2)(z)] = sup [All2"(2)[ = [A]  sup [a'(x)| = [A[l|2"]].
zeX, |z <1 zeX, || <1 zeX, |z <1
Therefore, || - || : X’ — R is anorm on X'.

Now take a sequence () in X’ so that ||z], — 2/ || — 0 when n, m — 4o00. For every x € X
we have
|27 (2) — 2y, ()] = (2], — 2,) ()] < [, — aly, [[[l2z]] = 0
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when n, m — +o0. and so (z,(z)) is a Cauchy sequence in F.
We consider the function 2’ : X — F defined for every x € X by

/ T /

Since each z/, is a linear functional, we have for every z,y € X and A € F that

P(x+y)= lim 2, (x+y)= lim 2/ (z)+ lim 2 (y) =2'(z) +2'(y),
n——+00

n—-+00 n——+00
/ T / . . / Nt
' (A\z) = nll}l}_loo x, (Az) = /\nBToo x, () = Az’ (x).

So 2/ is a linear functional on X.
Now, there is ng so that ||}, — 2],|| < 1 for every n, m > ny. Hence

|2 ()| < Ja (@) — 2, (2)] + 20, ()] < llas, — 2 ]l + lan, el < (L + [l Dl
for every n > ng and every x € X. Taking the limit when n — +o0, we find
|2 (2)] < (1 + [l D1z

for every x € X. So 2’ is bounded, i.e. 2’ € X".
Finally, we take any ¢ > 0 and then there is n so that ||z}, — z/,|| < e for every n, m > ng. Then

|27 (2) — a7 ()] < [l — 2 [l < el
for every n, m > ng and every « € X. Taking the limit when m — +o0, we find

|27, (2) — 2/ ()] < e|z|

n

for every n > ng and every x € X. Therefore, ||2], — 2’| < € for every n > ng, and so z], — 2’
in X'. O

3.2 Finite dimensional spaces.

Theorem 3.1. Let X be a finite dimensional normed space. Then X' is also finite dimensional
with the same dimension as X.

Proof. Let {b1,...,b,} be abasis of X. Since all norms on X are equivalent, a linear functional
on X is continuous or not independently of the norm we are considering on X . So we may consider
X equipped with its 2-norm with respect to the basis {b1, ..., b,}, i.e.

lzll2 = (A + -+ [ A ]?)Y2

forevery z = A\1by + - - - + \pb, in X
Now, we take any z = 161 + - - - 4+ pn by, in X, and we consider the function [, : X — F' defined
forevery x = A\1by + - - - + A\pb, in X by

L(z) = A+ + tinAn.
It is very easy to show that /, is a linear functional on X. We also have
= (@)] < [lzll2]|2]2

for every € X and hence [, € X’ with ||1,|| < ||z]|2
Now we consider the particular x = 1y b1 + - - - 4+ 1, by, in X, and we get

1213 = It + - + ] = ()] < Ll2ll2 = 12212,
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and so ||z]|2 < ||I;||. Therefore,
121 = [l=l2

for every z € X. Now we consider the function 7" : X — X" defined for every z € X by

If 2= p1b1 + -+ + by and w = 161 + - - - + vy by, then
lz+w(x> = (Ml + Vl))\l + o+ (,Um + Vn))\n = lz(x) + lw(w>

forevery x = \by + -+ - + Apby in X. Thus Iy = 1 + 1y, 6. T(z +w) = T(2) + T(w).
If z= p1b1 + -+ + pnby and g € F, then

luz(@) = (ppa) AL+ -+ + (ppn) An = pil=(2)

forevery x = A\iby + -+ + A\pby in X. Thus [, = pl., ie. T(puz) = pT'(2).

We conclude that 7' : X — X' is a linear operator.

We have already proven that || T'(z)|| = ||l.|| = ||z||2 for every z € X, and so T is a linear isometry
of X into X’. Now we shall prove that 7" is onto X', i.e. that X and X’ are linearly isometric.
We take any | € X’ and we define

z=1(b1)by + - - + I(bn)by € X.
Then for every x = A1b; + - - - + Apb, in X we have
L(x) =1b)AM + -+ 1Ubp)An =1(Ab1 + -+ Apby) = (),
and hence T'(z) = [, = [. Therefore, T is onto X". O

If {b1,...,by,} is the basis of X and T : X — X' is the linear isometry which appeared in the
proof of theorem 3.1, we may define

b;:T(bj):lb]7 .7:177n

Then {b},...,b),} is a basis of X', and in Linear Algebra this basis is called dual to the basis
{b1,...,b,} of X. It is easy to see that:

Lol
i) =9 7
0, ©#j.

3.3 Sequence spaces.

Theorem 3.2. Let 1 < p < +oo and % + é =1
(i) If 1 < p < +oo, then there is a linear isometry of 1% onto (IP)'.
(ii) If p = oo, then there is a linear isometry of I* into (I°°)’.

Proof. We take any z = (u) € (4 and we consider the function [, : [? — F defined for every
x = (\g) € P by

—+00
l,(x) = Z LA
k=1

Holder’s inequality implies that the series defining [, () converges absolutely. It is easy to see that
[, is a linear functional on [P. Also, Holder’s inequality says that

()] < [[=llqllz[l,
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for every « € [? and hence [, € (IP) and ||I;|| < ||2]|4-
If1 <p<+4oo(andsol < g < +00), we consider the numbers

)\k _ W|Mk|q_2a Mk 7& Oa (3 1)
0, pg = 0.
Then
+oo +oo
DI =D [t < oo,
k=1 k=1

and so z = (\g) € P with ||z, = ||2|#/". Also

+oo +oo
Zﬂk)\k = Z | 9.
k=1 k=1
Hence,
1201 = 1= ()] < |l Nl=ll, = 12112027,

and so ||z[lg < L. |-
If p = +oo (and so ¢ = 1), we select again the x = ()\) given by (3.1). Then || < 1 for every
k and so || z]|oo < 1. Also, S0 e = S5 |k Thus,

+0o0
l2lls =D uedi = [1=(2)] < [lE:Nelloe < [IL:])
k=1

If p=1 (and so ¢ = +00), then

el = [1=(exr)| < lE=Nllexllr = (2]

for every k, and so ||z||co < ||22]].
So, in any case we get
1211 = 1l=llq-

We consider, now, the function 7" : {9 — (IP)’ defined for every z € 17 by
T(z) =1,.

As in the proof of theorem 3.1 we see that T : 19 — (IP)’ is a linear operator. The equality
|T(2)|| = ||i-]] = ||=|lq says that T is a linear isometry of 19 into (I7)".

Now, we take any [ € (IP)’.

Let 1 < p < 4o00. We consider p, = (ey) for every k, and Ay, as in (3.1). Then for every n we
have

>l = =13 dwen) < (32 eP) = 1 (D i)
k=1 k=1 k=1 k=1 k=1

This implies "7, |ux|? < |/1]|¢ for every n and hence > 77 |kl < ||I]|9. So if we define
z = (p), then z € (9 and ||z||, < ||I|| < +o0.
If p = 1, we consider again p; = [(ey), and then

|kl = [Ulex)| < lellflexlln = 1]

for every k. So if we define z = (ug), then z € [*° and ||z||c < ||| < +o00.
Soif1 < p < 400, we have z € [9.
Now for any = = (\;) € I” we take z, = (A1,..., M, 0,0,...) = > 1, Agey and then

L(zn) =Y mede = > Uew) Ak = U(an).
k=1 k=1
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Since [, [ are continuous and x,, — x in [P, we get [,(x) = I(z). Thus T'(z) =1, =l and so T' is
onto (I7)’. O

In fact the main result of theorem 3.2 is the “onto” part:
Let1 < p < +ooand 217 + % = 1. Then for every | € (IP)’ there is a unique z = (uy) € 1% so that

—+00

M=zl 1) = jde forevery z = () € 7.
k=1

In the case p = +o00, ¢ = 1 it is worth finding the point at which the last proof fails to show
that the operator 7" is onto (I?)": the problem is that for the general € [ it is not always true
that ,, — z in [*°!

Theorem 3.3. There is a linear isometry of I' onto (o)’

Proof. We take any z = (u,) € I' and we consider the function [, : ¢y — F defined for every
xz = () € ¢ by

“+oo
k=1

The series converges absolutely, and it is clear that [, is a linear functional on ¢y. Also,

=) < [zl |2l

for every = € ¢ and hence [, € (¢o)" with ||1.] < ||z||1.
We consider the A\, defined in (3.1) (with ¢ = 1) and then for every n we have

Sl = e = L (D0 wwen) < Il Do dwen]| < il
k=1 k=1 k=1 k=1 *

and so ||zl = Y75 || < [lL:]|-
Therefore, ||1.| = ||2]1.
We consider the function T : I — (cg)’ defined for every z € I! by

T(z) =1,.

It is easy to see that 7" is a linear operator. Since we have proved that || 7'(z)|| = ||I.|| = ||z||1 for
every z € !, we have that T is a linear isometry of /! into (cp)’.

Now we take any [ € (cg)’. We define uy = I(ey) for every k, and the same )\ as above. Then
for every n we get

S lnl =D ruehe =130 Mwen) < | D2 Ane]| <
k=1 k=1 k=1 k=1

So, if we consider z = (1), then z € I* and ||z[|1 = S°F2 el < |lI]I-
Now, for every z = (i) € ¢o we take 2, = (A1,..., A, 0,0,...) = >/, Apex, and then

L(zn) =Y mde = Uew)hr = U(zn).
k=1 k=1

Since [, [ are continuous and z,, — x in ¢o, we get that [, (x) = I(z). Thus T'(z) = [ and so T is
onto (cp)’. O

The main result of theorem 3.3 is its “onto” part:

Foreveryl € (c)' there is a unique z = (uy,) € 1! so that

—+00

2 =1zl Ux) =) prdr forevery x = (X € co.
k=1
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3.4 Inner product spaces.

Definition. Let X,Y be linear spaces over F and let’T' : X — Y. Then T is called conjugate-
linear operator if

T(x1+ x2) = T(x1) + T(22), T(Ox)=\T(x)

for every x,x1,z2 € X and every X € F.

If X, Y are normed spaces with norms || - ||x, || - |ly, and T : X — Y is conjugate-linear and
satisfies | T'(x)|ly = ||z||x for every x € X, then T is called conjugate-linear isometry of X
intoY.

Of course, if F' = R, then a conjugate-linear operator is just a linear operator.

The theorem of F.Riesz. Let X be an inner product space. Then there is a conjugate-linear isom-
etry of X into X'. If X is a Hilbert space, then this conjugate-linear isometry is onto X'.

Proof. For every z € X we consider the function /, : X — F' defined for every x € X by
l.(z) = (x, z).
It is obvious that [, is a linear functional on X. Also,
L= (2)] < [l2]lll=|

for every x € X. Hence [, € X' and ||I,|| < ||z]|.
Moreover,
1217 = (2, 2) = 1(2) < [lL:ll=].
So ||z]| < ||Z.|| and hence
121 = 1=

We consider T': X — X’ defined for every z € X by

It is easy to see that
T(z1+ 22) =T(21) + T(22), T(\z2) =AT(2)

for every z, 21, 22 € X and every A € F. We have already proven that || 7'(2)|| = ||l;|| = ||z|| for
every z € X and so T is a conjugate-linear isometry of X into X".

Now we assume that X is complete, and we take any [ € X”.

If [ = 0, then, taking z = 0, we obviously have T'(z) = [, = [. So we assume that [ # 0 and then
N({) is a proper closed subspace of X. We take any x( ¢ N(!), and then there are yo € N(/) and
2o L N(l) so that zy = yo + zo. Then l(Zo) = Z(Io) 75 0.

Now we take any « € X. Then there are y € N(!) and w L N(I) so that x = y + w. Now we have

l(w) [(w)
1w — —I(w) — 1) = 0
(= gy 20) = M) = iy W) =0,
and so w — ll((;‘;)) zp € N(I). Since also w — ll((:;)) 2o L N(I), we get w — ll((:;)) zp = 0 and hence

w= ll((:;)) 20. Therefore,

_ _ _Mw) o W)

(@.20) = (. 20) + (. 20) = (w.20) = 753 [l = 725 ol
We define z = ﬁi’éc‘")g 20, and then we have [, (z) = (z, z) = l(z) forevery z € X. Le. T(z) =
1, =1, and so T is onto X'. O
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The main result of theorem 3.4 is the “onto™ part:
If X is a Hilbert space with inner product (-, -), then for every | € X' there is a unique z € X so
that
Nl = 1=, l(x) = (x,z) forevery z € X.

3.5 Function spaces.

Definition. Let (€2, 3, i) be a measure space and let v € A(, %).

(i)  is called o-finite if there are A, As, ... € X so that Q = U;':OT Ajand pi(A;) < +oo for
every j.

(ii) v is called absolutely continuous with respect to p, if v(A) = 0 for every A € X with
u(A) =0.

The next theorem is a well known result of Measure Theory. We shall see its proof by von
Neumann with Hilbert space methods.

The theorem of Radon-Nikodym. Let (€2, 3, 1) be a measure space and let v € A(Q, X). If p is
o-finite and v is absolutely continuous with respect to j, then there is a unique h € L' (), %, )
so that v(A) = [, hdp for every A € .

Proof. We assume that v is a non-negative real measure and that () < +oc.
We consider the non-negative real measure A = 4 + v, and the function [ : L*(Q,%,\) — F
defined for every f € L?(2,%, \) by

I(f) = /Q fav.

Using Schwartz’s inequality, we get

1< [ i< [ if1ax < @ ( [ 1sEan) = a2

for every f € L?(Q, %, \). Itis clear that [ is a linear functional and hence [ € (L*((2, %, )\))/.
Since L?(£2, %, \) is a Hilbert space, theorem 3.4 implies that there is g € L?(£2, %, \) so that

/fdu:l(f):/fgd)\ for every f € L*(Q, %, \). (3.2)
Q Q

Now we consider the set A = {a € Q| Im(g(a)) > 0} € . If weuse f = xa € L%(Q, X, \)
in (3.2), and if we equate the imaginary parts of both sides, we get 0 = [ 4 Im(g) d), and hence
A(A) = 0. In the same manner we find A\(A) = 0 for the set A = {a € 2| Im(g(a)) < 0}) = 0.
We conclude that g(a) € R for A-a.e. a € Q.

Next we consider the set A = {a € | Re(g(a)) > 1}, we use f = x4 in (3.2), and we equate
tha real parts of both sides. Then we get [, (1 —Re(g)) d\ > 0 and hence A(A) = 0. In the same
way we get A\(A) = 0 for the set A = {a € | Re(g(a)) < 0}.

Hence, 0 < g(a) < 1 for A-a.e. a € Q.

Our equality (3.2) is equivalent to

/f(l —g)dv = / fgdp forevery f € L?(Q, %, )). (3.3)
Q Q
If we take B = {a € Q| g(a) = 1} and use f = xp in (3.3), we get 0 = u(B) and so v(B) = 0.

Hence A\(B) =0andso 0 < g(a) < 1 for A-a.e. a € Q.
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Now, for any A € ¥ we consider the function f = (1 + ¢+ g+ --- + ¢g") x4, and from (3.3) we
get

/A(l—g”+1)dv=/A(9+92+---+g"+1)du-

The monotone convergence theorem implies v(A) = [, ﬁ dp. Weset h = ﬁ, and so we have

v(A) = /Ahdu

for every A € ¥. Clearly, 0 < h(a) < 4oo for A\-a.e. a € Q. With A = Q we get [, hdu =
v(Q) < 400, from which h € L*(, %, p).

The general case of a real or complex measure v and of a o-finite measure y can be derived from
the particular case we just studied, using standard measure-theoretic techniques, and it is left as an
exercise. The uniqueness of A is also left as an exercise. O

Theorem 3.4. Let (€2, X, 1) be a measure space, and 1 < p < +o0, % + % =1

(1) If 1 < p < +o0, then there is a linear isometry of L(2, 3, i) onto (LP(Q, 3, ,u))
If u is o-finite, then the same result is true when p = 1.
(ii) If p = +o0, then there is a linear isometry of L*(Q, 3, 1) into (L% (9, 3, 11))".

/

Proof. For each h € L9(2, X, 1) we consider the function I, : LP(Q2, 3, u) — F defined for
every f € LP(Q2, %, u) by

(f) = /Q fhdp.

Holder’s inequality implies that the function fh is integrable and so the integral defining I}, (f)
exists. Holder’s inequality implies the more precise inequality

()] < [IAllgll £l

forevery f € LP(Q, 3, uu). Itis easy to see that [}, is a linear functional, and so I}, € (LP(Q, 3, ,u))
and ||| < [|Allq-
Ifl<p<+4oo(andsol < g < +0o0), we define

[ h(a)|n@)|72, h(a) #0,
f(a)—{()’ o

!/

(3.4)

Then [, |f[P dpu = [, |h|9dp < +ooand so f € LP(Q, %, ). Also, [, fhdp = [ |h|?dp and
hence
IRl1E = [t (< WAl F Lo = WalllI7]1E77.
This implies || hl[q < ||I3]|-
If p = 400, ¢ = 1, then with the f defined by (3.4) we get || f||« < 1 and [, fhdu = [ |h|dp
and hence
1Rllx = [l ()] < [[Talll[flloe < [1Tall-

If p = 1,q = 400 and if u is o-finite, then there are pairwise disjoint By, Bs,... € X so that
Q = ;ff Bj and p(Bj) < +oc for every j. If [|h|loc = 0, then h = 0, and /;, = 0 and so
lln]] = ||h]loo = 0. If ||A|lac > O, then for any j and any ¢ such that 0 < ¢ < ||h||s we consider
the set Bj; = {a € B;||h(a)| > t} and the function f = h|h|"*xp,,. Then || f||1 = pu(Bj;)
and [, fhdp = fBM |h| dyv and hence

tp(Bje) < (P < 1l Fllx = linllp(Bjie)-

Since 0 < p(Bj;) < 4o0 for at least one j, we get ¢ < ||I;,||. Taking the limit when ¢ — ||A||,
we find ||hl|oo < ||In]|-
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So in any case we have that ||/ || = ||k, for every h € LI(Q, X, p).
We consider the function 7" : L9(Q, X, ) — (LP(Q, %, M))/ defined for every h € LI(Q, %, )

by
T(h) = Iy,

It is easy to see that 7" is a linear operator, and we have already proved that || 7'(k)|| = ||h||, for
every h € L9(Q, %, ). This says that T is a linear isometry of L%(£2, , 1) into (LP(Q, %, ,u))/.
For the rest of the proof we assume that ;(2) < +oc and 1 < p < 4o0.

We take any [ € (LP(Q, %, 1))’ and we consider v : 3 — F defined for every A € ¥ by

v(4) = l(xa)-
Clearly v(0) = 1(0) = 0.
If Ay, Ao, ... € X are pairwise disjoint, and A = U,j;’? Ay, we set Cp, = |J;_; Ak, and then
v(A) = v(Cp)| = [l(xa) — lxc,)l = lxa = xe)l = Hxae,)| < [llxac,lp
= [lUl(1(AN\ Cu))P — 0,
since 1 < p < 400, A\ Cy | 0 and p is finite. Hence v(C),) — v(A) and so
> v = 3 lxa) = 1 3o xa) = Uxe,) = v(Ca) = v(A).
k=1 k=1 k=1

Therefore, v(A) = 3> v(Ay), and we conclude that v is a complex measure on ¥.
If u(A) = 0, then

(A = 110ca)l < [lleallp = 121(u(A)) 7 = o,

and so v is absolutely continuous with respect to p.
The theorem of Radon-Nikodym implies that there is h € L'(Q, X, 1) so that

V(A):/Ahd,u

for every A € ¥. Now, if f = >"}'_; A\gx4, is any simple function, then

I =) Mellxa,) =D Av(Ar) = ) A hdpu= [ fhdu.

If f e L>®(Q,X,un), there is a sequence ( f) of simple functions so that f, — fin L>°(Q, 3, u).
Since y is finite, we have that f;, — f in LP(£2, X, ). Now, [ is continuous and so [(fx) — I(f).
Also,

’/Qf’“hd“_/ﬂfhdﬂ‘ <|[fx = fllsollh[lx — 0.

Hence

100) = Jim 1) = Jim [ fihdu= | fhdy (35)

k——+o0

forevery f € L>®°(Q, X, p).
If 1 < p < 400, then for every n we consider the set A,, = {a € Q| |h(a)| < n} and we define

_ Jh(a) (@)% xa,(a), h(a)#0,
fla)= {0, h(a) = 0.
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Then f € L®(Q, %, u) and also [, [f[Pdp = [, |h|9dpand [, fhdp = [, |h|?dp. So, using
(3.5), we find

J = [ npa=rcpy < s, = ([ wean)”

Therefore | 4, [P dp < ||1]|? for every n, and from the monotone convergence theorem we con-
clude that ||h||, < ||I]] < +o0.

If p = 1, then for every n > ||I|| we consider the set A, = {a € Q||]l|| < |h(a)] < n}
and the function f = h|h|™" xa,. Then |fll1 = p(Ay) and [, fhdu = [, |hldp. Also
f e L>®(Q,%, u), and, using (3.5),

/NMWZ/ﬂWF%ﬂSWthww%)
An Q

Therefore, 11(Ay,) = 0 for every n and hence |h(a)| < ||| for pu-a.e. a € €2, and we conclude that
[1Plloo < 2] < o0

So in any case, h € L4(2, %, 1). Then for every f € LP(2, X, 1) we take a sequence (fx) of
simple functions so that f — f in LP(Q2, 3, ). Now, the continuity of [ and Holder’s inequality
together with (3.5) for each f; imply

k—+o0

I(f)= lim Z<fk>=kgr+noo/gfkhdu=/gfhdu=zh<f>-

Therefore, | = I, = T'(h), and so T is onto (LP(Q, %, u))l.
The general case of a measure p which is not necessarily finite can be derived from the particular
case of a finite p using standard measure-theoretic arguments and it is left as an exercise. O

The main result of theorem 3.4 is its “onto” part:
Let (2, %, i) be a measure space,and 1 < p < 400, %—&-% = 1. Then foreveryl € (LP(Q, 3, u))/
there is a unique h € L1(€2, X, i1) so that

It =l 1) = [ fhdu forevery 1 € 7(@.5.p).

If p is o-finite, then the same result is true when p = 1.

Lemma 3.1. Let €2 be a Hausdorff topological space, and let K, L C €) be compact and disjoint.
Then there are disjoint open U,V C Q2 sothat K CUand L C V.

Proof. Take any z € K. For every y € L we consider disjoint open Uy, V, so that z € U, and
y € Vj,. Then the collection {V}, | y € L} is an open covering of L, and so there are y;, ..., y, € L
sothat L € V,, U---UV,, . ThentheopensetsU, = U,, N---NU,, and V, = V;,, U---UV, are
disjoint, and = € U, and L C V.. Then the collection {U,, | x € K} is an open covering of K, and
sothereare x1, ..., 2z, € Ksothat K C Uy, U---UU,,. . Thentheopensets U = U,, U---UU,,,
andV =V, N---NV,, aredisjoint,and K CU and L C V. O

Urysohn’s lemma. Let € be a compact, Hausdorff topological space, and K, L C ) be closed
and disjoint. Then there is a continuous f : 2 — [0,1] so that f = 0in K,and f = 1in L.

Proof. Lemma 3.1 implies that if A C € is closed and B C 2 is open, and if A C B, then there
isan open U sothat A C U C cl(U) C B.
We consider Ag = K and By = Q\ L. Then there is an open B /; so that

AO g B1/2 g CI(B]_/Q) g Bl.
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Then there are open B /4 and Bs, so that
Ao € Byyy Ccl(Byys) C Byjp Ccl(Byy2) € Bsyy C cl(Bs)y) € Bi.

Let Qg be the set of all rational numbers of the form r = k/2™ with 0 < k < 2.
Continuing inductively, we see that to every r € Q4 corresponds an open set B, so that

AO - Br - CI(BT) - Bs

for every r, s € Qg with r < s.
We consider f : 2 — R defined so that

inf{r € Qq|z € By}, «x¢€ By,
o) = € Qalz e B B
1, JIEQ\BL

Then f =0in K,and f = 1in L, and f : Q — [0, 1]. It remains to show that f is continuous.
Take any x € Q and any € > 0. If 0 < f(z) < 1, then there are r, 7/, s € Qg so that

fl@)—e<r<r < flx)<s< f(z)+e

Ify € Bs,then f(y) < s < f(x)+e. Ify € Q\cl(B;), theny ¢ B,,andthen f(y) > r > f(x)—e.
Also, z € By and x ¢ B,s, and hence z € Q\ cl(B,). Therefore the open V' = B; N (2 \ cl(B,))
contains z, and f(z) — e < f(y) < f(z) + € for every y € V. So f is continuous at z.

If f(z) = 1, we consider, as above, r,7’ € Qg sothat 1 —e < r < 7’ < 1. Then the open
V =Q\c(B,) contains z,and 1 —e < f(y) <1< 1+ eforeveryy e V.

Similarly, if f(z) = 0, we consider s € Qg so that 0 < s < €. Then the open V' = Bj contains z,
and —e < 0 < f(y) < eforeveryy € V.

In any case, f is continuous at . O

We should remark that Urysohn’s lemma holds, more generally, for normal topological spaces
(), i.e. Hausdorff topological spaces with the property: for every two disjoint closed K, L C €
there are disjoint open U,V C Q) sothat K C U and L C V. This is the only property of 2 which
was used in the proof of Urysohn’s lemma. Lemma 3.1 says that compact, Hausdorff topological
spaces are normal. Another class of normal spaces are the metric spaces. In fact, for a metric space
Q, Urysohn’s lemma has a simple proof: we consider the function f(z) = @ d(z.K)

W for every
x € ), where d(z, A) = infyc 4 d(x,y) for every A C Q.

Lemma 3.2. Le €2 be a compact, Hausdorff topological space, let K C ) be compact, and let
Uy, ..., U, CQbeopen,sothat K C Uy U---UU,. Then there are continuous fi, ..., fn : 1 —
0, 1] so that supp(f;) C Uj forevery jand fi +---+ f, = 1in K.

Proof. We have that K \ (Us U ---UU,) C U; and so there is an open V; so that
K\(UQU"'UUn) WV ch(Vl) Cc U;.

Then K CV;UUyU---UU, and hence K \ (Vi UU3U---UU,) C U,. So there is an open V5
so that
K\(V1UU3U---UUR)QVQQCI(VQ)QUQ.

Then K C VU Vo UUs U ---UU,. We continue inductively replacing the open Uy, . .., U, with
the open V1,...,V,, sothat K C Vi U--- UV, and cl(V;) C Uj for every j.

We repeat this process, and we find open W7, ..., W, sothat K C W U---U W, and cl(W;) C
Vj C cl(V;) C Uj for every j.

Urysohn’s lemma implies that there are continuous gi,...,g, : & — [0,1] so that g; = 1 in
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cl(W;) and g; = 0in © \ V. There is also a continuous go : £2 — [0, 1] so that go = 0 in K and
go=1inQ\ (W U---UW,). Now we define
fi= 9

7 gt gt gn

forevery j =1,...,n.

If go(z) # 1, thenax € Wy U --- U W, and hence g;(z) = 1 for some j = 1,...,n. Therefore,
go+g1+--+g,>1inQ,andso fi,..., fn : © — [0, 1] are continuous in (2.

If z ¢ V;, then gj(x) = 0, hence f;(x) = 0. So supp(f;) C cl(V;) C U;.

Alsof1+---+fn:%:1inK,sincegO:OinK. O
Definition. Let ) be a topological space, let K C €2 be compact, let Uy, ..., U, C ) be open and

KCU U---UUy,. If fi,..., fa : Q@ — [0,1] are continuous, supp(f;) C Uj for every j, and
fi+ -+ fn = 1lin K, then the collection {fi, ..., fn} is called partition of unity for K with
respect to its open covering {Uy, ..., Up}.

Thus, lemma 3.2 says that in a compact, Hausdorff topological space every compact set has a
partition of unity with respect to any of its finite open coverings.

Lemma 3.3. Let ) be a topological space, and let i € A(2,3(52)). Then for every f € C(£2) we
have | Jo, f dp| < Jo [£ldlpl < [If|lulll-

Proof. 1t is enough to prove the left inequality. This is well known if f is real and y is non-
negative.

If f is real and p is real, then 4 = pu™ — p—, where u*, u~ are the positive and the negative
variations of y, and so

‘/Qfd“‘g‘/Qfdﬁﬁ\ﬂ/gfdu‘\s/Qlflduw/ny\du—:/Q|f|d|ﬂ|'

If f is complex and  is complex, then

}/Qfdu‘ < ‘/QRe(f)dRe(u)‘+’/QRe(f)dIm(M)‘
—|—‘/le(f)dRe(u)‘+)/le(f)dlm(,u)‘
< [ IRe(s)|d|Re(u)] + | |Re(f)]dl1m(n)
Q Q
= [l alre)| + [ [1m()]dfm(e)

§4/Q\f|dlu|-

Now we decompose the disc {\ € C||\| < ||f]|,} in pairwise disjoint Borel sets Q1,...,Qn
where each of them has diameter < ¢, and we consider the A; = {z € Q| f(z) € Q;}. We also
take one \; € @); for every j, and then

[ s S;’/Ajfdu‘ S;‘/Aj(f—%‘)du‘+;|Ajllu(z4j)!
<23 el (4 + 3 Pyllul(ay)
=1 j=1
<4erur<m+;/Aj Fdll +§/A 1 = Al

< 5elul() + /Q Fldlul.
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Since € > 0 is arbitrary, we get | [, fdu| < [, |f] d|ul. O

Definition. Let [ : C(€2) — F be a linear functional.

(i) We say that [ is real, if [(f) € R for every real f € C(Q2).

(i) We say that [ is non-negative, if [(f) > O for every non-negative f € C(f2).
) =

_Itis easy to see that, if [ is real, then Re(I(f)) = I(Re(f)) and Im(/(f)) = I(Im(f)) and also
I(f) = I(f) for every f € C(2). Similarly, if [ is non-negative, then I(f) < I(g) for all real
frg € C(2) with f < gin Q.

The theorem of F.Riesz-Radon-Banach-Kakutani. Let 2 be a compact, Hausdorff topological
space. Then there is a linear isometry of A, (2, B(Q2)) onto C(Q)’.

Proof. For every 1 € A,(Q2, B(£2)) we consider the functon /,, : C(2) — F' defined for every

[ e () by
= / fdu.
Q

= [ rau] < a1,

Then [, is a linear functional on C'(£2) and

for every f € C(§2). Therefore, I, € C(Q) and ||1,,]| < ||p]|-
We take any € > 0. The definition of ||x| implies that there are pairwise disjoint Borel sets
Aq,..., Ay C Qsothat

[l = € < [u(AD)]+ -+ - + |p(An)].
Since y is regular, for every j there is a compact K; C A; so that |u|(4; \ K;) < 2 € and so
[l = 2€ < u(KD)| + - - + [(Kn)]-

Since K1, ..., K, are pairwise disjoint, there are pairwise disjoint open U1, ..., U, so that K; C
Uj forevery j, and |u|(U; \ Kj) < % e for every j. Urysohn’s lemma implies that for every j there
is a continuous f; : 2 — [0,1] so that f; = 1in K and f; = 0in Q \ U;. Finally, we consider

m‘ Ju, fi d”‘_lv Ju, i dp # 0,

A =
! 07 fUijdM:()v

and f = Z?:l )\jfj. Now, |f| < E?:l |)\j’fj < Z?:l fj <1lin Q. ThUS,
I = 170l = | [ ] =S50 [ gy =3 | [ gy
@ j=1 ‘Ui j=1 “Uj
=S TEAIED S B B MEE S GAV R RS
j=1 j=1 JUj\K; j=1

Since € > 0 is arbitrary, we conclude that ||/,,|| > ||1¢|| and hence ||I,,|| = |||

Assume that [, is real. We consider any Borel set A, and then a compact K C A and an open
U D Asothat |u|(U\ K) < e. There is a continuous f : 2 — [0,1]sothat f = lin K'and f =0
in Q\ U. Then

o:\lm(/ﬂfdu)\2|1m<u<K>>|—\1m(/U\deu)\

> [Im(u(A)] — | Im(p(A\ K))| — (U \ K)
> [Im(u(A))] — 2lul(U \ K) > [Im(u(A)] - 2e.
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Since € > 0 is arbitrary, we get Im(x4(A)) = 0 and so y is a real measure.
Assume that [, is non-negative. With the same choice of A, K, U, f as in the previous paragraph,
we get

K/ﬁwwWH/ f i < u(A) + 20ul(U\ K) < p(A) + 2.
Q U\K

Again, since € > 0 is arbitrary, we find p(A) > 0 and so x is a non-negative measure.
We consider the function 7" : A, (2, B(Q)) — C(Q)’ defined for every u € A,.(Q, B(2)) by

Then T is linear and we have already seen that ||T'(y)|| = [|i,]| = ||| forevery pn € A, (2, B(£2)).
So it remains to prove that 7" is onto C'(2)’, i.e. to prove that for every I € C'(Q)’ there is a complex
(if FF = C) orreal (if F' = R) Borel measure 1 so that I(f) = [, f du for every f € C(Q).

At first we assume that { € C'(€2)’ is non-negative.

For every open U C ) and every f € C(2) we write

f=0,

if f:Q —[0,1] and supp(f) C U.
Now, for every open U C () we define

w(U) =sup{l(f) | f = U}
and, then, for every £ C () we define
p*(E) =inf{u(U)|U open D E}.

If U,U" C Qareopenand U C U/, then f < U implies f < U’, and hence u(U) < u(U").
Therefore,

p(U) = pu(U)
for every open U.
If f < U, thenI(f) < ||1||fle < II||- So u(U) < ||I]| and hence p*(E) < ||I|| for every E C €.
It is clear that p*(0) = (@) = 0, and that p*(E) < p*(E') for every E, E' C Qwith E C FE'.
Now, let £ = ;;Of Ej. For each j we find an open U; D Ej so that u(U;) < p*(Ej) + 55
and we consider the open U = ;;0? Uj. Let f < U, and let K = supp(f) C U. Then there is
n so that K C U;‘:l U; and we consider a partition of unity { f1,..., f,} for K with respect to
{U1,...,U,}. Then f = ffi +--- + f f, and supp(f f;) < Uj for every j, and so

n n “+o00 —+o00
() =D 1) <D uU) <D uUy) <> u(B) +e
j=1 j=1 j=1 j=1

Taking the supremum of I(f) over all f < U, we get u(U) < ;;Of p*(Ej) +e. Since E C U,

we get u*(F) < Zjﬁf p*(E;) + €. Finally, since € > 0 is arbitrary, we find
“+oo
w(E) < S i (E)).
j=1

Thus p* is an outer measure on 2.

Now the process of Caratheodory defines the o-algebra of 1*-measurable subsets of {2, and then
w* restricted on this o-algebra is a measure.

We take any open U C € and any E' C ). We take any ¢ > 0, and then there is an open U’ O F
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with u(U’) < p*(E) 4+ e anda f < U NU with I(f) > w(U' NU) —e. Then U’ \ supp(f)
is open, and there isa g < U’ \ supp(f) so that I(g) > (U’ \ supp(f)) — €. We observe that
f+g=<U' andso

WHE) +e>uU) 2 Uf +g) =1(f) +Ug) > u(U'NU) + u(U"\ supp(f)) — 2e
> (ENU)+p (E\U) — 2e.

Since € > 0 is arbitrary, we find
p(E) = p (ENU) +p (E\U)

and so U is p*-measurable. Therefore, the o-algebra of ;1*-measurable sets contains all open sets,
and so it contains 3(£2). We define 1 to be the restriction of 1* on 5(2), and so 4 is a non-negative
Borel measure on €2. Then  is identical with the already defined 1 on all open sets, since we have
proved that p*(U) = u(U) for every open U.

Now we shall prove that

u(K) =inf{l(f)| f € C(Q),xx < f in Q} (3.6)

for every compact K C (2.

We take any f € C(Q) so that f > yg,ie. f > 0inQand f > 1in K. We take any ¢ with
0 < t < 1, and we consider the openset U = {z € Q| f(x) >t} D K.If g < U, thentg < fin
2, and then t/(g) < I(f), since [ is non-negative. From this, taking the supremum of /(g) over all
g < U, wefind tu(U) < I(f), and hence ¢44(K) < I(f). Then we take the supremum over ¢ < 1,
and we get u(K) < I(f). Thus,

u(K) < inf{i(f)| f € C(Q), xx < f in Q.

Now we take any ¢ > 0, and then there is an open U DO K with p(U) < pu(K) + ¢, and a
continuous f :  — [0, 1] with f = 1 in K and supp(f) C U. Then f > yx and f < U, and so
I(f) < pu(U) < p(K) + €. Since € > 0 is arbitrary,

inf{1(f) | f € C(Q), xx < f in Q) < p(K),

and the proof of (3.6) is finished.
We shall now prove the regularity of .
For any Borel set £ we have

u(E) = p*(E) = inf{u(U) | U open 2 E}

by the definition of 1*(E), and this is the first regularity condition.

Now we take any Borel set F and any € > 0. ThenthereisanopenU O Esothat u(U) < pu(E)+e,
and a g < U so that I(g) > u(U) — e. We consider the compact K = supp(g) C U. For every
f e C(Q) with f > xk, we have f > g, and hence [(f) > I(g). From (3.6) we get u(K) > I(g)
and hence p(K) > pu(U) —e. Since u(U \ E) = p(U) — u(FE) < ¢, thereisanopen U’ D U \ E
so that u(U’) < 2e. Now we set L = K \ U’ and we observe that L is a compact subset of £ and
that E\ L C (U\ K)UU’. Hence u(E) — u(L) < w(U \ K) + p(U’) < 3¢ and so

w(E) =sup{p(L) | L compact C E}.

This is the second regularity condition.

Finally, we shall prove that [(f) = [, f du for every f € C(). Because of the linearity of /, it is
enough to prove this for real f. (Of course, if F' = R, then all our functions are real.) If f is real
we consider f* = L(|f|+ f) > 0and f~ = 3(|f| — f) > 0, and then f = f* — f~. Therefore,
in proving I(f) = fQ fdu it is enough to consider f > 0 and, multiplying with an appropriate
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constant, we may assume that 0 < f < 1in €.
We take any n € N and we consider Kj, = {z € Q| f(z) > £} for 0 < k < n. Then K is

compact, and Ky = ). Also, for every j = 0,...,n — 1 we consider the function
i .
fi= min{max {f, l}, L} 1
n n n

Then every f; is continuous in {2 and

1 1
ﬁXKj-&-l << EXKJ-
forevery j =0,...,n — 1 and also
n—1
F=> 1
j=0

Adding the last inequalities and integrating we find

1 n 1n—1
- M(Kj)ﬁ/fdMSE (K
n 4 Q n -
J=1 J=0
From g

i1 < nfj and (3.6) we get u(Kjy1) < I(nf;) = ni(f;). Now, we take any open
U D Kj. From nf; < xx, we get nf; < U and hence ni(f;) = l(nf;) < u(U). So from the
definition of p(K;) = i (K ) we get nl(f;) < u(K;). Therefore,

1 1
EH(KJ‘H) <I(fj) < EIU’(K]')’

and, adding, we find

1 n 1 n—1

n ZN(KJ)) <IU(f) < " Z n(K;)

j=1 7=0
Therefore,
1< 1
\/fw—z Xymw—;ZMMw (Ko \ K) < ()
j=1

Since n is arbitrary, we get

- [ rau

We finished the proof in the case of a non-negative | € C({2)": we proved that there is a non-
negative u € A, (Q, B(Q)) so that I(f) = [, f du for every f € C(Q).
Now let [ € C(92)’ be real. For every non-negative f € C'(Q2) we define

I°(f) =sup{i(g)| g € C(Q),0< g < f in O},

Obviously, [T(f) > 1(0) =0and I (f) > I(f).

1£0 < g < f, then(g) < [1(g)] < 1] lglhu < Il and so
0<I(f) < UMl fllu < +oc.

For every A > 0 and every non-negative f € C'(Q2) we have

IY(Af) =sup{i(g)|g € C(Q),0 < g < Af in O}
= sup{l(Ah) |h € C(Q),0 < h < f in Q}
= Asup{l(h)|h € C(Q),0 < h < f in Q} = NT(f).
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If f1, fo € C(Q) are non-negative, and 0 < g; < fyand 0 < g2 < fo, then I(g1) + I(g2) =
I(g1 + g2) and, since 0 < g1 + g2 < f1 + f2, we get I(g1) + I(g2) < IT(f1 + f2). Taking the
supremum over g1 and go, we find I (f1) + 11 (f2) < I (f1 + f2).

Now let 0 < g < f1 + fo. Weset g1 = min{f1,9}, andthen 0 < ¢; < fiand g; < g. If
we set go = g — g1, then it is easy to see that 0 < go < fo and, of course, ¢ = g1 + g2. Thus
I(g) =Ug1) +U(g2) <IT(f1) + 1T (f2), and, taking the supremum over g, we get [T (f1 + f2) <
U + 1 ().

We conclude that
U (fu+ fo) = U7 (f) + 15 (fa).
Until now, [T (f) is defined only for non-negative f € C(Q2). Now, for any real f € C(Q) we
consider f* = Z(|f|+ f) > 0and f~ = 1(|f| — f) > 0, so that f = f© — f~. Then for every
real f € C(Q) we define
) =155 = ().
We observe that, if f = g — h for any non-negative g, h € C(2), then f* +h = f~ + g, and so
)+ ) =1 (P +h) =1 (" +9) =17 (f7) + 17 (g)-
Thus,
() =17(f7) =15 (f7) = 1T (g) = I (h).
If f1, f2 € C(Q) arereal, then f1 + fo = (f{ + f5) — (f{ + f5 ), and from the last identity we
have

Wi+ fo) =1+ ) = U+ f) =1 U = 1) = U(fs) = UA) +U(f2).
If f € C() is real and A > 0, then
PO =15 ) = 1P ) = N = N (F7) = N (),
while if A < 0, then
FEOF) = TROAFT) = TROALFT) = I () = () = N ().

If F =R, we have proved that " : C(2) — R is linear.
If F = C, then for every f € C'(Q2) we define

[7(f) = 1" (Re(f)) + il ™ (Im(f))
and it is easy to see that [T : C'(2) — C is linear. If f € C(Q) is real then
A =10FT) = 0 < max{IT (), 17 (F 7)< max{ [ e, (21 T
= N1 £ e

If f € C(Q) is complex, then there is A € C with |A] = 1 so that Al (f) = |IT(f)|, and then we
have

NI = N () =17 (Af) =Re(I"(Af)) = 1" (Re(Af)) < L[ Re(Af)llu < [I2][[1f[lu-

So [ is a non-negative linear functional on C(Q) with [|I|| < ||I||.

We also define [~ = [T — [ : C(Q) — F. This is a bounded linear functional on C(2) and it is
non-negative, since for every non-negative f € C(Q) we have [=(f) = IT(f) — I(f) > 0. So
there are non-negative si1, pp € A, (Q, B(Q)) so that It (f) = [, fduiand I~ (f) = [, f dus for
every f € C(Q). Now we consider y1 = p1 — pg and then p € A, (2, B(€2)) is real and

l(f)=l+(f)—l_(f)Z/Qfdm—/gfduzz/ﬂfdu
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for every f € C(Q).

At this point the proof is complete if F' = C and [ is real, or if /' = R (and so [ is automatically
real).

If F/ = C and [ is complex, then Re(l) and Im(/) are real continous R-linear functionals on C(2)
and hence they are continuous R-linear functionals on Cr(2), the R-linear space of the real con-
tinuous functions on €. So there are real ji1, u2 € A, (2, B(Q)) so that Re(I)(f) = [, f dp1 and
Im(I)(f) = [q [ dus for every real f € C(Q). So if we set yu = iy +ipo, then p € A, (Q, B(Q))
and for every real f € C'(Q2) we get

Mﬁ=Mmm+MMMﬁ=AfWﬁ¢LMm=Afw.

So for every f € C(2) we get

I(f) = I(Re(f)) +il(Im(f)) = /

Q

Re(f)duﬂ/glm(f)duz/gfdﬂ.

The main result of the theorem of F.Riesz-Radon-Banach-Kakutani is its “onto” part:

Let Q be a compact, Hausdorff topological space. Then for every | € C () there is a unique
e A (2, B(2)) so that

il =ll. 1D = [ Fdu forevery f € OO,

If | is non-negative, i.e. I(f) > 0 for every non-negative f € C(f2), then p is non-negative.
Iflisreal,i.e. I(f) € R for everyreal f € C(2), then p is real.

3.6 The theorem of Hahn-Banach.

3.6.1 The analytic form.

Definition. Let X be a linear space over F. Then p : X — R is called positive-homogenuous
and subadditive functional on X, if

(i) p(tz) = tp(z) for every x € X and every t > 0,

(i) p(z + y) < p(x) + p(y) for every z,y € X.

Definition. Let X be a linear space over F'. Then p : X — R is called seminorm on X, if
(i) p(Ax) = |A|p(z) for every z € X and every \ € F,
(i) p(z +vy) < p(z) + p(y) for every x,y € X.

Every seminorm is a positive-homogenuous and subadditive functional.

Lemma 3.4. (i) If p is a positive-homogenuous and subadditive functional on X, then p(0) = 0,
—p(—z) < p(z) for every z € X, and p(z) — p(y) < p(z —y) < p(z) + p(—y) for every
x,y € X.

(ii) If p is a seminorm on X, then p(0) = 0, p(—x) = p(z) for every x € X, and |p(x) — p(y)| <
p(x — y) for every x,y € X. In particular, p(xz) > 0 for every z € X.

Proof. Exercise. O

Assume that a seminorm p : X — R has the additional property: p(z) = 0 implies x = 0.
Then, clearly, p is a norm on X.
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The theorem of Hahn-Banach. We consider F' = R. Let X be a linear space and Y be a linear
subspace of X, let p be a positive-homogenuous and subadditive functional on X, and let [ be
a linear functional on Y. We assume that [(y) < p(y) for every y € Y. Then there is a linear
functional L on X so that

(i) L(y) = l(y) for every y € Y, i.e. L is an extension of l,

(ii) L(x) < p(x) for every x € X.

Proof. We consider the set /C of all k£ with the properties:

(i) k : D(k) — Ris a linear functional on a linear subspace D(k) of X,

(ii) % is an extension of /, i.e. Y = D(l) C D(k) and l(y) = k(y) foreveryy € Y,

(iii) k(z) < p(z) for every z € D(k).

Then [ is an element of K, and so K is non-empty. We define an order relation < on K in the
following way: k; < ko means that k5 is an extension of &y, i.e. D(k1) C D(k2) and ki(z) =
ko(z) for every z € D(ky). It is very easy to see that < has the properties of an order relation.
Now let M be any totally ordered subset of X'. We consider the set

Zo = U D(k).
keM
Since D(I) C D(k) for every k € M, weseethatY = D(l) C Zy C X.
If 21,29 € Zp, then there are k1, ko € M so that z; € D(ky) and z2 € D(ks). Since one of
k1, ko is an extension of the other, we have that either D (k1) C D(k2) or D(ka) € D(ky). If
D(ky) C D(ko) then 21, 20 € D(k2), and, since D(k2) is a linear subspace of X, we have that
21+ 22 € D(kq), and so z1 + z2 € Zy. Obviously, the same is true if D(k3) C D(ky).
If z € Zpand \ € R, then there is k € M so that z € D(k). Since D(k) is a linear subspace of
X, we have Az € D(k), and so Az € Z.
Therefore, Zj is a linear subspace of X.
Now we take any z € Zy. Then z € D(k) for some k € M. If z € D(k’) for any other ¥’ € M,
then, since one of &, &’ is an extension of the other, we get that k(z) = k/(z). So we may consider
the function
]ﬁo 1y — R

defined for every z € Z by
ko(z) = k(z) forany k € M with z € D(k).
We saw that, if z1, zo € Z, then there is k£ € M so that z1, zo € D(k), and hence
ko(z1 + 2z2) = k(21 + 22) = k(z1) + k(22) = ko(21) + ko(22).
Similarly, if z € Zp and A € R, then there is k € M so that z € D(k), and hence
ko(Az) = k(A\z) = Ak(2) = Ako(2).

Thus, kg is a linear functional on Zj.

It is obvious that & is an extension of [ and that ko (z) < p(z) for every z € Z.

Thus, kg € K. Tt is also clear that & is, by its definition, an extension of every k € M, and so kg
is an upper bound of M.

Now Zorn’s lemma implies that X has at least one maximal element. In other words, there is L
with the properties (i), (ii) and (iii), and there is no k with the same properties which is a proper
extension of L.

We shall prove that D(L) = X and this will finish the proof.

Towards a contradiction, we assume that D(L) # X, and we take any g € X \ D(L). We
consider the linear subspace

Z ={a+ Axg|a € D(L),\ € R}
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of X. Then D(L) as a proper linear subspace of Z. We shall define a linear functional k¥ : Z — R
so that k(a) = L(a) for every a € D(L), and k(z) < p(z) for every z € Z. This means that % is
a proper extension of L with the properties (i), (ii) and (iii), and we shall arrive at a contradiction.
Now we take any A\g € R and we consider k£ : Z — R defined for every a + Axg € Z (i.e. for
every a € D(L) and every A € R) by

k‘(a + )\SC()) = L(CL) + A)Ng.

Then it is very easy to see that k is a linear functional on Z and that k(a) = L(a) for every
a € D(L). So we only have to choose Ay so that k(a + Azg) < p(a + Azg) for every a € D(L)
and every A € R. This is equivalent to

L(a) + Mo < p(a+ Azg) forevery a € D(L),\ € R.

So for A = 0 we must have L(a) < p(a) for every a € D(L), which is true.
Then we must have

1 1
Ao < Xp(a + Axg) — X L(a) = p(; + x0> - L(%) forevery a € D(L),A >0

or, equivalently,
Mo < pla+xg) — L(a) forevery a € D(L).

Finally, we must have

1 1 a
> _
Aog > 3 pla + Azo) 3 L(a) = —p(—w — {L‘0> + L(

a

|)\|) forevery a € D(L),A <0

or, equivalently,
Ao > —pla —x0) + L(a) forevery a € D(L).

In other words, we must choose )\ so that
—p(a —x9) + L(a) < Ao < pla+ x9) — L(a) forevery a € D(L).
The existence of such ) is clearly equivalent to the inequality
sup{—p(a — 20) + L(a) |a € D(L)} < inf{p(a + o) — L(a) |a € D(L)},
and this is equivalent to
—p(a1 — 20) + L(a1) < p(az + o) — L(az) forevery a1,as € D(L).
But this last inequality is true, since
L(a1) + L(az) = L(a1 + a2) < p(a1 + az) = p(ar — o + a2 + o) < plar — o) + plaz + o)
for every a1, a2 € D(L). O
Definition. Let X be a linear space over C. Thenl : X — C is called R-linear functional on X,
i
f x4+ 22) = U(x1) + U(z2), (M) = N(2)
for every x,x1,x2 € X and every A € R.

So the difference between a linear functional and a R-linear functional is that the first satisfies
I(Ax) = M(x) for every A\ € C and the second satisfies the same equality for every A € R. So,
obviously, every linear functional is also a R-linear functional.
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Lemma 3.5. Let X be a linear space over C.
(i) Ifl : X — C is a linear functional, then its real part Re(l) : X — R is a R-linear functional,
and

[(x) = Re(l)(z) —iRe(l)(ix)
for every x € X.
(ii) For every R-linear functional ly : X — R, there is a unique linear functional [ : X — C so
that Re(l) = lp in X.

Proof. (i) Equating real parts in (2] + x2) = I(z1) + I(z2) and [(Az) = A(x) with A € R, we
see that Re(/) is a R-linear functional.
From [(z) = Re(l)(x) + ¢ Im(I)(z) we get
iRe(l)(z) — Im(l)(x) = il(x) = l(iz) = Re(l)(iz) + i Im({)(ix),
and hence Im(!)(z) = — Re(l)(ix). Thus [(z) = Re(l)(x) — i Re(l)(izx) for every x € X.
(ii) We consider [ : X — C defined for every x € X by
l(x) = lo(x) — ilp(ix).
For every x1,z9 € X we get
l(:L‘l +.732) = lo(l’1 +$2) —ilo(iﬂ?l +i$2) = l()(xl) +lo($2) —ilg(ixl) —ilo(ixz) = l(ﬂ?l) —f—l(xg).
Also, if A = u +iv € C, then
I(A\x) = l(px + ive) = l(px) + l(ive) = lo(pz) — ily(ipx) + lo(ive) — ilo(—v)
= plo(z) — iplo(ix) + vip(iz) + ivlp(x) = pl(z) + ivl(z) = N(zx).

Hence [ is a linear functional and, clearly, Re(l) = .
If Re(l1) = Re(l3) for two linear functionals /1, l2, then

l1(z) = Re(l1)(x) —iRe(l1)(ix) = Re(l2)(x) — i Re(ly) (ix) = l2(x)
forevery z € X, and so l; = [s. O

The next result is the “complex™ version of the theorem of Hahn-Banach.

The theorem of Bohnenblust-Sobczyk. We consider F' = C. Let X be a linear space and'Y be a
linear subspace of X, let p be a seminorm on X, and let [ be a linear functional on Y. We assume
that |l(y)| < p(y) for every y € Y. Then there is a linear functional L on X so that

(i) L(y) = l(y) for every y € Y, i.e. L is an extension of l,

(ii) |[L(z)| < p(x) for every x € X.

Proof. We can obviously consider X (and hence also Y') as a linear space over R. Lemma 3.5
implies that Re(!) : Y — R is a R-linear functional on Y and that

I(y) = Re(l)(y) — iRe(l)(iy)
foreveryy € Y.
We also have Re(!)(y) < |l(y)| < p(y) foreveryy € Y.
The theorem of Hahn-Banach implies that there is a R-linear functional Ly : X — R so that
Lo(y) = Re(l)(y) forevery y € Y, and Lo(z) < p(z) for every x € X.
Lemma 3.5 implies that there is a linear functional L : X — C so that Re(L) = L¢ in X. Then
for every y € Y we have

L(y) = Re(L)(y) — iRe(L)(iy) = Lo(y) — iLo(iy) = Re(l)(y) — iRe(l)(iy) = I(y),

and so L is an extension of /.

Finally, for every z € X there is A € C so that |\| = 1 and |L(z)| = AL(z). Then
|L(x)| = AL(z) = L(Az) = Re(L)(Az) = Lo(Az) < p(Az) = [A|p(z) = p(z)
forevery z € X. O
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3.6.2 The geometric form.

Definition. Le X be a linear space over F', and let A C X.
(i) We say that A absorbs X, if for every x € X there is 7y > 0 so that [0, x] C roA.
(ii) We say that A is balanced, if \a € A for every a € Aandevery A € F, |\| < 1.

It is obvious that 0 belongs to every A which absorbs X, and also to every balanced A.

Assume that A absorbs X and take any € X. Then there is 79 > 0 so that [0, 2] C 7oA,
i.e. sz € rgA forall s, 0 < s < 1. This implies that x € rA for all » > ry. Therefore, the set
{r > 0|z € rA} is a halfline in (0, +00).

Definition. Let X be a linear space, and assume that A C X is convex and absorbs X . We consider
the function p4 : X — [0, +00) defined for every = € X by

pa(z) =inf{r > 0|z € rA}.
The function p 4 is called Minkowski functional of A.

From the remarks before the definition, it is clear that € A for every r > p(z). It is also
clear that, if 0 < r < pa(x), then x ¢ rA.

Proposition 3.5. Let X be a linear space, and assume that A C X is convex and absorbs X. If
pA is the Minkowski functional of A, then

(i) pa is positive-homogenuous and subadditive on X .

(ii) if A is also balanced, then p 4 is a seminorm on X.

(iii) { € X |pa(e) < 1} CAC {z € X | palx) < 1}

Proof. (i) If t > 0, then

pa(te) =inf{r > 0|tz € rA} :inf{r > O‘a: € %A} =inf{ts > 0|z € sA}
=tinf{s > 0|z € sA} =tpa(x).

Also, 0 € rA for every r > 0, and so p4(0) = 0. Thus, pa(tz) = tpa(x) holds also for ¢ = 0.
Now, take any 7 > p4(z) and any s > pa(y). Thenz € rAandy € sA, andso +z € A and
% y € A. Then the convexity of A implies that

1 r 1 s 1

= - —y € A.
r+s<x+y) r+s rx+r+s sy

Therefore, z +y € (r+ s)A and so pa(x +y) < r+ s. Since this holds for every » > p4(x) and

every s > pa(y), we getpa(z +y) < pa(z) + pa(y).
(ii) If A # 0, then

A A A
pA()\x):inf{r>0|)\$ErA}:inf{r>0"/\|‘r‘xeA}:inf{r>0‘umeA}
:inf{r>0‘:c€ ﬁA} = |Ainf{s > 0|z € sA} = |A\|pa(x).

We saw in the proof of (i) that p4(Az) = |A|pa(x) holds also for A = 0.
(iii) If pa(x) < 1, thenz € 1A= A. If x € A= 1A, thenpa(z) < 1. O

Proposition 3.6. Let X be a linear space and let p : X — R be a positive-homogenuous and
subadditive functional on X.

(i) B={z € X |p(x) <1} and C = {x € X |p(z) < 1} are convex and they absorb X.

(ii) If p is a seminorm, then B, C' are also balanced.

(iii) If A is convex and B C A C C, then p4 = max{p, 0}. If p is a seminorm, then p4 = p.
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Proof. () If x,y € Band 0 <t < 1, then

p(tz + (1 —t)y) < p(tz) +p((1 —t)y) = tp(z) + (1 —t)p(y) <t +(1—-¢t) =1

Thus, tx + (1 — t)y € B and so B is convex. The same argument shows that C'is convex.

Let z € X, and take any ro > max{p(z),0}. If 0 < s < 1, then p(;; 2) = ;= p(z) < 1, and
hence ;> z € B. Thus [0, 2] C roB and so B absorbs X. Now, C absorbs X, since B C C.

(ii) Let z € B and |A\| < 1. Then p(Ax) = |A|p(z) < 1 and hence Az € B. So B is balanced, and
the same argument shows that C' is balanced.

(iii) A absorbs X, since B absorbs X . From proposition 3.5 we have that

{r € X|pa(x) <1} CAC{z e X |pa(z) <1}

Thus, pa(z) < 1 implies p(z) < 1. Also, p(x) < 1 implies pa(z) < 1.

If A > max{p(z),0}, then p(+ z) < 1, then pa(3x) < 1, and so pa(z) < A. Therefore,
pa(e) < max{p(z), 0}.

If A > pa(z)(> 0), then pa(3 z) < 1, then p(+ ) < 1, and so p(z) < A. Therefore, p(z) <
pa(z). Since 0 < pa(z), we get max{p(z),0} < pa(x).

Hence, p4(x) = max{p(z), 0} for every z € X.

If p is a seminorm, then p(z) > 0, and hence p4(x) = p(z) for every x € X. O

Definition. Let X be a linear space, A C X and a € X. We say that A absorbs X with center a,
if A — a absorbs X.

Clearly, if A absorbs X with center a, then0 € A — a, and so a € A.

It is easy to see that, if A absorbs X with center a, then, for every b € X and every A € F, we
have that A + b absorbs X with center a + b, and that A A absorbs X with center \a.

We know from Linear Algebra that, if [ # 0 is a linear functional on X, then its null space
(or kernel) N(I) = {z € X |I(z) = 0} is a linear subspace of X of codimension equal to 1.
Conversely, if Y is a linear subspace of X of codimension equal to 1 then there is a linear functional
[ # 0on X sothat Y = N(I). Moreover, any set of the form Y + a, where Y is a linear subspace
of X of codimension equal to 1 and a € X, is called hyperplane of X. Then it is easy to see that a
subset of X is a hyperplane if and only if it is of the form {x € X | I(z) = A}, where! # Oisalinear
functional on X and A\ € F. Then we say that {x € X |I(z) < A} and {x € X |I(z) > A} are
the open halfspaces, and {z € X |I(z) < A} and {z € X |I(x) > A} are the closed halfspaces
determined by the hyperplane.

Theorem 3.5. We consider F' = R. Let X be a linear space, and let A C X be convex and absorb
X with every a € A as center. If b ¢ A, then there is a hyperplane of X which contains b and so
that A is contained in one of the two open halfspaces determined by this hyperplane. Therefore, A
is equal to the intersection of all open halfspaces which contain A.

Proof. At first we assume that 0 € A. Then A is convex and absorbs X, and we consider the
Minkowski functional p4 of A. Proposition 3.5 implies that p4(a) < 1 for every a € A, and also
that ps(b) > 1 forevery b ¢ A.

If a € A, then A — a absorbs X. Then there is 7 > 0 so that a € r(A — a), and hence 11" a € A.
Then pa (1t~ a) < 1 and hence pa(a) < 15 < 1. Therefore, p4(a) < 1 for every a € A.

Now we take any b ¢ A (and so b # 0) and we consider the linear subspace Y = {\b| A € R} of
X, of dimension equal to 1, and the linear functional / : Y — R defined for every Ab € Y by

I(Ab) = A,

If A <0, then
I(Ab) = A < 0 < pa(Ab).
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If A > 0, then
I(Ab) = XA < Apa(b) = pa(Ab).

Therefore, [(y) < pa(y) forevery y € Y.

The theorem of Hahn-Banach implies that there is a linear functional L : X — R which is an
extension of [ and so that L(z) < pa(x) for every x € X. Then L(b) = I(b) = 1 and L(a) <
pa(a) < 1forevery a € A. So the hyperplane {x € X | L(x) = 1} contains b, and A is contained
in the open halfspace {x € X | L(z) < 1}.

Now, assume that 0 ¢ A. We take any ay € A and we consider the set Ay = A—ag. Then0 € Ay,
and Ay is convex and absorbs X with every a € Ag as center.

Now we take any b ¢ A, and we consider by = b — ag ¢ Ag. We have proved that there is a
hyperplane Ly which contains by and so that A is contained in one of the two open halfspaces
determined by L. Then the hyperplane Ly + ag contains b, and A is contained in one of the two
open halfspaces determined by Lg + ag. O

Theorem 3.6. We consider F' = R. Let X be a linear space, and let A C X be convex and absorb
X with some a € A as center. If b ¢ A, then there is a hyperplane of X which contains b and so
that A is contained in one of the two closed halfspaces determined by this hyperplane.

Proof. We just repeat the proof of theorem 3.5, ommiting the part which proves that p4(a) < 1
for every a € A. It is enough that p4(a) < 1 holds for every a € A. O

Theorem 3.7. We consider I' = R. Let X be a linear space, let A C X be convex and absorb
X with some (or every) a € A as center, let B C X be convex, and AN B = (). Then there is a
hyperplane of X so that A is contained in one of the two closed (or open) halfspaces determined
by this hyperplane, and B is contained in the complementary closed halfspace.

Proof. We consider the set C' = A — B. Then C'is convex and 0 ¢ C'. Also, it is easy to show that
C absorbs X with some ¢ € C as center. Indeed, assume that A absorbs X with center ag € A
and take any by € B. Then A — by absorbs X with center ag — by. Since A — by C A — B, we
have that A — B absorbs X with center ag — bg.
Then theorems 3.5 and 3.6 imply that there is a hyperplane which contains 0O (i.e. a linear subspace
of X of codimension equal to 1) so that C is contained in one of the two closed halfspaces deter-
mined by this hyperplane. In other words, there is a linear functional [ : X — R, [ # 0, so that
l(c) < 0 for every ¢ € C. This implies that {[(a — b) < 0, i.e. I(a) < I(b) for every a € A and
every b € B.
Therefore,

sup{l(a)|a € A} <inf{l(b)|b € B}.

Now if we consider any A € R between these supremum and infimum, then
AC{z e X|l(z) <A}, BC{zxeX|l(z)> A}

Now, assume that A absorbs X with center a. We take any « € X so that I(x) > A. Then there
istg > Osothatx —a € ty(A — a) and so there is ay € A so that x — a = tg(ag — a), i.e.
x = tgag + (1 — to)a. Then

A < U(z) = tol(ag) + (1 — to)l(a) < tod + (1 — to)l(a).

This excludes the case ¢ty < 1. So ¢y > 1 and then we get [(a) < A.
Therefore, if A absorbs X with every a € A as center, then

AC{z e X|l(z) <A}, BC{zreX|l(z)> A}

Now, the hyperplane we need is the {x € X |I(z) = A}. O
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3.7 Implications of the theorem of Hahn-Banach.

The following is one of the fundamental results in the theory of normed spaces. It is very often
called theorem of Hahn-Banach, but it is actually a corollary of the theorem of Hahn-Banach and
its “complex” version, the theorem of Bohnenblust-Sobczyk.

Let X be a normed space, and Y be a subspace of X. Assume that ¢y’ € Y’, that 2’ € X’, and
that 2’ is an extension of ¢/, i.e. that 2/(y) = 4/(y) for every y € Y. Then it is very easy to show
that ||y/|] < ||«'||. Indeed,

lyIl= sup [Y(y)l= sup [|&'(y)|<  sup [|o'(x)] = []2'].
yeY,|lylI<1 yeY,|lylI<1 zeX,|z||<1

We may say that extensions have larger norms.

Theorem 3.8. Let X be a normed space, and Y be a subspace of X. Then for every y' € Y’ there
isz’ € X' sothat 2'(y) = y/(y) foreveryy € Y, and ||2'|| = ||v/]|.

Proof. We consider the seminorm p : X — R defined for every z € X by
p(x) = [ly'llll=l

The linear functional ¢’ on Y satisfies |y/'(y)| < p(y) forevery y € Y.
Let F' = C. Then the theorem of Bohnenblust-Sobczyk implies that there is a linear functional z’
on X so that 2/(y) = y/(y) for every y € Y and

|2'(2)] < p(x) = [ly/[lllz]

for every x € X. Therefore, 2’ € X’ and ||2’|| < ||| Since ||3/|| < ||2’| is trivially satisfied, we
get that [|z'|| = [|y/[|.

Let F' = R. Since y'(y) < p(y) for every y € Y, the theorem of Hahn-Banach implies that there
is a linear functional 2’ on X so that z'(y) = ¢/(y) for every y € Y and

'(z) < p(x) = [ly'llll=
for every 2 € X. If we replace x with —z in this inequality, we get —||3/||||z|| < 2’(x) and so
| (2)] < [yl
for every 2 € X. Thus, ||2’|| < |||, and hence ||l2’|| = [|/]. O

Definition. Let X be a normed space. If A C X, we define
At = {2’ € X"|2'(a) = 0 for every a € A}.

If X is a space with inner product (-, -) and A C X, then A~ has been defined in two different
forms. The old form is

AL — o e X | (a,2) = 0 forevery a € A} C X,
and the new form is
ALmew — 19/ € X' |2/ (a) = 0 forevery a € A} C X',
According to the theorem of F.Riesz, there is a conjugate-linear isometry 7" of X into X', given

by:
T(z)(x) = (x,z) forevery z € X andevery z € X.
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Therefore, if we write A-°4 = {> € X | (a,z) = 0 for every a € A}, then we see that
T(A) = {T(2) € X'|(a,z) = 0 forevery a € A}
={T(2) € X'|T(2)(a) =0 forevery a € A}
— T(X) ) AJ_,new C AJ_,new'

If X is a Hilbert space, then T is onto X’ and so

T(AJ_,old) _ AL,new.
Proposition 3.7. Let X be a normed space. If A C X, then At is a closed subspace of X'.
Proof. Exercise. O
Theorem 3.9. Let X be a normed space, x € X and Y be a subspace of X. Then

max 2 (x)] = inf ||z — y||.
Lma )] = inf =

Proof. For every x’ € Y+ with ||2/|] < 1 and for every y € Y we have

|2 (2)] = |2 (z) — 2/ (y)| = 2" (z — )| < [l [[]lz =yl < [z = y].

Hence
sup |2'(x)| < inf [lz — yl|.
a'eY L |la||<1 yey

So it is enough to prove that there is z’ € Y so that ||2’|| < 1 and |2/ ()| = inf ey ||z — y]|.

If € Y, then inf ey || — y|| = 0 and |2/(z)| = 0 for every 2’ € V1. So in this case the proof
is complete.

If x ¢ Y, we consider the linear subspace Y; of X which is spanned by Y U {z}:

Yi={y+Xr|yeY,Ae F}.
We consider ¢ : Y1 — F defined by
Y (y+ Ax) = M

foreveryy € Y and every A € F, where d = infcy ||z —y||. Itis clear that ¢/’ is a linear functional
on Y.
If A =0, then

¥/ (y+ Az)| = [Ald =0 < [ly + Az

If A # 0, then
v+ ) =N < Wz = (= 5 9) | = lly + Aall.

Hence ¢’ € Y{ and ||y/|| < 1.

Now theorem 3.8 implies that there is 2’ € X’ so that 2/(y + Az) = Ad for every y € Y and every
A€ F,and ||2/|| = ||y/|| < 1. Now, 2/(y) = 2/(y + 0z) = 0d = 0 for every y € Y, and so
¢’ € Y4, and |2/ (2)] = |2/(0 + 12)| = 1d = d. O

Theorem 3.10. Let X be a normed space, and x € X. Then

x| = max ' (x)].
lell = _max_ 1+'62)

Proof. This is a corollary of theorem 3.9. We consider the linear subspace Y = {0}, and then we
have {0} = X’ and inf,c(oy ||z — yl| = [|& — 0O]| = |||. O
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Theorem 3.11. Let X be a normed space, A C X and x € X. Then z € clspan(A) if and only if
2'(x) = 0 for every 2’ € A*.

Proof. This is a corollary of theorem 3.9. We take Y = clspan(A), and then A+ = Y and

max 2 (x)] = inf ||z — y||.
m,gAl’”w,HSI\ ()] yeyH yll

Since Y is closed, we have that « € Y if and only if inf,cy || — y|| = 0 if and only if 2/(z) = 0
for every 2’ € AL with ||2/|| < 1if and only if /() = 0 for every 2’ € AL, O

Proposition 3.8. Let X be a normed space. If X' is separable, then X is separable.

Proof. Let {z], |n € N} be a countable dense subset of X".

For each n we consider z,, € X so that ||z,,|| = 1 and |2/,(z5,)| > 3 ||=},|| and we define the set
A ={z,|neN}.

Assume that there is x € X so that x ¢ clspan(A). Then theorem 3.11 implies that there is
x' € At sothat 2'(z) # 0. Hence, 2/(x,,) = 0 for every n and 2’ # 0 and so ||z’|| > 0.

Since {2, |n € N} is dense, there is n so that |z’ — 2/,|| < % ||2/||. Then

lnll = [l = ll2" = 27| > 2" = a5, I,

and so

1
5 lnll < lan (@)l = |2 (zn) = 2'(z0)] < g, — 2"l < 5 [l

and we have a contradiction.
Therefore, for every x € X we have that « € clspan(A). Thus, for every ¢ > 0 there are n € N
and A\1,..., )\, € F sothat

|z — (Aizr + - 4 Apzp) || < e

Now we take rational £1, ..., k, € F sothat |\; — ;| < m for every j and we easily see that
J

|z — (k11 + -+ 4+ Kpxn) || < 2e.

So the countable set, whose elements are all linear combinations of elements of A with rational
coefficients, is dense in X. O

Corollary 3.1. I! is not linearly isometric with (1°°)'. In fact I* is not even topologically homeo-
morphic with (1°°)’.

Proof. 1! is separable, so, if the two spaces are topologically homeomorphic, then (I°°)’ is separa-
ble. But then proposition 3.8 implies that [*° is also separable and this is not true. O

Theorem 3.12. Let X be a normed space, let Y be a subspace of X, and 2’ € X'. Then

sup |2'(y)| = min [|z' - Z|.
yeY|lylI<1 Zey

Proof. For every y € Y with ||y|| < 1, and every 2’ € Y- we have
' ()] = |2'(y) = 2/ ()] < [l = Zllly]| < fl2" = 2.

Hence,
sup |2'(y)] < inf 2’ — 2.
eyt

yeYi[ly[<1
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S fe o 1 ! _ ! !
So it is epough to prove that t.he‘re is z /e Y+ so that supcy, <1 12'(y)| = [lz" — 2|
We consider 3’ to be the restriction of =’ on Y, and then

ly'l= sup |¥(y)]= sup |2'(y)|
yeyY,|lylI<1 yeYllyll<1

Theorem 3.8 implies that there is 2} € X’ so that 2 (y) = ¥/(y) = 2/(y) for every y € Y and

41| = ||¥/||. Now we take 2’ = 2’/ — 2, € X', and then
l" =2 =yl = sup ['(y)|-
yeY|lylI<1
Also 2/(y) = 2'(y) — 2} (y) = 0 for every y € Y, and hence 2’ € Y'*. O

3.8 The second dual.

The second dual X" = (X’)’ of a normed space X is a Banach space with norm

"= sup [2"(af)

Pex! o' <1

[z

for every 2" € X”.

Definition. Let X be a normed space. For every x € X we consider the function I, : X' — F
defined for every 2’ € X' by
l.(2)) = 2/ ().

Theorem 3.13. Let X be a normed space. For every x € X the function I, is an element of X"
and the function
J: X = X",

defined for every x € X by J(z) = I, is a linear isometry.
Proof. We have
lo(@] +a5) = (21 + 29)(2) = 21 (2) + 25(2) = lo(2]) + la(2)),

l:(A\2") = (\2')(z) = M/ (z) = Nl (2)

for every 2/, 2, 2, € X’ and every A € F. Thus, I, is a linear functional on X
Theorem 3.10 implies that

sup  |lo(2')| = sup [2'(2)| = [|=].
/X |l2']I<1 o/ €X/ |la’||<1
This means that I,, € X" and ||l,;|| = ||z||.

Now,
loytas (27) = @' (21 + 22) = 2/ (1) + 2" (22) = Iz, (27) + Iz, (27)

for every 2/ € X’ and hence Iy, 44, = loy + lz,. Also,
Ie(z) = 2'(Ax) = M (2) = N (2)
for every 2’ € X’ and hence [y, = Al,. Thus, J is linear:
J(x1 4+ 22) = lpytay = loy + 1oy = J(x1) + J(22), J(Ax) =lre = Ny = A (2).
We saw that ||.J(z)|| = ||lz]| = ||z|| for every x € X, and so J is a linear isometry. O
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Definition. Let X be a normed space. The linear isometry J : X — X" defined in theorem 3.13 is
called natural embedding of X into X"
If J is onto X", then we say that X is reflexive.

Thus, if X is reflexive, then X is linearly isometric with X”. The converse is not true in
general: there are normed spaces X which are linearly isometric with their second dual X" but
their natural embeddings .J are not onto X"

We observe that a necessary condition for a normed space X to be reflexive is its completeness.
Indeed, X" = (X’)" is a dual space, and so it is complete. Hence, if X is linearly isometric with
X", then X is also complete.

A second observation is the following. X; is complete, since it is a closed subspace of the
Banach space X”. Also, J(X) is dense in X7, since X is the closure of J(X). Now, J(X) C X"
is linearly isometric with X, and we conclude that X is a completion of X.

Proposition 3.9. Every Hilbert space is reflexive.

Proof. We consider the conjugate-linear isometry of theorem 3.4, 7' : X — X', given by

T(z)(x) = (z,2)

forevery z € X and z € X.

We shall prove that the natural embedding J : X — X" is onto X"

We take any 2" € X" and we consider the function 2’/ o T' : X — F. Itis easy to prove that this
is linear:

2" 0T (21 + 22) = 2" (T (21 + 22)) = 2" (T(
=a2"(T(z1)) + 2" (T

+T(22)) = 2"(T(21)) + 2"(T(22))

—~
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N
~
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"o T(\z) = 2" (T(\2)) = 2"(AT(2)) = Xa"(T(2)) = A" (T(2)) = Xa” o T(z).
Also

|20 T(2)| = [a"(T(2))] = 2" (T(2))| < [&" [T ()] = ll=" ][]z,

and hence 2" o T € X'.
Since T is onto X', there is x € X so that 2 o T' = T'(x). Then,

2"(T(2)) = T(x)(2) = (2,2) = (x,2) = T(2)(2) = J(2)(T(2))

for every z € X. Since T is onto X', the last equality implies that

for every 2/ € X'. Therefore, 2" = J(x), and so J is onto X". O

Proposition 3.10. If 1 < p < +oo and (2, X, 1) is a measure space, then [P and LP (), X, i) are
reflexive.

Proof. We consider ¢ given by 1% + é — 1 and the linear isometries () : [ — (?)’ and T'@ :
P — (19) given by

Z)\kﬂk T (y)(x)

forevery x = (\y) € l9and y = (ug) € IP.
We also consider the natural embedding .J : [P — (I7)".
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We take any " € (IP)", and we consider the function ¢/ o T(®) : 19 — F. Then 3 o T?) is a
composition of linear functions and, hence, it is a linear functional on [¢. Also,

ly" o TV (@) = [y (TP (@)| < Iy" I TP ()]l = lly" [l

for every 2 € 19. Hence " o T(P) € (19)".
Since 7@ is onto (19)’, there is y € I? so that 3/ o T®?) = T(9)(y). Thus,

J) (TP (z)) = TP (2)(y) = T'V(y)(z) = y" (TP (x))

for every z € 9. Since T is onto (I?)’, the last equality implies

for every ¥/ € (I?). Thus Jy = v and so J is onto (IP)".
The proof of the reflexivity of LP(€2, 3, i) is similar. O

Theorem 3.14. Let X be a normed space, and Y be a closed subspace of X. If X is reflexive, then
Y is reflexive.

Proof. Take any 4" € Y. We consider 2" : X’ — F defined for every 2’ € X’ by
2"(2') =" (@ly),
where 2’|y € Y is the restriction of 2/ on Y. It is easy to see that z” is linear. Also

2" (@) = 1y" @ )L < Ny T2 Il < My 2

forevery 2’ € X'. Therefore, 2" € X" and, since X is reflexive, thereisx € X sothat J(z) = 2",

where J is the natural embedding of X onto X”. This implies
y'(@'ly) = 2"(a') = J(2)(2)) = 2/ ()

for every 2’ € X'.

Now, we take any 2’ € Y*. Then 2’|y (y) = 2/(y) = 0 for every y € Y, and so 2’|y = 0. The
last equality above implies that z’(z) = y”(0) = 0. So, theorem 3.9 implies inf,cy ||z — y|| = 0
and, since Y is closed, we get that x € Y. Therefore,

V'(@ly) =2 (z) = 2|y (2)

for every 2/ € X'.
Theorem 3.8 says, in particular, that for every 4/ € Y there is 2/ € X’ so that 2’|y = /. So for
every y' € Y/ we have, by the last equality,

Y'(y) =y (x) = J'(2)(v/),

where J’ is the natural embedding of Y into Y. Thus ¢ = J'(z) with z € Y, and we conclude
that J’ is onto Y. O

3.9 The uniform boundedness principle.
Lemma 3.6. Let X be a complete metric space with metric d. If C, is a non-empty closed subset

of X foreveryn € N, so that C,,11 C C,, for every n and diam(C},) — 0, then ;fz C,, contains
exactly one element.
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Proof. We take any x,, € C),. If n < m, then z,,, z,,, € Cy,, and so d(z,, ) < diam(C,,) — 0
when n,m — +oo. Thus (z,,) is a Cauchy sequence, and, since X is complete, there is x € X
so that =, — x. Since the sequence (x,,) is contained, after the index m, in the closed set C,,, we
get that x € Cy,. Thus, z € :{g C,.

If alsoy € N> Cy, then x,y € C, for every n. Therefore, d(z,y) < diam(C,,) for every n,
and so d(z,y) = 0. Thus z = y. O

The theorem of Baire. Let X be a complete metric space. If U, is an open and dense subset of X
for every n € N, then ﬂ:{‘xi U,, is dense in X.

Proof. We consider the set U = ﬂiﬁ U,, and we take any r > 0.
Since U is dense, there is x1 € B(x;r) N U;. Since B(x;r) N Uy is open, there is r; > 0 so that
ry < %7‘ and

c(B(z1;71)) € B(xy;7m1) € B(z;r) N U;.

Since Uy is dense, there is zo € B(x1;7r1) N Us. Since B(x1;r1) N Us is open, there is r2 > 0 so
that 9 < %7‘1 < 2%Tand

cl(B(wa;72)) € B(wa;12) C B(x1;7m1) N Us.

We continue inductively, and we see that for every n € N thereis a ball B(x,,; ) so thatr, < 2% T,

and so that
cl(B(2nt1;7mn41)) € B(@nirn) N Unt1 € B(wn;mn) € d(B(zn;n))

for every n. We aplly lemma 3.6 to the non-empty closed sets cl(B(z,;r,)) and we get that that
there is some

+oo
y € () d(B(@nirn)).
n=1

Now, this implies that y € cl(B(x1;71)) and hence y € B(x;r). It also implies that y €
cl(B(xy;my)) and hence y € U, for every n. Therefore, y € B(x;r) N U and we conclude
that U is dense in X. O

If A is a subset of a metric space Y with metric d, then A is bounded if the distances of the
elements of A from any fixed element yq of Y are bounded, i.e.

sup d(a, yp) < +00.
a€A
The uniform boundedness principle. Let X be a complete metric space, let Y be a metric space
with metric d, let yo € Y, and let F be a collection of continuous functions f : X — Y. We
assume that
sup d(f(z),y0) < +oo forevery x € X.
feFr
Then there is a non-empty open U C X and a M > 0 so that d(f(x),yo) < M for every x € U
and every f € F,i.e.
sup d(f(z),0) < +o0.
z€U,fEF

Proof. For each n € N we define

Py ={z € X|d(f(x),y0) < n forevery f € F} = () {z € X|d(f(x),y0) < n}.
feF

It is easy to see that the continuity of the metric d and the continuity of each function f,, imply that
{z € X|d(f(x),y0) < n} isaclosed set. Since P, is the intersection of closed sets, it is closed.

84



Also, the assumption that sup ;¢ » d(f(),y0) < +oc for every x € X, implies that for every = €
X there is n € N so that sup ¢ = d(f(z),y0) < n, and hence x € P,. Therefore X = Ui Pa.
If we define U,, = X \ P,, then U,, is open and (/> U, = 0.

Now, the theorem of Baire implies that there is M € N so that U, is not dense in X, i.e.

A(Uy) £ X.

We consider the set U = X \ cl(Uyy), Then U is open and non-empty, and U N cl(Uy;) = 0. So
UNUpy = 0 and hence U C Py;. Of course, this implies that d(f(x), yo) < M for every x € U
and every f € F. O

Regarding the uniform boundedness principle, sup . d(f(z),y0) < +oc is equivalent with
{f(z)]| f € F} being a bounded subset of the metric space Y. So we may say that the assumption
that sup s d(f(),yo) < +oo for every x € X means that the collection of functions F is point-
wise bounded in X . The result of the uniform boundedness principle, is that, under the assumption
of its pointwise boundedness, the collection F is uniformly bounded in some open subset U of X.
Of course, another central assumption is the completeness of X.

The next two theorems are just a few, among many, applications of the uniform boundedness
principle. For both theorems we consider the metric space Y = F' with its usual euclidean metric.
The role of yg € Y is played by 0 € F'. So d(f(z), yo) is simply | f(x)| for functions f : X — F.
In other words, we have the following special case of the uniform boundedness principle.

The uniform boundedness principle Let X be a complete metric space, and let F be a collection
of continuous functions f : X — F. We assume that

sup | f(z)| < 400 forevery x € X.
feF

Then there is a non-empty open U C X and a M > 0 so that |f(x)| < M for every x € U and
every f € F,le.

sup |f(z)] < +oo.
zelU,feF

Theorem 3.15. Let X be a Banach space and let F C X' satisfy sup,, r |2'(x)| < +oc for every
x € X. Then sup,c 7 ||2'|| < +oc.

Proof. We apply the uniform boundedness principle to the collection X’ of functions 2’ : X — F,
and we get that there is a non-empty open U C X and a M > 0 so that |2/(z)| < M for every
2’ € Fandeveryz € U.

Now we take any xg € U and then there is R > 0 so that B(xo; R) C U. Therefore, we have that
|2/(x)] < M for every 2’ € F and every z € B(xo; R).

Take any ' € F, any « # 0 and any ¢ > 1. Then zy € B(xo; R) and ¢ + Loxe B(zo; R).

- tl]
ence
tlzll| 0 R tlzll R ' ¢zl
|2/ (z)| = |z <—x>‘ =—z <x0+ —x) -z (xo)’ < ——2M.
R Atz R aled] R
Since t > 1 is arbitrary, we get
2M
|2 ()] < —= |l]l.
R
This is true also for z = 0, and hence ||2/|| < % for every 2/ € F. O
Since [|2'|| = sup ¢, ja<1 |2/ (%) = SUp,ep 0.y [2/(x)], theorem 3.15 says that if X is a

Banach space and the collection F C X' is pointwise bounded in X, then F is uniformly bounded
in the closed unit ball B(0;1) of X.
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Theorem 3.16. Let X be a normed space and let F C X satisfy sup,¢ r |2'(x)| < 400 for every
z' € X'. Then sup,¢ 7 ||z|| < +oc.

Proof. We consider the natural embedding J : X — X" and the collection J(F) C X" of the
functions J(z) : X’ — F for every x € F. We apply the previous theorem for the Banach space
X' and for the collection J(F) C (X'}, since

sup |J(z)(z")] = sup |2'(z)| < +o0
J(z)eJ(F) zeF

for every 2’ € X'.
We conclude that sup, ¢ 7 [|z|| = sup j(,)es(x) I/ ()] < +o0. O

3.10 Weak convergence and weak-star convergence.

Definition. Let X be a normed space.
(i) We say that the sequence (x,,) in X converges weakly to x € X, if 2/(z,,) — 2/(x) for every
x’ € X'. Then we write

Ty .

(ii) We say that the sequence (x})) in X' converges weaklyx to 2’ € X', if x|, (z) — 2/(x) for
every x € X. Then we write
;] Wk g
Ty — T
Of course, when we write x,, — « or ], — z’ we mean ||z,, — z|| — 0 or ||z}, — 2'|| — 0,
respectively. To stress the difference between the various notions of convergence, we may say that

(x,,) converges strongly to z, if x,, — z, and we may say that (z,) converges strongly to 2/, if
x], — «’. This terminology is justified by the:

Proposition 3.11. Let X be a normed space.
() In X: if z,, — x, then x,, ~ .
(i) In X': if 2!, — 2/, then x], ™% .

Proof. (i) If z,, — x, then for every 2’ € X’ we have |2/(z,,) — 2/(z)| < ||2/||||xn — x| — O.
Hence z,, .

(ii) If =), — 2/, then for every x € X we have |z} (z) — 2/(x)| < ||z}, — 2'||||z|| — 0. Hence
a5 O
Proposition 3.12. Let X be a normed space.

()In X: if x, 5 2, yn — yand Ay, — A, then ,, + yn — x 4+ y and Az, — Az

(i) In X': if !, 3 2/, y! S/ and N\, — A\, then 2!, + !, S 2/ + o/ and Mz, "5 Mo’

(iii) In X : if &, — y and z,, — z, theny = z.

(iv) In X': if ¢!, S o/ and !, 5 2/, thenyf/ = 2.

Proof. (i) For every 2’ € X' we have
(2 + yn) = 2 (0) + 2 (yn) = 2/ (2) +2'(y) = 2" (z + y),
2 (M) = M2/ () — M/ (2) = 2/ (\x).

Hence x,, + yn, Xor+ y and A, xy, .

(ii) Similar to the proof of (i).

(iii) For every 2’ € X' we have 2/(z,) — «/(y) and 2/(z,,) = 2/(z), and hence 2'(y — z) =
z'(y) — 2'(z) = 0. Theorem 3.10 implies thaty — z = 0 and so y = z.

(iv) For every z € X we have 2/, (x) — ¢'(x) and 2},(z) = 2/(x), and hence y/(x) = 2/(z).
Therefore, y' = 2/. O
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We must stress the difference between the natures of (iii) and (iv) of the last proposition, i.e.
the uniqueness of the weak limit and the weaks limit, which is reflected in the difference between
the difficulties of their proofs.

Example 3.10.1. If 1 < p < 400, then e, — 0 in [? and also in ¢, ¢y. But (en,) does not have a
weak limit in /1.

In all cases the norms of the e,, are equal to 1, and (e,,) does not converge since the norms of the
differences e,, — e, are constant and # 0.

Example 3.10.2. If {a,, | n € N} is an orthonormal set in an inner product space X, then a,, — 0
in X.

Theorem 3.17. Let X be a normed space, and x, ~ x in X. Then sup,, ||zn|| < +oo and
llz|| < liminf, 4o ||2n]]-

Proof. For every ' € X' the sequence (2'(x,)) converges to z/(z) in F, and so it is bounded.
Theorem 3.16 implies that sup,, ||z, | < +oo.

Let ¢ = liminf,,_,; ||y|. Then there is a subsequence (x,, ) so that ||z, || — ¢. For every
z’ € X' with ||2'|| <1 we have |2/(z, )| < ||zp,]|. Since 2/ (xy, ) — 2/(z), we find |2'(x)| < q.
Now theorem 3.10 implies that ||2|| = max,c x7 |7 <1 |2/ ()| < g. O

Wk

Theorem 3.18. Let X be a Banach space and x|, — «' in X'. Then sup,, ||z,|| < +occ and

l'[| < Timinfn 400 27, -

Proof. For every 2z € X the sequence (z/,(z)) converges to z/(x) in F, and so it is bounded.
Theorem 3.15 implies that sup,, ||z, < +oc.

Let ¢ = liminf, , . [|27,]. Then there is a subsequence (7, ) so that |27, || — ¢. For every
z € X with [|z]| < 1 we have |z;, (z)|] < ||z}, ||. Since 27, (2) — 2/(x), we find |2 (z)| < q.
Therefore, ||2'|| = sup,¢ x |jz<1 [7'(2)] < ¢. O
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