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Chapter 1

The Fourier transform on L1(Rd).

We consider the Euclidean space Rd of dimension d ≥ 1. We denote

|x| = (x2
1 + · · · + x2

d)
1
2

the Euclidean norm of x = (x1, . . . , xd) and we denote

x · y = x1y1 + · · · + xdyd

the Euclidean inner product of x = (x1, . . . , xd) and y = (y1, . . . , yd). We denote

B(x; r) = {x | |x| < r}, B(x; r) = {x | |x| ≤ r}

the open and the closed Euclidean balls in Rd of center x and radius r > 0.
In Rd we consider the Lebesgue measure md. We write

md(A)

for the Lebesgue measure of any Lebesgue measurable A ⊆ Rd.
We also consider functions f : Rd → R∪{±∞} or f : Rd → C∪{∞} which are integrable with

respect to Lebesgue measure in Rd, i.e.∫
Rd | f (x)| dx < +∞.

The space of these functions is denoted
L1(Rd).

Observe that for simplicity we prefer to write the usual dx instead of dmd(x) in the integral with
respect to Lebesgue measure.

Two functions f , g ∈ L1(Rd) are considered equal if they differ only on a set of Lebesgue
measure equal to 0, i.e. if they are equal almost everywhere (with respect to Lebesgue measure).

If f ∈ L1(Rd) then f takes finite values almost everywhere in Rd, i.e. in a set A ⊆ Rd with
md(Ac) = 0, where Ac = Rd \ A. Now we may consider a new function f̃ : Rd → C which is equal
to f in A and which has arbitrary finite values in Ac (for example, f̃ = 0 in Ac). Then f̃ ∈ L1(Rd)
and f , f̃ may differ only in Ac and so they are equal as elements of L1(Rd). In other words, without
loss of generality we may assume that all f ∈ L1(Rd) are functions f : Rd → C (of course this
includes the case f : Rd → R).

We know that L1(Rd) is a linear space: k f + lg ∈ L1(Rd) if f , g ∈ L1(Rd) and k, l ∈ C. We also
know that if we define

∥ f ∥1 :=
∫
Rd | f (x)| dx, f ∈ L1(Rd),

then ∥ · ∥1 if is a norm in L1(Rd).
Finally, we know that L1(Rd) with the norm ∥ · ∥1 is complete, i.e. a Banach space. In other

words, if ( fn) is a sequence in L1(Rd) such that ∥ fn − fm∥1 → 0 when n,m → +∞, then there is
some f ∈ L1(Rd) such that ∥ fn − f ∥1 → 0 when n → +∞ and, moreover, there is a subsequence
( fnk ) such that fnk → f almost everywhere (i.e. fnk (x)→ f (x) when k → +∞ for almost every x).
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Definition 1.1. Let f ∈ L1(Rd). The Fourier transform of f is defined as the function

f̂ : Rd → C

given by the formula
f̂ (ξ) :=

∫
Rd e−2πi ξ·x f (x) dx, ξ ∈ Rd.

We observe that f̂ (ξ) is a complex number for every ξ ∈ Rd since the function e−2πi ξ·x f (x) of
x is integrable: indeed,∫

Rd |e−2πi ξ·x f (x)| dx =
∫
Rd |e−2πi ξ·x| | f (x)| dx =

∫
Rd | f (x)| dx < +∞

for every ξ, x ∈ Rd.
Sometimes it is unavoidable to use the notation f̂ (x)(ξ), especially if the function f is very

concrete and there is no special symbol for it.

Example. Let d = 1 and let χ[a,b] be the characteristic function of the interval [a, b]. I.e. χ[a,b](x) =
1 if x ∈ [a, b] and χ[a,b](x) = 0 if x < [a, b]. Then for every ξ ∈ R we have

χ̂[a,b](ξ) =
∫
R

e−2πi ξxχ[a,b](x) dx =
∫ b

a e−2πi ξx dx =

 e−2πi ξb−e−2πi ξa

−2πiξ , ξ , 0,

b − a, ξ = 0,

=

e−πi ξ(a+b) e−πi ξ(b−a)−eπi ξ(b−a)

−2πiξ , ξ , 0,

b − a, ξ = 0,
=

e−πi ξ(a+b) sin πξ(b−a)
πξ , ξ , 0,

b − a, ξ = 0.

We observe that the Fourier transform χ̂[a,b](ξ) is certainly continuous at every ξ , 0, and it is also
continuous at ξ = 0, since

lim
ξ→0

e−πi ξ(a+b) sin πξ(b−a)
πξ = b − a.

Remark. From now on when we write sin kξ
ξ we shall accept that this function is also defined at

ξ = 0 with value lim
ξ→0

sin kξ
ξ = k so that it is continuous everywhere. Hence we may write

χ̂[a,b](ξ) = e−πi ξ(a+b) sin πξ(b−a)
πξ

for every ξ ∈ R, interpreting sin πξ(b−a)
πξ as equal to b − a when ξ = 0.

We observe that the calculation of the Fourier transform does not change if the interval [a, b] be­
comes (a, b) or [a, b) or [a, b), since the sets {a} and {b} have Lebesgue measure equal to 0.
We continue with the same example but for the general dimension d. We consider an interval
R = [a1, b1] × · · · × [ad, bd] in Rd and its characteristic function χR. Then using the identities

e−2πi ξ·x =
d∏

k=1
e−2πi ξk xk , χR(x) =

d∏
k=1
χ[ak ,bk](xk)

for x = (x1, . . . , xd), ξ = (ξ1, . . . , ξd) and the theorem of Fubini, we get

χ̂R(ξ) =
∫
Rd e−2πi ξ·xχR(x) dx =

∫
R
· · ·
∫
R

d∏
k=1

e−2πi ξk xkχ[ak ,bk](xk) dx1 · · · dxd

=
d∏

k=1

∫
R

e−2πi ξk xkχ[ak ,bk](xk) dxk =
d∏

k=1
χ̂[ak ,bk](ξk).

Hence
χ̂R(ξ) =

d∏
k=1

e−πi ξk(ak+bk) sin πξk(bk−ak)
πξk

= e−πi ξ·(a+b)
d∏

k=1

sin πξk(bk−ak)
πξk

,
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where, according to our last remark, if ξk = 0 for some k, then we interpret the corresponding
sin πξk(bk−ak)

πξk
as equal to bk − ak.

Again we observe that χ̂R(ξ) is continuous at every ξ ∈ Rd.
We also observe that the Fourier transform of R remains the same even if some of the intervals
[ak, bk] change to open or closed­open or open­closed intervals with the same endpoints.

Now we consider functions f : Rd → R ∪ {±∞} or f : Rd → C ∪ {∞} which are Lebesgue
measurable and which are bounded almost everywhere in Rd, i.e. for each such f there exists a
number M ≥ 0 (which depends on f ) such that

| f (x)| ≤ M

almost everywhere in Rd. The space of these functions is denoted

L∞(Rd).

Two functions f , g ∈ L∞(Rd) are considered equal if they are equal almost everywhere.
If a function belongs to L∞(Rd) then obviously it takes finite values almost everywhere in Rd.

Therefore, exactly as we did for functions in L1(Rd), we may assume without loss of generality
that all f ∈ L∞(Rd) are functions f : Rd → C.

We know that L∞(Rd) is a linear space: k f + lg ∈ L∞(Rd) if f , g ∈ L∞(Rd) and k, l ∈ C. We
also know that L∞(Rd) has a norm denoted by ∥ · ∥∞ and defined as follows: for f ∈ L∞(Rd),

∥ f ∥∞ is the smallest M ≥ 0 such that | f (x)| ≤ M for almost every x.

In other words, | f (x)| ≤ ∥ f ∥∞ is true for almost every x, and for every M < ∥ f ∥∞ we have that
md({x | | f (x)| > M}) > 0.

Finally, we know that L∞(Rd) with the norm ∥ · ∥∞ is a Banach space. In other words, if ( fn) is
a sequence in L∞(Rd) such that ∥ fn − fm∥∞ → 0 when n,m→ +∞, then there is some f ∈ L∞(Rd)
such that ∥ fn − f ∥∞ → 0 when n→ +∞ and, hence, there is some A ⊆ Rd so that md(Ac) = 0 and
fn → f uniformly in A.

Now, L∞(Rd) has some notable linear subspaces:

C0(Rd) ⊆ BUC(Rd) ⊆ BC(Rd) ⊆ L∞(Rd).

The space BC(Rd) contains all f : Rd → C which are bounded and continuous in Rd, the space
BUC(Rd) contains all f : Rd → C which are bounded and uniformly continuous in Rd, and the
spaceC0(Rd) contains all f : Rd → Cwhich are continuous in Rd and tend to 0 at∞, i.e. f (x)→ 0
when |x| → +∞. Perhaps the only inclusion that needs some explanation is C0(Rd) ⊆ BUC(Rd).
So let f ∈ C0(Rd). Then there is some R so that | f (x)| ≤ 1 when |x| > R. Now f is continuous
and hence bounded in the compact ball B(0; R). Therefore f is bounded in Rd. On the other hand,
take any ϵ > 0. Then there is some R so that | f (x)| < ϵ2 when |x| > R. Since f continuous and
hence uniformly continuous on the compact ball B(0; R + 1), there is δ with 0 < δ ≤ 1 such that
| f (x) − f (y)| < ϵ when x, y ∈ B(0; R + 1) and |x − y| < δ. Now take and x, y with |x − y| < δ (≤ 1).
If both x, y are not in B(0; R) then | f (x) − f (y)| ≤ | f (x)| + | f (y)| < ϵ2 +

ϵ
2 = ϵ. If at least one of x, y

is in B(0; R) then both x, y are in B(0; R + 1) and hence | f (x) − f (y)| < ϵ. Therefore f is uniformly
continuous in Rd.

If we consider all these subspaces of L∞(Rd) with the norm ∥ · ∥∞ of the larger space L∞(Rd),
then they are all closed subspaces of L∞(Rd) and so each of them is a Banach space.

Proposition 1.1. If f ∈ L1(Rd), then f̂ ∈ BUC(Rd) ⊆ L∞(Rd) and ∥ f̂ ∥∞ ≤ ∥ f ∥1.

Proof. Let f ∈ L1(Rd). Then for every ξ, h ∈ Rd we have

| f̂ (ξ + h) − f̂ (ξ)| =
∣∣∣ ∫
Rd e−2πi (ξ+h)·x f (x) dx −

∫
Rd e−2πi ξ·x f (x) dx

∣∣∣
=
∣∣∣ ∫
Rd e−2πi ξ·x(e−2πi h·x − 1

)
f (x) dx

∣∣∣ ≤ ∫
Rd |e−2πi h·x − 1| | f (x)| dx.
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Since |e−2πi h·x − 1| → 0 when h → 0 and |e−2πi h·x − 1| ≤ 2, an application of the Dominated
Convergence Theorem implies that∫

Rd |e−2πi h·x − 1| | f (x)| dx→ 0 when h→ 0

and so | f̂ (ξ + h) − f̂ (ξ)| → 0 when h→ 0. Therefore f̂ is continuous at every ξ ∈ Rd.
We also observe that

∫
Rd |e−2πi h·x − 1| | f (x)| dx is independent of ξ and hence

supξ∈Rd | f̂ (ξ + h) − f̂ (ξ)| ≤
∫
Rd |e−2πi h·x − 1| | f (x)| dx.

Again this implies that supξ∈Rd | f̂ (ξ + h) − f̂ (ξ)| → 0 when h → 0 and we conclude that f̂ is
uniformly continuous in Rd.
Finally, for every ξ ∈ Rd we have

| f̂ (ξ)| =
∣∣∣ ∫
Rd e−2πi ξ·x f (x) dx

∣∣∣ ≤ ∫
Rd | f (x)| dx = ∥ f ∥1.

Therefore ∥ f̂ ∥∞ ≤ ∥ f ∥1. □

Definition 1.2.We define the Fourier transform operator

F : L1(Rd)→ BUC(Rd) ⊆ L∞(Rd)

by the formula
F ( f ) := f̂ , f ∈ L1(Rd).

We recall that if T : X → Y is a linear operator between the normed spaces X and Y with
respective norms ∥ · ∥X and ∥ · ∥Y and if there is some constant M ≥ 0 so that

∥T (x)∥Y ≤ M∥x∥X

for every x ∈ X, then we say that T is bounded and then we define the norm ∥T∥ of T by

∥T∥ is the smallest M ≥ 0 such that ∥T (x)∥Y ≤ M∥x∥X for every x ∈ X.

Proposition 1.2. F : L1(Rd)→ BUC(Rd) is a bounded linear operator with norm ∥F ∥ = 1.

Proof. For every f , g ∈ L1(Rd) and k, l ∈ C we have

̂(k f + lg)(ξ) =
∫
Rd e−2πi ξ·x(k f (x) + lg(x)) dx

= k
∫
Rd e−2πi ξ·x f (x) dx + l

∫
Rd e−2πi ξ·xg(x) dx

= k f̂ (ξ) + l̂g(ξ)

for every ξ ∈ Rd. Hence

F (k f + lg) = ̂(k f + lg) = k f̂ + l̂g = kF ( f ) + lF (g)

and so F is linear. Moreover, by Proposition 1.1.,

∥F ( f )∥∞ = ∥ f̂ ∥∞ ≤ ∥ f ∥1

for all f ∈ L1(Rd) which implies that ∥F ∥ ≤ 1.
On the other hand, if we take any f ∈ L1(Rd) such that f (x) ≥ 0 for every x and so that ∥ f ∥1 > 0
(i.e. f is not equal to 0 almost everywhere), then

f̂ (0) =
∫
Rd f (x) dx =

∫
Rd | f (x)| dx = ∥ f ∥1 > 0.
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We take any ϵ > 0. By Proposition 1.1. f̂ is continuous at 0, and so there is δ > 0 such that
| f̂ (ξ) − f̂ (0)| < ϵ for every ξ ∈ B(0; δ). This implies

| f̂ (ξ)| > | f̂ (0)| − ϵ = ∥ f ∥1 − ϵ

for every ξ ∈ B(0; δ). Thus B(0; δ) ⊆ {ξ | | f̂ (ξ)| > ∥ f ∥1 − ϵ} and so

md({ξ | | f̂ (ξ)| > ∥ f ∥1 − ϵ}) ≥ md(B(0; δ)) > 0.

Therefore ∥ f̂ ∥∞ > ∥ f ∥1 − ϵ and since ϵ > 0 is arbitrary, we get ∥ f̂ ∥∞ ≥ ∥ f ∥1. Therefore

∥ f ∥1 ≤ ∥ f̂ ∥∞ = ∥F ( f )∥∞ ≤ ∥F ∥ ∥ f ∥1.

Since ∥ f ∥1 > 0 we get ∥F ∥ ≥ 1. □
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