M. Papadimitrakis

Notes on Harmonic Analysis

Spring of 2024

Contents

1 The Fourier transform on $L^{1}\left(\mathbb{R}^{d}\right)$.

Chapter 1

The Fourier transform on $L^{1}\left(\mathbb{R}^{d}\right)$.

We consider the Euclidean space \mathbb{R}^{d} of dimension $d \geq 1$. We denote

$$
|x|=\left(x_{1}^{2}+\cdots+x_{d}^{2}\right)^{\frac{1}{2}}
$$

the Euclidean norm of $x=\left(x_{1}, \ldots, x_{d}\right)$ and we denote

$$
x \cdot y=x_{1} y_{1}+\cdots+x_{d} y_{d}
$$

the Euclidean inner product of $x=\left(x_{1}, \ldots, x_{d}\right)$ and $y=\left(y_{1}, \ldots, y_{d}\right)$. We denote

$$
B(x ; r)=\{x| | x \mid<r\}, \quad \bar{B}(x ; r)=\{x| | x \mid \leq r\}
$$

the open and the closed Euclidean balls in \mathbb{R}^{d} of center x and radius $r>0$.
In \mathbb{R}^{d} we consider the Lebesgue measure m_{d}. We write

$$
m_{d}(A)
$$

for the Lebesgue measure of any Lebesgue measurable $A \subseteq \mathbb{R}^{d}$.
We also consider functions $f: \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ or $f: \mathbb{R}^{d} \rightarrow \mathbb{C} \cup\{\infty\}$ which are integrable with respect to Lebesgue measure in \mathbb{R}^{d}, i.e.

$$
\int_{\mathbb{R}^{d}}|f(x)| d x<+\infty .
$$

The space of these functions is denoted

$$
L^{1}\left(\mathbb{R}^{d}\right) .
$$

Observe that for simplicity we prefer to write the usual $d x$ instead of $d m_{d}(x)$ in the integral with respect to Lebesgue measure.

Two functions $f, g \in L^{1}\left(\mathbb{R}^{d}\right)$ are considered equal if they differ only on a set of Lebesgue measure equal to 0 , i.e. if they are equal almost everywhere (with respect to Lebesgue measure).

If $f \in L^{1}\left(\mathbb{R}^{d}\right)$ then f takes finite values almost everywhere in \mathbb{R}^{d}, i.e. in a set $A \subseteq \mathbb{R}^{d}$ with $m_{d}\left(A^{c}\right)=0$, where $A^{c}=\mathbb{R}^{d} \backslash A$. Now we may consider a new function $\tilde{f}: \mathbb{R}^{d} \rightarrow \mathbb{C}$ which is equal to f in A and which has arbitrary finite values in A^{c} (for example, $\tilde{f}=0$ in A^{c}). Then $\tilde{f} \in L^{1}\left(\mathbb{R}^{d}\right)$ and f, \tilde{f} may differ only in A^{c} and so they are equal as elements of $L^{1}\left(\mathbb{R}^{d}\right)$. In other words, without loss of generality we may assume that all $f \in L^{1}\left(\mathbb{R}^{d}\right)$ are functions $f: \mathbb{R}^{d} \rightarrow \mathbb{C}$ (of course this includes the case $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$).

We know that $L^{1}\left(\mathbb{R}^{d}\right)$ is a linear space: $k f+l g \in L^{1}\left(\mathbb{R}^{d}\right)$ if $f, g \in L^{1}\left(\mathbb{R}^{d}\right)$ and $k, l \in \mathbb{C}$. We also know that if we define

$$
\|f\|_{1}:=\int_{\mathbb{R}^{d}}|f(x)| d x, \quad f \in L^{1}\left(\mathbb{R}^{d}\right),
$$

then $\|\cdot\|_{1}$ if is a norm in $L^{1}\left(\mathbb{R}^{d}\right)$.
Finally, we know that $L^{1}\left(\mathbb{R}^{d}\right)$ with the norm $\|\cdot\|_{1}$ is complete, i.e. a Banach space. In other words, if $\left(f_{n}\right)$ is a sequence in $L^{1}\left(\mathbb{R}^{d}\right)$ such that $\left\|f_{n}-f_{m}\right\|_{1} \rightarrow 0$ when $n, m \rightarrow+\infty$, then there is some $f \in L^{1}\left(\mathbb{R}^{d}\right)$ such that $\left\|f_{n}-f\right\|_{1} \rightarrow 0$ when $n \rightarrow+\infty$ and, moreover, there is a subsequence $\left(f_{n_{k}}\right)$ such that $f_{n_{k}} \rightarrow f$ almost everywhere (i.e. $f_{n_{k}}(x) \rightarrow f(x)$ when $k \rightarrow+\infty$ for almost every x).

Definition 1.1. Let $f \in L^{1}\left(\mathbb{R}^{d}\right)$. The Fourier transform of f is defined as the function

$$
\widehat{f}: \mathbb{R}^{d} \rightarrow \mathbb{C}
$$

given by the formula

$$
\widehat{f}(\xi):=\int_{\mathbb{R}^{d}} e^{-2 \pi i \xi \cdot x} f(x) d x, \quad \xi \in \mathbb{R}^{d}
$$

We observe that $\widehat{f}(\xi)$ is a complex number for every $\xi \in \mathbb{R}^{d}$ since the function $e^{-2 \pi i \xi \cdot x} f(x)$ of x is integrable: indeed,

$$
\int_{\mathbb{R}^{d}}\left|e^{-2 \pi i \xi \cdot x} f(x)\right| d x=\int_{\mathbb{R}^{d}}\left|e^{-2 \pi i \xi \cdot x}\right||f(x)| d x=\int_{\mathbb{R}^{d}}|f(x)| d x<+\infty
$$

for every $\xi, x \in \mathbb{R}^{d}$.
Sometimes it is unavoidable to use the notation $\widehat{f(x)}(\xi)$, especially if the function f is very concrete and there is no special symbol for it.

Example. Let $d=1$ and let $\chi_{[a, b]}$ be the characteristic function of the interval $[a, b]$. I.e. $\chi_{[a, b]}(x)=$ 1 if $x \in[a, b]$ and $\chi_{[a, b]}(x)=0$ if $x \notin[a, b]$. Then for every $\xi \in \mathbb{R}$ we have

$$
\begin{aligned}
\widehat{\chi[a, b]}(\xi) & =\int_{\mathbb{R}} e^{-2 \pi i \xi x} \chi_{[a, b]}(x) d x=\int_{a}^{b} e^{-2 \pi i \xi x} d x= \begin{cases}\frac{e^{-2 \pi i \xi b}-e^{-2 \pi i \xi a}}{-2 \pi i \xi}, & \xi \neq 0, \\
b-a, & \xi=0,\end{cases} \\
& =\left\{\begin{array}{ll}
e^{-\pi i \xi(a+b) \frac{e^{-\pi i \xi(b-a)}-e^{\pi i \xi(b-a)}}{-2 \pi i \xi},} & \xi \neq 0, \\
b-a, & \xi=0,
\end{array}= \begin{cases}e^{-\pi i \xi(a+b) \frac{\sin \pi \xi(b-a)}{\pi \xi},} & \xi \neq 0, \\
b-a, & \xi=0 .\end{cases} \right.
\end{aligned}
$$

We observe that the Fourier transform $\widehat{\chi\langle a, b]}(\xi)$ is certainly continuous at every $\xi \neq 0$, and it is also continuous at $\xi=0$, since

$$
\lim _{\xi \rightarrow 0} e^{-\pi i \xi(a+b)} \frac{\sin \pi \xi(b-a)}{\pi \xi}=b-a .
$$

Remark. From now on when we write $\frac{\sin k \xi}{\xi}$ we shall accept that this function is also defined at $\xi=0$ with value $\lim _{\xi \rightarrow 0} \frac{\sin k \xi}{\xi}=k$ so that it is continuous everywhere. Hence we may write

$$
\widehat{\chi[a, b]}(\xi)=e^{-\pi i \xi(a+b) \frac{\sin \pi \xi(b-a)}{\pi \xi}}
$$

for every $\xi \in \mathbb{R}$, interpreting $\frac{\sin \pi \xi(b-a)}{\pi \xi}$ as equal to $b-a$ when $\xi=0$.
We observe that the calculation of the Fourier transform does not change if the interval $[a, b]$ becomes (a, b) or $[a, b)$ or $[a, b)$, since the sets $\{a\}$ and $\{b\}$ have Lebesgue measure equal to 0 .
We continue with the same example but for the general dimension d. We consider an interval $R=\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{d}, b_{d}\right]$ in \mathbb{R}^{d} and its characteristic function χ_{R}. Then using the identities

$$
e^{-2 \pi i \xi \cdot x}=\prod_{k=1}^{d} e^{-2 \pi i \xi_{k} x_{k}}, \quad \chi_{R}(x)=\prod_{k=1}^{d} \chi_{\left[a_{k}, b_{k}\right]}\left(x_{k}\right)
$$

for $x=\left(x_{1}, \ldots, x_{d}\right), \xi=\left(\xi_{1}, \ldots, \xi_{d}\right)$ and the theorem of Fubini, we get

$$
\begin{aligned}
\widehat{\chi R}(\xi) & =\int_{\mathbb{R}^{d}} e^{-2 \pi i \xi \cdot x_{\chi}}(x) d x=\int_{\mathbb{R}} \cdots \int_{\mathbb{R}} \prod_{k=1}^{d} e^{-2 \pi i \xi_{k} x_{k}} \chi_{\left[a_{k}, b_{k}\right]}\left(x_{k}\right) d x_{1} \cdots d x_{d} \\
& =\prod_{k=1}^{d} \int_{\mathbb{R}} e^{-2 \pi i \xi_{k} x_{k}} \chi_{\left[a_{k}, b_{k}\right]}\left(x_{k}\right) d x_{k}=\prod_{k=1}^{d} \widehat{\chi_{\left[a_{k}, b_{k}\right]}}\left(\xi_{k}\right)
\end{aligned}
$$

Hence

$$
\widehat{\chi R}(\xi)=\prod_{k=1}^{d} e^{-\pi i \xi_{k}\left(a_{k}+b_{k}\right)} \frac{\sin \pi \xi_{k}\left(b_{k}-a_{k}\right)}{\pi \xi_{k}}=e^{-\pi i \xi \cdot(a+b)} \prod_{k=1}^{d} \frac{\sin \pi \xi_{k}\left(b_{k}-a_{k}\right)}{\pi \xi_{k}},
$$

where, according to our last remark, if $\xi_{k}=0$ for some k, then we interpret the corresponding $\frac{\sin \pi \xi_{k}\left(b_{k}-a_{k}\right)}{\pi \xi_{k}}$ as equal to $b_{k}-a_{k}$.
Again we observe that $\widehat{\chi_{R}}(\xi)$ is continuous at every $\xi \in \mathbb{R}^{d}$.
We also observe that the Fourier transform of R remains the same even if some of the intervals [a_{k}, b_{k}] change to open or closed-open or open-closed intervals with the same endpoints.

Now we consider functions $f: \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ or $f: \mathbb{R}^{d} \rightarrow \mathbb{C} \cup\{\infty\}$ which are Lebesgue measurable and which are bounded almost everywhere in \mathbb{R}^{d}, i.e. for each such f there exists a number $M \geq 0$ (which depends on f) such that

$$
|f(x)| \leq M
$$

almost everywhere in \mathbb{R}^{d}. The space of these functions is denoted

$$
L^{\infty}\left(\mathbb{R}^{d}\right)
$$

Two functions $f, g \in L^{\infty}\left(\mathbb{R}^{d}\right)$ are considered equal if they are equal almost everywhere.
If a function belongs to $L^{\infty}\left(\mathbb{R}^{d}\right)$ then obviously it takes finite values almost everywhere in \mathbb{R}^{d}. Therefore, exactly as we did for functions in $L^{1}\left(\mathbb{R}^{d}\right)$, we may assume without loss of generality that all $f \in L^{\infty}\left(\mathbb{R}^{d}\right)$ are functions $f: \mathbb{R}^{d} \rightarrow \mathbb{C}$.

We know that $L^{\infty}\left(\mathbb{R}^{d}\right)$ is a linear space: $k f+l g \in L^{\infty}\left(\mathbb{R}^{d}\right)$ if $f, g \in L^{\infty}\left(\mathbb{R}^{d}\right)$ and $k, l \in \mathbb{C}$. We also know that $L^{\infty}\left(\mathbb{R}^{d}\right)$ has a norm denoted by $\|\cdot\|_{\infty}$ and defined as follows: for $f \in L^{\infty}\left(\mathbb{R}^{d}\right)$,

$$
\|f\|_{\infty} \text { is the smallest } M \geq 0 \text { such that }|f(x)| \leq M \text { for almost every } x .
$$

In other words, $|f(x)| \leq\|f\|_{\infty}$ is true for almost every x, and for every $M<\|f\|_{\infty}$ we have that $m_{d}(\{x| | f(x) \mid>M\})>0$.

Finally, we know that $L^{\infty}\left(\mathbb{R}^{d}\right)$ with the norm $\|\cdot\|_{\infty}$ is a Banach space. In other words, if $\left(f_{n}\right)$ is a sequence in $L^{\infty}\left(\mathbb{R}^{d}\right)$ such that $\left\|f_{n}-f_{m}\right\|_{\infty} \rightarrow 0$ when $n, m \rightarrow+\infty$, then there is some $f \in L^{\infty}\left(\mathbb{R}^{d}\right)$ such that $\left\|f_{n}-f\right\|_{\infty} \rightarrow 0$ when $n \rightarrow+\infty$ and, hence, there is some $A \subseteq \mathbb{R}^{d}$ so that $m_{d}\left(A^{c}\right)=0$ and $f_{n} \rightarrow f$ uniformly in A.

Now, $L^{\infty}\left(\mathbb{R}^{d}\right)$ has some notable linear subspaces:

$$
C_{0}\left(\mathbb{R}^{d}\right) \subseteq B U C\left(\mathbb{R}^{d}\right) \subseteq B C\left(\mathbb{R}^{d}\right) \subseteq L^{\infty}\left(\mathbb{R}^{d}\right)
$$

The space $B C\left(\mathbb{R}^{d}\right)$ contains all $f: \mathbb{R}^{d} \rightarrow \mathbb{C}$ which are bounded and continuous in \mathbb{R}^{d}, the space $B U C\left(\mathbb{R}^{d}\right)$ contains all $f: \mathbb{R}^{d} \rightarrow \mathbb{C}$ which are bounded and uniformly continuous in \mathbb{R}^{d}, and the space $C_{0}\left(\mathbb{R}^{d}\right)$ contains all $f: \mathbb{R}^{d} \rightarrow \mathbb{C}$ which are continuous in \mathbb{R}^{d} and tend to 0 at ∞, i.e. $f(x) \rightarrow 0$ when $|x| \rightarrow+\infty$. Perhaps the only inclusion that needs some explanation is $C_{0}\left(\mathbb{R}^{d}\right) \subseteq B U C\left(\mathbb{R}^{d}\right)$. So let $f \in C_{0}\left(\mathbb{R}^{d}\right)$. Then there is some R so that $|f(x)| \leq 1$ when $|x|>R$. Now f is continuous and hence bounded in the compact ball $\bar{B}(0 ; R)$. Therefore f is bounded in \mathbb{R}^{d}. On the other hand, take any $\epsilon>0$. Then there is some R so that $|f(x)|<\frac{\epsilon}{2}$ when $|x|>R$. Since f continuous and hence uniformly continuous on the compact ball $\bar{B}(0 ; R+1)$, there is δ with $0<\delta \leq 1$ such that $|f(x)-f(y)|<\epsilon$ when $x, y \in \bar{B}(0 ; R+1)$ and $|x-y|<\delta$. Now take and x, y with $|x-y|<\delta(\leq 1)$. If both x, y are not in $\bar{B}(0 ; R)$ then $|f(x)-f(y)| \leq|f(x)|+|f(y)|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$. If at least one of x, y is in $\bar{B}(0 ; R)$ then both x, y are in $\bar{B}(0 ; R+1)$ and hence $|f(x)-f(y)|<\epsilon$. Therefore f is uniformly continuous in \mathbb{R}^{d}.

If we consider all these subspaces of $L^{\infty}\left(\mathbb{R}^{d}\right)$ with the norm $\|\cdot\|_{\infty}$ of the larger space $L^{\infty}\left(\mathbb{R}^{d}\right)$, then they are all closed subspaces of $L^{\infty}\left(\mathbb{R}^{d}\right)$ and so each of them is a Banach space.
Proposition 1.1. If $f \in L^{1}\left(\mathbb{R}^{d}\right)$, then $\widehat{f} \in B U C\left(\mathbb{R}^{d}\right) \subseteq L^{\infty}\left(\mathbb{R}^{d}\right)$ and $\|\widehat{f}\|_{\infty} \leq\|f\|_{1}$.
Proof. Let $f \in L^{1}\left(\mathbb{R}^{d}\right)$. Then for every $\xi, h \in \mathbb{R}^{d}$ we have

$$
\begin{aligned}
|\widehat{f}(\xi+h)-\widehat{f}(\xi)| & =\left|\int_{\mathbb{R}^{d}} e^{-2 \pi i(\xi+h) \cdot x} f(x) d x-\int_{\mathbb{R}^{d}} e^{-2 \pi i \xi \cdot x} f(x) d x\right| \\
& =\left|\int_{\mathbb{R}^{d}} e^{-2 \pi i \xi \cdot x}\left(e^{-2 \pi i h \cdot x}-1\right) f(x) d x\right| \leq \int_{\mathbb{R}^{d}}\left|e^{-2 \pi i h \cdot x}-1\right||f(x)| d x .
\end{aligned}
$$

Since $\left|e^{-2 \pi i h \cdot x}-1\right| \rightarrow 0$ when $h \rightarrow 0$ and $\left|e^{-2 \pi i h \cdot x}-1\right| \leq 2$, an application of the Dominated Convergence Theorem implies that

$$
\int_{\mathbb{R}^{d}}\left|e^{-2 \pi i h \cdot x}-1\right||f(x)| d x \rightarrow 0 \quad \text { when } h \rightarrow 0
$$

and so $|\widehat{f}(\xi+h)-\widehat{f}(\xi)| \rightarrow 0$ when $h \rightarrow 0$. Therefore \widehat{f} is continuous at every $\xi \in \mathbb{R}^{d}$.
We also observe that $\int_{\mathbb{R}^{d}}\left|e^{-2 \pi i h \cdot x}-1\right||f(x)| d x$ is independent of ξ and hence

$$
\sup _{\xi \in \mathbb{R}^{d}}|\widehat{f}(\xi+h)-\widehat{f}(\xi)| \leq \int_{\mathbb{R}^{d}}\left|e^{-2 \pi i h \cdot x}-1\right||f(x)| d x
$$

Again this implies that $\sup _{\xi \in \mathbb{R}^{d}}|\widehat{f}(\xi+h)-\widehat{f}(\xi)| \rightarrow 0$ when $h \rightarrow 0$ and we conclude that \widehat{f} is uniformly continuous in \mathbb{R}^{d}.
Finally, for every $\xi \in \mathbb{R}^{d}$ we have

$$
|\widehat{f}(\xi)|=\left|\int_{\mathbb{R}^{d}} e^{-2 \pi i \xi \cdot x} f(x) d x\right| \leq \int_{\mathbb{R}^{d}}|f(x)| d x=\|f\|_{1}
$$

Therefore $\left\|{\widehat{f} \|_{\infty}} \leq\right\| f \|_{1}$.
Definition 1.2. We define the Fourier transform operator

$$
\mathcal{F}: L^{1}\left(\mathbb{R}^{d}\right) \rightarrow B U C\left(\mathbb{R}^{d}\right) \subseteq L^{\infty}\left(\mathbb{R}^{d}\right)
$$

by the formula

$$
\mathcal{F}(f):=\widehat{f}, \quad f \in L^{1}\left(\mathbb{R}^{d}\right)
$$

We recall that if $T: X \rightarrow Y$ is a linear operator between the normed spaces X and Y with respective norms $\|\cdot\|_{X}$ and $\|\cdot\|_{Y}$ and if there is some constant $M \geq 0$ so that

$$
\|T(x)\|_{Y} \leq M\|x\|_{X}
$$

for every $x \in X$, then we say that T is bounded and then we define the norm $\|T\|$ of T by
$\|T\|$ is the smallest $M \geq 0$ such that $\|T(x)\|_{Y} \leq M\|x\|_{X}$ for every $x \in X$.
Proposition 1.2. $\mathcal{F}: L^{1}\left(\mathbb{R}^{d}\right) \rightarrow B U C\left(\mathbb{R}^{d}\right)$ is a bounded linear operator with norm $\|\mathcal{F}\|=1$.
Proof. For every $f, g \in L^{1}\left(\mathbb{R}^{d}\right)$ and $k, l \in \mathbb{C}$ we have

$$
\begin{aligned}
(k \widehat{f+l} g)(\xi) & =\int_{\mathbb{R}^{d}} e^{-2 \pi i \xi \cdot x}(k f(x)+l g(x)) d x \\
& =k \int_{\mathbb{R}^{d}} e^{-2 \pi i \xi \cdot x} f(x) d x+l \int_{\mathbb{R}^{d}} e^{-2 \pi i \xi \cdot x} g(x) d x \\
& =k \widehat{f}(\xi)+\sqrt{g}(\xi)
\end{aligned}
$$

for every $\xi \in \mathbb{R}^{d}$. Hence

$$
\mathcal{F}(k f+l g)=(k \widehat{f+l} g)=k \widehat{f}+\sqrt{g}=k \mathcal{F}(f)+l \mathcal{F}(g)
$$

and so \mathcal{F} is linear. Moreover, by Proposition 1.1.,

$$
\|\mathcal{F}(f)\|_{\infty}=\|\widehat{f}\|_{\infty} \leq\|f\|_{1}
$$

for all $f \in L^{1}\left(\mathbb{R}^{d}\right)$ which implies that $\|\mathcal{F}\| \leq 1$.
On the other hand, if we take any $f \in L^{1}\left(\mathbb{R}^{d}\right)$ such that $f(x) \geq 0$ for every x and so that $\|f\|_{1}>0$ (i.e. f is not equal to 0 almost everywhere), then

$$
\widehat{f}(0)=\int_{\mathbb{R}^{d}} f(x) d x=\int_{\mathbb{R}^{d}}|f(x)| d x=\|f\|_{1}>0
$$

We take any $\epsilon>0$. By Proposition 1.1. \widehat{f} is continuous at 0 , and so there is $\delta>0$ such that $|\widehat{f}(\xi)-\widehat{f}(0)|<\epsilon$ for every $\xi \in B(0 ; \delta)$. This implies

$$
|\widehat{f}(\xi)|>|\widehat{f}(0)|-\epsilon=\|f\|_{1}-\epsilon
$$

for every $\xi \in B(0 ; \delta)$. Thus $B(0 ; \delta) \subseteq\left\{\xi\left||\widehat{f}(\xi)|>\|f\|_{1}-\epsilon\right\}\right.$ and so

$$
m_{d}\left(\left\{\xi| | \widehat{f}(\xi) \mid>\|f\|_{1}-\epsilon\right\}\right) \geq m_{d}(B(0 ; \delta))>0 .
$$

Therefore $\left\|\widehat{f \|_{\infty}}>\right\| f \|_{1}-\epsilon$ and since $\epsilon>0$ is arbitrary, we get $\left\|\widehat{f \|_{\infty}} \geq\right\| f \|_{1}$. Therefore $\|f\|_{1} \leq\|\widehat{f}\|_{\infty}=\|\mathscr{F}(f)\|_{\infty} \leq\|\mathcal{F}\|\|f\|_{1}$.

Since $\|f\|_{1}>0$ we get $\|\mathcal{F}\| \geq 1$.

