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Chapter 1

The Fourier transform on L1(Rd).

We consider the Euclidean space Rd of dimension d ≥ 1. We denote

|x| = (x2
1 + · · · + x2

d)
1
2

the Euclidean norm of x = (x1, . . . , xd) and we denote

x · y = x1y1 + · · · + xdyd

the Euclidean inner product of x = (x1, . . . , xd) and y = (y1, . . . , yd). We denote

B(x; r) = {x | |x| < r}, B(x; r) = {x | |x| ≤ r}

the open and the closed Euclidean balls in Rd of center x and radius r > 0.
In Rd we consider the Lebesgue measure md. We write

md(A)

for the Lebesgue measure of any Lebesgue measurable A ⊆ Rd.
We also consider functions f : Rd → R∪{±∞} or f : Rd → C∪{∞} which are integrable with

respect to Lebesgue measure in Rd, i.e.∫
Rd | f (x)| dx < +∞.

The space of these functions is denoted
L1(Rd).

Observe that for simplicity we prefer to write the usual dx instead of dmd(x) in the integral with
respect to Lebesgue measure.

Two functions f , g ∈ L1(Rd) are considered equal if they differ only on a set of Lebesgue
measure equal to 0, i.e. if they are equal almost everywhere (with respect to Lebesgue measure).

If f ∈ L1(Rd) then f takes finite values almost everywhere in Rd, i.e. in a set A ⊆ Rd with
md(Ac) = 0, where Ac = Rd \ A. Now we may consider a new function f̃ : Rd → C which is equal
to f in A and which has arbitrary finite values in Ac (for example, f̃ = 0 in Ac). Then f̃ ∈ L1(Rd)
and f , f̃ may differ only in Ac and so they are equal as elements of L1(Rd). In other words, without
loss of generality we may assume that all f ∈ L1(Rd) are functions f : Rd → C (of course this
includes the case f : Rd → R).

We know that L1(Rd) is a linear space: k f + lg ∈ L1(Rd) if f , g ∈ L1(Rd) and k, l ∈ C. We also
know that if we define

∥ f ∥1 :=
∫
Rd | f (x)| dx, f ∈ L1(Rd),

then ∥ · ∥1 if is a norm in L1(Rd).
Finally, we know that L1(Rd) with the norm ∥ · ∥1 is complete, i.e. a Banach space. In other

words, if ( fn) is a sequence in L1(Rd) such that ∥ fn − fm∥1 → 0 when n,m → +∞, then there is
some f ∈ L1(Rd) such that ∥ fn − f ∥1 → 0 when n → +∞ and, moreover, there is a subsequence
( fnk ) such that fnk → f almost everywhere (i.e. fnk (x)→ f (x) when k → +∞ for almost every x).
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Definition 1.1. Let f ∈ L1(Rd). The Fourier transform of f is defined as the function

f̂ : Rd → C

given by the formula
f̂ (ξ) :=

∫
Rd e−2πi ξ·x f (x) dx, ξ ∈ Rd.

We observe that f̂ (ξ) is a complex number for every ξ ∈ Rd since the function e−2πi ξ·x f (x) of
x is integrable: indeed,∫

Rd |e−2πi ξ·x f (x)| dx =
∫
Rd |e−2πi ξ·x| | f (x)| dx =

∫
Rd | f (x)| dx < +∞

for every ξ, x ∈ Rd.
Sometimes it is unavoidable to use the notation‘f (x)(ξ), especially if the function f is very

concrete and there is no special symbol for it.

Example. Let d = 1 and let χ[a,b] be the characteristic function of the interval [a, b]. I.e. χ[a,b](x) =
1 if x ∈ [a, b] and χ[a,b](x) = 0 if x < [a, b]. Then for every ξ ∈ R we have‘χ[a,b](ξ) =

∫
R

e−2πi ξxχ[a,b](x) dx =
∫ b

a e−2πi ξx dx =

{
e−2πi ξb−e−2πi ξa

−2πiξ , ξ , 0,

b − a, ξ = 0,

=

{
e−πi ξ(a+b) e−πi ξ(b−a)−eπi ξ(b−a)

−2πiξ , ξ , 0,

b − a, ξ = 0,
=

{
e−πi ξ(a+b) sin πξ(b−a)

πξ , ξ , 0,

b − a, ξ = 0.

We observe that the Fourier transform ‘χ[a,b](ξ) is certainly continuous at every ξ , 0, and it is also
continuous at ξ = 0, since

lim
ξ→0

e−πi ξ(a+b) sin πξ(b−a)
πξ = b − a.

Remark. From now on when we write sin kξ
ξ we shall accept that this function is also defined at

ξ = 0 with value lim
ξ→0

sin kξ
ξ = k so that it is continuous everywhere. Hence we may write‘χ[a,b](ξ) = e−πi ξ(a+b) sin πξ(b−a)

πξ

for every ξ ∈ R, interpreting sin πξ(b−a)
πξ as equal to b − a when ξ = 0.

We observe that the calculation of the Fourier transform does not change if the interval [a, b] be
comes (a, b) or [a, b) or [a, b), since the sets {a} and {b} have Lebesgue measure equal to 0.
We continue with the same example but for the general dimension d. We consider an interval
R = [a1, b1] × · · · × [ad, bd] in Rd and its characteristic function χR. Then using the identities

e−2πi ξ·x =
d∏

k=1
e−2πi ξk xk , χR(x) =

d∏
k=1
χ[ak ,bk](xk)

for x = (x1, . . . , xd), ξ = (ξ1, . . . , ξd) and the theorem of Fubini, we get

χ̂R(ξ) =
∫
Rd e−2πi ξ·xχR(x) dx =

∫
R
· · ·
∫
R

d∏
k=1

e−2πi ξk xkχ[ak ,bk](xk) dx1 · · · dxd

=
d∏

k=1

∫
R

e−2πi ξk xkχ[ak ,bk](xk) dxk =
d∏

k=1
÷χ[ak ,bk](ξk).

Hence
χ̂R(ξ) =

d∏
k=1

e−πi ξk(ak+bk) sin πξk(bk−ak)
πξk

= e−πi ξ·(a+b)
d∏

k=1

sin πξk(bk−ak)
πξk

,
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where, according to our last remark, if ξk = 0 for some k, then we interpret the corresponding
sin πξk(bk−ak)

πξk
as equal to bk − ak.

Again we observe that χ̂R(ξ) is continuous at every ξ ∈ Rd.
We also observe that the Fourier transform of R remains the same even if some of the intervals
[ak, bk] change to open or closedopen or openclosed intervals with the same endpoints.

Now we consider functions f : Rd → R ∪ {±∞} or f : Rd → C ∪ {∞} which are Lebesgue
measurable and which are bounded almost everywhere in Rd, i.e. for each such f there exists a
number M ≥ 0 (which depends on f ) such that

| f (x)| ≤ M

almost everywhere in Rd. The space of these functions is denoted

L∞(Rd).

Two functions f , g ∈ L∞(Rd) are considered equal if they are equal almost everywhere.
If a function belongs to L∞(Rd) then obviously it takes finite values almost everywhere in Rd.

Therefore, exactly as we did for functions in L1(Rd), we may assume without loss of generality
that all f ∈ L∞(Rd) are functions f : Rd → C.

We know that L∞(Rd) is a linear space: k f + lg ∈ L∞(Rd) if f , g ∈ L∞(Rd) and k, l ∈ C. We
also know that L∞(Rd) has a norm denoted by ∥ · ∥∞ and defined as follows: for f ∈ L∞(Rd),

∥ f ∥∞ is the smallest M ≥ 0 such that | f (x)| ≤ M for almost every x.

In other words, | f (x)| ≤ ∥ f ∥∞ is true for almost every x, and for every M < ∥ f ∥∞ we have that
md({x | | f (x)| > M}) > 0.

Finally, we know that L∞(Rd) with the norm ∥ · ∥∞ is a Banach space. In other words, if ( fn) is
a sequence in L∞(Rd) such that ∥ fn − fm∥∞ → 0 when n,m→ +∞, then there is some f ∈ L∞(Rd)
such that ∥ fn − f ∥∞ → 0 when n→ +∞ and, hence, there is some A ⊆ Rd so that md(Ac) = 0 and
fn → f uniformly in A.

Now, L∞(Rd) has some notable linear subspaces:

C0(Rd) ⊆ BUC(Rd) ⊆ BC(Rd) ⊆ L∞(Rd).

The space BC(Rd) contains all f : Rd → C which are bounded and continuous in Rd, the space
BUC(Rd) contains all f : Rd → C which are bounded and uniformly continuous in Rd, and the
spaceC0(Rd) contains all f : Rd → Cwhich are continuous in Rd and tend to 0 at∞, i.e. f (x)→ 0
when |x| → +∞. Perhaps the only inclusion that needs some explanation is C0(Rd) ⊆ BUC(Rd).
So let f ∈ C0(Rd). Then there is some R so that | f (x)| ≤ 1 when |x| > R. Now f is continuous
and hence bounded in the compact ball B(0; R). Therefore f is bounded in Rd. On the other hand,
take any ϵ > 0. Then there is some R so that | f (x)| < ϵ2 when |x| > R. Since f continuous and
hence uniformly continuous on the compact ball B(0; R + 1), there is δ with 0 < δ ≤ 1 such that
| f (x) − f (y)| < ϵ when x, y ∈ B(0; R + 1) and |x − y| < δ. Now take and x, y with |x − y| < δ (≤ 1).
If both x, y are not in B(0; R) then | f (x) − f (y)| ≤ | f (x)| + | f (y)| < ϵ2 +

ϵ
2 = ϵ. If at least one of x, y

is in B(0; R) then both x, y are in B(0; R + 1) and hence | f (x) − f (y)| < ϵ. Therefore f is uniformly
continuous in Rd.

If we consider all these subspaces of L∞(Rd) with the norm ∥ · ∥∞ of the larger space L∞(Rd),
then they are all closed subspaces of L∞(Rd) and so each of them is a Banach space.

Proposition 1.1. If f ∈ L1(Rd), then f̂ ∈ BUC(Rd) ⊆ L∞(Rd) and ∥ f̂ ∥∞ ≤ ∥ f ∥1.

Proof. Let f ∈ L1(Rd). Then for every ξ, h ∈ Rd we have

| f̂ (ξ + h) − f̂ (ξ)| =
∣∣ ∫
Rd e−2πi (ξ+h)·x f (x) dx −

∫
Rd e−2πi ξ·x f (x) dx

∣∣
=
∣∣ ∫
Rd e−2πi ξ·x(e−2πi h·x − 1) f (x) dx

∣∣ ≤ ∫
Rd |e−2πi h·x − 1| | f (x)| dx.
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Since |e−2πi h·x − 1| → 0 when h → 0 and |e−2πi h·x − 1| ≤ 2, an application of the Dominated
Convergence Theorem implies that∫

Rd |e−2πi h·x − 1| | f (x)| dx→ 0 when h→ 0

and so | f̂ (ξ + h) − f̂ (ξ)| → 0 when h→ 0. Therefore f̂ is continuous at every ξ ∈ Rd.
We also observe that

∫
Rd |e−2πi h·x − 1| | f (x)| dx is independent of ξ and hence

supξ∈Rd | f̂ (ξ + h) − f̂ (ξ)| ≤
∫
Rd |e−2πi h·x − 1| | f (x)| dx.

Again this implies that supξ∈Rd | f̂ (ξ + h) − f̂ (ξ)| → 0 when h → 0 and we conclude that f̂ is
uniformly continuous in Rd.
Finally, for every ξ ∈ Rd we have

| f̂ (ξ)| =
∣∣ ∫
Rd e−2πi ξ·x f (x) dx

∣∣ ≤ ∫
Rd | f (x)| dx = ∥ f ∥1.

Therefore ∥ f̂ ∥∞ ≤ ∥ f ∥1. □

Definition 1.2.We define the Fourier transform operator

F : L1(Rd)→ BUC(Rd) ⊆ L∞(Rd)

by the formula
F ( f ) := f̂ , f ∈ L1(Rd).

We recall that if T : X → Y is a linear operator between the normed spaces X and Y with
respective norms ∥ · ∥X and ∥ · ∥Y and if there is some constant M ≥ 0 so that

∥T (x)∥Y ≤ M∥x∥X

for every x ∈ X, then we say that T is bounded and then we define the norm ∥T∥ of T by

∥T∥ is the smallest M ≥ 0 such that ∥T (x)∥Y ≤ M∥x∥X for every x ∈ X.

Proposition 1.2. F : L1(Rd)→ BUC(Rd) is a bounded linear operator with norm ∥F ∥ = 1.

Proof. For every f , g ∈ L1(Rd) and k, l ∈ C we haveÿ�(k f + lg)(ξ) =
∫
Rd e−2πi ξ·x(k f (x) + lg(x)) dx

= k
∫
Rd e−2πi ξ·x f (x) dx + l

∫
Rd e−2πi ξ·xg(x) dx

= k f̂ (ξ) + lĝ(ξ)

for every ξ ∈ Rd. Hence

F (k f + lg) =÷k f + lg = k f̂ + lĝ = kF ( f ) + lF (g)

and so F is linear. Moreover, by Proposition 1.1.,

∥F ( f )∥∞ = ∥ f̂ ∥∞ ≤ ∥ f ∥1

for all f ∈ L1(Rd) which implies that ∥F ∥ ≤ 1.
On the other hand, if we take any f ∈ L1(Rd) such that f (x) ≥ 0 for every x and so that ∥ f ∥1 > 0
(i.e. f is not equal to 0 almost everywhere), then

f̂ (0) =
∫
Rd f (x) dx =

∫
Rd | f (x)| dx = ∥ f ∥1 > 0.
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We take any ϵ > 0. By Proposition 1.1. f̂ is continuous at 0, and so there is δ > 0 such that
| f̂ (ξ) − f̂ (0)| < ϵ for every ξ ∈ B(0; δ). This implies

| f̂ (ξ)| > | f̂ (0)| − ϵ = ∥ f ∥1 − ϵ

for every ξ ∈ B(0; δ). Thus B(0; δ) ⊆ {ξ | | f̂ (ξ)| > ∥ f ∥1 − ϵ} and so

md({ξ | | f̂ (ξ)| > ∥ f ∥1 − ϵ}) ≥ md(B(0; δ)) > 0.

Therefore ∥ f̂ ∥∞ > ∥ f ∥1 − ϵ and since ϵ > 0 is arbitrary, we get ∥ f̂ ∥∞ ≥ ∥ f ∥1. So we get

∥ f ∥1 ≤ ∥ f̂ ∥∞ = ∥F ( f )∥∞ ≤ ∥F ∥ ∥ f ∥1.

Since ∥ f ∥1 > 0 we get ∥F ∥ ≥ 1. □

For any y ∈ Rd we have the corresponding translation operator τy acting on functions f :
Rd → C by

τy( f )(x) := f (x − y), x ∈ Rd.

The function τy( f ) : Rd → C, which is called translation of f by y, shares many properties of f .
For example, if f ∈ L1(Rd) then τy( f ) ∈ L1(Rd) and the two functions have the same integrals:∫

Rd τy( f )(x) dx =
∫
Rd f (x − y) dx =

∫
Rd f (x) dx.

If we work with the absolute values of the two functions we see that they also have the same norms:

∥τy( f )∥1 = ∥ f ∥1.

A property of functions in L1(Rd) is the following. If f ∈ L1(Rd) and ϵ > 0 then there is
some simple function ϕ =

∑n
k=1 lkχRk , where the lk are complex numbers and the Rk are bounded

intervals in Rd, so that
∥ f − ϕ∥1 < ϵ.

Based on this we can prove the following.

Proposition 1.3. If f ∈ L1(Rd), then ∥τh( f ) − f ∥1 → 0 when h→ 0.

Proof. We take any ϵ > 0 and we consider a ϕ =
∑n

k=1 lkχRk , where the lk are complex numbers
and the Rk are bounded intervals in Rd, so that

∥ f − ϕ∥1 < ϵ.

Then
τh(ϕ)(x) = ϕ(x − h) =

∑n
k=1 lkχRk (x − h) =

∑n
k=1 lkχRk+h(x),

where Rk + h is Rk translated by h. Now

∥τh(ϕ) − ϕ∥1 ≤
∑n

k=1 |lk| ∥χRk+h − χRk∥1,

and for each k we have

∥χRk+h − χRk∥1 =
∫
Rd |χRk+h(x) − χRk (x)| dx = md((Rk + h)△Rk)

and we can make md((Rk + h)△Rk) as small as we like by taking |h| small enough. Therefore, we
can make

∥τh(ϕ) − ϕ∥1 < ϵ
by taking |h| small enough. Finally we get

∥τh( f ) − f ∥1 ≤ ∥τh( f ) − τh(ϕ)∥1 + ∥τh(ϕ) − ϕ∥1 + ∥ϕ − f ∥1
= ∥τh( f − ϕ)∥1 + ∥τh(ϕ) − ϕ∥1 + ∥ϕ − f ∥1
= ∥ f − ϕ∥1 + ∥τh(ϕ) − ϕ∥1 + ∥ϕ − f ∥1 < 3ϵ

by taking |h| small enough. □
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RiemannLebesgue lemma. If f ∈ L1(Rd) then f̂ ∈ C0(Rd), i.e.

lim
|ξ|→+∞

f̂ (ξ) = 0.

First proof. Let R = [a1, b1] × · · · × [an, bn] be any bounded interval in Rd. Then

|χ̂R(ξ)| =
d∏

k=1

∣∣ sin πξk(bk−ak)
πξk

∣∣.
For each k we have ∣∣ sin πξk(bk−ak)

πξk

∣∣ ≤ min
{

bk − ak,
1
π|ξk |

}
≤ min

{
M, 1
π|ξk |

}
,

where M = max{b1 − a1, . . . , bd − ad}. Also, since |ξ|2 = ξ21 + · · · + ξ2d, for at least one k we have
|ξk| ≥ |ξ|√

d
. Therefore,

|χ̂R(ξ)| ≤
√

dMd−1

π|ξ| → 0

when |ξ| → +∞.
Take any ϵ > 0. Then there is some ϕ =

∑n
k=1 lkχRk , where the lk are complex numbers and the Rk

are bounded intervals in Rd, such that

∥ f − ϕ∥1 < ϵ2 .

Then
ϕ̂(ξ) =

∑n
k=1 lk”χRk (ξ)→ 0

when |ξ| → +∞, and so
|ϕ̂(ξ)| < ϵ2

if |ξ| is large enough. Therefore

| f̂ (ξ)| ≤ |÷( f − ϕ)(ξ)| + |ϕ̂(ξ)| ≤ ∥ f − ϕ∥1 + |ϕ̂(ξ)| < ϵ

if |ξ| is large enough.
Second proof. We set h = ξ

2|ξ|2 ∈ R
d so that |h| = 1

2|ξ| → 0 when |ξ| → +∞.
We also have ξ · h = 1

2 and’τh( f )(ξ) =
∫
Rd e−2πi ξ·xτh( f )(x) dx =

∫
Rd e−2πi ξ·x f (x − h) dx =

∫
Rd e−2πi ξ·(x+h) f (x) dx

= e−πi
∫
Rd e−2πi ξ·x f (x) dx = − f̂ (ξ).

Thus,
2| f̂ (ξ)| = |’τh( f )(ξ) − f̂ (ξ)| ≤ ∥τh( f ) − f ∥1 → 0

when |ξ| → +∞. □

The RiemannLebesgue lemma says that

F : L1(Rd)→ C0(Rd) ⊆ L∞(Rd).

For any t > 0 we have the corresponding dilation operator δt acting on functions f : Rd → C
by

δt( f )(x) := 1
td f

( x
t

)
, x ∈ Rd.

The function δt( f ) : Rd → C is called dilation of f by t. If f ∈ L1(Rd) then δt( f ) ∈ L1(Rd) and the
two functions have the same integrals and the same norms:∫

Rd δt( f )(x) dx =
∫
Rd

1
td f

( x
t

)
dx =

∫
Rd f (x) dx.
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In the same manner we get
∥δt( f )∥1 = ∥ f ∥1.

The next few propositions show the interaction of the Fourier transform with the translation
and the dilation operators.

Proposition 1.4. Let f ∈ L1(Rd) and y ∈ Rd. Then◊�f (x − y)(ξ) = e−2πi ξ·y‘f (x)(ξ), ⁄�e−2πi y·x f (x)(ξ) =‘f (x)(ξ + y).

Proof. We have ◊�f (x − y)(ξ) =
∫
Rd e−2πi ξ·x f (x − y) dx =

∫
Rd e−2πi ξ·(x+y) f (x) dx

= e−2πi ξ·y ∫
Rd e−2πi ξ·x f (x) dx = e−2πi ξ·y‘f (x)(ξ)

for the first equality, and⁄�e−2πi y·x f (x)(ξ) =
∫
Rd e−2πi ξ·xe−2πi y·x f (x) dx =

∫
Rd e−2πi (ξ+y)·x f (x) dx =‘f (x)(ξ + y)

for the second equality. □

Proposition 1.5. Let f ∈ L1(Rd) and t > 0. Then÷1
td f

( x
t

)
(ξ) =‘f (x)(tξ), ‘f (tx)(ξ) = 1

td
‘f (x)

( ξ
t

)
.

Proof. We have÷1
td f

( x
t

)
(ξ) =

∫
Rd e−2πi ξ·x 1

td f
( x

t

)
dx =

∫
Rd e−2πi ξ·(tx) f (x) dx =

∫
Rd e−2πi (tξ)·x f (x) dx =‘f (x)(tξ)

for the first equality, and we get the second using 1
t instead of t in the first equality. □

We may generalize the last proposition in the following way. We consider any linear transfor
mation T : Rd → Rd which is nonsingular, i.e. det(T ) , 0. We know of course that then T is 11
and onto and hence invertible. Now we consider the operator δT acting on functions f : Rd → C
by

δT ( f )(x) := | det(T )| f (T (x)), x ∈ Rd.

The function δT ( f ) : Rd → C shares some properties with f . If f ∈ L1(Rd) then δT ( f ) ∈ L1(Rd)
and the two functions have the same integrals and the same norms:∫

Rd δT ( f )(x) dx =
∫
Rd | det(T )| f (T (x)) dx =

∫
Rd f (x) dx

and similarly
∥δT ( f )∥1 = ∥ f ∥1.

In the particular case T (x) = x
t for some t > 0, then T is a linear transformation with det(T ) = 1

td
and hence the operator δT coincides with the dilation operator δt. For the more general T we have
the following.

Proposition 1.6. Let f ∈ L1(Rd) and T : Rd → Rd be a nonsingular linear transformation. Then¤�| det(T )| f (T (x))(ξ) =‘f (x)((T−1)∗(ξ)),

where (T−1)∗ : Rd → Rd is the adjoint of T−1.
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Proof. We have¤�| det(T )| f (T (x))(ξ) =
∫
Rd e−2πi ξ·x| det(T )| f (T (x)) dx =

∫
Rd e−2πi ξ·T−1(x) f (x) dx

=
∫
Rd e−2πi (T−1)∗ξ·x f (x) dx =‘f (x)((T−1)∗(ξ)).

□

A linear transformation T : Rd → Rd is called orthogonal if T (x) · T (y) = x · y for every
x, y ∈ Rd. We know that an orthogonal linear transformation is nonsingular, and that T−1 = T ∗,
(T−1)∗ = T and | det(T )| = 1.

Corollary 1.1. Let f ∈ L1(Rd) and T : Rd → Rd be an orthogonal linear transformation. Then◊�f (T (x))(ξ) =‘f (x)(T (ξ)).

Proof. Immediate from Proposition 1.6. □

A function f : Rd → C is called radial if it depends only on the norm of the variable, i.e.
if f (x) = f (y) whenever |x| = |y|. This is equivalent to: f (T (x)) = f (x) for every x and every
orthogonal linear transformation T . Indeed, let f be radial. Since an orthogonal linear transforma
tion satisfies |T (x)| = |x| for every x, we get f (T (x)) = f (x) for every x. Conversely, assume that
f (T (x)) = f (x) for every x and every orthogonal linear transformation T . If |x| = |y| then there
exists an orthogonal linear transformation T such that T (x) = y and hence f (x) = f (T (x)) = f (y).
Therefore we get the following.

Corollary 1.2. If f ∈ L1(Rd) is radial then f̂ is also radial.

Proof. If f is radial and T is any orthogonal linear transformation then from Corollary 1.1 we get‘f (x)(ξ) =◊�f (T (x))(ξ) =‘f (x)(T (ξ)).

This implies that f̂ is radial. □

Another very simple result is the following.

Proposition 1.7. Let f ∈ L1(Rd). Then’f (−x)(ξ) =‘f (x)(−ξ), ‘f (x)(ξ) =‘f (x)(−ξ), ’f (−x)(ξ) =‘f (x)(ξ).

Proof. For the first equality:’f (−x)(ξ) =
∫
Rd e−2πi ξ·x f (−x) dx =

∫
Rd e−2πi ξ·(−x) f (x) dx =

∫
Rd e−2πi (−ξ)·x f (x) dx =‘f (x)(−ξ).

For the second equality:‘f (x)(ξ) =
∫
Rd e−2πi ξ·x f (x) dx =

∫
Rd e2πi ξ·x f (x) dx =

∫
Rd e−2πi (−ξ)·x f (x) dx =‘f (x)(−ξ).

The third equality can be proved either in the same manner or as a combination of the first two. □

We know that a function f : Rd → C is even or odd if, respectively, f (−x) = f (x) for every x
or f (−x) = − f (x) for every x.

Corollary 1.3. Let f ∈ L1(Rd). If f is even or odd, then f̂ is even or odd respectively.

Proof. Immediate from the first equality of Proposition 1.7. □
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The following two lemmas are very useful when we want to prove that an integral depending
on a parameter is continuous or differentiable with respect to the parameter. For both lemmas we
have a function

f : X × I → C,
where I is an interval in R and X is a measurable space with a measure µ. We also assume that for
every t the f (x, t), as a function of x, is integrable with respect to µ so that the function F : I → C
given by the formula

F(t) =
∫

X f (x, t) dµ(x), t ∈ I,

is well defined.
The first lemma has to do with the continuity of F.

Lemma A. Assume that for almost every x ∈ X we have:
(i) f (x, t), as a function of t, is continuous in I,
(ii) | f (x, t)| ≤ g(x) for every t ∈ I, where g is integrable in X.
Then F is continuous in I.

Proof. Take any t ∈ I and any sequence (tn) in I so that tn → t.
By assumption (i) we have f (x, tn)→ f (x, t) for almost every x ∈ X. Also, by assumption (ii), for
every tn we have | f (x, tn)| ≤ g(x) for almost every x ∈ X.
Then the Dominated Convergence Theorem implies

F(tn) =
∫

X f (x, tn) dµ(x)→
∫

X f (x, t) dµ(x) = F(t).

Therefore F is continuous at t. □

The second lemma has to do with the differentiability of F.

Lemma B. Assume that for almost every x ∈ X we have:
(i) f (x, t), as a function of t, is differentiable in I,
(ii)

∣∣ d f
dt (x, t)

∣∣ ≤ g(x) for every t ∈ I, where g is integrable in X.
Then F is differentiable in I and

dF
dt (t) =

∫
X

d f
dt (x, t) dµ(x), t ∈ I.

Proof. Take any t ∈ I and any sequence (tn) in I so that tn → t (and tn , t for every n).
By assumption (i) we have

f (x,tn)− f (x,t)
tn−t → d f

dt (x, t)

for almost every x ∈ X. Again by assumption (i) and the mean value theorem we have that for
almost every x there is some t′ between tn and t so that

f (x,tn)− f (x,t)
tn−t =

d f
dt (x, t′).

And then assumption (ii) implies that ∣∣ f (x,tn)− f (x,t)
tn−t

∣∣ ≤ g(x),

for almost every x. Finally the Dominated Convergence Theorem implies

F(tn)−F(t)
tn−t =

∫
X

f (x,tn)− f (x,t)
tn−t dµ(x)→

∫
X

d f
dt (x, t) dµ(x).

Therefore F is differentiable at t and dF
dt (t) =

∫
X

d f
dt (x, t) dµ(x). □

The folollowing two propositions are very usefull. They tell us (i) what the derivative of the
Fourier transform is, and (ii) what the Fourier transform of the derivative is.
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Proposition 1.8. Let f ∈ L1(Rd) and xk f (x) ∈ L1(Rd). Then f̂ (ξ) has partial derivative with
respect to ξk which is given by the formula

∂‘f (x)
∂ξk

(ξ) =⁄�−2πixk f (x)(ξ).

Proof. We have
f̂ (ξ) =

∫
Rd e−2πi ξ·x f (x) dx.

The function e−2πi ξ·x f (x) is, as a function of ξk, differentiable and∣∣ d(e−2πi ξ·x f (x))
dξk

∣∣ = ∣∣e−2πi ξ·x(−2πixk) f (x)
∣∣ ≤ 2π|xk f (x)|

for all x, ξ. Now Lemma B implies that f̂ (ξ) is differentiable with respect to ξk and its derivative
is equal to ∫

Rd e−2πi ξ·x(−2πixk) f (x) dx =⁄�−2πixk f (x)(ξ).

□

Proposition 1.9. Let f ∈ L1(Rd) and let ∂ f (x)
∂xk

exist at every x ∈ Rd and ∂ f (x)
∂xk
∈ L1(Rd) ∩ C(Rd).

Then ‘∂ f (x)
∂xk

(ξ) = 2πiξk‘f (x)(ξ).

Proof. Let ek be the unit vector in the direction of the positive xkaxis inRd. Then by the continuity
of ∂ f (x)

∂xk
we have

f (x + hek) − f (x) =
∫ h

0
d
dt f (x + tek) dt =

∫ h
0
∂ f
∂xk

(x + tek) dt

and hence∣∣ f (x+hek)− f (x)
h − ∂ f

∂xk
(x)

∣∣ = ∣∣ 1
h

∫ h
0

( ∂ f
∂xk

(x + tek) − ∂ f
∂xk

(x)
)

dt
∣∣ ≤ 1

h

∫ h
0

∣∣ ∂ f
∂xk

(x + tek) − ∂ f
∂xk

(x)
∣∣ dt

for every x and for h > 0. This implies∫
Rd

∣∣ f (x+hek)− f (x)
h − ∂ f

∂xk
(x)

∣∣ dx ≤ 1
h

∫ h
0

( ∫
Rd

∣∣ ∂ f
∂xk

(x + tek) − ∂ f
∂xk

(x)
∣∣ dx

)
dt

i.e. ∥∥∥ f (x+hek)− f (x)
h − ∂ f

∂xk
(x)
∥∥∥

1 ≤
1
h

∫ h
0

∥∥∥ ∂ f
∂xk

(x + tek) − ∂ f
∂xk

(x)
∥∥∥

1 dt

for h > 0.
Now Proposition 1.3 implies that

∥∥∥ ∂ f
∂xk

(x + tek) − ∂ f
∂xk

(x)
∥∥∥

1 → 0 when t → 0 and this implies that
the right side of the last inequality tends to 0 when h→ 0+. Therefore∥∥∥ f (x+hek)− f (x)

h − ∂ f
∂xk

(x)
∥∥∥

1 → 0

when h→ 0+.
Now we take any ξ ∈ Rd. Using the inequality |ĝ(ξ)| ≤ ∥g∥1, we get that⁄�f (x+hek)− f (x)

h (ξ)→‘∂ f (x)
∂xk

(ξ)

when h→ 0+. By Proposition 1.4 we have that⁄�f (x+hek)− f (x)
h (ξ) = e2πi ξkh−1

h
‘f (x)(ξ),

and so we get
e2πi ξkh−1

h
‘f (x)(ξ)→‘∂ f (x)

∂xk
(ξ)

when h→ 0+. Of course this implies that 2πiξk‘f (x)(ξ) =‘∂ f (x)
∂xk

(ξ). □
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Now let α = (α1, . . . , αd) be any dtuple of nonnegative integers. We define the order and the
factorial of α to be

|α| := α1 + · · · + αd, α! := α1! · · ·αd!

respectively. Also if x = (x1, . . . , xd) ∈ Rd then we use the symbol xα for the corresponding
monomial of x :

xα := xα1
1 · · · x

αd
d .

Finally, we use the symbol Dα for the corresponding mixed derivative of order |α| :

Dα := ∂|α|

∂xα1
1 ···∂x

αd
d
.

Now, taking linear combinations with complex coefficients we form polynomials

P(x) =
∑
α, |α|≤k

cαxα

of degree ≤ k, and corresponding polynomial differential operators

P(D) =
∑
α, |α|≤k

cαDα

of order ≤ k.

Example. If
P(x) = x2

1 + · · · + x2
d = |x|2,

then
P(D) = ∂2

∂x2
1
+ · · · + ∂2

∂x2
d
= ∆

is the Laplacian.

We now have the following two corollaries of Propositions 1.8 and 1.9 for any polynomial P(x)
of degree k and for the corresponding differential operator P(D) of order k.

Corollary 1.4. If xα f (x) ∈ L1(Rd) for |α| ≤ k, then

P(D)‘f (x)(ξ) = ¤�P(−2πi x) f (x)(ξ).

Corollary 1.5. If Dα f (x) ∈ L1(Rd) ∩C(Rd) for |α| ≤ k, thenÿ�P(D) f (x)(ξ) = P(2πiξ)‘f (x)(ξ).

Example. (i) If xα f (x) ∈ L1(Rd) for |α| ≤ 2, then

∆(‘f (x))(ξ) =¤�−4π2|x|2 f (x)(ξ).

(ii) If Dα f (x) ∈ L1(Rd) ∩C(Rd) for |α| ≤ 2, then’∆ f (x)(ξ) = −4π2|ξ|2‘f (x)(ξ).

Proposition 1.10. Let f (x) =
d∏

k=1
fk(xk), where each fk belongs to L1(R). Then f belongs to L1(Rd)

and
f̂ (ξ) =

d∏
k=1
“fk(ξk)

for every ξ ∈ Rd.

12



Proof. Tonelli’s theorem implies

∫
Rd | f (x)| dx =

∫
R
· · ·
∫
R

d∏
k=1
| fk(xk)| dx1 · · · dxd =

d∏
k=1

∫
R
| fk(xk)| dxk < +∞.

And then Fubini’s theorem gives

f̂ (ξ) =
∫
Rd e−2πi ξ·x f (x) dx =

∫
R
· · ·
∫
R

d∏
k=1

e−2πi ξk xk fk(xk) dx1 · · · dxd

=
d∏

k=1

∫
R

e−2πi ξk xk fk(xk) dxk =
d∏

k=1
“fk(ξk).

□

Recall that we have already proved Proposition 1.10 in a very particular setting when we cal
culated the Fourier transform of χR, the characteristic function of an interval R in Rd. We shall see
another instance of Proposition 1.10 in the following calculation of the Fourier transform of the
function of Gauss G : Rd → C given by

G(x) := e−π|x|
2
= e−π(x2

1+···+x2
d) =

d∏
k=1

e−πx2
k , x ∈ Rd.

Proposition 1.11.We have Ĝ = G, i.e. ’e−π|x|2(ξ) = e−π|ξ|
2

for every ξ ∈ Rd.

First proof. We first consider the case d = 1. Checking that the proper assumptions are satisfied,
we apply Propositions 1.8 (for the first equality) and 1.9 (for the third equality) and we get

d
dξ

(‘e−πx2)(ξ) =⁄�−2πixe−πx2(ξ) = iÿ�d
dx (e−πx2)(ξ) = i 2πiξ‘e−πx2(ξ) = −2πξ‘e−πx2(ξ)

for every ξ ∈ R. So the function f (ξ) =‘e−πx2(ξ) satisfies the ordinary differential equation

f ′(ξ) = −2πξ f (ξ)

in R. This implies easily that f (ξ) = ce−πξ
2 for every ξ ∈ R for some constant c. In other words,‘e−πx2(ξ) = ce−πξ

2

for every ξ ∈ R. Now, the constant c is given by

c =‘e−πx2(0) =
∫
R

e−πx2
dx.

Now we go to the general d. By Proposition 1.10 we have that’e−π|x|2(ξ) =
d∏

k=1

‘e−πx2
k (ξk) = cd

d∏
k=1

e−πξ
2
k = cde−π|ξ|

2
,

for every ξ ∈ Rd, with the same c as before. To calculate c we specialize to d = 2 and ξ = 0, and
we get

c2 =’e−π|x|2(0) =
∫
R2 e−π|x|

2
dx =

∫ 2π
0

∫ +∞
0 e−πr

2
r drdθ

= 2π
∫ +∞

0 e−πr
2
r dr = −

∫ +∞
0

d
dr e−πr

2
dr = 1.
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Thus, c = 1, and so ’e−π|x|2(ξ) = e−π|ξ|
2

for every ξ ∈ Rd.
Second proof. We take the following dilation of the function of Gauss:

1
(
√

d)d G
( x√

t

)
= 1

t
d
2

e−π
|x|2

t .

We consider it as a function of both x = (x1, . . . , xd) and t > 0 in the upper halfspace Rd+1
+ =

{(x, t) | x ∈ Rd, t > 0} of Rd+1. It is easy to check that

∆
( 1

t
d
2

e−π
|x|2

t
)
= − 2πd

t
d
2 +1

e−π
|x|2

t +
4π2 |x|2

t
d
2 +2

e−π
|x|2

t ,

∂
∂t

( 1

t
d
2

e−π
|x|2

t
)
= − d

2t
d
2 +1

e−π
|x|2

t +
π|x|2

t
d
2 +2

e−π
|x|2

t ,

where the Laplacian ∆ is with respect to the variables x1, . . . , xd, i.e. ∆ = ∂2

∂x2
1
+ · · · + ∂2

∂x2
d
. This

implies that our function satisfies the socalled heat equation(
4π ∂∂t − ∆

)( 1

t
d
2

e−π
|x|2

t
)
= 0

in Rd+1
+ . Now for every t > 0 we take the Fourier transform of both sides (as functions of x) and

we get ¤�(
4π ∂∂t − ∆

)( 1

t
d
2

e−π
|x|2

t
)
(ξ) = 0

i.e.

4π
¤�
∂
∂t

( 1

t
d
2

e−π
|x|2

t
)
(ξ) −

¤�
∆
( 1

t
d
2

e−π
|x|2

t
)
(ξ) = 0

i.e.

4π
¤�
∂
∂t

( 1

t
d
2

e−π
|x|2

t
)
(ξ) + 4π2|ξ|2

ÿ�1

t
d
2

e−π
|x|2

t (ξ) = 0

by Proposition 1.9 (after we check that its assumptions are satisfied), i.e.¤�
∂
∂t

( 1

t
d
2

e−π
|x|2

t
)
(ξ) + π|ξ|2 ’e−π|x|2(

√
t ξ) = 0

by Proposition 1.5. Now we apply Lemma B (for the second equality) to get¤�
∂
∂t

( 1

t
d
2

e−π
|x|2

t
)
(ξ) =

∫
Rd e−2πi ξ·x ∂

∂t

( 1

t
d
2

e−π
|x|2

t
)

dx = d
dt

( ∫
Rd e−2πi ξ·x 1

t
d
2

e−π
|x|2

t dx
)

= d
dt

(ÿ�1

t
d
2

e−π
|x|2

t
)
(ξ) = d

dt

(’e−π|x|2)(
√

t ξ).

So our last equation becomes

d
dt

(’e−π|x|2)(
√

t ξ) + π|ξ|2 ’e−π|x|2(
√

t ξ) = 0.

In other words, the function fξ(t) =’e−π|x|2(
√

t ξ), as a function of t, satisfies the ordinary differential
equation

f ′ξ (t) + π|ξ|2 fξ(t) = 0
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for t > 0. This implies that fξ(t) = cξe−π|ξ|
2t for t > 0 and for some constant cξ which may depend

on ξ ∈ Rd. Thus, ’e−π|x|2(
√

t ξ) = cξe−π|ξ|
2t

for every ξ ∈ Rd and every t > 0. When t → 0+, by the continuity of the Fourier transform’e−π|x|2
we get

cξ =’e−π|x|2(0) =
∫
Rd e−π|x|

2
dx.

In other words, the constant cξ does not depend on ξ ∈ Rd, and so we have that’e−π|x|2(
√

t ξ) = ce−π|ξ|
2t

for every ξ ∈ Rd and every t > 0. With t = 1 we get’e−π|x|2(ξ) = ce−π|ξ|
2

for every ξ ∈ Rd, where c =
∫
Rd e−π|x|

2
dx. For the calculation of c we repeat the tricks of the first

proof. Very quickly: First we observe that the constant c actually depends on the dimension d,

i.e. c = cd. Then using Tonelli’s theorem together with e−π|x|
2
=

d∏
k=1

e−πx2
k we see that cd = cd

1.

Then using polar coordinates in R2 we find that c2 = 1. From c2 = c2
1 we get c1 = 1 and finally

c = cd = 1d = 1. □

Note that we have proved that∫
Rd G(x) dx =

∫
Rd e−π|x|

2
dx = 1.

We recall the change into polar coordinates for Lebesgue integrals. For any x ∈ Rd, x , 0, we
write r = |x| and x′ = x

|x| . Then r ∈ (0,+∞) and x′ ∈ Sd−1, where Sd−1 is the unit sphere of center
0 in Rd. Then x defines uniquely the pair (r, x′) and conversely the pair (r, x′) defines uniquely x,
since x = rx′. We denote σd−1 the rotationally invariant surface measure of the sphere Sd−1. Then
we have∫

Rd f (x) dx =
∫ +∞

0

( ∫
Sd−1 f (rx′) dσd−1(x′)

)
rd−1 dr =

∫
Sd−1

( ∫ +∞
0 f (rx′)rd−1 dr

)
dσd−1(x′)

for every integrable function f inRd: this is the socalled formula for change into polar coordinates
for Lebesgue integrals. It is also true for Lebesgue measurable f ≥ 0 in Rd.

This is particularly useful when f : Rd → C is a radial function, i.e. if f (x) = f (y) when
ever |x| = |y|. Then we may consider the function f̃ : (0,+∞) → C defined by f̃ (r) := f (x)
for any x with |x| = r. Observe that this defines uniquely the value f̃ (r). Indeed, if we have
two different x, y so that |x| = r and |y| = r, then |x| = |y| and so the radiality of f implies
f (x) = f (y). So the radial function f : Rd → C determines the function f̃ : (0,+∞) → C.
Conversely, a function f̃ : (0,+∞)→ C determines the function f : Rd → C given by the formula
f (x) = f̃ (|x|) for x , 0 (we assign any value for f at 0), and then f is obviously radial: if |x| = |y|
then f (x) = f̃ (|x|) = f̃ (|y|) = f (y).
For example, the function of GaussG(x) = e−π|x|

2 is clearly radial in Rd and we get the correspond
ing G̃(r) = e−πr

2 in (0,+∞).
Now, in the formula for change into polar coordinates with a radial function f we shall have
f (rx′) = f̃ (|rx′|) = f̃ (r) and hence∫

Rd f (x) dx =
∫ +∞

0

( ∫
Sd−1 f̃ (r) dσd−1(x′)

)
rd−1 dr =

∫
Sd−1

( ∫ +∞
0 f̃ (r)rd−1 dr

)
dσd−1(x′).

The two last integrals are both equal to σd−1(Sd−1)
∫ +∞

0 f̃ (r)rd−1 dr and so we get∫
Rd f (x) dx = σd−1(Sd−1)

∫ +∞
0 f̃ (r)rd−1 dr.
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This is a very useful formula for the integral of a radial function.
Nowwe shall find the Fourier transform of another important function, the function of Poisson

P : Rd → C given by
P(x) := cd

1

(1+|x|2)
d+1

2
, x ∈ Rd.

The cd is a positive constant depending only on the dimension d such that∫
Rd P(x) dx = 1.

To begin with, we must see that P is integrable. Clearly, P is radial in Rd and we have the
corresponding P̃(r) = cd

1

(1+r2)
d+1

2
in (0,+∞). Since P ≥ 0 in Rd, we get

∫
Rd P(x) dx = σd−1(Sd−1)

∫ +∞
0 P̃(r)rd−1 dr = cdσd−1(Sd−1)

∫ +∞
0

rd−1

(1+r2)
d+1

2
dr

≤ cdσd−1(Sd−1)
( ∫ 1

0 rd−1 dr +
∫ +∞

1
1
r2 dr

)
< +∞.

To find the value of the constant cd we introduce the gamma function Γ : (0,+∞)→ (0,+∞)
given by

Γ(s) :=
∫ +∞

0 e−tts−1 dt, s > 0.

One can easily see that Γ(1) =
∫ +∞

0 e−t dt = 1, and, using integration py parts, that

Γ(s + 1) = sΓ(s)

for every s > 0. Then, by induction, we get that

Γ(n) = (n − 1)!, n ∈ N.

Another interesting value of the gamma function is

Γ
( 1

2

)
= π

1
2 .

To see this, we make a change from t to πt2 and get

Γ
(1

2

)
=
∫ +∞

0 e−tt−
1
2 dt = 2π

1
2
∫ +∞

0 e−πt
2

dt = π
1
2
∫
R

e−πt
2

dt = π
1
2 .

Now we go for the calculation of cd. Using the change of variables from t to t(1+ |x|2), we get

Γ
(d+1

2

)
=
∫ +∞

0 e−tt
d−1

2 dt = (1 + |x|2)
d+1

2
∫ +∞

0 e−t(1+|x|2)t
d−1

2 dt.

Hence

Γ
(d+1

2

) ∫
Rd

1

(1+|x|2)
d+1

2
dx =

∫ +∞
0 e−tt

d−1
2
( ∫
Rd e−t|x|2 dx

)
dt

=
∫ +∞

0 e−tt
d−1

2
(
π
t

) d
2
( ∫
Rd e−π|x|

2
dx

)
dt

= π
d
2
∫ +∞

0 e−tt−
1
2 dt = π

d
2Γ
(1

2

)
= π

d+1
2 .

From this we find
cd =

Γ
(

d+1
2

)
π

d+1
2
.

In other words, the function of Poisson is given by

P(x) =
Γ
(

d+1
2

)
π

d+1
2

1

(1+|x|2)
d+1

2
, x ∈ Rd.
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Now we shall evaluate the surface of the unit sphere Sd−1, i.e. the number σd−1(Sd−1). Using
the function of Gauss G(x) = e−π|x|

2 , which is radial, and the corresponding G̃(r) = e−πr
2 , we get

1 =
∫
Rd e−π|x|

2
dx = σd−1(Sd−1)

∫ +∞
0 e−πr

2
rd−1 dr = σd−1(Sd−1)

2π
d
2

∫ +∞
0 e−tt

d
2−1 dt = σd−1(Sd−1)

2π
d
2
Γ
(d

2

)
.

Therefore
σd−1(Sd−1) = 2π

d
2

Γ
(

d
2

) .
Proposition 1.12. We have P̂(ξ) = e−2π|ξ|, i.e.

cd
ÿ�1

(1+|x|2)
d+1

2
(ξ) = e−2π|ξ|

for every ξ ∈ Rd.

Proof. We apply the method of the second proof for the Fourier transform of the function of Gauss.
We consider the dilation

1
td P

( x
t

)
= cd

t

(t2+|x|2)
d+1

2

of the function of Poisson as a function of both x = (x1, . . . , xd) and t > 0 in the upper halfspace
Rd+1
+ = {(x, t) | x ∈ Rd, t > 0} of Rd+1. Easy calculations show that our function satisfies the

socalled wave equation (
∂2

∂t2 + ∆
)( 1

td P
( x

t

))
= 0

in Rd+1
+ . For every t > 0 we take the Fourier transform of both sides (as functions of x) and we get¤�(

∂2

∂t2 + ∆
)( 1

td P
( x

t

))
(ξ) = 0

i.e. ¤�∂2

∂t2
( 1

td P
( x

t

))
(ξ) +⁄�

∆
( 1

td P
( x

t

))
(ξ) = 0

i.e. ¤�∂2

∂t2
( 1

td P
( x

t

))
(ξ) − 4π2|ξ|2◊�1

td P
( x

t

)
(ξ) = 0

by Proposition 1.9, i.e. ¤�∂2

∂t2
( 1

td P
( x

t

))
(ξ) − 4π2|ξ|2‘P(x)(tξ) = 0

by Proposition 1.5. We apply Lemma B to get¤�∂2

∂t2
( 1

td P
( x

t

))
(ξ) =

∫
Rd e−2πi ξ·x ∂2

∂t2
( 1

td P
( x

t

))
dx = d2

dt2
( ∫
Rd e−2πi ξ·x 1

td P
( x

t

)
dx

)
= d2

dt2
(ÿ�1

td P
( x

t

))
(ξ) = d2

dt2
(‘P(x)

)
(tξ).

So our last equation becomes

d2

dt2
(‘P(x)

)
(tξ) − 4π2|ξ|2‘P(x)(tξ) = 0.

In other words, the function fξ(t) =‘P(x)(tξ), as a function of t, satisfies the ordinary differential
equation

f ′′ξ (t) − 4π2|ξ|2 fξ(t) = 0

for t > 0. This implies that fξ(t) = cξe−2π|ξ|t + c′ξe
2π|ξ|t for t > 0 and for some constants cξ, c′ξ which

may depend on ξ ∈ Rd. Thus, ‘P(x)(tξ) = cξe−2π|ξ|t + c′ξe
2π|ξ|t
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for every ξ ∈ Rd and every t > 0. Since‘P(x)(tξ) is a bounded function, we see that c′ξ = 0. Thus,‘P(x)(tξ) = cξe−2π|ξ|t

for every ξ ∈ Rd and every t > 0. When t → 0+, by the continuity of‘P(x) we get

cξ =‘P(x)(0) =
∫
Rd P(x) dx = 1.

Hence ‘P(x)(tξ) = e−2π|ξ|t

for every ξ ∈ Rd and every t > 0. With t = 1 we get‘P(x)(ξ) = e−2π|ξ|

for every ξ ∈ Rd. □

Nowwe consider two functions f , g ∈ L1(Rd). Then the function of the two variables x, y given
by

f (x − y)g(y)

is measurable with respect to the Lebesgue measure of Rd×Rd = R2d (see for instance “Real Anal
ysis” by Folland or “Measure and Integral” by Wheeden and Zygmund). Moreover, by Tonelli’s
theorem, this function is integrable in Rd × Rd:∫

Rd

∫
Rd | f (x − y)g(y)| dxdy =

∫
Rd

( ∫
Rd | f (x − y)g(y)| dx

)
dy =

∫
Rd

( ∫
Rd | f (x − y)| dx

)
|g(y)| dy

=
∫
Rd

( ∫
Rd | f (x)| dx

)
|g(y)| dy =

∫
Rd | f (x)| dx

∫
Rd |g(y)| dy < +∞.

And now Fubini’s theorem says that, for almost every x ∈ Rd, f (x−y)g(y), as a function of y ∈ Rd,
is integrable in Rd, and that the function

∫
Rd f (x− y)g(y) dy, which is thus defined for almost every

x ∈ Rd, is integrable in Rd, and also that the integral in Rd of the last function is∫
Rd

( ∫
Rd f (x − y)g(y) dy

)
dx =

∫
Rd

∫
Rd f (x − y)g(y) dxdy =

∫
Rd

( ∫
Rd f (x − y)g(y) dx

)
dy

=
∫
Rd

( ∫
Rd f (x − y) dx

)
g(y) dy =

∫
Rd

( ∫
Rd f (x) dx

)
g(y) dy

=
∫
Rd f (x) dx

∫
Rd g(y) dy.

Based on the last discussion we give the following definition.

Definition 1.3. If f , g ∈ L1(Rd), we define the function f ∗ g : Rd → C by

( f ∗ g)(x) :=
∫
Rd f (x − y)g(y) dy

for the almost all x ∈ Rd for which f (x−y)g(y) is integrable as a function of y. For all other x ∈ Rd

(which form a set of measure equal to 0) we assign an arbitrary value to ( f ∗ g)(x).
The function f ∗ g ia called convolution of f , g.

So we know that f ∗ g ∈ L1(Rd) and, as our last calculation shows, that∫
Rd ( f ∗ g)(x) dx =

∫
Rd f (x) dx

∫
Rd g(x) dx.

Moreover, we have that

|( f ∗ g)(x)| =
∣∣ ∫
Rd f (x − y)g(y) dy

∣∣ ≤ ∫
Rd | f (x − y)| |g(y)| dy = (| f | ∗ |g|)(x)

and hence
∥ f ∗ g∥1 ≤ ∥ | f | ∗ |g| ∥1 = ∥ f ∥1∥g∥1.
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Now it is very easy to show the following properties of the convolution:

f ∗ g = g ∗ f ,

f ∗ (g ∗ h) = ( f ∗ g) ∗ h

f ∗ (kg + lh) = k f ∗ g + l f ∗ h

for all f , g, h ∈ L1(Rd) and all k, l ∈ C. In other words, the operation of convolution in L1(Rd) is
commutative, associative and distributive, and so L1(Rd) is a commutative algebra. Since we also
have that ∥ f ∗ g∥1 ≤ ∥ f ∥1∥g∥1 for all f , g ∈ L1(Rd) we see that L1(Rd) is a normed algebra, and,
since L1(Rd) is complete, it is a Banach algebra.

Proposition 1.13. If f , g ∈ L1(Rd), then‘f ∗ g(ξ) = f̂ (ξ)ĝ(ξ)

for every ξ ∈ Rd.

Proof. Again this is an application of Fubini’s theorem:‘f ∗ g(ξ) =
∫
Rd e−2πi ξ·x( f ∗ g)(x) dx =

∫
Rd e−2πi ξ·x( ∫

Rd f (x − y)g(y) dy
)

dx

=
∫
Rd

( ∫
Rd e−2πi ξ·x f (x − y) dx

)
g(y) dy =

∫
Rd

( ∫
Rd e−2πi ξ·(x−y) f (x − y) dx

)
e−2πi ξ·yg(y) dy

=
∫
Rd

( ∫
Rd e−2πi ξ·x f (x) dx

)
e−2πi ξ·yg(y) dy =

∫
Rd f̂ (ξ)e−2πi ξ·yg(y) dy

= f̂ (ξ)
∫
Rd e−2πi ξ·yg(y) dy = f̂ (ξ)ĝ(ξ).

□

The linear space L∞(Rd) is also a commutative algebra in which the “product” operation on
two functions f , g ∈ L∞(Rd) is the usual product f g of the two functions, i.e.

( f g)(x) = f (x)g(x)

for all x ∈ Rd. And again, since ∥ f ∗g∥∞ ≤ ∥ f ∥∞∥g∥∞ for all f , g ∈ L∞(Rd) we have that L∞(Rd) is
a Banach algebra. The same is true for all smaller spaces C0(Rd), BUC(Rd), BC(Rd). All of them
are Banach subalgebras of L∞(Rd).

We already know that
F : L1(Rd)→ C0(Rd) ⊆ L∞(Rd)

satisfies
F (k f + lg) = kF ( f ) + lF (g)

for all f , g ∈ L1(Rd) and all k, l ∈ C, and Proposition 1.13 says that

F ( f ∗ g) = F ( f )F (g)

for all f , g ∈ L1(Rd). This means that F is a homomorphism between the algebras L1(Rd) and
C0(Rd).

Proposition 1.14. The algebra L1(Rd) does not have a unit.

Proof. Let us assume that f is a unit element of L1(Rd), i.e. that f ∗ g = g for every g ∈ L1(Rd).
Then

f̂ (ξ)ĝ(ξ) = ĝ(ξ)

for every g ∈ L1(Rd) and every ξ ∈ Rd. In particular, taking g = G, the function of Gauss, we have
that ĝ(ξ) , 0 for every ξ ∈ Rd, and we get

f̂ (ξ) = 1

for every ξ ∈ Rd. This is impossible since f̂ belongs to C0(Rd). □
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