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ISOTROPIC SURFACE AREA MEASURES

A. GIANNOPOULOS AND M. PAPADIMITRAKIS

Abstract. The purpose of this note is to bring into attention an apparently
forgotten result of C. M. Petty: a convex body has minimal surface area among
its affine transformations of the same volume if, and only if, its area measure
is isotropic. We obtain sharp affine inequalities which demonstrate the fact
that this "surface isotropic" position is a natural framework for the study of
hyperplane projections of convex bodies.

§1. Introduction. We shall work in R" equipped with a fixed Euclidean
structure and write | • | for the corresponding Euclidean norm. We denote the
Euclidean unit ball and the unit sphere by Dn and S"~] respectively, and we
write a for the rotationally invariant probability measure on S"~l. The volume
of appropriate dimension will be also denoted by | • |. We shall write con for
the volume of the Euclidean unit ball in R". Finally, L(R", R") is the space of
all linear transformations of R".

Let K be a convex body in R". The area measure aK is denned on S"~]

and corresponds to the usual surface measure on K via the Gauss map. If A
is a Borel subset of S"~\ then

<jK(A)= vj.vebd (K): the outer normal to Kat x belongs to A},

where v is the (n- 1 (-dimensional surface measure on K. In the case where K
is a polytope with facets {/•} }K,,, and normals {«/},-<„,, the measure aK is purely
atomic with mass |F,| at w,, for j= 1, . . . , m. The surface area of K is clearly
given by

For every convex body K we define the affinely invariant quantity

( \ = min {c(TK)/\K\l"-')": TeL(R", R") , |det T\ = 1},

the minimal surface area of an affine image of K with volume 1. It is not hard
to check that this minimum is attained for some T.
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DEFINITION. A Borel measure n on S"~ ' will be called isotropic if

for every 9eS"~\

C. M. Petty [5] has proved the following characterization of the area
measure of a convex body with minimal surface area.

THEOREM. 1. Let Kbe a convex body in R". Then d(K) = dK\K\in'V)n if
and only if <JK is isotropic.

In Section 2 we give a short proof of this fact. Actually, we came to the
same conclusion without being aware of Petty's result. The latter was brought
to our attention later, when V. D. Milman pointed out to us that Petty had
studied the minimal surface position. The argument shows that for fixed
volume the position is unique up to an orthogonal transformation.

We shall say that a convex body K is surface isotropic if its area measure
GK is isotropic. This class of bodies with minimal surface area is very useful
for questions related to hyperplane projections of convex bodies (one may say
that it plays the role isotropic bodies—see [4]—play for questions related to
sections). In Section 3 we demonstrate this in several ways.

We show that if K is surface isotropic then

^ ! „.„
In 2yjn

for every 9eS"~], where Pg denotes the orthogonal projection onto the sub-
space 9L perpendicular to 9. Both estimates are sharp in the case of the cube.
However, one can see that most projections of K have area close to the upper
bound. More precisely, there exists an absolute constant c>0 such that

^ (1.2)

with probability greater than 1 - 2~" with respect to the standard measure a
on S"~]. This should be compared with the fact that all ( « - 1 )-dimensional
central sections of an isotropic body have the same area up to an absolute
constant (see [4]).

The projection body TIK of K is the symmetric convex body whose support
function is defined by hnK(9) = \Pe(K)\, 9eS"~\ We write Tl*K{or the polar
projection body.

The volume radius of UK and n*^T are determined by the minimal surface
area 8K: If \K\ = l, then

|n*^|'/"~— and imsri17"-— (1.3)
dK n
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up to absolute constants. This fact together with a result of G. Zhang [11]
show that dK^cn for every body K. K. Ball [2] has proved a reverse isoperi-
metric inequality of this type. His result is exact in the symmetric case: If K
is symmetric, then dK^2n and there is equality in the case of a cube.

K. Ball notes in [1] that every convex body K has an affine image K such
that

\Pe(K)\^M4n\K\(n-')/n (1.4)

for some absolute constant A/>0 and for every 6eS"~\ and conjectures that
the constant M could be taken to be 1 in the symmetric case. Ball's reverse
isoperimetric inequality and (1.1) show that, in the symmetric case, the surface
isotropic position satisfies (1.4) with M= 1. The cube shows that (1.4) is sharp.

K. Ball [1] has also proved that every convex body K has an affine image
K such that, for every unit vector 9,

\Pe(K)\^\K\(n'])/". (1.5)

The classical isoperimetric inequality and (1.2) show that with high probability
the projections of a surface isotropic body satisfy

\Pe(K)\^c\K\(n-l)/n. (1.6)

The information given by (1.2) is actually much stronger. However, we do not
know if (1.6) holds for every 0eS"~\ We can show that, if aK is isotropic,
then the Loomis-Whitney type inequality

\og\Pe(K)\aK(d9)\ (1.7)
\c(K)

is true.
Finally, we show that extremal counterexamples for Shephard's problem

(in the sense of [1]) can be constructed inside the class of surface isotropic
symmetric convex bodies. There exist surface isotropic AT's satisfying
\PB(K)\^\K\l"-l)/n and others satisfying \Pe(K)\ ~Jh~\K\(n-'Vn for every

For well-known facts from the classical and the asymptotic theory of convex
bodies we refer the reader to the books of R. Schneider [9] and G. Pisier [7].

§2. A proof of Petty's Theorem. Petty's theorem will be an immediate
consequence of the following three claims:

CLAIM 1. Let K be a convex body in R" with \K\ = \. Ifd(K) = dK, then
aK is isotropic.
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Proof. Let R be a volume preserving transformation of R". It is not hard
to check that

d((R-')*K)= \R(u)\aK{du). (2.1)

Consider any TeL(R", R") and let e>0 be small enough. Then (I+eT)/
[det (/+ sT)f/n is volume preserving, so our minimality assumption for Kand
(2.1) give

r
sT)(u)\aK(du) >[det (/+ ET)]W"8K. (2.2)

Observe that \u+ sTu\ = 1 + £<w, Tu) + O(e2) and [det (/+ ET)][ " =
1 + e(tr T/n) + O(s2). Letting £-»0 we get

>—dK, (2.3)

and by symmetry we conclude that

(2.4)
n

sn-\

for every linear transformation T. This implies that

8 k l lk,l=l,...,n, (2.5)
n

sn

which completes the proof.

CLAIM 2. Le? K be a convex body in R" with \K\ = \. If UK is isotropic,
then d(K) = dK.

Proof. Assume that aK is isotropic. This is equivalent to the condition
(2.4). If T is any symmetric and positive definite volume preserving transforma-
tion, then

d(TK)= \(T-l)*u\aK(du)

s"

(«, T~lu

(2.6)
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because t r ( r ' ) / n ^ [ d e t ( 7 " ~ ' ) ] ' / " = l . This shows that AT has minimal surface
area.

CLAIM 3. The minimal surface position is unique up to orthogonal
transformations.

Proof. Assume that K has minimal surface area, and that d(RK) = d{K)
for some volume preserving transformation R. We can write R = UT, where
T~] is symmetric positive-definite and U is an orthogonal transformation.
Repeating the computation of (2.6) we have

d(K) = d( UT{K)) = d(TK) ^—^^- d(K).
n

This means that tr (T~x) =n, and since Tis symmetric positive-definite we must
have T= Id. This proves the claim.

We close this section with a lemma which is useful for approximation
arguments.

LEMMA 2.1. Every surface isotropic convex body is the limit of a sequence
of surface isotropic poly topes in the Hausdorjf metric.

Proof. Let AT, be a sequence of polytopes converging to K in the Hausdorff
metric. There exists a second sequence 7, of volume preserving transformations
such that Kf= TjKj is surface isotropic. We may also assume that TiK,-+L =
TK for some T with |det T\ = \. Now (JK^OL and one can easily check that
aL is isotropic. From Claim 3 it follows that TeO(n), and the proof is
complete.

§3. Projections of a surface isotropic body. Let AT be a convex body in R".
The relation between the area of the (n— 1)-dimensional projections of K and
the area measure aK is well-known: For every 9eS"~x we have

Ku,9}\d<jK(u). (3.1)

Using (3.1) we can easily obtain lower and upper bounds for the projections
of a surface isotropic body.

PROPOSITION 3.1. If OK is isotropic, then

d(K)<\

for every 6eS"
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Proof A direct application of the Cauchy-Schwarz inequality shows that

i 1/2

| / y * ) | < - | | \(u,e)\zdaK(u)\ V ^ / S ^ T ^ . (3.2)

On the other hand, it is obvious that

;, 6y\2d(Tfc(u) = . (3.3)
In

The example of the cube Q shows that both estimates in Proposition 3.1
are sharp. One can easily check that

for every OeS"~' with equality on both sides for suitable 6. The cube is surface
isotropic, and d(Q) = 2n. Therefore, the ratio between the maximal and the
minimal projection of a surface isotropic body can be as large as Jn. However,
we are going to show that the area of the projections is close to the upper
bound with high probability. To this end, we use the following result of K.
Ball [2], whose proof is based on the Brascamp-Lieb inequality.

LEMMA 3.2. Let {uj}jsim be unit vectors in R" and {c/}ysSm be positive num-
bers satisfying

m

Id= X CM® uj.
7 = 1

Define a norm in R" by \\x\\ = £ " ! , cij\(x, w;>|, where ctj>0. If L is the unit ball
of(R\\\-\\),then '~

n\j=\ \cij

Assume that K is a poly tope with facets F} and normals uJt for 7= 1,. . ., m,
which has isotropic area measure. Then, (2.4) is equivalent to

m n\F\
^ ® M y (3.4)

for every xeR". If n*AT is the polar projection body of K, we have

H0||n**=|/V*)|=4 I \Fj\\<9,Uj>\ (3-5)

for every OeS"~]. We can therefore apply Lemma 3.2 to obtain

,3.6,(
n\\d(K)
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Approximating we get the same estimate for a general surface isotropic convex
body. On the other hand, an application of Holder's inequality shows that

|n*AT|=©B | -a(d9)>G)n\ \ \Pg(K)\a{d9)\ . (3.7)
\Pe(K)\

s" '
Combining this with Cauchy's surface area formula

ncon

(3.8)

we have a double-sided estimate for the volume of the polar projection body
of a surface isotropic body K.

PROPOSITION 3.3. Let K be a convex body in R" whose area measure a^
is isotropic. Then

a>n-J d(Kf n! 8(K)n

Using the Blaschke Santalo inequality and its exact reverse for zonoids (see
[3], [8]) we estimate the volume of UK in terms of d(K).

COROLLARY 3.4. Let K be a surface isotropic convex body in R". Then

\ n I \ ncon

Note that all the estimates in Proposition 3.3 and Corollary 3.4 are sharp:
it is enough to consider the ball and the cube.

Proposition 3.3 has some immediate consequences. Assume that |AT| = 1
«aAd(K) = dK. We have

{ \P,{K)\~ a, ~\SK
sn 1

hence Markov's inequality gives.

( 3 . 9 )

THEOREM 3.5. There exists an absolute constant c>0 , such that for every
surface isotropic body K of volume 1,

holds true for all 9 in a subset of S""^ with a-measure exceeding 1 —2~".
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It is an observation of C. M. Petty [6] that, if T is a linear operator on R"
of determinant 1, then, for every K,

n*(TK)=T(n*K).

In particular, the volume of the polar projection body is invariant under volume
preserving affine transformations. Then, Proposition 3.3 and Corollary 3.4
show that |n*^T|l/" and j riAT|2/" are determined up to absolute constants by
the minimal surface area dK.

T H E O R E M 3.6. There exist absolute constants C\, c2, c3, c 4 > 0 such that, if
\K\ = l, then

dK^ ~~~dK- n^ ^ n

G. Zhang [11] has proved that, if \K\ = 1, then

(3.10)

with equality if, and only if, A'is a simplex. This can be combined with Proposi-
tion 3.3 to give an upper estimate for dK-

THEOREM 3.7. For every convex body K we have

where c > 0 is an absolute constant.

The constant c may be (asymptotically) chosen to be equal to e. K. Ball
[2] has proved an exact reverse isoperimetric inequality of this type in the
symmetric case. Let Q be the cube of volume 1. Every symmetric convex body
K has an affine image K satisfying \K\ — 1 and d(K)^d(Q). In our notation,
this means that

dK^2n (3.11)

for every symmetric convex body. Observe that this would follow from (3.6)
if the cube was minimizing |n*AT| over all symmetric bodies of volume 1.
Combining (3.11) with Proposition 3.1 and dropping the assumption that \K\-
1 we get.

PROPOSITION 3.8. Let K be a symmetric convex body in R" whose area
measure oK is isotropic. Then

for every 6eS"~{.

The estimate given by Proposition 3.8 was conjectured by K. Ball, and it
is sharp for the cube. One can use Ball's non-symmetric reverse isoperimetric
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inequality (or Theorem 3.7) to state an analogous result for an arbitrary surface
isotropic body K.

We now turn to lower bounds. We shall make use of an extension of the
Loomis-Whitney inequality that K. Ball [1] proved and used for the proof of
(1.5):

LEMMA 3.9. Let K be a convex body in R", let {uj}jsin be a sequence of
unit vectors, and let {c,-}y<m be a sequence of positive numbers. Suppose that

in

Id= Y CJUJ ® uj-

Then

Assume that Kis a polytope with facets Fj and normals w,, forj= 1,. . . , m,
which has isotropic area measure. Because of (3.4) we can apply Lemma 3.9
to obtain

( H - 1) log |AT| < - ^ - ]T log \PUj(K)\ \Fj\,

which can be written in the form

^ log \PUj(K)\ \Fj\\. (3.12)
\C(K)J=i

Using this fact and an approximation argument, we can prove the following.

PROPOSITION 3.10. Let K be a convex body in R" whose area measure aK

is isotropic. Then

\d{K)
log \Pe(K)\aK(d6) .

}

Proof. Assume that {Kt} is a sequence of polytopes, with aKi isotropic
and K^K. By (3.12) we have

for every /, and taking limit as i-*co we conclude the proof.

Combining Cauchy's formula with the isoperimetric inequality and Ball's
reverse isoperimetric inequality, we have
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PROPOSITION 3.11. Let K be a surface isotropic symmetric convex body in
R". Then

and

The first inequality is sharp for a ball: the ball of volume 1 has all its
projections of volume of the order of 1. We now show that the second inequal-
ity is also exact up to an absolute constant.

PROPOSITION 3.12. There exists a surface isotropic symmetric convex body
such that

for every 0eS"].

Proof. We shall follow Ball's counter-example to Shephard's problem [1].
What we want to make sure is that the example will be surface isotropic.

Let {ej'.j^n} be an orthonormal basis in IR". It is a known fact going back
to the work of Kashin (see [7, Chapter 6]) that there exists an orthogonal
transformation Te O{n) such that

cxjn\x\^\\xh + \\Txh^c2Jn\x\ (3.13)

for every xeR", where IMIi = £ " _ , \(x, e;>|. It is clear that the sum of two
isotropic measures on S"1 is isotropic; therefore the measure

<J = (JQ + <TT >Q

is isotropic. From Minkowski's existence theorem, there exists a symmetric
polytope K with aK=a. Then K has normals ±eh ±T*ej, and the area of
each facet of K is equal to 1. Using (3.13) we get

c]Jn (3.14)
y-i

for every 6eS"~'. As in [1], consider the body

L= {xeR": |<x, ey>| < 1, |<x, T*ey}\ ^ \J= 1 , . . . , « } .

By a result of Vaaler [10], \V\ln^-^2, and by Minkowski's inequality,

| /q ( " - 1 ) / " |L | 1 / "^ hL{u)aK{du) = 2 t«,-=,-=i

(3.15)
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It follows that

^ / \ \ \ \ ^ c ^ \ \ ^ [ ) / " , (3.16)
4

which completes the proof.

COROLLARY 3.13. There exist two surface isotropic symmetric convex bod-
ies #, and K2 in R" such that \Pe{Kx)\^\Pe{K2)\ for every 6eS"~\ but
\K\\ ^Cyfn\K2\, where c>0 is an absolute constant.

§4. Stability of the surface isotropic position. Let K be a convex body in
R" with volume | Af| = 1. Assume that it is close to the surface isotropic position,
in the sense that all the integrals

<«, ey2aK(du),

are equivalent up to some constant /J > 1. We shall show that the surface area
c(K) of K is close to the minimal surface area dK. More precisely, we have
the following stability result.

THEOREM 4.1. Let K be a convex body in R" with \K\ = \. Assume that
there exist A>0 and fl > 1 such that

{u,6)2aK(du)^pA (4.1)

s"~'

for every 9eS"'\ Then,

(4.2)

where c>0 is an absolute constant.

Proof. Choosing 0 = e, for / = 1,. . . , « in (4.1) and adding all inequalities
we get

6eS"~\ (4.3)
0 n

s"~ '
We may assume that AT is a polytope with facets Fj and normals Uj for j =
1,. . . , m. Consider the ellipsoid E defined by

f
IWl!= I \FJ\(X,UJ)>2= (u,x}2aK(du). (4.4)

7=1 J ,
S"
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Then E= TDn for some linear transformation T, and (4.3) shows that

(4.5)

In particular,

| ' / B< || J:/?-»/! KV^«/5(AT). (4.6)

Consider the body Kt = r'AT. It has normals «;= r*(My)/|T*(uj)\ and facet
areas |F;| =\T*(U/)\ |Fy|/|det T\. From (4.5), it is clear that

which implies

Consider the polar projection body of K\. We have

m \F\\T*(Ui)\
\\B\\n*K> = \Pe{K\)\= I 1-^iJ -JJi\(O,u))\, (4.8)

,= , 2|det T\

and Lemma 3.2 shows that

|< II

n\

= -\\T\\"\detT\n. (4.9)

Using Theorem 3.6 and (4.6), we see that

<|/:|(""1)/"|n*/:|1/''^ (4.10)
8K ' ' (n\y/n 8(K)'

which shows that

4e

c
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