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ON CONVEXITY OF LEVEL CURVES OF HARMONIC FUNCTIONS
IN THE HYPERBOLIC PLANE

M. PAPADIMITRAKIS

(Communicated by Clifford J. Earle, Jr.)

Abstract. We prove that if two level curves of a harmonic function are convex

in the hyperbolic disc then all intermediate level curves are also convex.

1. Introduction

Proofs of the following theorem and related results can be found in [1-6]
and [8-11].

Theorem. Suppose that B and U are two nonempty bounded convex sets in

R", B is closed, U is open, and B ç U. Also suppose that u is a real-valued

function harmonic in U\B and continuous in U\B such that

u= 1     on dB,

u = 0    ondU.

Then the set {x : w(x) > À}\J B is convex for every k, 0 < X < 1.

The purpose of this paper is to give a proof of the same result but in the

context of hyperbolic geometry in the Poincaré plane.

Assume that C is the complex plane, D = {zeC:|z|<l} and that D is

equipped with the Poincaré metric:

dS=WiL
1-|Z|2-

This metric defines a Laplace-Beltrami operator (see [7]) As, which is related

to the ordinary Laplacian A by

il -lzl2\2
Asfiz) = \^P~)  Afiz).

A function u defined on an open subset of D is called harmonic if Asu = 0.
Hence the harmonic functions in the hyperbolic geometry of D coincide with

the ordinary harmonic functions.
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It is also known that the isometries of D are the Möbius transformations,

F(z)=A-f^,       |a|<l, |A| = 1,
l — az

and that the geodesies are arcs of circles orthogonal to dD. Hence every two
points of D can be joined by a unique geodesic. A subset A of D is called

convex if for every two points of A the whole geodesic segment joining these
two points is in A .

2. The result

Theorem. Suppose that D is the unit disc with the hyperbolic geometry, and B

and U are two nonempty convex subsets of D such that B is closed, U is open,
B ç U, U ç D. Also suppose that u is a real-valued function harmonic in U\B

and continuous on U\B with

u = 1    on dB,

u = 0   ondU.

Then the set {z : w(z) >X}l)B is convex for every X, 0 < X < 1.

Proof. We can easily reduce the general case to the case where dU and dB are

smooth. Next we consider a conformai mapping tp from some ring domain:

DiR, l) = {z£C:R<\z\< 1}

to U\B. Then

tp:Cx = {\z\ = l}^dU,

<p:CR = {\z\=R}^dB

are homeomorphisms.
Since u is harmonic, v = u o tj> is harmonic in DiR, 1) with

v = 0   on Ci,

v = 1    on Cr .

This implies that i/(z) = log|z|/logÄ and the level curves of v are concentric

circles. So we need to prove that

tj>iCr) is a convex curve (in the Poincaré metric)

for every r, R < r < 1.
It is trivial to prove that, in the Euclidean metric of R2, #(Cr) is convex if

and only if

Re{c'fi + 1}-0'    VCGC-
Since Möbius transformations preserve convexity (in hyperbolic geometry),

if we want to study convexity of </>(Cr) at some point </>(C), we can equivalently

study convexity of F(</>(Cr)) at F(0(C)) where T is any Möbius transforma-

tion. _

We may use Tiz) = (z - <£(0)/(l - <f>(0 ' z) > wnich maPs <^(C) to 0. But at

0 the hyperbolic and the Euclidean geometry coincide, hence the condition for

convexity of Titf>iCr)) at 0 is
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which after elementary calculations becomes

Re z™+2:m¿m+íno i - wop }■
o.

Let us denote the left side by p(Q. The problem reduces to showing that if

p > 0 on Ci and on Cr then p > 0 on Cr for every r, R < r < 1. (Note

that in the Euclidean geometry the middle term is missing, hence p is harmonic

and the result is a trivial application of the maximum principle for p .)
Now, let A be the Euclidean Laplacian.

Ap = ReA

(1-|0I2)2J

(l-\tf>\2)2
•+<•$+*'

1 - |ip

Hence

(1) Ap = 8 \<t>>\2

'A-W)2^2
■p = k-p,

where k is a positive function.
Now suppose that p is negative at some interior point of DiR, 1). Then p

has a negative minimum at some point Ç :

minp = p(O<0,        Ce DiR, 1).

But then Ap(C) > 0, contradicting (1). Hence p > 0 in DiR, 1) and the proof

is complete.

It might be interesting to see what happens in the hyperbolic geometry in

more than two dimensions, and perhaps one might be able to characterize those

Riemannian manifolds for which the same theorem is true. In [11] a Rieman-

nian metric for R2 is constructed for which the theorem fails.
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