A CLASS OF NON-CONVEX POLYTOPES THAT ADMIT NO ORTHONORMAL BASIS OF EXPONENTIALS

MIHAIL N. KOLOUNTZAKIS AND MICHAEL PAPADIMITRAKIS

Abstract. A conjecture of Fuglede states that a bounded measurable set Ω ⊂ R^d, of measure 1, can tile R^d by translations if and only if the Hilbert space L^2(Ω) has an orthonormal basis consisting of exponentials e_λ(x) = exp{2πi⟨λ, x⟩}. If Ω has the latter property it is called spectral. Let Ω be a polytope in R^d with the following property: there is a direction ξ ∈ S^{d−1} such that, of all the polytope faces perpendicular to ξ, the total area of the faces pointing in the positive ξ direction is more than the total area of the faces pointing in the negative ξ direction. It is almost obvious that such a polytope Ω cannot tile space by translation. We prove in this paper that such a domain is also not spectral, which agrees with Fuglede’s conjecture. As a corollary, we obtain a new proof of the fact that a convex body that is spectral is necessarily symmetric, in the case where the body is a polytope.

Let Ω be a measurable subset of R^d, which we take for convenience to be of measure 1. Let also Λ be a discrete subset of R^d. We write

\[e_λ(x) = \exp\{2\pi i⟨λ, x⟩\}, \quad (λ, x ∈ R^d), \]

\[E_Λ = \{e_λ : λ ∈ Λ\} ⊂ L^2(Ω). \]

The inner product and norm on L^2(Ω) are

\[⟨f, g⟩_Ω = \int_Ω fg, \quad \|f\|_Ω^2 = \int_Ω |f|^2. \]

Definition 1. The pair (Ω, Λ) is called a spectral pair if E_Λ is an orthonormal basis for L^2(Ω). A set Ω will be called spectral if there is Λ ⊂ R^d such that (Ω, Λ) is a spectral pair. The set Λ is then called a spectrum of Ω.

Example. If Q_d = (−1/2, 1/2)^d is the cube of unit volume in R^d, then (Q_d, Z^d) is a spectral pair (d-dimensional Fourier series).

Received March 19, 2002; received in final form May 8, 2002.

2000 Mathematics Subject Classification. Primary 52C22. Secondary 41A65, 42B05, 46E30.

Partial support for both authors was provided by an INTAS grant, project 99-01080.
We write $B_R(x) = \{ y \in \mathbb{R}^d : |x - y| < R \}$.

Definition 2 (Density). The discrete set $\Lambda \subset \mathbb{R}^d$ has density ρ, and we write $\rho = \text{dens} \Lambda$, if we have

$$\rho = \lim_{R \to \infty} \frac{\#(\Lambda \cap B_R(x))}{|B_R(x)|},$$

uniformly for all $x \in \mathbb{R}^d$.

We define translational tiling for complex-valued functions below.

Definition 3. Let $f : \mathbb{R}^d \to \mathbb{C}$ be measurable and $\Lambda \subset \mathbb{R}^d$ be a discrete set. We say that f tiles with Λ at level $w \in \mathbb{C}$, and sometimes write “$f + \Lambda = w \mathbb{R}^d$”, if

$$\sum_{\lambda \in \Lambda} f(x - \lambda) = w,$$

for almost every (Lebesgue) $x \in \mathbb{R}^d$,

with the sum above converging absolutely a.e. If $\Omega \subset \mathbb{R}^d$ is measurable, we say that $\Omega + \Lambda$ is a tiling when $1_{\Omega} + \Lambda = w \mathbb{R}^d$ for some w. If w is not mentioned it is understood to be equal to 1.

Remark 1. If $f \in L^1(\mathbb{R}^d)$, $f \geq 0$, and $f + \Lambda = w \mathbb{R}^d$, then the set Λ has density

$$\text{dens} \Lambda = \frac{w}{\int f}.$$

The following conjecture is still unresolved in all dimensions and in both directions.

Conjecture (Fuglede [F74]). If $\Omega \subset \mathbb{R}^d$ is bounded and has Lebesgue measure 1 then $L^2(\Omega)$ has an orthonormal basis of exponentials if and only if there exists $\Lambda \subset \mathbb{R}^d$ such that $\Omega + \Lambda = \mathbb{R}^d$ is a tiling.

Fuglede’s conjecture has been confirmed in several cases.

1. Fuglede [F74] shows that if Ω tiles with Λ being a lattice then it is spectral with the dual lattice Λ^* being a spectrum. Conversely, if Ω has a lattice Λ as a spectrum then it tiles by the dual lattice Λ^*.

2. If Ω is a convex non-symmetric domain (bounded, open set) then, as the first author of the present paper has proved [K00], it cannot be spectral. It has long been known that convex domains which tile by translation must be symmetric.

3. When Ω is a smooth convex domain it is clear that it admits no translational tilings. Iosevich, Katz and Tao [IKT] have shown that it is also not spectral.
(4) There has also been significant progress in dimension 1 (the conjecture is still open there as well) by Laba [La], [Lb]. For example, the conjecture has been proved in dimension 1 if the domain Ω is the union of two intervals.

In this paper we describe a wide class of, generally non-convex, polytopes for which Fuglede's conjecture holds.

Theorem 1. Suppose Ω is a polytope in \mathbb{R}^d with the following property: there is a direction $\xi \in S^{d-1}$ such that

$$\sum_i \sigma^*(\Omega_i) \neq 0.$$

Here the finite sum is extended over all faces Ω_i of Ω which are orthogonal to ξ and $\sigma^*(\Omega_i) = \pm \sigma(\Omega_i)$, where $\sigma(\Omega_i)$ is the surface measure of Ω_i and the \pm sign depends upon whether the outward unit normal vector to Ω_i is in the same or opposite direction with ξ.

Then Ω is not spectral.

Such polytopes cannot tile space by translation for the following, intuitively clear, reason. In any conceivable such tiling the set of positive-looking faces perpendicular to ξ must be countered by an equal area of negatively-looking ξ-faces, which is impossible because there is more (say) area of the former than the latter.

The following corollary is a special case of the result in [K00], which says that all spectral convex domains are symmetric.

Corollary 1. If Ω is a spectral convex polytope then it is necessarily symmetric.

Proof. If Ω is spectral, then by Theorem 1 the area measure of Ω is symmetric. (See [S] for the definition of the area measure.) This implies that Ω is itself symmetric, as the area measure determines a convex body up to translation [S, Th. 4.3.1]. Therefore Ω and $-\Omega$, which have the same surface measure, are translates of each other. \qed

It has been observed in recent work on this problem (see, e.g., [K00]) that a domain (of volume 1) is spectral with spectrum Λ if and only if $|\widehat{\chi_\Omega}|^2 + \Lambda$ is a tiling of Euclidean space at level 1. By Remark 1 this implies that Λ has density 1.

By the orthogonality of e_λ and e_μ for any two different λ and μ in Λ, it follows that

$$\widehat{\chi_\Omega}(\lambda - \mu) = 0.$$

(2)

It is only this property, and the fact that any spectrum of Ω must have density 1, that are used in the proof.
Proof of Theorem 1. The quantities P, Q, N, ℓ and K, which are introduced in the proof below, will depend only on the domain Ω. (The letter K will denote several different constants.)

Suppose that Λ is a spectrum of Ω. Define the Fourier transform of χ_Ω as

$$\hat{\chi}_\Omega(\eta) = \int_\Omega e^{-2\pi i (x, \eta)} \, dx.$$

By an easy application of the divergence theorem we get

$$\hat{\chi}_\Omega(\eta) = -\frac{1}{i|\eta|} \int_{\partial\Omega} e^{-2\pi i (x, \eta)} \left(\frac{\eta}{|\eta|} , \nu(x) \right) d\sigma(x), \quad \eta \neq 0,$$

where $\nu(x) = (\nu_1(x), \ldots, \nu_d(x))$ is the outward unit normal vector to $\partial\Omega$ at $x \in \partial\Omega$ and $d\sigma$ is the surface measure on $\partial\Omega$.

From the last formula we easily see that for some $K \geq 1$

$$|\nabla \hat{\chi}_\Omega(\eta)| \leq \frac{K}{|\eta|}, \quad |\eta| \geq 1.$$

Without loss of generality we assume that $\xi = (0, \ldots, 0, 1)$. Hence

$$\hat{\chi}_\Omega(t\xi) = -\frac{1}{i\ell} \int_{\partial\Omega} e^{-2\pi i tx_d} \nu_d(x) d\sigma(x).$$

Now it is easy to see that each face of the polytope other than the faces Ω_i contributes $O(t^{-2})$ to $\hat{\chi}_\Omega(t\xi)$ as $t \to \infty$. Therefore

$$\left| \hat{\chi}_\Omega(t\xi) + \frac{1}{i\ell} \sum_i e^{-2\pi i \lambda_i t} \sigma^*(\Omega_i) \right| \leq \frac{K}{t^2}, \quad t \geq 1,$$

where λ_i is the value of x_d for $x = (x_1, \ldots, x_d) \in \Omega_i$.

Now define

$$f(t) = \sum_i \sigma^*(\Omega_i) e^{-2\pi i \lambda_i t}, \quad t \in \mathbb{R}.$$

f is a finite trigonometric sum and has the following properties:

(i) f is an almost-periodic function.

(ii) $f(0) \neq 0$ by assumption. Without loss of generality assume $f(0) = 1$.

(iii) $|f'(t)| \leq K$, for every $t \in \mathbb{R}$.

By (i), for every $\epsilon > 0$ there exists an $\ell > 0$ such that every interval of \mathbb{R} of length ℓ contains a translation number τ of f belonging to ϵ:

$$\sup_t |f(t + \tau) - f(t)| \leq \epsilon$$

(see [B32]).

Fix $\epsilon > 0$ to be determined later ($\epsilon = 1/6$ will do) and the corresponding ℓ. Fix the partition of \mathbb{R} in consecutive intervals of length ℓ, one of them being
[0, ℓ]. Divide each of these ℓ-intervals into \(N \) consecutive equal intervals of length \(\ell/N \), where

\[
N > \frac{6K\ell\sqrt{d-1}}{\epsilon}.
\]

In each ℓ-interval there is at least one \((\ell/N)\)-interval containing a number \(\tau \) satisfying (5). For example, in \([0, \ell]\) we may take \(\tau = 0 \) and the corresponding \((\ell/N)\)-interval to be \([0, \ell/N]\).

Define the set \(L \) to be the union of all these \((\ell/N)\)-intervals in \(\mathbb{R} \). Then \(L \) is a copy of \(L \) on the \(x_d \)-axis. Construct \(M \) by translating copies of the cube \([0, \ell/N]^d\) along the \(x_d \)-axis so that they have their \(x_d \)-edges on the \((\ell/N)\)-intervals of \(L \).

The point now is that there can be no two elements \(\lambda \) of \(\Lambda \) in the same translate of \(M \), at distance \(D > 2K/\epsilon \) from each other. Suppose, on the contrary, that \(\lambda_1, \lambda_2 \in \Lambda \), \(|\lambda_1 - \lambda_2| \geq D \), \(\lambda_1, \lambda_2 \in M + \eta \).

Then \(\lambda_1 = t_1\xi + \eta_1 + \eta_2 \), \(\lambda_2 = t_2\xi + \eta_1 + \eta_2 \), for some \(t_1, t_2 \in L \), \(\eta_1, \eta_2 \in \mathbb{R}^d \) with

\[
|\eta_1|, |\eta_2| < \frac{\ell}{N}\sqrt{d-1} < \frac{\epsilon}{6K}.
\]

Hence, \(\lambda_1 - \lambda_2 = (t_1 - t_2)\xi + \eta_1 - \eta_2 \), and an application of the mean value theorem together with (2) and (3) gives

\[
|\hat{\chi}_\Omega((t_1 - t_2)\xi)| \leq \frac{3K}{|t_1 - t_2|}|\eta_1 - \eta_2|.
\]

From (4) we get

\[
|f(t_1 - t_2)| \leq 3K|\eta_1 - \eta_2| + \frac{K}{|t_1 - t_2|} < 2\epsilon.
\]

Now, since \(t_1, t_2 \in L \), there exist \(\tau_1, \tau_2 \) satisfying (5) so that

\[
|\tau_1 - t_1|, |\tau_2 - t_2| < \frac{\ell}{N}
\]

and hence (by (iii))

\[
|f(\tau_1 - \tau_2) - f(\tau_1 - t_2)|, |f(\tau_1 - t_2) - f(t_1 - t_2)| < K\frac{\ell}{N} < \epsilon.
\]

Therefore

\[
2\epsilon > |f(t_1 - t_2)|
\]

\[
\geq |f(0)| - |f(0) - f(-\tau_2)| - |f(-\tau_2) - f(\tau_1 - \tau_2)|
\]

\[
- |f(\tau_1 - \tau_2) - f(\tau_1 - t_2)| - |f(\tau_1 - t_2) - f(t_1 - t_2)|
\]

\[
\geq 1 - \epsilon - \epsilon - \epsilon - \epsilon.
\]

It suffices to take \(\epsilon = 1/6 \) for a contradiction.
Therefore, as the distance between any two \(\lambda \)'s is bounded below by the modulus of the zero of \(\widehat{\chi}_\Omega \) that is nearest to the origin, there exists a natural number \(P \) so that every translate of \(M \) contains at most \(P \) elements of \(\Lambda \). Hence there exists a natural number \(Q \) (we may take \(Q = 2NP \)) so that every translate of

\[
\mathbb{R} \xi + [0, \ell/N]^{d}
\]

contains at most \(Q \) elements of \(\Lambda \).

It follows that \(\Lambda \) cannot have positive density, a contradiction as any spectrum of \(\Omega \) (which has volume 1) must have density equal to 1. \(\square \)

REFERENCES

Department of Mathematics, University of Crete, Knossos Ave., 714 09 Iraklio, Greece

E-mail address, M. Kolountzakis: mk@fourier.math.uoc.gr

E-mail address, M. Papadimitrakis: papadim@math.uoc.gr