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Chapter 1

σ-algebras

1.1 σ-algebras.

Definition 1.1 Let X be a non-empty set and Σ a collection of subsets of X.
We call Σ a σ-algebra of subsets of X if it is non-empty, closed under
complements and closed under countable unions. This means:
(i) there exists at least one A ⊆ X so that A ∈ Σ,
(ii) if A ∈ Σ, then Ac ∈ Σ, where Ac = X \A, and
(iii) if An ∈ Σ for all n ∈ N, then ∪+∞n=1An ∈ Σ.

The pair (X,Σ) of a non-empty set X and a σ-algebra Σ of subsets of X is
called a measurable space.

Proposition 1.1 Every σ-algebra of subsets of X contains at least the sets ∅
and X, it is closed under finite unions, under countable intersections, under
finite intersections and under set-theoretic differences.

Proof: Let Σ be any σ-algebra of subsets of X.
(a) Take any A ∈ Σ and consider the sets A1 = A and An = Ac for all n ≥ 2.
Then X = A ∪Ac = ∪+∞n=1An ∈ Σ and also ∅ = Xc ∈ Σ.
(b) Let A1, . . . , AN ∈ Σ. Consider An = AN for all n > N and get that
∪Nn=1An = ∪+∞n=1An ∈ Σ.
(c) Let An ∈ Σ for all n. Then ∩+∞n=1An = (∪+∞n=1A

c
n)c ∈ Σ.

(d) Let A1, . . . , AN ∈ Σ. Using the result of (b), we get that ∩Nn=1An =
(∪Nn=1A

c
n)c ∈ Σ.

(e) Finally, let A,B ∈ Σ. Using the result of (d), we get that A\B = A∩Bc ∈ Σ.

Here are some simple examples.

Examples
1. The collection {∅, X} is a σ-algebra of subsets of X.
2. If E ⊆ X is non-empty and different from X, then the collection {∅, E,Ec, X}
is a σ-algebra of subsets of X.
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3. P(X), the collection of all subsets of X, is a σ-algebra of subsets of X.
4. Let X be uncountable. The {A ⊆ X |A is countable or Ac is countable} is
a σ-algebra of subsets of X. Firstly, ∅ is countable and, hence, the collection is
non-empty. If A is in the collection, then, considering cases, we see that Ac is
also in the collection. Finally, let An be in the collection for all n ∈ N. If all
An’s are countable, then ∪+∞n=1An is also countable. If at least one of the Acn’s,
say Acn0

, is countable, then (∪+∞n=1An)c ⊆ Acn0
is also countable. In any case,

∪+∞n=1An belongs to the collection.

The following result is useful.

Proposition 1.2 Let Σ be a σ-algebra of subsets of X and consider a finite
sequence {An}Nn=1 or an infinite sequence {An} in Σ. Then there exists a finite
sequence {Bn}Nn=1 or, respectively, an infinite sequence {Bn} in Σ with the
properties:
(i) Bn ⊆ An for all n = 1, . . . , N or, respectively, all n ∈ N.
(ii) ∪Nn=1Bn = ∪Nn=1An or, respectively, ∪+∞n=1Bn = ∪+∞n=1An.
(iii) the Bn’s are pairwise disjoint.

Proof: Trivial, by taking B1 = A1 and Bk = Ak \ (A1 ∪ · · · ∪ Ak−1) for all
k = 2, . . . , N or, respectively, all k = 2, 3, . . . .

1.2 Generated σ-algebras.

Proposition 1.3 The intersection of any σ-algebras of subsets of the same X
is a σ-algebra of subsets of X.

Proof: Let {Σi}i∈I be any collection of σ-algebras of subsets of X, indexed by an
arbitrary non-empty set I of indices, and consider the intersection Σ = ∩i∈IΣi.

Since ∅ ∈ Σi for all i ∈ I, we get ∅ ∈ Σ and, hence, Σ is non-empty.
Let A ∈ Σ. Then A ∈ Σi for all i ∈ I and, since all Σi’s are σ-algebras,

Ac ∈ Σi for all i ∈ I. Therefore Ac ∈ Σ.
Let An ∈ Σ for all n ∈ N. Then An ∈ Σi for all i ∈ I and all n ∈ N

and, since all Σi’s are σ-algebras, we get ∪+∞n=1An ∈ Σi for all i ∈ I. Thus,
∪+∞n=1An ∈ Σ.

Definition 1.2 Let X be a non-empty set and E be an arbitrary collection of
subsets of X. The intersection of all σ-algebras of subsets of X which include
E is called the σ-algebra generated by E and it is denoted by Σ(E). Namely

Σ(E) = ∩{Σ |Σ is a σ-algebra of subsets of X and E ⊆ Σ} .

Note that there is at least one σ-algebra of subsets of X which includes E and
this is P(X). Note also that the term σ-algebra used in the name of Σ(E) is
justified by its definition and by Proposition 1.3.

Proposition 1.4 Let E be any collection of subsets of the non-empty X. Then
Σ(E) is the smallest σ-algebra of subsets of X which includes E. Namely, if Σ
is any σ-algebra of subsets of X such that E ⊆ Σ, then Σ(E) ⊆ Σ.
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Proof: If Σ is any σ-algebra of subsets of X such that E ⊆ Σ, then Σ is one of
the σ-algebras whose intersection is denoted Σ(E). Therefore Σ(E) ⊆ Σ.

Looking back at two of the examples of σ-algebras, we easily get the following
examples.

Examples.
1. Let E ⊆ X and E be non-empty and different from X and consider E = {E}.
Then Σ(E) = {∅, E,Ec, X}. To see this just observe that {∅, E,Ec, X} is a
σ-algebra of subsets of X which contains E and that there can be no smaller
σ-algebra of subsets of X containing E, since such a σ-algebra must necessarily
contain ∅, X and Ec besides E.
2. Let X be an uncountable set and consider E = {A ⊆ X |A is countable}.
Then Σ(E) = {A ⊆ X|A is countable or Ac is countable}. The argument is the
same as before. {A ⊆ X|A is countable or Ac is countable} is a σ-algebra of
subsets of X which contains all countable subsets of X and there is no smaller
σ-algebra of subsets of X containing all countable subsets of X, since any such
σ-algebra must contain all the complements of countable subsets of X.

1.3 Algebras and monotone classes.

Definition 1.3 Let X be non-empty and A a collection of subsets of X. We call
A an algebra of subsets of X if it is non-empty, closed under complements
and closed under unions. This means:
(i) there exists at least one A ⊆ X so that A ∈ A,
(ii) if A ∈ A, then Ac ∈ A and
(iii) if A,B ∈ A, then A ∪B ∈ A.

Proposition 1.5 Every algebra of subsets of X contains at least the sets ∅
and X, it is closed under finite unions, under finite intersections and under
set-theoretic differences.

Proof: Let A be any algebra of subsets of X.
(a) Take any A ∈ A and consider the sets A and Ac. Then X = A ∪ Ac ∈ A
and then ∅ = Xc ∈ A.
(b) It is trivial to prove by induction that for any n ∈ N and any A1, . . . , An ∈ A
it follows A1 ∪ · · · ∪An ∈ A.
(c) By the result of (b), if A1, . . . , An ∈ A, then ∩nk=1Ak = (∪nk=1A

c
k)c ∈ A.

(d) If A,B ∈ A, using the result of (c), we get that A \B = A ∩Bc ∈ A.

Examples.
1. Every σ-algebra is also an algebra.
2. If X is an infinite set then the collection {A ⊆ X |A is finite or Ac is finite}
is an algebra of subsets of X.

If (An) is a sequence of subsets of a set X and An ⊆ An+1 for all n, we say
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that the sequence is increasing. In this case, if A = ∪+∞n=1An, we write

An ↑ A.

If An+1 ⊆ An for all n, we say that the sequence (An) is decreasing and, if
also A = ∩+∞n=1An, we write

An ↓ A.

Definition 1.4 Let X be a non-empty set and M a collection of subsets of X.
We call M a monotone class of subsets of X if it is closed under countable
increasing unions and closed under countable decreasing intersections. That is,
if A1, A2, . . . ∈ M and An ↑ A, then A ∈ M and, if A1, A2, . . . ∈ M and
An ↓ A, then A ∈M.

It is obvious that every σ-algebra is a non-empty monotone class.

Proposition 1.6 The intersection of any monotone classes of subsets of the
same set X is a monotone class of subsets of X.

Proof: Let {Mi}i∈I be any collection of monotone classes of subsets of X,
indexed by an arbitrary non-empty set I of indices, and consider the intersection
M = ∩i∈IMi.

Let A1, A2, . . . ∈M with An ↑ A. Then An ∈Mi for all i ∈ I and all n ∈ N
and, since all Mi’s are monotone classes, we get that A ∈ Mi for all i ∈ I.
Therefore A ∈M.

The proof in the case of a countable decreasing intersection is identical.

Definition 1.5 Let X be a non-empty set and E be an arbitrary collection of
subsets of X. Then the intersection of all monotone classes of subsets of X
which include E is called the monotone class generated by E and it is
denoted by M(E). Namely

M(E) = ∩{M|M is a monotone class of subsets of X and E ⊆M}.

There is at least one monotone class including E and this is P(X). Also note
that the term monotone class, used for M(E), is justified by Proposition 1.6.

Proposition 1.7 Let E be any collection of subsets of the non-empty X. Then
M(E) is the smallest monotone class of subsets of X which includes E. Namely,
ifM is any monotone class of subsets of X such that E ⊆M, thenM(E) ⊆M.

Proof: If M is any monotone class of subsets of X such that E ⊆ M, then M
is one of the monotone classes whose intersection is M(E). Thus, M(E) ⊆M.

Theorem 1.1 Let X be a non-empty set and A an algebra of subsets of X.
Then M(A) = Σ(A).

Proof: Σ(A) is a σ-algebra and, hence, a monotone class. Since A ⊆ Σ(A),
Proposition 1.7 implies M(A) ⊆ Σ(A).
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Now it is enough to prove that M(A) is a σ-algebra. Since A ⊆ M(A),
Proposition 1.4 will immediately imply that Σ(A) ⊆ M(A) and this will con-
clude the proof.
M(A) is non-empty because ∅ ∈ A ⊆M(A).
Fix any A ∈ A and consider the collectionMA = {B ⊆ X |A∪B ∈M(A)}.
It is very easy to show that MA includes A and that it is a monotone class

of subsets of X. In fact, if B ∈ A then A ∪ B ∈ A and thus B ∈ MA. Also, if
B1, B2, . . . ∈ MA and Bn ↑ B, then A ∪ B1, A ∪ B2, . . . ∈ M(A) and A ∪ Bn ↑
A ∪ B. Since M(A) is a monotone class, we find that A ∪ B ∈ M(A). Thus,
B ∈MA andMA is closed under countable increasing unions. In a similar way
we can prove that MA is closed under countable decreasing intersections and
we conclude that it is a monotone class.

Proposition 1.7 implies that M(A) ⊆MA. This means that:

i. A ∪B ∈M(A) for all A ∈ A and all B ∈M(A).

Now fix any B ∈ M(A) and consider MB = {A ⊆ X |A ∪B ∈ M(A)}. As
before,MB is a monotone class of subsets of X and, by i, it includes A. Again,
Proposition 1.7 implies M(A) ⊆MB , which means:

ii. A ∪B ∈M(A) for all A ∈M(A) and all B ∈M(A).

We consider the collection M = {A ⊆ X |Ac ∈ M(A)}. As before, we
can show that M is a monotone class of subsets of X and that it includes A.
Therefore, M(A) ⊆M, which means:

iii. Ac ∈M(A) for all A ∈M(A).

It is implied by ii and iii thatM(A) is closed under finite unions and under
complements.

Now take A1, A2, . . . ∈M(A) and define Bn = A1 ∪ · · · ∪An for all n. From
ii we have that Bn ∈ M(A) for all n and it is clear that Bn ⊆ Bn+1 for all n.
Since M(A) is a monotone class, ∪+∞n=1An = ∪+∞n=1Bn ∈M(A).

Hence, M(A) is a σ-algebra.

1.4 Restriction of a σ-algebra.

Proposition 1.8 Let Σ be a σ-algebra of subsets of X and Y ⊆ X be non-
empty. If we denote

ΣeY = {A ∩ Y |A ∈ Σ},

then ΣeY is a σ-algebra of subsets of Y .
In case Y ∈ Σ, we have ΣeY = {A ⊆ Y |A ∈ Σ}.

Proof: Since ∅ ∈ Σ, we have that ∅ = ∅ ∩ Y ∈ ΣeY .
If B ∈ ΣeY , then B = A∩ Y for some A ∈ Σ. Since X \A ∈ Σ, we get that

Y \B = (X \A) ∩ Y ∈ ΣeY .
If B1, B2, . . . ∈ ΣeY , then, for each k, Bk = Ak ∩ Y for some Ak ∈ Σ. Since

∪+∞k=1Ak ∈ Σ, we find that ∪+∞k=1Bk = (∪+∞k=1Ak) ∩ Y ∈ ΣeY .
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Now let Y ∈ Σ. If B ∈ ΣeY , then B = A ∩ Y for some A ∈ Σ and,
hence, B ⊆ Y and B ∈ Σ. Therefore B ∈ {C ⊆ Y |C ∈ Σ}. Conversely, if
B ∈ {C ⊆ Y |C ∈ Σ}, then B ⊆ Y and B ∈ Σ. We set A = B and, thus,
B = A ∩ Y and A ∈ Σ. Therefore B ∈ ΣeY .

Definition 1.6 Let Σ be a σ-algebra of subsets of X and let Y ⊆ X be non-
empty. The σ-algebra ΣeY , defined in Proposition 1.8, is called the restriction
of Σ on Y .

In general, if E is any collection of subsets of X and Y ⊆ X, we denote

EeY = {A ∩ Y |A ∈ E}

and call EeY the restriction of E on Y .

Theorem 1.2 Let E be a collection of subsets of X and Y ⊆ X be non-empty.
Then

Σ(EeY ) = Σ(E)eY,
where Σ(EeY ) is the σ-algebra of subsets of Y generated by EeY .

Proof: If B ∈ EeY , then B = A ∩ Y for some A ∈ E ⊆ Σ(E) and, thus,
B ∈ Σ(E)eY . Hence, EeY ⊆ Σ(E)eY and, since, by Proposition 1.8, Σ(E)eY is
a σ-algebra of subsets of Y , Proposition 1.4 implies Σ(EeY ) ⊆ Σ(E)eY .

Now, define the collection

Σ = {A ⊆ X |A ∩ Y ∈ Σ(EeY )}.

We have that ∅ ∈ Σ, because ∅ ∩ Y = ∅ ∈ Σ(EeY ).
If A ∈ Σ, then A∩Y ∈ Σ(EeY ). Therefore, X \A ∈ Σ, because (X \A)∩Y =

Y \ (A ∩ Y ) ∈ Σ(EeY ).
If A1, A2, . . . ∈ Σ, then A1 ∩ Y,A2 ∩ Y, . . . ∈ Σ(EeY ). This implies that

(∪+∞k=1Ak) ∩ Y = ∪+∞k=1(Ak ∩ Y ) ∈ Σ(EeY ) and, thus, ∪+∞k=1Ak ∈ Σ.
We conclude that Σ is a σ-algebra of subsets of X.
If A ∈ E , then A∩Y ∈ EeY ⊆ Σ(EeY ) and, hence, A ∈ Σ. Therefore, E ⊆ Σ

and, by Proposition 1.4, Σ(E) ⊆ Σ. Now, for an arbitrary B ∈ Σ(E)eY , we have
that B = A ∩ Y for some A ∈ Σ(E) ⊆ Σ and, thus, B ∈ Σ(EeY ). This implies
that Σ(E)eY ⊆ Σ(EeY ).

1.5 Borel σ-algebras.

Definition 1.7 Let X be a topological space and T the topology of X, i.e. the
collection of all open subsets of X. The σ-algebra of subsets of X which is
generated by T , namely the smallest σ-algebra of subsets of X containing all
open subsets of X, is called the Borel σ-algebra of X and we denote it BX :

BX = Σ(T ) , T the topology of X.

The elements of BX are called Borel sets in X and BX is also called the
σ-algebra of Borel sets in X.
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By definition, all open subsets of X are Borel sets in X and, since BX is a
σ-algebra, all closed subsets of X (which are the complements of open subsets)
are also Borel sets in X. A subset of X is called a Gδ-set if it is a countable
intersection of open subsets of X. Also, a subset of X is called an Fσ-set if it
is a countable union of closed subsets of X. It is obvious that all Gδ-sets and
all Fσ-sets are Borel sets in X.

Proposition 1.9 If X is a topological space and F is the collection of all closed
subsets of X, then BX = Σ(F).

Proof: Every closed set is contained in Σ(T ). This is true because Σ(T ) contains
all open sets and hence, being a σ-algebra, contains all closed sets. Therefore,
F ⊆ Σ(T ). Since Σ(T ) is a σ-algebra, Proposition 1.4 implies Σ(F) ⊆ Σ(T ).

Symmetrically, every open set is contained in Σ(F). This is because Σ(F)
contains all closed sets and hence, being a σ-algebra, contains all open sets (the
complements of closed sets). Therefore, T ⊆ Σ(F). Since Σ(F) is a σ-algebra,
Proposition 1.4 implies Σ(T ) ⊆ Σ(F).

Therefore, Σ(F) = Σ(T ) = BX .

If X is a topological space with the topology T and if Y ⊆ X, then, as is well-
known (and easy to prove), the collection T eY = {U ∩Y |U ∈ T } is a topology
of Y which is called the relative topology or the subspace topology of Y .

Theorem 1.3 Let X be a topological space and let the non-empty Y ⊆ X have
the subspace topology. Then

BY = BXeY.

Proof: If T is the topology of X, then T eY is the subspace topology of Y .
Theorem 1.2 implies that BY = Σ(T eY ) = Σ(T )eY = BXeY .

Thus, the Borel sets in the subset Y of X (with the subspace topology of Y )
are just the intersections with Y of the Borel sets in X.

Examples of topological spaces are all metric spaces of which the most fa-
miliar is the euclidean space X = Rn with the usual euclidean metric or even
any subset X of Rn with the restriction on X of the euclidean metric. Because
of the importance of Rn we shall pay particular attention on BRn .

The typical closed orthogonal parallelepiped with axis-parallel edges is a set of
the form Q = [a1, b1]× · · · × [an, bn], the typical open orthogonal parallelepiped
with axis-parallel edges is a set of the formR = (a1, b1)×· · ·×(an, bn), the typical
open-closed orthogonal parallelepiped with axis-parallel edges is a set of the form
P = (a1, b1]×· · ·×(an, bn] and the typical closed-open orthogonal parallelepiped
with axis-parallel edges is a set of the form T = [a1, b1) × · · · × [an, bn). More
generally, the typical orthogonal parallelepiped with axis-parallel edges is a set
S, a cartesian product of n bounded intervals of any possible type. In all cases
we consider −∞ < aj ≤ bj < +∞ for all j = 1, . . . , n and, hence, all orthogonal
parallelepipeds with axis-parallel edges are bounded sets in Rn.
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If n = 1, then the orthogonal parallelepipeds with axis-parallel edges are
just the bounded intervals of all possible types in the real line R. If n = 2, then
the orthogonal parallelepipeds with axis-parallel edges are the usual orthogonal
parallelograms of all possible types with axis-parallel sides.

Since orthogonal parallelepipeds with axis-parallel edges will play a role in
much of the following, we agree to call them, for short, n-dimensional inter-
vals or intervals in Rn.

Lemma 1.1 All n-dimensional intervals are Borel sets in Rn.

Proof: For any j = 1, . . . , n, a half-space of the form {x = (x1, . . . , xn) |xj < bj}
or of the form {x = (x1, . . . , xn) |xj ≤ bj} is a Borel set in Rn, since it is an open
set in the first case and a closed set in the second case. Similarly, a half-space of
the form {x = (x1, . . . , xn) | aj < xj} or of the form {x = (x1, . . . , xn) | aj ≤ xj}
is a Borel set in Rn. Now, every interval S is an intersection of 2n of these
half-spaces and, therefore, it is also a Borel set in Rn.

Proposition 1.10 If E is the collection of all closed or of all open or of all
open-closed or of all closed-open or of all intervals in Rn, then BRn = Σ(E).

Proof: By Lemma 1.1 we have that, in all cases, E ⊆ BRn . Proposition 1.4
implies that Σ(E) ⊆ BRn .

To show the opposite inclusion consider any open subset U of Rn. For every
x ∈ U find a small open ball Bx centered at x which is included in U . Now,
considering the case of E being the collection of all closed intervals, take an
arbitrary Qx = [a1, b1] × · · · × [an, bn] containing x, small enough so that it is
included in Bx, and hence in U , and with all a1, . . . , an, b1, . . . , bn being rational
numbers. Since x ∈ Qx ⊆ U for all x ∈ U , we have that U = ∪x∈UQx. But the
collection of all possible Qx’s is countable (!) and, thus, the general open subset
U of Rn can be written as a countable union of sets in the collection E . Hence
every open U belongs to Σ(E) and, since Σ(E) is a σ-algebra of subsets of Rn

and BRn is generated by the collection of all open subsets of Rn, Proposition
1.4 implies that BRn ⊆ Σ(E).

Of course, the proof of the last inclusion works in the same way with all
other types of intervals.

As we said, the intervals in Rn are cartesian products of n bounded intervals
in R. If we allow these intervals in R to become unbounded, we get the so-called
generalized intervals in Rn, namely all sets of the form I1 × · · · × In, where
each Ij is any, even unbounded, interval in R. Again, we have the subcollections
of all open or all closed or all open-closed or all closed-open generalized intervals.
For example, the typical open-closed generalized interval in Rn is of the form
P = (a1, b1] × · · · × (an, bn], where −∞ ≤ aj ≤ bj ≤ +∞ for all j. The
whole space Rn is an open-closed generalized interval, as well as any of the half
spaces {x = (x1, . . . , xn) |xj ≤ bj} and {x = (x1, . . . , xn) | aj < xj}. In fact,
every open-closed generalized interval is, obviously, the intersection of 2n such
half-spaces.
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Proposition 1.11 The collection A = {P1 ∪ · · · ∪ Pk | k ∈ N, P1, . . . , Pk are
pairwise disjoint open-closed generalized intervals in Rn} is an algebra of sub-
sets of Rn.
In particular, the following are true:
(i) The intersection of two open-closed generalized intervals is an open-closed
generalized interval.
(ii) For all open-closed generalized intervals P, P1, . . . , Pm there are pairwise dis-
joint open-closed generalized intervals P ′1, . . . , P

′
k so that P \ (P1 ∪ · · · ∪ Pm) =

P ′1 ∪ · · · ∪ P ′k.
(iii) For all open-closed generalized intervals P1, . . . , Pm there are pairwise dis-
joint open-closed generalized intervals P ′1, . . . , P

′
k so that P1 ∪ · · · ∪ Pm = P ′1 ∪

· · · ∪ P ′k.

Proof: The intervals (a, b] and (a′, b′] are not disjoint if and only if a′′ < b′′, where
a′′ = max{a, a′} and b′′ = min{b, b′}. In case a′′ < b′′, then (a, b] ∩ (a′, b′] =
(a′′, b′′]. Now if P = (a1, b1] × · · · × (an, bn] and P ′ = (a′1, b

′
1] × · · · × (a′n, b

′
n],

then P and P ′ are not disjoint if and only if for all j = 1, . . . , n we have that
(aj , bj ] and (a′j , b

′
j ] are not disjoint. Hence if P, P ′ are not disjoint, then a′′j < b′′j

for all j, where a′′j = max{aj , a′j} and b′′j = min{bj , b′j}, and then P ∩ P ′ = P ′′,
where P ′′ = (a′′1 , b

′′
1 ]× · · · × (a′′n, b

′′
n]. This proves (i).

If A = ∪ki=1Pi, where the P1, . . . , Pk are pairwise disjoint, and A′ = ∪lj=1P
′
j ,

where the P ′1, . . . , P
′
l are also pairwise disjoint, are two elements of A, then

A ∩A′ =
⋃

1≤i≤k,1≤j≤l Pi ∩ P ′j . The sets Pi ∩ P ′j are pairwise disjoint and they
all are open-closed generalized intervals, as we have just seen.

Hence, A is closed under finite intersections.
Consider the open-closed generalized interval P = (a1, b1]× · · ·× (an, bn]. It

is easy to see that P c can be written as the union of 2n (some may be empty)
pairwise disjoint open-closed generalized intervals. To express this in a concise
way, for every I = (a, b] denote I(l) = (−∞, a] and I(r) = (b,+∞] the left
and right complementary intervals of I in R (they may be empty). If we write
P = I1 × · · · × In, then P c is equal to

I
(l)
1 ×R× · · · ×R ∪ I

(r)
1 ×R× · · · ×R ∪

I1 × I(l)2 ×R× · · · ×R ∪ I1 × I(r)2 ×R× · · · ×R ∪
· · ·

I1 × · · · × In−2 × I(l)n−1 ×R ∪ I1 × · · · × In−2 × I(r)n−1 ×R ∪

I1 × · · · × In−1 × I(l)n ∪ I1 × · · · × In−1 × I(r)n .

Hence, for every open-closed generalized interval P the complement P c is an
element of A.

Now, if A = ∪ki=1Pi, where the P1, . . . , Pk are pairwise disjoint, is any ele-
ment of A, then Ac = ∩ki=1P

c
i is a finite intersection of elements of A. Since A

is closed under finite intersections, Ac ∈ A and A is closed under complements.
Finally, if A,A′ ∈ A, then A ∪ A′ = (Ac ∩ A′c)c ∈ A and A is closed under

finite unions.
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Therefore A is an algebra and (ii) and (iii) are immediate.

It is convenient for certain purposes, and especially because functions are
often infinite valued, to consider R = R ∪ {+∞,−∞} and C = C ∪ {∞} as
topological spaces and define their Borel σ-algebras.

The ε-neighborhood of a point x ∈ R is, as usual, the interval (x−ε, x+ε) and
we define the ε-neighborhood of +∞ to be ( 1

ε ,+∞] and of −∞ to be [−∞,− 1
ε ).

We next say that U ⊆ R is open in R if every point of U has an ε-neighborhood
(the ε depending on the point) included in U . It is trivial to see (justifying the
term open) that the collection of all sets open in R is a topology of R, namely
that it contains the sets ∅ and R and that it is closed under arbitrary unions
and under finite intersections. It is obvious that a set U ⊆ R is open in R if and
only if it is open in R. In particular, R itself is open in R. It is also obvious
that, if a set U ⊆ R is open in R, then U ∩ R is open in R. Therefore, the
topology of R coincides with its subspace topology as a subset of R.

The next result says, in particular, that we may construct the general Borel
set in R by taking the general Borel set in R and adjoining none or any one or
both of the points +∞, −∞ to it.

Proposition 1.12 We have

BR = BReR

and

BR =
{
A,A ∪ {+∞}, A ∪ {−∞}, A ∪ {+∞,−∞} |A ∈ BR

}
.

Also, if E is the collection containing {+∞} or {−∞} and all closed or all open
or all open-closed or all closed-open or all intervals in R, then BR = Σ(E).

Proof: The first equality is immediate from Theorem 1.3.
Now, R is open in R and, thus, R ∈ BR. Therefore, from the first equality

and the last statement in Proposition 1.8, we get that

BR = {A ⊆ R |A ∈ BR}.

Therefore, if A ∈ BR, then A ∈ BR. Also, [−∞,+∞) is open in R and,
hence, {+∞} ∈ BR. Similarly, {−∞} ∈ BR and {+∞,−∞} ∈ BR and we
conclude that

{
A,A ∪ {+∞}, A ∪ {−∞}, A ∪ {+∞,−∞} |A ∈ BR

}
⊆ BR.

Conversely, let B ∈ BR and consider A = B ∩ R ∈ BR. Then B = A or
B = A ∪ {+∞} or B = A ∪ {−∞} or B = A ∪ {+∞,−∞} and we conclude
that BR ⊆

{
A,A ∪ {+∞}, A ∪ {−∞}, A ∪ {+∞,−∞} |A ∈ BR

}
.

Let E =
{
{+∞}, (a, b] | −∞ < a ≤ b < +∞

}
.

From all the above, we get that E ⊆ BR and, by Proposition 1.4, Σ(E) ⊆ BR.
From Proposition 1.10, if A ∈ BR, then A ∈ Σ(E). In particular, R ∈ Σ(E) and,
hence, (−∞,+∞] = R ∪ {+∞} ∈ Σ(E). Thus, also {−∞} = R \ (−∞,+∞] ∈
Σ(E) and {+∞,−∞} = {+∞} ∪ {−∞} ∈ Σ(E). From all these, we conclude
that BR =

{
A,A ∪ {+∞}, A ∪ {−∞}, A ∪ {+∞,−∞} |A ∈ BR

}
⊆ Σ(E).

16



This concludes the proof of the last statement for this particular choice of E
and the proof is similar for all other choices.

We now turn to the case of C = C ∪ {∞}. The ε-neighborhood of a point
x = (x1, x2) = x1 + ix2 ∈ C is, as usual, the open disc B(x; ε) = {y = (y1, y2) ∈
C | |y − x| < ε}, where |y − x|2 = (y1 − x1)2 + (y2 − x2)2. We define the ε-
neighborhood of ∞ to be the set {y ∈ C | |y| > 1

ε } ∪ {∞}, the exterior of a

closed disc centered at 0 together with the point∞. We say that a set U ⊆ C is
open in C if every point of U has an ε-neighborhood (the ε depending on the
point) included in U . The collection of all sets which are open in C contains ∅
and C and is closed under arbitrary unions and under finite intersections, thus
forming a topology in C. It is clear that a set U ⊆ C is open in C if and only
if it is open in C. In particular, C itself is open in C. Also, if a set U ⊆ C is
open in C, then U ∩ C is open in C. Therefore, the topology of C coincides
with its subspace topology as a subset of C.

As in the case of R, we may construct the general Borel set in C by taking
the general Borel set in C and at most adjoining the point ∞ to it.

Proposition 1.13 We have
BC = BCeC

and
BC =

{
A,A ∪ {∞} |A ∈ BC

}
.

Also, if E is the collection of all closed or all open or all open-closed or all
closed-open or all intervals in C = R2, then BC = Σ(E).

Proof: The proof is very similar to (and slightly simpler than) the proof of
Proposition 1.12. The steps are the same and only minor modifications are
needed.

1.6 Exercises.

1. Let X be a non-empty set and A1, A2, . . . ⊆ X. We define

lim sup
n→+∞

An = ∩+∞k=1

(
∪+∞j=k Aj

)
, lim inf

n→+∞
An = ∪+∞k=1

(
∩+∞j=k Aj

)
.

Only in case lim infn→+∞An = lim supn→+∞An, we define

lim
n→+∞

An = lim inf
n→+∞

An = lim sup
n→+∞

An.

Prove the following.
(i) lim supn→+∞An = {x ∈ X |x ∈ An for infinitely many n}.
(ii) lim infn→+∞An = {x ∈ X |x ∈ An for all large enough n}.
(iii) (lim infn→+∞An)c = lim supn→+∞Acn and (lim supn→+∞An)c =
lim infn→+∞Acn.
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(iv) lim infn→+∞An ⊆ lim supn→+∞An.
(v) If An ⊆ An+1 for all n, then limn→+∞An = ∪+∞n=1An.
(vi) If An+1 ⊆ An for all n, then limn→+∞An = ∩+∞n=1An.
(vii) Find an example where lim infn→+∞An 6= lim supn→+∞An.
(viii) If An ⊆ Bn for all n, then lim supn→+∞An ⊆ lim supn→+∞Bn and
lim infn→+∞An ⊆ lim infn→+∞Bn.
(ix) If An = Bn∪Cn for all n, then lim supn→+∞An ⊆ lim supn→+∞Bn∪
lim supn→+∞ Cn, lim infn→+∞Bn ∪ lim infn→+∞ Cn ⊆ lim infn→+∞An.

2. Let A be an algebra of subsets of X. Prove that A is a σ-algebra if and
only if it is closed under increasing countable unions.

3. Let X be non-empty. In the next three cases find Σ(E) and M(E).
(i) E = ∅.
(ii) Fix E ⊆ X and let E = {F |E ⊆ F ⊆ X}.
(iii) Let E = {F |F is a two-point subset of X}.

4. Let E1, E2 be two collections of subsets of the non-empty X. If E1 ⊆ E2 ⊆
Σ(E1), prove that Σ(E1) = Σ(E2).

5. Let Y be a non-empty subset of X.
(i) If A is an algebra of subsets of X, prove that AeY is an algebra of
subsets of Y .
(ii) IfM is a monotone class of subsets of X, prove thatMeY is a mono-
tone class of subsets of Y .
(iii) If T is a topology of X, prove that T eY is a topology of Y .

6. Let X be a topological space and Y be a non-empty Borel set in X. Prove
that BY = {A ⊆ Y |A ∈ BX}.

7. Push-forward of a σ-algebra.

Let Σ be a σ-algebra of subsets of X and let f : X → Y . Then the
collection

{B ⊆ Y | f−1(B) ∈ Σ}

is called the push-forward of Σ by f on Y .
(i) Prove that the collection {B ⊆ Y | f−1(B) ∈ Σ} is a σ-algebra of
subsets of Y .

Consider also a σ-algebra Σ′ of subsets of Y and a collection E of subsets
of Y so that Σ(E) = Σ′.
(ii) Prove that, if f−1(B) ∈ Σ for all B ∈ E , then f−1(B) ∈ Σ for all
B ∈ Σ′.
(iii) If X,Y are two topological spaces and f : X → Y is continuous, prove
that f−1(B) is a Borel set in X for every Borel set B in Y .

8. The pull-back of a σ-algebra.
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Let Σ′ be a σ-algebra of subsets of Y and let f : X → Y . Then the
collection

{f−1(B) |B ∈ Σ′}

is called the pull-back of Σ′ by f on X.

Prove that {f−1(B) |B ∈ Σ′} is a σ-algebra of subsets of X.

9. (i) Prove that BRn is generated by the collection of all half-spaces in Rn

of the form {x = (x1, . . . , xn) | aj < xj}, where j = 1, . . . , n and aj ∈ R.
(ii) Prove that BRn is generated by the collection of all open balls B(x; r)
or of all closed balls B(x; r), where x ∈ Rn and r ∈ R+.

10. (i) Prove that BR is generated by the collection of all (a,+∞], where
a ∈ R.
(ii) Prove that BC is generated by the collection of all open discs B(x; r)

or of all closed discs B(x; r), where x ∈ C and r ∈ R+.

11. Let X be a metric space with metric d. Prove that every closed F ⊆ X is a
Gδ-set by considering the sets Un = {x ∈ X | d(x, y) < 1

n for some y ∈ F}.
Prove, also, that every open U ⊆ X is an Fσ-set.

12. (i) Suppose that f : Rn → R. Prove that {x ∈ Rn | f is continuous at x}
is a Gδ-set in Rn.
(ii) Suppose that fk : Rn → R is continuous in Rn for every k ∈ N.
Prove that {x ∈ Rn | (fk(x)) converges} is an Fσδ-set, i.e. a countable
intersection of Fσ-sets.

13. Let E be an arbitrary collection of subsets of the non-empty X. Prove
that for every A ∈ Σ(E) there is some countable subcollection D ⊆ E so
that A ∈ Σ(D).
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Chapter 2

Measures

2.1 General measures.

Definition 2.1 Let (X,Σ) be a measurable space. A function µ : Σ→ [0,+∞]
is called a measure on (X,Σ) if
(i) µ(∅) = 0,
(ii) µ(∪+∞n=1An) =

∑+∞
n=1 µ(An) for all sequences (An) of pairwise disjoint sets

which are contained in Σ.
The triple (X,Σ, µ) of a non-empty set X, a σ-algebra of subsets of X and

a measure µ on Σ is called a measure space.

For simplicity and if there is no danger of confusion, we shall say that µ is a
measure on Σ or a measure on X.

Note that the values of a measure are non-negative real numbers or +∞.
Property (ii) of a measure is called σ-additivity and sometimes a mea-

sure is also called σ-additive measure to distinguish from a so-called finitely
additive measure µ which is defined to satisfy µ(∅) = 0 and µ(∪Nn=1An) =∑N
n=1 µ(An) for all N ∈ N and all pairwise disjoint A1, . . . , AN ∈ Σ.

Proposition 2.1 Every measure is finitely additive.

Proof: Let µ be a measure on the σ-algebra Σ. If A1, . . . , AN ∈ Σ are pair-
wise disjoint, we consider An = ∅ for all n > N and we get µ(∪Nn=1An) =

µ(∪+∞n=1An) =
∑+∞
n=1 µ(An) =

∑N
n=1 µ(An).

Examples.
1. The simplest measure is the zero measure which is denoted o and is defined
by o(A) = 0 for every A ∈ Σ.
2. Let X be an uncountable set and consider Σ = {A ⊆ X |A is countable or Ac

is countable}. We define µ(A) = 0 if A is countable and µ(A) = 1 if Ac is count-
able.

Then it is clear that µ(∅) = 0 and let A1, A2, . . . ∈ Σ be pairwise dis-
joint. If all of them are countable, then ∪+∞n=1An is also countable and we get
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µ(∪+∞n=1An) = 0 =
∑+∞
n=1 µ(An). Observe that if one of the An’s, say An0

, is
uncountable, then for all n 6= n0 we have An ⊆ Acn0

which is countable. There-

fore µ(An0
) = 1 and µ(An) = 0 for all n 6= n0. Since (∪+∞n=1An)c(⊆ Acn0

) is

countable, we get µ(∪+∞n=1An) = 1 =
∑+∞
n=1 µ(An).

Theorem 2.1 Let (X,Σ, µ) be a measure space.
(i) (Monotonicity) If A,B ∈ Σ and A ⊆ B, then µ(A) ≤ µ(B).
(ii) If A,B ∈ Σ, A ⊆ B and µ(A) < +∞, then µ(B \A) = µ(B)− µ(A).
(iii) (σ-subadditivity) If A1, A2, . . . ∈ Σ, then µ(∪+∞n=1An) ≤

∑+∞
n=1 µ(An).

(iv) (Continuity from below) If A1, A2, . . . ∈ Σ and An ↑ A, then µ(An) ↑ µ(A).
(v) (Continuity from above) If A1, A2, . . . ∈ Σ, µ(AN ) < +∞ for some N and
An ↓ A, then µ(An) ↓ µ(A).

Proof: (i) We write B = A ∪ (B \ A). By finite additivity of µ, µ(B) =
µ(A) + µ(B \A) ≥ µ(A).
(ii) From both sides of µ(B) = µ(A) + µ(B \A) we subtract µ(A).
(iii) Using Proposition 1.2 we find B1, B2, . . . ∈ Σ which are pairwise disjoint and
satisfy Bn ⊆ An for all n and ∪+∞n=1Bn = ∪+∞n=1An. By σ-additivity and mono-

tonicity of µ we get µ(∪+∞n=1An) = µ(∪+∞n=1Bn) =
∑+∞
n=1 µ(Bn) ≤

∑+∞
n=1 µ(An).

(iv) We write A = A1 ∪∪+∞k=1(Ak+1 \Ak), where all sets whose union is taken in
the right side are pairwise disjoint. Applying σ-additivity (and finite additivity),

µ(A) = µ(A1)+
∑+∞
k=1 µ(Ak+1 \Ak) = limn→+∞[µ(A1)+

∑n−1
k=1 µ(Ak+1 \Ak)] =

limn→+∞ µ
(
A1 ∪ ∪n−1k=1(Ak+1 \Ak)

)
= limn→+∞ µ(An).

(v) We observe that AN \ An ↑ AN \ A and continuity from below implies
µ(AN \ An) ↑ µ(AN \ A). Now, µ(AN ) < +∞ implies µ(An) < +∞ for all
n ≥ N and µ(A) < +∞. Applying (ii), we get µ(AN )− µ(An) ↑ µ(AN )− µ(A)
and, since µ(AN ) < +∞, we find µ(An) ↓ µ(A).

Definition 2.2 Let (X,Σ, µ) be a measure space.
(i) µ is called finite if µ(X) < +∞.
(ii) µ is called σ-finite if there exist X1, X2, . . . ∈ Σ so that X = ∪+∞n=1Xn and
µ(Xn) < +∞ for all n ∈ N.
(iii) µ is called semifinite if for every E ∈ Σ with µ(E) = +∞ there is an
F ∈ Σ so that F ⊆ E and 0 < µ(F ) < +∞.
(iv) A set E ∈ Σ is called of finite µ-measure if µ(E) < +∞.
(v) A set E ∈ Σ is called of σ-finite µ-measure if there exist E1, E2, . . . ∈ Σ
so that E ⊆ ∪+∞n=1En and µ(En) < +∞ for all n.

For simplicity and if there is no danger of confusion, we may say that E is of
finite measure or of σ-finite measure.

Some observations related to the last definition are immediate.
1. If µ is finite then all sets in Σ are of finite measure. More generally, if E ∈ Σ
is of finite measure, then all subsets of it in Σ are of finite measure.
2. If µ is σ-finite then all sets in Σ are of σ-finite measure. More generally, if
E ∈ Σ is of σ-finite measure, then all subsets of it in Σ are of σ-finite measure.
3. The collection of sets of finite measure is closed under finite unions.
4. The collection of sets of σ-finite measure is closed under countable unions.
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5. If µ is σ-finite, applying Proposition 1.2, we see that there exist pairwise
disjoint X1, X2, . . . ∈ Σ so that X = ∪+∞n=1Xn and µ(Xn) < +∞ for all n.
Similarly, by taking successive unions, we see that there exist X1, X2, . . . ∈ Σ so
that Xn ↑ X and µ(Xn) < +∞ for all n. We shall use these two observations
freely whenever σ-finiteness appears in the sequel.
6. If µ is finite, then it is also σ-finite. The next result is not so obvious.

Proposition 2.2 Let (X,Σ, µ) be a measure space. If µ is σ-finite, then it is
semifinite.

Proof: Take X1, X2, . . . ∈ Σ so that Xn ↑ X and µ(Xn) < +∞ for all n. Let
E ∈ Σ have µ(E) = +∞. From E ∩Xn ↑ E and continuity of µ from below, we
get µ(E ∩Xn) ↑ +∞. Therefore, µ(E ∩Xn0

) > 0 for some n0 and we observe
that µ(E ∩Xn0

) ≤ µ(Xn0
) < +∞.

Definition 2.3 Let (X,Σ, µ) be a measure space. E ∈ Σ is called µ-null if
µ(E) = 0.

For simplicity and if there is no danger of confusion, we may say that E is null
instead of µ-null.

The following is trivial but basic.

Theorem 2.2 Let (X,Σ, µ) be a measure space.
(i) If E ∈ Σ is null, then every subset of it in Σ is also null.
(ii) If E1, E2, . . . ∈ Σ are all null, then their union ∪+∞n=1En is also null.

Proof: The proof is based on the monotonicity and the σ-subadditivity of µ.

2.2 Point-mass distributions.

Before introducing a particular class of measures we shall define sums of non-
negative terms over general sets of indices. We shall follow the standard practice
of using both notations a(i) and ai for the values of a function a on a set I of
indices.

Definition 2.4 Let I be a non-empty set of indices and a : I → [0,+∞]. We
define the sum of the values of a by∑

i∈I
ai = sup

{∑
i∈F

ai |F non-empty finite subset of I
}
.

If I = ∅, we define
∑
i∈I ai = 0.

Of course, if F is a non-empty finite set, then
∑
i∈F ai is just equal to the sum∑N

k=1 aik , where F = {ai1 , . . . , aiN } is an arbitrary enumeration of F .
We first make sure that this definition extends a simpler situation.

Proposition 2.3 If I is countable and I = {i1, i2, . . .} is an arbitrary enume-
ration of it, then

∑
i∈I ai =

∑+∞
k=1 aik for all a : I → [0,+∞].
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Proof: For arbitrary N we consider the finite subset F = {i1, . . . , iN} of I.

Then, by the definition of
∑
i∈I ai, we have

∑N
k=1 aik =

∑
i∈F ai ≤

∑
i∈I ai.

Since N is arbitrary, we find
∑+∞
k=1 aik ≤

∑
i∈I ai.

Now for an arbitrary non-empty finite F ⊆ I we consider the indices of
the elements of F provided by the enumeration I = {i1, i2, . . .} and take the
maximal, say N , of them. This means that F ⊆ {i1, i2, . . . , iN}. Therefore∑
i∈F ai ≤

∑N
k=1 aik ≤

∑+∞
k=1 aik and, since F is arbitrary, we find, by the

definition of
∑
i∈I ai, that

∑
i∈I ai ≤

∑+∞
k=1 aik .

Proposition 2.4 Let a : I → [0,+∞]. If
∑
i∈I ai < +∞, then ai < +∞ for

all i and the set {i ∈ I | ai > 0} is countable.

Proof: Let
∑
i∈I ai < +∞. It is clear that ai < +∞ for all i (take F = {i}) and,

for arbitrary n, consider the set In = {i ∈ I | ai ≥ 1
n}. If F is an arbitrary finite

subset of In, then 1
n card(F ) ≤

∑
i∈F ai ≤

∑
i∈I ai. Therefore, the cardinality

of the arbitrary finite subset of In is not larger than the number n
∑
i∈I ai and,

hence, the set In is finite. But then, {i ∈ I | ai > 0} = ∪+∞n=1In is countable.

Proposition 2.5 (i) If a, b : I → [0,+∞] and ai ≤ bi for all i ∈ I, then∑
i∈I ai ≤

∑
i∈I bi.

(ii) If a : I → [0,+∞] and J ⊆ I, then
∑
i∈J ai ≤

∑
i∈I ai.

Proof: (i) For arbitrary finite F ⊆ I we have
∑
i∈F ai ≤

∑
i∈F bi ≤

∑
i∈I bi.

Taking supremum over the finite subsets of I, we find
∑
i∈I ai ≤

∑
i∈I bi.

(ii) For arbitrary finite F ⊆ J we have that F ⊆ I and hence
∑
i∈F ai ≤

∑
i∈I ai.

Taking supremum over the finite subsets of J , we get
∑
i∈J ai ≤

∑
i∈I ai.

Proposition 2.6 Let I = ∪k∈KJk, where K is a non-empty set of indices and
the Jk’s are non-empty and pairwise disjoint. Then for every a : I → [0,+∞]
we have

∑
i∈I ai =

∑
k∈K

(∑
i∈Jk ai

)
.

Proof: Take an arbitrary finite F ⊆ I and consider the finite sets Fk = F ∩ Jk.
Observe that the set L = {k ∈ K |Fk 6= ∅} is a finite subset of K. Then,
using trivial properties of sums over finite sets of indices, we find

∑
i∈F ai =∑

k∈L
(∑

i∈Fk ai
)
. The definitions imply that

∑
i∈F ai ≤

∑
k∈L

(∑
i∈Jk ai

)
≤∑

k∈K
(∑

i∈Jk ai
)
. Taking supremum over the finite subsets F of I we find∑

i∈I ai ≤
∑
k∈K

(∑
i∈Jk ai

)
.

Now take an arbitrary finite L ⊆ K and arbitrary finite Fk ⊆ Jk for each
k ∈ L. Then

∑
k∈L

(∑
i∈Fk ai

)
is, clearly, a sum (without repetitions) over

the finite subset ∪k∈LFk of I. Hence
∑
k∈L

(∑
i∈Fk ai

)
≤
∑
i∈I ai. Taking

supremum over the finite subsets Fk of Jk for each k ∈ L, one at a time, we
get that

∑
k∈L

(∑
i∈Jk ai

)
≤
∑
i∈I ai. Finally, taking supremum over the finite

subsets L of K, we find
∑
k∈K

(∑
i∈Jk ai

)
≤
∑
i∈I ai and conclude the proof.

After this short investigation of the general summation notion we define a
class of measures.
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Proposition 2.7 Let X be non-empty and consider a : X → [0,+∞]. We
define µ : P(X)→ [0,+∞] by

µ(E) =
∑
x∈E

ax , E ⊆ X.

Then µ is a measure on (X,P(X)).

Proof: It is obvious that µ(∅) =
∑
x∈∅ ax = 0.

If E1, E2, . . . are pairwise disjoint and E = ∪+∞n=1En, we apply Propositions
2.3 and 2.6 to find µ(E) =

∑
x∈E ax =

∑
n∈N

(∑
x∈En ax

)
=
∑
n∈N µ(En) =∑+∞

n=1 µ(En).

Definition 2.5 The measure on (X,P(X)) defined in the statement of the pre-
vious proposition is called the point-mass distribution on X induced by
the function a. The value ax is called the point-mass at x.

Examples.
1. Consider the function which puts point-mass ax = 1 at every x ∈ X. It is
then obvious that the induced point-mass distribution is

](E) =

{
card(E), if E is a finite ⊆ X,
+∞, if E is an infinite ⊆ X.

This ] is called the counting measure on X.
2. Take a particular x0 ∈ X and the function which puts point-mass ax0 = 1 at
x0 and point-mass ax = 0 at all other points of X. Then the induced point-mass
distribution is

δx0(E) =

{
1, if x0 ∈ E ⊆ X,
0, if x0 /∈ E ⊆ X.

This δx0 is called the Dirac measure at x0 or the Dirac mass at x0.

Of course, it is very easy to show directly, without using Proposition 2.7,
that these two examples, ] and δx0

, constitute measures.

2.3 Complete measures.

Theorem 2.2(i) says that a subset of a µ-null set is also µ-null, provided that
the subset is contained in the σ-algebra on which the measure µ is defined.

Definition 2.6 Let (X,Σ, µ) be a measure space. Suppose that for every E ∈ Σ
with µ(E) = 0 and every F ⊆ E it is implied that F ∈ Σ (and hence µ(F ) = 0,
also). Then µ is called complete and (X,Σ, µ) is a complete measure space.

Thus, a measure µ is complete if the σ-algebra on which it is defined contains
all subsets of µ-null sets.
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Definition 2.7 If (X,Σ1, µ1) and (X,Σ2, µ2) are two measure spaces on the
same set X, we say that (X,Σ2, µ2) is an extension of (X,Σ1, µ1) if Σ1 ⊆ Σ2

and µ1(E) = µ2(E) for all E ∈ Σ1.

Theorem 2.3 Let (X,Σ, µ) be a measure space. Then there is a unique small-
est complete extension (X,Σ, µ) of (X,Σ, µ). Namely, there is a unique measure
space (X,Σ, µ) so that
(i) (X,Σ, µ) is an extension of (X,Σ, µ),
(ii) (X,Σ, µ) is complete,

(iii) if (X,Σ, µ) is another complete extension of (X,Σ, µ), then it is an exten-
sion also of (X,Σ, µ).

Proof: We shall first construct (X,Σ, µ). We define

Σ = {A ∪ F |A ∈ Σ and F ⊆ E for some E ∈ Σ with µ(E) = 0}.

We prove that Σ is a σ-algebra. We write ∅ = ∅∪∅, where the first ∅ belongs
to Σ and the second ∅ is a subset of ∅ ∈ Σ with µ(∅) = 0. Therefore ∅ ∈ Σ.

Let B ∈ Σ. Then B = A ∪ F for A ∈ Σ and F ⊆ of some E ∈ Σ with
µ(E) = 0. Write Bc = A1 ∪ F1, where A1 = (A ∪ E)c and F1 = E \ (A ∪ F ).
Then A1 ∈ Σ and F1 ⊆ E. Hence Bc ∈ Σ.

Let B1, B2, . . . ∈ Σ. Then for every n, Bn = An ∪ Fn for An ∈ Σ and Fn ⊆
of some En ∈ Σ with µ(En) = 0. Now ∪+∞n=1Bn = (∪+∞n=1An) ∪ (∪+∞n=1Fn), where
∪+∞n=1An ∈ Σ and ∪+∞n=1Fn ⊆ ∪

+∞
n=1En ∈ Σ with µ(∪+∞n=1En) = 0. Therefore

∪+∞n=1Bn ∈ Σ.
We now construct µ. For every B ∈ Σ we write B = A ∪ F for A ∈ Σ and

F ⊆ of some E ∈ Σ with µ(E) = 0 and define

µ(B) = µ(A).

To prove that µ(B) is well defined we consider that we may also have B =
A′ ∪F ′ for A′ ∈ Σ and F ′ ⊆ of some E′ ∈ Σ with µ(E′) = 0 and we must prove
that µ(A) = µ(A′). Since A ⊆ B ⊆ A′ ∪ E′, we have µ(A) ≤ µ(A′) + µ(E′) =
µ(A′) and, symmetrically, µ(A′) ≤ µ(A).

To prove that µ is a measure on (X,Σ) let ∅ = ∅∪∅ as above and get µ(∅) =
µ(∅) = 0. Let also B1, B2, . . . ∈ Σ be pairwise disjoint. Then Bn = An ∪ Fn for
An ∈ Σ and Fn ⊆ En ∈ Σ with µ(En) = 0. Observe that the An’s are pairwise
disjoint. Then ∪+∞n=1Bn = (∪+∞n=1An) ∪ (∪+∞n=1Fn) and ∪+∞n=1Fn ⊆ ∪

+∞
n=1En ∈ Σ

with µ(∪+∞n=1En) = 0. Therefore µ(∪+∞n=1Bn) = µ(∪+∞n=1An) =
∑+∞
n=1 µ(An) =∑+∞

n=1 µ(Bn).
We now prove that µ is complete. Let B ∈ Σ with µ(B) = 0 and let B′ ⊆ B.

Write B = A ∪ F for A ∈ Σ and F ⊆ E ∈ Σ with µ(E) = 0 and observe
that µ(A) = µ(B) = 0. Then write B′ = A′ ∪ F ′, where A′ = ∅ ∈ Σ and
F ′ = B′ ⊆ E′ where E′ = A ∪ E ∈ Σ with µ(E′) ≤ µ(A) + µ(E) = 0. Hence
B′ ∈ Σ.

To prove that (X,Σ, µ) is an extension of (X,Σ, µ) we take any A ∈ Σ and
write A = A ∪ ∅, where ∅ ⊆ ∅ ∈ Σ with µ(∅) = 0. This implies that A ∈ Σ and
µ(A) = µ(A).
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Now suppose that (X,Σ, µ) is another complete extension of (X,Σ, µ). Take
any B ∈ Σ and thus B = A ∪ F for A ∈ Σ and F ⊆ E ∈ Σ with µ(E) = 0.

But then A,E ∈ Σ and µ(E) = µ(E) = 0. Since µ is complete, we get that also

F ∈ Σ and hence B = A ∪ F ∈ Σ.
Moreover, µ(A) ≤ µ(B) ≤ µ(A) + µ(F ) = µ(A), which implies µ(B) =

µ(A) = µ(A) = µ(B).
It only remains to prove the uniqueness of a smallest complete extension of

(X,Σ, µ). This is obvious, since two smallest complete extensions of (X,Σ, µ)
must both be extensions of each other and, hence, identical.

Definition 2.8 If (X,Σ, µ) is a measure space, then its smallest complete ex-
tension is called the completion of (X,Σ, µ).

2.4 Restriction of a measure.

Proposition 2.8 Let (X,Σ, µ) be a measure space and let Y ∈ Σ. If we define
µY : Σ→ [0,+∞] by

µY (A) = µ(A ∩ Y ), A ∈ Σ,

then µY is a measure on (X,Σ) with the properties that µY (A) = µ(A) for every
A ∈ Σ, A ⊆ Y , and that µY (A) = 0 for every A ∈ Σ, A ∩ Y = ∅.

Proof: We have µY (∅) = µ(∅ ∩ Y ) = µ(∅) = 0.
If A1, A2, . . . ∈ Σ are pairwise disjoint, µY (∪+∞j=1Aj) = µ

(
(∪+∞j=1Aj) ∩ Y

)
=

µ
(
∪+∞j=1 (Aj ∩ Y )

)
=
∑+∞
j=1 µ(Aj ∩ Y ) =

∑+∞
j=1 µY (Aj).

Therefore, µY is a measure on (X,Σ) and its two properties are trivial to
prove.

Definition 2.9 Let (X,Σ, µ) be a measure space and let Y ∈ Σ. The measure
µY on (X,Σ) of Proposition 2.8 is called the Y -restriction of µ.

There is a second kind of restriction of a measure. To define it we recall
that, if Y ∈ Σ, the restriction ΣeY of the σ-algebra Σ of subsets of X on the
non-empty Y ⊆ X is ΣeY = {A ⊆ Y |A ∈ Σ}.

Proposition 2.9 Let (X,Σ, µ) be a measure space and let Y ∈ Σ be non-empty.
We consider ΣeY = {A ⊆ Y |A ∈ Σ} and define µeY : ΣeY → [0,+∞] by

(µeY )(A) = µ(A), A ∈ ΣeY.

Then µeY is a measure on (Y,ΣeY ).

Proof: Obvious.

Definition 2.10 Let (X,Σ, µ) be a measure space and let Y ∈ Σ be non-empty.
The measure µeY on (Y,ΣeY ) of Proposition 2.9 is called the restriction of
µ on ΣeY .
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Informally speaking, we may describe the relation between the two restric-
tions of µ as follows. The restriction µY assigns value 0 to all sets in Σ which
are included in the complement of Y while the restriction µeY simply ignores
all those sets. Both restrictions µY and µeY assign the same values (the same
to the values that µ assigns) to all sets in Σ which are included in Y .

2.5 Uniqueness of measures.

The next result is very useful when we want to prove that two measures are
equal on a σ-algebra Σ. It says that it is enough to prove that they are equal on
an algebra which generates Σ, provided that an extra assumption of σ-finiteness
of the two measures on the algebra is satisfied.

Theorem 2.4 Let A be an algebra of subsets of X and let µ, ν be two mea-
sures on (X,Σ(A)). Suppose there exist A1, A2, . . . ∈ A with An ↑ X and
µ(Ak), ν(Ak) < +∞ for all k.

If µ, ν are equal on A, then they are equal also on Σ(A).

Proof: (a) Suppose that µ(X), ν(X) < +∞.
We define the collection M = {E ∈ Σ(A) |µ(E) = ν(E)}. It is easy to

see that M is a monotone class. Indeed, let E1, E2, . . . ∈ M with En ↑ E.
By continuity of measures from below, we get µ(E) = limn→+∞ µ(En) =
limn→+∞ ν(En) = ν(E) and thus E ∈ M. We do exactly the same when
En ↓ E, using the continuity of measures from above and the extra assumption
µ(X), ν(X) < +∞.

Since M is a monotone class including A, Proposition 1.7 implies that
M(A) ⊆ M. Now, Theorem 1.1 implies that Σ(A) ⊆ M and, thus, µ(E) =
ν(E) for all E ∈ Σ(A).
(b) The general case.

For each k, we consider the Ak-restrictions of µ, ν. Namely,

µAk(E) = µ(E ∩Ak), νAk(E) = ν(E ∩Ak)

for all E ∈ Σ(A). All µAk and νAk are finite measures on (X,Σ), because
µAk(X) = µ(Ak) < +∞ and νAk(X) = ν(Ak) < +∞. We, clearly, have that
µAk , νAk are equal on A and, by the result of (a), they are equal also on Σ(A).

For every E ∈ Σ(A), using the E ∩ Ak ↑ E and the continuity of measures
from below, we can write µ(E) = limk→+∞ µ(E ∩ Ak) = limk→+∞ µAk(E) =
limk→+∞ νAk(E) = limk→+∞ ν(E ∩Ak) = ν(E).

Thus, µ, ν are equal on Σ(A).

2.6 Exercises.

1. Let (X,Σ, µ) be a measure space and Y ∈ Σ be non-empty. Prove that
µY is the only measure on (X,Σ) with the properties:
(i) µY (E) = µ(E) for all E ∈ Σ with E ⊆ Y ,
(ii) µY (E) = 0 for all E ∈ Σ with E ⊆ Y c.
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2. Positive linear combinations of measures.

Let µ, µ1µ2 be measures on the measurable space (X,Σ) and κ ∈ [0,+∞).
(i) Prove that κµ : Σ→ [0,+∞], which is defined by

(κµ)(E) = κ · µ(E) , E ∈ Σ,

(consider 0 · (+∞) = 0) is a measure on (X,Σ). This κµ is called the
product of µ by κ.
(ii) Prove that µ1 + µ2 : Σ→ [0,+∞], which is defined by

(µ1 + µ2)(E) = µ1(E) + µ2(E) , E ∈ Σ,

is a measure on (X,Σ). This µ1 + µ2 is called the sum of µ1 and µ2.

Thus, we define positive linear combinations κ1µ1 + · · ·+ κnµn.

3. Let X be non-empty and consider a finite A ⊆ X. If a : X → [0,+∞]
satisfies ax = 0 for all x /∈ A, prove that the point-mass distribution µ
on X induced by a can be written as a positive linear combination (see
Exercise 2.6.2) of Dirac measures:

µ = κ1δx1 + · · ·+ κkδxk .

4. Let X be infinite and define for all E ⊆ X

µ(E) =

{
0, if E is finite,
+∞, if E is infinite.

Prove that µ is a finitely additive measure on (X,P(X)) which is not a
measure.

5. Let (X,Σ, µ) be a measure space and E ∈ Σ be of σ-finite measure. If
{Di}i∈I is a collection of pairwise disjoint sets in Σ, prove that the set
{i ∈ I |µ(E ∩Di) > 0} is countable.

6. Let X be uncountable and define for all E ⊆ X

µ(E) =

{
0, if E is countable,
+∞, if E is uncountable.

Prove that µ is a measure on (X,P(X)) which is not semifinite.

7. Let (X,Σ, µ) be a complete measure space. If A ∈ Σ, B ⊆ X and
µ(A4B) = 0, prove that B ∈ Σ and µ(B) = µ(A).

8. Let µ be a finitely additive measure on the measurable space (X,Σ).
(i) Prove that µ is a measure if and only if it is continuous from below.
(ii) If µ(X) < +∞, prove that µ is a measure if and only if it is continuous
from above.
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9. Let (X,Σ, µ) be a measure space and A1, A2, . . . ∈ Σ. Prove that (see
Exercise 1.6.1)
(i) µ(lim infn→+∞An) ≤ lim infn→+∞ µ(An),
(ii) lim supn→+∞ µ(An) ≤ µ(lim supn→+∞An), if µ(∪+∞n=1An) < +∞,

(iii) µ(lim supn→+∞An) = 0, if
∑+∞
n=1 µ(An) < +∞.

10. Increasing limits of measures are measures.

Let (µn) be a sequence of measures on (X,Σ) which is increasing. Namely,
µn(E) ≤ µn+1(E) for all E ∈ Σ and all n. We define

µ(E) = lim
n→+∞

µn(E) , E ∈ Σ.

Prove that µ is a measure on (X,Σ).

11. The inclusion-exclusion formula.

Let (X,Σ, µ) be a measure space. Prove that for all n and A1, . . . , An ∈ Σ

µ(∪nj=1Aj) +
∑

k even

∑
1≤i1<···<ik≤n

µ(Ai1 ∩ · · · ∩Aik)

=
∑
k odd

∑
1≤i1<···<ik≤n

µ(Ai1 ∩ · · · ∩Aik).

12. Let I be a set of indices and a, b : I → [0,+∞].
(i) Prove that

∑
i∈I ai = 0 if and only if ai = 0 for all i ∈ I.

(ii) If J = {i ∈ I | ai > 0}, prove that
∑
i∈I ai =

∑
i∈J ai.

(iii) Prove that, for all κ ∈ [0,+∞),∑
i∈I

κai = κ
∑
i∈I

ai .

(consider 0 · (+∞) = 0).
(iv) Prove that ∑

i∈I
(ai + bi) =

∑
i∈I

ai +
∑
i∈I

bi .

13. Tonelli’s Theorem for sums.

Let I, J be two sets of indices and a : I×J → [0,+∞]. Using Proposition
2.6, prove that∑

i∈I

(∑
j∈J

ai,j
)

=
∑

(i,j)∈I×J

ai,j =
∑
j∈J

(∑
i∈I

ai,j
)
.

Recognize as a special case the∑
i∈I

(ai + bi) =
∑
i∈I

ai +
∑
i∈I

bi

for every a, b : I → [0,+∞] (see Exercise 2.6.12).
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14. Let X be non-empty and consider the point-mass distribution µ defined
by the function a : X → [0,+∞]. Prove that
(i) µ is semifinite if and only if ax < +∞ for every x ∈ X,
(ii) µ is σ-finite if and only if ax < +∞ for every x ∈ X and the set
{x ∈ X | ax > 0} is countable.

15. Characterisation of point-mass distributions.

Let X 6= ∅. Prove that every measure µ on (X,P(X)) is a point-mass
distribution.

16. The push-forward of a measure.

Let (X,Σ, µ) be a measure space and f : X → Y . We consider the σ-
algebra Σ′ = {B ⊆ Y | f−1(B) ∈ Σ}, the push-forward of Σ by f on Y
(see Exercise 1.6.7). We define

µ′(B) = µ(f−1(B)) , B ∈ Σ′.

Prove that µ′ is a measure on (Y,Σ′). It is called the push-forward of
µ by f on Y .

17. The pull-back of a measure.

Let (Y,Σ′, µ′) be a measure space and f : X → Y be one-to-one and onto
Y . We consider the σ-algebra Σ = {f−1(B) |B ∈ Σ′}, the pull-back of Σ′

by f on X (see Exercise 1.6.8). We define

µ(A) = µ′(f(A)) , A ∈ Σ.

Prove that µ is a measure on (X,Σ). It is called the pull-back of µ′ by
f on X.

18. Let (X,Σ, µ) be a measure space.
(i) If A,B ∈ Σ and µ(A4B) = 0, prove that µ(A) = µ(B).
(ii) We define A ∼ B if A,B ∈ Σ and µ(A4B) = 0. Prove that ∼ is an
equivalence relation on Σ.

We assume that µ(X) < +∞ and define

d(A,B) = µ(A4B) , A,B ∈ Σ.

(iii) Prove that d is a pseudometric on Σ. This means: 0 ≤ d(A,B) < +∞,
d(A,B) = d(B,A) and d(A,C) ≤ d(A,B) + d(B,C) for all A,B,C ∈ Σ.
(iv) On the set Σ/ ∼ of all equivalence classes we define

d([A], [B]) = d(A,B) = µ(A4B) , [A], [B] ∈ Σ/ ∼ .

Prove that d([A], [B]) is well defined and that d is a metric on Σ/ ∼.

19. Let µ be a semifinite measure on the measurable space (X,Σ). Prove that
for every E ∈ Σ with µ(E) = +∞ and every M > 0 there is an F ∈ Σ so
that F ⊆ E and M < µ(F ) < +∞.
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20. The saturation of a measure space.

Let (X,Σ, µ) be a measure space. We say that E ⊆ X belongs locally
to Σ if E ∩A ∈ Σ for all A ∈ Σ with µ(A) < +∞. We define

Σ̃ = {E ⊆ X |E belongs locally to Σ}.

(i) Prove that Σ ⊆ Σ̃ and that Σ̃ is a σ-algebra. If Σ = Σ̃, then (X,Σ, µ)
is called saturated.
(ii) If µ is σ-finite, prove that (X,Σ, µ) is saturated.

We define

µ̃(E) =

{
µ(E), if E ∈ Σ,

+∞, if E ∈ Σ̃ \ Σ.

(iii) Prove that µ̃ is a measure on (X, Σ̃), and, hence, (X, Σ̃, µ̃) is an
extension of (X,Σ, µ).

(iv) If (X,Σ, µ) is complete, prove that (X, Σ̃, µ̃) is also complete.

(v) Prove that (X, Σ̃, µ̃) is a saturated measure space.

(X, Σ̃, µ̃) is called the saturation of (X,Σ, µ).

21. The direct sum of measure spaces.

Let {(Xi,Σi, µi)}i∈I be a collection of measure spaces, where the Xi’s are
pairwise disjoint. We define

X = ∪i∈IXi, Σ = {E ⊆ X |E ∩Xi ∈ Σi for all i ∈ I}

and
µ(E) =

∑
i∈I

µi(E ∩Xi)

for all E ∈ Σ.
(i) Prove that (X,Σ, µ) is a measure space. It is called the direct sum
of {(Xi,Σi, µi)}i∈I and it is denoted

⊕i∈I(Xi,Σi, µi).

(ii) Prove that µ is σ-finite if and only if the set J = {i ∈ I |µi 6= o} is
countable and µi is σ-finite for all i ∈ J .
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Chapter 3

Outer measures

3.1 Outer measures.

Definition 3.1 Let X be a non-empty set. A function µ∗ : P(X)→ [0,+∞] is
called outer measure on X if
(i) µ∗(∅) = 0,
(ii) µ∗(A) ≤ µ∗(B) if A ⊆ B ⊆ X,
(iii) µ∗(∪+∞n=1An) ≤

∑+∞
n=1 µ

∗(An) for all sequences (An) of subsets of X.

Thus, an outer measure on X is defined for all subsets of X, it is monotone
and σ-subadditive. An outer measure is also finitely subadditive, because for
every A1, . . . , AN ⊆ X we set An = ∅ for all n > N and get µ∗(∪Nn=1An) =

µ∗(∪+∞n=1An) ≤
∑+∞
n=1 µ

∗(An) =
∑N
n=1 µ

∗(An).
We shall see now how a measure is constructed from an outer measure.

Definition 3.2 Let µ∗ be an outer measure on the non-empty set X. We say
that the set A ⊆ X is µ∗-measurable if

µ∗(E ∩A) + µ∗(E ∩Ac) = µ∗(E)

for all E ⊆ X.
We denote Σµ∗ the collection of all µ∗-measurable subsets of X.

Thus, a set is µ∗-measurable if and only if it decomposes every subset of X into
two disjoint pieces whose outer measures add to give the outer measure of the
subset.

Observe that E = (E ∩ A) ∪ (E ∩ Ac) and, by the subadditivity of µ∗, we
have µ∗(E) ≤ µ∗(E ∩A) +µ∗(E ∩Ac). Therefore, in order to check the validity
of the equality in the definition, it is enough to check the inequality

µ∗(E ∩A) + µ∗(E ∩Ac) ≤ µ∗(E).

Furthermore, it is enough to check this last inequality in the case µ∗(E) < +∞.
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Theorem 3.1 (Caratheodory) If µ∗ is an outer measure on X, then the collec-
tion Σµ∗ of all µ∗-measurable subsets of X is a σ-algebra. If we denote µ the
restriction of µ∗ on Σµ∗ , then (X,Σµ∗ , µ) is a complete measure space.

Proof: µ∗(E ∩ ∅) + µ∗(E ∩ ∅c) = µ∗(∅) + µ∗(E) = µ∗(E) and, thus, ∅ ∈ Σµ∗ .
If A ∈ Σµ∗ , then µ∗(E∩Ac)+µ∗(E∩(Ac)c) = µ∗(E∩A)+µ∗(E∩Ac) = µ∗(E)

for all E ⊆ X. Therefore, Ac ∈ Σµ∗ and Σµ∗ is closed under complements.
Let now A,B ∈ Σµ∗ and take an arbitrary E ⊆ X. To check A ∪ B ∈ Σµ∗

write µ∗(E∩ (A∪B))+µ∗(E∩ (A∪B)c) = µ∗(E∩ (A∪B))+µ∗(E∩ (Ac∩Bc))
and use the subadditivity of µ∗ for the first term to get ≤ µ∗(E ∩ (A ∩ Bc)) +
µ∗(E ∩ (B ∩Ac)) +µ∗(E ∩ (A∩B)) +µ∗(E ∩ (Ac ∩Bc)). Now combine the first
and third term and also the second and fourth term with the µ∗-measurability
of B to get = µ∗(E∩A)+µ∗(E∩Ac), which is = µ∗(E) by the µ∗-measurability
of A.

This proves that A ∪ B ∈ Σµ∗ and by induction we get that Σµ∗ is closed
under finite unions. Since it is closed under complements, Σµ∗ is an algebra of
subsets of X and, hence, it is also closed under finite intersections and under
set-theoretic differences.

Let A,B ∈ Σµ∗ with A∩B = ∅ and get for all E ⊆ X that µ∗(E∩(A∪B)) =
µ∗([E ∩ (A∪B)]∩A) +µ∗([E ∩ (A∪B)]∩Ac) = µ∗(E ∩A) +µ∗(E ∩B). By an
obvious induction we find that, if A1, . . . , AN ∈ Σµ∗ are pairwise disjoint and
E ⊆ X is arbitrary, then µ∗(E∩(A1∪· · ·∪AN )) = µ∗(E∩A1)+· · ·+µ∗(E∩AN ).
If now A1, A2, . . . ∈ Σµ∗ are pairwise disjoint and E ⊆ X is arbitrary, then, for
allN , µ∗(E∩A1)+· · ·+µ∗(E∩AN ) = µ∗(E∩(A1∪· · ·∪AN )) ≤ µ∗(E∩(∪+∞n=1An))

by the monotonicity of µ∗. Hence
∑+∞
n=1 µ

∗(E∩An) ≤ µ∗(E∩(∪+∞n=1An)). Since
the opposite inequality is immediate after the σ-subadditivity of µ∗, we conclude
with the basic equality

+∞∑
n=1

µ∗(E ∩An) = µ∗
(
E ∩ (∪+∞n=1An)

)
for all pairwise disjoint A1, A2, . . . ∈ Σµ∗ and all E ⊆ X.

If A1, A2, . . . ∈ Σµ∗ are pairwise disjoint and E ⊆ X is arbitrary, then, since
Σµ∗ is closed under finite unions, ∪Nn=1An ∈ Σµ∗ for all N . Hence µ∗(E) =

µ∗(E∩(∪Nn=1An))+µ∗(E∩(∪Nn=1An)c) ≥
∑N
n=1 µ

∗(E∩An)+µ∗(E∩(∪+∞n=1An)c),
where we used the basic equality for the first term and the monotonicity of µ∗

for the second. Since N is arbitrary, µ∗(E) ≥
∑+∞
n=1 µ

∗(E ∩ An) + µ∗(E ∩
(∪+∞n=1An)c) = µ∗(E ∩ (∪+∞n=1An)) + µ∗(E ∩ (∪+∞n=1An)c) by the basic equality.

This means that ∪+∞n=1An ∈ Σµ∗ .
If A1, A2, . . . ∈ Σµ∗ are not necessarily pairwise disjoint, we write B1 = A1

and Bn = An \ (A1 ∪ · · · ∪ An−1) for all n ≥ 2. Since Σµ∗ is an algebra,
all Bn’s belong to Σµ∗ and they are pairwise disjoint. By the last paragraph,
∪+∞n=1An = ∪+∞n=1Bn ∈ Σµ∗ . We conclude that Σµ∗ is a σ-algebra.

We now define µ : Σµ∗ → [0,+∞] as the restriction of µ∗, namely

µ(A) = µ∗(A) , A ∈ Σµ∗ .
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Using E = X in the basic equality, we get that for all pairwise disjoint
A1, A2, . . . ∈ Σµ∗ ,

+∞∑
n=1

µ(An) =

+∞∑
n=1

µ∗(An) = µ∗(∪+∞n=1An) = µ(∪+∞n=1An).

Since µ(∅) = µ∗(∅) = 0, we see that (X,Σµ∗ , µ) is a measure space.
Let A ∈ Σµ∗ with µ(A) = 0 and B ⊆ A. Then µ∗(B) ≤ µ∗(A) = µ(A) = 0

and for all E ⊆ X we get µ∗(E ∩ B) + µ∗(E ∩ Bc) ≤ µ∗(B) + µ∗(E) = µ∗(E).
Therefore, B ∈ Σµ∗ and µ is complete.

As a by-product of the proof of Caratheodory’s theorem we get the useful

Proposition 3.1 Let µ∗ be an outer measure on X.
(i) If B ⊆ X has µ∗(B) = 0, then B is µ∗-measurable.
(ii) For all pairwise disjoint µ∗-measurable A1, A2, . . . and all E ⊆ X

+∞∑
n=1

µ∗(E ∩An) = µ∗
(
E ∩ (∪+∞n=1An)

)
.

Proof: The proof of (i) is in the last part of the proof of the theorem of
Caratheodory and (ii) is the basic equality in the same proof.

The most widely used method of producing measures is based on the Theo-
rem of Caratheodory. One starts with an outer measure µ∗ on X and produces
the measure space (X,Σµ∗ , µ). There are mainly two methods of constructing
outer measures. One method starts with a (more or less) arbitrary collection C
of subsets of X and a function τ on this collection and it will be described in
the next section. The second method will be studied much later and its starting
point is a continuous linear functional on a space of continuous functions. The
central result related to this method is the important F. Riesz Representation
Theorem.

There is another method of producing measures. This is the so-called Daniell
method which we shall describe also later.

3.2 Construction of outer measures.

Theorem 3.2 Let C be a collection of subsets of X, containing at least the ∅,
and τ : C → [0,+∞] be an arbitrary function with τ(∅) = 0. We define

µ∗(E) = inf
{+∞∑
j=1

τ(Cj) |C1, C2, . . . ∈ C so that E ⊆ ∪+∞j=1Cn

}
for all E ⊆ X, where we agree that inf ∅ = +∞.

Then, µ∗ is an outer measure on X.
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It should be clear that, if there is at least one countable covering of E with
elements of C, then the set {

∑+∞
j=1 τ(Cj) |C1, C2, . . . ∈ C so that E ⊆ ∪+∞j=1Cn}

is non-empty. If there is no countable covering of E with elements of C, then
this set is empty and we take µ∗(E) = inf ∅ = +∞.

Proof: For ∅ the covering ∅ ⊆ ∅ ∪ ∅ ∪ · · · implies µ∗(∅) ≤ τ(∅) + τ(∅) + · · · = 0
and, hence, µ∗(∅) = 0.

Now, let A ⊆ B ⊆ X. If there is no countable covering of B by elements
of C, then µ∗(B) = +∞ and the inequality µ∗(A) ≤ µ∗(B) is obviously true.
Otherwise, we take an arbitrary covering B ⊆ ∪+∞j=1Cn with C1, . . . ∈ C. Then

we also have A ⊆ ∪+∞j=1Cn and, by the definition of µ∗(A), we get µ∗(A) ≤∑+∞
j=1 τ(Cj). Taking the infimum of the right side, we find µ∗(A) ≤ µ∗(B).

Finally, let’s prove µ∗(∪+∞n=1An) ≤
∑+∞
n=1 µ

∗(An) for all A1, A2, . . . ⊆ X.
If the right side is = +∞, the inequality is clear. Therefore we assume that
the right side is < +∞ and, hence, that µ∗(An) < +∞ for all n. By the
definition of each µ∗(An), for every ε > 0 there exist Cn,1, Cn,2, . . . ∈ C so that

An ⊆ ∪+∞j=1Cn,j and
∑+∞
j=1 τ(Cn,j) < µ∗(An) + ε

2n .

Then ∪+∞n=1An ⊆ ∪(n,j)∈N×NCn,j and, using an arbitrary enumeration of

N × N and Proposition 2.3, we get by the definition of µ∗(∪+∞n=1An) that
µ∗(∪+∞n=1An) ≤

∑
(n,j)∈N×N τ(Cn,j). Proposition 2.6 implies µ∗(∪+∞n=1An) ≤∑+∞

n=1(
∑+∞
j=1 τ(Cn,j)) <

∑+∞
n=1(µ∗(An) + ε

2n ) =
∑+∞
n=1 µ

∗(An) + ε. Since ε is

arbitrary, we conclude that µ∗(∪+∞n=1An) ≤
∑+∞
n=1 µ

∗(An).

3.3 Exercises.

1. Let µ∗ be an outer measure on X and Y ⊆ X. Define µ∗Y (E) = µ∗(E∩Y )
for all E ⊆ X and prove that µ∗Y is an outer measure on X and that Y is
µ∗Y -measurable.

2. Let µ∗, µ∗1, µ
∗
2 be outer measures on X and κ ∈ [0,+∞). Prove that

κµ∗, µ∗1 + µ∗2 and max{µ∗1, µ∗2} are outer measures on X, where these are
defined by the formulas

(κµ∗)(E) = κ · µ∗(E), (µ∗1 + µ∗2)(E) = µ∗1(E) + µ∗2(E)

(consider 0 · (+∞) = 0) and

max{µ∗1, µ∗2}(E) = max{µ∗1(E), µ∗2(E)}

for all E ⊆ X.

3. Let X be a non-empty set and consider µ∗(∅) = 0 and µ∗(E) = 1 if
∅ 6= E ⊆ X. Prove that µ∗ is an outer measure on X and find all the
µ∗-measurable subsets of X.

4. For every E ⊆ N define κ(E) = lim supn→+∞
1
n card(E∩{1, 2, . . . , n}). Is

κ an outer measure on N?
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5. Let (µ∗n) be a sequence of outer measures on X. Let µ∗(E) = supn µ
∗
n(E)

for all E ⊆ X and prove that µ∗ is an outer measure on X.

6. Let µ∗ be an outer measure on X. If A1, A2, . . . ∈ Σµ∗ and An ↑ A, prove
that µ∗(An ∩ E) ↑ µ∗(A ∩ E) for every E ⊆ X.

7. Extension of a measure, I.

Let (X,Σ0, µ0) be a measure space. For every E ⊆ X we define

µ∗(E) = inf
{+∞∑
j=1

µ0(Aj) |A1, A2, . . . ∈ Σ0, E ⊆ ∪+∞j=1Aj

}
,

(i) Prove that µ∗ is an outer measure on X. We say that µ∗ is induced
by the measure µ0.
(ii) Prove that µ∗(E) = min

{
µ0(A) |A ∈ Σ0, E ⊆ A}.

(iii) If (X,Σµ∗ , µ) is the complete measure space which results from µ∗ by
the theorem of Caratheodory (i.e. µ is the restriction of µ∗ on Σµ∗), prove
that (X,Σµ∗ , µ) is an extension of (X,Σ0, µ0).
(iv) Assume that E ⊆ X and A1, A2, . . . ∈ Σ0 with E ⊆ ∪+∞j=1Aj and
µ(Aj) < +∞ for all j. Prove that E ∈ Σµ∗ if and only if there is some
A ∈ Σ0 so that E ⊆ A and µ∗(A \ E) = 0.
(v) If µ is σ-finite, prove that (X,Σµ∗ , µ) is the completion of (X,Σ0, µ0).
(vi) Let X be an uncountable set, Σ0 = {A ⊆ X |A is countable or Ac is
countable} and µ0(A) = ](A) for every A ∈ Σ0. Prove that (X,Σ0, µ0) is
a complete measure space and that Σµ∗ = P(X). Thus, the result of (v)
does not hold in general.
(vii) Prove that (X,Σµ∗ , µ) is always the saturation (see Exercise 2.6.20)
of the completion of (X,Σ0, µ0).

8. Measures on algebras.

Let A be an algebra of subsets of X. We say that µ : A → [0,+∞] is a
measure on (X,A) if
(i) µ(∅) = 0 and
(ii) µ(∪+∞j=1Aj) =

∑+∞
j=1 µ(Aj) for all pairwise disjoint A1, A2, . . . ∈ A with

∪+∞j=1Aj ∈ A.

Prove that if µ is a measure on (X,A), where A is an algebra of subsets of
X, then µ is finitely additive, monotone, σ-subadditive, continuous from
below and continuous from above (provided that, every time a countable
union or countable intersection of elements of A appears, we assume that
this is also an element of A).

9. Extension of a measure, II.

Let A0 be an algebra of subsets of the non-empty X and µ0 be a measure
on (X,A0) (see Exercise 3.3.8). For every E ⊆ X we define

µ∗(E) = inf
{+∞∑
j=1

µ0(Aj) |A1, A2, . . . ∈ A0, E ⊆ ∪+∞j=1Aj

}
,
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(i) Prove that µ∗ is an outer measure on X. We say that µ∗ is induced
by the measure µ0.
(ii) Prove that µ∗(A) = µ0(A) for every A ∈ A0.
(iii) Prove that every A ∈ A0 is µ∗-measurable and hence Σ(A0) ⊆ Σµ∗ .

Thus, if (after Caratheodory’s theorem) µ is the restriction of µ∗ on Σµ∗ ,
the measure space (X,Σµ∗ , µ) is a complete measure space which extends
(X,A0, µ0).
If we consider the restriction (X,Σ(A0), µ), then this is also a measure
space (perhaps not complete) which extends (X,A0, µ0).

(iv) If (X,Σ(A0), ν) is another measure space which is an extension of
(X,A0, µ0), prove that µ(E) ≤ ν(E) for all E ∈ Σ(A0) with equality in
case µ(E) < +∞.
(v) If the original (X,A0, µ0) is σ-finite, prove that µ is the unique measure
on (X,Σ(A0)) which is an extension of µ0 on (X,A0).

10. Regular outer measures.

Let µ∗ be an outer measure on X. We say that µ∗ is a regular outer
measure if for every E ⊆ X there is A ∈ Σµ∗ so that E ⊆ A and
µ∗(E) = µ(A) (where µ is the usual restriction of µ∗ on Σµ∗).

Prove that µ∗ is a regular outer measure if and only if µ∗ is induced by
some measure on some algebra of subsets of X (see Exercise 3.3.9).

11. Measurable covers.

Let µ∗ be an outer measure on X and µ be the induced measure (the
restriction of µ∗) on Σµ∗ . If E,G ⊆ X we say that G is a µ∗-measurable
cover of E if E ⊆ G, G ∈ Σµ∗ and for all A ∈ Σµ∗ for which A ⊆ G \ E
we have µ(A) = 0.
(i) If G1, G2 are µ∗-measurable covers of E, prove that µ(G14G2) = 0
and hence µ(G1) = µ(G2).
(ii) Suppose E ⊆ G, G ∈ Σµ∗ and µ∗(E) = µ(G). If µ∗(E) < +∞, prove
that G is a µ∗-measurable cover of E.

12. We say E ⊆ R has an infinite condensation point if E has uncount-
ably many points outside every bounded interval. Define µ∗(E) = 0 if E
is countable, µ∗(E) = 1 if E is uncountable and does not have an infinite
condensation point and µ∗(E) = +∞ if E has an infinite condensation
point. Prove that µ∗ is an outer measure on R and that A ⊆ R is µ∗-
measurable if and only if either A or Ac is countable. Does every E ⊆ R
have a µ∗-measurable cover? Is µ∗ a regular outer measure? (See exercises
3.3.10 and 3.3.11).

13. Consider the collection C of subsets of N which contains ∅ and all the
two-point subsets of N. Define τ(∅) = 0 and τ(C) = 2 for all other C ∈ C.
Calculate µ∗(E) for all E ⊆ N, where µ∗ is the outer measure defined as
in Theorem 3.2, and find all the µ∗-measurable subsets of N.
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Chapter 4

Lebesgue measure on Rn

4.1 Volume of intervals.

We consider the function voln(S) defined for intervals S in Rn, which is just
the product of the lengths of the edges of S: the so-called (n-dimensional)
volume of S. In this section we shall investigate some properties of the volume
of intervals.

Lemma 4.1 Let P = (a1, b1] × · · · × (an, bn] and, for each k = 1, . . . , n, let

ak = c
(0)
k < c

(1)
k < · · · < c

(mk)
k = bk. If we set Pi1,...,in = (c

(i1−1)
1 , c

(i1)
1 ] × · · · ×

(c
(in−1)
n , c

(in)
n ] for 1 ≤ i1 ≤ m1, . . . , 1 ≤ in ≤ mn, then

voln(P ) =
∑

1≤i1≤m1,...,1≤in≤mn

voln(Pi1,...,in).

Proof: For the second equality in the following calculation we use the distribu-
tive property of multiplication of sums:∑

1≤i1≤m1,...,1≤in≤mn

voln(Pi1,...,in)

=
∑

1≤i1≤m1,...,1≤in≤mn

(c
(i1)
1 − c(i1−1)1 ) · · · (c(in)n − c(in−1)n )

=

m1∑
i1=1

(c
(i1)
1 − c(i1−1)1 ) · · ·

mn∑
in=1

(c(in)n − c(in−1)n )

= (b1 − a1) · · · (bn − an) = voln(P ).

Referring to the situation described by Lemma 4.1 we shall use the expres-
sion: the intervals Pi1,...,in result from P by subdivision of its edges.

Lemma 4.2 Let P, P1, . . . , Pl be open-closed intervals and P1, . . . , Pl be pair-
wise disjoint. If P = P1 ∪ · · · ∪ Pl, then voln(P ) = voln(P1) + · · ·+ voln(Pl).
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Proof: Let P = (a1, b1]× · · · × (an, bn] and Pj = (a
(j)
1 , b

(j)
1 ]× · · · × (a

(j)
n , b

(j)
n ] for

every j = 1, . . . , l.
For every k = 1, . . . , n we set

{c(0)k , . . . , c
(mk)
k } = {a(1)k , . . . , a

(l)
k , b

(1)
k , . . . , b

(l)
k },

so that ak = c
(0)
k < c

(1)
k < · · · < c

(mk)
k = bk. This simply means that we rename

the numbers a
(1)
k , . . . , a

(l)
k , b

(1)
k , . . . , b

(l)
k in increasing order and so that there are

no repetitions. Of course, the smallest of these numbers is ak and the largest is
bk, otherwise the P1, . . . , Pl would not cover P .

It is obvious that

i. every interval (a
(j)
k , b

(j)
k ] is the union of some successive among the intervals

(c
(0)
k , c

(1)
k ], . . . , (c

(mk−1)
k , c

(mk)
k ].

We now set

Pi1,...,in = (c
(i1−1)
1 , c

(i1)
1 ]× · · · × (c(in−1)n , c(in)n ]

for 1 ≤ i1 ≤ m1, . . . , 1 ≤ in ≤ mn.
It is clear that the Pi1,...,in ’s result from P by subdivision of its edges. It is

also almost clear that

ii. the intervals among the Pi1,...,in which belong to a Pj result from it by sub-
division of its edges (this is due to i).

iii. every Pi1,...,in is included in exactly one from P1, . . . , Pl (because the P1, . . . , Pl
are disjoint and cover P ).

We now calculate, using Lemma 4.1 for the first and third equality and
grouping together the intervals Pi1,...,in which are included in the same Pj for
the second equality:

voln(P ) =
∑

1≤i1≤m1,...,1≤in≤mn

voln(Pi1,...,in)

=

l∑
j=1

∑
Pi1,...,in⊆Pj

voln(Pi1,...,in)

=

l∑
j=1

voln(Pj).

Lemma 4.3 Let P, P1, . . . , Pl be open-closed intervals and P1, . . . , Pl be pair-
wise disjoint. If P1 ∪ · · · ∪ Pl ⊆ P , then voln(P1) + · · ·+ voln(Pl) ≤ voln(P ).

Proof: We know from Proposition 1.11 that P \ (P1 ∪ · · · ∪ Pl) = P ′1 ∪ · · · ∪ P ′k
for some pairwise disjoint open-closed intervals P ′1, . . . , P

′
k. Then P = P1∪ · · ·∪

Pl ∪ P ′1 ∪ · · · ∪ P ′k and Lemma 4.2 now implies that voln(P ) = voln(P1) + · · ·+
voln(Pl) + voln(P ′1) + · · ·+ voln(P ′k) ≥ voln(P1) + · · ·+ voln(Pl).
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Lemma 4.4 Let P, P1, . . . , Pl be open-closed intervals. If P ⊆ P1 ∪ · · · ∪ Pl,
then voln(P ) ≤ voln(P1) + · · ·+ voln(Pl).

Proof: We first write P = P ′1∪· · ·∪P ′l where P ′j = Pj∩P are open-closed intervals

included in P . We then write P = P ′1 ∪ (P ′2 \P ′1)∪ · · · ∪
(
P ′l \ (P ′1 ∪ · · · ∪P ′l−1)

)
.

Each of these l pairwise disjoint sets can, by Proposition 1.11, be written as a
finite union of pairwise disjoint open-closed intervals: P ′1 = P ′1 and

P ′j \ (P ′1 ∪ · · · ∪ P ′j−1) = P
(j)
1 ∪ · · · ∪ P (j)

mj

for 2 ≤ j ≤ l.
Lemma 4.2 for the equality and Lemma 4.3 for the two inequalities imply

voln(P ) = voln(P ′1) +

l∑
j=2

( mj∑
m=1

voln(P (j)
m )
)

≤ voln(P ′1) +

l∑
j=2

voln(P ′j) ≤
l∑

j=1

voln(Pj).

Lemma 4.5 Let Q be a closed interval and R1, . . . , Rl be open intervals so that
Q ⊆ R1 ∪ · · · ∪Rl. Then voln(Q) ≤ voln(R1) + · · ·+ voln(Rl).

Proof: Let P and Pj be the open-closed intervals with the same edges as Q and,
respectively, Rj . Then P ⊆ Q ⊆ R1 ∪ · · · ∪ Rl ⊆ P1 ∪ · · · ∪ Pl and by Lemma
4.4, voln(Q) = voln(P ) ≤ voln(P1) + · · ·+ voln(Pl) = voln(R1) + · · ·+ voln(Rl).

4.2 Lebesgue measure in Rn.

Consider the collection C of all open intervals in Rn and the τ : C → [0,+∞]
defined by

τ(R) = voln(R) = (b1 − a1) · · · (bn − an)

for every R = (a1, b1)× · · · × (an, bn) ∈ C.
If we define

m∗n(E) = inf
{+∞∑
j=1

voln(Rj) |R1, R2, . . . ∈ C so that E ⊆ ∪+∞j=1Rj

}
for all E ⊆ Rn, then Theorem 3.2 implies that m∗n is an outer measure on Rn.
We observe that, since Rn = ∪+∞k=1(−k, k) × · · · × (−k, k), for every E ⊆ Rn

there is a countable covering of E by elements of C.
Now Theorem 3.1 implies that the collection

Ln = Σm∗n

of m∗n-measurable sets is a σ-algebra of subsets of Rn and, if mn is defined as
the restriction of m∗n on Ln, then mn is a complete measure on (X,Ln).
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Definition 4.1 (i) Ln is called the σ-algebra of Lebesgue sets in Rn,
(ii) m∗n is called the (n-dimensional) Lebesgue outer measure on Rn and
(iipai) mn is called the (n-dimensional) Lebesgue measure on Rn.

Our aim now is to study properties of Lebesgue sets in Rn and especially
their relation with the Borel sets or even more special sets in Rn, like open sets
or closed sets or unions of intervals.

Theorem 4.1 Every interval S in Rn is a Lebesgue set and

mn(S) = voln(S).

Proof: Let Q = [a1, b1]× · · · × [an, bn].
Since Q ⊆ (a1 − ε, b1 + ε) × · · · × (an − ε, bn + ε), we get by the definition

of m∗n that m∗n(Q) ≤ voln((a1 − ε, b1 + ε)× · · · × (an − ε, bn + ε)) = (b1 − a1 +
2ε) · · · (bn − an + 2ε). Since ε > 0 is arbitrary, we find m∗n(Q) ≤ voln(Q).

Now take any covering, Q ⊆ R1 ∪ R2 ∪ · · · of Q by open intervals. Since Q
is compact, there is l so that Q ⊆ R1 ∪ · · · ∪ Rl and Lemma 4.5 implies that
voln(Q) ≤ voln(R1) + · · · + voln(Rl) ≤

∑+∞
k=1 voln(Rk). Taking the infimum of

the right side, we get voln(Q) ≤ m∗n(Q) and, hence,

m∗n(Q) = voln(Q).

Now take any general interval S and let a1, b1, . . . , an, bn be the end-points of
its edges. Then Q′ ⊆ S ⊆ Q′′, where Q′ = [a1+ε, b1−ε]×· · ·×[an+ε, bn−ε] and
Q′′ = [a1 − ε, b1 + ε]× · · · × [an − ε, bn + ε]. Hence m∗n(Q′) ≤ m∗n(S) ≤ m∗n(Q′′),
namely (b1−a1−2ε) · · · (bn−an−2ε) ≤ m∗n(S) ≤ (b1−a1+2ε) · · · (bn−an+2ε).
Since ε > 0 is arbitrary, we find

m∗n(S) = voln(S).

Consider an open-closed interval P and an open interval R. Take the open-
closed interval PR with the same edges as R. Then m∗n(R∩P ) ≤ m∗n(PR∩P ) =
voln(PR ∩ P ) and m∗n(R ∩ P c) ≤ m∗n(PR ∩ P c). Now Proposition 1.11 implies
PR∩P c = PR \P = P ′1∪· · ·∪P ′k for some pairwise disjoint open-closed intervals
P ′1, . . . , P

′
k. Hence m∗n(R ∩ P c) ≤ m∗n(P ′1) + · · · + m∗n(P ′k) = voln(P ′1) + · · · +

voln(P ′k). Altogether, m∗n(R ∩ P ) + m∗n(R ∩ P c) ≤ voln(PR ∩ P ) + voln(P ′1) +
· · ·+ voln(P ′k) and, by Lemma 4.2, this is = voln(PR) = voln(R). We have just
proved that

m∗n(R ∩ P ) +m∗n(R ∩ P c) ≤ voln(R).

Consider any open-closed interval P and any E ⊆ Rn with m∗n(E) < +∞.
Take, for arbitrary ε > 0, a covering E ⊆ ∪+∞j=1Rj of E by open intervals so

that
∑+∞
j=1 voln(Rj) < m∗n(E) + ε. This implies m∗n(E ∩ P ) + m∗n(E ∩ P c) ≤∑+∞

j=1m
∗
n(Rj ∩ P ) +

∑+∞
j=1m

∗
n(Rj ∩ P c) =

∑+∞
j=1[m∗n(Rj ∩ P ) + m∗n(Rj ∩ P c)]

which, by the last result, is ≤
∑+∞
j=1 voln(Rj) < m∗n(E) + ε. This implies that

m∗n(E ∩ P ) +m∗n(E ∩ P c) ≤ m∗n(E)
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and P is a Lebesgue set.
If T is any interval at least one of whose edges is a single point, then m∗n(T ) =

voln(T ) = 0 and, by Proposition 3.1, T is a Lebesgue set. Now, any interval
S differs from the open-closed interval P , which has the same sides as S, by
finitely many (at most 2n) T ’s, and hence S is also a Lebesgue set.

Theorem 4.2 Lebesgue measure is σ-finite but not finite.

Proof: We write Rn = ∪+∞k=1Qk with Qk = [−k, k] × · · · × [−k, k], where
mn(Qk) = voln(Qk) < +∞ for all k. On the other hand, for all k, mn(Rn) ≥
mn(Qk) = (2k)n and, hence, mn(Rn) = +∞.

Theorem 4.3 All Borel sets in Rn are Lebesgue sets.

Proof: Theorem 4.1 says that, if E is the collection of all intervals in Rn, then
E ⊆ Ln. But then BRn = Σ(E) ⊆ Ln.

Therefore all open and all closed subsets of Rn are Lebesgue sets.

Theorem 4.4 Let E ⊆ Rn. Then
(i) E ∈ Ln if and only if there is A, a countable intersection of open sets, so
that E ⊆ A and m∗n(A \ E) = 0.
(ii) E ∈ Ln if and only if there is B, a countable union of compact sets, so that
B ⊆ E and m∗n(E \B) = 0.

Proof: (i) One direction is easy. If there is A, a countable intersection of open
sets, so that E ⊆ A and m∗n(A \ E) = 0, then, by Proposition 3.1, A \ E ∈ Ln
and, thus, E = A \ (A \ E) ∈ Ln.

To prove the other direction consider, after Theorem 4.2, Y1, Y2, . . . ∈ Ln so
that Rn = ∪+∞k=1Yk and mn(Yk) < +∞ for all k. Define Ek = E ∩ Yk so that
E = ∪+∞k=1Ek and mn(Ek) < +∞ for all k.

For all k and arbitrary l ∈ N find a covering Ek ⊆ ∪+∞j=1R
(k,l)
j by open

intervals so that
∑+∞
j=1 voln(R

(k,l)
j ) < mn(Ek) + 1

l2k
and set U (k,l) = ∪+∞j=1R

(k,l)
j .

Then Ek ⊆ U (k,l) and mn(U (k,l)) < mn(Ek) + 1
l2k

, from which

mn(U (k,l) \ Ek) <
1

l2k
.

Now set U (l) = ∪+∞k=1U
(k,l). Then U (l) is open and E ⊆ U (l) and it is trivial

to see that U (l) \ E ⊆ ∪+∞k=1(U (k,l) \ Ek), from which we get

mn(U (l) \ E) ≤
+∞∑
k=1

mn(U (k,l) \ Ek) <

+∞∑
k=1

1

l2k
=

1

l
.

Finally, define A = ∩+∞l=1U
(l) to get E ⊆ A and mn(A\E) ≤ mn(U (l)\E) < 1

l
for all l and, thus,

mn(A \ E) = 0.
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(ii) If B is a countable union of compact sets so that B ⊆ E and m∗n(E \B) = 0,
then, by Proposition 3.1, E \B ∈ Ln and thus E = B ∪ (E \B) ∈ Ln.

Now take E ∈ Ln. Then Ec ∈ Ln and by (i) there is an A, a countable
intersection of open sets, so that Ec ⊆ A and mn(A \ Ec) = 0.

We set B = Ac, a countable union of closed sets, and we get mn(E \ B) =
mn(A \Ec) = 0. Now, let B = ∪+∞j=1Fj , where each Fj is closed. We then write

Fj = ∪+∞k=1Fj,k, where Fj,k = Fj ∩ ([−k, k]×· · ·× [−k, k]) is a compact set. This
proves that B is a countable union of compact sets: B = ∪(j,k)∈N×NFj,k.

Theorem 4.4 says that every Lebesgue set in Rn is, except from a null set,
equal to a Borel set.

Theorem 4.5 (i) mn is the only measure on (Rn,BRn) with mn(P ) = voln(P )
for every open-closed interval P .
(ii) (Rn,Ln,mn) is the completion of (Rn,BRn ,mn).

Proof: (i) If µ is any measure on (Rn,BRn) with µ(P ) = voln(P ) for all
open-closed intervals P , then it is trivial to see that µ(P ) = +∞ for any un-
bounded generalised open-closed interval P : just take any increasing sequence
of open-closed intervals having union P . Therefore µ(∪mj=1Pj) =

∑m
j=1 µ(Pj) =∑m

j=1mn(Pj) = mn(∪mj=1Pj) for all pairwise disjoint open-closed generalised
intervals P1, . . . , Pm. Therefore the measures µ and mn are equal on the alge-
bra A = {∪mj=1Pj |m ∈ N, P1, . . . , Pm pairwise disjoint open-closed generalised
intervals}. By Theorem 2.4, the two measures are equal also on Σ(A) = BRn .
(ii) Let (Rn,BRn ,mn) be the completion of (Rn,BRn ,mn).

By Theorem 4.3, (Rn,Ln,mn) is a complete extension of (Rn,BRn ,mn).
Hence, BRn ⊆ Ln and mn(E) = mn(E) for every E ∈ BRn .

Take any E ∈ Ln and, using Theorem 4.4, find a Borel set B so that B ⊆ E
and mn(E \ B) = 0. Using Theorem 4.4 once more, find a Borel set A so that
(E \B) ⊆ A and mn(A \ (E \B)) = 0. Therefore, mn(A) = mn(A \ (E \B)) +
mn(E \B) = 0.

Hence, we can write E = B ∪L, where B ∈ BRn and L = E \B ⊆ A ∈ BRn

with mn(A) = 0. After Theorem 2.3, we see that E has the form of the typical
element of BRn and, thus, Ln ⊆ BRn . This concludes the proof.

Theorem 4.6 Suppose E ∈ Ln with mn(E) < +∞. For arbitrary ε > 0, there
are pairwise disjoint open intervals R1, . . . , Rl so that mn(E4(R1∪· · ·∪Rl)) < ε.

Proof: We consider a covering E ⊆ ∪+∞j=1R
′
j by open intervals such that∑+∞

j=1 voln(R′j) < mn(E) + ε
2 .

Now we consider the open-closed interval P ′j which has the same edges as

R′j , and then E ⊆ ∪+∞j=1P
′
j and

∑+∞
j=1 voln(P ′j) < mn(E) + ε

2 .

We take m so that
∑+∞
j=m+1 voln(P ′j) <

ε
2 and we observe the inclusions

E \ (P ′1 ∪ · · · ∪P ′m) ⊆ ∪+∞j=m+1P
′
j and (P ′1 ∪ · · · ∪P ′m) \E ⊆

(
∪+∞j=1 P

′
j

)
\E. Thus,

mn(E \ (P ′1∪ · · ·∪P ′m)) ≤
∑+∞
j=m+1 voln(P ′j) <

ε
2 and mn((P ′1∪ · · ·∪P ′m)\E) ≤
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mn(∪+∞j=1P
′
j)−mn(E) < ε

2 . Adding, we find

mn(E4(P ′1 ∪ · · · ∪ P ′m)) < ε.

Proposition 1.11 implies that P ′1 ∪ · · · ∪P ′m = P1 ∪ · · · ∪Pl for some pairwise
disjoint open-closed intervals P1, · · · , Pl and, thus,

mn(E4(P1 ∪ · · · ∪ Pl)) < ε.

We consider Rk to be the open interval with the same edges as Pk so that
∪lk=1Rk ⊆ ∪lk=1Pk and mn((∪lk=1Pk) \ (∪lk=1Rk)) ≤

∑l
k=1mn(Pk \ Rk) = 0.

This, easily, implies that

mn(E4(R1 ∪ · · · ∪Rl)) = mn(E4(P1 ∪ · · · ∪ Pl)) < ε.

4.3 Lebesgue measure and simple transforma-
tions.

Some of the simplest and most important transformations of Rn are the trans-
lations and the linear transformations.

Every y ∈ Rn defines the translation τy : Rn → Rn by the formula

τy(x) = x+ y, x ∈ Rn.

Then τy is an one-to-one transformation of Rn onto Rn and its inverse trans-
formation is τ−y. For every E ⊆ Rn we define

y + E = {y + x |x ∈ E} (= τy(E)).

Every λ > 0 defines the dilation lλ : Rn → Rn by the formula

lλ(x) = λx, x ∈ Rn.

Then lλ is an one-to-one transformation of Rn onto Rn and its inverse trans-
formation is l 1

λ
. For every E ⊆ Rn we define

λE = {λx |x ∈ E} (= lλ(E)).

If S is any interval in R, then any translation transforms it onto another
interval (of the same type) with the same volume. In fact, if a1, b1, . . . , an, bn
are the end-points of the edges of S, then the translated y+S has y1 + a1, y1 +
b1, . . . , yn + an, yn + bn as end-points of its edges. Therefore voln(y + S) =(
(y1+b1)−(y1+a1)

)
· · ·
(
(yn+bn)−(yn+an)

)
= (b1−a1) · · · (bn−an) = voln(S).

If we dilate the interval S with a1, b1, . . . , an, bn as end-points of its edges
by the number λ > 0, then we get the interval λS with λa1, λb1, . . . , λan, λbn
as end-points of its edges. Therefore, voln(λS) = (λb1 − λa1) · · · (λbn − λan) =
λn(b1 − a1) · · · (bn − an) = λnvoln(S).
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Another transformation is r, reflection through 0, with the formula

r(x) = −x, x ∈ Rn.

This is one-to-one onto Rn and it is the inverse of itself. We define

−E = {−x |x ∈ E} (= r(E))

for all E ⊆ Rn. If S is any interval with a1, b1, . . . , an, bn as end-points of its
edges, then −S is an interval with −b1,−a1, . . . ,−bn,−an as end-points of its
edges and voln(−S) = (−a1 + b1) · · · (−an + bn) = voln(S).

After all these, we may say that n-dimensional volume of intervals is invari-
ant under translations and reflection and it is positive-homogeneous of degree n
under dilations.

We shall see that the same are true for n-dimensional Lebesgue measure of
Lebesgue sets in Rn.

Theorem 4.7 (i) Ln is invariant under translations, reflection and dilations.
That is, for all A ∈ Ln we have that y+A,−A, λA ∈ Ln for every y ∈ Rn, λ > 0.
(ii) mn is invariant under translations and reflection and positive-homogeneous
of degree n under dilations. That is, for all A ∈ Ln we have that

mn(y +A) = mn(A), mn(−A) = mn(A), mn(λA) = λnmn(A)

for every y ∈ Rn, λ > 0.

Proof: Let E ⊆ Rn and y ∈ Rn. Then for all coverings E ⊆ ∪+∞j=1Rj by open

intervals we get y+E ⊆ ∪+∞j=1(y+Rj). Therefore, m∗n(y+E) ≤
∑+∞
j=1 voln(y+

Rj) =
∑+∞
j=1 voln(Rj). Taking the infimum of the right side, we find that

m∗n(y + E) ≤ m∗n(E). Now, applying this to y + E translated by −y, we get
m∗n(E) = m∗n(−y + (y + E)) ≤ m∗n(y + E). Hence

m∗n(y + E) = m∗n(E)

for all E ⊆ Rn and y ∈ Rn.
Similarly, −E ⊆ ∪+∞j=1(−Rj), which implies m∗n(−E) ≤

∑+∞
j=1 voln(−Rj) =∑+∞

j=1 voln(Rj). Hence m∗n(−E) ≤ m∗n(E). Applying this to −E, we also get
m∗n(E) = m∗n(−(−E)) ≤ m∗n(−E) and, thus,

m∗n(−E) = m∗n(E)

for all E ⊆ Rn.
Also, λE ⊆ ∪+∞j=1(λRj), from which we get m∗n(λE) ≤

∑+∞
j=1 voln(λRj) =

λn
∑+∞
j=1 voln(Rj) and hence m∗n(λE) ≤ λnm∗n(E). Applying to 1

λ and to λE,

we find m∗n(E) = m∗n( 1
λ (λE)) ≤ ( 1

λ )nm∗n(λE), which gives

m∗n(λE) = λnm∗n(E).
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Suppose now that A ∈ Ln and E ⊆ Rn.
We have m∗n(E ∩ (y + A)) + m∗n(E ∩ (y + A)c) = m∗n

(
y + [(−y + E) ∩ A]

)
+m∗n

(
y + [(−y + E) ∩ Ac]

)
= m∗n

(
(−y + E) ∩ A

)
+ m∗n

(
(−y + E) ∩ Ac

)
=

m∗n(−y + E) = m∗n(E). Therefore, y +A ∈ Ln.
In the same way, m∗n(E ∩ (−A)) +m∗n(E ∩ (−A)c) = m∗n

(
− [(−E) ∩ A]

)
+

m∗n
(
− [(−E) ∩Ac]

)
= m∗n

(
(−E) ∩A

)
+m∗n

(
(−E) ∩Ac

)
= m∗n(−E) = m∗n(E).

Therefore, −A ∈ Ln.
We, finally, have m∗n(E ∩ (λA)) + m∗n(E ∩ (λA)c) = m∗n

(
λ[( 1

λE) ∩ A]
)

+

m∗n
(
λ[( 1

λE) ∩ Ac]
)

= λnm∗n
(
( 1
λE) ∩ A

)
+ λnm∗n

(
( 1
λE) ∩ Ac

)
= λnm∗n( 1

λE) =
m∗n(E). Therefore, λA ∈ Ln.

If A ∈ Ln, then mn(y + A) = m∗n(y + A) = m∗n(A) = mn(A), mn(−A) =
m∗n(−A) = m∗n(A) = mn(A) and mn(λA) = m∗n(λA) = λnm∗n(A) = λnmn(A).

Reflection and dilations are special cases of linear transformations of Rn. As
is well known, a linear transformation of Rn is a function T : Rn → Rn such
that

T (x+ y) = T (x) + T (y) , T (κx) = κT (x) , x, y ∈ Rn, κ ∈ R,

and every such T has a determinant, det(T ) ∈ R. In particular, det(r) = (−1)n

and det(lλ) = λn.
We recall that a linear transfomation T of Rn is one-to-one and onto Rn

if and only if det(T ) 6= 0. Moreover, if det(T ) 6= 0, then T−1 is also a linear
transformation of Rn and det(T−1) = (det(T ))−1. Finally, if T, T1, T2 are linear
transformations of Rn and T = T1 ◦ T2, then det(T ) = det(T1) det(T2).

Theorem 4.8 Let T : Rn → Rn be a linear transformation. If A ∈ Ln, then
T (A) ∈ Ln and

mn(T (A)) = |det(T )|mn(A).

If |det(T )| = 0 and mn(A) = +∞, we interpret the right side as 0 · (+∞) = 0.

Proof: At first we assume that det(T ) 6= 0.
If T has the form T (x1, x2, . . . , xn) = (λx1, x2, . . . , xn) for a certain λ ∈

R \ {0}, then det(T ) = λ and, if P = (a1, b1] × (a2, b2] × · · · × (an, bn], then
T (P ) = (λa1, λb1]× (a2, b2]×· · ·× (an, bn] or T (P ) = [λb1, λa1)× (a2, b2]×· · ·×
(an, bn], depending on whether λ > 0 or λ < 0. Thus T (P ) is an interval and
mn(T (P )) = |λ|mn(P ) = |det(T )|mn(P ).

If T (x1, x2, . . . , xi−1, xi, xi+1, . . . , xn) = (xi, x2, . . . , xi−1, x1, xi+1, . . . , xn)
for a certain i 6= 1, then det(T ) = −1 and, if P = (a1, b1] × (a2, b2] × · · · ×
(ai−1, bi−1]×(ai, bi]×(ai+1, bi+1]×· · ·×(an, bn], then T (P ) = (ai, bi]×(a2, b2]×
· · ·× (ai−1, bi−1]× (a1, b1]× (ai+1, bi+1]×· · ·× (an, bn]. Thus T (P ) is an interval
and mn(T (P )) = mn(P ) = |det(T )|mn(P ).

If T (x1, . . . , xi−1, xi, xi+1, . . . , xn) = (x1, . . . , xi−1, xi + x1, xi+1, . . . , xn) for
a certain i 6= 1, then det(T ) = 1 and, if P = (a1, b1] × · · · × (ai−1, bi−1] ×
(ai, bi]× (ai+1, bi+1]× · · · × (an, bn], then T (P ) is not an interval any more but
T (P ) = {(y1, . . . , yn) | yj ∈ (aj , bj ] for j 6= i, yi − y1 ∈ (ai, bi]} is a Borel set
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and hence it is in Ln. We define the following three auxilliary sets: L =
(a1, b1] × · · · × (ai−1, bi−1] × (ai + a1, bi + b1] × (ai+1, bi+1] × · · · × (an, bn],
M = {(y1, . . . , yn) | yj ∈ (aj , bj ] for j 6= i, ai + a1 < yi ≤ ai + y1} and N =
{(y1, . . . , yn) | yj ∈ (aj , bj ] for j 6= i, bi + a1 < yi ≤ bi + y1}. It is easy to see
that all four sets, T (P ), L,M,N , are Borel sets and T (P ) ∩M = ∅, L ∩N = ∅,
T (P )∪M = L∪N and that N = x0 +M , where x0 = (0, . . . , 0, bi−ai, 0, . . . , 0).
Then mn(T (P )) +mn(M) = mn(L) +mn(N) and mn(M) = mn(N), implying
that mn(T (P )) = mn(L) = mn(P ) = |det(T )|mn(P ), because L is an interval.

Now, let T be any linear transformation of the above three types. We have
shown that

mn(T (P )) = |det(T )|mn(P )

for every open-closed interval P . If R = (a1, b1) × · · · × (an, bn) it is easy to
see, just as in the case of open-closed intervals, that T (R) is a Borel set. We
consider P1 = (a1, b1]×· · ·× (an, bn] and P2 = (a1, b1−ε]×· · ·× (an, bn−ε] and,
from P2 ⊆ R ⊆ P1 we get T (P2) ⊆ T (R) ⊆ T (P1). Hence |det(T )|mn(P2) ≤
mn(T (R)) ≤ |det(T )|mn(P1) = |det(T )|mn(R) and, taking the limit as ε→ 0+,
we find

mn(T (R)) = |det(T )|mn(R)

for every open interval R.
Let, again, T be any linear transformation of one of the above three types.

Take any E ⊆ Rn and consider an arbitrary covering E ⊂ ∪+∞j=1Rj by open

intervals. Then T (E) ⊆ ∪+∞j=1T (Rj) and hencem∗n(T (E)) ≤
∑+∞
j=1mn(T (Rj)) =

|det(T )|
∑+∞
j=1mn(Rj). Taking the infimum over all coverings, we conclude

m∗n(T (E)) ≤ |det(T )|m∗n(E).

If T is any linear transformation with det(T ) 6= 0, by a well-known result of
Linear Algebra, there are linear transformations T1, . . . , TN , where each is of one
of the above three types so that T = T1 ◦ · · · ◦ TN . Applying the last result re-
peatedly, we find m∗n(T (E)) ≤ |det(T1)| · · · |det(TN )|m∗n(E)| = |det(T )|m∗n(E)
for every E ⊆ Rn. In this inequality, use now the set T (E) in the place
of E and T−1 in the place of T , and get m∗n(E) ≤ | det(T−1)|m∗n(T (E)) =
|det(T )|−1m∗n(T (E)). Combining the two inequalities, we conclude that

m∗n(T (E)) = |det(T )|m∗n(E)

for every linear transformation T with det(T ) 6= 0 and every E ⊆ Rn.
Let A ∈ Ln. For all E ⊆ Rn we get m∗n(E ∩ T (A)) + m∗n(E ∩ (T (A))c) =

m∗n
(
T (T−1(E) ∩ A)

)
+ m∗n

(
T (T−1(E) ∩ Ac)

)
= |det(T )|[m∗n(T−1(E) ∩ A) +

m∗n(T−1(E)∩Ac)] = |det(T )|m∗n(T−1(E)) = m∗n(E). This says that T (A) ∈ Ln.
Moreover,

mn(T (A)) = m∗n(T (A)) = |det(T )|m∗n(A) = |det(T )|mn(A).

If det(T ) = 0, then V = T (Rn) is a linear subspace of Rn with dim(V ) ≤
n − 1. We shall prove that mn(V ) = 0 and, from the completeness of mn, we

48



shall conclude that T (A) ⊆ V is in Ln with mn(T (A)) = 0 = |det(T )|mn(A)
for every A ∈ Ln.

Let {f1, . . . , fm} be a base of V (with m ≤ n− 1) and complete it to a base
{f1, . . . , fm, fm+1, . . . , fn} of Rn. Take the linear transformation S : Rn → Rn

given by
S(x1f1 + · · ·+ xnfn) = (x1, . . . , xn).

Then S is one-to-one and, hence, det(S) 6= 0. Moreover

S(V ) = {(x1, . . . , xm, 0, . . . , 0) |x1, . . . , xm ∈ R}.

We have S(V ) = ∪+∞k=1Qk, where Qk = [−k, k]×· · ·×[−k, k]×{0}×· · ·×{0}.
Each Qk is a closed interval in Rn with mn(Qk) = 0. Hence, mn(S(V )) = 0
and, then, mn(V ) = |det(S)|−1mn(S(V )) = 0.

If b, b1, . . . , bn ∈ Rn, then the set

M = {b+ κ1b1 + · · ·+ κnbn | 0 ≤ κ1, . . . , κn ≤ 1}

is the typical closed parallelepiped in Rn. One of the vertices of M is b and
b1, . . . , bn (interpreted as vectors) are the edges of M which start from b. For
such an M we define the linear transformation T : Rn → Rn by T (x) =
T (x1, . . . , xn) = x1b1 + · · · + xnbn for every x = (x1, . . . , xn) ∈ Rn. We also
consider the translation τb and observe that

M = τb
(
T (Q0)

)
,

where Q0 = [0, 1]n is the unit qube in Rn. Theorems 4.7 and 4.8 imply that M
is a Lebesgue set and

mn(M) = mn

(
T (Q0)

)
= |det(T )|mn(Q0) = |det(T )|.

The matrix of T with respect to the standard basis {e1, . . . , en} of Rn has as
columns the vectors T (e1) = b1, . . . , T (en) = bn. We conclude with the rule that
the Lebesgue measure of a closed parallelepiped is given by the absolute value of
the determinant of the matrix having as columns the sides of the parallelepiped
starting from one of its vertices. Of course, it is easy to see that the same is
true for any parallelepiped.

4.4 Cantor set.

Since {x} is a degenerate interval, we see that mn({x}) = voln({x}) = 0. In fact,
every countable subset of Rn has Lebesgue measure zero: if A = {x1, x2, . . .},
then mn(A) =

∑+∞
k=1mn({xk}) = 0.

The aim of this section is to provide an uncountable set in R whose Lebesgue
measure is zero.

We start with the interval
I0 = [0, 1],
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then take

I1 =
[
0,

1

3

]
∪
[2

3
, 1
]
,

next

I2 =
[
0,

1

9

]
∪
[2

9
,

1

3

]
∪
[2

3
,

7

9

]
∪
[8

9
, 1
]
,

and so on, each time dividing each of the intervals we get at the previous stage
into three subintervals of equal length and keeping only the two closed subin-
tervals on the sides.

Therefore, we construct a decreasing sequence (In) of closed sets so that
every In consists of 2n closed intervals all of which have the same length 1

3n .
We define

C = ∩+∞n=1In

and call it the Cantor set.
C is a compact subset of [0, 1] with m1(C) = 0. To see this observe that for

every n, m1(C) ≤ m1(In) = 2n · 1
3n which tends to 0 as n→ +∞.

We shall prove by contradiction that C is uncountable. Namely, assume that
C = {x1, x2, . . .}. We shall describe an inductive process of picking one from
the subintervals constituting each In.

It is obvious that every xn belongs to In, since it belongs to C. At the first
step choose the interval I(1) to be the subinterval of I1 which does not contain
x1. Now, I(1) includes two subintervals of I2 and at the second step choose the
interval I(2) to be whichever of these two subintervals of I(1) does not contain x2.
(If both do not contain x2, just take the left one.) And continue inductively: if
you have already chosen I(n−1) from the subintervals of In−1, then this includes
two subintervals of In. Choose as I(n) whichever of these two subintervals of
I(n−1) does not contain xn. (If both do not contain xn, just take the left one.)

This produces a sequence (I(n)) of intervals with the following properties:
(i) I(n) ⊆ In for all n,
(ii) I(n) ⊆ I(n−1) for all n,
(iii) vol1(I(n)) = 1

3n → 0 and

(iv) xn /∈ I(n) for all n.
From (ii) and (iii) we conclude that the intersection of all I(n)’s contains a single
point:

∩+∞n=1I
(n) = {x0}

for some x0. From (i) we see that x0 ∈ In for all n and thus x0 ∈ C. Therefore,
x0 = xn for some n ∈ N. But then x0 ∈ I(n) and, by (iv), the same point xn
does not belong to I(n).

We get a contradiction and, hence, C is uncountable.

4.5 A non-Lebesgue set in R.

We consider the following equivalence relation in the set [0, 1). For any x, y ∈
[0, 1) we write x ∼ y if and only if x−y ∈ Q. That ∼ is an equivalence relation
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is easy to see:
(a) x ∼ x, because x− x = 0 ∈ Q.
(b) If x ∼ y, then x− y ∈ Q, then y − x = −(x− y) ∈ Q, then y ∼ x.
(c) If x ∼ y and y ∼ z, then x − y ∈ Q and y − z ∈ Q, then x − z =
(x− y) + (y − z) ∈ Q, then x ∼ z.

Using the Axiom of Choice, we form a set N containing exactly one element
from each equivalence class of ∼. This means that:

(i) for every x ∈ [0, 1) there is exactly one x ∈ N so that x− x ∈ Q.

Indeed, if we consider the equivalence class of x and the element x of N from
this equivalence class, then x ∼ x and hence x− x ∈ Q. Moreover, if there are
two x, x ∈ N so that x−x ∈ Q and x−x ∈ Q, then x ∼ x and x ∼ x, implying
that N contains two different elements from the equivalence class of x.

Our aim is to prove that N is not a Lebesgue set.
We form the set

A = ∪r∈Q∩[0,1)(N + r).

Diferent (N + r)′s are disjoint:

(ii) if r1, r2 ∈ Q ∩ [0, 1) and r1 6= r2, then (N + r1) ∩ (N + r2) = ∅.
Indeed, if x ∈ (N + r1) ∩ (N + r2), then x − r1, x − r2 ∈ N . But x ∼ x − r1
and x ∼ x− r2, implying that N contains two different (since r1 6= r2) elements
from the equivalence class of x.

(iii) A ⊆ [0, 2).

This is clear, since N ⊆ [0, 1) implies N + r ⊆ [0, 2) for all r ∈ Q ∩ [0, 1).
Take an arbitrary x ∈ [0, 1) and, by (i), the unique x ∈ N with x − x ∈ Q.

Since −1 < x− x < 1 we consider cases: if r = x− x ∈ [0, 1), then x = x+ r ∈
N+r ⊆ A, while if r = x−x ∈ (−1, 0), then x+1 = x+(r+1) ∈ N+(r+1) ⊆ A.
Therefore, for every x ∈ [0, 1) either x ∈ A or x+ 1 ∈ A. It is easy to see that
exactly one of these two cases is true. Because if x ∈ A and x + 1 ∈ A,
then x ∈ N + r1 and x + 1 ∈ N + r2 for some r1, r2 ∈ Q ∩ [0, 1). Hence,
x− r1, x+ 1− r2 ∈ N and N contains two different (since r2− r1 6= 1) elements
of the equivalence class of x. Thus, if we define the sets

E1 = {x ∈ [0, 1) |x ∈ A}, E2 = {x ∈ [0, 1) |x+ 1 ∈ A}

then we have proved that

(iv) E1 ∪ E2 = [0, 1), E1 ∩ E2 = ∅.
From (iv) we shall need only that [0, 1) ⊆ E1 ∪ E2.

We can also prove that

(v) E1 ∪ (E2 + 1) = A, E1 ∩ (E2 + 1) = ∅.
In fact, the second is easy because E1, E2 ⊆ [0, 1) and hence E2 + 1 ⊆ [1, 2).
The first is also easy. If x ∈ E1 then x ∈ A. If x ∈ E2 + 1 then x − 1 ∈ E2

and then x = (x − 1) + 1 ∈ A. Thus E1 ∪ (E2 + 1) ⊆ A. On the other hand,
if x ∈ A ⊆ [0, 2), then, either x ∈ A ∩ [0, 1) implying x ∈ E1, or x ∈ A ∩ [1, 2)

51



implying x− 1 ∈ E2 i.e. x ∈ E2 + 1. Thus A ⊆ E1 ∪ (E2 + 1).
From (v) we shall need only that E1, E2 + 1 ⊆ A.

Suppose N is a Lebesgue set. By (ii) and by the invariance of m1 under
translations, we get that m1(A) =

∑
r∈Q∩[0,1)m1(N + r) =

∑
r∈Q∩[0,1)m1(N).

If m1(N) > 0, then m1(A) = +∞, contradicting (iii). If m1(N) = 0, then
m1(A) = 0, implying by (v) that m1(E1) = m1(E2 + 1) = 0, hence m1(E1) =
m1(E2) = 0, and finally from (iv), 1 = m1([0, 1)) ≤ m1(E1) +m1(E2) = 0.

We arrive at a contradiction and N is not a Lebesgue set.

4.6 Exercises.

1. If A ∈ Ln and A is bounded, prove that mn(A) < +∞. Give an example
of an A ∈ Ln which is not bounded but has mn(A) < +∞.

2. The invariance of Lebesgue measure under isometries.

Let T : Rn → Rn be an isometric linear transformation. This means that
T is a linear transformation satisfying |T (x) − T (y)| = |x − y| for every
x, y ∈ Rn or, equivalently, TT ∗ = T ∗T = I, where T ∗ is the adjoint of T
and I is the identity transformation.

Prove that, for every E ∈ Ln, we have mn(T (E)) = mn(E).

3. A parallelepiped in Rn is called degenerate if it is included in a hyper-
plane of Rn, i.e. in a set of the form b + V , where b ∈ Rn and V is a
linear subspace of Rn with dim(V ) = n− 1.

Prove that a parallelepiped M is degenerate if and only if mn(M) = 0.

4. State in a formal way and prove the rule

volume = base area × height

for parallelepipeds in Rn.

5. Regularity of Lebesgue measure.

Suppose that A ∈ Ln.
(i) Prove that there is a decreasing sequence (Uj) of open sets in Rn so
that A ⊆ Uj for all j and mn(Uj)→ mn(A). Conclude that

mn(A) = inf{mn(U) |U open ⊇ A}.

(ii) Prove that there is an increasing sequence (Kj) of compact sets in Rn

so that Kj ⊆ A for all j and mn(Kj)→ mn(A). Conclude that

mn(A) = sup{mn(K) |K compact ⊆ A}.

The validity of (i) and (ii) for (Rn,Ln,mn) is called regularity. We shall
study this notion in chapter 5.
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6. An example of an m1-null uncountable set, dense in an interval.

Let Q ∩ [0, 1] = {x1, x2, . . .}. For every ε > 0 we define

U(ε) = ∪+∞j=1

(
xj −

ε

2j
, xj +

ε

2j

)
, A = ∩+∞n=1U

( 1

n

)
.

(i) Prove that m1(U(ε)) ≤ 2ε.
(ii) If ε < 1

2 , prove that [0, 1] is not a subset of U(ε).
(iii) Prove that A ⊆ [0, 1] and m1(A) = 0.
(iv) Prove that Q ∩ [0, 1] ⊆ A and that A is uncountable.

7. Let A = Q ∩ [0, 1]. If R1, . . . , Rm are open intervals so that A ⊆ ∪mj=1Rj ,

prove that 1 ≤
∑m
j=1 vol1(Rj). Discuss the contrast to m∗1(A) = 0.

8. Prove that the Cantor set is perfect: it is closed and has no isolated point.

9. The Cantor set and ternary expansions of numbers.

(i) Prove that for every sequence (an) in {0, 1, 2} the series
∑+∞
n=1

an
3n con-

verges to a number in [0, 1].
(ii) Conversely, prove that for every number x in [0, 1] there is a sequence
(an) in {0, 1, 2} so that x =

∑+∞
n=1

an
3n . Then we say that 0.a1a2 . . . is a

ternary expansion of x and that a1, a2, . . . are the ternary digits of
this expansion.
(iii) If x ∈ [0, 1] is a rational m

3N
, where m ≡ 1(mod 3) and N ∈ N, then x

has exactly two ternary expansions: one is of the form 0.a1 . . . aN−11000 . . .
and the other is of the form 0.a1 . . . aN−10222 . . . .

If x ∈ [0, 1] is either irrational or rational m
3N

, where m ≡ 0 or 2(mod 3)
and N ∈ N, then it has exactly one ternary expansion which is not of
either one of the above forms.
(iv) Let C be the Cantor set. If x ∈ [0, 1], prove that x ∈ C if and only if
x has at least one ternary expansion containing no ternary digit 1.

10. The Cantor function.

Let I0 = [0, 1], I1, I2, . . . be the sets used in the construction of the Cantor
set C. For each n ∈ N define fn : [0, 1]→ [0, 1] as follows. If, going from

left to right, J
(n)
1 , . . . , J

(n)
2n−1 are the 2n − 1 subintervals of [0, 1] \ In, then

define fn(0) = 0, fn(1) = 1, define fn to be constant k
2n in J

(n)
k for all

k = 1, . . . , 2n− 1 and to be linear in each of the subintervals of In in such
a way that fn is continuous in [0, 1].
(i) Prove that |fn(x)−fn−1(x)| ≤ 1

3·2n for all n ≥ 2 and all x ∈ [0, 1]. This

implies that for every x ∈ [0, 1] the series f1(x) +
∑+∞
k=2(fk(x)− fk−1(x))

converges to a real number.
(ii) Define f(x) to be the sum of the series appearing in (i) and prove
that |f(x) − fn(x)| ≤ 1

3·2n for all x ∈ [0, 1]. Therefore, fn converges to f
uniformly in [0, 1].
(iii) Prove that f(0) = 0, f(1) = 1 and that f is continuous and increasing
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in [0, 1].

(iv) Prove that for every n: f is constant k
2n in J

(n)
k for all k = 1, . . . , 2n−1.

(v) Prove that, if x, y ∈ C and x < y and x, y are not end-points of the
same complementary interval of C, then f(x) < f(y).

This function f is called the Cantor function.

11. The difference set of a set.

(i) Let E ⊆ R with m∗1(E) > 0 and 0 ≤ α < 1. Prove that there is a
non-empty open interval (a, b) so that m∗1(E ∩ (a, b)) ≥ α · (b− a).
(ii) Let E ⊆ R be a Lebesgue set with m1(E) > 0. Taking α = 3

4 in (i),
prove that E ∩ (E + z) ∩ (a, b) 6= ∅ for all z with |z| < 1

4 (b− a).
(iii) Let E ⊆ R be a Lebesgue set with m1(E) > 0. Prove that the set
D(E) = {x− y |x, y ∈ E}, called the difference set of E, includes some
open interval of the form (−ε, ε).

12. Another construction of a non-Lebesgue set in R.

(i) For any x, y ∈ R define x ∼ y if x − y ∈ Q. Prove that ∼ is an
equivalence relation in R.
(ii) Let L be a set containing exactly one element from each of the equiv-
alence classes of ∼. Prove that R = ∪r∈Q(L + r) and that the sets
L+ r, r ∈ Q, are pairwise disjoint.
(iii) Prove that the difference set of L (see exercise 4.6.11) contains no
rational number 6= 0.
(iv) Using the result of exercise 4.6.11, prove that L is not a Lebesgue set.

13. Non-Lebesgue sets are everywhere, I.
We shall prove that every E ⊆ R with m∗1(E) > 0 includes at least one
non-Lebesgue set.
(i) Consider the non-Lebesgue set N ⊆ [0, 1] which was constructed in
section 4.5 and prove that, if B ⊆ N is a Lebesgue set, then m1(B) = 0.
In other words, if M ⊆ N has m∗1(M) > 0, then M is a non-Lebesgue set.
(ii) Consider an arbitrary E ⊆ R with m∗1(E) > 0. If α = 1−m∗1(N), then
0 ≤ α < 1, and consider an interval (a, b) so that m∗1(E∩ (a, b)) ≥ α(b−a)
(see exercise 4.6.11). Then the set N ′ = (b− a)N + a is included in [a, b],
has m∗1(N ′) = (1− α) · (b− a) and, if M ′ ⊆ N ′ has m∗1(M ′) > 0, then M ′

is not a Lebesgue set.
(iii) Prove that E ∩N ′ is not a Lebesgue set.

14. No-Lebesgue sets are everywhere, II.

(i) Consider the set L from exercise 4.6.12. Then E = ∪r∈Q(E ∩ (L+ r))
and prove that the difference set (exercise 4.6.11) of each E ∩ (L + r)
contains no rational number 6= 0.
(ii) Prove that, for at least one r ∈ Q, the set E∩(L+r) is not a Lebesgue
set (using exercise 4.6.11).
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15. Not all Lebesgue sets in R are Borel sets and not all continuous functions
map Lebesgue sets onto Lebesgue sets.

Let f : [0, 1]→ [0, 1] be the Cantor function constructed in exercise 4.6.10.
Define g : [0, 1]→ [0, 2] by the formula

g(x) = f(x) + x, x ∈ [0, 1].

(i) Prove that g is continuous, strictly increasing, one-to-one and onto
[0, 2]. Its inverse function g−1 : [0, 2] → [0, 1] is also continuous, strictly
increasing, one-to-one and onto [0, 1].
(ii) Prove that the set g([0, 1] \ C), where C is the Cantor set, is an open
set with Lebesgue measure equal to 1. Therefore the set E = g(C) has
Lebesgue measure equal to 1.
(iii) Exercises 4.6.13 and 4.6.14 give non-Lebesgue sets M ⊆ E. Consider
the set K = g−1(M) ⊆ C. Prove that K is a Lebesgue set.
(iv) Using exercise 1.6.8, prove that K is not a Borel set in R.
(v) g maps K onto M .

16. More Cantor sets.

Take an arbitrary sequence (εn) so that 0 < εn <
1
2 for all n. We split

I0 = [0, 1] into the three intervals [0, 12 − ε1], ( 1
2 − ε1,

1
2 + ε1), [ 12 + ε1, 1] and

form I1 as the union of the two closed intervals. Inductively, if we have
already constructed In−1 as a union of certain closed intervals, we split
each of these intervals into three subintervals of which the two side ones
are closed and their proportion to the original is 1

2 − εn. The union of the
new intervals is the In.

We set K = ∩+∞n=1In.
(i) Prove that K is compact, has no isolated points and includes no open
interval.
(ii) Prove that K is uncountable.
(iii) Prove that m1(In) = (1− 2ε1) · · · (1− 2εn) for all n.
(iv) Prove that m1(K) = limn→+∞(1− 2ε1) · · · (1− 2εn).
(v) Taking εn = ε

3n for all n, prove that m1(K) > 1− ε.
(Use that (1 − a1) · · · (1 − an) > 1 − (a1 + · · · + an) for all n and all
a1, . . . , an ∈ [0, 1]).
(vi) Prove that m1(K) > 0 if and only if

∑+∞
n=1 εn < +∞.

(Use the inequality you used for (v) and also that 1− a ≤ e−a for all a.)

17. Uniqueness of Lebesgue measure.

Prove that mn is the only measure µ on (Rn,BRn) which is invariant
under translations (i.e. µ(E + x) = µ(E) for all Borel sets E and all x)
and which satisfies µ(Q0) = 1, where Q0 = [−1, 1]× · · · × [−1, 1].

18. Let E ⊆ R be a Lebesgue set and A be a dense subset of R. If m1(E4(E+
x)) = 0 for all x ∈ A, prove that m1(E) = 0 or m1(Ec) = 0.
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19. Let E ⊆ R be a Lebesgue set and δ > 0. If m1(E ∩ (a, b)) ≥ δ(b− a) for
all intervals (a, b), prove that m1(Ec) = 0.
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Chapter 5

Borel measures

5.1 Lebesgue-Stieltjes measures in R.

Lemma 5.1 If −∞ ≤ a < b ≤ +∞ and F : (a, b)→ R is increasing, then
(i) for all x ∈ [a, b) we have F (x+) = inf{F (y) |x < y},
(ii) for all x ∈ (a, b] we have F (x−) = sup{F (y) | y < x},
(iii) if a < x < y < z < b, then F (x−) ≤ F (x) ≤ F (x+) ≤ F (y) ≤ F (z−) ≤
F (z) ≤ F (z+),
(iv) for all x ∈ [a, b) we have F (x+) = limy→x+ F (y±),
(v) for all x ∈ (a, b] we have F (x−) = limy→x− F (y±).

Proof: (i) Let M = inf{F (y) |x < y}. Then for every γ > M there is some
t > x so that F (t) < γ. Hence for all y ∈ (x, t) we have M ≤ F (y) < γ. This
says that F (x+) = M .
(ii) Similarly, let m = sup{F (y) | y < x}. Then for every γ < m there is some
t < x so that γ < F (t). Hence for all y ∈ (t, x) we have γ < F (y) ≤ m. This
says that F (x−) = m.
(iii) F (x) is an upper bound of the set {F (y) | y < x} and a lower bound of
{F (y) |x < y}. This, by (i) and (ii), implies that F (x−) ≤ F (x) ≤ F (x+) and,
of course, F (z−) ≤ F (z) ≤ F (z+). Also, if x < y < z, then F (y) is an element
of both sets {F (y) |x < y} and {F (y) | y < z}. Therefore F (y) is between the
infimum of the first, F (x+), and the supremum of the second set, F (z−).
(iv) By the result of (i), for every γ > F (x+) there is some t > x so that
F (x+) ≤ F (t) < γ. This, combined with (iii), implies that F (x+) ≤ F (y±) < γ
for all y ∈ (x, t). Thus, F (x+) = limy→x+ F (y±).
(v) By (ii), for every γ < F (x−) there is some t < x so that γ < F (t) ≤ F (x−).
This, combined with (iii), implies γ < F (y±) ≤ F (x−) for all y ∈ (t, x). Thus,
F (x−) = limy→x− F (y±).

Consider now a0, b0 with −∞ ≤ a0 < b0 ≤ +∞ and an increasing function
F : (a0, b0)→ R and define a non-negative function τ acting on subintervals of
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(a0, b0) as follows:

τ((a, b)) = F (b−)− F (a+), τ([a, b]) = F (b+)− F (a−),

τ((a, b]) = F (b+)− F (a+), τ([a, b)) = F (b−)− F (a−).

The mnemonic rule is: if the end-point is included in the interval, then approach
it from the outside while, if the end-point is not included in the interval, then
approach it from the inside of the interval.

We use the collection of all open subintervals of (a0, b0) and the function
τ to define, as an application of Theorem 3.2, the following outer measure on
(a0, b0):

µ∗F (E) = inf
{+∞∑
j=1

τ((aj , bj)) |E ⊆ ∪+∞j=1(aj , bj), (aj , bj) ⊆ (a0, b0) for all j
}
,

for every E ⊆ (a0, b0).
Theorem 3.1 implies that the collection of µ∗F -measurable sets is a σ-algebra

of subsets of (a0, b0), which we denote by ΣF , and the restriction, denoted µF ,
of µ∗F on ΣF is a complete measure.

Definition 5.1 The measure µF is called the Lebesgue-Stieltjes measure
induced by the (increasing) F : (a0, b0)→ R.

If F (x) = x for all x ∈ R, then τ(S) = vol1(S) for all intervals S and, in
this special case, µF coincides with the 1-dimensional Lebesgue measure m1 on
R. Thus, the new measure is a generalization of Lebesgue measure.

Following exactly the same procedure as with Lebesgue measure, we shall
study the relation between the σ-algebra ΣF and the Borel sets in (a0, b0).

Lemma 5.2 Let P = (a, b] ⊆ (a0, b0) and a = c(0) < c(1) < · · · < c(m) = b. If
Pi = (c(i−1), c(i)], then τ(P ) = τ(P1) + · · ·+ τ(Pm).

Proof: A telescoping sum: τ(P1)+· · ·+τ(Pm) =
∑m
i=1(F (c(i)+)−F (c(i−1)+)) =

F (b+)− F (a+) = τ((a, b]).

Lemma 5.3 If P, P1, . . . , Pl are open-closed subintervals of (a0, b0), P1, . . . , Pl
are pairwise disjoint and P = P1 ∪ · · · ∪ Pl, then τ(P ) = τ(P1) + · · ·+ τ(Pl).

Proof: Exactly one of P1, . . . , Pl has the same right end-point as P . We rename
and call it Pl. Then exactly one of P1, . . . , Pl−1 has right end-point coinciding
with the left end-point of Pl. We rename and call it Pl−1. We continue until
the left end-point of the last remaining subinterval, which we shall rename P1,
coincides with the left end-point of P . Then the result is the same as the result
of Lemma 5.2.

Lemma 5.4 If P, P1, . . . , Pl are open-closed subintervals of (a0, b0), P1, . . . , Pl
are pairwise disjoint and P1 ∪ · · · ∪ Pl ⊆ P , then τ(P1) + · · ·+ τ(Pl) ≤ τ(P ).
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Proof: We know that P \(P1∪· · ·∪Pl) = P ′1∪· · ·∪P ′k for some pairwise disjoint
open-closed intervals P ′1, . . . , P

′
k. By Lemma 5.3 we get τ(P ) = τ(P1) + · · · +

τ(Pl) + τ(P ′1) + · · ·+ τ(P ′k) ≥ τ(P1) + · · ·+ τ(Pl).

Lemma 5.5 Suppose that P, P1, . . . , Pl are open-closed subintervals of (a0, b0)
and P ⊆ P1 ∪ · · · ∪ Pl. Then τ(P ) ≤ τ(P1) + · · ·+ τ(Pl).

Proof: We write P = P ′1 ∪ · · · ∪P ′l , where P ′j = Pj ∩P are open-closed intervals

included in P . Then write P = P ′1 ∪ (P ′2 \ P ′1) ∪ · · · ∪
(
P ′l \ (P ′1 ∪ · · · ∪ P ′l−1)

)
.

Each of these l pairwise disjoint sets can be written as a finite union of pairwise
disjoint open-closed intervals: P ′1 = P ′1 and

P ′j \ (P ′1 ∪ · · · ∪ P ′j−1) = P
(j)
1 ∪ · · · ∪ P (j)

mj

for 2 ≤ j ≤ l.
Lemma 5.3 (for the equality) and Lemma 5.4 (for the two inequalities) imply

τ(P ) = τ(P ′1) +

l∑
j=2

( mj∑
m=1

τ(P (j)
m )
)

≤ τ(P ′1) +

l∑
j=2

τ(P ′j) ≤
l∑

j=1

τ(Pj).

Lemma 5.6 Let Q be a closed interval and R1, . . . , Rl be open subintervals of
(a0, b0). If Q ⊆ R1 ∪ · · · ∪Rl, then τ(Q) ≤ τ(R1) + · · ·+ τ(Rl).

Proof: Let Q = [a, b] and Rj = (aj , bj) for j = 1, . . . , l. We define for ε > 0

Pε = (a− ε, b], Pj,ε = (aj , bj − ε].

We shall first prove that there is some ε0 > 0 so that for all ε < ε0

Pε ⊆ P1,ε ∪ · · · ∪ Pl,ε.

Suppose that, for all n, the above inclusion is not true for ε = 1
n . Hence, for all n

there is xn ∈ (a− 1
n , b] so that xn /∈ ∪lj=1(aj , bj− 1

n ]. By the Bolzano-Weierstrass
theorem, there is a subsequence (xnk) converging to some x. Looking carefully
at the various inequalities, we get x ∈ [a, b] and x /∈ ∪lj=1(aj , bj). This is a

contradiction and the inclusion we want to prove is true for some ε0 = 1
n0

. If
ε < ε0, then the inclusion is still true because the left side becomes smaller while
the right side becomes larger.

Now Lemma 5.5 gives for ε < ε0 that

F (b+)− F ((a− ε)+) ≤
l∑

j=1

(
F ((bj − ε)+)− F (aj+)

)
and, using Lemma 5.1 for the limit as ε→ 0+,

τ(Q) = F (b+)− F (a−) ≤
l∑

j=1

(
F (bj−)− F (aj+)

)
=

l∑
j=1

τ(Rj).
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Theorem 5.1 Let F : (a0, b0)→ R be increasing. Then every subinterval S of
(a0, b0) is µ∗F -measurable and

µF (S) = τ(S).

Proof: Let Q = [a, b] ⊆ (a0, b0).
Then µ∗F (Q) ≤ τ((a − ε, b + ε)) = F ((b + ε)−) − F ((a − ε)+) for all small

enough ε > 0 and, thus, µ∗F (Q) ≤ F (b+)− F (a−) = τ(Q).
For every covering Q ⊆ ∪+∞j=1Rj by open subintervals of (a0, b0), there is (by

compactness) l so that Q ⊆ ∪lj=1Rj . Lemma 5.6 implies τ(Q) ≤
∑l
j=1 τ(Rj) ≤∑+∞

j=1 τ(Rj). Hence τ(Q) ≤ µ∗F (Q) and we conclude that

τ(Q) = µ∗F (Q)

for all closed intervals Q ⊆ (a0, b0).
If P = (a, b] ⊆ (a0, b0), then µ∗F (P ) ≤ τ((a, b + ε)) = F ((b + ε)−) − F (a+)

for all small enough ε > 0. Hence µ∗F (P ) ≤ F (b+)− F (a+) = τ(P ).
If R = (a, b) ⊆ (a0, b0), then µ∗F (R) ≤ τ((a, b)) = τ(R).
Now let P = (a, b], R = (c, d) be included in (a0, b0) and take PR = (c, d−ε].
We write µ∗F (R ∩ P ) = µ∗F

(
(PR ∩ P ) ∪ ((d − ε, d) ∩ P )

)
≤ µ∗F (PR ∩ P ) +

µ∗F ((d− ε, d)) ≤ τ(PR ∩P ) +F (d−)−F ((d− ε)+) by the previous results. The
same inequalities, with P c instead of P , give µ∗F (R ∩ P c) ≤ µ∗F (PR ∩ P c) +
F (d−) − F ((d − ε)+). Taking the sum, we find µ∗F (R ∩ P ) + µ∗F (R ∩ P c) ≤
τ(PR ∩ P ) + µ∗F (PR ∩ P c) + 2[F (d−)− F ((d− ε)+)].

Now write PR ∩P c = P1 ∪ · · · ∪Pl for pairwise disjoint open-closed intervals
and get τ(PR ∩ P ) + µ∗F (PR ∩ P c) ≤ τ(PR ∩ P ) +

∑l
j=1 µ

∗
F (Pj) ≤ τ(PR ∩ P ) +∑l

j=1 τ(Pj) = τ(PR) by the first results and Lemma 5.3.
Therefore µ∗F (R ∩ P ) + µ∗F (R ∩ P c) ≤ τ(PR) + 2[F (d−) − F ((d − ε)+)] =

F ((d− ε)+)− F (c+) + 2[F (d−)− F ((d− ε)+)] and, taking limit, µ∗F (R ∩ P ) +
µ∗F (R ∩ P c) ≤ F (d−)− F (c+) = τ(R).

We proved that

µ∗F (R ∩ P ) + µ∗F (R ∩ P c) ≤ τ(R)

for all open intervals R and open-closed intervals P which are ⊆ (a0, b0).
Now consider arbitrary E ⊆ (a0, b0) with µ∗F (E) < +∞. Take a covering

E ⊆ ∪+∞j=1Rj by open subintervals of (a0, b0) so that
∑+∞
j=1 τ(Rj) < µ∗F (E) + ε.

By σ-subadditivity and the last result we find µ∗F (E ∩ P ) + µ∗F (E ∩ P c) ≤∑+∞
j=1

(
µ∗F (Rj ∩ P ) + µ∗F (Rj ∩ P c)

)
≤
∑+∞
j=1 τ(Rj) < µ∗F (E) + ε.

Taking limit as ε→ 0+, we find

µ∗F (E ∩ P ) + µ∗F (E ∩ P c) ≤ µ∗F (E),

concluding that P ∈ ΣF .
If Q = [a, b] ⊆ (a0, b0), we take any (ak) in (a0, b0) so that ak ↑ a and, then,

Q = ∩+∞k=1(ak, b] ∈ ΣF . Moreover, by the first results,

µF (Q) = µ∗F (Q) = τ(Q).
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If P = (a, b] ⊆ (a0, b0), we take any (ak) in (a, b] so that ak ↓ a and we get
that µF (P ) = limk→+∞ µF ([ak, b]) = limk→+∞(F (b+) − F (ak−)) = F (b+) −
F (a+) = τ(P ).

If T = [a, b) ⊆ (a0, b0), we take any (bk) in [a, b) so that bk ↑ b and we
get that T = ∪+∞k=1[a, bk] ∈ ΣF . Moreover, µF (T ) = limk→+∞ µF ([a, bk]) =
limk→+∞(F (bk+)− F (a−)) = F (b−)− F (a−) = τ(T ).

Finally, if R = (a, b) ⊆ (a0, b0), we take any (ak) and (bk) in (a, b) so that
ak ↓ a, bk ↑ b and a1 ≤ b1. Then R = ∪+∞k=1[ak, bk] ∈ ΣF . Moreover, µF (R) =
limk→+∞ µF ([ak, bk]) = limk→+∞(F (bk+)−F (ak−)) = F (b−)−F (a+) = τ(R).

Theorem 5.2 Let F : (a0, b0) → R be increasing. Then µF is σ-finite and it
is finite if and only if F is bounded. Also, µF

(
(a0, b0)

)
= F (b0−)− F (a0+).

Proof: We consider any two sequences (ak) and (bk) in (a0, b0) so that ak ↓ a0,
bk ↑ b0 and a1 ≤ b1. Then (a0, b0) = ∪+∞k=1[ak, bk] and µF ([ak, bk]) = F (bk+) −
F (ak−) < +∞ for all k. Hence, µF is σ-finite.

Since µF ((a0, b0)) = F (b0−) − F (a0+), if µF is finite, then −∞ < F (a0+)
and F (b0−) < +∞. This implies that all values of F lie in the bounded interval
[F (a0+), F (b0−)] and F is bounded. Conversely, if F is bounded, then the
limits F (a0+), F (b0−) are finite and µF ((a0, b0)) < +∞.

It is easy to prove that the collection of all subintervals of (a0, b0) generates
the σ-algebra of all Borel sets in (a0, b0). Indeed, let E be the collection of all
intervals in R and F be the collection of all subintervals of (a0, b0). It is clear
that F = Ee(a0, b0) and Theorems 1.2 and 1.3 imply that

B(a0,b0) = BRe(a0, b0) = Σ(E)e(a0, b0) = Σ(F).

Theorem 5.3 Let F : (a0, b0) → R be increasing. Then all Borel sets in
(a0, b0) belong to ΣF .

Proof: Theorem 5.1 implies that the collection F of all subintervals of (a0, b0) is
included in ΣF . By the discussion of the previous paragraph, we conclude that
B(a0,b0) = Σ(F) ⊆ ΣF .

Theorem 5.4 Let F : (a0, b0)→ R be increasing. Then for every E ⊆ (a0, b0)
we have
(i) E ∈ ΣF if and only if there is A ⊆ (a0, b0), a countable intersection of open
sets, so that E ⊆ A and µ∗F (A \ E) = 0.
(ii) E ∈ ΣF if and only if there B, a countable union of compact sets, so that
B ⊆ E and µ∗F (E \B) = 0.

Proof: The proof is exactly the same as the proof of the similar Theorem 4.4.
Only the obvious changes have to be made: mn changes to µF and m∗n to µ∗F ,
Rn changes to (a0, b0), voln changes to τ and Ln changes to ΣF .

Therefore, every set in ΣF is, except from a µF -null set, equal to a Borel
set.
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Theorem 5.5 Let F : (a0, b0)→ R be increasing. Then
(i) µF is the only measure on

(
(a0, b0),B(a0,b0)

)
with µF ((a, b]) = F (b+)−F (a+)

for all intervals (a, b] ⊆ (a0, b0).
(ii)

(
(a0, b0),ΣF , µF

)
is the completion of

(
(a0, b0),B(a0,b0), µF

)
.

Proof: The proof is similar to the proof of Theorem 4.5. Only the obvious
notational modifications are needed.

It should be observed that the measure of a set {x} consisting of a single
point x ∈ (a0, b0) is equal to µF ({x}) = F (x+) − F (x−), the jump of F at x.
In other words, the measure of a one-point set is positive if and only if F is
discontinuous there. Also, observe that the measure of an open subinterval of
(a0, b0) is 0 if and only if F is constant in this interval.

It is very common in practice to consider the increasing function F with the
extra property of being continuous from the right. In this case the measure of
an open-closed interval takes the simpler form

µF ((a, b]) = F (b)− F (a).

Proposition 5.1 shows that this is not a serious restriction.

Proposition 5.1 Given any increasing function on (a0, b0) there is another
increasing function which is continuous from the right so that the Lebesgue-
Stieltjes measures induced by the two functions are equal.

Proof: Given any increasing F : (a0, b0) → R we define F0 : (a0, b0) → R by
the formula

F0(x) = F (x+) , x ∈ (a0, b0)

and it is immediate from Lemma 5.1 that F0 is increasing, continuous from the
right, i.e. F0(x+) = F0(x) for all x, and F0(x+) = F (x+), F0(x−) = F (x−)
for all x. Now, it is obvious that F0 and F induce the same Lebesgue-Stieltjes
measure on (a0, b0), simply because the corresponding functions τ(S) (from
which the construction of the measures µF0

, µF starts) assign the same values
to every interval S ⊆ (a0, b0).

The functions F0 and F of Proposition 5.1 have the same jump at every x
and, in particular, they have the same continuity points.

5.2 Borel measures.

Definition 5.2 Let X be a topological space and (X,Σ, µ) be a measure space.
The measure µ is called a Borel measure on X if BX ⊆ Σ, i.e. if all Borel
sets in X are in Σ.

The Borel measure µ is called locally finite if for every x ∈ X there is
some open neighborhood Ux of x (i.e. an open set containing x) such that
µ(Ux) < +∞.
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Observe that, for µ to be a Borel measure, it is enough to have that all open
sets or all closed sets are in Σ. This is because BX is generated by the collections
of all open or all closed sets and because Σ is a σ-algebra.

Examples
The Lebesgue measure on Rn and, more generally, the Lebesgue-Stieltjes mea-
sure on any generalized interval (a0, b0) (induced by any increasing function)
are locally finite Borel measures. In fact, the content of the following theo-
rem is that the only locally finite Borel measures on (a0, b0) are exactly the
Lebesgue-Stieltjes measures.

Lemma 5.7 Let X be a topological space and µ a Borel measure on X. If µ is
locally finite, then µ(K) < +∞ for every compact K ⊆ X.

If µ is a locally finite Borel measure on Rn, then µ(M) < +∞ for every
bounded M ⊆ Rn.

Proof: We take for each x ∈ K an open neighborhood Ux of x so that µ(Ux) <
+∞. Since K ⊆ ∪x∈KUx and K is compact, there are x1, . . . , xn so that
K ⊆ ∪nk=1Uxk . Hence, µ(K) ≤

∑n
k=1 µ(Uxk) < +∞.

If M ⊆ Rn is bounded, then M is compact and µ(M) ≤ µ(M) < +∞.

Theorem 5.6 Let −∞ ≤ a0 < b0 ≤ +∞ and c0 ∈ (a0, b0). For every locally
finite Borel measure µ on (a0, b0) there is a unique increasing and continuous
from the right F : (a0, b0)→ R so that µ = µF on B(a0,b0) and F (c0) = 0. For
any other increasing and continuous from the right G : (a0, b0) → R, it is true
that µ = µG if and only if G differs from F by a constant.

Proof: Define the function

F (x) =

{
µ((c0, x]), if c0 ≤ x < b0,
−µ((x, c0]), if a0 < x < c0.

By Lemma 5.7, F is real valued and it is clear, by the monotonicity of µ,
that F is increasing. Now take any decreasing sequence (xn) so that xn ↓ x. If
c0 ≤ x, by continuity of µ from above, limn→+∞ F (xn) = limn→+∞ µ((c0, xn]) =
µ((c0, x]) = F (x). Also, if x < c0, then xn < c0 for large n, and, by continuity of
µ from below, limn→+∞ F (xn) = − limn→+∞ µ((xn, c0]) = −µ((x, c0]) = F (x).
Therefore, F is continuous from the right at every x.

If we compare µ and the induced µF at the intervals (a, b], we get µF ((a, b]) =
F (b)−F (a) = µ((a, b]), where the second equality becomes trivial by considering
cases: a < b < c0, a < c0 ≤ b and c0 ≤ a < b. Theorem 5.5 implies that µF = µ
on B(a0,b0).

If G is increasing, continuous from the right with µG = µ(= µF ) on B(a0,b0),
then G(x) − G(c0) = µG((c0, x]) = µF ((c0, x]) = F (x) − F (c0) for all x ≥ c0
and, similarly, G(c0)−G(x) = µG((x, c0]) = µF ((x, c0]) = F (c0)− F (x) for all
x < c0. Therefore F,G differ by a constant: G−F = G(c0)−F (c0) on (a0, b0).
Hence, if F (c0) = 0 = G(c0), then F,G are equal on (a0, b0).
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If the locally finite Borel measure µ on (a0, b0) satisfies the µ((a0, c0]) < +∞,
then we may make a different choice for F than the one in Theorem 5.6. We
add the constant µ((a0, c0]) to the function of the theorem and get the function

F (x) = µ((a0, x]), x ∈ (a0, b0).

This last function is called the cumulative distribution function of µ.
A central notion related to Borel measures is the notion of regularity, and

this is because of the need to replace the general Borel set (a somewhat obscure
object) by open or closed sets.

Let E be a Borel subset in a topological space X and µ a Borel measure on
X. It is clear that µ(K) ≤ µ(E) ≤ µ(U) for all K compact and U open with
K ⊆ E ⊆ U . Hence

sup{µ(K) |K compact ⊆ E} ≤ µ(E) ≤ inf{µ(U) |U open ⊇ E}.

Definition 5.3 Let X be a topological space and µ a Borel measure on X. Then
µ is called regular if the following are true for every Borel set E in X:
(i) µ(E) = inf{µ(U) |U open ⊇ E},
(ii) µ(E) = sup{µ(K) |K compact ⊆ E}.

Therefore, µ is regular if the measure of every Borel set can be approximated
from above by the measures of larger open sets and from below by the measures
of smaller compact sets.

Proposition 5.2 Let O be any open set in Rn. There is an increasing sequence
(Km) of compact subsets of O so that int(Km) ↑ O and, hence, Km ↑ O also.

Proof: Define the sets

Km =
{
x ∈ O | |x| ≤ m and |y − x| ≥ 1

m
for all y /∈ O

}
,

where |x|2 = x21 + · · ·+ x2n for all x = (x1, . . . , xn).
The set Km is bounded, since |x| ≤ m for all x ∈ Km.
If (xj) is a sequence in Km converging to some x, then, from |xj | ≤ m for

all j, we get |x| ≤ m, and, from |y − xj | ≥ 1
m for all j and for all y /∈ O, we get

|y − x| ≥ 1
m for all y /∈ O. Thus, x ∈ Km and Km is closed.

Therefore, Km is a compact subset of O and, clearly, Km ⊆ Km+1 ⊆ O for
all m. Hence, int(Km) ⊆ int(Km+1) for every m.

Now take any x ∈ O and an ε > 0 such that B(x; 2ε) ⊆ O. Consider,
also, M ≥ max(|x| + ε, 1ε ). It is trivial to see that B(x; ε) ⊆ KM and thus
x ∈ int(KM ). Therefore, int(Km) ↑ O. Since int(Km) ⊆ Km ⊆ O, we conclude
that Km ↑ O.

Theorem 5.7 Let X be a topological space with the property that for every
open set O in X there is an increasing sequence of compact subsets of O whose
interiors cover O.
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Suppose that µ is a locally finite Borel measure on X. Then:
(i) For every Borel set E and every ε > 0 there is an open U and a closed F so
that F ⊆ E ⊆ U and µ(U \ E), µ(E \ F ) < ε. If also µ(E) < +∞, then F can
be taken compact.
(ii) For every Borel set E in X there is A, a countable intersection of open sets,
and B, a countable union of compact sets, so that B ⊆ E ⊆ A and µ(A \ E) =
µ(E \B) = 0.
(iii) µ is regular.

Proof: (a) Suppose that µ(X) < +∞.

Consider the collection S of all Borel sets E in X with the property expressed
in (i), namely, that for every ε > 0 there is an open U and a closed F so that
F ⊆ E ⊆ U and µ(U \ E), µ(E \ F ) < ε.

Take any open set O ⊆ X and arbitrary ε > 0. If we consider U = O, then
µ(U \ O) = 0 < ε. By assumption there is a sequence (Km) of compact sets
so that Km ↑ O. Therefore, O \Km ↓ ∅ and, since µ(O \K1) ≤ µ(X) < +∞,
continuity from above implies that limm→+∞ µ(O \Km) = 0. Therefore there
is some m so that µ(O \ F ) < ε, if F = Km.

Thus, all open sets belong to S.

If E ∈ S and ε > 0 is arbitrary, we find an open U and a closed F so
that F ⊆ E ⊆ U and µ(U \ E), µ(E \ F ) < ε. Then F c is open, U c is closed,
U c ⊆ Ec ⊆ F c and µ(F c \ Ec) = µ(E \ F ) < ε and µ(Ec \ U c) = µ(U \ E) < ε.
This implies that Ec ∈ S.

Now, take E1, E2, . . . ∈ S and E = ∪+∞j=1Ej . For ε > 0 and each Ej take
open Uj and closed Fj so that Fj ⊆ Ej ⊆ Uj and µ(Uj \ Ej), µ(Ej \ Fj) < ε

2j .

Define B = ∪+∞j=1Fj and the open U = ∪+∞j=1Uj so that B ⊆ E ⊆ U . Then

U \ E ⊆ ∪+∞j=1(Uj \ Ej) and E \ B ⊆ ∪+∞j=1(Ej \ Fj). This implies µ(U \ E) ≤∑+∞
j=1 µ(Uj \Ej) <

∑+∞
j=1

ε
2j = ε and, similarly, µ(E \B) < ε. The problem now

is that B is not necessarily closed. Consider the closed sets F ′j = F1 ∪ · · · ∪ Fj ,
so that F ′j ↑ B. Then E \ F ′j ↓ E \ B and, since µ(E \ F ′1) ≤ µ(X) < +∞,
continuity from below implies µ(E \ F ′j) ↓ µ(E \ B). Therefore there is some j
so that µ(E \ F ′j) < ε. The inclusion F ′j ⊆ E is clearly true.

We conclude that E = ∪+∞j=1Ej ∈ S and S is a σ-algebra.

Since S contains all open sets, we have that BX ⊆ S and finish the proof of
the first statement of (i) in the special case µ(X) < +∞.
(b) Now, consider the general case, and take any Borel set E in X which is
included in some compact set K ⊆ X. For each x ∈ K we take an open
neighborhood Ux of x with µ(Ux) < +∞. By the compactness of K, there exist
x1, . . . , xn ∈ K so that K ⊆ ∪nk=1Uxk . We form the open set G = ∪nk=1Uxk and
have that

E ⊆ G, µ(G) < +∞.

We next consider the restriction µG of µ on G, which is defined by the
formula

µG(A) = µ(A ∩G)
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for all Borel sets A in X. It is clear that µG is a Borel measure on X which is
finite, since µG(X) = µ(G) < +∞.

By (a), for every ε > 0 there is an open U and a closed F so that F ⊆ E ⊆ U
and µG(U \ E), µG(E \ F ) < ε. Since E ⊆ G, we get µ((G ∩ U) \ E) =
µ(G∩(U \E)) = µG(U \E) < ε and µ(E \F ) = µ(G∩(E \F )) = µG(E \F ) < ε.

Therefore, if we consider the open set U ′ = G ∩ U , we get F ⊆ E ⊆ U ′ and
µ(U ′ \ E), µ(E \ F ) < ε and the first statement of (i) is now proved with no
restriction on µ(X) but only for Borel sets in X which are included in compact
subsets of X.
(c) We take an increasing sequence (Km) of compact sets so that int(Km) ↑ X.
For any Borel set E in X we consider the sets E1 = E ∩ K1 and Em = E ∩
(Km \Km−1) for all m ≥ 2 and we have that E = ∪+∞m=1Em. Since Em ⊆ Km,
(b) implies that for each m and every ε > 0 there is an open Um and a closed
Fm so that Fm ⊆ Em ⊆ Um and µ(Um \Em), µ(Em \Fm) < ε

2m . Now define the

open U = ∪+∞m=1Um and the closed (why?) F = ∪+∞m=1Fm, so that F ⊆ E ⊆ U .
As in the proof of (a), we easily get µ(U \ E), µ(E \ F ) < ε.

This concludes the proof of the first statement of (i).
(d) Let µ(E) < +∞. Take a closed F so that F ⊆ E and µ(E \ F ) < ε, and
consider the compact sets Km of part (c). Then the sets Fm = F ∩ Km are
compact and Fm ↑ F . Therefore, E \ Fm ↓ E \ F and, by continuity of µ
from above, µ(E \ Fm) → µ(E \ F ). Thus there is a large enough m so that
µ(E \ Fm) < ε. This proves the second statement of (i).
(e) Take open Uj and closed Fj so that Fj ⊆ E ⊆ Uj and µ(Uj\E), µ(E\Fj) < 1

j .

Define A = ∩+∞j=1Uj and B = ∪+∞j=1Fj so that B ⊆ E ⊆ A. Now, for all j we

have µ(A \ E) ≤ µ(Uj \ E) < 1
j and µ(E \ B) ≤ µ(E \ Fj) < 1

j . Therefore,

µ(A \ E) = µ(E \ B) = 0. We define the compact sets Kj,m = Fj ∩ Km and
observe that B = ∪(j,m)∈N×NKj,m. This is the proof of (ii).
(f) If µ(E) = +∞, it is clear that µ(E) = inf{µ(U) |U open and E ⊆ U}.
Also, from (ii), there is some B = ∪+∞m=1K

′
m, where all K ′m are compact, so

that B ⊆ E and µ(B) = µ(E) = +∞. Consider the compact sets Km =
K ′1 ∪ · · · ∪K ′m which satisfy Km ↑ B. Then µ(Km) → µ(B) = µ(E) and thus
sup{µ(K) |K compact and K ⊆ E} = µ(E).

If µ(E) < +∞, then, from (a), for every ε > 0 there is a compact K and
an open U so that K ⊆ E ⊆ U and µ(U \ E), µ(E \ K) < ε. This implies
µ(E)− ε < µ(K) and µ(U) < µ(E) + ε and, thus, the proof of (iii) is complete.

Lemma 5.8 Let X be a topological space which satisfies the assumptions of
Theorem 5.7. Let Y be an open or a closed subset of X with its subspace topology.
Then Y also satisfies the assumptions of Theorem 5.7.

Proof Let Y be open in X. If O is an open subset of Y , then it is also an open
subset of X. Therefore, there is an increasing sequence (Km) of compact subsets
of O so that intX(Km) ↑ O, where intX(Km) is the interior of Km with respect
to X. Since Km ⊆ Y and Y is open in X, it is clear that intY (Km) = intX(Km)
and, thus, intY (Km) ↑ O.

Let Y be closed in X and take any O ⊆ Y which is open in Y . Then
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O = O′ ∩ Y for some O′ ⊆ X which is open in X and, hence, there is an
increasing sequence (K ′m) of compact subsets of O′ so that intX(K ′m) ↑ O′. We
set Km = K ′m ∩ Y and have that each Km is a compact subset of O. Moreover,
intX(K ′m) ∩ Y ⊆ intY (Km) for every m and, thus, intY (Km) ↑ O.

Examples
1. Proposition 5.2 implies that the euclidean space Rn satisfies the assumptions
of Theorem 5.7. Therefore, every locally finite Borel measure on Rn is regular.

A special case of this is the Lebesgue measure in Rn (see Theorem 4.4 and
Exercice 4.6.5).
2. If Y is an open or a closed subset of Rn with the subspace topology, then
Lemma 5.8 together with Theorem 5.7 imply that every locally finite Borel
measure on Y is regular.

As a special case, if Y = (a0, b0) is a generalized interval in R, then every
locally finite Borel measure on Y is regular. Since Theorem 5.6 says that any
such measure is a Lebesgue-Stieltjes measure, this result is, also, easily implied
by Theorem 5.4.

5.3 Metric outer measures.

Let (X, d) be a metric space. We recall that, if E,F are non-empty subsets of
X, the quantity

d(E,F ) = inf{d(x, y) |x ∈ E, y ∈ F}

is the distance between E and F .

Definition 5.4 Let (X, d) be a metric space and µ∗ be an outer measure on X.
We say that µ∗ is a metric outer measure if

µ∗(E ∪ F ) = µ∗(E) + µ∗(F )

for every non-empty E,F ⊆ X with d(E,F ) > 0.

Theorem 5.8 Let (X, d) be a metric space and µ∗ an outer measure on X.
Then, the measure µ which is induced by µ∗ on (X,Σµ∗) is a Borel measure
(i.e. all Borel sets in X are µ∗-measurable) if and only if µ∗ is a metric outer
measure.

Proof: Suppose that all Borel sets in X are µ∗-measurable and take arbitrary
non-empty E,F ⊆ X with d(E,F ) > 0. We consider r = d(E,F ) and the
open set U = ∪x∈EB(x; r). It is clear that E ⊆ U and F ∩ U = ∅. Since U is
µ∗-measurable, we have µ∗(E ∪ F ) = µ∗

(
(E ∪ F ) ∩ U

)
+ µ∗

(
(E ∪ F ) ∩ U c

)
=

µ∗(E) + µ∗(F ). Therefore, µ∗ is a metric outer measure on X.
Now let µ∗ be a metric outer measure and consider an open U ⊆ X.
If A is a non-empty subset of U , we define

An =
{
x ∈ A | d(x, y) ≥ 1

n
for every y /∈ U

}
.
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It is obvious that An ⊆ An+1 for all n. If x ∈ A ⊆ U , there is r > 0 so that
B(x; r) ⊆ U and, if we take n ∈ N so that 1

n ≤ r, then x ∈ An. Therefore,

An ↑ A.

We define, now, B1 = A1 and Bn = An \ An−1 for all n ≥ 2 and have that
the sets B1, B2, . . . are pairwise disjoint and that A = ∪+∞n=1Bn. If x ∈ An and
z ∈ Bn+2, then z /∈ An+1 and there is some y /∈ U so that d(y, z) < 1

n+1 . Then

d(x, z) ≥ d(x, y)− d(y, z) > 1
n −

1
n+1 = 1

n(n+1) . Therefore,

d(An, Bn+2) ≥ 1

n(n+ 1)
> 0

for every n. Since An+2 ⊇ An ∪ Bn+2, we find µ∗(An+2) ≥ µ∗(An ∪ Bn+2) =
µ∗(An) + µ∗(Bn+2). By induction we get

µ∗(B1) + µ∗(B3) + · · ·+ µ∗(B2n+1) ≤ µ∗(A2n+1)

and
µ∗(B2) + µ∗(B4) + · · ·+ µ∗(B2n) ≤ µ∗(A2n)

for all n. If at least one of the series µ∗(B1)+µ∗(B3)+· · · and µ∗(B2)+µ∗(B4)+
· · · diverges to +∞, then either µ∗(A2n+1)→ +∞ or µ∗(A2n)→ +∞. Since the
sequence (µ∗(An)) is increasing, we get that in both cases it diverges to +∞.
Since, also µ∗(An) ≤ µ∗(A) for all n, we get that µ∗(An) ↑ µ∗(A). If both series
µ∗(B1) +µ∗(B3) + · · · and µ∗(B2) +µ∗(B4) + · · · converge, for every ε > 0 there
is n so that

∑+∞
k=n+1 µ

∗(Bk) < ε. Now, µ∗(A) ≤ µ∗(An) +
∑+∞
k=n+1 µ

∗(Bk) ≤
µ∗(An) + ε. This implies that µ∗(An) ↑ µ∗(A). Therefore, in any case,

µ∗(An) ↑ µ∗(A).

We consider an arbitrary E ⊆ X and we take A = E∩U . Since E∪U c ⊆ U c,
we have that d(An, E∩U c) > 0 for all n and, hence, µ∗(E) ≥ µ∗

(
An∪(E∩U c)

)
=

µ∗(An) + µ∗(E ∩ U c) for all n. Taking the limit as n→ +∞, we find

µ∗(E) ≥ µ∗(E ∩ U) + µ∗(E ∩ U c).

We conclude that every U open in X is µ∗-measurable and, hence, every
Borel set in X is µ∗-measurable.

5.4 Hausdorff measure.

Let (X, d) be a metric space. The diameter of a non-empty set E ⊆ X is defined
as diam(E) = sup{d(x, y) |x, y ∈ E} and the diameter of the ∅ is defined as
diam(∅) = 0.

We take an arbitrary δ > 0 and consider the collection Cδ of all subsets of
X of diameter not larger than δ. We, then, fix some α with 0 < α < +∞ and
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consider the function τα,δ : Cδ → [0,+∞] defined by τα,δ(E) =
(
diam(E)

)α
for

every E ∈ Cδ. We are, now, ready to apply Theorem 3.2 and define

h∗α,δ(E) = inf
{+∞∑
j=1

(
diam(Ej)

)α |E ⊆ ∪+∞j=1Ej ,diam(Ej) ≤ δ for all j
}
.

We have that h∗α,δ is an outer measure on X and we further define

h∗α(E) = sup
δ>0

h∗α,δ(E) , E ⊆ X.

We observe that, if 0 < δ1 < δ2, then the set whose infimum is h∗α,δ1(E) is
included in the set whose infimum is h∗α,δ2(E). Therefore, h∗α,δ2(E) ≤ h∗α,δ1(E)
and, hence,

h∗α(E) = lim
δ→0+

h∗α,δ(E) , E ⊆ X.

Theorem 5.9 Let (X, d) be a metric space and 0 < α < +∞. Then, h∗α is a
metric outer measure on X.

Proof: We have h∗α(∅) = supδ>0 h
∗
α,δ(∅) = 0, since h∗α,δ is an outer measure for

every δ > 0.
If E ⊆ F ⊆ X, then for every δ > 0 we have h∗α,δ(E) ≤ h∗α,δ(F ) ≤ h∗α(F ).

Taking the supremum of the left side, we find h∗α(E) ≤ h∗α(F ).
If E = ∪+∞j=1Ej , then for every δ > 0 we have h∗α,δ(E) ≤

∑+∞
j=1 h

∗
α,δ(Ej) ≤∑+∞

j=1 h
∗
α(Ej) and, taking the supremum of the left side, we find h∗α(E) ≤∑+∞

j=1 h
∗
α(Ej).

Therefore, h∗α is an outer measure on X.
Now, take any E,F ⊆ X with d(E,F ) > 0. If h∗α(E ∪ F ) = +∞, then the

equality h∗α(E ∪ F ) = h∗α(E) + h∗α(F ) is clearly true. We suppose that h∗α(E ∪
F ) < +∞ and, hence, h∗α,δ(E ∪ F ) < +∞ for every δ > 0. We take arbitrary

δ < d(E,F ) and an arbitrary covering E ∪ F ⊆ ∪+∞j=1Aj with diam(Aj) ≤ δ
for every j. It is obvious that each Aj intersects at most one of the E and F .
We set Bj = Aj when Aj intersects E and Bj = ∅ otherwise and, similarly,
Cj = Aj when Aj intersects F and Cj = ∅ otherwise. Then, E ⊆ ∪+∞j=1Bj

and F ⊆ ∪+∞j=1Cj and, hence, h∗α,δ(E) ≤
∑+∞
j=1(diam(Bj))

α and h∗α,δ(F ) ≤∑+∞
j=1(diam(Cj))

α. Adding, we find h∗α,δ(E) + h∗α,δ(F ) ≤
∑+∞
j=1(diam(Aj))

α

and, taking the infimum of the right side, h∗α,δ(E) + h∗α,δ(F ) ≤ h∗α,δ(E ∪ F ).
Taking the limit as δ → 0+ we find h∗α(E) + h∗α(F ) ≤ h∗α(E ∪F ) and, since the
opposite inequality is obvious, we conclude that

h∗α(E) + h∗α(F ) = h∗α(E ∪ F ).

Definition 5.5 Let (X, d) be a metric space and 0 < α < +∞. We call h∗α
the α-dimensional Hausdorff outer measure on X and the measure hα
on (X,Σh∗α) is called the α-dimensional Hausdorff measure on X.
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Theorem 5.10 If (X, d) is a metric space and 0 < α < +∞, then hα is a
Borel measure on X. Namely, BX ⊆ Σh∗α .

Proof: Immediate, by Theorems 5.8 and 5.9.

Proposition 5.3 Let (X, d) be a metric space, E a Borel set in X and let
0 < α1 < α2 < +∞. If hα1(E) < +∞, then hα2(E) = 0.

Proof: Since h∗α1
(E) = hα1

(E) < +∞, we have that h∗α1,δ
(E) < +∞ for every

δ > 0. We fix such a δ > 0 and consider a covering E ⊆ ∪+∞j=1Aj by subsets of

X with diam(Aj) ≤ δ for all j so that
∑+∞
j=1

(
diam(Aj)

)α1
< h∗α1,δ

(E) + 1 ≤
h∗α1

(E) + 1.

Therefore, h∗α2,δ
(E) ≤

∑+∞
j=1

(
diam(Aj)

)α2 ≤ δα2−α1
∑+∞
j=1

(
diam(Aj)

)α1 ≤
(h∗α1

(E) + 1)δα2−α1 and, taking the limit as δ → 0+, we find h∗α2
(E) = 0.

Hence, hα2
(E) = 0.

Proposition 5.4 If E is any Borel set in a metric space (X, d), there is an
α0 ∈ [0,+∞] with the property that hα(E) = +∞ for every α ∈ (0, α0) and
hα(E) = 0 for every α ∈ (α0,+∞).

Proof: We consider various cases.
1. hα(E) = 0 for every α > 0. In this case we set α0 = 0.
2. hα(E) = +∞ for every α > 0. We, now, set α0 = +∞.
3. There are α1 and α2 in (0,+∞) so that 0 < hα1

(E) and hα2
(E) < +∞.

Proposition 5.3 implies that α1 ≤ α2 and that hα(E) = +∞ for every
α ∈ (0, α1) and hα(E) = 0 for every α ∈ (α2,+∞). We consider the set
{α ∈ (0,+∞) |hα(E) = +∞} and its supremum α0 ∈ [α1, α2]. The same
Proposition 5.3 implies that hα(E) = +∞ for every α ∈ (0, α0) and hα(E) = 0
for every α ∈ (α0,+∞).

Definition 5.6 If E is any Borel set in a metric space (X, d), the a0 of Propo-
sition 5.4 is called the Hausdorff dimension of E and it is denoted

dimh(E) .

5.5 Exercises.

1. If −∞ < x1 < x2 < · · · < xN < +∞ and 0 < λ1, . . . , λN < +∞, then find
(and draw) the cumulative distribution function of µ =

∑N
k=1 λkδxk .

2. The Cantor measure.

Consider the Cantor function f (exercise 4.6.10) extended to R by f(x) =
0 for all x < 0 and f(x) = 1 for all x > 1. Then f : R → [0, 1] is
increasing, continuous and bounded.
(i) f is the cumulative distribution function of µf .
(ii) Prove that µf (C) = µf (R) = 1.
(iii) Each one of the 2n subintervals of In (look at the construction of C)
has measure equal to 1

2n .
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3. Let µ be a locally finite Borel measure on R such that µ((−∞, 0]) < +∞.
Prove that there is a unique f : R → R increasing and continuous from
the right so that µ = µf and f(−∞) = 0. Which is this function?

4. Linear combinations of regular Borel measures.

If µ, µ1, µ2 are regular Borel measures on the topological space X and
λ ∈ [0,+∞), prove that λµ and µ1 + µ2 (exercise 2.6.2) are regular Borel
measures on X.

5. Prove that every locally finite Borel measure on Rn is σ-finite.

6. The support of a regular Borel measure.

Let µ be a regular Borel measure on the topological space X. A point
x ∈ X is called a support point for µ if µ(Ux) > 0 for every open
neighborhood Ux of x. The set

supp(µ) = {x ∈ X |x is a support point for µ}

is called the support of µ.
(i) Prove that supp(µ) is a closed set in X.
(ii) Prove that µ(K) = 0 for all compact sets K ⊆ (supp(µ))c.
(iii) Using the regularity of µ, prove that µ

(
(supp(µ))c

)
= 0.

(iv) Prove that (supp(µ))c is the largest open set in X which is µ-null.

7. If f is the Cantor function (exercise 5.5.2), prove that the support (exercise
5.5.6) of µf is the Cantor set C.

8. Supports of Lebesgue-Stieltjes measures.

Let F : R → R be any increasing function. Prove that the complement
of the support (exercise 5.5.6) of the measure µF is the union of all open
intervals on each of which F is constant.

9. Let a : R → [0,+∞] induce the point-mass distribution µ on (R,P(R)).
Then µ is a Borel measure on R.
(i) Prove that µ is locally finite if and only if

∑
−R≤x≤R ax < +∞ for all

R > 0.
(ii) In particular, prove that, if µ is locally finite, then A = {x ∈ R | ax >
0} is countable.
(iii) In case µ is locally finite, find an increasing, continuous from the
right F : R → R (in terms of the function a) so that µ = µF on BR.
Describe the sets E such that µ∗F (E) = 0 and find the σ-algebra ΣF of all
µ∗F -measurable sets. Is ΣF = P(R)?

10. Restrictions of regular Borel measures.

Let µ be a σ-finite regular Borel measure on the topological space X and
Y be a Borel subset of X. Prove that the restriction µY is a regular Borel
measure on X.
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11. Continuous regular Borel measures.

Let µ be a regular Borel measure on the topological space X so that
µ({x}) = 0 for all x ∈ X. A measure satisfying this last property is called
continuous. Prove that for every Borel set A in X with 0 < µ(A) < +∞
and every t ∈ (0, µ(A)) there is some Borel set B in X so that B ⊆ A and
µ(B) = t.

12. Let X be a separable, complete metric space and µ be a Borel measure
on X so that µ(X) = 1. Prove that there is some B, a countable union of
compact subsets of X, so that µ(B) = 1.
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Chapter 6

Measurable functions

6.1 Measurability.

Definition 6.1 Let (X,Σ) and (Y,Σ′) be measurable spaces and f : X → Y .
We say that f is (Σ,Σ′)-measurable if f−1(E) ∈ Σ for all E ∈ Σ′.

Example
A constant function is measurable. In fact, let (X,Σ) and (Y,Σ′) be mea-

surable spaces and f(x) = y0 ∈ Y for all x ∈ X. Take arbitrary E ∈ Σ′. If
y0 ∈ E, then f−1(E) = X ∈ Σ. If y0 /∈ E, then f−1(E) = ∅ ∈ Σ.

Proposition 6.1 Let (X,Σ) and (Y,Σ′) measurable spaces and f : X → Y .
Suppose that E is a collection of subsets of Y so that Σ(E) = Σ′. If f−1(E) ∈ Σ
for all E ∈ E, then f is (Σ,Σ′)-measurable.

Proof: We consider the collection S = {E ⊆ Y | f−1(E) ∈ Σ}.
Since f−1(∅) = ∅ ∈ Σ, it is clear that ∅ ∈ S.
If E ∈ S, then f−1(Ec) = (f−1(E))c ∈ Σ and thus Ec ∈ S.
If E1, E2, . . . ∈ S, then f−1(∪+∞j=1Ej) = ∪+∞j=1f

−1(Ej) ∈ Σ, implying that

∪+∞j=1Ej ∈ S.
Therefore S is a σ-algebra of subsets of Y . E is, by hypothesis, included in

S and, thus, Σ′ = Σ(E) ⊆ S. This concludes the proof.

Proposition 6.2 Let X,Y be topological spaces and f : X → Y be continuous
on X. Then f is (BX ,BY )-measurable.

Proof: Let E be the collection of all open subsets of Y . Then, by continuity,
f−1(E) is an open and, hence, Borel subset of X for all E ∈ E . Since Σ(E) = BY ,
Proposition 6.1 implies that f is (BX ,BY )-measurable.

6.2 Restriction and gluing.

If f : X → Y and A ⊆ X is non-empty, then the function feA : A→ Y , defined
by (feA)(x) = f(x) for all x ∈ A, is the usual restriction of f on A.
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Recall that, if Σ is a σ-algebra of subsets of X and A ∈ Σ is non-empty,
then, by Lemma 2.1, ΣeA = {E ⊆ A |E ∈ Σ} is a σ-algebra of subsets of A.
We call ΣeA the restriction of Σ on A.

Proposition 6.3 Let (X,Σ), (Y,Σ′) be measurable spaces and f : X → Y . Let
the non-empty A1, . . . , An ∈ Σ be pairwise disjoint and A1 ∪ · · · ∪An = X.

Then f is (Σ,Σ′)-measurable if and only if feAj is (ΣeAj ,Σ′)-measurable
for all j = 1, . . . , n.

Proof: Let f be (Σ,Σ′)-measurable. For all E ∈ Σ′ we have (feAj)−1(E) =
f−1(E)∩Aj ∈ ΣeAj because the set f−1(E)∩Aj belongs to Σ and is included
in Aj . Hence feAj is (ΣeAj ,Σ′)-measurable for all j.

Now, let feAj be (ΣeAj ,Σ′)-measurable for all j. For every E ∈ Σ′ we have
that f−1(E) ∩ Aj = (feAj)−1(E) ∈ ΣeAj and, hence, f−1(E) ∩ Aj ∈ Σ for all
j. Therefore f−1(E) = (f−1(E)∩A1)∪ · · · ∪ (f−1(E)∩An) ∈ Σ, implying that
f is (Σ,Σ′)-measurable.

In a free language: measurability of a function separately on complementary
(measurable) pieces of the space is equivalent to measurability on the whole space.

There are two operations on measurable functions that are taken care of
by Proposition 6.3. One is the restriction of a function f : X → Y on some
non-empty A ⊆ X and the other is the gluing of functions feAj : Aj → Y
to form a single f : X → Y , whenever the finitely many Aj ’s are non-empty,
pairwise disjoint and cover X. The rules are: restriction of measurable functions
on measurable sets are measurable and gluing of measurable functions defined
on measurable subsets results to a measurable function.

6.3 Functions with arithmetical values.

Definition 6.2 Let (X,Σ) be measurable space and f : X → R or R or C or
C. We say f is Σ-measurable if it is (Σ,BR or BR or BC or BC)-measurable,
respectively.

In the particular case when (X,Σ) is (Rn,BRn) or (Rn,Ln), then we use
the term Borel measurable or, respectively, Lebesgue measurable for f .

If f : X → R, then it is also true that f : X → R. Thus, according to the
definition we have given, there might be a conflict between the two meanings
of Σ-measurability of f . But, actually, there is no such conflict. Suppose, for
example, that f is assumed (Σ,BR)-measurable. If E ∈ BR, then E ∩R ∈ BR
and, thus, f−1(E) = f−1(E ∩ R) ∈ Σ. Hence f is (Σ,BR)-measurable. Let,
conversely, f be (Σ,BR)-measurable. If E ∈ BR, then E ∈ BR and, thus,
f−1(E) ∈ Σ. Hence f is (Σ,BR)-measurable.

The same question arises when f : X → C, because it is then also true that
f : X → C. Exactly as before, we may prove that f is (Σ,BC)-measurable if
and only if it is (Σ,BC)-measurable and there is no conflict in the definition.
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Proposition 6.4 Let (X,Σ) be measurable space and f : X → Rn. Let, for
each j = 1, . . . , n, fj : X → R denote the j-th component function of f . Namely,
f(x) = (f1(x), . . . , fn(x)) for all x ∈ X.

Then f is (Σ,BRn)-measurable if and only if every fj is Σ-measurable.

Proof: Let f be (Σ,BRn)-measurable. For all intervals (a, b] we have

f−1j ((a, b]) = f−1(R× · · · ×R× (a, b]×R× · · · ×R)

which belongs to Σ. Since the collection of all (a, b] generates BR, Proposition
6.1 implies that fj is Σ-measurable.

Now let every fj be Σ-measurable. Then

f−1((a1, b1]× · · · × (an, bn]) = f−11 ((a1, b1]) ∩ · · · ∩ f−1n ((an, bn])

which is an element of Σ. The collection of all open-closed intervals generates
BRn and Proposition 6.1, again, implies that f is (Σ,BRn)- measurable.

In a free language: measurability of a vector function is equivalent to mea-
surability of all component functions.

The next two results give simple criteria for measurability of real or complex
valued functions.

Proposition 6.5 Let (X,Σ) be measurable space and f : X → R. Then f is
Σ-measurable if and only if f−1((a,+∞)) ∈ Σ for all a ∈ R.

Proof: Since (a,+∞) ∈ BR, one direction is trivial.
If f−1((a,+∞)) ∈ Σ for all a ∈ R, then f−1((a, b]) = f−1((a,+∞)) \

f−1((b,+∞)) ∈ Σ for all (a, b]. Now the collection of all intervals (a, b] generates
BR and Proposition 6.1 implies that f is Σ-measurable.

Of course, in the statement of Proposition 6.5 one may replace the intervals
(a,+∞) by the intervals [a,+∞) or (−∞, b) or (−∞, b].

If f : X → C, then the functions <(f),=(f) : X → R are defined by
<(f)(x) = <(f(x)) and =(f)(x) = =(f(x)) for all x ∈ X and they are called
the real part and the imaginary part of f , respectively.

Proposition 6.6 Let (X,Σ) be measurable space and f : X → C. Then f is
Σ-measurable if and only if both <(f) and =(f) are Σ-measurable.

Proof: An immediate application of Proposition 6.4.

The next two results investigate extended-real or extended-complex valued
functions.

Proposition 6.7 Let (X,Σ) be measurable space and f : X → R. The follow-
ing are equivalent.
(i) f is Σ-measurable.
(ii) f−1({+∞}), f−1(R) ∈ Σ and, if A = f−1(R) is non-empty, the function
feA : A→ R is ΣeA-measurable.
(iii) f−1((a,+∞]) ∈ Σ for all a ∈ R.
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Proof: It is trivial that (i) implies (iii), since (a,+∞] ∈ BR for all a ∈ R.
Assume (ii) and consider B = f−1({+∞}) ∈ Σ and C = f−1({−∞}) =

(A ∪ B)c ∈ Σ. The restrictions feB = +∞ and feC = −∞ are constants and
hence are, respectively, ΣeB-measurable and ΣeC-measurable. Proposition 6.3
implies that f is Σ-measurable and thus (ii) implies (i).

Now assume (iii). Then f−1({+∞}) = ∩+∞n=1f
−1((n,+∞]) ∈ Σ and then

f−1((a,+∞)) = f−1((a,+∞]) \ f−1({+∞}) ∈ Σ for all a ∈ R. Moreover,
f−1(R) = ∪+∞n=1f

−1((−n,+∞)) ∈ Σ. For all a ∈ R we get (feA)−1((a,+∞)) =
f−1((a,+∞)) ∈ ΣeA, because the last set belongs to Σ and is included in A.
Proposition 6.5 implies that feA is ΣeA-measurable and (ii) is now proved.

Proposition 6.8 Let (X,Σ) be measurable space and f : X → C. The follow-
ing are equivalent.
(i) f is Σ-measurable.
(ii) f−1(C) ∈ Σ and, if A = f−1(C) is non-empty, the feA : A → C is
ΣeA-measurable.

Proof: Assume (ii) and consider B = f−1({∞}) = (f−1(C))c ∈ Σ. The restric-
tion feB is constant ∞ and hence ΣeB-measurable. Proposition 6.3 implies
that f is Σ-measurable. Thus (ii) implies (i).

Now assume (i). Then A = f−1(C) ∈ Σ since C ∈ BC. Proposition 6.3
implies that feA is ΣeA-measurable and (i) implies (ii).

6.4 Composition.

Proposition 6.9 Let (X,Σ), (Y,Σ′), (Z,Σ′′) be measurable spaces and let f :
X → Y , g : Y → Z. If f is (Σ,Σ′)-measurable and g is (Σ′,Σ′′)-measurable,
then g ◦ f : X → Z is (Σ,Σ′′)-measurable.

Proof: For all E ∈ Σ′′ we have (g ◦ f)−1(E) = f−1
(
g−1(E)

)
∈ Σ, because

g−1(E) ∈ Σ′.

Hence: composition of measurable functions is measurable.

6.5 Sums and products.

The next result is: sums and products of real or complex valued measurable
functions are measurable functions.

Proposition 6.10 Let (X,Σ) be a measurable space and f, g : X → R or C be
Σ-measurable. Then f + g, fg are Σ-measurable.

Proof: (a) We consider H : X → R2 by the formula H(x) = (f(x), g(x)) for all
x ∈ X. Proposition 6.4 implies that H is (Σ,BR2)-measurable. Now consider
φ, ψ : R2 → R by the formulas φ(y, z) = y+z and ψ(y, z) = yz. These functions
are continuous and Proposition 6.2 implies that they are (BR2 ,BR)-measurable.
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Therefore the compositions φ ◦ H,ψ ◦ H : X → R are Σ-measurable. But
(φ ◦H)(x) = f(x) + g(x) = (f + g)(x) and (ψ ◦H)(x) = f(x)g(x) = (fg)(x) for
all x ∈ X and we conclude that f+g = φ◦H and fg = ψ◦H are Σ-measurable.
(b) In the case f, g : X → C we consider <(f),=(f),<(g),=(g) : X → R, which,
by Proposition 6.6, are all Σ-measurable. Then, part (a) implies that <(f+g) =
<(f) + <(g),=(f + g) = =(f) + =(g),<(fg) = <(f)<(g) − =(f)=(g),=(fg) =
<(f)=(g) + =(f)<(g) are all Σ-measurable. Proposition 6.6 again, gives that
f + g, fg are Σ-measurable.

If we want to extend the previous results to functions with infinite values,
we must be more careful.

The sums (+∞) + (−∞), (−∞) + (+∞) are not defined in R and neither is
∞ +∞ defined in C. Hence, when we add f, g : X → R or C, we must agree
on how to treat the summation on, respectively, the set B = {x ∈ X | f(x) =
+∞, g(x) = −∞ or f(x) = −∞, g(x) = +∞} or the set B = {x ∈ X | f(x) =
∞, g(x) = ∞}. There are two standard ways to do this. One is to ignore the
bad set and consider f + g defined on Bc ⊆ X, on which it is naturally defined.
The other way is to choose some appropriate h defined on B and define f+g = h
on B. The usual choice for h is some constant, e.g h = 0.

Proposition 6.11 Let (X,Σ) be a measurable space and f, g : X → R be Σ-
measurable. Then the set

B = {x ∈ X | f(x) = +∞, g(x) = −∞ or f(x) = −∞, g(x) = +∞}

belongs to Σ.
(i) The function f + g : Bc → R is ΣeBc-measurable.
(ii) If h : B → R is ΣeB-measurable and we define

(f + g)(x) =

{
f(x) + g(x), if x ∈ Bc,
h(x), if x ∈ B,

then f + g : X → R is Σ-measurable.
Similar results hold if f, g : X → C and B = {x ∈ X | f(x) =∞, g(x) =∞}.

Proof: We have

B =
(
f−1({+∞}) ∩ g−1({−∞})

)
∪
(
f−1({−∞}) ∩ g−1({+∞})

)
∈ Σ.

(i) Consider the sets A = {x ∈ X | f(x), g(x) ∈ R}, C1 = {x ∈ X | f(x) =
+∞, g(x) 6= −∞ or f(x) 6= −∞, g(x) = +∞} and C2 = {x ∈ X | f(x) =
−∞, g(x) 6= +∞ or f(x) 6= +∞, g(x) = −∞}. It is clear that A,C1, C2 ∈ Σ,
that Bc = A ∪ C1 ∪ C2 and that the three sets are pairwise disjoint.

The restriction of f + g on A is the sum of the real valued feA, geA. By
Proposition 6.3, both feA, geA are ΣeA-measurable and, by Proposition 6.10,
(f+g)eA = feA+geA is ΣeA-measurable. The restriction (f+g)eC1 is constant
+∞, and is thus ΣeC1-measurable. Also the restriction (f + g)eC2 = −∞ is
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ΣeC2-measurable. Proposition 6.3 implies that f + g : Bc → R is ΣeBc-
measurable.
(ii) This is immediate after the result of (i) and Proposition 6.3.

The case f, g : X → C is similar, if not simpler.

For multiplication we make the following

Convention: (±∞) · 0 = 0 · (±∞) = 0 in R and ∞ · 0 = 0 · ∞ = 0 in C.

Thus, multiplication is always defined and we may state that: the product
of measurable functions is measurable.

Proposition 6.12 Let (X,Σ) be a measurable space and f, g : X → R or C be
Σ-measurable. Then the function fg is Σ-measurable.

Proof: Let f, g : X → R.
Consider the sets A = {x ∈ X | f(x), g(x) ∈ R}, C1 = {x ∈ X | f(x) =

+∞, g(x) > 0 or f(x) = −∞, g(x) < 0 or f(x) > 0, g(x) = +∞ or f(x) <
0, g(x) = −∞}, C2 = {x ∈ X | f(x) = −∞, g(x) > 0 or f(x) = +∞, g(x) <
0 or f(x) > 0, g(x) = −∞ or f(x) < 0, g(x) = +∞} and D = {x ∈ X | f(x) =
±∞, g(x) = 0 or f(x) = 0, g(x) = ±∞}. These four sets are pairwise disjoint,
their union is X and they all belong to Σ.

The restriction of fg on A is equal to the product of the real valued feA, geA,
which, by Propositions 6.3 and 6.10, is ΣeA-measurable. The restriction (fg)eC1

is constant +∞ and, hence, ΣeC1-measurable. Similarly, (fg)eC2 = −∞ is
ΣeC2-measurable. Finally, (fg)eD = 0 is ΣeD-measurable.

Proposition 6.3 implies now that fg is Σ-measurable.
If f, g : X → C, the proof is similar and slightly simpler.

6.6 Absolute value and signum.

The action of the absolute value on infinities is: | +∞| = | − ∞| = +∞ and
|∞| = +∞.

Proposition 6.13 Let (X,Σ) be a measurable space and f : X → R or C be
Σ-measurable. Then the function |f | : X → [0,+∞] is Σ-measurable.

Proof: Let f : X → R. The function | · | : R → [0,+∞] is continuous and,
hence, (BR,BR)-measurable. Therefore, |f |, the composition of | · | and f , is
Σ-measurable.

The same proof applies in the case f : X → C.

Definition 6.3 For every z ∈ C we define

sign(z) =


z
|z| , if z 6= 0,

0, if z = 0,
∞, if z =∞.
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If we denote C∗ = C \ {0,∞}, then the restriction signeC∗ : C∗ → C is
continuous. This implies that, for every Borel set E in C, the set (signeC∗)−1(E)
is a Borel set contained in C∗. The restriction signe{0} is constant 0 and the
restriction signe{∞} is constant ∞. Therefore, for every Borel set E in C, the
sets (signe{0})−1(E), (signe{∞})−1(E) are Borel sets. Altogether, sign−1(E) =
(signeC∗)−1(E)∪ (signe{0})−1(E)∪ (signe{∞})−1(E) is a Borel set in C. This
means that sign : C→ C is (BC,BC)-measurable.

All this applies in the same way to the function sign : R → R with the
simple formula

sign(x) =

{
1, if 0 < x ≤ +∞,
−1, if −∞ ≤ x < 0,
0, if x = 0.

Hence sign : R→ R is (BR,BR)-measurable.

For all z ∈ C we may write

z = sign(z) · |z|

and this is called the polar decomposition of z.

Proposition 6.14 Let (X,Σ) be a measurable space and f : X → R or C be
Σ-measurable. Then the function sign(f) is Σ-measurable.

Proof: If f : X → R, then sign(f) is the composition of sign : R → R and f
and the result is clear by Proposition 6.9. The same applies if f : X → C.

6.7 Maximum and minimum.

Proposition 6.15 Let (X,Σ) be measurable space and f1, . . . , fn : X → R be
Σ-measurable. Then the functions max{f1, . . . , fn},min{f1, . . . , fn} : X → R
are Σ-measurable.

Proof: If h = max{f1, . . . , fn}, then for all a ∈ R we have h−1((a,+∞]) =
∪nj=1f

−1
j ((a,+∞]) ∈ Σ. Proposition 6.7 implies that h is Σ-measurable and

from min{f1, . . . , fn} = −max{−f1, . . . ,−fn} we see that min{f1, . . . , fn} is
also Σ-measurable.

The next result is about comparison of measurable functions.

Proposition 6.16 Let (X,Σ) be a measurable space and f, g : X → R be Σ-
measurable. Then {x ∈ X | f(x) = g(x)}, {x ∈ X | f(x) < g(x)} ∈ Σ.

If f, g : X → C is Σ-measurable, then {x ∈ X | f(x) = g(x)} ∈ Σ.

Proof: Consider the set A = {x ∈ X | f(x), g(x) ∈ R} ∈ Σ. Then the functions
feA, geA are ΣeA-measurable and thus feA − geA is ΣeA-measurable. Hence
the sets {x ∈ A | f(x) = g(x)} = (feA − geA)−1({0}) and {x ∈ A | f(x) <
g(x)} = (feA − geA)−1((−∞, 0)) belong to ΣeA. This, of course, means that
these sets belong to Σ (and that they are subsets of A).
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We can obviously write {x ∈ X | f(x) = g(x)} = {x ∈ A | f(x) = g(x)}∪(
f−1({−∞}) ∩ g−1({−∞})

)
∪
(
f−1({+∞}) ∩ g−1({+∞})

)
∈ Σ. In a similar

manner, {x ∈ X | f(x) < g(x)} = {x ∈ A | f(x) < g(x)} ∪
(
f−1({−∞}) ∩

g−1((−∞,+∞])
)
∪
(
f−1([−∞,+∞)) ∩ g−1({+∞})

)
∈ Σ.

The case of f, g : X → C and of {x ∈ X | f(x) = g(x)} is even simpler.

6.8 Truncation.

There are many possible truncations of a function.

Definition 6.4 Let f : X → R and consider α, β ∈ R with α ≤ β. We define

f
(β)
(α) (x) =

 f(x), if α ≤ f(x) ≤ β,
α, if f(x) < α,
β, if β < f(x).

We write f (β) instead of f
(β)
(−∞) and f(α) instead of f

(+∞)
(α) .

The functions f
(β)
(α) , f

(β), f(α) are called truncations of f .

Proposition 6.17 Let (X,Σ) be a measurable space and f : X → R be a

Σ-measurable function. Then all truncations f
(β)
(α) are Σ-measurable.

Proof: The proof is obvious after the formula f
(β)
(α) = min

{
max{f, α}, β

}
.

An important role is played by the following special truncations.

Definition 6.5 Let f : X → R. The f+ : X → [0,+∞] and f− : X → [0,+∞]
defined by the formulas

f+(x) =

{
f(x), if 0 ≤ f(x),
0, if f(x) < 0,

f−(x) =

{
0, if 0 ≤ f(x),
−f(x), if f(x) < 0,

are called, respectively, the positive part and the negative part of f .

It is clear that f+ = f(0) and f− = −f (0). Hence if Σ is a σ-algebra of subsets
of X and f is Σ-measurable, then both f+ and f− are Σ-measurable. It is also
trivial to see that at every x ∈ X either f+(x) = 0 or f−(x) = 0 and that

f+ + f− = |f |, f+ − f− = f.

There is another type of truncations used mainly for extended-complex val-
ued functions.

Definition 6.6 Let f : X → R or C and consider r ∈ [0,+∞]. We define

(r)f(x) =

{
f(x), if |f(x)| ≤ r,
r · sign(f(x)), if r < |f(x)|.

The functions (r)f are called truncations of f .
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Observe that, if f : X → R, then (r)f = f
(r)
(−r).

Proposition 6.18 Let (X,Σ) be a measurable space and f : X → R or C a
Σ-measurable function. Then all truncations (r)f are Σ-measurable.

Proof: Observe that the function φr : R→ R with formula

φr(x) =

{
x, if |x| ≤ r,
r · sign(x), if r < |x|,

is continuous on R and hence (BR,BR)-measurable. Now (r)f = φr ◦ f is
Σ-measurable.

The proof in the case f : X → C is similar.

6.9 Limits.

The next group of results is about various limiting operations on measurable
functions. The rule is, roughly: the supremum, the infimum and the limit of a
sequence of measurable functions are measurable functions.

Proposition 6.19 Let (X,Σ) be a measurable space and (fj) a sequence of Σ-
measurable functions fj : X → R. Then all the functions supj∈N fj, infj∈N fj,
lim supj→+∞ fj and lim infj→+∞ fj are Σ-measurable.

Proof: Let h = supj∈N fj : X → R. For every a ∈ R we have h−1((a,+∞]) =

∪+∞j=1f
−1
j ((a,+∞]) ∈ Σ. Proposition 6.7 implies that h is Σ-measurable.

Now infj∈N fj = − supj∈N(−fj) is also Σ-measurable.

And, finally, lim supj→+∞ fj = infj∈N
(

supk≥j fk
)

and lim infj→+∞ fj =

supj∈N
(

infk≥j fk
)

are Σ-measurable.

Proposition 6.20 Let (X,Σ) be a measurable space and (fj) a sequence of
Σ-measurable functions fj : X → R. Then the set

A = {x ∈ X | lim
j→+∞

fj(x) exists in R}

belongs to Σ.
(i) The function limj→+∞ fj : A→ R is ΣeA-measurable.
(ii) If h : Ac → R is ΣeAc-measurable and we define

( lim
j→+∞

fj)(x) =

{
limj→+∞ fj(x), if x ∈ A,
h(x), if x ∈ Ac,

then limj→+∞ fj : X → R is Σ-measurable.

Similar results hold if fj : X → C for all j and we consider the set A =
{x ∈ X | limj→+∞ fj(x) exists in C}.
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Proof: (a) Suppose that fj : X → R for all j.
Proposition 6.19 implies that lim supj→+∞ fj and lim infj→+∞ fj are both

Σ-measurable. Since limj→+∞ fj(x) exists if and only if lim supj→+∞ fj(x) =
lim infj→+∞ fj(x), we have that

A = {x ∈ X | lim sup
j→+∞

fj(x) = lim inf
j→+∞

fj(x)}

and Proposition 6.16 implies that A ∈ Σ.
(i) It is clear that the function limj→+∞ fj : A → R is just the restriction of
lim supj→+∞ fj (or of lim infj→+∞ fj) to A and hence it is ΣeA-measurable.
(ii) The proof of (ii) is a direct consequence of (i) and Proposition 6.3.
(b) Let now fj : X → C for all j.

Consider the set B = {x ∈ X | limj→+∞ fj(x) exists in C} and the set C =
{x ∈ X | limj→+∞ fj(x) =∞}. Clearly, B ∪ C = A.

Now, C = {x ∈ X | limj→+∞ |fj |(x) = +∞}. Since |fj | : X → R for all
j, part (a) implies that the function limj→+∞ |fj | is measurable on the set on
which it exists. Therefore, C ∈ Σ.

B is the intersection of B1 = {x ∈ X | limj→+∞ <(fj)(x) exists in R} and
B2 = {x ∈ X | limj→+∞ =(fj)(x) exists in R}. By part (a) applied to the
sequences (<(fj)), (=(fj)) of real valued functions, we see that the two functions
limj→+∞ <(fj), limj→+∞ =(fj) are both measurable on the set on which each of
them exists. Hence, both B1, B2 (the inverse images of R under these functions)
belong to Σ and thus B = B1 ∩B2 ∈ Σ.

Therefore A = B ∪ C ∈ Σ.
We have just seen that the functions limj→+∞ <(fj), limj→+∞ =(fj) are

measurable on the set where each of them exists and hence their restrictions to
B are both ΣeB-measurable. These functions are, respectively, the real and the
imaginary part of the restriction to B of limj→+∞ fj and Proposition 6.6 says
that limj→+∞ fj is ΣeB-measurable. Finally, the restriction to C of this limit
is constant ∞ and thus it is ΣeC-measurable. By Proposition 6.3, limj→+∞ fj
is ΣeA-measurable.

This is the proof of (i) in the case of complex valued functions and the proof
of (ii) is immediate after Proposition 6.3.
(c) Finally, let fj : X → C for all j.

For each j we consider the function

gj(x) =

{
fj(x), if fj(x) 6=∞,
j, if fj(x) =∞.

If we set Aj = f−1j (C) ∈ Σ, then gjeAj = fjeAj is ΣeAj-measurable. Also
gjeAcj is constant j and hence ΣeAcj-measurable. Therefore gj : X → C is
Σ-measurable.

It is easy to show that the two limits limj→+∞ gj(x) and limj→+∞ fj(x)
either both exist or both do not exist and, if they do exist, they are equal. In
fact, let limj→+∞ fj(x) = p ∈ C. If p ∈ C, then for large enough j we shall have
that fj(x) 6=∞, implying gj(x) = fj(x) and thus limj→+∞ gj(x) = p. If p =∞,
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then |fj(x)| → +∞. Therefore |gj(x)| ≥ min{|fj(x)|, j} → +∞ and hence
limj→+∞ gj(x) = ∞ = p in this case also. The converse is similarly proved. If
limj→+∞ gj(x) = p ∈ C, then, for large enough j, gj(x) 6= j and thus fj(x) =
gj(x) implying limj→+∞ fj(x) = limj→+∞ gj(x) = p. If limj→+∞ gj(x) = ∞,
then limj→+∞ |gj(x)| = +∞. Since |fj(x)| ≥ |gj(x)| we get limj→+∞ |fj(x)| =
+∞ and thus limj→+∞ fj(x) =∞.

Therefore A = {x ∈ X | limj→+∞ gj(x) exists in C} and, applying the result
of (b) to the functions gj : X → C, we get that A ∈ Σ. For the same reason, the
function limj→+∞ fj , which on A is equal to limj→+∞ gj , is ΣeA-measurable.

6.10 Simple functions.

Definition 6.7 Let E ⊆ X. The function χE : X → R defined by

χE(x) =

{
1, if x ∈ E,
0, if x /∈ E,

is called the characteristic function of E.

Observe that, not only E determines its χE , but also χE determines the set E
by E = {x ∈ X |χE(x) = 1} = χ−1E ({1}).

The following are trivial:

λχE+κχF = λχE\F+(λ+κ)χE∩F+κχF\E χEχF = χE∩F χEc = 1−χE

for all E,F ⊆ X and all λ, κ ∈ C.

Proposition 6.21 Let (X,Σ) be a measurable space and E ⊆ X. Then χE is
Σ-measurable if and only if E ∈ Σ.

Proof: If χE is Σ-measurable, then E = χ−1E ({1}) ∈ Σ.
Conversely, let E ∈ Σ. Then for an arbitrary F ∈ BR or BC we have

χ−1E (F ) = ∅ if 0, 1 /∈ F , χ−1E (F ) = E if 1 ∈ F and 0 /∈ F , χ−1E (F ) = Ec if 1 /∈ F
and 0 ∈ F and χ−1E (F ) = X if 0, 1 ∈ F . In any case, χ−1E (F ) ∈ Σ and χE is
Σ-measurable.

Definition 6.8 A function defined on a non-empty set X is called a simple
function on X if its range is a finite subset of C.

The following proposition completely describes the structure of simple func-
tions.

Proposition 6.22 (i) A function φ : X → C is a simple function on X if
and only if it is a linear combination with complex coefficients of characteristic
functions of subsets of X.
(ii) For every simple function φ on X there are m ∈ N, different κ1, . . . , κm ∈ C
and non-empty pairwise disjoint E1, . . . , Em ⊆ X with ∪mj=1Ej = X so that

φ = κ1χE1
+ · · ·+ κmχEm .
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This representation of φ is unique (apart from rearrangement).
(iii) If Σ is a σ-algebra of subsets of X, then φ is Σ-measurable if and only if
all Ek’s in the representation of φ described in (ii) belong to Σ.

Proof: Let φ =
∑n
j=1 λjχFj , where λj ∈ C and Fj ⊆ X for all j = 1, . . . , n.

Taking an arbitrary x ∈ X, either x belongs to no Fj , in which case φ(x) = 0,
or, by considering all the sets Fj1 , . . . , Fjk which contain x, we have that φ(x) =
λj1 + · · ·+ λjk . Therefore the range of φ contains at most all the possible sums
λj1 + · · ·+ λjk together with 0 and hence it is finite. Thus φ is simple on X.

Conversely, suppose φ is simple on X and let its range consist of the different
κ1, . . . , κm ∈ C. We consider Ej = {x ∈ X |φ(x) = κj} = φ−1({κj}). Then
every x ∈ X belongs to exactly one of these sets, so that they are pairwise
disjoint and X = E1 ∪ · · · ∪Em. Now it is clear that φ =

∑m
j=1 κjχEj , because

both sides take the same value at every x.

If φ =
∑m′

i=1 κ
′
iχE′i is another representation of φ with different κ′i’s and non-

empty pairwise disjoint E′i’s covering X, then the range of φ is exactly the set
{κ′1, . . . , κ′m′}. Hence m′ = m and, after rearrangement, κ′1 = κ1, . . . , κ

′
m = κm.

Therefore E′j = φ−1({κ′j}) = φ−1({κj}) = Ej for all j = 1, . . . ,m. We conclude
that the representation is unique.

Now if all Ej ’s belong to the σ-algebra Σ, then, by Proposition 6.21, all
χEj ’s are Σ-measurable and hence φ is also Σ-measurable. Conversely, if φ is
Σ-measurable, then all Ej = φ−1({κj}) belong to Σ.

Definition 6.9 The unique representation of the simple function φ, which is
described in part (ii) of Proposition 6.22, is called the standard representa-
tion of φ.

If one of the coefficients in the standard representation of a simple function is
equal to 0, then we usually omit the corresponding term from the sum (but then
the union of the pairwise disjoint sets which appear in the representation is not,
necessarily, equal to the whole space).

Proposition 6.23 Any linear combination with complex coefficients of simple
functions is a simple function and any product of simple functions is a simple
function. Also, the maximum and the minimum of real valued simple functions
are simple functions.

Proof: Let φ, ψ be simple functions on X and p, q ∈ C. Assume that λ1, . . . , λn
are the values of φ and κ1, . . . , κm are the values of ψ. It is obvious that the
possible values of pφ + qψ are among the nm numbers pλi + qκj and that the
possible values of φψ are among the nm numbers λiκj . Therefore both functions
pφ + qψ, φψ have a finite number of values. If φ, ψ are real valued, then the
possible values of max{φ, ψ} and min{φ, ψ} are among the n+m numbers λi, κj .

Theorem 6.1 (i) Given f : X → [0,+∞], there exists an increasing sequence
(φn) of non-negative simple functions on X which converges to f pointwise on
X. Moreover, it converges to f uniformly on every subset on which f is bounded.
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(ii) Given f : X → C, there is a sequence (φn) of simple functions on X which
converges to f pointwise on X and so that (|φn|) is increasing. Moreover, (φn)
converges to f uniformly on every subset on which f is bounded.

If Σ is a σ-algebra of subsets of X and f is Σ-measurable, then the φn in (i)
and (ii) can be taken to be Σ-measurable.

Proof: (i) For every n, k ∈ N with 1 ≤ k ≤ 22n, we define the sets

E(k)
n = f−1

((k − 1

2n
,
k

2n

])
, Fn = f−1((2n,+∞])

and the simple function

φn =

22n∑
k=1

k − 1

2n
χ
E

(k)
n

+ 2nχFn .

For each n the sets E
(1)
n , . . . , E

(22n)
n , Fn are pairwise disjoint and their union is

the set f−1((0,+∞]), while their complementary set is G = f−1({0}). Observe

that if f is Σ-measurable then all E
(k)
n and Fn belong to Σ and hence φn is

Σ-measurable.
InG we have 0 = φn = f , in each E

(k)
n we have φn = k−1

2n < f ≤ k
2n = φn+ 1

2n

and in Fn we have φn = 2n < f .
Now, if f(x) = +∞, then x ∈ Fn for every n and hence φn(x) = 2n →

+∞ = f(x). If 0 ≤ f(x) < +∞, then for all large n we have 0 ≤ f(x) ≤ 2n

and hence 0 ≤ f(x)−φn(x) ≤ 1
2n , which implies that φn(x)→ f(x). Therefore,

φn → f pointwise on X.
If K ⊆ X and f is bounded on K, then there is an n0 so that f(x) ≤ 2n0 for

all x ∈ K. Hence for all n ≥ n0 we have 0 ≤ f(x)− φn(x) ≤ 1
2n for all x ∈ K.

This says that φn → f uniformly on K.
It remains to prove that (φn) is increasing. If x ∈ G, then φn(x) = φn+1(x) =

f(x) = 0. Now observe the relations

E
(2k−1)
n+1 ∪ E(2k)

n+1 = E(k)
n , 1 ≤ k ≤ 22n,

and
(∪2

2(n+1)

l=22n+1+1E
(l)
n+1) ∪ Fn+1 = Fn.

The first relation implies that, if x ∈ E(k)
n then φn(x) = k−1

2n and φn+1(x) =
(2k−1)−1

2n+1 or 2k−1
2n+1 . Therefore, if x ∈ E(k)

n , then φn(x) ≤ φn+1(x).
The second relation implies that, if x ∈ Fn, then φn(x) = 2n and φn+1(x) =
(22n+1+1)−1

2n+1 or . . . or 22(n+1)−1
2n+1 or 2n+1. Hence, if x ∈ Fn, then φn(x) ≤ φn+1(x).

(ii) Let A = f−1(C), whence f =∞ on Ac. Consider the restriction feA : A→
C and the functions

(<(feA))+, (<(feA))−, (=(feA))+, (=(feA))− : A→ [0,+∞).

If f is Σ-measurable, then A ∈ Σ and these four functions are ΣeA-measurable.
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By the result of part (i) there are increasing sequences (pn), (qn), (rn) and
(sn) of non-negative (real valued) simple functions on A so that each converges
to, respectively, (<(feA))+, (<(feA))−, (=(feA))+ and (=(feA))− pointwise
on A and uniformly on every subset of A on which feA is bounded (because on
such a subset all four functions are also bounded). Now it is obvious that, if
we set φn = (pn − qn) + i(rn − sn), then φn is a simple function on A which is
ΣeA-measurable if f is Σ-measurable. It is clear that φn → feA pointwise on
A and uniformly on every subset of A on which feA is bounded.

Also |φn| =
√

(pn − qn)2 + (rn − sn)2 =
√
p2n + q2n + r2n + s2n and thus the

sequence (|φn|) is increasing on A.
If we define φn as the constant n on Ac, then the proof is complete.

6.11 The role of null sets.

Definition 6.10 Let (X,Σ, µ) be a measure space. We say that a property P (x)
holds (µ-)almost everywhere on X or for (µ-)almost every x ∈ X, if
the set {x ∈ X |P (x) is not true} is included in a (µ-)null set.

We also use the short expressions: P (x) holds (µ-)a.e. on X and P (x) holds
for (µ-)a.e. x ∈ X.

It is obvious that if P (x) holds for a.e. x ∈ X and µ is complete then
the set {x ∈ X |P (x) is not true} is contained in Σ and hence its complement
{x ∈ X |P (x) is true} is also in Σ.

Proposition 6.24 Let (X,Σ, µ) be a measure space and (X,Σ, µ) be its com-
pletion. Let (Y,Σ′) be a measurable space and f : X → Y be (Σ,Σ′)-measurable.
If g : X → Y is equal to f a.e on X, then g is (Σ,Σ′)-measurable.

Proof: There exists N ∈ Σ so that {x ∈ X | f(x) 6= g(x)} ⊆ N and µ(N) = 0.
Take an arbitrary E ∈ Σ′ and write g−1(E) = {x ∈ X | g(x) ∈ E} = {x ∈

N c | g(x) ∈ E}∪{x ∈ N | g(x) ∈ E} = {x ∈ N c | f(x) ∈ E}∪{x ∈ N | g(x) ∈ E}.
The first set is = N c ∩ f−1(E) and belongs to Σ and the second set is ⊆ N .

By the definiton of the completion we get that g−1(E) ∈ Σ and hence g is
(Σ,Σ′)-measurable.

In the particular case of a complete measure space (X,Σ, µ) we have the
rule: if f is measurable on X and g is equal to f a.e. on X, then g is also
measurable on X.

Proposition 6.25 Let (X,Σ, µ) be a measure space and (X,Σ, µ) be its com-
pletion. Let (fj) be a sequence of Σ-measurable functions fj : X → R or C. If
g : X → R or C is such that g(x) = limj→+∞ fj(x) for a.e. x ∈ X, then g is
Σ-measurable.

Proof: {x ∈ X | limj→+∞ fj(x) does not exist or is 6= g(x)} ⊆ N for some
N ∈ Σ with µ(N) = 0.
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N c belongs to Σ and the restrictions fjeN c are all ΣeN c-measurable. By
Proposition 6.20, the restriction geN c = limj→+∞ fjeN c is ΣeN c-measurable.
This, of course, means that for every E ∈ Σ′ we have {x ∈ N c | g(x) ∈ E} ∈ Σ.

Now we write g−1(E) = {x ∈ N c | g(x) ∈ E} ∪ {x ∈ N | g(x) ∈ E}. The
first set belongs to Σ and the second is ⊆ N . Therefore g−1(E) ∈ Σ and g is
Σ-measurable.

Again, in the particular case of a complete measure space (X,Σ, µ) the rule
is: if (fj) is a sequence of measurable functions on X and its limit is equal to g
a.e. on X, then g is also measurable on X.

Proposition 6.26 Let (X,Σ, µ) be a measure space and (X,Σ, µ) be its comple-
tion. Let (Y,Σ′) be a measurable space and f : A→ Y be (ΣeA,Σ′)-measurable,
where A ∈ Σ with µ(Ac) = 0. If we extend f to X in an arbitrary manner, then
the extended function is (Σ,Σ′)-measurable.

Proof: Let h : Ac → Y be an arbitrary function and let

F (x) =

{
f(x), if x ∈ A,
h(x), if x ∈ Ac.

Take an arbitrary E ∈ Σ′ and write F−1(E) = {x ∈ A | f(x) ∈ E} ∪ {x ∈
Ac |h(x) ∈ E} = f−1(E) ∪ {x ∈ Ac |h(x) ∈ E}. The first set belongs to ΣeA
and hence to Σ, while the second set is ⊆ Ac. Therefore F−1(E) ∈ Σ and F is
(Σ,Σ′)-measurable.

If (X,Σ, µ) is a complete measure space, the rule is: if f is defined a.e. on
X and it is measurable on its domain of definition, then any extension of f on
X is measurable.

6.12 Exercises.

1. Let (X,Σ) be a measurable space and f : X → R. Prove that f is
measurable if f−1((a,+∞]) ∈ Σ for all rational a ∈ R.

2. Let f : X → R. If g, h : X → R are such that g, h ≥ 0 and f = g − h on
X, prove that f+ ≤ g and f− ≤ h on X.

3. Let (X,Σ) be a measurable space and f : X → R or C be measurable.
We agree that 0p = +∞, (+∞)p = 0 if p < 0 and 00 = (+∞)0 = 1. Prove
that, for all p ∈ R, the function |f |p is measurable.

4. Prove that every monotone f : R→ R is Borel measurable.

5. Translates and dilates of functions.

Let f : Rn → Y and take arbitrary y ∈ Rn and λ ∈ (0,+∞). We define
g, h : Rn → Y by

g(x) = f(x− y), h(x) = f
(x
λ

)
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for all x ∈ Rn. g is called the translate of f by y and h is called the
dilate of f by λ.

Let (Y,Σ′) be a measurable space. Prove that, if f is (Ln,Σ′)-measurable,
then the same is true for g and h.

6. Functions with prescribed level sets.

Let (X,Σ) be a measurable space and assume that the collection {Eλ}λ∈R
of subsets of X, which belong to Σ, has the properties:
(i) Eλ ⊆ Eκ for all λ, κ with λ ≤ κ,
(ii) ∪λ∈REλ = X, ∩λ∈REλ = ∅,
(iii) ∩κ,κ>λEκ = Eλ for all λ ∈ R.

Consider the function f : X → R defined by f(x) = inf{λ ∈ R |x ∈ Eλ}.
Prove that f is measurable and that Eλ = {x ∈ X | f(x) ≤ λ} for every
λ ∈ R.

How will the result change if we drop any of the assumptions in (ii) and
(iii)?

7. Not all functions are Lebesgue measurable and not all Lebesgue measurable
functions are Borel measurable.

(i) Prove that a Borel measurable g : R→ R is also Lebesgue measurable.
(ii) Find a function f : R→ R which is not Lebesgue measurable.
(iii) Using exercise 4.6.15, find a function g : R → R which is Lebesgue
measurable but not Borel measurable.

8. Give an example of a non-Lebesgue measurable f : R → R so that |f | is
Lebesgue measurable.

9. Starting with an appropriate non-Lebesgue measurable function, give an
example of an uncountable collection {fi}i∈I of Lebesgue measurable func-
tions fi : R→ R so that supi∈I fi is non-Lebesgue measurable.

10. (i) Prove that, if G : R → R is continuous and H : R → R is Borel
measurable, then H ◦G : R→ R is Borel measurable.
(ii) Using exercise 4.6.15, construct a continuous G : R → R and a
Lebesgue measurable H : R→ R so that H ◦G : R→ R is not Lebesgue
measurable.

11. Let (X,Σ, µ) be a measure space and f : X → R or C be measurable.
Assume that µ({x ∈ X | |f(x)| = +∞}) = 0 and that there is M < +∞
so that µ({x ∈ X | |f(x)| > M}) < +∞.

Prove that for every ε > 0 there is a bounded measurable g : X → R or C
so that µ({x ∈ X | g(x) 6= f(x)}) < ε. You may try a suitable truncation
of f .

12. We say that φ : X → C is an elementary function on X if it has count-
ably many values. Is there a standard representation for an elementary
function?
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Prove that for any f : X → [0,+∞), there is an increasing sequence (φn)
of elementary functions on X so that φn → f uniformly on X. If Σ is a
σ-algebra of subsets of X and f is measurable, prove that the φn’s can be
taken measurable.

13. We can add, multiply and take limits of equalities holding almost every-
where.

Let (X,Σ, µ) be a measure space.
(i) Let f, g, h : X → Y . If f = g a.e. on X and g = h a.e. on X, then
f = h a.e. on X.
(ii) Let f1, f2, g1, g2 : X → R. If f1 = f2 a.e. on X and g1 = g2 a.e. on
X, then f1 + g1 = f2 + g2 and f1g1 = f2g2 a.e. on X.
(iii) Let fj , gj : X → R so that fj = gj a.e. on X for all j ∈ N. Then
supj∈N fj = supj∈N gj a.e. on X. Similar results hold for inf, lim sup and
lim inf.
(iv) Let fj , gj : X → R so that fj = gj a.e. onX for all j ∈ N. If A = {x ∈
X | limj→+∞ fj(x) exists} and B = {x ∈ X | limj→+∞ gj(x) exists}, then
A4B ⊆ N for some N ∈ Σ with µ(N) = 0 and limj→+∞ fj = limj→+∞ gj
a.e. on A ∩B. If, moreover, we extend both limj→+∞ fj and limj→+∞ gj
by a common function h on (A∩B)c, then limj→+∞ fj = limj→+∞ gj a.e.
on X.

14. Let (X,Σ, µ) be a measure space and (X,Σ, µ) be its completion.
(i) If E ∈ Σ, then there is A ∈ Σ so that χE = χA a.e. on X.
(ii) If φ : X → C is a Σ-measurable simple function, then there is a Σ-
measurable simple function ψ : X → C so that φ = ψ a.e. on X.
(iii) Use Theorem 6.1 to prove that, if g : X → R or C is Σ-measurable,
then there is a Σ-measurable f : X → R or C so that g = f a.e. on X.

15. Let X,Y be topological spaces of which Y is Hausdorff. This means that,
if y1, y2 ∈ Y and y1 6= y2, then there are disjoint open neighborhoods
Vy1 , Vy2 of y1, y2, respectively. Assume that µ is a Borel measure on X
so that µ(U) > 0 for every non-empty open U ⊆ X. Prove that, if
f, g : X → Y are continuous and f = g a.e. on X, then f = g on X.

16. The support of a function.

(a) Let X be a topological space and a continuous f : X → C. The set
supp(f) = f−1(C \ {0}) is called the support of f . Prove that supp(f)
is the smallest closed subset of X outside of which f = 0.
(b) Let µ be a regular Borel measure on the topological space X and
f : X → C be a Borel measurable function. A point x ∈ X is called
a support point for f if µ({y ∈ Ux | f(y) 6= 0}) > 0 for every open
neighborhood Ux of x. The set

supp(f) = {x ∈ X |x is a support point for f}

is called the support of f .
(i) Prove that supp(f) is a closed set in X.
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(ii) Prove that µ({x ∈ K | f(x) 6= 0}) = 0 for all compact sets K ⊆
(supp(f))c.
(iii) Using the regularity of µ, prove that f = 0 a.e on (supp(f))c.
(iv) Prove that (supp(f))c is the largest open set in X on which f = 0
a.e.
(c) Assume that the µ appearing in (b) has the additional property that
µ(U) > 0 for every open U ⊆ X. Use exercise 6.12.15 to prove that for
any continuous f : X → C the two definitions of supp(f) (the one in (a)
and the one in (b)) coincide.

17. The Theorem of Lusin.

We shall prove that every Lebesgue measurable function which is finite
a.e. on Rn is equal to a continuous function except on a set of arbitrarily
small Lebesgue measure.
(i) For each a < a+ δ < b− δ < b we consider the function τa,b,δ : R→ R
which: is 0 outside (a, b), is 1 on [a+δ, b−δ] and is linear on [a, a+δ] and on
[b−δ, b] so that it is continuous on R. Now, let R = (a1, b1)×· · ·×(an, bn)
and, for small enough δ > 0, we consider the function τR,δ : Rn → R by
the formula

τR,δ(x1, . . . , xn) = τa1,b1,δ(x1) · · · τan,bn,δ(xn).

If Rδ = (a1 + δ, b1 − δ) × · · · × (an + δ, bn − δ), prove that τR,δ = 1 on
Rδ, τR,δ = 0 outside R, 0 ≤ τR,δ ≤ 1 on Rn and τR,δ is continuous
on Rn. Therefore, prove that for every ε > 0 there is δ > 0 so that
mn({x ∈ Rn | τR,δ(x) 6= χR(x)}) < ε.
(ii) Let E ∈ Ln with mn(E) < +∞. Use Theorem 4.6 to prove that for
every ε > 0 there is a continuous τ : Rn → R so that 0 ≤ τ ≤ 1 on Rn

and mn({x ∈ Rn | τ(x) 6= χE(x)}) < ε.
(iii) Let φ be a non-negative Lebesgue measurable simple function on Rn

which is 0 outside some set of finite Lebesgue measure. Prove that for all
ε > 0 there is a continuous τ : Rn → R so that 0 ≤ τ ≤ maxRn φ on Rn

and mn({x ∈ Rn | τ(x) 6= φ(x)}) < ε.
(iv) Let f : Rn → [0, 1] be a Lebesgue measurable function which is 0
outside some set of finite Lebesgue measure. Use Theorem 6.1 to prove
that f =

∑+∞
k=1 ψk uniformly on Rn, where all ψk are Lebesgue measur-

able simple functions with 0 ≤ ψk ≤ 1
2k

on Rn for all k. Now apply the
result of (iii) to each ψk and prove that for all ε > 0 there is a continuous
g : Rn → [0, 1] so that mn({x ∈ Rn | g(x) 6= f(x)}) < ε.
(v) Let f : Rn → [0,+∞] be a Lebesgue measurable function which is 0
outside some set of finite Lebesgue measure and finite a.e. on Rn. By
taking an appropriate truncation of f prove that for all ε > 0 there is
a bounded Lebesgue measurable function h : Rn → [0,+∞] which is 0
outside some set of finite Lebesgue measure so that mn({x ∈ Rn |h(x) 6=
f(x)}) < ε. Now apply the result of (iv) to find a continuous g : Rn → R
so that mn({x ∈ Rn | g(x) 6= f(x)}) < ε.
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(vi) Find pairwise disjoint open-closed qubes P (k) so that Rn = ∪+∞k=1P
(k)

and let R(k) be the open qube with the same edges as P (k). Consider
for each k a small enough δk > 0 so that mn({x ∈ Rn | τR(k),δk(x) 6=
χR(k)(x)}) < ε

2k+1 .
(vii) Let f : Rn → [0,+∞] be Lebesgue measurable and finite a.e. on
Rn. If R(k) are the qubes from (vi), then each fχR(k) : Rn → [0,+∞]
is Lebesgue measurable, finite a.e. on Rn and 0 outside R(k). Apply
(v) to find continuous gk : Rn → R so that mn({x ∈ Rn | gk(x) 6=
f(x)χR(k)(x)}) < ε

2k+1 .

Prove that mn({x ∈ Rn | τR(k),δk(x)gk(x) 6= f(x)χR(k)(x)}) < ε
2k

.

Define g =
∑+∞
k=1 τR(k),δkgk and prove that g is continuous on Rn and that

mn({x ∈ Rn | g(x) 6= f(x)}) < ε.
(viii) Extend the result of (vii) to all f : Rn → R or C which are Lebesgue
measurable and finite a.e. on Rn.

18. Let f : Rn → R be continuous at mn-a.e. x ∈ Rn. Prove that f is
Lebesgue measurable on Rn.
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Chapter 7

Integrals

7.1 Integrals of non-negative simple functions.

In this whole section (X,Σ, µ) will be a fixed measure space.

Definition 7.1 Let φ : X → [0,+∞) be a non-negative measurable simple
function. If φ =

∑m
k=1 κkχEk is the standard representation of φ, we define∫

X

φdµ =

m∑
k=1

κkµ(Ek)

and call it the integral of φ over X (with respect to µ) or, shortly, the
(µ-)integral of φ.

Sometimes we want to see the independent variable in the integral and then we
write

∫
X
φ(x) dµ(x).

From now on, if it is obvious which measure space (X,Σ, µ) we are talking
about, we shall simply say integral, instead of µ-integral.

We can make the following observations.
(i) If one of the values κk of φ is equal to 0, then, even if the corresponding set
Ek has infinite measure, the product κkµ(Ek) is equal to 0. In other words, the
set where φ = 0 does not matter for the calculation of the integral of φ.
(ii) We also see that

∫
X
φdµ < +∞ if and only if µ(Ek) < +∞ for all k for

which κk > 0. Taking the union of all these Ek’s we see that
∫
X
φdµ < +∞ if

and only if µ({x ∈ X |φ(x) > 0}) < +∞. In other words, φ has a finite integral
if and only if φ = 0 outside a set of finite measure.
(iii) Moreover,

∫
X
φdµ = 0 if and only if µ(Ek) = 0 for all k for which κk > 0.

Taking, as before, the union of these Ek’s we see that
∫
X
φdµ = 0 if and only if

µ({x ∈ X |φ(x) > 0}) = 0. In other words, φ has vanishing integral if and only
if φ = 0 outside a null set.
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Lemma 7.1 Let φ =
∑n
j=1 λjχFj , where 0 ≤ λj < +∞ for all j and the sets

Fj ∈ Σ are pairwise disjoint. Then
∫
X
φdµ =

∑n
j=1 λjµ(Fj).

The representation φ =
∑n
j=1 λjχFj in the statement may not be the standard

representation of φ. In fact, the λj ’s are not assumed different and it is not
assumed either that the Fj ’s are non-empty or that they cover X.
Proof: (a) In case all Fj ’s are empty, then their characteristic functions are 0
on X and we get φ = 0 = 0 · χX as the standard representation of φ. Therefore∫
X
φdµ = 0 · µ(X) = 0 =

∑n
j=1 λjµ(Fj), since all measures are 0. In this

particular case the result of the lemma is proved.
(b) In case some, but not all, of the Fj ’s are empty, we rearrange so that
F1, . . . , Fl 6= ∅ and Fl+1, . . . , Fn = ∅. (We include the case l = n.) Then we

have φ =
∑l
j=1 λjχFj , where all Fj ’s are non-empty, and the equality to be

proved becomes
∫
X
φdµ =

∑l
j=1 λjµ(Fj).

In case the Fj ’s do not cover X we introduce the non-empty set Fl+1 =

(F1 ∪ · · · ∪ Fl)c and the value λl+1 = 0. We can then write φ =
∑l+1
j=1 λjχFj for

the assumed equality and
∫
X
φdµ =

∑l+1
j=1 λjµ(Fj) for the one to be proved.

In any case, using the symbol k for l or l + 1 we have to prove that, if
φ =

∑k
j=1 λjχFj , where all Fj ∈ Σ are non-empty, pairwise disjoint and cover

X, then
∫
X
φdµ =

∑k
j=1 λjµ(Fj).

It is clear that λ1, . . . , λk are all the values of φ on X, perhaps with repeti-
tions. We rearrange in groups, so that

λ1 = · · · = λk1 = κ1,

λk1+1 = · · · = λk1+k2 = κ2,

. . .

λk1+···+km−1+1 = · · · = λk1+···+km = κm

are the different values of φ on X (and, of course, k1 + · · ·+km = k). For every

i = 1, . . . ,m we define Ei =
⋃k1+···+ki
j=k1+···+ki−1+1 Fj = {x ∈ X |φ(x) = κi}, and

then

φ =

m∑
i=1

κiχEi

is the standard representation of φ. By definition∫
X

φdµ =

m∑
i=1

κiµ(Ei) =

m∑
i=1

κi

k1+···+ki∑
j=k1+···+ki−1+1

µ(Fj)

=

m∑
i=1

k1+···+ki∑
j=k1+···+ki−1+1

λjµ(Fj) =

k∑
j=1

λjµ(Fj).

Lemma 7.2 If φ, ψ are non-negative measurable simple functions and 0 ≤ λ <
+∞, then

∫
X

(φ+ ψ) dµ =
∫
X
φdµ+

∫
X
ψ dµ and

∫
X
λφ dµ = λ

∫
X
φdµ.
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Proof: (a) If λ = 0, then λφ = 0 = 0 · χX is the standard representation of λφ
and hence

∫
X
λφ dµ = 0 · µ(X) = 0 = λ

∫
X
φdµ.

Now let 0 < λ < +∞. If φ =
∑m
j=1 κjχEj is the standard representation

of φ, then λφ =
∑m
j=1 λκjχEj is the standard representation of λφ. Hence∫

X
λφ dµ =

∑m
j=1 λκjµ(Ej) = λ

∑m
j=1 κjµ(Ej) = λ

∫
X
φdµ.

(b) Let φ =
∑m
j=1 κjχEj and ψ =

∑n
i=1 λiχFi be the standard representations

of φ and ψ. It is trivial to see that X = ∪1≤j≤m,1≤i≤n(Ej ∩ Fi) and that the
sets Ej ∩ Fi ∈ Σ are pairwise disjoint. It is also clear that φ + ψ is constant
κj + λi on each Ej ∩ Fi and thus

φ+ ψ =
∑

1≤j≤m,1≤i≤n

(κj + λi)χEj∩Fi .

Lemma 7.1 implies that∫
X

(φ+ ψ) dµ =
∑

1≤j≤m,1≤i≤n

(κj + λi)µ(Ej ∩ Fi)

=
∑

1≤j≤m,1≤i≤n

κjµ(Ej ∩ Fi) +
∑

1≤j≤m,1≤i≤n

λiµ(Ej ∩ Fi)

=

m∑
j=1

κj

n∑
i=1

µ(Ej ∩ Fi) +

n∑
i=1

λi

m∑
j=1

µ(Ej ∩ Fi)

=

m∑
j=1

κjµ(Ej) +

n∑
i=1

λiµ(Fi) =

∫
X

φdµ+

∫
X

ψ dµ.

Lemma 7.3 If φ, ψ are non-negative measurable simple functions so that φ ≤ ψ
on X, then

∫
X
φdµ ≤

∫
X
ψ dµ.

Proof: Let φ =
∑m
j=1 κjχEj and ψ =

∑n
i=1 λiχFi be the standard representa-

tions of φ and ψ. Whenever Ej ∩ Fi 6= ∅, we take any x ∈ Ej ∩ Fi and find
κj = φ(x) ≤ ψ(x) = λi. Therefore, since in the calculation below only the
non-empty intersections really matter,∫

X

φdµ =

m∑
j=1

κjµ(Ej) =
∑

1≤j≤m,1≤i≤n

κjµ(Ej ∩ Fi)

≤
∑

1≤j≤m,1≤i≤n

λiµ(Ej ∩ Fi) =

n∑
i=1

λiµ(Fi) =

∫
X

ψ dµ.

Lemma 7.4 Let φ be non-negative measurable simple function and (An) an
increasing sequence in Σ with ∪+∞n=1An = X. Then

∫
X
φχAn dµ→

∫
X
φdµ.

Proof: Let φ =
∑m
j=1 κjχEj be the standard representation of φ. Then φχAn =∑m

j=1 κjχEjχAn =
∑m
j=1 κjχEj∩An . Lemma 7.1 implies that

∫
X
φχAn dµ =∑m

j=1 κjµ(Ej ∩An).
For each j we see that µ(Ej ∩ An) → µ(Ej) by the continuity of µ from

below. Therefore
∫
X
φχAn dµ→

∑m
j=1 κjµ(Ej) =

∫
X
φdµ.
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Lemma 7.5 Let φ, φ1, φ2, . . . be non-negative measurable simple functions so
that φn ≤ φn+1 on X for all n.
(i) If limn→+∞ φn ≤ φ on X, then limn→+∞

∫
X
φn dµ ≤

∫
X
φdµ.

(ii) If φ ≤ limn→+∞ φn on X, then
∫
X
φdµ ≤ limn→+∞

∫
X
φn dµ.

Proof: Lemma 7.3 implies that
∫
X
φn dµ ≤

∫
X
φn+1 dµ for all n and hence the

limit limn→+∞
∫
X
φn dµ exists in [0,+∞].

(i) Since, by Lemma 7.3,
∫
X
φn dµ ≤

∫
X
φdµ, we get limn→+∞

∫
X
φn dµ ≤∫

X
φdµ.

(ii) Consider arbitrary α ∈ [0, 1) and define An = {x ∈ X |αφ(x) ≤ φn(x)} ∈ Σ.
It is easy to see that (An) is increasing and that ∪+∞n=1An = X. Indeed, if there is
any x /∈ ∪+∞n=1An, then φn(x) < αφ(x) for all n, implying that 0 < φ(x) ≤ αφ(x)
which cannot be true.

Now we have that αφχAn ≤ φn on X. Lemmas 7.2, 7.3 and 7.4 imply that

α

∫
X

φdµ =

∫
X

αφdµ

= lim
n→+∞

∫
X

αφχAn dµ ≤ lim
n→+∞

∫
X

φn dµ.

We now take the limit as α→ 1− and get
∫
X
φdµ ≤ limn→+∞

∫
X
φn dµ.

Lemma 7.6 If (φn) and (ψn) are two increasing sequences of non-negative mea-
surable simple functions and if limn→+∞ φn = limn→+∞ ψn holds on X, then
limn→+∞

∫
X
φn dµ = limn→+∞

∫
X
ψn dµ.

Proof: For every k we have that ψk ≤ limn→+∞ φn on X. Lemma 7.5 im-
plies that

∫
X
ψk dµ ≤ limn→+∞

∫
X
φn dµ. Taking the limit in k, we find that

limn→+∞
∫
X
ψn dµ ≤ limn→+∞

∫
X
φn dµ.

The opposite inequality is proved symmetrically.

7.2 Integrals of non-negative functions.

Again in this section, (X,Σ, µ) will be a fixed measure space.

Definition 7.2 Let f : X → [0,+∞] be a measurable function. We define the
integral of f over X (with respect to µ) or, shortly, the (µ-)integral of
f by ∫

X

f dµ = lim
n→+∞

∫
X

φn dµ,

where (φn) is any increasing sequence of non-negative measurable simple func-
tions on X such that limn→+∞ φn = f on X.

We may use the symbol
∫
X
f(x) dµ(x) if we want to see the independent variable

in the integral.

Lemma 7.6 guarantees that
∫
X
f dµ is well defined and Theorem 6.1 implies the

existence of at least one (φn) as in the definition.
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Proposition 7.1 Let f, g : X → [0,+∞] be measurable functions and let λ ∈
[0,+∞). Then

∫
X

(f + g) dµ =
∫
X
f dµ+

∫
X
g dµ and

∫
X
λf dµ = λ

∫
X
f dµ.

Proof: We take increasing sequences (φn), (ψn) of non-negative measurable
simple functions on X with limn→+∞ φn = f , limn→+∞ ψn = g on X. Now
(φn + ψn) is an increasing sequence of non-negative measurable simple func-
tions with limn→+∞(φn + ψn) = f + g on X. By Lemma 7.2,

∫
X

(f + g) dµ =
limn→+∞

∫
X

(φn+ψn) dµ = limn→+∞
∫
X
φn dµ+limn→+∞

∫
X
ψn dµ =

∫
X
f dµ+∫

X
g dµ.
Also, (λφn) is an increasing sequence of non-negative measurable simple

functions on X such that limn→+∞ λφn = λf on X. Lemma 7.2 implies again
that

∫
X
λf dµ = limn→+∞

∫
X
λφn dµ = λ limn→+∞

∫
X
φn dµ = λ

∫
X
f dµ.

Proposition 7.2 Let f, g : X → [0,+∞] be measurable functions such that
f ≤ g on X. Then

∫
X
f dµ ≤

∫
X
g dµ.

Proof: Consider arbitrary increasing sequences (φn) and (ψn) of non-negative
measurable simple functions with limn→+∞ φn = f , limn→+∞ ψn = g on X.
Then for every k we have that φk ≤ f ≤ g = limn→+∞ ψn on X. Lemma 7.5
implies that

∫
X
φk dµ ≤ limn→+∞

∫
X
ψn dµ =

∫
X
g dµ. Taking the limit in k we

conclude that
∫
X
f dµ ≤

∫
X
g dµ.

Proposition 7.3 Let f, g : X → [0,+∞] be measurable functions on X.
(i)
∫
X
f dµ = 0 if and only if f = 0 a.e. on X.

(ii) If f = g a.e. on X, then
∫
X
f dµ =

∫
X
g dµ.

Proof: (i) Suppose that
∫
X
f dµ = 0. Define An = {x ∈ X | 1n ≤ f(x)} =

f−1([ 1n ,+∞]) for every n ∈ N. Then 1
nχAn ≤ f on X and Proposition 7.2 says

that 1
nµ(An) =

∫
X

1
nχAn dµ ≤

∫
X
f dµ = 0. Thus µ(An) = 0 for all n and, since

{x ∈ X | f(x) 6= 0} = ∪+∞n=1An, we find that µ({x ∈ X | f(x) 6= 0}) = 0.
Conversely, let f = 0 a.e. on X. Consider an arbitrary increasing sequence

(φn) of non-negative measurable simple functions with limn→+∞ φn = f on X.
Clearly, φn = 0 a.e. on X for all n. Observation (iii) after Definition 7.1 says
that

∫
X
φn dµ = 0 for all n. Hence

∫
X
f dµ = limn→+∞

∫
X
φn dµ = 0.

(ii) Consider A = {x ∈ X | f(x) = g(x)} ∈ Σ. Then there is some B ∈ Σ so that
Ac ⊆ B and µ(B) = 0. Define D = Bc ⊆ A. Then fχD, gχD are measurable
and fχD = gχD on X. Also, fχB = 0 a.e. on X and gχB = 0 a.e. on X.

By part (i), we have that
∫
X
fχB dµ =

∫
X
gχB dµ = 0 and then Proposi-

tion 7.1 implies
∫
X
f dµ =

∫
X

(fχD + fχB) dµ =
∫
X
fχD dµ =

∫
X
gχD dµ =∫

X
(gχD + gχB) dµ =

∫
X
g dµ.

The next three theorems, together with Theorems 7.10 and 7.11 in the next
section, are the most important results of integration theory.

Theorem 7.1 (The Monotone Convergence Theorem) (Lebesgue, Levi)
Let f, fn : X → [0,+∞] (n ∈ N) be measurable functions on X so that fn ≤
fn+1 a.e. on X and limn→+∞ fn = f a.e. on X. Then

lim
n→+∞

∫
X

fn dµ =

∫
X

f dµ.
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Proof: (a) Assume that fn ≤ fn+1 on X and limn→+∞ fn = f on X.
Proposition 7.2 implies that

∫
X
fn dµ ≤

∫
X
fn+1 dµ ≤

∫
X
f dµ for all n and

hence the limn→+∞
∫
X
fn dµ exists and it is ≤

∫
X
f dµ.

(i) Take an arbitrary increasing sequence (φn) of non-negative measurable simple
functions so that limn→+∞ φn = f on X. Then for every k we have φk ≤
f = limn→+∞ fn. We now take an arbitrary α ∈ [0, 1) and define the set
An = {x ∈ X |αφk(x) ≤ fn(x)} ∈ Σ. It is clear that (An) is increasing and
X = ∪+∞n=1An. It is also true that αφkχAn ≤ fn on X and, using Lemma
7.5, α

∫
X
φk dµ =

∫
X
αφk dµ = limn→+∞

∫
X
αφkχAn dµ ≤ limn→+∞

∫
X
fn dµ.

Taking limit as α→ 1−, we find
∫
X
φk dµ ≤ limn→+∞

∫
X
fn dµ. Finally, taking

limit in k, we conclude that
∫
X
f dµ ≤ limn→+∞

∫
X
fn dµ and the proof has

finished.
(ii) If we want to avoid the use of Lemma 7.5, here is an alternative proof of the
inequality

∫
X
f dµ ≤ limn→+∞

∫
X
fn dµ.

Take an increasing sequence (ψ
(k)
n ) of non-negative measurable simple func-

tions so that limn→+∞ ψ
(k)
n = fk on X. Next, define the non-negative measur-

able simple functions φn = max{ψ(1)
n , . . . , ψ

(n)
n }.

It easy to see that (φn) is increasing, that φn ≤ fn ≤ f on X and that
φn → f on X. For the last one, take any x ∈ X and any t < f(x). Find

k so that t < fk(x) and, then, a large n ≥ k so that t < ψ
(k)
n (x). Then

t < φn(x) ≤ f(x) and this means that φn(x)→ f(x).
Thus

∫
X
f dµ = limn→+∞

∫
X
φn dµ ≤ limn→+∞

∫
X
fn dµ.

(b) In the general case, Theorem 2.2 implies that there is some A ∈ Σ with
µ(Ac) = 0 so that fn ≤ fn+1 on A for all n and limn→+∞ fn = f on A. These
imply that fnχA ≤ fn+1χA on X for all n and limn→+∞ fnχA = fχA on X.
From part (a) we have that limn→+∞

∫
X
fnχA dµ =

∫
X
fχA dµ.

Since f = fχA a.e. on X and fn = fnχA a.e. on X, Proposition 7.3
implies that

∫
X
f dµ =

∫
X
fχA dµ and

∫
X
fn dµ =

∫
X
fnχA dµ for all n. Hence,

limn→+∞
∫
X
fn dµ = limn→+∞

∫
X
fnχA dµ =

∫
X
fχA dµ =

∫
X
f dµ.

Theorem 7.2 Let f, fn : X → [0,+∞] (n ∈ N) be measurable on X so that∑+∞
n=1 fn = f a.e. on X. Then

+∞∑
n=1

∫
X

fn dµ =

∫
X

f dµ.

Proof: We write gn = f1 + · · · + fn for each n. (gn) is an increasing sequence
of non-negative measurable functions with gn → f a.e. on X. Proposition 7.1
and Theorem 7.1 imply that

∑n
k=1

∫
X
fk dµ =

∫
X
gn dµ→

∫
X
f dµ.

Theorem 7.3 (The Lemma of Fatou) Let f, fn : X → [0,+∞] (n ∈ N) be
measurable. If f = lim infn→+∞ fn a.e. on X, then∫

X

f dµ ≤ lim inf
n→+∞

∫
X

fn dµ.
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Proof: We define gn = infk≥n fk. Then each gn : X → [0,+∞] is measurable,
the sequence (gn) is increasing and gn ≤ fn on X for all n. By hypothesis,
f = limn→+∞ gn a.e. on X. Proposition 7.2 and Theorem 7.1 imply that∫
X
f dµ = limn→+∞

∫
X
gn dµ ≤ lim infn→+∞

∫
X
fn dµ.

7.3 Integrals of complex valued functions.

Let (X,Σ, µ) be a fixed measure space.

Definition 7.3 Let f : X → R be a measurable function and consider its
positive and negative parts f+, f− : X → [0,+∞]. If at least one of

∫
X
f+ dµ

and
∫
X
f− dµ is < +∞, we define∫

X

f dµ =

∫
X

f+ dµ−
∫
X

f− dµ

and call it the integral of f over X (with respect to µ) or, simply, the
(µ-)integral of f .

We say that f is integrable on X (with respect to µ) or (µ-)integrable
if
∫
X
f dµ is finite.

As in the case of non-negative functions, we may write
∫
X
f(x) dµ(x) if we want

to see the independent variable in the integral.

Lemma 7.7 Let f : X → R be a measurable function. Then the following are
equivalent:
(i) f is integrable
(ii)

∫
X
f+ dµ < +∞ and

∫
X
f− dµ < +∞

(iii)
∫
X
|f | dµ < +∞.

Proof: The equivalence of (i) and (ii) is clear from the definition.
We know that |f | = f+ + f− and, hence, f+, f− ≤ |f | on X. Therefore,∫

X
|f | dµ =

∫
X
f+ dµ +

∫
X
f− dµ and

∫
X
f+ dµ,

∫
X
f− dµ ≤

∫
X
|f | dµ. The

equivalence of (ii) and (iii) is now obvious.

Proposition 7.4 Let f : X → R be a measurable function. If f is integrable,
then
(i) f(x) ∈ R for a.e. x ∈ X and
(ii) the set {x ∈ X | f(x) 6= 0} is of σ-finite measure.

Proof: (i) Let f be integrable. Lemma 7.7 implies
∫
X
|f | dµ < +∞. Consider

the set B = {x ∈ X | |f(x)| = +∞} ∈ Σ. For every r ∈ (0,+∞) we have that
rχB ≤ |f | on X and hence rµ(B) =

∫
X
rχB dµ ≤

∫
X
|f | dµ < +∞. This implies

that µ(B) ≤ 1
r

∫
X
|f | dµ and, taking the limit as r → +∞, we find µ(B) = 0.

(ii) Consider the sets A = {x ∈ X | f(x) 6= 0} and An = {x ∈ X | |f(x)| ≥ 1
n}.

From 1
nχAn ≤ |f | on X, we get 1

nµ(An) =
∫
X

1
nχAn dµ ≤

∫
X
|f | dµ < +∞.

Thus µ(An) < +∞ for all n and, since A = ∪+∞n=1An, we conclude that A is of
σ-finite measure.
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Definition 7.4 Let f : X → C be measurable. Then |f | : X → [0,+∞] is
measurable and we say that f is integrable on X (with respect to µ) or,
simply, (µ-)integrable, if

∫
X
|f | dµ < +∞.

Proposition 7.5 Let f : X → C be measurable. If f is integrable, then
(i) f(x) ∈ C for a.e. x ∈ X and
(ii) the set {x ∈ X | f(x) 6= 0} is of σ-finite measure.

Proof: Immediate application of Proposition 7.4 to |f |.

Assume now that f : X → C is a measurable integrable function. By
Proposition 7.5, the set Df = {x ∈ X | f(x) ∈ C} = f−1(C) ∈ Σ has a null
complement. The function

fχDf =

{
f, on Df

0, on Dc
f

: X → C

is measurable and fχDf = f a.e. on X. The advantage of fχDf over f is
that fχDf is complex valued and, hence, the <(fχDf ),=(fχDf ) : X → R
are defined on X. We also have that |<(fχDf )| ≤ |fχDf | ≤ |f | on X and
similarly |=(fχDf )| ≤ |f | on X. Therefore

∫
X
|<(fχDf )| dµ ≤

∫
X
|f | dµ < +∞,

implying that <(fχDf ) is an integrable real valued function. The same is true for
=(fχDf ) and thus the integrals

∫
X
<(fχDf ) dµ and

∫
X
=(fχDf ) dµ are defined

and they are (finite) real numbers.

Definition 7.5 Let f : X → C be a measurable integrable function and let
Df = {x ∈ X | f(x) ∈ C}. We define∫

X

f dµ =

∫
X

<(fχDf ) dµ+ i

∫
X

=(fχDf ) dµ

and call it the integral of f over X (with respect to µ) or the (µ-)integral
of f .

We shall make a few observations regarding this definition.
(i) The integral of an extended-complex valued function is defined only if the
function is integrable and then the value of its integral is a (finite) complex
number. Observe that the integral of an extended-real valued function is defined
if the function is integrable (and the value of its integral is a finite real number)
and also in certain other cases when the value of its integral can be either +∞
or −∞.
(ii) We used the function fχDf , which changes the value ∞ of f to the value
0, simply because we need complex values in order to be able to consider their
real and imaginary parts. We may allow more freedom and see what happens
if we use a function

F =

{
f, on Df

h, on Dc
f

: X → C,

where h is an arbitrary ΣeDc
f -measurable complex valued function on Dc

f . It
is clear that F = fχDf a.e. on X and hence <(F ) = <(fχDf ) a.e. on X.
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Of course, this implies that <(F )+ = <(fχDf )+ and <(F )− = <(fχDf )−

a.e. on X. From Proposition 7.3,
∫
X
<(F ) dµ =

∫
X
<(F )+ dµ−

∫
X
<(F )− dµ =∫

X
<(fχDf )+ dµ−

∫
X
<(fχDf )− dµ =

∫
X
<(fχDf ) dµ. Similarly,

∫
X
=(F ) dµ =∫

X
=(fχDf ) dµ. Therefore there is no difference between the possible definition∫

X
f dµ =

∫
X
<(F ) dµ+ i

∫
X
=(F ) dµ and the one we have given. Of course, the

function 0 on Dc
f is the simplest of all choices for h.

(iii) If f : X → C is complex valued on X, then Df = X and the definition
takes the simpler form∫

X

f dµ =

∫
X

<(f) dµ+ i

∫
X

=(f) dµ.

We also have

<
(∫

X

f dµ
)

=

∫
X

<(f) dµ, =
(∫

X

f dµ
)

=

∫
X

=(f) dµ.

The next is helpful and we shall make use of it very often.

Lemma 7.8 If f : X → C is integrable, there is F : X → C so that F = f a.e.
on X and

∫
X
F dµ =

∫
X
f dµ.

Proof: We take F = fχDf , where Df = f−1(C).

Theorem 7.4 Let f, g : X → R or C be measurable so that f = g a.e. on X
and

∫
X
f dµ is defined. Then

∫
X
g dµ is also defined and

∫
X
g dµ =

∫
X
f dµ.

Proof: (a) Let f, g : X → R. If f = g a.e. on X, then f+ = g+ a.e. on X
and f− = g− a.e. on X. Proposition 7.3 implies that

∫
X
f+ dµ =

∫
X
g+ dµ and∫

X
f− dµ =

∫
X
g− dµ. Now if

∫
X
f+ dµ or

∫
X
f− dµ is finite, then, respectively,∫

X
g+ dµ or

∫
X
g− dµ is also finite. Therefore

∫
X
g dµ is defined and

∫
X
f dµ =∫

X
g dµ.

(b) Let f, g : X → C and f = g a.e. on X.

If f is integrable, from |f | = |g| a.e. on X and from Proposition 7.3, we find∫
X
|g| dµ =

∫
X
|f | dµ < +∞ and, hence, g is also integrable.

Now, Lemma 7.8 says that there are F,G : X → C so that F = f and G = g
a.e. on X and also

∫
X
F dµ =

∫
X
f dµ and

∫
X
Gdµ =

∫
X
g dµ. From f = g a.e.

on X we see that F = G a.e. on X. This implies that <(F ) = <(G) a.e. on X
and, from (a),

∫
X
<(F ) dµ =

∫
X
<(G) dµ. Similarly,

∫
X
=(F ) dµ =

∫
X
=(G) dµ.

Therefore,
∫
X
f dµ =

∫
X
F dµ =

∫
X
<(F ) dµ+ i

∫
X
=(F ) dµ =

∫
X
<(G) dµ+

i
∫
X
=(G) dµ =

∫
X
Gdµ =

∫
X
g dµ.

Theorem 7.5 Let f : X → R or C be measurable. Then the following are
equivalent:
(i) f = 0 a.e. on X
(ii)

∫
X
|f | dµ = 0

(iii)
∫
X
fχA dµ = 0 for every A ∈ Σ.

101



Proof: If
∫
X
|f | dµ = 0, Proposition 7.3 implies that |f | = 0 and, hence, f = 0

a.e. on X.
If f = 0 a.e. on X, then fχA = 0 a.e. on X for all A ∈ Σ. Theorem 7.4

implies that
∫
X
fχA dµ = 0.

Finally, let
∫
X
fχA dµ = 0 for every A ∈ Σ.

(a) If f : X → R we takeA = f−1([0,+∞]) and find
∫
X
f+ dµ =

∫
X
fχA dµ = 0.

Similarly,
∫
X
f− dµ = 0 and thus

∫
X
|f | dµ =

∫
X
f+ dµ+

∫
X
f− dµ = 0.

(b) If f : X → C, we first take A = X and find
∫
X
f dµ = 0. This says, in

particular, that f is integrable. We take some F : X → C so that F = f a.e.
on X.

For every A ∈ Σ we have FχA = fχA a.e. on X and, from Theorem 7.4,∫
X
FχA dµ =

∫
X
fχA dµ = 0. This implies

∫
X
<(F )χA dµ =

∫
X
<(FχA) dµ =

<(
∫
X
FχA dµ) = 0 and, from part (a), <(F ) = 0 a.e. on X. Similarly, =(F ) = 0

a.e. on X and thus F = 0 a.e. on X. We conclude that f = 0 a.e. on X.

Theorem 7.6 Let f : X → R or C be measurable and λ ∈ R or C.
(i) If f : X → R, λ ∈ R and

∫
X
f dµ is defined, then

∫
X
λf dµ is also defined

and ∫
X

λf dµ = λ

∫
X

f dµ.

(ii) If f is integrable, then λf is also integrable and the previous equality is
again true.

Proof: (i) Let f : X → R and
∫
X
f dµ be defined and, hence, either

∫
X
f+ dµ <

+∞ or
∫
X
f− dµ < +∞.

If 0 < λ < +∞, then (λf)+ = λf+ and (λf)− = λf−. Therefore, at least
one of

∫
X

(λf)+ dµ = λ
∫
X
f+ dµ and

∫
X

(λf)− dµ = λ
∫
X
f− dµ is finite. This

means that
∫
X
λf dµ is defined and∫

X

λf dµ =

∫
X

(λf)+ dµ−
∫
X

(λf)− dµ = λ
(∫

X

f+ dµ−
∫
X

f− dµ
)

= λ

∫
X

f dµ.

If −∞ < λ < 0, then (λf)+ = −λf− and (λf)− = −λf+ and the previous
argument can be repeated with no essential change.

If λ = 0, the result is trivial.
(ii) If f : X → R is integrable and λ ∈ R, then

∫
X
|λf | dµ = |λ|

∫
X
|f | dµ < +∞,

which means that λf is also integrable. The equality
∫
X
λf dµ = λ

∫
X
f dµ has

been proved in (i).
If f : X → C is integrable and λ ∈ C, the same argument gives that λf is

also integrable.
We, now, take F : X → C so that F = f a.e. on X. Then, also λF = λf

a.e. on X and Theorem 7.4 implies that
∫
X
λF dµ =

∫
X
λf dµ and

∫
X
F dµ =∫

X
f dµ. Hence, it is enough to prove that

∫
X
λF dµ = λ

∫
X
F dµ.

From <(λF ) = <(λ)<(F )−=(λ)=(F ) and from the real valued case we get
that ∫

X

<(λF ) dµ = <(λ)

∫
X

<(F ) dµ−=(λ)

∫
X

=(F ) dµ.
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Similarly, ∫
X

=(λF ) dµ = <(λ)

∫
X

=(F ) dµ+ =(λ)

∫
X

<(F ) dµ.

From these two equalities∫
X

λF dµ = λ

∫
X

<(F ) dµ+ iλ

∫
X

=(F ) dµ = λ

∫
X

F dµ.

Theorem 7.7 Let f, g : X → R or C be measurable and consider any measur-
able definition of f + g.
(i) If f, g : X → R and

∫
X
f dµ,

∫
X
g dµ are both defined and they are not

opposite infinities, then
∫
X

(f + g) dµ is also defined and∫
X

(f + g) dµ =

∫
X

f dµ+

∫
X

g dµ.

(ii) If f, g : X → R or C are integrable, then f + g is also integrable and the
previous equality is again true.

Proof: (i) Considering the integrals
∫
X
f+ dµ,

∫
X
f− dµ,

∫
X
g+ dµ,

∫
X
g− dµ, the

assumptions imply that at most the
∫
X
f+ dµ,

∫
X
g+ dµ are +∞ or at most the∫

X
f− dµ,

∫
X
g− dµ are +∞.

Let
∫
X
f− dµ < +∞ and

∫
X
g− dµ < +∞.

Proposition 7.4 implies that, if B = {x ∈ X | f(x) 6= −∞, g(x) 6= −∞},
then µ(Bc) = 0. We define the functions F = fχB and G = gχB . Then
F,G : X → (−∞,+∞] are measurable and F = f and G = g a.e. on X.

The advantage of F,G over f, g is that F (x) + G(x) is defined for every
x ∈ X.

Observe that for all measurable definitions of f + g, we have F +G = f + g
a.e. on X. Because of Theorem 7.4, it is enough to prove that the

∫
X

(F +G) dµ
is defined and that

∫
X

(F +G) dµ =
∫
X
F dµ+

∫
X
Gdµ.

From F = F+ − F− ≤ F+ and G = G+ −G− ≤ G+ on X we get F +G ≤
F+ +G+ on X. Hence (F +G)+ ≤ F+ +G+ on X and similarly (F +G)− ≤
F− +G− on X.

From (F + G)− ≤ F− + G− on X we find
∫
X

(F + G)− dµ ≤
∫
X
F− dµ +∫

X
G− dµ < +∞. Therefore,

∫
X

(F +G) dµ is defined.
We now have (F +G)+− (F +G)− = F +G = (F+ +G+)− (F−+G−) or,

equivalently, (F +G)+ + F− +G− = (F +G)− + F+ +G+.
Proposition 7.1 implies that∫

X

(F+G)+ dµ+

∫
X

F− dµ+

∫
X

G− dµ =

∫
X

(F+G)− dµ+

∫
X

F+ dµ+

∫
X

G+ dµ.

Because of the finiteness of
∫
X

(F +G)− dµ,
∫
X
F− dµ,

∫
X
G− dµ, we get∫

X

(F +G) dµ =

∫
X

(F +G)+ dµ−
∫
X

(F +G)− dµ
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=

∫
X

F+ dµ+

∫
X

G+ dµ−
∫
X

F− dµ−
∫
X

G− dµ

=

∫
X

F dµ+

∫
X

Gdµ.

The proof in the case when
∫
X
f+ dµ < +∞ and

∫
X
g+ dµ < +∞ is similar.

(ii) By Lemma 7.8, there are F,G : X → C so that F = f and G = g a.e. on X.
This implies that for all measurable definitions of f + g we have F +G = f + g
a.e. on X. Now, by Theorem 7.4, it is enough to prove that F +G is integrable
and

∫
X

(F +G) dµ =
∫
X
F dµ+

∫
X
Gdµ.

Now
∫
X
|F + G| dµ ≤

∫
X
|F | dµ +

∫
X
|G| dµ < +∞ and, hence, F + G is

integrable.
By part (i) we have

∫
X
<(F + G) dµ =

∫
X
<(F ) dµ +

∫
X
<(G) dµ and the

same equality with the imaginary parts. Combining, we get
∫
X

(F + G) dµ =∫
X
F dµ+

∫
X
Gdµ.

Theorem 7.8 Let f, g : X → R be measurable. If
∫
X
f dµ and

∫
X
g dµ are both

defined and f ≤ g on X, then∫
X

f dµ ≤
∫
X

g dµ.

Proof: From f ≤ g = g+ − g− ≤ g+ we get f+ ≤ g+. Similarly, g− ≤ f−.
Therefore, if

∫
X
g+ dµ < +∞, then

∫
X
f+ dµ < +∞ and, if

∫
X
f− dµ < +∞,

then
∫
X
g− dµ < +∞.

Hence we can subtract the two inequalities∫
X

f+ dµ ≤
∫
X

g+ dµ,

∫
X

g− dµ ≤
∫
X

f− dµ

and find that
∫
X
f dµ ≤

∫
X
g dµ.

Theorem 7.9 Let f : X → R or C be measurable.
(i) If f : X → R and

∫
X
f dµ is defined, then∣∣∣ ∫

X

f dµ
∣∣∣ ≤ ∫

X

|f | dµ.

(ii) If f : X → C is integrable, then the inequality in (i) is again true.

Proof: (i) We write |
∫
X
f dµ| = |

∫
X
f+ dµ−

∫
X
f− dµ| ≤

∫
X
f+ dµ+

∫
X
f− dµ =∫

X
|f | dµ.

(ii) Consider F : X → C so that F = f a.e. on X. By Theorem 7.4, it is enough
to prove |

∫
X
F dµ| ≤

∫
X
|F | dµ.

If
∫
X
F dµ = 0, then the inequality is trivially true. Let 0 6=

∫
X
F dµ ∈ C

and take λ = sign(
∫
X
F dµ) 6= 0. Then∣∣∣ ∫

X

F dµ
∣∣∣ = λ

∫
X

F dµ =

∫
X

λF dµ = <
(∫

X

λF dµ
)

=

∫
X

<(λF ) dµ

≤
∫
X

|<(λF )| dµ ≤
∫
X

|λF | dµ =

∫
X

|F | dµ.
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Theorem 7.10 (The Dominated Convergence Theorem) (Lebesgue) Con-
sider the measurable f, fn : X → R or C (n ∈ N) and g : X → [0,+∞]. Assume
that f = limn→+∞ fn a.e. on X, that, for all n, |fn| ≤ g a.e. on X and that∫
X
g dµ < +∞. Then all fn and f are integrable and∫

X

fn dµ→
∫
X

f dµ.

Proof: From the |fn| ≤ g a.e. on X we find
∫
X
|fn| dµ ≤

∫
X
g dµ < +∞ and

hence fn is integrable. Also, from |fn| ≤ g a.e. on X and f = limn→+∞ fn
a.e. on X, we get that |f | ≤ g a.e. on X and, for the same reason, f is also
integrable.

We may now take F, Fn : X → R or C so that F = f and Fn = fn a.e. on
X for all n. We, then, have |Fn| ≤ g a.e. on X and F = limn→+∞ Fn a.e. on
X and it is enough to prove

∫
X
Fn dµ→

∫
X
F dµ.

(i) Let F, Fn : X → R. Since 0 ≤ g + Fn, g − Fn on X, the Lemma of Fatou
implies that ∫

X

g dµ±
∫
X

F dµ ≤ lim inf
n→+∞

∫
X

(g ± Fn) dµ

and hence ∫
X

g dµ±
∫
X

F dµ ≤
∫
X

g dµ+ lim inf
n→+∞

±
∫
X

Fn dµ.

Since
∫
X
g dµ is finite, we get that ±

∫
X
F dµ ≤ lim infn→+∞±

∫
X
Fn dµ and

hence

lim sup
n→+∞

∫
X

Fn dµ ≤
∫
X

F dµ ≤ lim inf
n→+∞

∫
X

Fn dµ.

This implies
∫
X
Fn dµ→

∫
X
F dµ.

(ii) Let F, Fn : X → C. From |<(Fn)| ≤ |Fn| ≤ g a.e. on X and from
<(Fn) → <(F ) a.e. on X, part (i) implies

∫
X
<(Fn) dµ →

∫
X
<(F ) dµ. Simi-

larly,
∫
X
=(Fn) dµ→

∫
X
=(F ) dµ and, from these two,

∫
X
Fn dµ→

∫
X
F dµ.

Theorem 7.11 (The Series Theorem) Consider the measurable f, fn : X →
R or C (n ∈ N). If

∑+∞
n=1

∫
X
|fn| dµ < +∞, then

(i)
∑+∞
n=1 fn(x) exists for a.e. x ∈ X,

(ii) if f =
∑+∞
n=1 fn a.e. on X, then∫

X

f dµ =

+∞∑
n=1

∫
X

fn dµ.

Proof: (i) Define g =
∑+∞
n=1 |fn| : X → [0,+∞] on X. From Theorem 7.2 we

have
∫
X
g dµ =

∑+∞
n=1

∫
X
|fn| dµ < +∞. This implies that g < +∞ a.e. on

X, which means that the series
∑+∞
n=1 fn(x) converges absolutely, and hence

converges, for a.e. x ∈ X.
(ii) Consider sn =

∑n
k=1 fk for all n. Then limn→+∞ sn = f a.e. on X

and |sn| ≤ g on X. Theorem 7.10 implies that
∑n
k=1

∫
X
fk dµ =

∫
X
sn dµ →∫

X
f dµ.
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Theorem 7.12 (Approximation) Let f : X → R or C be integrable. Then
for every ε > 0 there is some measurable simple function φ : X → R or C so
that

∫
X
|f − φ| dµ < ε.

Proof: If f : X → [0,+∞] is measurable with
∫
X
f dµ < +∞, there is an

increasing sequence (φn) of non-negative measurable simple functions so that
φn ↑ f on X and

∫
X
φn dµ ↑

∫
X
f dµ. Therefore, for some n we have

∫
X
f dµ−

ε <
∫
X
φn dµ ≤

∫
X
f dµ. Thus

∫
X
|f − φn| dµ =

∫
X

(f − φn) dµ < ε.

Now if f : X → R is integrable, then
∫
X
f+ dµ < +∞ and

∫
X
f− dµ <

+∞. From the first case considered, there are non-negative measurable simple
functions φ1, φ2 so that

∫
X
|f+ − φ1| dµ < ε

2 and
∫
X
|f− − φ2| dµ < ε

2 . We
define the simple function φ = φ1 − φ2 : X → R and get

∫
X
|f − φ| dµ ≤∫

X
|f+ − φ1| dµ+

∫
X
|f− − φ2| dµ < ε.

Finally, let f : X → C be integrable. Then there is F : X → C so that
F = f a.e. on X. The functions <(F ),=(F ) : X → R are both integrable,
and hence we can find real valued measurable simple functions φ1, φ2 so that∫
X
|<(F )− φ1| dµ < ε

2 and
∫
X
|=(F )− φ2| dµ < ε

2 . We define φ = φ1 + iφ2 and
get

∫
X
|f − φ| dµ =

∫
X
|F − φ| dµ < ε.

7.4 Integrals over subsets.

Let (X,Σ, µ) be a measure space.
Let A ∈ Σ and f : X → R or C be measurable. In order to define an integral

of f over A we have two natural choices. One way is to take fχA, which is f in A
and 0 outside A, and consider

∫
X
fχA dµ. Another way is to take the restriction

feA of f on A and consider
∫
A

(feA) d(µeA) with respect to the restricted µeA
on (A,ΣeA). The following lemma says that the two procedures are equivalent
and give the same results.

Lemma 7.9 Let A ∈ Σ and f : X → R or C be measurable.
(i) If f : X → R and either

∫
X
fχA dµ or

∫
A

(feA) d(µeA) exists, then the other
also exists and they are equal.
(ii) If f : X → C and either

∫
X
|fχA| dµ or

∫
A
|feA| d(µeA) is finite, then the

other is also finite and the integrals
∫
X
fχA dµ and

∫
A

(feA) d(µeA) are equal.

Proof: (a) Take a non-negative measurable simple function φ =
∑m
j=1 κjχEj

with its standard representation. Now φχA =
∑m
j=1 κjχEj∩A : X → [0,+∞)

has
∫
X
φχA dµ =

∑m
j=1 κjµ(Ej∩A). On the other hand, φeA =

∑m
j=1 κjχEj∩A :

A → [0,+∞) (where we omit the terms for which Ej ∩ A = ∅) has exactly the
same integral

∫
A

(φeA) d(µeA) =
∑m
j=1 κj(µeA)(Ej ∩A) =

∑m
j=1 κjµ(Ej ∩A).

(b) Now let f : X → [0,+∞] be measurable. Take an increasing sequence
(φn) of non-negative measurable simple φn : X → [0,+∞) with φn → f .
Then (φnχA) is increasing and φnχA → fχA. Also, (φneA) is increasing
and φneA → feA. Hence, by (a) we get,

∫
X
fχA = limn→+∞

∫
X
φnχA dµ =

limn→+∞
∫
A

(φneA) d(µeA) =
∫
A

(feA) d(µeA).

(c) If f : X → R is measurable, then f+χA = (fχA)+ and f−χA = (fχA)− and
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also (feA)+ = f+eA and (feA)− = f−eA. Hence, by (b) we get
∫
X

(fχA)+ dµ =∫
X
f+χA dµ =

∫
A

(f+eA) d(µeA) =
∫
A

(feA)+ d(µeA) and also
∫
X

(fχA)− dµ =∫
A

(feA)− d(µeA). These show (i).

(d) Finally, let f : X → C be measurable. Then |fχA| = |f |χA and |feA| =
|f |eA. By (b) we have

∫
X
|fχA| dµ =

∫
X
|f |χA dµ =

∫
A

(|f |eA) d(µeA) =∫
A
|feA| d(µeA), implying that fχA and feA are simultaneously integrable or

non-integrable.
Assuming integrability, there is an F : X → C so that F = fχA a.e. on

X. It is clear that FχA = fχA a.e. on X and, also, F eA = feA a.e. on A.
Therefore, it is enough to prove that

∫
X
FχA dµ =

∫
A

(F eA) d(µeA).
Part (c) implies

∫
X
<(FχA) dµ =

∫
X
<(F )χA dµ =

∫
A

(<(F )eA) d(µeA) =∫
A
<(F eA) d(µeA). Similarly,

∫
X
=(FχA) dµ =

∫
A
=(F eA) d(µeA) and we con-

clude that
∫
X
FχA dµ =

∫
A

(F eA) d(µeA).

Definition 7.6 Let f : X → R or C be measurable and A ∈ Σ.
(i) If f : X → R and

∫
X
fχA dµ or, equivalently,

∫
A

(feA) d(µeA) is defined,
we say that the

∫
A
f dµ is defined and define∫
A

f dµ =

∫
X

fχA dµ =

∫
A

(feA) d(µeA).

(ii) If f : X → C and fχA is integrable on X or, equivalently, feA is integrable
on A, we say that f is integrable on A and define

∫
A
f dµ exactly as in (i).

Lemma 7.10 Let f : X → R or C be measurable.
(i) If f : X → R and

∫
X
f dµ is defined, then

∫
A
f dµ is defined for every A ∈ Σ.

(ii) If f : X → C is integrable then f is integrable on every A ∈ Σ.

Proof: (i) We have (fχA)+ = f+χA ≤ f+ and (fχA)− = f−χA ≤ f− on
X. Therefore, either

∫
X

(fχA)+ dµ ≤
∫
X
f+ dµ < +∞ or

∫
X

(fχA)− dµ ≤∫
X
f− dµ < +∞. This says that

∫
X
fχA dµ is defined and, hence,

∫
A
f dµ is

also defined.
(ii) If f : X → C is integrable, then

∫
X
|fχA| dµ ≤

∫
X
|f | dµ < +∞ and fχA is

also integrable.

Proposition 7.6 Let f : X → R be measurable and
∫
X
f dµ be defined. Then

either
∫
A
f dµ ∈ (−∞,+∞] for all A ∈ Σ or

∫
A
f dµ ∈ [−∞,+∞) for all A ∈ Σ.

Proof: Let
∫
X
f− dµ < +∞. Then

∫
X

(fχA)− dµ ≤
∫
X
f− dµ < +∞ and hence∫

A
f dµ =

∫
X
fχA dµ > −∞ for all A ∈ Σ.

Similarly, if
∫
X
f+ dµ < +∞, then

∫
A
f dµ < +∞ for all A ∈ Σ.

Theorem 7.13 If f : X → R and
∫
X
f dµ is defined or f : X → C and f is

integrable, then
(i)
∫
A
f dµ = 0 for all A ∈ Σ with µ(A) = 0,

(ii)
∫
A
f dµ =

∑+∞
n=1

∫
An

f dµ for all pairwise disjoint A1, A2, . . . ∈ Σ with A =

∪+∞n=1An,
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(iii)
∫
An

f dµ→
∫
A
f dµ for all increasing (An) in Σ with A = ∪+∞n=1An,

(iv)
∫
An

f dµ →
∫
A
f dµ for all decreasing (An) in Σ with A = ∩+∞n=1An and

|
∫
A1
f dµ| < +∞.

Proof: (i) This is easy because fχA = 0 a.e. on X.
(ii) Let A1, A2, . . . ∈ Σ be pairwise disjoint and A = ∪+∞n=1An.

If f : X → [0,+∞] is measurable, since fχA =
∑+∞
n=1 fχAn on X, Theorem

7.2 implies
∫
A
f dµ =

∫
X
fχA dµ =

∑+∞
n=1

∫
X
fχAn dµ =

∑+∞
n=1

∫
An

f dµ.

If f : X → C and f is integrable, we have by the previous case that∑+∞
n=1

∫
X
|fχAn | dµ =

∑+∞
n=1

∫
An
|f | dµ =

∫
A
|f | dµ < +∞. Because of fχA =∑+∞

n=1 fχAn on X, Theorem 7.11 implies that
∫
A
f dµ =

∑+∞
n=1

∫
An

f dµ.

If f : X → R and
∫
X
f− dµ < +∞, we apply the first case and get∑+∞

n=1

∫
An

f+ dµ =
∫
A
f+ dµ and

∑+∞
n=1

∫
An

f− dµ =
∫
A
f− dµ < +∞. Sub-

tracting, we find
∑+∞
n=1

∫
An

f dµ =
∫
A
f dµ.

If
∫
X
f+ dµ < +∞, the proof is similar.

(iii) Write A = A1 ∪ ∪+∞k=2(Ak \Ak−1), where the sets in the union are pairwise

disjoint. Apply (ii) to get
∫
A
f dµ =

∫
A1
f dµ+

∑+∞
k=2

∫
Ak\Ak−1

f dµ =
∫
A1
f dµ+

limn→+∞
∑n
k=2

∫
Ak\Ak−1

f dµ = limn→+∞
∫
An

f dµ.

(iv) Write A1 \ A = ∪+∞n=1(A1 \ An), where (A1 \ An) is increasing. Apply (iii)
to get

∫
A1\An f dµ→

∫
A1\A f dµ.

From
∫
A1\A f dµ +

∫
A
f dµ =

∫
A1
f dµ and from |

∫
A1
f dµ| < +∞ we im-

mediately get that also |
∫
A
f dµ| < +∞. From the same equality we then get∫

A1\A f dµ =
∫
A1
f dµ −

∫
A
f dµ. Similarly,

∫
A1\An f dµ =

∫
A1
f dµ −

∫
An

f dµ

and hence
∫
A1
f dµ−

∫
An

f dµ→
∫
A1
f dµ−

∫
A
f dµ. Because of |

∫
A1
f dµ| < +∞

again, we finally have
∫
An

f dµ→
∫
A
f dµ.

We must say that all results we have proved about integrals
∫
X

over X
hold without change for integrals

∫
A

over an arbitrary A ∈ Σ. To see this we
either repeat all proofs, making the necessary minor changes, or we just apply
those results to the functions multiplied by χA or to their restrictions on A. As
an example let us look at the following version of the Dominated Convergence
Theorem.

Assume that f, fn : X → R or C are measurable, that g : X → [0,+∞] has∫
A
g dµ < +∞, that |fn| ≤ g a.e. on A and fn → f a.e. on A. The result is

that
∫
A
fn dµ→

∫
A
f dµ.

Indeed, we have then that
∫
X
gχA dµ < +∞, that |fnχA| ≤ gχA a.e. on X

and fnχA → fχA a.e. on X. The usual form of the dominated convergence
theorem (for X) implies that

∫
A
fn dµ =

∫
X
fnχA dµ→

∫
X
fχA dµ =

∫
A
f dµ.

Alternatively, we observe that
∫
A

(geA) d(µeA) < +∞, that |fneA| ≤ geA
a.e. on A and fneA → feA a.e. on A. The dominated convergence theorem
(for A) implies that

∫
A
fn dµ =

∫
A

(fneA) d(µeA)→
∫
A

(feA) d(µeA) =
∫
A
f dµ.
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7.5 Point-mass distributions.

Consider the point-mass distribution µ induced by a function a : X → [0,+∞]
through the formula

µ(E) =
∑
x∈E

ax

for all E ⊆ X.
We observe that all functions f : X → Y , no matter what the (Y,Σ′) is, are

(Σ,Σ′)-measurable.
If φ =

∑n
j=1 κjχEj is any non-negative simple function on X with its stan-

dard representation, then
∫
X
φdµ =

∑n
j=1 κjµ(Ej) =

∑n
j=1 κj

(∑
x∈Ej ax

)
=∑n

j=1

(∑
x∈Ej κjax

)
=
∑n
j=1

(∑
x∈Ej φ(x)ax

)
. We apply Proposition 2.6 to

get ∫
X

φdµ =
∑
x∈X

φ(x) ax.

Proposition 7.7 If f : X → [0,+∞] then∫
X

f dµ =
∑
x∈X

f(x) ax.

Proof: Consider an increasing sequence (φn) of non-negative simple functions
so that φn ↑ f on X and

∫
X
φn dµ ↑

∫
X
f dµ.

Then
∫
X
φn dµ =

∑
x∈X φn(x) ax ≤

∑
x∈X f(x) ax and, taking limit in n,

we find
∫
X
f dµ ≤

∑
x∈X f(x) ax.

If F is a finite subset of X, then
∑
x∈F φn(x) ax ≤

∑
x∈X φn(x) ax =∫

X
φn dµ. Using the obvious limn→+∞

∑
x∈F φn(x) ax =

∑
x∈F f(x) ax, we find∑

x∈F f(x) ax ≤
∫
X
f dµ. Taking supremum over F ,

∑
x∈X f(x) ax ≤

∫
X
f dµ

and, combining with the opposite inequality, the proof is finished.

We would like to extend the validity of this Proposition 7.7 to real valued or
complex valued functions, but we do not have a definition for sums of real valued
or complex valued terms! We can give such a definition in a straightforward
manner, but we prefer to use the theory of the integral developed so far.

The amusing thing is that any series
∑
i∈I bi of non-negative terms over the

general index set I can be written as an integral∑
i∈I

bi =

∫
I

b d ] ,

where ] is the counting measure on I (and we freely identify bi = b(i)). This is
a simple application of Proposition 7.7.

Using properties of integrals we may prove corresponding properties of sums.
For example, it is true that∑

i∈I
(bi + ci) =

∑
i∈I

bi +
∑
i∈I

ci,
∑
i∈I

λbi = λ
∑
i∈I

bi
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for every non-negative bi, ci and λ. The proof consists in rewriting
∫
I
(b+c) d ] =∫

I
b d ]+

∫
I
c d ] and

∫
I
λb d ] = λ

∫
I
b d ] in terms of sums.

For every b ∈ R we write b+ = max{b, 0} and b− = −min{b, 0} and, clearly,
b = b+ − b− and |b| = b+ + b−.

Definition 7.7 If I is any index set and b : I → R, we define the sum of
{bi}i∈I over I by ∑

i∈I
bi =

∑
i∈I

b+i −
∑
i∈I

b−i

only when either
∑
i∈I b

+
i < +∞ or

∑
i∈I b

−
i < +∞. We say that {bi}i∈I is

summable (over I) if
∑
i∈I bi is finite or, equivalently, if both

∑
i∈I b

+
i and∑

i∈I b
−
i are finite.

Since we can write∑
i∈I

bi =
∑
i∈I

b+i −
∑
i∈I

b−i =

∫
I

b+ d ]−
∫
I

b− d ] =

∫
I

b d ]

and also ∑
i∈I
|bi| =

∑
i∈I

b+i +
∑
i∈I

b−i =

∫
I

b+ d ]+

∫
I

b− d ] =

∫
I

|b| d ],

we may say that {bi}i∈I is summable over I if and only if b is integrable over
I with respect to counting measure ] or, equivalently, if and only if

∑
i∈I |bi| =∫

I
|b| d ] < +∞. Also, the

∑
i∈I bi is defined if and only if the

∫
I
b d ] is defined

and they are equal.
Further exploiting the analogy between sums and integrals we have

Definition 7.8 If I is any index set and b : I → C, we say that {bi}i∈I is
summable over I if

∑
i∈I |bi| < +∞.

This is the same condition as in the case of b : I → R.

Proposition 7.8 Let b : I → R or C. Then {bi}i∈I is summable over I if and
only if the set {i ∈ I | bi 6= 0} is countable and, taking an arbitrary enumeration
{i1, i2, . . .} of it,

∑+∞
k=1 |bik | < +∞.

Proof: An application of Propositions 2.3 and 2.4.

In particular, if {bi}i∈I is summable over I then bi is finite for all i ∈ I. This
allows us to give the

Definition 7.9 Let b : I → C be summable over I. We define the sum of
{bi}i∈I over I as ∑

i∈I
bi =

∑
i∈I
<(bi) + i

∑
i∈I
=(bi).
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Therefore, the sum of complex valued terms is defined only when the sum is
summable and, hence, this sum always has a finite value. Again, we can say
that if b : I → C is summable over I (which is equivalent to b being integrable
over I with respect to counting measure) then∑

i∈I
bi =

∫
I

b d ].

We shall see now the form that some of the important results of general
integrals take when we specialize them to sums. They are simple and straight-
forward formulations of known results but, since they are very important when
one is working with sums, we shall state them explicitly. Their content is the
interchange of limits and sums. It should be stressed that it is very helpful to
be able to recognize the underlying integral theorem behind a property of sums.
Proofs are not needed.

Theorem 7.14 (i) (The Monotone Convergence Theorem) Let b, b(k) :

I → [0,+∞] (k ∈ N). If b
(k)
i ↑ bi for all i, then

∑
i∈I b

(k)
i ↑

∑
i∈I bi.

(ii) Let b(k) : I → [0,+∞] (k ∈ N). Then
∑
i∈I(

∑+∞
k=1 b

(k)
i ) =

∑+∞
k=1(

∑
i∈I b

(k)
i ).

(iii) (The Lemma of Fatou) Let b, b(k) : I → [0,+∞] (k ∈ N). If bi =

lim infk→+∞ b
(k)
i for all i ∈ I, then

∑
i∈I bi ≤ lim infk→+∞

∑
i∈I b

(k)
i .

(iv) (The Dominated Convergence Theorem) Let b, b(k) : I → R or C

(k ∈ N) and c : I → [0,+∞]. If |b(k)i | ≤ ci for all i and k, if
∑
i∈I ci < +∞

and if b
(k)
i → bi for all i, then

∑
i∈I b

(k)
i →

∑
i∈I bi.

(v) (The Series Theorem) Let b(k) : I → R or C (k ∈ N). Assuming that∑+∞
k=1(

∑
i∈I |b

(k)
i |) < +∞, then

∑+∞
k=1 b

(k)
i converges for every i. Moreover,∑

i∈I(
∑+∞
k=1 b

(k)
i ) =

∑+∞
k=1(

∑
i∈I b

(k)
i ).

Observe that the only ]-null set is the ∅. Therefore, saying that a property
holds ]-a.e. on I is equivalent to saying that it holds at every point of I.

Going back to the general case, if µ is the point-mass distribution induced
by the function a : X → [0,+∞], and f : X → R, then

∫
X
f dµ is defined

if and only if either
∑
x∈X f

+(x)ax =
∫
X
f+ dµ < +∞ or

∑
x∈X f

−(x)ax =∫
X
f− dµ < +∞, and in this case we have∫

X

f dµ =

∫
X

f+ dµ−
∫
X

f− dµ =
∑
x∈X

f+(x)ax −
∑
x∈X

f−(x)ax =
∑
x∈X

f(x)ax.

Moreover, f is integrable if and only if
∑
x∈X |f(x)|ax =

∫
X
|f | dµ < +∞. This

is also true when f : X → C, and in this case we have∫
X

f dµ =
∑
x∈X
<(f(x)χDf (x))ax + i

∑
x∈X
=(f(x)χDf (x))ax,

where Df = {x ∈ X | f(x) 6= ∞}. Since
∑
x∈X |f(x)|ax < +∞, it is clear that

f(x) =∞ can happen only if ax = 0 and ax = +∞ can happen only if f(x) = 0.
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But, then f(x)ax ∈ C for all x ∈ X and, moreover, f(x)χDf (x)ax = f(x)ax for
all x ∈ X. Therefore, we get∫

X

f dµ =
∑
x∈X
<(f(x)ax) + i

∑
x∈X
=(f(x)ax) =

∑
x∈X

f(x)ax.

Now we have arrived at the complete interpretation of sums as integrals.

Theorem 7.15 Let µ be a point-mass distribution induced by a : X → [0,+∞].
If f : X → R or C, then the

∫
X
f dµ exists if and only if the

∑
x∈X f(x)ax exists

and, in this case, ∫
X

f dµ =
∑
x∈X

f(x)ax.

A simple particular case of a point-mass distribution is the Dirac mass δx0

at x0 ∈ X. We remember that this is induced by ax = 1 if x = x0 and ax = 0
if x 6= x0. In this case the integrals become very simple:∫

X

f dδx0 = f(x0)

for every f . It is clear that f is integrable if and only if f(x0) ∈ C. Thus,
integration with respect to the Dirac mass at x0 coincides with the so-called
point evaluation at x0.

7.6 Lebesgue integral.

A function f : Rn → R or C is called Lebesgue integrable if it is integrable
with respect to mn.

It is easy to see that every continuous f : Rn → R or C which is 0 outside
some bounded set is Lebesgue integrable. Indeed, f is then Borel measurable
and if Q is any closed interval in Rn outside of which f is 0, then |f | ≤ KχQ,
where K = max{|f(x)| |x ∈ Q} < +∞. Therefore,

∫
Rn |f | dmn ≤ Kmn(Q) <

+∞ and f is Lebesgue integrable.

Theorem 7.16 (Approximation) Let f : Rn → R or C be Lebesgue inte-
grable. Then for every ε > 0 there is some continuous function g : Rn → R or
C which is 0 outside some bounded set so that

∫
Rn |g − f | dmn < ε.

Proof: (a) Let −∞ < a < b < +∞ and for each δ ∈ (0, b−a2 ) consider the
continuous function τa,b,δ : R → [0, 1] which is 1 on (a + δ, b − δ), is 0 outside
(a, b) and is linear in each of [a, a+ δ] and [b− δ, b].

Let R = (a1, b1) × · · · × (an, bn) be an open interval in Rn. Consider, for
small δ > 0, the open interval Rδ = (a1 + δ, b1 − δ)× · · · × (an + δ, bn − δ) ⊆ R.
Then it is clear that, by choosing δ small enough, we can have mn(R \Rδ) < ε.
Define the function τR,δ : Rn → [0, 1] by the formula

τR,δ(x1, . . . , xn) = τa1,b1,δ(x1) · · · τan,bn,δ(xn).
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Then, τR,δ is continuous on Rn, it is 1 on Rδ and it is 0 outside R. Therefore,∫
Rn |τR,δ − χR|mn ≤ mn(R \Rδ) < ε.

(b) Let E ∈ Ln have mn(E) < +∞. Theorem 4.6 implies that there are
pairwise disjoint open intervals R1, . . . , Rl so that mn(E4(R1 ∪ · · · ∪Rl)) < ε

2 .
The functions χE and χR1 + · · · + χRl differ (by at most 1) only in the set

E4(R1 ∪ · · · ∪Rl). Hence,
∫
Rn |

∑l
i=1 χRi − χE | dmn <

ε
2 .

By (a), we can take small enough δ > 0 so that, for each Ri, we have∫
Rn |τRi,δ − χRi |mn < ε

2l . This implies
∫
Rn |

∑l
i=1 τRi,δ −

∑l
i=1 χRi | dmn <∑l

i=1
ε
2l = ε

2 .

Denoting ψ =
∑l
i=1 τRi,δ : Rn → R, we have

∫
Rn |ψ−χE | dmn < ε. Observe

that ψ is a continuous function which is 0 outside the bounded set ∪li=1Ri.
(c) Let now f : Rn → R or C be Lebesgue integrable. From Theorem 7.12
we know that there is some Lebesgue measurable simple ψ : Rn → R or C so
that

∫
Rn |ψ − f | dmn <

ε
2 . Let ψ =

∑m
j=1 κjχEj be the standard representa-

tion of ψ, where we omit the possible value κ = 0. From
∑m
j=1 |κj |mn(Ej) =∫

Rn |ψ| dmn ≤
∫
Rn |f | dmn+

∫
Rn |f−ψ| dmn < +∞, we get that mn(Ej) < +∞

for all j. By part (b), for each Ej we can find a continuous ψj : Rn → R so
that

∫
Rn |ψj − χEj | dmn <

ε
2m|κj | .

If we set g =
∑m
j=1 κjψj , then this is continuous on Rn and∫

Rn

|g − f | dmn ≤
∫
Rn

|g − ψ| dmn +

∫
Rn

|ψ − f | dmn

<

m∑
j=1

∫
Rn

|κjψj − κjχEj | dmn +
ε

2

<

m∑
j=1

|κj |
ε

2m|κj |
+
ε

2
= ε.

Since each ψj is 0 outside a bounded set, g is also 0 outside a bounded set.

We shall now investigate the relation between the Lebesgue integral and the
Riemann integral. We recall the definition of the latter.

Assume that Q = [a1, b1]×· · ·×[an, bn] is a closed interval in Rn and consider
a bounded function f : Q→ R.

If l ∈ N is arbitrary and Q1, . . . , Ql are arbitrary closed intervals which have
pairwise disjoint interiors and so that Q = Q1 ∪ · · · ∪Ql, then we say that

∆ = {Q1, . . . Ql}

is a partition of Q. If P, P1, . . . , Pl are the open-closed intervals with the same
sides as, respectively, Q,Q1, . . . , Ql, then {Q1, . . . Ql} is a partition of Q if and
only if the P1, . . . , Pl are pairwise disjoint and P = P1∪· · ·∪Pl. Now, since f is
bounded, in each Qj we may consider the real numbers mj = inf{f(x) |x ∈ Qj}
and Mj = sup{f(x) |x ∈ Qj}. We then define the upper Darboux sum and
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the lower Darboux sum of f with respect to ∆ as, respectively,

Σ(f ; ∆) =

l∑
j=1

Mj voln(Qj),

Σ(f ; ∆) =

l∑
j=1

mj voln(Qj).

If m = inf{f(x) |x ∈ Q} and M = sup{f(x) |x ∈ Q}, we have that m ≤ mj ≤
Mj ≤M for every j and, using Lemma 4.2, we see that

m voln(Q) ≤ Σ(f ; ∆) ≤ Σ(f ; ∆) ≤M voln(Q).

If ∆1 = {Q(1)
1 , . . . , Q

(1)
l1
} and ∆2 = {Q(2)

1 , . . . , Q
(2)
l2
} are two partitions of Q,

we say that ∆2 is finer than ∆1 if every Q
(2)
i is included in some Q

(1)
j . Then it

is obvious that, for every Q
(1)
j of ∆1, the Q

(2)
i ’s of ∆2 which are included in Q

(1)
j

cover it and hence form a partition of it. Therefore, from Lemma 4.2 again,

m
(1)
j voln(Q

(1)
j ) ≤

∑
Q

(2)
i
⊆Q(1)

j

m
(2)
i voln(Q

(2)
i )

≤
∑

Q
(2)
i
⊆Q(1)

j

M
(2)
i voln(Q

(2)
i ) ≤M (1)

j voln(Q
(1)
j ).

Summing over all j = 1, . . . , l1 we find

Σ(f ; ∆1) ≤ Σ(f ; ∆2) ≤ Σ(f ; ∆2) ≤ Σ(f ; ∆1).

Now, if ∆1 = {Q(1)
1 , . . . , Q

(1)
l1
} and ∆2 = {Q(2)

1 , . . . , Q
(2)
l2
} are any two partitions

ofQ, we form their common refinement ∆ = {Q(1)
j ∩Q

(2)
i | 1 ≤ j ≤ l1, 1 ≤ i ≤ l2}.

Then, Σ(f ; ∆1) ≤ Σ(f ; ∆) ≤ Σ(f ; ∆) ≤ Σ(f ; ∆2) and we conclude that

m voln(Q) ≤ Σ(f ; ∆1) ≤ Σ(f ; ∆2) ≤M voln(Q)

for all partitions ∆1,∆2 of Q. We now define

(Rn)

∫
Q

f = sup{Σ(f ; ∆) |∆ partition of Q}

(Rn)

∫
Q

f = inf{Σ(f ; ∆) |∆ partition of Q}

and call them, respectively, the lower Riemann integral and the upper
Riemann integral of f over Q. It is then clear that

m voln(Q) ≤ (Rn)

∫
Q

f ≤ (Rn)

∫
Q

f ≤M voln(Q).

114



We say that f is Riemann integrable over Q if (Rn)
∫
Q
f = (Rn)

∫
Q
f and

in this case we define

(Rn)

∫
Q

f = (Rn)

∫
Q

f = (Rn)

∫
Q

f

to be the Riemann integral of f over Q.

Lemma 7.11 Let Q be a closed interval in Rn and f : Q → R be bounded.
Then f is Riemann integrable over Q if and only if for every ε > 0 there is
some partition ∆ of Q so that Σ(f ; ∆)− Σ(f ; ∆) < ε.

Proof: To prove the sufficiency, take arbitrary ε > 0 and the corresponding ∆.
Then 0 ≤ (Rn)

∫
Q
f − (Rn)

∫
Q
f ≤ Σ(f ; ∆) − Σ(f ; ∆) < ε. Taking the limit as

ε → 0+, we prove the equality of the upper Riemann integral and the lower
Riemann integral of f over Q.

For the necessity, assume (Rn)
∫
Q
f = (Rn)

∫
Q
f and for each ε > 0 take

partitions ∆1,∆2 of Q so that (Rn)
∫
Q
f − ε

2 < Σ(f ; ∆1) and Σ(f ; ∆2) <

(Rn)
∫
Q
f + ε

2 . Therefore, if ∆ is the common refinement of ∆1 and ∆2, then

Σ(f ; ∆)− Σ(f ; ∆) ≤ Σ(f ; ∆2)− Σ(f ; ∆1) < ε.

Proposition 7.9 Let Q be a closed interval in Rn and f : Q→ R be continuous
on Q. Then f is Riemann integrable over Q.

Proof: Since f is uniformly continuous on Q, given any ε > 0 there is a δ > 0
so that |f(x)− f(y)| < ε

voln(Q)
for all x, y ∈ Q whose distance is < δ. We take

any partition ∆ = {Q1, . . . , Ql} of Q, so that every Qj has diameter < δ. Then
|f(x)− f(y)| < ε

voln(Q)
for all x, y in the same Qj . This implies that for every

Qj we have Mj −mj = max{f(x) |x ∈ Qj} −min{f(y) | y ∈ Qj} < ε

voln(Q)
.

Hence

Σ(f ; ∆)− Σ(f ; ∆) =

l∑
j=1

(Mj −mj) voln(Qj) <
ε

voln(Q)

l∑
j=1

voln(Qj) = ε

and Lemma 7.11 implies that f is Riemann integrable over Q.

Theorem 7.17 Let Q be a closed interval in Rn and f : Q → R be Riemann
integrable over Q. If we extend f as 0 outside Q, then f is Lebesgue integrable
and ∫

Rn

f dmn =

∫
Q

f dmn = (Rn)

∫
Q

f.

Proof: Lemma 7.11 implies that, for all k ∈ N, there is a partition ∆k =

{Q(k)
1 , . . . , Q

(k)
lk
} of Q so that Σ(f ; ∆k)−Σ(f ; ∆k) < 1

k . We consider the simple
functions

ψk =

lk∑
j=1

m
(k)
j χ

P
(k)
j

, φk =

lk∑
j=1

M
(k)
j χ

P
(k)
j

,
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where P
(k)
j is the open-closed interval with the same sides as Q

(k)
j and m

(k)
j =

inf{f(x) |x ∈ Q(k)
j }, M

(k)
j = sup{f(x) |x ∈ Q(k)

j }.
From Σ(f ; ∆k) ≤ (Rn)

∫
Q
f ≤ Σ(f ; ∆k) we get that

Σ(f ; ∆k),Σ(f ; ∆k)→ (Rn)

∫
Q

f.

It is clear that ψk ≤ fχP ≤ φk for all k, where P is the open-closed interval
with the same sides as Q. It is also clear that∫

Rn

ψk dmn =

lk∑
j=1

m
(k)
j voln(P

(k)
j ) = Σ(f ; ∆k)

∫
Rn

φk dmn =

lk∑
j=1

M
(k)
j voln(P

(k)
j ) = Σ(f ; ∆k).

Hence
∫
Rn(φk − ψk) dmn <

1
k for all k.

We define g = lim supk→+∞ ψk and h = lim infk→+∞ φk and then, of course,
g ≤ fχP ≤ h. The Lemma of Fatou implies that

0 ≤
∫
Rn

(h− g) dmn ≤ lim inf
k→+∞

∫
Rn

(φk − ψk) dmn = 0.

By Proposition 7.3, g = h a.e. on Rn and, thus, f = g = h a.e. on Rn.
Since g, h are Borel measurable, Proposition 6.24 implies that f is Lebesgue
measurable. f is also bounded and is 0 outside Q. Hence |f | ≤ KχQ, where
K = sup{|f(x)| |x ∈ Q}. Thus,

∫
Rn |f | dmn ≤ Kmn(Q) < +∞ and f is

Lebesgue integrable.
Another application of the Lemma of Fatou gives∫

Rn

(h− fχP ) dmn ≤ lim inf
k→+∞

∫
Rn

(φk − fχP ) dmn

= lim inf
k→+∞

Σ(f ; ∆k)−
∫
Rn

fχP dmn

= (Rn)

∫
Q

f −
∫
Rn

fχP dmn.

Hence
∫
Rn h dmn ≤ (Rn)

∫
Q
f and, similarly, (Rn)

∫
Q
f ≤

∫
Rn g dmn. Since

f = g = h a.e. on Rn, we conclude that

(Rn)

∫
Q

f =

∫
Rn

f dmn.

The converse of Theorem 7.17 does not hold. There are examples of bounded
functions f : Q→ R which are Lebesgue integrable but not Riemann integrable
over Q.
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Example:
Define f(x) = 1, if x ∈ Q has all its coordinates rational, and f(x) = 0, if
x ∈ Q has at least one of its coordinates irrational. If ∆ = {Q1, . . . , Qk}
is any partition of Q, then all Qj ’s with non-empty interior (the rest do not
matter because they have zero volume) contain at least one x with f(x) = 1
and at least one x with f(x) = 0. Hence, for all such Qj we have Mj = 1 and
mj = 0. Hence, Σ(f ; ∆) = voln(Q) and Σ(f ; ∆) = 0 for every ∆. This says

that (R1)
∫
Q
f = voln(Q) and (Rn)

∫
Q
f = 0 and f is not Riemann integrable

over Q.
On the other hand f extended as 0 outside Q is 0 a.e on Rn and hence it is

Lebesgue integrable on Rn with
∫
Rn f dmn =

∫
Q
f dmn = 0.

Theorem 7.17 incorporates the notion of Riemann integral in the notion of
Lebesgue integral. It says that the collection of Riemann integrable functions is
included in the collection of Lebesgue integrable functions and that the Riemann
integral is the restriction of the Lebesgue integral on the collection of Riemann
integrable functions. This provides us with greater flexibility over the symbol
we may use for the Lebesgue integral, at least in the case of bounded intervals
[a, b] in the one-dimensional space R. The standard symbol of calculus for the
Riemann integral (R1)

∫
[a,b]

f is the familiar∫ b

a

f or

∫ b

a

f(x) dx.

We may now use the same symbol for the Lebesgue integral
∫
[a,b]

f dm1 without

the danger of confusion between the Riemann and the Lebesgue integrals when
the function is integrable both in the Riemann and in the Lebesgue sense. Bear
also in mind that the Lebesgue integrals

∫
[a,b]

f dm1,
∫
(a,b]

f dm1,
∫
[a,b)

f dm1

and
∫
(a,b)

f dm1 are all the same, since the one-point sets {a}, {b} have zero

Lebesgue measure. Therefore, we may use the symbol
∫ b
a
f(x) dx for all these

Lebesgue integrals. This is extended to cases where the Riemann intgral does
not apply. For example, we may use the symbol∫ +∞

−∞
f(x) dx

for the Lebesgue integral
∫
R
f dm1 and, likewise, the symbol

∫ +∞
a

f(x) dx for the

Lebesgue integral
∫
[a,+∞)

f dm1 and the symbol
∫ b
−∞ f(x) dx for the Lebesgue

integral
∫
(−∞,b] f dm1.

Theorem 7.17 provides also with a tool to calculate Lebesgue integrals, at
least in the case of R. If a function is Riemann integrable over a closed interval
[a, b] ⊆ R, we have many techniques (integration by parts, change of variable,
antiderivatives etc) to calculate its (R1)

∫
[a,b]

f which is the same as
∫
[a,b]

f dm1.

In case the given f is Riemann integrable over intervals [ak, bk] with ak ↓ −∞
and bk ↑ +∞ and we can calculate the integrals (R1)

∫
[ak,bk]

f =
∫
[ak,bk]

f dm1,
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then it is a matter of being able to pass to the limit
∫
[ak,bk]

f dm1 →
∫
R
f dm1

to calculate the Lebesgue integral over R. To do this we may try to use the
Monotone Convergence Theorem or the Dominated Convergence Theorem.

Another topic is the change of Lebesgue integral under linear transformations
of the space.

Proposition 7.10 Let T : Rn → Rn be a linear transformation with det(T ) 6=
0. If (Y,Σ′) is a measurable space and f : Rn → Y is (Ln,Σ′)-measurable, then
f ◦ T−1 : Rn → Y is also (Ln,Σ′)-measurable.

Proof: For every E ∈ Σ′ we have (f ◦ T−1)−1(E) = T (f−1(E)) ∈ Ln, because
of Theorem 4.8.

Theorem 7.18 Let T : Rn → Rn be a linear transformation with det(T ) 6= 0
and f : Rn → R or C be Lebesgue measurable.
(i) If f : Rn → R and the

∫
Rn f dmn exists, then the

∫
Rn f ◦ T−1 dmn also

exists and ∫
Rn

f ◦ T−1 dmn = |det(T )|
∫
Rn

f dmn.

(ii) If f : Rn → C is integrable, then f ◦ T−1 is also integrable and the equality
of (i) is again true.

Proof: (a) Let φ : Rn → [0,+∞) be a non-negative Lebesgue measurable
simple function and φ =

∑m
j=1 κjχEj be its standard representation. Then∫

Rn φdmn =
∑m
j=1 κjmn(Ej).

It is clear that φ ◦ T−1 =
∑m
j=1 κjχEj ◦ T−1 =

∑m
j=1 κjχT (Ej) from which

we get
∫
Rn φ ◦ T−1 dmn =

∑m
j=1 κjmn(T (Ej)) = |det(T )|

∑m
j=1 κjmn(Ej) =

|det(T )|
∫
Rn φdmn.

(b) Let f : Rn → [0,+∞] be Lebesgue measurable. Take any increasing
sequence (φk) of non-negative Lebesgue measurable simple functions so that
φk → f on Rn. Then (φk ◦ T−1) is increasing and φk ◦ T−1 → f ◦ T−1
on Rn. From part (a),

∫
Rn f ◦ T−1 dmn = limk→+∞

∫
Rn φk ◦ T−1 dmn =

|det(T )| limk→+∞
∫
Rn φk dmn = |det(T )|

∫
Rn f dmn.

(c) Let f : Rn → R and the
∫
Rn f dmn exist. Then (f ◦ T−1)+ = f+ ◦ T−1

and (f ◦ T−1)− = f− ◦ T−1, and from (b) we get
∫
Rn(f ◦ T−1)+ dmn =

|det(T )|
∫
Rn f

+ dmn and
∫
Rn(f ◦ T−1)− dmn = |det(T )|

∫
Rn f

− dmn. Now (i)
is obvious.
(d) Let f : Rn → C be integrable. From |f ◦ T−1| = |f | ◦ T−1 and from (b) we
have that

∫
Rn |f ◦ T−1| dmn = |det(T )|

∫
Rn |f | dmn < +∞. Hence f ◦ T−1 is

also integrable.

We take an F : Rn → C so that F = f a.e. on Rn.

If A = {x ∈ Rn |F (x) 6= f(x)} and B = {x ∈ Rn |F ◦ T−1(x) 6= f ◦
T−1(x)}, then B = T (A). Hence, mn(B) = |det(T )|mn(A) = 0 and, thus,
F ◦ T−1 = f ◦ T−1 a.e. on Rn. Therefore, to prove (ii) it is enough to prove∫
Rn F ◦ T−1 dmn = |det(T )|

∫
Rn F dmn.
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We have <(F ◦T−1) = <(F )◦T−1 and, from part (c),
∫
Rn <(F ◦T−1) dmn =

|det(T )|
∫
Rn <(F ) dmn. We, similarly, prove the same equality with the imagi-

nary parts and, combining, we get the desired equality.

The equality of the two integrals in Theorem 7.18 is nothing but the (linear)
change of variable formula. If we write y = T−1(x) or, equivalently, x =
T (y), then the equality reads∫

Rn

f(T−1(x)) dmn(x) = |det(T )|
∫
Rn

f(y) dmn(y).

Thus, the informal rule for the change of differentials is

dmn(x) = |det(T )|dmn(y).

7.7 Lebesgue-Stieltjes integral.

Let −∞ ≤ a0 < b0 ≤ +∞. Every monotone f : (a0, b0) → R is Borel mea-
surable. This is seen by observing that f−1((a, b]) is an interval, and hence
a Borel set, for every (a, b]. If, now, F : (a0, b0) → R is another increasing
function and µF is the induced Borel measure, then f satisfies the necessary
measurability condition and the

∫
(a0b0)

f dµF exists provided, as usual, that

either
∫
(a0,b0)

f+ dµF < +∞ or
∫
(a0,b0)

f− dµF < +∞.

The same can, of course, be said when f is continuous.
In particular, if f is continuous or monotone in a (bounded) interval S ⊆

(a0, b0) and it is bounded on S, then it is integrable over S with respect to µF .
We shall prove three classical results about Lebesgue-Stieltjes integrals.
Observe that the four integrals which we get from

∫
S
f dµF , by taking S =

[a, b], [a, b), (a, b] and (a, b), may be different. This is because the
∫
{a} f dµF =

f(a)µF ({a}) = f(a)(F (a+) − F (a−)) and
∫
{b} f dµF = f(b)(F (b+) − F (b−))

may not be zero.

Proposition 7.11 (Integration by parts) Let F,G : (a0, b0) → R be two in-
creasing functions and µF , µG be the induced Lebesgue-Stieltjes measures. Then∫

(a,b]

G(x+) dµF (x) +

∫
(a,b]

F (x−) dµG(x) = G(b+)F (b+)−G(a+)F (a+)

for all a, b ∈ (a0, b0) with a ≤ b. In this equality we may interchange F with G.
Similar equalities hold for the other types of intervals, provided we use the

appropriate limits of F,G at a, b in the right side of the above equality.

Proof: We introduce a sequence of partitions ∆k = {c(k)0 , . . . , c
(k)
lk
} of [a, b] so

that a = c
(k)
0 < c

(k)
1 < · · · < c

(k)
lk

= b for each k and so that

lim
k→+∞

max{c(k)j − c
(k)
j−1 | 1 ≤ j ≤ lk} = 0.
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We also introduce the simple functions

gk =

lk∑
j=1

G(c
(k)
j +)χ

(c
(k)
j−1

,c
(k)
j

]
, fk =

lk∑
j=1

F (c
(k)
j−1+)χ

(c
(k)
j−1

,c
(k)
j

]
.

It is clear that G(a+) ≤ gk ≤ G(b+) and F (a+) ≤ fk ≤ F (b−) for all k.

If, for an arbitrary x ∈ (a, b] we take the interval (c
(k)
j−1, c

(k)
j ] containing x

(observe that j = j(k, x)), then gk(x) = G(c
(k)
j +) and fk(x) = F (c

(k)
j−1+). Since

limk→+∞(c
(k)
j − c

(k)
j−1)→ 0, we have that c

(k)
j → x and c

(k)
j−1 → x. Therefore,

gk(x)→ G(x+), fk(x)→ F (x−)

as k → +∞.
We apply the Dominated Convergence Theorem to find

lk∑
j=1

G(c
(k)
j +)(F (c

(k)
j +)−F (c

(k)
j−1+)) =

∫
(a,b]

gk(x) dµF (x)→
∫
(a,b]

G(x+) dµF (x)

lk∑
j=1

F (c
(k)
j−1+)(G(c

(k)
j +)−G(c

(k)
j−1+)) =

∫
(a,b]

fk(x) dµG(x)→
∫
(a,b]

F (x−) dµG(x)

as k → +∞.
Adding the two last relations we find

G(b+)F (b+)−G(a+)F (a+) =

∫
(a,b]

G(x+) dµF (x) +

∫
(a,b]

F (x−) dµG(x).

If we want the integrals over (a, b), we have to subtract from the right side
of the equality the quantity

∫
{b}G(x+) dµF (x) +

∫
{b} F (x−) dµG(x) which is

equal to G(b+)(F (b+) − F (b−)) + F (b−)(G(b+) − G(b−)) = G(b+)F (b+) −
G(b−)F (b−). Then, subtracting the same quantity from the left side of the
equality, this becomes F (b−)G(b−)− F (a+)G(a+). We work in the same way
for all other types of intervals.

The next two results concern the reduction of Lebesgue-Stieltjes integrals
to Lebesgue integrals. This makes calculation of the former more accessible in
many situations.

Proposition 7.12 Assume that F : (a0, b0) → R is increasing and has a con-
tinuous derivative on (a0, b0). Then

µF (E) =

∫
E

F ′(x) dm1(x)

for every Borel set E ⊆ (a0, b0) and∫
(a0,b0)

f(x) dµF (x) =

∫
(a0,b0)

f(x)F ′(x) dm1(x)
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for every Borel measurable f : (a0, b0) → R or C for which either of the two
integrals exists.

Proof: (i) The assumptions on F imply that it is continuous and that F ′ ≥ 0
on (a0, b0). For every [a, b] ⊆ (a0, b0) we have, by the Fundamental Theorem of
Calculus for Riemann integrals, that

∫
(a,b]

F ′(x) dm1(x) =
∫
[a,b]

F ′(x) dm1(x) =

F (b) − F (a) = F (b+) − F (a+) = µF ((a, b]). If we apply this to a strictly
monotone sequence an ↓ a, we get, by the Monotone Convergence Theorem,
that

∫
(a,b]

F ′(x) dm1(x) = µF ((a, b]) for every (a, b] ⊆ (a0, b0).

We now introduce the Borel measure µ on (a0, b0) by the formula

µ(E) =

∫
E

F ′(x) dm1(x)

for every Borel set E ⊆ (a0, b0). Clearly µ(∅) = 0 and µ(E) ≥ 0 for all Borel
E ⊆ (a0, b0). The σ-additivity of µ is an immediate consequence of Theorem
7.13.

Now, from the first paragraph, we have µ((a, b]) = µF ((a, b]) for every
(a, b] ⊆ (a0, b0). Theorem 5.5 implies that µ = µF and hence

µF (E) =

∫
E

F ′(x) dm1(x)

for every Borel set E ⊆ (a0, b0).
Taking arbitrary linear combinations of characteristic functions, we find that∫

(a0,b0)
φ(x) dµF (x) =

∫
(a0,b0)

φ(x)F ′(x) dm1(x) for all Borel measurable simple

functions φ : (a0, b0) → [0,+∞). Now, applying the Monotone Convergence
Theorem to an appropriate increasing sequence of simple functions, we get∫

(a0,b0)

f(x) dµF (x) =

∫
(a0,b0)

f(x)F ′(x) dm1(x)

for every Borel measurable f : (a0, b0)→ [0,+∞]. The proof is easily concluded
for any f : (a0, b0) → R, by taking its positive and negative parts, and then
for any f : (a0, b0) → C, by taking its real and imaginary parts (and paying
attention to the set where f =∞).

Proposition 7.13 Assume that F : (a0, b0)→ R is increasing and G : (a, b)→
R has a bounded, continuous derivative on (a, b), where a0 < a < b < b0. Then,∫
(a,b)

G(x) dµF (x) = G(b−)F (b−)−G(a+)F (a+)−
∫
(a,b)

F (x−)G′(x) dm1(x)

= G(b−)F (b−)−G(a+)F (a+)−
∫
(a,b)

F (x+)G′(x) dm1(x).

Proof: (A) By the assumptions on G we have that it is continuous on (a, b) and
that the limits G(b−) and G(a+) exist and they are numbers. We then extend
G as G(b−) on [b, b0) and as G(a+) on (a0, a] and G becomes continuous on
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(a0, b0). We use the same partitions ∆k as in the proof of Proposition 7.11 and
the same simple functions

gk =

lk∑
j=1

G(ckj+)χ(ck
j−1

,ck
j
] =

lk∑
j=1

G(ckj )χ(ck
j−1

,ck
j
].

We have again that |gk| ≤ M where M = sup{|G(x)| |x ∈ [a, b]} and that
gk(x) → G(x+) = G(x) for every x ∈ (a, b]. By the Dominated Convergence
Theorem,

lk∑
j=1

G(ckj )(F (ckj+)− F (ckj−1+)) =

∫
(a,b]

gk(x) dµF (x)→
∫
(a,b]

G(x) dµF (x)

as k → +∞.
By the mean value theorem, for every j with j = 1, . . . , lk, we have

G(ckj )−G(ckj−1) = G′(ξkj )(ckj − ckj−1)

for some ξkj ∈ (ckj−1, c
k
j ). Hence

lk∑
j=1

F (ckj−1+)(G(ckj )−G(ckj−1)) =

lk∑
j=1

F (ckj−1+)G′(ξkj )(ckj − ckj−1)

=

∫
(a,b)

φk(x) dm1(x),

where we set φk =
∑lk
j=1 F (ckj−1+)G′(ξkj )χ(ck

j−1
,ck
j
].

We have that φk(x)→ F (x−)G′(x) for every x ∈ (a, b) and that |φk| ≤ K on
(a, b) for some K which does not depend on k. By the Dominated Convergence
Theorem,

∫
(a,b)

φk(x) dm1(x)→
∫
(a,b)

F (x−)G′(x) dm1(x). We combine to get

G(b)F (b+)−G(a)F (a+) =

∫
(a,b]

G(x) dµF (x) +

∫
(a,b)

F (x−)G′(x) dm1(x).

From both sides we subtract
∫
{b}G(x) dµF (x) = G(b)(F (b+)− F (b−)) to find

G(b)F (b−)−G(a)F (a+) =

∫
(a,b)

G(x) dµF (x) +

∫
(a,b)

F (x−)G′(x) dm1(x),

which is the first equality in the statement of the proposition. The second
equality is proved in a similar way.
(B) There is a second proof making no use of partitions.

Assume first that G is also increasing in (a, b). Then its extension as G(a+)
on (a0, a] and as G(b−) on [b, b0) is increasing in (a0, b0). We apply Proposition
7.11 to get∫

(a,b)

G(x) dµF (x) = G(b−)F (b−)−G(a+)F (a+)−
∫
(a,b)

F (x−) dµG(x),
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which, by Proposition 7.12, becomes the desired∫
(a,b)

G(x) dµF (x) = G(b−)F (b−)−G(a+)F (a+)−
∫
(a,b)

F (x−)G′(x) dm1(x).

If G is not increasing, we take an arbitrary x0 ∈ (a, b) and write G(x) =
G(x0)+

∫
(x0,x)

G′(t) dm1(t) for every x ∈ (a, b). Now, (G′)+ and (G′)− are non-

negative, continuous, bounded functions on (a, b) and we can write G = G1−G2

on (a, b), where

G1(x) = G(x0) +

∫
(x0,x)

(G′)+(t) dm1(t), G2(x) =

∫
(x0,x)

(G′)−(t) dm1(t)

for all x ∈ (a, b). By the continuity of (G′)+ and (G′)− and the Fundamental
Theorem of Calculus, we have that G′1 = (G′)+ ≥ 0 and G′2 = (G′)− ≥ 0
on (a, b). Hence, G1 and G2 are both increasing with bounded, continuous
derivative on (a, b) and from the previous paragraph we have∫
(a,b)

Gi(x) dµF (x) = Gi(b−)F (b−)−Gi(a+)F (a+)−
∫
(a,b)

F (x−)G′i(x) dm1(x)

for i = 1, 2. We subtract the two equalities and prove the desired equality.

It is worth keeping in mind the fact, which is included in the second proof
of Proposition 7.13, that an arbitrary G with a continuous, bounded derivative
on an interval (a, b) can be decomposed as a difference, G = G1 − G2, of two
increasing functions with a continuous, bounded derivative on (a, b). We shall
generalise it later in the context of functions of bounded variation.

7.8 Reduction to integrals over R.

Let (X,Σ, µ) be a measure space.

Definition 7.10 Let f : X → [0,+∞] be measurable. Then the function λf :
[0,+∞)→ [0,+∞], defined by

λf (t) = µ({x ∈ X | t < f(x)}),

is called the distribution function of f .

Some properties of λf are easy to prove. It is obvious that λf is non-negative
and decreasing on [0,+∞). Since {x ∈ X | tn < f(x)} ↑ {x ∈ X | t < f(x)} for
every tn ↓ t, we see that λf is continuous from the right on [0,+∞).

Hence, there exists some t0 ∈ [0,+∞] with the property that λf is +∞ on
the interval [0, t0) (which may be empty) and λf is finite in the interval (t0,+∞)
(which may be empty).
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Proposition 7.14 Let f : X → [0,+∞] be measurable and G : R → R be
increasing with G(0−) = 0. Then∫

X

G(f(x)−) dµ(x) =

∫
[0,+∞)

λf (t) dµG(t).

Moreover, if G has continuous derivative on (0,+∞), then∫
X

G(f(x)) dµ(x) =

∫
(0,+∞)

λf (t)G′(t) dm1(t) + λf (0)G(0+).

In particular, ∫
X

f(x) dµ(x) =

∫
(0,+∞)

λf (t) dm1(t).

Proof: (a) Let φ =
∑m
j=1 κjχEj be a non-negative measurable simple function

on X with its standard representation, where we omit the value 0. Rearrange
so that 0 < κ1 < · · · < κm and then

λφ(t) =


µ(E1) + µ(E2) + · · ·+ µ(Em), if 0 ≤ t < κ1
µ(E2) + · · ·+ µ(Em), if κ1 ≤ t < κ2
· · ·
µ(Em), if κm−1 ≤ t < κm
0, if κm ≤ t

Then∫
[0,+∞)

λφ(t) dµG(t) =
(
µ(E1) + µ(E2) + · · ·+ µ(Em)

)(
G(κ1−)−G(0−)

)
+
(
µ(E2) + · · ·+ µ(Em)

)(
G(κ2−)−G(κ1−)

)
· · ·

+µ(Em)
(
G(κm−)−G(κm−1−)

)
= G(κ1−)µ(E1) +G(κ2−)µ(E2) + · · ·+G(κm−)µ(Em)

=

∫
X

G(φ(x)−) dµ(x).

because G(φ(x)−) is a simple function taking value G(κj−) on each Ej and
value G(0−) = 0 on (E1 ∪ · · · ∪ Em)c.
(b) Take arbitrary measurable f : X → [0,+∞] and any increasing sequence
(φn) of non-negative measurable simple φn : X → [0,+∞) so that φn ↑ f on
X. Then 0 ≤ G(φn(x)−) ↑ G(f(x)−) for every x ∈ X and, by the Monotone
Convergence Theorem,∫

X

G(φn(x)−) dµ(x)→
∫
X

G(f(x)−) dµ(x).

Since {x ∈ X | t < φn(x)} ↑ {x ∈ X | t < f(x)}, we have that λφn(t) ↑ λf (t)
for every t ∈ [0,+∞). Again by the Monotone Convergence Theorem,∫

[0,+∞)

λφn(t) dµG(t)→
∫
[0,+∞)

λf (t) dµG(t).
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By the result of (a), we get
∫
X
G(f(x)−) dµ(x) =

∫
[0,+∞)

λf (t) dµG(t).

Proposition 7.12 implies the second equality of the statement and the special
case G(t) = t implies the last equality.

Proposition 7.15 Let µ(X) < +∞ and f : X → [0,+∞] be measurable. We
define F : R→ R by

Ff (t) = µ({x ∈ X | f(x) ≤ t}) =

{
µ(X)− λf (t), if 0 ≤ t < +∞
0, if −∞ < t < 0

Then Ff is increasing and continuous from the right and, for every increasing
G : R→ R with G(0−) = 0, we have∫

X

G(f(x)−) dµ(x) =

∫
[0,+∞)

G(t−) dµFf (t) +G(+∞)µ(f−1(+∞)).

Proof: It is obvious that Ff is increasing. If tn ↓ t, then {x ∈ X | f(x) ≤ tn} ↓
{x ∈ X | f(x) ≤ t}. By the continuity of µ from above, we get Ff (tn) ↓ Ff (t)
and Ff is continuous from the right.

We take any n ∈ N and apply Proposition 7.11 to find∫
[0,n]

G(t−) dµFf (t) = G(n+)Ff (n)−
∫
[0,n]

Ff (t) dµG(t)

=

∫
[0,n]

(Ff (n)− Ff (t)) dµG(t).

The left side is =
∫
[0,+∞)

G(t−)χ[0,n](t) dµFf (t) ↑
∫
[0,+∞)

G(t−) dµFf (t), by

the Monotone Convergence Theorem.
The right side is =

∫
[0,+∞)

µ({x ∈ X | t < f(x) ≤ n})χ[0,n](t) dµG(t) ↑∫
[0,+∞)

µ({x ∈ X | t < f(x) < +∞}) dµG(t), again by the Monotone Conver-

gence Theorem.
Thus,

∫
[0,+∞)

G(t−) dµFf (t) =
∫
[0,+∞)

µ({x ∈ X | t < f(x) < +∞}) dµG(t)

and, adding to both sides the quantity G(+∞)µ({x ∈ X | f(x) = +∞}) we find∫
[0,+∞)

G(t−) dµFf (t)+G(+∞)µ({x ∈ X | f(x) = +∞}) =

∫
[0,+∞)

λf (t) dµG(t)

and the equality of the statement is an implication of Proposition 7.14.

7.9 Exercises.

1. The graph and the area under the graph of a function.

Let f : Rn → [0,+∞] be Lebesgue measurable. If

Af = {(x1, . . . , xn, xn+1) | 0 ≤ xn+1 < f(x1, . . . , xn)} ⊆ Rn+1,

Gf = {(x1, . . . , xn, xn+1) |xn+1 = f(x1, . . . , xn)} ⊆ Rn+1,

125



prove that Af , Gf ∈ Ln+1 and

mn+1(Af ) =

∫
Rn

f dmn, mn+1(Gf ) = 0.

2. An equivalent definition of the integral.

Let (X,Σ, µ) be a measure space and f : X → [0,+∞] be measurable. Let
∆ = {E1, . . . , El}, where l ∈ N and the non-empty sets E1, . . . , El ∈ Σ
are pairwise disjoint and cover X. Such ∆ are called Σ-partitions of X.
Define Σ(f,∆) =

∑l
j=1mjµ(Ej), where mj = inf{f(x) |x ∈ Ej}. Prove

that ∫
X

f dµ = sup{Σ(f,∆) |∆ is a Σ-partition of X}.

3. If (X,Σ, µ) is a measure space, f, g, h : X → R are measurable, g, h are
integrable and g ≤ f ≤ h a.e. on X, prove that f is also integrable.

4. The Uniform Convergence Theorem.

Let (X,Σ, µ) be a measure space, all fn : X → R or C be integrable and
let fn → f uniformly on X. If µ(X) < +∞, prove that f is integrable
and that

∫
X
fn dµ→

∫
X
f dµ.

5. The Bounded Convergence Theorem.

Let (X,Σ, µ) be a measure space and f, fn : X → R or C be measurable.
If µ(X) < +∞ and there is M < +∞ so that |fn| ≤ M a.e. on X and
fn → f a.e. on X, prove that

∫
X
fn dµ→

∫
X
f dµ.

6. Let (X,Σ, µ) be a measure space, f, fn : X → R or C be measurable and
g : X → [0,+∞] be integrable. If |fn| ≤ g a.e. on X for every n and
fn → f a.e. on X, prove that

∫
X
|fn − f | dµ→ 0.

7. Let (X,Σ, µ) be a measure space, f, fn : X → [0,+∞] be measurable with
fn ≤ f a.e. on X and fn → f a.e. on X. Prove that

∫
X
fn dµ→

∫
X
f dµ.

8. Let (X,Σ, µ) be a measure space, f, fn : X → [0,+∞] be measurable and
fn → f a.e. on X. If there is M < +∞ so that

∫
X
fn dµ < M for infinitely

many n’s, prove that f is integrable.

9. Generalisation of the Lemma of Fatou.

Assume (X,Σ, µ) is a measure space, f, g, fn : X → R are measurable and∫
X
g− dµ < +∞. If g ≤ fn a.e. on X and f = lim infn→+∞ fn a.e. on X,

prove that
∫
X
f dµ ≤ lim infn→+∞

∫
X
fn dµ.

10. Let (X,Σ, µ) be a measure space, f, fn : X → [0,+∞] be measurable with
fn ↓ f a.e. on X and

∫
X
f1 dµ < +∞. Prove that

∫
X
fn dµ ↓

∫
X
f dµ.

11. Use either the Lemma of Fatou or the Series Theorem 7.2 to prove the
Monotone Convergence Theorem.
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12. Generalisation of the Dominated Convergence Theorem.

Let (X,Σ, µ) be a measure space and f, fn : X → R or C, g, gn : X →
[0,+∞] be measurable. If |fn| ≤ gn a.e. on X, if

∫
X
gn dµ →

∫
X
g dµ <

+∞ and if fn → f a.e. on X and gn → g a.e. on X, prove that
∫
X
fn dµ→∫

X
f dµ.

13. Assume (X,Σ, µ) is a measure space, all f, fn : X → [0,+∞] are mea-
surable, fn → f a.e. on X and

∫
X
fn dµ →

∫
X
f dµ < +∞. Prove that∫

A
fn dµ→

∫
A
f dµ for every A ∈ Σ.

14. Let (X,Σ, µ) be a measure space, f, fn : X → R or C be integrable
and fn → f a.e. on X. Prove that

∫
X
|fn − f | dµ → 0 if and only if∫

X
|fn| dµ→

∫
X
|f | dµ.

15. Improper Integrals.

Let f : [a, b)→ R, where −∞ < a < b ≤ +∞. If f is Riemann integrable
over [a, c] for every c ∈ (a, b) and the limit limc→b−

∫ c
a
f(x) dx exists in

R, we say that the improper integral of f over [a, b) exists and we
define it as ∫ →b

a

f(x) dx = lim
c→b−

∫ c

a

f(x) dx.

We have a similar terminology and definition for
∫ b
a← f(x) dx, the im-

proper integral of f over (a, b].
(i) Let f : [a, b) → [0,+∞) be Riemann integrable over [a, c] for every

c ∈ (a, b). Prove that the Lebesgue integral
∫ b
a
f(x) dx and the improper

integral
∫→b
a

f(x) dx both exist and they are equal.
(ii) Let f : [a, b)→ R be Riemann integrable over [a, c] for every c ∈ (a, b).

Prove that, if the Lebesgue integral
∫ b
a
f(x) dx exists, then

∫→b
a

f(x) dx
also exists and the two integrals are equal.
(iii) Prove that the converse of (ii) is not true in general: look at the fourth
function in exercise 7.9.17.
(iv) If

∫→b
a
|f(x)| dx < +∞ (we say that the improper integral is ab-

solutely convergent), prove that the
∫→b
a

f(x) dx exists and is a real
number (we say that the improper integral is convergent.)

16. Using improper integrals (see exercise 7.9.15), find the Lebesgue integral∫ +∞
−∞ f(x) dx, where f(x) is any of the following:

1

1 + x2
, e−|x|,

1

x2
χ[0,+∞)(x),

1

x
,

1

|x|
,

1√
|x|
χ[−1,1](x).

17. Using improper integrals (see exercise 7.9.15), find the Lebesgue integral∫ +∞
−∞ f(x) dx, where f(x) is any of the following:

+∞∑
n=1

1

2n
χ(n,n+1](x),

+∞∑
n=1

(−1)n+1

2n
χ(n,n+1](x),
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+∞∑
n=1

1

n
χ(n,n+1](x),

+∞∑
n=1

(−1)n+1

n
χ(n,n+1](x).

18. Apply the Lemma of Fatou for Lebesgue measure on R and the sequences:

χ(n,n+1)(x), χ(n,+∞)(x), nχ0, 1n )(x), 1 + sign
(

sin
(

2n
x

2π

))
.

19. If f is Lebesgue integrable on [−1, 1], prove limn→+∞
∫ 1

−1 x
nf(x) dx = 0.

20. The discontinuous factor.

Prove that

lim
t→+∞

1

π

∫ +∞

a

t

1 + t2x2
dx =

{
0, if 0 < a < +∞,
1
2 , if a = 0,
1, if −∞ < a < 0.

21. Prove that

lim
n→+∞

∫ n

0

(
1 +

x

n

)n
e−αx dx =

{
1

α−1 , if 1 < α,
+∞, if α ≤ 1.

22. Let (X,Σ, µ) be a measure space and f : X → [0,+∞] be measurable
with 0 < c =

∫
X
f dµ < +∞. Prove that

lim
n→+∞

n

∫
X

log
(

1 +
(f
n

)α)
dµ =

{
+∞, if 0 < α < 1,
c, if α = 1,
0, if 1 < α < +∞.

23. Consider Q ∩ [0, 1] = {r1, r2, . . .} and a sequence (an) of real numbers so
that

∑+∞
n=1 |an| < +∞. Prove that the series

+∞∑
n=1

an√
|x− rn|

converges absolutely for m1-a.e. x ∈ [0, 1].

24. The measure induced by a function.

Let (X,Σ, µ) be a measure space and f : X → [0,+∞] be measurable.
Define ν : Σ→ [0,+∞] by

ν(E) =

∫
E

f dµ

for all E ∈ Σ. Prove that ν is a measure on (X,Σ) which is called the
measure induced by f . Prove that:
(i)
∫
X
g dν =

∫
X
gf dµ for every measurable g : X → [0,+∞],

(ii) if g : X → R is measurable, then
∫
X
g dν exists if and only if

∫
X
gf dµ

exists and in such a case the equality of (i) is true,
(iii) if g : X → C is measurable, then g is integrable with respect to ν
if and only if gf is integrable with respect to µ and in such a case the
equality of (i) is true.
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25. Let (X,Σ, µ) be a measure space and f : X → R or C be integrable.
Prove that for every ε > 0 there is an E ∈ Σ with µ(E) < +∞ and∫
Ec
|f | dµ < ε.

26. Absolute continuity of the integral of f .

Let (X,Σ, µ) be a measure space and f : X → R or C be integrable.
Prove that for every ε > 0 there is δ > 0 so that: |

∫
E
f dµ| < ε for all

E ∈ Σ with µ(E) < δ.
(Hint: One may prove it first for simple functions and then use the Ap-
proximation Theorem 7.12.)

27. Let f : R→ R or C be Lebesgue integrable. Prove F (x) =
∫ x
−∞ f(t) dt is

a continuous function of x on R.

28. Continuity of translations.

Assume that f : Rn → R or C is Lebesgue integrable. Prove that

lim
Rn3h→0

∫
Rn

|f(x− h)− f(x)| dx = 0.

(Hint: Prove it first for continuous functions which are 0 outside a bounded
set and then use the Approximation Theorem 7.16.)

29. The Riemann-Lebesgue Lemma.

Assume that f : R→ R or C is Lebesgue integrable. Prove that

lim
x→+∞

∫ +∞

−∞
f(t) cos(xt) dt = lim

x→+∞

∫ +∞

−∞
f(t) sin(xt) dt = 0

in the two following ways:

Prove the limits when f is the characteristic function of any interval and
then use an approximation theorem.

Prove that |
∫ +∞
−∞ f(t) cos(xt) dt| = 1

2 |
∫ +∞
−∞ (f(t − π

x ) − f(t)) cos(xt) dt| ≤
1
2

∫ +∞
−∞ |f(t− π

x )− f(t)| dt and then use the result of exercise 7.9.28.

30. Let Q ⊆ Rn be a closed interval and x0 ∈ Q. If f : Q → R is Riemann
integrable over Q and g : Q→ R coincides with f on Q \ {x0}, prove that
g is also Riemann integrable over Q and that (Rn)

∫
Q
g = (Rn)

∫
Q
f .

31. Let Q ⊆ Rn be a closed interval, λ ∈ R and f, g : Q → R be Riemann
integrable over Q. Prove that f + g, λf and fg are all Riemann integrable
over Q and

(Rn)

∫
Q

(f + g) = (Rn)

∫
Q

f + (Rn)

∫
Q

g, (Rn)

∫
Q

λf = λ(Rn)

∫
Q

f.
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32. Let Q ⊆ Rn be a closed interval.
(i) If the bounded functions f, fk : Q→ R are all Riemann integrable over
Q and 0 ≤ fk ↑ f on Q, prove that (Rn)

∫
Q
fk → (Rn)

∫
Q
f .

(ii) Find bounded functions f, fk : Q→ R so that 0 ≤ fk ↑ f on Q and so
that all fk are Riemann integrable over Q, but f is not Riemann integrable
over Q.

33. Continuity of an integral as a function of a parameter.

Let (X,Σ, µ) be a measure space and f : X × (a, b) → R and g : X →
[0,+∞] be such that
(i) g is integrable and, for every t ∈ (a, b), f(·, t) is measurable,
(ii) for a.e. x ∈ X, f(x, t) is continuous as a function of t on (a, b),
(iii) for every t ∈ (a, b), |f(x, t)| ≤ g(x) a.e. x ∈ X.

Prove that F (t) =
∫
X
f(x, t) dµ(x) is continuous as a function of t on

(a, b).

34. Differentiability of an integral as a function of a parameter.

Let (X,Σ, µ) be a measure space and f : X × (a, b) → R and g : X →
[0,+∞] be such that
(i) g is integrable and, for every t ∈ (a, b), f(·, t) is measurable,
(ii) for at least one t0 ∈ (a, b), f(·, t0) is integrable,
(iii) for a.e. x ∈ X, f(x, t) is differentiable as a function of t on (a, b) and
|∂f∂t (x, t)| ≤ g(x) for every t ∈ (a, b). Thus, ∂f

∂t : A × (a, b) → R for some
A ∈ Σ with µ(X \A) = 0.

Prove that F (t) =
∫
X
f(x, t) dµ(x) is differentiable as a function of t on

(a, b) and that

dF

dt
(t) =

∫
X

∂f

∂t
(x, t) dµ(x), a < t < b.

35. The integral of Gauss.

Consider the functions f, h : [0,+∞)→ R defined by

f(x) =
1

2

(∫ x

0

e−
1
2 t

2

dt
)2
, h(x) =

∫ 1

0

e−
1
2x

2(t2+1)

t2 + 1
dt.

(i) Using Exercise 7.9.34, prove that f ′(x) + h′(x) = 0 for every x ∈
(0,+∞) and, hence, that f(x) + h(x) = π

4 for every x ∈ [0,+∞).
(ii) Prove that ∫ +∞

−∞
e−

1
2 t

2

dt =
√

2π.

36. The distribution (or measure) of Gauss.

Consider the function g : R→ R defined by

g(x) =
1√
2π

∫ x

−∞
e−

1
2 t

2

dt.
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(i) Prove that g is continuous, strictly increasing, with g(−∞) = 0 and

g(+∞) = 1 and with continuous derivative g′(x) = 1√
2π
e−

1
2x

2

, x ∈ R.

(ii) The Lebesgue-Stieltjes measure µg induced by g is called the distri-
bution or the measure of Gauss. Prove that µg(R) = 1, that

µg(E) =
1√
2π

∫
E

e−
1
2x

2

dx

for every Borel set in R and that∫
R

f(x) dµg(x) =
1√
2π

∫ +∞

−∞
f(x)e−

1
2x

2

dx

for every Borel measurable f : R → R or C for which either of the two
integrals exists.

37. (i) Using Exercise 7.9.34, prove that the function F : (0,+∞)→ R defined
by

F (t) =

∫ +∞

0

e−tx
sinx

x
dx

is differentiable on (0,+∞) and that dF
dt (t) = − 1

1+t2 for every t > 0. Find

the limt→+∞ F (t) and conclude that F (t) = arctan 1
t for every t > 0.

(ii) Prove that the function sin x
x is not Lebesgue integrable over (0,+∞).

(iii) Prove that the improper integral
∫→+∞
0

sin x
x dx exists.

(iv) Justify the equality limt→0+ F (t) =
∫→+∞
0

sin x
x dx.

(v) Conclude that ∫ →+∞

0

sinx

x
dx =

π

2
.

(vi) Prove that

lim
t→+∞

1

π

∫ →+∞

a

sin(tx)

x
dx =

{
0, if 0 < a < +∞,
1
2 , if a = 0,
1, if −∞ < a < 0.

38. The gamma-function.

Let H+ = {z = x+ iy ∈ C |x > 0} and consider the function Γ : H+ → C
defined by

Γ(z) =

∫ +∞

0

tz−1e−t dt.

This is called the gamma-function.
(i) Prove that this Lebesgue integral exists and is finite for every z ∈ H+.
(ii) Using Exercise 7.9.34, prove that

∂Γ

∂x
(z) = −i∂Γ

∂y
(z)

for every z ∈ H+. This means that Γ is holomorphic in H+.
(iii) Prove that Γ(n) = (n− 1)! for every n ∈ N.
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39. The invariance of Lebesgue integral and of Lebesgue measure under isome-
tries.

Let T : Rn → Rn be an isometric linear transformation. This means
that |T (x) − T (y)| = |x − y| for every x, y ∈ Rn or, equivalently, that
TT ∗ = T ∗T = I, where T ∗ is the adjoint of T and I is the identity
transformation. Prove that∫

Rn

f ◦ T−1 dmn =

∫
Rn

f dmn

for every Lebesgue measurable f : Rn → R or C, provided that at least
one of the two integrals exists. (See also exercise 4.6.2.)

40. (i) Consider the Cantor set C and the I0 = [0, 1], I1, I2, . . . which were
used for its construction. Prove that the 2n−1 subintervals of In−1 \ In,
n ∈ N, can be described as(a1

3
+ · · ·+ an−1

3n−1
+

1

3n
,
a1
3

+ · · ·+ an−1
3n−1

+
2

3n

)
,

where each of a1, . . . , an−1 takes the values 0 and 2.
(ii) Let f be the Cantor function, which was introduced in exercise 4.6.10,
extended as 0 in (−∞, 0) and as 1 in (1,+∞). Prove that f is constant

f(x) =
a1
22

+ · · ·+ an−1
2n

+
1

2n

in the above subinterval (a13 + · · ·+ an−1

3n−1 + 1
3n ,

a1
3 + · · ·+ an−1

3n−1 + 2
3n ).

(iii) If G : (0, 1)→ R is another function with bounded derivative in (0, 1),
prove that∫

(0,1)

G(x) dµf (x) = G(1−)−
+∞∑
n=1

∑
a1,...,an−1=0, 2

(a1
22

+ · · ·+ an−1
2n

+
1

2n

)
·

·
(
G
(a1

3
+ · · ·+ an−1

3n−1
+

2

3n

)
−G

(a1
3

+ · · ·+ an−1
3n−1

+
1

3n

))
.

(iv) In particular,
∫
(0,1)

x dµf (x) = 1
2 .

(v) Prove that ∫
(0,1)

eitx dµf (x) = e
1
2 it lim

n→+∞

n∏
k=1

cos
( t

3k

)
for every t ∈ R.

41. Let F,G : R → R be increasing and assume that FG is also increasing.
Prove that

µFG(E) =

∫
E

G(x+) dµF (x) +

∫
E

F (x−) dµG(x)
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for every Borel set E ⊆ R and∫
R

f(x) dµFG(x) =

∫
R

f(x)G(x+) dµF (x) +

∫
R

f(x)F (x−) dµG(x)

for every Borel measurable f : R→ R or C for which at least two of the
three integrals exist.

42. If F : R → R is increasing and continuous and f : R → [0,+∞] is Borel

measurable, prove that
∫
R
f(F (x)) dµF (x) =

∫ F (+∞)

F (−∞)
f(t) dt.

Show, by example, that this may not be true if F is not continuous.

43. Riemann’s criterion for convergence of a series.

Assume F : R → [0,+∞) is increasing and g : (0,+∞) → [0,+∞) is
decreasing. Let an ≥ 0 for all n and ]{n | an ≥ g(x)} ≤ F (x) for all
x ∈ (0,+∞) and

∫
(0,+∞)

g(x) dµF (x) < +∞. Prove
∑+∞
n=1 an < +∞.

44. Mean values.

Let (X,Σ, µ) be a measure space, f : X → R or C be integrable and F
be a closed subset of R or C. If 1

µ(E)

∫
E
f dµ ∈ F for every E ∈ Σ with

0 < µ(E), prove that f(x) ∈ F for a.e. x ∈ X.

45. Let (X,Σ, µ) be a measure space and E ∈ Σ have σ-finite measure. Prove
that there is an f : X → [0,+∞] with

∫
X
f dµ < +∞ and f(x) > 0 for

every x ∈ E.

46. Let (X,Σ, µ) be a measure space and f : X → [0,+∞] be measurable.
Prove that

1

2

∑
n∈Z

2nλf (2n) ≤
∫
X

f(x) dµ(x) ≤
∑
n∈Z

2nλf (2n)

and, hence, that f is integrable if and only if the
∑
n∈Z 2nλf (2n) is finite.

47. Equidistributed functions.

Let (X,Σ, µ) be a measure space and f, g : X → [0,+∞] be measurable.
The f, g are called equidistributed if λf (t) = λg(t) for every t ∈ [0,+∞).

Prove that, if f, g are equidistributed, then∫
X

fp(x) dµ(x) =

∫
X

gp(x) dµ(x)

for every p ∈ (0,+∞).

48. Let (X,Σ, µ) be a measure space and φ, ψ : X → [0,+∞) be two mea-
surable simple functions and let φ =

∑m
j=1 κjχEj and ψ =

∑n
i=1 λiχFi be

their standard representations so that 0 < κ1 < · · · < κm and 0 < λ1 <
· · · < λn, where we omit the possible value 0.
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If φ and ψ are integrable, prove that they are equidistributed (exercise
7.9.47) if and only if m = n, κ1 = λ1, . . . , κm = λm and µ(E1) =
µ(F1), . . . , µ(Em) = µ(Fm).

49. The inequality of Chebychev.

Let (X,Σ, µ) be a measure space and f : X → [0,+∞] be measurable.
Prove that

µ({x ∈ X | t < f(x)}) = λf (t) ≤ 1

t

∫
X

f(x) dµ(x)

for every t ∈ (0,+∞). Prove also that, if f is integrable, then

lim
t→+∞

tλf (t) = 0.

50. Let (X,Σ, µ) be a measure space, f : X → [0,+∞] be measurable and
0 < p < +∞. Prove that∫

X

fp(x) dµ(x) = p

∫ +∞

0

tp−1λf (t) dt.

If, also, f < +∞ a.e. on X, prove that∫
X

fp(x) dµ(x) =

∫
[0,+∞)

tp dµFf (t),

where Ff is defined in Proposition 7.15.

51. The Jordan content of sets in Rn.

If E ⊆ Rn is bounded we define its inner Jordan content

c(i)n (E) = sup
{ m∑
j=1

voln(Rj) |m ∈ N, R1, . . . , Rm pairwise disjoint

open intervals with ∪mj=1 Rj ⊆ E
}

and its outer Jordan content

c(o)n (E) = inf
{ m∑
j=1

voln(Rj) |m ∈ N, R1, . . . , Rm open intervals

with ∪mj=1 Rj ⊇ E
}
.

(i) Prove that the values of c
(i)
n (E) and c

(o)
n (E) remain the same if in the

above definitions we use closed intervals instead of open intervals.

(ii) Prove that c
(i)
n (E) ≤ c(o)n (E) for every bounded E ⊆ Rn.
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The bounded E is called a Jordan set if c
(i)
n (E) = c

(o)
n (E), and the value

cn(E) = c(i)n (E) = c(o)n (E)

is called the Jordan content of E.
(iii) If E is bounded and c

(o)
n (E) = 0, prove that E is a Jordan set.

(iv) Prove that all intervals S are Jordan sets and cn(S) = voln(S).
(v) If E is bounded, prove that it is a Jordan set if and only if for every
ε > 0 there exist pairwise disjoint open intervals R1, . . . , Rm and open
intervals R′1, . . . , R

′
k so that ∪mj=1Rj ⊆ E ⊆ ∪ki=1R

′
i and

k∑
i=1

voln(R′i)−
m∑
j=1

voln(Rj) < ε.

(vi) If E is bounded, prove that E is a Jordan set if and only if c
(o)
n (∂E) =

0.
(vii) Prove that the collection of bounded Jordan sets is closed under finite
unions and set-theoretic differences. Moreover, if E1, . . . , El are pairwise
disjoint Jordan sets, prove that

cn(E) =

l∑
j=1

cn(Ej).

(viii) Prove that if the bounded set E is closed, then mn(E) = 0 implies
cn(E) = 0. If E is not closed, then this result may not be true. For

example, if E = Q ∩ [0, 1] ⊆ R, then m1(E) = 0, but c
(i)
1 (E) = 0 < 1 =

c
(o)
1 (E) and, hence, E is not a Jordan set. (See exercise 4.6.6.)

(ix) If the bounded set E is a Jordan set, prove that it is a Lebesgue set
and

mn(E) = cn(E).

(x) Let E be bounded and take any closed interval Q so that E ⊆ Q.
Prove that E is a Jordan set if and only if χE is Riemann integrable over
Q and that, in this case,

cn(E) = (Rn)

∫
Q

χE .

(xi) Let Q be a closed interval, f, g : Q→ R be bounded and E ⊆ Q be a
Jordan set with cn(E) = 0. If f is Riemann integrable over Q and f = g
on Q \ E, prove that g is also Riemann integrable over Q and that

(Rn)

∫
Q

f = (Rn)

∫
Q

g.

52. Lebesgue’s characterisation of Riemann integrable functions.

Let Q ⊆ Rn be a closed interval and f : Q→ R be bounded. Prove that
f is Riemann integrable if and only if {x ∈ Q | f is discontinuous at x} is
a null set.
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Chapter 8

Product measures

8.1 Product σ-algebra.

If I is a general set of indices, the elements of the cartesian product
∏
i∈I Xi

are all functions x : I → ∪i∈IXi with the property: x(i) ∈ Xi for every i ∈ I. It
is customary to use the notation xi, instead of x(i), for the value of x at i ∈ I
and, accordingly, to use the notation (xi)i∈I for the element x ∈

∏
i∈I Xi.

If I is a finite set, I = {1, . . . , n}, we use the traditional notation x =
(x1, . . . , xn) for the element x = (xi)i∈I and we use the notation

∏n
i=1Xi or

X1 × · · · × Xn for
∏
i∈I Xi. And if I is countable, say I = N = {1, 2, . . .},

we write x = (x1, x2, . . .) for the element x = (xi)i∈I and we write
∏+∞
i=1 Xi or

X1 ×X2 × · · · for
∏
i∈I Xi.

Definition 8.1 If I is a set of indices, then, for every j ∈ I, the function
πj :

∏
i∈I Xi → Xj defined by

πj(x) = xj

for all x = (xi)i∈I ∈
∏
i∈I Xi, is called the j-th projection of

∏
i∈I Xi or the

projection of
∏
i∈I Xi onto its j-th component Xj.

In case I = {1, . . . , n} or I = N, the formula of the j-th projection is

πj(x) = xj

for all x = (x1, . . . , xn) ∈ X1 × · · · × Xn =
∏n
i=1Xi or, respectively, x =

(x1, x2, . . .) ∈ X1 ×X2 × · · · =
∏+∞
i=1 Xi.

Clearly, the inverse image π−1j (Aj) = {x = (xi)i∈I ∈
∏
i∈I Xi |xj ∈ Aj} of

an arbitrary Aj ⊆ Xj is the cartesian product

π−1j (Aj) =
∏
i∈I

Yi, where Yi =

{
Xi, if i 6= j
Aj , if i = j

In particular, if I = {1, . . . , n}, then

π−1j (Aj) = X1 × · · · ×Xj−1 ×Aj ×Xj+1 × · · · ×Xn
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and, if I = N, then

π−1j (Aj) = X1 × · · · ×Xj−1 ×Aj ×Xj+1 × · · · .

Definition 8.2 If (Xi,Σi) is a measurable space for every i ∈ I, we consider
the σ-algebra of subsets of the cartesian product

∏
i∈I Xi

⊗i∈IΣi = Σ
(
{π−1j (Aj) | j ∈ I, Aj ∈ Σj}

)
,

called the product σ-algebra of Σi (i ∈ I).

In particular, ⊗ni=1Σi is generated by the collection of all sets of the form
X1 × · · · ×Xj−1 ×Aj ×Xj+1 × · · · ×Xn, where 1 ≤ j ≤ n and Aj ∈ Σj .

Similarly, ⊗+∞
i=1 Σi is generated by the collection of all sets of the form X1 ×

· · · ×Xj−1 ×Aj ×Xj+1 × · · ·, where j ∈ N and Aj ∈ Σj .

Proposition 8.1 Let (Xi,Σi) be a measurable space for each i ∈ I. Then
⊗i∈IΣi is the smallest σ-algebra Σ of subsets of

∏
i∈I Xi for which all projections

πj :
∏
i∈I Xi → Xj are (Σ,Σj)-measurable.

Proof: For every j and every Aj ∈ Σj we have that π−1j (Aj) ∈ ⊗i∈IΣi and,
hence, every πj is (⊗i∈IΣi,Σj)-measurable.

Now, let Σ be a σ-algebra of subsets of
∏
i∈I Xi for which all projections

πj :
∏
i∈I Xi → Xj are (Σ,Σj)-measurable. Then for every j and every Aj ∈ Σj

we have that π−1j (Aj) ∈ Σ. This implies that {π−1j (Aj) | j ∈ I, Aj ∈ Σj} ⊆ Σ
and, hence, ⊗i∈IΣi ⊆ Σ.

Proposition 8.2 Let (Xi,Σi) be a measurable space for each i ∈ I. If Ei is a
collection of subsets of Xi with Σi = Σ(Ei) for all i ∈ I, then ⊗i∈IΣi = Σ(E),
where

E = {π−1j (Ej) | j ∈ I, Ej ∈ Ej}.

Proof: Since E ⊆ {π−1j (Aj) | j ∈ I, Aj ∈ Σj} ⊆ ⊗i∈IΣi, it is immediate that
Σ(E) ⊆ ⊗i∈IΣi.

We, now, fix j ∈ I and consider the πj :
∏
i∈I Xi → Xj . We have that

π−1j (Ej) ∈ E ⊆ Σ(E) for every Ej ∈ Ej . Proposition 6.1 implies that πj is
(Σ(E),Σj)-measurable and, since j is arbitrary, Proposition 8.1 implies that
⊗i∈IΣi ⊆ Σ(E).

Proposition 8.3 Let (Xi,Σi) be measurable spaces. If Ei is a collection of
subsets of Xi so that Σi = Σ(Ei) for every i ∈ I, then ⊗i∈IΣi = Σ(Ẽ), where

Ẽ = {
∏
i∈I

Ei |Ei 6= Xi for at most countably many i ∈ I and Ei ∈ Ei if Ei 6= Xi}.

Proof: We observe that π−1j (Ej) ∈ Ẽ for every j ∈ I and every Ej ∈ Ej and,

hence, E ⊆ Ẽ ⊆ Σ(Ẽ). This implies Σ(E) ⊆ Σ(Ẽ).
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Now take any
∏
i∈I Ei ∈ Ẽ . We set {i1, i2, . . .} = {i ∈ I |Ei 6= Xi} and

observe that ∏
i∈I

Ei = ∩+∞n=1π
−1
in

(Ein) ∈ Σ(E).

Thus, Ẽ ⊆ Σ(E) and, hence, Σ(Ẽ) ⊆ Σ(E). Proposition 8.2 finishes the proof.

In particular, ⊗ni=1Σi is generated by the collection of all cartesian products
of the form E1 × · · · × En, where Ej ∈ Ej for all j = 1, . . . , n.

Also, ⊗+∞
i=1 Σi is generated by the collection of all cartesian products of the

form E1 × E2 × · · ·, where Ej ∈ Ej for all j ∈ N.

Example
If we consider Rn =

∏n
i=1 R and, for each copy of R, we take the collection of

all open-closed 1-dimensional intervals as a generator of BR, then Proposition
8.3 implies that the collection of all open-closed n-dimensional intervals is a gen-
erator of ⊗ni=1BR. But we already know that the same collection is a generator
of BRn . Therefore,

BRn = ⊗ni=1BR.

This can be generalised. If n1+ · · ·+nk = n, we formally identify the typical
element (x1, . . . , xn) ∈ Rn with(

(x1, . . . , xn1
), . . . , (xn1+···+nk−1+1, . . . , xn1+···+nk)

)
,

i.e. with the typical element of
∏k
j=1 Rnj . We thus identify

Rn =

k∏
j=1

Rnj .

Now, ⊗kj=1BRnj is generated by the collection of all products
∏k
j=1Aj , where

each Aj is an nj-dimensional open-closed interval. By the above identification,∏k
j=1Aj is the typical n-dimensional open-closed interval and, hence, ⊗kj=1BRnj

is generated by the collection of all open-closed intervals in Rn. Therefore,

BRn = ⊗kj=1BRnj .

8.2 Product measure.

In this section we shall limit ourselves to cartesian products of finitely many
spaces. We fix the measure spaces (X1,Σ1, µ1), . . . , (Xn,Σn, µn) and the mea-
surable space (

∏n
j=1Xj ,⊗nj=1Σj).

From Proposition 8.3 and the paragraph after it, we know that ⊗nj=1Σj is

generated by the collection Ẽ of all sets of the form
∏n
j=1Aj , where Aj ∈ Σj for

all j. Observe that
∏n
j=1Xj belongs to Ẽ and also ∅ =

∏n
j=1 ∅ belongs to Ẽ .
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The elements of Ẽ play the same role that open-closed intervals play for the
introduction of Lebesgue measure on Rn. We agree to call these sets measur-
able intervals in

∏n
j=1Xj , a term which will be justified by Theorem 8.3, and

denote them by

R̃ =

n∏
j=1

Aj .

Proposition 8.4 Let (Xj ,Σj) be a measurable space for every j = 1, . . . , n.
The collection

A = {R̃1 ∪ · · · ∪ R̃m |m ∈ N, R̃1, . . . , R̃m pairwise disjoint elements of Ẽ}

is an algebra of subsets of
∏n
j=1Xj.

Proof: If R̃ =
∏n
j=1Aj and R̃′ =

∏n
j=1Bj are elements of Ẽ , then R̃ ∩ R̃′ =∏n

j=1(Aj ∩Bj) is an element of Ẽ .

Moreover, if R̃ =
∏n
j=1Aj is an element of Ẽ , then

R̃c = (Ac1 ×A2 × · · · ×An) ∪
· · · · · ·

∪ (X1 ×X2 × · · · ×Xj−1 ×Acj ×Aj+1 × · · · ×An) ∪
· · · · · ·

∪ (X1 ×X2 × · · · ×Xn−1 ×Acn)

is a disjoint union of elements of Ẽ , i.e. an element of A.
Now, if R̃1 ∪ · · · ∪ R̃m and R̃′1 ∪ · · · ∪ R̃′k are any two elements of A, then

(R̃1 ∪ · · · ∪ R̃m) ∩ (R̃′1 ∪ · · · ∪ R̃′k) =
⋃

1≤j≤m,1≤i≤k(R̃j ∩ R̃′i), is, by the result
of the first paragraph, also an element of A. Hence, A is closed under finite
intersections. Also, if R̃1 ∪ · · · ∪ R̃m is an element of A, then (R̃1 ∪ · · · ∪ R̃m)c =
R̃c1 ∩ · · · ∩ R̃cm is, by the result of the second paragraph, a finite intersection of
elements of A and, hence, an element of A.

Therefore, A is closed under finite intersections and under complements.
This implies that it is an algebra of subsets of

∏n
j=1Xj .

For each R̃ =
∏n
j=1Aj ∈ Ẽ , we define the quantity

τ(R̃) =

n∏
j=1

µj(Aj),

which plays the role of volume of the measurable interval R̃.

Definition 8.3 Let (Xj ,Σj , µj) be a measure space for every j = 1, . . . , n. For
every E ⊆

∏n
j=1Xj we define

µ∗(E) = inf
{+∞∑
i=1

τ(R̃i) | R̃i ∈ Ẽ for all i and E ⊆ ∪+∞i=1 R̃i

}
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Theorem 3.2 implies that the function µ∗ : P
(∏n

j=1Xj

)
→ [0,+∞] is an

outer measure on
∏n
j=1Xj .

Proposition 8.5 Let (Xj ,Σj , µj) be a measure space for every j = 1, . . . , n

and R̃, R̃i be measurable intervals for every i ∈ N.
(i) If R̃ ⊆ ∪+∞i=1 R̃i, then τ(R̃) ≤

∑+∞
i=1 τ(R̃i).

(ii) If R̃ = ∪+∞i=1 R̃i and all R̃i are pairwise disjoint, then τ(R̃) =
∑+∞
i=1 τ(R̃i).

Proof: (i) Let R̃ =
∏n
j=1Aj and R̃i =

∏n
j=1A

(i)
j , where Aj , A

(i)
j ∈ Σj for every

i ∈ N and j with 1 ≤ j ≤ n.

From
∏n
j=1Aj ⊆ ∪

+∞
i=1

∏n
j=1A

(i)
j , we get that

n∏
j=1

χAj (xj) = χ∏n

j=1
Aj

(x1, . . . , xn)

≤
+∞∑
i=1

χ∏n

j=1
A

(i)
j

(x1, . . . , xn) =

+∞∑
i=1

n∏
j=1

χ
A

(i)
j

(xj)

for every x1 ∈ X1, . . . , xn ∈ Xn. Integrating over X1 with respect to µ1, we find

µ1(A1)

n∏
j=2

χAj (xj) ≤
+∞∑
i=1

µ1(A
(i)
1 )

n∏
j=2

χ
A

(i)
j

(xj)

for every x2 ∈ X2, . . . , xn ∈ Xn. Integrating over X2 with respect to µ2, we get

µ1(A1)µ2(A2)

n∏
j=3

χAj (xj) ≤
+∞∑
i=1

µ1(A
(i)
1 )µ2(A

(i)
2 )

n∏
j=3

χ
A

(i)
j

(xj)

for every x3 ∈ X3, . . . , xn ∈ Xn. We continue until we have integrated all
variables.
(ii) We use equalities everywhere in the above calculations.

The next result justifies the term measurable interval for each R̃ ∈ Ẽ .

Theorem 8.1 Let (Xi,Σi, µi) be a measure space for every i = 1, . . . , n and µ∗

the outer measure of Definition 8.5. Every measurable interval R̃ =
∏n
j=1Aj is

µ∗-measurable and

µ∗(R̃) = τ(R̃) =

n∏
j=1

µj(Aj).

Also, ⊗nj=1Σj is included in the σ-algebra of µ∗-measurable subsets of
∏n
j=1Xj.

Proof: (a) If R̃ is a measurable interval, then R̃ ∈ Ẽ and, from R̃ ⊆ R̃, we
obviously get µ∗(R̃) ≤ τ(R̃).

Proposition 8.5 implies τ(R̃) ≤
∑+∞
i=1 τ(R̃i) for every covering R̃ ⊆ ∪+∞i=1 R̃i

with R̃i ∈ Ẽ for all i ∈ N. Hence, τ(R̃) ≤ µ∗(R̃) and we conclude that

µ∗(R̃) = τ(R̃).
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(b) We take any two measurable intervals R̃, R̃′ and Proposition 8.4 implies that
there are pairwise disjoint measurable intervals R̃1, . . . , R̃m so that R̃′ \ R̃ =
R̃1 ∪ · · · ∪ R̃m. By the subadditivity of µ∗, the result of (a) and Proposition 8.5,

µ∗(R̃′ ∩ R̃) + µ∗(R̃′ \ R̃) ≤ µ∗(R̃′ ∩ R̃) + µ∗(R̃1) + · · ·+ µ∗(R̃n)

= τ(R̃′ ∩ R̃) + τ(R̃1) + · · ·+ τ(R̃n)

= τ(R̃′).

(c) Let R̃ ∈ Ẽ and consider an arbitrary E ⊆
∏n
j=1Xj with µ∗(E) < +∞. For

any ε > 0 we consider a covering E ⊆ ∪+∞i=1 R̃i with R̃i ∈ Ẽ for all i ∈ N, such

that
∑+∞
i=1 τ(R̃i) < µ∗(E) + ε. By the result of (b) and the subadditivity of µ∗,

µ∗(E∩ R̃)+µ∗(E \ R̃) ≤
+∞∑
i=1

(
µ∗(R̃i∩ R̃)+µ∗(R̃i \ R̃)

)
≤

+∞∑
i=1

τ(R̃i) < µ∗(E)+ ε.

Since ε is arbitrary, µ∗(E ∩ R̃) + µ∗(E \ R̃) ≤ µ∗(E) and we conclude that R̃ is
µ∗-measurable.

Since
⊗n

j=1 Σj is generated by the collection of all measurable intervals, it
is included in the σ-algebra of all µ∗-measurable sets.

Definition 8.4 Let (Xi,Σi, µi) be a measure space for each i = 1, . . . , n and
µ∗ be the outer measure of Definition 8.5. The measure induced from µ∗ by
Theorem 3.1 is called the product measure of µj, 1 ≤ j ≤ n, and it is
denoted

⊗nj=1µj .

We denote by Σ⊗n
j=1

µj the σ-algebra of µ∗-measurable subsets of
∏n
j=1Xj.

Therefore, (
∏n
j=1Xj ,Σ⊗n

j=1
µj ,⊗nj=1µj) is a complete measure space.

Theorem 8.3 implies that

⊗nj=1Σj ⊆ Σ⊗n
j=1

µj

and

(⊗nj=1µj)
( n∏
j=1

Aj
)

=

n∏
j=1

µj(Aj)

for every A1 ∈ Σ1, . . . , An ∈ Σn.

It is very common to consider the restriction, also denoted by ⊗nj=1µj , of
⊗nj=1µj on ⊗nj=1Σj .

Theorem 8.2 Let (Xi,Σi, µi) be a measure space for each i = 1, . . . , n. If
µ1, . . . , µn are σ-finite measures, then
(i) ⊗nj=1µj is the unique measure on (

∏n
j=1Xj ,⊗nj=1Σj) with the property:

(⊗nj=1µj)
(∏n

j=1Aj
)

=
∏n
j=1 µj(Aj) for every A1 ∈ Σ1, . . . , An ∈ Σn and

(ii) the measure space (
∏n
j=1Xj ,Σ⊗n

j=1
µj ,⊗nj=1µj) is the completion of the mea-

sure space (
∏n
j=1Xj ,⊗nj=1Σj ,⊗nj=1µj).
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Proof: (i) Take the algebraA of subsets of
∏n
j=1Xj described in Proposition 8.4.

If µ is any measure on (
∏n
j=1Xj ,⊗nj=1Σj) such that µ(R̃) = (⊗nj=1µj)(R̃) for

every R̃ ∈ Ẽ , then, by additivity of the measures, we have that µ(R̃1∪· · ·∪R̃m) =
(⊗nj=1µj)(R̃1 ∪ · · · ∪ R̃m) for all pairwise disjoint R̃1, . . . , R̃m ∈ Ẽ . Therefore,
the measures µ and ⊗nj=1µj are equal on A.

Since all measures µj are σ-finite, there exist A
(i)
j ∈ Σj with µj(A

(i)
j ) < +∞

for every i, j and A
(i)
j ↑ Xj for every j. This implies that the measurable

intervals S̃i =
∏n
j=1A

(i)
j have the property that S̃i ↑

∏n
j=1Xj and that µ(S̃i) =

(⊗nj=1µj)(S̃i) =
∏n
j=1 µj(A

(i)
j ) < +∞ for every i.

Since ⊗nj=1Σj = Σ(Ẽ) = Σ(A), Theorem 2.4 implies that µ and ⊗nj=1µj are
equal on ⊗nj=1Σj .

(ii) We already know that (
∏n
j=1Xj ,Σ⊗n

j=1
µj ,⊗nj=1µj) is a complete extension of

(
∏n
j=1Xj ,⊗nj=1Σj ,⊗nj=1µj). Therefore, it is also an extension of the completion

(
∏n
j=1Xj ,⊗nj=1Σj ,⊗nj=1µj) and it is enough to prove that every E ∈ Σ⊗n

j=1
µj

belongs to ⊗nj=1Σj .

Take any E ∈ Σ⊗n
j=1

µj and assume, at first, that (⊗nj=1µj)(E) < +∞.

We take arbitrary k ∈ N and we find a covering E ⊆ ∪+∞i=1 R̃
(k)
i by pairwise

disjoint measurable intervals so that
∑+∞
i=1 τ(R̃

(k)
i ) < (⊗nj=1µj)(E) + 1

k . We

define Bk = ∪+∞i=1 R̃
(k)
i ∈ ⊗nj=1Σj and have that E ⊆ Bk and (⊗nj=1µj)(E) ≤

(⊗nj=1µj)(Bk) < (⊗nj=1µj)(E) + 1
k . Now, define A = ∩+∞k=1Bk ∈ ⊗nj=1Σj . Then

E ⊆ A and (⊗nj=1µj)(E) = (⊗nj=1µj)(A). Therefore (⊗nj=1µj)(A \ E) = 0.

In case (⊗nj=1µj)(E) = +∞, we consider the specific sets S̃i, which were

constructed in the proof of part (i), and take the sets Ei = E ∩ S̃i. These
sets have (⊗nj=1µj)(Ei) < +∞ and, by the previous paragraph, we can find
Ai ∈ ⊗nj=1Σj so that Ei ⊆ Ai and (⊗nj=1µj)(Ai \ Ei) = 0. We define A =

∪+∞i=1Ai ∈ ⊗nj=1Σj so that E ⊆ A and, since A\E ⊆ ∪+∞i=1 (Ai \Ei), we conclude
that (⊗nj=1µj)(A \ E) = 0.

We have proved that for every E ∈ Σ⊗n
j=1

µj there exists A ∈ ⊗nj=1Σj so that

E ⊆ A and (⊗nj=1µj)(A \ E) = 0.

Considering A\E instead of E, we find a set B ∈ ⊗nj=1Σj so that A\E ⊆ B
and (⊗nj=1µj)

(
B \ (A \ E)

)
= 0. Of course, (⊗nj=1µj)(B) = 0.

Now we observe that E = (A \ B) ∪ (E ∩ B), where A \ B ∈ ⊗nj=1Σj and

E ∩B ⊆ B ∈ ⊗nj=1Σj with (⊗nj=1µj)(B) = 0. This says that E ∈ ⊗nj=1Σj .

We shall examine, now, the influence to the product measure of replacing
the measure spaces (Xj ,Σj , µj) by their completions (Xj ,Σj , µj).

Theorem 8.3 Let (Xj ,Σj , µj) and (Xj ,Σj , µj) be a measure space and its com-
pletion for every j = 1, . . . , n.
(i) The measure spaces (Xj ,Σj , µj) induce the same product measure space as
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their completions (Xj ,Σj , µj). Namely,

(

n∏
j=1

Xj ,Σ⊗n
j=1

µj ,⊗nj=1µj) = (

n∏
j=1

Xj ,Σ⊗n
j=1

µj ,⊗nj=1µj).

Moreover, the above product measure space is an extension of both measure
spaces (

∏n
j=1Xj ,⊗nj=1Σj ,⊗nj=1µj) and (

∏n
j=1Xj ,⊗nj=1Σj ,⊗nj=1µj), of which

the second is an extension of the first.
(ii) If each (Xj ,Σj , µj) is σ-finite, then (

∏n
j=1Xj ,Σ⊗n

j=1
µj ,⊗nj=1µj) is the com-

pletion of both (
∏n
j=1Xj ,⊗nj=1Σj ,⊗nj=1µj) and (

∏n
j=1Xj ,⊗nj=1Σj ,⊗nj=1µj).

Proof: (i) To construct the product measure space (
∏n
j=1Xj ,Σ⊗n

j=1
µj ,⊗nj=1µj),

we first consider all ⊗nj=1Σj-measurable intervals of the form R̃ =
∏n
j=1Aj for

arbitrary Aj ∈ Σj and then define the outer measure

µ∗1(E) = inf
{+∞∑
i=1

τ(R̃i) | R̃i are ⊗nj=1Σj-measurable intervals and E ⊆ ∪+∞i=1 R̃i
}

where τ(R̃) =
∏n
j=1 µj(Aj) for all R̃ =

∏n
j=1Aj .

To construct the product measure space (
∏n
j=1Xj ,Σ⊗n

j=1
µj ,⊗nj=1µj), we

now consider all ⊗nj=1Σj-measurable intervals of the form R̃ =
∏n
j=1Aj for

arbitrary Aj ∈ Σj and define the outer measure

µ∗2(E) = inf
{+∞∑
i=1

τ(R̃i) | R̃i are ⊗nj=1Σj-measurable intervals and E ⊆ ∪+∞i=1 R̃i
}

where τ(R̃) =
∏n
j=1 µj(Aj) for all R̃ =

∏n
j=1Aj .

Our first task will be to prove that the two outer measures µ∗1 and µ∗2 are
identical.

We observe that all⊗nj=1Σj-measurable intervals are at the same time⊗nj=1Σj-
measurable and, hence, µ∗2(E) ≤ µ∗1(E) for every E ⊆ Rn.

Now take any E ⊆ Rn with µ∗2(E) < +∞ and an arbitrary ε > 0. Then
there exists a covering E ⊆ ∪+∞i=1 R̃i with ⊗nj=1Σj-measurable intervals R̃i so

that
∑+∞
i=1 τ(R̃i) < µ∗2(E) + ε. For each i, write R̃i =

∏n
j=1A

(i)
j with A

(i)
j ∈ Σj .

It is clear that there exist B
(i)
j ∈ Σj so that A

(i)
j ⊆ B

(i)
j and µj(A

(i)
j ) = µj(B

(i)
j ).

We form the ⊗nj=1Σj-measurable intervals R̃′i =
∏n
j=1B

(i)
j and have R̃i ⊆ R̃′i

and τ(R̃i) = τ(R̃′i) for all i. We now have a covering E ⊆ ∪+∞i=1 R̃
′
i with ⊗nj=1Σj-

measurable intervals, and this implies µ∗1(E) ≤
∑+∞
i=1 τ(R̃′i) =

∑+∞
i=1 τ(R̃i) <

µ∗2(E) + ε. Since ε is arbitrary, we find µ∗1(E) ≤ µ∗2(E). In the remaining case
µ∗2(E) = +∞ the inequality µ∗1(E) ≤ µ∗2(E) is obviously true and we conclude
that

µ∗1(E) = µ∗2(E)

for every E ⊆ Rn.
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The next step in forming the product measure is to apply the process of
Caratheodory to the common outer measure µ∗ = µ∗1 = µ∗2 and find the common
complete product measure space

(

n∏
j=1

Xj ,Σ⊗n
j=1

µj ,⊗nj=1µj) = (

n∏
j=1

Xj ,Σ⊗n
j=1

µj ,⊗nj=1µj).

where Σ⊗n
j=1

µj = Σ⊗n
j=1

µj is the symbol we use for Σµ∗ , the σ-algebra of µ∗-

measurable sets, and ⊗nj=1µj = ⊗nj=1µj is the restriction of µ∗ on Σµ∗ .

Theorem 8.3 says that ⊗nj=1Σj and ⊗nj=1Σj are included in Σ⊗n
j=1

µj and,

since every ⊗nj=1Σj-measurable interval is also a ⊗nj=1Σj-measurable interval,

we have that ⊗nj=1Σj is included in ⊗nj=1Σj . Thus

⊗nj=1Σj ⊆ ⊗nj=1Σj ⊆ Σ⊗n
j=1

µj .

(ii) The proof is immediate from Theorem 8.4.

The most basic application of Theorem 8.5 is related to the n-dimensional
Lebesgue measure. The next result is no surprise, since the n-dimensional
Lebesgue measure of any interval in Rn is equal to the product of the 1-
dimensional Lebesgue measure of its edges:

mn

( n∏
j=1

[aj , bj ]
)

=

n∏
j=1

m1([aj , bj ]).

Theorem 8.4 (i) The Lebesgue measure space (Rn,Ln,mn) is the product
measure space of n copies of (R,BR,m1) and, at the same time, the product
measure space of n copies of (R,L1,m1).
(ii) The Lebesgue measure space (Rn,Ln,mn) is the completion of both measure
spaces (Rn,⊗nj=1BR,mn) = (Rn,BRn ,mn) and (Rn,⊗nj=1L1,mn), of which the
second is an extension of the first.

Proof: We know that ⊗nj=1BR = BRn , that (R,L1,m1) is the completion of
(R,BR,m1) and that m1 is a σ-finite measure.

Hence, Theorem 8.5 implies immediately that the n copies of (R,BR,m1)
and, at the same time, the n copies of (R,L1,m1) induce the same product
measure space (Rn,Σ⊗n

j=1
m1 ,⊗nj=1m1), which is the completion of both measure

spaces (Rn,BRn ,⊗nj=1m1) and (Rn,⊗nj=1L1,⊗nj=1m1), of which the second is
an extension of the first.

Theorem 8.3 says that, for every Borel measurable interval R̃ =
∏n
j=1Aj , we

have (⊗nj=1m1)(R̃) =
∏n
j=1m1(Aj). In particular, (⊗nj=1m1)(P ) = voln(P ) for

every open-closed interval P in Rn and Theorem 4.5 implies that ⊗nj=1m1 = mn

on BRn . Hence
(Rn,BRn ,⊗nj=1m1) = (Rn,BRn ,mn).

The proof finishes because (Rn,Ln,mn) is the completion of (Rn,BRn ,mn).
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It is, perhaps, surprising that, although the measure space (R,L1,m1) is
complete, the product (Rn,⊗nj=1L1,mn) is not complete (when n ≥ 2, of
course). It is easy to see this. Take any non Lebesgue measurable set A ⊆ R
and form the set E = A× {0} × · · · × {0} ⊆ Rn. Consider, also, the Lebesgue
measurable interval R̃ = R× {0} × · · · × {0} ⊆ Rn. We have that E ⊆ R̃ and
mn(R̃) = m1(R)m1({0}) · · ·m1({0}) = 0. If we assume that (Rn,⊗nj=1L1,mn)
is complete, then we conclude that E ∈ ⊗nj=1L1. We now take z = (0, . . . , 0) ∈
Rn−1 and, then, the section Ez = A must belong to L1. This is not true and
we arrive at a contradiction.

8.3 Multiple integrals.

The purpose of this section is to give the mechanism which reduces the calcu-
lation of product measures of subsets of cartesian products and of integrals of
functions defined on cartesian products to the calculation of the measures or,
respectively, the integrals of their sections. The gain is obvious: the reduced
calculations are over sets of lower dimension.

For the sake of simplicity, we further restrict to the case of two measure
spaces.

Theorem 8.5 Let (X1,Σ1, µ1) and (X2,Σ2, µ2) be two measure spaces and
(X1 ×X2,Σµ1⊗µ2

, µ1 ⊗ µ2) be their product measure space.
If E ∈ Σµ1⊗µ2

has σ-finite µ1 ⊗ µ2-measure, then Ex1
∈ Σ2 and Ex2

∈ Σ1

for µ1-a.e. x1 ∈ X1 and µ2-a.e. x2 ∈ X2 and the a.e. defined functions

x1 7→ µ2(Ex1
), x2 7→ µ1(Ex2

)

are Σ1-measurable and, respectively, Σ2-measurable. Also,

(µ1 ⊗ µ2)(E) =

∫
X1

µ2(Ex1
) dµ1(x1) =

∫
X2

µ1(Ex2
) dµ2(x2).

Proof: As shown by Theorem 8.5, it is true that Σµ1⊗µ2
= Σµ1⊗µ2

and µ1⊗µ2 =
µ1 ⊗ µ2. It is also immediate that Ex1 ∈ Σ2 for µ1-a.e. x1 ∈ X1 if and only if
Ex1 ∈ Σ2 for µ1-a.e. x1 ∈ X1 and, similarly, Ex2 ∈ Σ1 for µ2-a.e. x2 ∈ X2 if
and only if Ex2

∈ Σ1 for µ2-a.e. x2 ∈ X2. Hence, the whole statement of the
theorem remains the same if we replace at each occurence the measure spaces
(X1,Σ1, µ1) and (X2,Σ2, µ2) by their completions (X1,Σ1, µ1) and (X2,Σ2, µ2).
Renaming, we restate the theorem as follows:

Let (X1,Σ1, µ1), (X2,Σ2, µ2) and (X1 ×X2,Σµ1⊗µ2
, µ1 ⊗ µ2) be two complete

measure spaces and their product measure space. If E ∈ Σµ1⊗µ2
has σ-finite

µ1 ⊗ µ2-measure, then Ex1 ∈ Σ2 and Ex2 ∈ Σ1 for µ1-a.e. x1 ∈ X1 and µ2-a.e.
x2 ∈ X2 and the a.e. defined functions

x1 7→ µ2(Ex1
), x2 7→ µ1(Ex2

)
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are Σ1-measurable and, respectively, Σ2-measurable. Also,

(µ1 ⊗ µ2)(E) =

∫
X1

µ2(Ex1
) dµ1(x1) =

∫
X2

µ1(Ex2
) dµ2(x2).

We are, now, going to prove the theorem in this equivalent form and we
denote N the collection of all sets E ∈ Σµ1⊗µ2

which have all the properties in
the conclusion of the theorem.
(a) Every measurable interval R̃ = A1 ×A2 belongs to N .

Indeed, R̃x1 = ∅, if x1 /∈ A1, and R̃x1 = A2, if x ∈ A1. Hence, µ2(R̃x1) =
µ2(A2)χA1

(x1) for every x1 ∈ X1, implying that the function x1 7→ µ2(R̃x1
)

is Σ1-measurable. Moreover, we have
∫
X1
µ2(R̃x1

) dµ1 = µ2(A2)
∫
X1
χA1

dµ1 =

µ2(A2)µ1(A1) = (µ1 ⊗ µ2)(R̃). The same arguments hold for x2-sections.
(b) Assume that the sets E1, . . . Em ∈ N are pairwise disjoint. Then E =
E1 ∪ · · · ∪ Em ∈ N .

Indeed, from Ex1 = (E1)x1 ∪ · · · ∪ (Em)x1 for every x1 ∈ X1, we have that
Ex1 ∈ Σ2 for µ1-a.e. x1 ∈ X1 and µ2(Ex1) = µ2((E1)x1) + · · · + µ2((Em)x1)
for µ1-a.e. x1 ∈ X1. By the completeness of µ1, the function x1 7→ µ2(Ex1

)
is Σ1-measurable and

∫
X1
µ2(Ex1

) dµ1(x1) =
∑m
j=1

∫
X1
µ2((Ej)x1

) dµ1(x1) =∑m
j=1(µ1 ⊗ µ2)(Ej) = (µ1 ⊗ µ2)(E). The same argument holds for x2-sections.

(c) Assume that En ∈ N for every n ∈ N. If En ↑ E, then E ∈ N .
From (En)x1

↑ Ex1
for every x1 ∈ X1, we have that Ex1

∈ Σ2 for µ1-a.e.
x1 ∈ X1. Continuity of µ2 from below implies that µ2((En)x1

) ↑ µ2(Ex1
) for

µ1-a.e. x1 ∈ X1. By the completeness of µ1, the function x1 7→ µ2(Ex1
) is

Σ1- measurable. By continuity of µ1 ⊗ µ2 from below and from the Monotone
Convergence Theorem, we get (µ1 ⊗ µ2)(E) =

∫
X1
µ2(Ex1) dµ1(x1). The same

can be proved, symmetrically, for x2-sections.
(d) Now, fix any measurable interval R̃ with (µ1 ⊗ µ2)(R̃) < +∞ and consider
the collection NR̃ of all sets E ∈ Σµ1⊗µ2

for which E ∩ R̃ ∈ N .
If En ∈ NR̃ for all n and En ↓ E, then E ∈ NR̃.

Indeed, we have that En ∩ R̃ ↓ E ∩ R̃ and, hence, (En ∩ R̃)x1 ↓ (E ∩ R̃)x1

for every x1 ∈ X1. This implies that (E ∩ R̃)x1
∈ Σ2 for µ1-a.e. x1 ∈ X1.

From the result of (a),
∫
X1
µ2(R̃x1

) dµ1(x1) = (µ1 ⊗ µ2)(R̃) < +∞ and, hence,

µ2(R̃x1
) < +∞ for µ1-a.e. x1 ∈ X1. Therefore, µ2

(
(E1 ∩ R̃)x1

)
< +∞ for µ1-

a.e. x1 ∈ X1 and, by the continuity of µ2 from above, we find µ2

(
(En ∩ R̃)x1

)
↓

µ2

(
(E∩R̃)x1

)
for µ1-a.e. x1 ∈ X1. By the completeness of µ1, the function x1 7→

µ2

(
(E ∩ R̃)x1

)
is Σ1-measurable. Another application of continuity from above

gives (µ1 ⊗ µ2)(E ∩ R̃) =
∫
X1
µ2

(
(E ∩ R̃)x1

)
dµ1(x1) and, since all arguments

hold for x2-sections as well, we conclude that E ∩ R̃ ∈ N and, hence, E ∈ NR̃.

If En ∈ NR̃ for all n and En ↑ E, then En ∩ R̃ ↑ E ∩ R̃ and, from the result
of (c), E ∈ NR̃.

We have proved that the collection NR̃ is a monotone class of subsets of
X1 ×X2.

If the E1, . . . , Em ∈ NR̃ are pairwise disjoint and E = E1 ∪ · · · ∪ Em, then

E ∩ R̃ = (E1 ∩ R̃)∪ · · · ∪ (Em ∩ R̃) and, by the result of (b), E ∈ NR̃. From (a),
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we have that NR̃ contains all measurable rectangles and, hence, NR̃ contains
all elements of the algebra A of Proposition 8.4. Therefore, NR̃ includes the
monotone class generated by A, which, by Theorem 1.1, is the same as the
σ-algebra generated by A, namely Σ1 ⊗ Σ2.

This says that E ∩ R̃ ∈ N for every E ∈ Σ1 ⊗ Σ2 and every measurable
interval R̃ with (µ1 ⊗ µ2)(R̃) < +∞.
(e) If A is, again, the algebra of Proposition 8.4, an application of the results
of (b) and (d) implies that E ∩ F ∈ N for every E ∈ Σ1 ⊗Σ2 and every F ∈ A
with (µ1 ⊗ µ2)(F ) < +∞.
(f) Now, let E ∈ Σ1 ⊗ Σ2 with (µ1 ⊗ µ2)(E) < +∞. We find a covering E ⊆
∪+∞i=1 R̃i by measurable intervals so that

∑+∞
i=1 (µ1⊗µ2)(R̃i) < (µ1⊗µ2)(E)+1 <

+∞. We define Fn = ∪ni=1R̃i ∈ A and we have that (µ1 ⊗ µ2)(Fn) < +∞ for
every n. The result of (e) implies that E ∩ Fn ∈ N and, since, E ∩ Fn ↑ E, we
have, by the result of (c), that E ∈ N .

Hence, E ∈ N for every E ∈ Σ1 ⊗ Σ2 with (µ1 ⊗ µ2)(E) < +∞.
(g) Now let E ∈ Σµ1⊗µ2

with (µ1 ⊗ µ2)(E) = 0. We shall prove that E ∈ N .

We find, for every k ∈ N, a covering E ⊆ ∪+∞i=1 R̃
(k)
i by measurable intervals

so that
∑+∞
i=1 (µ1⊗µ2)(R̃

(k)
i ) < 1

k . We define Ak = ∪+∞i=1 R̃
(k)
i ∈ Σ1⊗Σ2 and have

that E ⊆ Ak and (µ1 ⊗ µ2)(Ak) < 1
k . We then write A = ∩+∞k=1Ak ∈ Σ1 ⊗ Σ2

and have that E ⊆ A and (µ1⊗µ2)(A) = 0. From the result of (f) we have that
A ∈ N and, in particular, 0 =

∫
X1
µ2(Ax1

) dµ1(x1) =
∫
X2
µ1(Ax2

) dµ2(x2). The

first equality implies that µ2(Ax1) = 0 for µ1-a.e. x1 ∈ X1. From Ex1 ⊆ Ax1

and from the completeness of µ2, we see that Ex1
∈ Σ2 and µ2(Ex1

) = 0 for µ1-
a.e. x1 ∈ X1. Now, from the completeness of µ1, we get that the function x1 7→
µ2(Ex1

) is Σ1-measurable. Moreover, (µ1 ⊗ µ2)(E) = 0 =
∫
X1
µ2(Ex1

) dµ1(x1)
and the same arguments hold for x2-sections. Therefore, E ∈ N .
(h) If E ∈ Σµ1⊗µ2 has (µ1 ⊗ µ2)(E) < +∞, then E ∈ N .

Indeed, for every k ∈ N we find a covering E ⊆ ∪+∞i=1 R̃
(k)
i by measurable

intervals so that
∑+∞
i=1 (µ1 ⊗ µ2)(R̃

(k)
i ) < (µ1 ⊗ µ2)(E) + 1

k . We define Ak =

∪+∞i=1 R̃
(k)
i ∈ Σ1⊗Σ2 and have that E ⊆ Ak and (µ1⊗µ2)(Ak) < (µ1⊗µ2)(E)+ 1

k .

We then write A = ∩+∞k=1Ak ∈ Σ1⊗Σ2 and have that E ⊆ A and (µ1⊗µ2)(A) =
(µ1 ⊗ µ2)(E). Hence A \E ∈ Σµ1⊗µ2 has (µ1 ⊗ µ2)(A \E) = 0. As in part (g),
we can find A′ ∈ Σ1 ⊗ Σ2 so that A \ E ⊆ A′ and (µ1 ⊗ µ2)(A′) = 0. We set
B = A \ A′ ∈ Σ1 ⊗ Σ2 and we have B ⊆ E and (µ1 ⊗ µ2)(E \ B) = 0. By the
result of (g), we have E \B ∈ N and, by the result of (f), B ∈ N . By the result
of (b), E = B ∪ (E \B) ∈ N .
(i) Finally, if E ∈ Σµ1⊗µ2 has σ-finite (µ1 ⊗ µ2)-measure, we find En ∈ Σµ1⊗µ2

with (µ1⊗µ2)(En) < +∞ for every n and so that En ↑ E. Another application
of the result of (c) implies that E ∈ N .

Theorem 8.6 Let (X1,Σ1, µ1) and (X2,Σ2, µ2) be σ-finite measure spaces and
(X1 ×X2,Σ1 ⊗ Σ2, µ1 ⊗ µ2) be their (restricted) product measure space.

If E ∈ Σ1⊗Σ2, then Ex1
∈ Σ2 and Ex2

∈ Σ1 for every x1 ∈ X1 and x2 ∈ X2

and the functions
x1 7→ µ2(Ex1), x2 7→ µ1(Ex2)
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are Σ1-measurable and, respectively, Σ2-measurable. Also,

(µ1 ⊗ µ2)(E) =

∫
X1

µ2(Ex1) dµ1(x1) =

∫
X2

µ1(Ex2) dµ2(x2).

Proof: Exactly as in the proof of Theorem 8.7, we denote N the collection of all
E ∈ Σ1 ⊗ Σ2 which satisfy all the properties in the conclusion of this theorem.
(a) If R̃ is any measurable interval, then R̃ ∈ N .

The proof is identical to the proof of the result of (a) of Theorem 8.7. Observe
that, now, all statements hold for every x1 ∈ X1 and x2 ∈ X2 and there is no
need of completeness.
(b) If the sets E1, . . . Em ∈ N are pairwise disjoint, then E = E1∪· · ·∪Em ∈ N .

The proof is identical to the proof of the result of (b) of Theorem 8.7.
(c) If En ∈ N for every n ∈ N and En ↑ E, then E ∈ N .

The proof is identical to the proof of the result of (c) of Theorem 8.7.
(d) We fix any measurable interval R̃ = A1 × A2 with µ1(A1) < +∞ and
µ2(A2) < +∞ and consider the collection NR̃ of all sets E ∈ Σ1 ⊗Σ2 for which

E∩R̃ ∈ N . The rest of the proof of part (d) of Theorem 8.7 continues unchanged
and we get that NR̃ is a monotone class of subsets of X1 ×X2 which includes
the algebra A of Proposition 8.4. Hence, NR̃ includes Σ1⊗Σ2 and this says that

E ∩ R̃ ∈ N for every E ∈ Σ1 ⊗ Σ2 and every measurable interval R̃ = A1 ×A2

with µ1(A1) < +∞ and µ2(A2) < +∞.

(e) Since µ1 is σ-finite, we can find an increasing sequence (A
(n)
1 ) so that A

(n)
1 ∈

Σ1, A
(n)
1 ↑ X1 and 0 < µ1(A

(n)
1 ) < +∞ for every n. Similarly, we can find an

increasing sequence (A
(n)
2 ) so that A

(n)
2 ∈ Σ2, A

(n)
2 ↑ X2 and 0 < µ2(A

(n)
2 ) <

+∞ for every n and we form the measurable intervals R̃n = A
(n)
1 ×A(n)

2 .
We take any E ∈ Σ1 ⊗ Σ2 and, from the result of (d), we have that all sets

En = E ∩ R̃n belong to N . Since En ↑ E, an application of the result of (c)
implies that E ∈ N .

Theorem 8.7 (Tonelli) Let (X1,Σ1, µ1) and (X2,Σ2, µ2) be measure spaces
and (X1 ×X2,Σµ1⊗µ2

, µ1 ⊗ µ2) be their product measure space.
If f : X1 × X2 → [0,+∞] is Σµ1⊗µ2

-measurable and if f−1((0,+∞]) has
σ-finite µ1 ⊗ µ2-measure, then fx1

is Σ2-measurable for µ1-a.e. x1 ∈ X1 and
fx2

is Σ1-measurable for µ2-a.e. x2 ∈ X2 and the a.e. defined functions

x1 7→
∫
X2

fx1 dµ2, x2 7→
∫
X1

fx2 dµ1

are Σ1-measurable and, respectively, Σ2-measurable. Also,∫
X1×X2

f d(µ1⊗µ2) =

∫
X1

(∫
X2

fx1
dµ2

)
dµ1(x1) =

∫
X2

(∫
X1

fx2
dµ1

)
dµ2(x2).

Proof: (a) A first particular case is when f = χE is the characteristic function
of an E ∈ Σµ1⊗µ2

with σ-finite µ1 ⊗ µ2-measure.
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Theorem 8.7 implies that (χE)x1 = χEx1 is Σ2−measurable for µ1-a.e.

x1 ∈ X1 and the function x1 7→
∫
X2

(χE)x1
dµ2 = µ2(Ex1

) is Σ1-measurable.

Finally, we have
∫
X1×X2

χE d(µ1⊗µ2) = (µ1⊗µ2)(E) =
∫
X1
µ2(Ex1) dµ1(x1) =∫

X1

( ∫
X2

(χE)x1 dµ2

)
dµ1(x1). The argument for x2-sections is the same.

(b) Next, we take φ =
∑m
j=1 κjχEj to be the standard representation of a simple

φ : X1 ×X2 → [0,+∞), where we omit the possible value κ = 0, and which is
Σµ1⊗µ2-measurable and so that ∪mj=1Ej = φ−1((0,+∞]) has σ-finite µ1 ⊗ µ2-

measure. Then, φx1
=
∑m
j=1 κj(χEj )x1

and φx2
=
∑m
j=1 κj(χEj )x2

for every
x1 ∈ X1 and x2 ∈ X2. Therefore, this case reduces, by linearity, to (a).
(c) Finally, we take any Σµ1⊗µ2

-measurable f : X1 × X2 → [0,+∞] with
f−1((0,+∞]) having σ-finite µ1 ⊗ µ2-measure. We take an increasing sequence
(φn) of Σµ1⊗µ2-measurable simple functions φn : X1 × X2 → [0,+∞] so that
φn ↑ f on X1 × X2. From φn ≤ f , it is clear that φ−1n ((0,+∞]) has σ-finite
µ1⊗µ2-measure for every n. Part (b) says that every φn satisfies the conclusion
of the theorem and, since (φn)x1

↑ fx1
and (φn)x2

↑ fx2
for every x1 ∈ X1 and

x2 ∈ X2, an application of the Monotone Convergence Theorem implies that f
also satisfies the conclusion of the theorem.

Theorem 8.8 (Fubini) Let (X1,Σ1, µ1) and (X2,Σ2, µ2) two measure spaces
and (X1 ×X2,Σµ1⊗µ2 , µ1 ⊗ µ2) their product measure space.

If f : X1 × X2 → R or C is integrable with respect to µ1 ⊗ µ2, then fx1

is integrable with respect to µ2 for µ1-a.e. x1 ∈ X1 and fx2 is integrable with
respect to µ1 for µ2-a.e. x2 ∈ X2 and the a.e. defined functions

x1 7→
∫
X2

fx1
dµ2, x2 7→

∫
X1

fx2
dµ1

are integrable with respect to µ1 and, respectively, integrable with respect to µ2.
Also,∫
X1×X2

f d(µ1⊗µ2) =

∫
X1

(∫
X2

fx1 dµ2

)
dµ1(x1) =

∫
X2

(∫
X1

fx2 dµ1

)
dµ2(x2).

Proof: (a) If f : X1 × X2 → [0,+∞] is integrable with respect to µ1 ⊗ µ2,
Theorem 8.9 gives∫
X1

(∫
X2

fx1 dµ2

)
dµ1 =

∫
X2

(∫
X1

fx2 dµ1

)
dµ2 =

∫
X1×X2

f d(µ1⊗µ2) < +∞.

This implies
∫
X2
fx1

dµ2 < +∞ for µ1-a.e. x1 ∈ X1 and
∫
X1
fx2

dµ1 < +∞
for µ2-a.e. x2 ∈ X2. Thus, the conclusion of the theorem is true for non-negative
functions.
(b) If f : X1 ×X2 → R is integrable with respect to µ1 ⊗ µ2, the same is true
for f+ and f− and, by the result of (a), the conclusion is true for these two
functions. Since fx1

= (f+)x1
− (f−)x1

and fx2
= (f+)x2

− (f−)x2
for every

x1 ∈ X1 and x2 ∈ X2, the conclusion is, by linearity, true also for f .
(c) If f : X1 ×X2 → C is integrable with respect to µ1 ⊗ µ2, the same is true
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for <(f) and =(f). By the result of (b), the conclusion is true for <(f) and
=(f) and, since fx1

= <(f)x1
+ i=(f)x1

and fx2
= <(f)x2

+ i=(f)x2
for every

x1 ∈ X1 and x2 ∈ X2, the conclusion is, by linearity, true for f .
(d) Finally, let f : X1 ×X2 → C be integrable with respect to µ1 ⊗ µ2. Then
the set E = f−1({∞}) ∈ Σµ1⊗µ2 has (µ1 ⊗ µ2)(E) = 0. Theorem 8.7 implies
that µ2(Ex1) = 0 for µ1-a.e. x1 ∈ X1 and µ1(Ex2) = 0 for µ2-a.e. x2 ∈ X2.

If we define F = fχEc , then F : X1 ×X2 → C is integrable with respect to
µ1 ⊗ µ2 and, by (c), the conclusion of the theorem holds for F .

Since F = f holds (µ1 ⊗ µ2)-a.e. on X1 × X2, we have
∫
X1×X2

F d(µ1 ⊗
µ2) =

∫
X1×X2

f d(µ1 ⊗ µ2). We, also, have that Fx1 = fx1 on X2 \ Ex1

and, hence, Fx1 = fx1 holds µ2-a.e. on X2 for µ1-a.e. x1 ∈ X1. Therefore,
fx1

is integrable with respect to µ2 and
∫
X2
fx1

dµ2 =
∫
X2
Fx1

dµ2, for µ1-a.e.

x1 ∈ X1. This implies
∫
X1

( ∫
X2
fx1 dµ2

)
dµ1(x1) =

∫
X1

( ∫
X2
Fx1 dµ2

)
dµ1(x1)

and, equating the corresponding integrals of F , we find
∫
X1×X2

f d(µ1 ⊗ µ2) =∫
X1

( ∫
X2
fx1

dµ2

)
dµ1(x1). The argument is the same for x2-sections.

The power of the Theorems of Tonelli and of Fubini lies in the resulting
successive integration formula for the calculation of integrals over product spaces
and in the interchange of successive integrations. The function f to which we
may want to apply Fubini’s Theorem must be integrable with respect to the
product measure µ1 ⊗ µ2. The Theorem of Tonelli is applied to non-negative
functions f which must be Σµ1⊗µ2

-measurable and whose set f−1((0,+∞]) must
be of σ-finite µ1 ⊗ µ2-measure. Thus, the assumptions of Theorem of Tonelli
are, except for the sign, weaker than the assumptions of the Theorem of Fubini.

The strategy, in order to calculate the integral of f over the product space by
means of successive integrations or to interchange successive integrations, is first
to prove that f is Σµ1⊗µ2

-measurable and that the set {(x1, x2) | f(x1, x2) 6= 0}
is of σ-finite µ1 ⊗ µ2-measure. We, then, apply the Theorem of Tonelli to |f |
and have∫

X1×X2

|f | d(µ1 ⊗ µ2) =

∫
X1

(∫
X2

|f |x1
dµ2

)
dµ1 =

∫
X2

(∫
X1

|f |x2
dµ1

)
dµ2.

By calculating either the second or the third term in this string of equalities,
we calculate the

∫
X1×X2

|f | d(µ1 ⊗ µ2). If it is finite, then f is integrable with
respect to the product measure µ1⊗µ2 and we may apply the Theorem of Fubini
to find the desired∫

X1×X2

f(x1, x2) d(µ1 ⊗ µ2)(x1, x2) =

∫
X1

(∫
X2

f(x1, x2) dµ2(x2)
)
dµ1(x1)

=

∫
X2

(∫
X1

f(x1, x2) dµ1(x1)
)
dµ2(x2).

Of the two starting assumptions, the σ-finiteness of {(x1, x2) | f(x1, x2) 6= 0}
is usually easy to check. For example, if the measure spaces (X1,Σ1, µ1) and
(X2,Σ2, µ2) are both σ-finite, then the measure space (X1×X2,Σµ1⊗µ2

, µ1⊗µ2)
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is also σ-finite and all subsets of X1 × X2 are obviously of σ-finite µ1 ⊗ µ2-
measure.

The assumption of Σµ1⊗µ2
-measurability of f is more subtle and sometimes

difficult to verify.

Theorem 8.9 (Tonelli) Let (X1,Σ1, µ1) and (X2,Σ2, µ2) be σ-finite measure
spaces and (X1 × X2,Σ1 ⊗ Σ2, µ1 ⊗ µ2) be their (restricted) product measure
space.

If f : X1 ×X2 → [0,+∞] is Σ1 ⊗Σ2-measurable, then fx1 is Σ2-measurable
for every x1 ∈ X1 and fx2

is Σ1-measurable for every x2 ∈ X2 and the functions

x1 7→
∫
X2

fx1
dµ2, x2 7→

∫
X1

fx2
dµ1

are Σ1-measurable and, respectively, Σ2-measurable. Also,∫
X1×X2

f d(µ1⊗µ2) =

∫
X1

(∫
X2

fx1
dµ2

)
dµ1(x1) =

∫
X2

(∫
X1

fx2
dµ1

)
dµ2(x2).

Proof The measurability of the sections is an immediate application of Theorem
8.2 and does not need the assumption about σ-finiteness. Otherwise, the proof
results from Theorem 8.8 in exactly the same way in which the proof of Theorem
8.9 results from Theorem 8.7.

Theorem 8.10 (Fubini) Let (X1,Σ1, µ1) and (X2,Σ2, µ2) be two σ-finite mea-
sure spaces and (X1×X2,Σ1⊗Σ2, µ1⊗µ2) be their (restricted) product measure
space.

Let f : X1×X2 → R or C be Σ1⊗Σ2-measurable and integrable with respect
to µ1 ⊗ µ2. Then fx1

is Σ2-measurable for every x1 ∈ X1 and integrable with
respect to µ2 for µ1-a.e. x1 ∈ X1. Also, fx2 is Σ1-measurable for every x2 ∈ X2

and integrable with respect to µ1 for µ2-a.e. x2 ∈ X2. The a.e. defined functions

x1 7→
∫
X2

fx1 dµ2, x2 7→
∫
X1

fx2 dµ1

are integrable with respect to µ1 and, respectively, integrable with respect to µ2

and∫
X1×X2

f d(µ1⊗µ2) =

∫
X1

(∫
X2

fx1
dµ2

)
dµ1(x1) =

∫
X2

(∫
X1

fx2
dµ1

)
dµ2(x2).

Proof: Again, the measurability of the sections is an immediate application of
Theorem 8.2 and does not need the assumption about σ-finiteness. Otherwise,
the proof results from Theorem 8.11 in exactly the same way in which the proof
of Theorem 8.10 results from Theorem 8.9.
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8.4 Surface measure on Sn−1.

For every x = (x1, . . . , xn) ∈ Rn
∗ = Rn \ {0} we write

r = |x| =
√
x21 + · · ·+ x2n ∈ R+ = (0,+∞), y =

x

|x|
∈ Sn−1,

where Sn−1 = {y ∈ Rn | |y| = 1} is the unit spere of Rn.
The mapping Φ : Rn

∗ → R+ × Sn−1 defined by

Φ(x) = (r, y) =
(
|x|, x
|x|

)
is one-to-one and onto and its inverse Φ−1 : R+ × Sn−1 → Rn

∗ is given by

Φ−1(r, y) = x = ry.

The numbers r = |x| and y = x
|x| are called the polar coordinates of x and

the mappings Φ and Φ−1 determine an identification of Rn
∗ with the cartesian

product R+×Sn−1, where every point x 6= 0 is identified with the pair (r, y) of
its polar coordinates.

As usual, we consider Sn−1 as a metric subspace of Rn. This means that
the distance between points of Sn−1 is their euclidean distance considered as
points of the larger space Rn. Namely

|y − y′| =
√

(y1 − y′1)2 + · · ·+ (yn − y′n)2,

for every y = (y1, . . . , yn), y′ = (y′1, . . . , y
′
n) ∈ Sn−1. No two points of Sn−1 have

distance greater that 2 and, if two points have distance 2, then they are opposite
or, equivalently, anti-diametric. The open ball in Sn−1 with center y ∈ Sn−1
and radius r > 0 is the spherical cap S(y; r) = {y′ ∈ Sn−1 | |y′ − y| < r}, which
is the intersection of the euclidean ball B(y; r) = {x ∈ Rn | |x − y| < r} with
Sn−1. In fact, the intersection of an arbitrary euclidean open ball in Rn with
Sn−1 is, if non-empty, a spherical cap of Sn−1.

It is easy to see that there is a countable collection of spherical caps with
the property that every open set in Sn−1 is a union (countable, necessarily) of
spherical caps from this collection. Indeed, such is the collection of the (non-
empty) intersections with Sn−1 of all open balls in Rn with rational centers and
rational radii: if U is an arbitrary open subset of Sn−1 and we take arbitrary
y ∈ U , we can find r so that B(y; r) ∩ Sn−1 ⊆ U . Then, we can find an open
ball B(x′; r′) with rational x′ and rational r′ so that y ∈ B(x′; r′) ⊆ B(y; r).
Now, y belongs to the spherical cap B(x′; r′) ∩ Sn−1 ⊆ U .

If we equip R+×Sn−1 with the product topology through the product metric

d
(
(r, y), (r′, y′)

)
= max{|r − r′|, |y − y′|},

then the mappings Φ and Φ−1 are both continuous. In fact, it is clear that the
convergence (rk, yk)→ (r, y) in the product metric of R+ × Sn−1 is equivalent
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to the simultaneous rk → r and yk → y. Therefore, if xk → x in Rn
∗ , then

rk = |xk| → |x| = r and yk = xk
|xk| →

x
|x| = y and hence Φ(xk) = (rk, yk) →

(r, y) = Φ(x) in R+×Sn−1. Conversely, if (rk, yk)→ (r, y) in R+×Sn−1, then
rk → r and yk → y and hence Φ−1(rk, yk) = rkyk → ry = Φ−1(r, y) in Rn

∗ .
We may observe that the open balls in the product topology of R+ × Sn−1

are exactly all the cartesian products (a, b)×S(y; r) of open subintervals of R+

with spherical caps of Sn−1.
The next proposition contains information about the Borel structures of Rn

∗
and of R+, Sn−1 and their product R+ × Sn−1.

Proposition 8.6 (i) BRn
∗

= {E ∈ BRn |E ⊆ Rn
∗}.

(ii) BR+ = {E ∈ BR |E ⊆ R+} and BR+ is generated by the collection of all
open subintervals of R+ and, also, by the collection of all open-closed subinter-
vals of R+.
(iii) BSn−1 = {E ∈ BRn |E ⊆ Sn−1} and BSn−1 is generated by the collection
of all spherical caps.
(iv) BR+×Sn−1 = BR+ ⊗ BSn−1 .
(v) Φ(E) is a Borel set in R+×Sn−1 for every Borel set E in Rn

∗ and Φ−1(E)
is a Borel set in Rn

∗ for every Borel set E in R+ × Sn−1.
(vi) M · A = {ry | r ∈ M,y ∈ A} is a Borel set in Rn

∗ for every Borel set A in
Sn−1 and every Borel set M in R+.

Proof: The equalities of (i),(ii) and (iii) are simple consequences of Theorem 1.3
or, more directly, of Exercise 1.6.6. That BR+ is generated by the collection of
all open or of all open-closed subintervals of R+ is due to the fact that every
open subset of R+ is a countable union of such intervals. Also, that BSn−1 is
generated by the collection of all spherical caps is due to the fact that every
open subset of Sn−1 is a countable union of spherical caps.
(iv) Both BR+×Sn−1 and BR+ ⊗ BSn−1 are σ-algebras of subsets of the space
R+ × Sn−1. The second is generated by the collection of all cartesian products
of open subsets of R+ with open subsets of Sn−1 and all these sets are open
subsets of R+ × Sn−1 and, hence, belong to the first σ-algebra. Therefore,
the second σ-algebra is included in the first. Conversely, the first σ-algebra is
generated by the collection of all open subsets of R+×Sn−1 and every such set
is a countable union of open balls, i.e. of cartesian products of open subintervals
of R+ with spherical caps of Sn−1. Thus, every open subset of R+ × Sn−1 is
contained in the second σ-algebra and, hence, the first σ-algebra is included in
the second.
(v) Since Φ is continuous, it is (BRn

∗
,BR+×Sn−1)-measurable and, thus, Φ−1(E)

is a Borel set in Rn
∗ for every Borel set E in R+ × Sn−1. The other statement

is, similarly, a consequence of the continuity of Φ−1.
(vi) M × A is a Borel set (measurable interval) in R+ × Sn−1. Since Φ is
continuous, M ·A = Φ−1(M ×A) is a Borel set in Rn

∗ .

A set Γ ⊆ Rn
∗ is called a positive cone if rx ∈ Γ for every r ∈ R+ and

every x ∈ Γ or, equivalently, if Γ is closed under multiplication by positive
numbers or, equivalently, if Γ is invariant under dilations. If B ⊆ Rn

∗ , then
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the set R+ · B = {rb | r ∈ R+, b ∈ B} is, obviously, a positive cone and it is
called the positive cone determined by B. It is trivial to see that, if Γ is
a positive cone and A = Γ ∩ Sn−1, then Γ is the positive cone determined by
A and, conversely, that, if A ⊆ Sn−1 and Γ is the positive cone determined by
A, then Γ ∩ Sn−1 = A. This means that there is a one-to-one correspondence
between the subsets of Sn−1 and the positive cones of Rn.

The next result expresses a simple characterization of open and of Borel
subsets of Sn−1 in terms of the corresponding positive cones.

Proposition 8.7 Let A ⊆ Sn−1.
(i) A is open in Sn−1 if and only if the cone R+ ·A is open in Rn.
(ii) A is a Borel set in Sn−1 if and only if R+ ·A is a Borel set in Rn.

Proof: (i) By the definition of the product topology, A is open in Sn−1 if and
only if R+ × A is open in R+ × Sn−1. By the continuity of Φ and Φ−1, this
last one is true if and only if R+ ·A = Φ−1(R+ ×A) is open in Rn

∗ if and only
if R+ ·A is open in Rn.
(ii) If A is a Borel set in Sn−1 then, as a measurable interval, R+×A is a Borel
set in R+ × Sn−1. Conversely, if R+ × A is a Borel set in R+ × Sn−1, then
all its r-sections, and in particular A, are Borel sets in Sn−1. Therefore, A is a
Borel set in Sn−1 if and only if R+×A is a Borel set in R+×Sn−1. Proposition
8.6 implies that this is true if and only if R+ ·A = Φ−1(R+ ×A) is a Borel set
in Rn

∗ if and only if R+ ·A is a Borel set in Rn.

Proposition 8.8 If we define

σn−1(A) = n ·mn

(
(0, 1] ·A

)
for every A ∈ BSn−1 , then σn−1 is a measure on (Sn−1,BSn−1).

Proof: By the last statement of Proposition 8.6, (0, 1] · A is a Borel set in
Rn
∗ and thus σn−1(A) is well defined. We have σn−1(∅) = n ·mn

(
(0, 1] · ∅

)
=

n ·mn(∅) = 0. Moreover, if A1, A2, . . . ∈ BSn−1 are pairwise disjoint, then the
sets (0, 1] ·A1, (0, 1] ·A2, . . . are also pairwise disjoint. Hence, σn−1(∪+∞j=1Aj) =

n ·mn

(
(0, 1] · ∪+∞j=1Aj

)
= n ·mn

(
∪+∞j=1 ((0, 1] ·Aj)

)
=
∑+∞
j=1 n ·mn

(
(0, 1] ·Aj

)
=∑+∞

j=1 σn−1(Aj).

Definition 8.5 The measure σn−1 on (Sn−1,BSn−1), which is defined in Propo-
sition 8.8, is called the (n− 1)-dimensional surface measure on Sn−1.

Lemma 8.1 If we define

ρ(N) =

∫
N

rn−1 dr

for every N ∈ BR+ , then ρ is a measure on (R+,BR+).

Proof: A simple consequence of Theorem 7.13.
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Lemma 8.2 If we define

m̃n(E) = mn(Φ−1(E))

for every Borel set E in R+ × Sn−1, then m̃n is a measure on the measurable
space (R+ × Sn−1,BR+×Sn−1).

Proof: Φ−1(E) is a Borel set in Rn
∗ for every Borel set E in R+ × Sn−1 and,

hence, m̃n(E) is well defined. Clearly, m̃n(∅) = mn(Φ−1(∅)) = mn(∅) = 0.
If E1, E2, . . . are pairwise disjoint, then Φ−1(E1),Φ−1(E2), . . . are also pair-
wise disjoint and m̃n(∪+∞j=1Ej) = mn(Φ−1(∪+∞j=1Ej)) = mn(∪+∞j=1Φ−1(Ej)) =∑+∞
j=1mn(Φ−1(Ej)) =

∑+∞
j=1 m̃n(Ej).

Lemma 8.3 The measures m̃n and ρ ⊗ σn−1 are identical on the measurable
space (R+ × Sn−1,BR+×Sn−1) = (R+ × Sn−1,BR+ ⊗ BSn−1).

Proof: The equality BR+×Sn−1 = BR+ ⊗ BSn−1 is in Proposition 8.6.
If A is a Borel set in Sn−1, then the sets (0, b] · A and (0, 1] · A are both

Borel sets in Rn and the first is a dilate of the second by the factor b > 0. By
Theorem 4.7, mn((0, b] · A) = bnmn((0, 1] · A) for every b > 0. By a simple
subtraction we find that mn((a, b] · A) = (bn − an)mn((0, 1] · A) for every a, b
with 0 ≤ a < b < +∞.

Therefore, if A is a Borel set in Sn−1, then

m̃n((a, b]×A) = mn(Φ−1((a, b]×A)) = mn((a, b] ·A)

= (bn − an)mn((0, 1] ·A) =
bn − an

n
σn−1(A)

=

∫
(a,b]

rn−1 dr σn−1(A) = ρ((a, b]) σn−1(A)

= (ρ⊗ σn−1) ((a, b]×A).

If we define

µ(N) = m̃n(N ×A), ν(N) = (ρ⊗ σn−1)(N ×A)

for every Borel set N in R+, it is easy to see that both µ and ν are Borel
measures on R+ and, by what we just proved, they satisfy µ((a, b]) = ν((a, b])
for every interval in R+. This, obviously, extends to all finite unions of pairwise
disjoint open-closed intervals. Theorem 2.4 implies, now, that the two measures
are equal on the σ-algebra generated by the collection of all these sets, which,
by Proposition 8.6, is BR+ . Therefore,

m̃n(N ×A) = (ρ⊗ σn−1)(N ×A)

for every Borel set N in R+ and every Borel set A in Sn−1.
Theorem 8.4 implies now the equality of the two measures, because both

measures ρ and σn−1 are σ-finite.
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If E ⊆ Rn
∗ , we consider the set Φ(E) ⊆ R+ × Sn−1. We also consider the

r-sections Φ(E)r = {y ∈ Sn−1 | (r, y) ∈ Φ(E)} = {y ∈ Sn−1 | ry ∈ E} and the
y-sections Φ(E)y = {r ∈ R+ | (r, y) ∈ Φ(E)} = {r ∈ R+ | ry ∈ E} of Φ(E). We
extend the notation as follows.

Definition 8.6 If E ⊆ Rn, we define, for every r ∈ R+ and every y ∈ Sn−1,

Er = {y ∈ Sn−1 | ry ∈ E}, Ey = {r ∈ R+ | ry ∈ E}

and call them the r-sections and the y-sections of E, respectively.

Observe that E may contain 0, but this plays no role. Thus, the sections
of E are, by definition, exactly the same as the sections of Φ(E \ {0}). This is
justified by the informal identification of E \ {0} with Φ(E \ {0}).

Theorem 8.11 Let E be any Borel set in Rn. Then Er is a Borel set in Sn−1

for every r ∈ R+ and Ey is a Borel set in R+ for every y ∈ Sn−1 and the
functions

r 7→ σn−1(Er), y 7→
∫
Ey

rn−1 dr

are BR+-measurable and, respectively, BSn−1-measurable. Also,

mn(E) =

∫ +∞

0

σn−1(Er)r
n−1 dr =

∫
Sn−1

(∫
Ey

rn−1 dr
)
dσn−1(y).

Proof: The set E \ {0} is a Borel set in Rn
∗ , while Er = Φ(E \ {0})r and

Ey = Φ(E \ {0})y.
Lemmas 8.2 and 8.3 imply that mn(E) = mn(E \ {0}) = m̃n

(
Φ(E \ {0})

)
=

(ρ⊗ σn−1)
(
Φ(E \ {0})

)
. Proposition 8.6 says that Φ(E \ {0}) is a Borel set in

R+ × Sn−1 and the rest is a consequence of Theorem 8.8.

The next result gives a simple description of the completion of the measure
space (Sn−1,BSn−1 , σn−1) in terms of positive cones.

Definition 8.7 We denote (Sn−1,Sn−1, σn−1) the completion of the measure
space (Sn−1,BSn−1 , σn−1).

Proposition 8.9 If A ⊆ Sn−1, then
(i) A ∈ Sn−1 if and only if R+ ·A ∈ Ln if and only if (0, 1] ·A ∈ Ln,
(ii) σn−1(A) = n ·mn

(
(0, 1] ·A

)
for every A ∈ Sn−1.

Proof: (i) If A ∈ Sn−1, there exist A1, A2 ∈ BSn−1 with σn−1(A2) = 0 so
that A1 ⊆ A and A \ A1 ⊆ A2. Proposition 8.7 implies that the positive
cones R+ · A1 and R+ · A2 are Borel sets in Rn with R+ · A1 ⊆ R+ · A and
(R+ · A) \ (R+ · A1) ⊆ R+ · A2. Lemmas 8.2 and 8.3 or Theorem 8.13 imply
mn(R+ ·A2) = ρ(R+)σn−1(A2) = 0. Hence, R+ ·A ∈ Ln.

Conversely, let R+ · A ∈ Ln. Then, there are Borel sets B1, B2 ⊆ Rn

with mn(B2) = 0, so that B1 ⊆ R+ · A and (R+ · A) \ B1 ⊆ B2. For every
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r ∈ R+ we have that (B1)r ⊆ A and A \ (B1)r ⊆ (B2)r. From Theorem 8.13,∫ +∞
0

σn−1((B2)r)r
n−1 dr = mn(B2) = 0, implying that σn−1((B2)r) = 0 for

m1-a.e. r ∈ (0,+∞). If we consider such an r, since (B1)r and (B2)r are Borel
sets in Sn−1, we conclude that A ∈ Sn−1.

If R+ · A ∈ Ln, then (0, 1] · A = (R+ · A) ∩ Bn ∈ Ln. Conversely, if
(0, 1] ·A ∈ Ln, then R+ ·A =

⋃+∞
k=1 k ·

(
(0, 1] ·A

)
∈ Ln.

(ii) We take A ∈ Sn−1 and A1, A2 ∈ BSn−1 with σn−1(A2) = 0 so that A1 ⊆ A
and A \ A1 ⊆ A2. Then the sets (0, 1] · A1 and (0, 1] · A2 are Borel sets in
Rn with (0, 1] · A1 ⊆ (0, 1] · A and (0, 1] · A \ (0, 1] · A1 ⊆ (0, 1] · A2. Since
mn((0, 1] · A2) = 1

n σn−1(A2) = 0, we conclude that σn−1(A) = σn−1(A1) =
n ·mn((0, 1] ·A1) = n ·mn((0, 1] ·A).

The next result is an extension of Theorem 8.13 to Lebesgue sets.

Theorem 8.12 Let E ∈ Ln. Then Er ∈ Sn−1 for m1-a.e. r ∈ R+ and Ey ∈ L1

for σn−1-a.e. y ∈ Sn−1 and the a.e. defined functions

r 7→ σn−1(Er), y 7→
∫
Ey

rn−1 dr

are L1-measurable and, respectively, Sn−1-measurable. Also,

mn(E) =

∫ +∞

0

σn−1(Er)r
n−1 dr =

∫
Sn−1

(∫
Ey

rn−1 dr
)
dσn−1(y).

Proof: We consider Borel sets B1, B2 in Rn with mn(B2) = 0, so that B1 ⊆ E
and E \B1 ⊆ B2.

Theorem 8.13 implies that, for every r ∈ R+, (B1)r and (B2)r are Borel sets
in Sn−1 with (B1)r ⊆ Er and Er \ (B1)r ⊆ (B2)r. From Theorem 8.13 again,∫ +∞
0

σn−1((B2)r)r
n−1 dr = mn(B2) = 0 and we get that σn−1((B2)r) = 0 for

m1-a.e. r ∈ R+. Therefore, Er ∈ Sn−1 and σn−1(Er) = σn−1((B1)r) for m1-a.e.
r ∈ R+.

Similarly, for every y ∈ Sn−1, (B1)y and (B2)y are Borel sets in R+ with
(B1)y ⊆ Ey and Ey \ (B1)y ⊆ (B2)y. From

∫
Sn−1

( ∫
(B2)y

rn−1 dr
)
dσn−1(y) =

mn(B2) = 0, we get that
∫
(B2)y

rn−1 dr = 0 for σn−1-a.e. y ∈ Sn−1. This

implies m1((B2)y) = 0 for σn−1-a.e. y ∈ Sn−1 and, hence, Ey ∈ L1 and∫
Ey
rn−1 dr =

∫
(B1)y

rn−1 dr for σn−1-a.e. y ∈ Sn−1. Theorem 8.13 implies

mn(E) = mn(B1) =
∫ +∞
0

σn−1((B1)r)r
n−1 dr =

∫ +∞
0

σn−1(Er)r
n−1 dr and,

also, =
∫
Sn−1

( ∫
(B1)y

rn−1 dr
)
dσn−1(y) =

∫
Sn−1

( ∫
Ey
rn−1 dr

)
dσn−1(y).

The rest of this section consists of a series of theorems which describe the
so-called method of integration by polar coordinates.

Definition 8.8 Let f : Rn → Y . For every r ∈ R+ and every y ∈ Sn−1 we
define the functions fr : Sn−1 → Y and fy : R+ → Y by the formulas

fr(y) = fy(r) = f(ry).

fr is called the r-section of f and fy is called the y-section of f .
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The next two theorems cover integration by polar coordinates for Borel mea-
surable functions.

Theorem 8.13 Let f : Rn → [0,+∞] be BRn-measurable. Then every fr is
BSn−1-measurable and every fy is BR+-measurable. The functions

r 7→
∫
Sn−1

f(ry) dσn−1, y 7→
∫ +∞

0

f(ry)rn−1 dr

are BR+-measurable and, respectively, BSn−1-measurable. Moreover∫
Rn

f(x) dmn(x) =

∫ +∞

0

(∫
Sn−1

f(ry) dσn−1(y)
)
rn−1 dr

=

∫
Sn−1

(∫ +∞

0

f(ry)rn−1 dr
)
dσn−1(y).

Proof: The results of this theorem and of Theorem 8.13 are the same in case
f = χE . Using the linearity of the integrals, we prove the theorem in the
case of a simple function φ : Rn → [0,+∞]. Finally, applying the Monotone
Convergence Theorem to an increasing sequence of simple functions, we prove
the theorem in the general case.

Theorem 8.14 Let f : Rn → R or C be BRn-measurable and integrable with
respect to mn. Then every fr is BSn−1-measurable and, for m1-a.e. r ∈ R+,
fr is integrable with respect to σn−1. Also, every fy is BR+-measurable, and
for σn−1-a.e. y ∈ Sn−1, fy is integrable with respect to m1. The a.e. defined
functions

r 7→
∫
Sn−1

f(ry) dσn−1(y), y 7→
∫ +∞

0

f(ry)rn−1 dr

are integrable with respect to m1 and, respectively, with respect to σn−1. Also∫
Rn

f(x) dmn(x) =

∫ +∞

0

(∫
Sn−1

f(ry) dσn−1(y)
)
rn−1 dr

=

∫
Sn−1

(∫ +∞

0

f(ry)rn−1 dr
)
dσn−1(y).

Proof: We use Theorem 8.15 to pass to the case of functions f : Rn → R, by
writing them as f = f+−f−. We next treat the case of f : Rn → C, by writing
f = <(f) + i=(f), after we exclude, in the usual manner, the set f−1({∞}).

The next two theorems treat integration by polar coordinates in the case
of Lebesgue measurable functions. They are proved, one after the other, using
Theorem 8.14 exactly as Theorems 8.15 and 8.16 were proved with the use of
Theorem 8.13.
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Theorem 8.15 Let f : Rn → [0,+∞] be Ln-measurable. Then, for m1-a.e.
r ∈ R+, the function fr is Sn−1-measurable and, for σn−1-a.e. y ∈ Sn−1, the
function fy is L1-measurable. The a.e. defined functions

r 7→
∫
Sn−1

f(ry) dσn−1(y), y 7→
∫ +∞

0

f(ry)rn−1 dr

are L1-measurable and, respectively, Sn−1-measurable. Moreover∫
Rn

f(x) dmn(x) =

∫ +∞

0

(∫
Sn−1

f(ry) dσn−1(y)
)
rn−1 dr

=

∫
Sn−1

(∫ +∞

0

f(ry)rn−1 dr
)
dσn−1(y).

Theorem 8.16 Let f : Rn → R or C be Ln-measurable and integrable with
respect to mn. Then, for m1-a.e. r ∈ R+, fr is integrable with respect to σn−1
and, for σn−1-a.e. y ∈ Sn−1, fy is integrable with respect to m1. The a.e.
defined functions

r 7→
∫
Sn−1

f(ry) dσn−1(y), y 7→
∫ +∞

0

f(ry)rn−1 dr

are integrable with respect to m1 and, respectively, with respect to σn−1. Also∫
Rn

f(x) dmn(x) =

∫ +∞

0

(∫
Sn−1

f(ry) dσn−1(y)
)
rn−1 dr

=

∫
Sn−1

(∫ +∞

0

f(ry)rn−1 dr
)
dσn−1(y).

Definition 8.9 A set E ⊆ Rn is called radial if x ∈ E implies that x′ ∈ E for
all x′ with |x′| = |x|.

A function f : Rn → Y is called radial if f(x) = f(x′) for every x, x′ with
|x| = |x′|.

It is obvious that E is radial if and only if χE is radial.
If the set E is radial, we may define the radial projection of E as

Ẽ = {r ∈ R+ |x ∈ E when |x| = r}.

Also, if f is radial, we may define the radial projection of f as the function
f̃ : R+ → Y by

f̃(r) = f(x)

for every x ∈ Rn with |x| = r.
It is obvious that a radial set or a radial function is uniquely determined

from its radial projection (except from the fact that the radial set may or may
not contain the point 0 and that the value of the function at 0 is not determined
by its radial projection).
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Proposition 8.10 (i) The radial set E ⊆ Rn is in BRn or in Ln if and only
if its radial projection is in BR+ or, respectively, in L1. In any case we have

mn(E) = σn−1(Sn−1)

∫
Ẽ

rn−1 dr.

(ii) If (Y,Σ′) is a measurable space, then the radial function f : Rn → Y is
(BRn ,Σ′)-measurable or (Ln,Σ′)-measurable if and only if its radial projection
is (BR+ ,Σ′)-measurable or, respectively, (L1,Σ

′)-measurable.

If f : Rn → [0,+∞] is Borel or Lebesgue measurable or if f : Rn → R or
C is Borel or Lebesgue measurable and integrable with respect to mn, then∫

Rn

f(x) dmn(x) = σn−1(Sn−1)

∫ +∞

0

f̃(r)rn−1 dr.

Proof: (i) If E ∈ BRn or E ∈ Ln is radial, then, for every y ∈ Sn−1, we have

Ey = Ẽ and, hence, the result is a consequence of Theorems 8.13 and 8.14.

For the converse we may argue as follows: we consider the collection of all
subsets of R+ which are radial projections of radial Borel sets in Rn, we then
prove easily that this collection is a σ-algebra which contains all open subsets
of R+ and we conclude that it contains all Borel sets in R+.

Now, if E is radial and Ẽ ∈ L1, we take Borel sets M1,M2 in R+ with
m1(M2) = 0 so that M1 ⊆ Ẽ and Ẽ \M1 ⊆ M2. We consider the radial sets

E1, E2 ⊆ Rn so that Ẽ1 = M1 and Ẽ2 = M2, which are Borel sets, by the
result of the previous paragraph. Then we have E1 ⊆ E and E \ E1 ⊆ E2.

Since 0 = mn(E2) =
∫
Sn−1

( ∫
(E2)y

rn−1 dr
)
dσn−1 = σn−1(Sn−1)

∫
Ẽ2
rn−1 dr,

we have
∫
Ẽ2
rn−1 dr and, hence, m1(Ẽ2) = 0. This implies that E ∈ L1.

(ii) The statement about measurability is a trivial consequence of the definition
of measurability and the result of part (i). The integral formulas are conse-
quences of Theorems 8.15 up to 8.18.

8.5 Exercises.

1. If B is open in Rn
∗ , prove that R+ ·B is open in Rn

∗ .

If B is a Borel set in Rn
∗ , prove that R+ ·B is a Borel set in Rn

∗ .

2. Consider the measure spaces (R,BR,m1) and (R,P(R), ]), where ] is
the counting measure. If E = {(x1, x2) | 0 ≤ x1 = x2 ≤ 1}, prove that
all numbers (m1 ⊗ ])(E),

∫
R
](Ex1) dm1(x1) and

∫
R
m1(Ex2) d](x2) are

different.

3. Consider am,n = 1 if m = n, am,n = −1 if m = n+ 1 and am,n = 0 in any

other case. Then
∑+∞
n=1

(∑+∞
m=1 am,n

)
6=
∑+∞
m=1

(∑+∞
n=1 am,n

)
. Explain,

through the Theorem of Fubini.
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4. The graph and the area under the graph of a function.

Suppose that (X,Σ, µ) is a measure space and f : X → [0,+∞] is Σ-
measurable. If

Af = {(x, y) ∈ X ×R | 0 ≤ y < f(x)}

and
Gf = {(x, y) ∈ X ×R | y = f(x)},

prove that both Af and Gf are Σ ⊗ BR-measurable. If, moreover, µ is
σ-finite, prove that

(µ⊗m1)(Af ) =

∫
X

f dµ, (µ⊗m1)(Gf ) = 0.

5. The distribution function.

Suppose that (X,Σ, µ) is a σ-finite measure space and f : X → [0,+∞] is
Σ-measurable. Calculating the measure µ⊗ µG of the set Af = {(x, y) ∈
X ×R | 0 ≤ y < f(x)}, prove Proposition 7.14.

6. Consider measure spaces (X1,Σ1, µ1) and (X2,Σ2, µ2), a Σ1-measurable
f1 : X1 → C and a Σ2-measurable f2 : X2 → C. Consider the function
f : X1 ×X2 → C defined by f(x1, x2) = f1(x1)f2(x2).

Prove that f is Σ1 ⊗ Σ2-measurable.

If f1 is integrable with respect to µ1 and f2 is integrable with respect to
µ2, prove that f is integrable with respect to µ1 ⊗ µ2 and that∫

X1×X2

f d(µ1 ⊗ µ2) =

∫
X1

f1 dµ1

∫
X2

f2 dµ2.

7. The volume of the unit ball in Rn and the surface measure of Sn−1.

(i) If vn = mn(Bn) is the Lebesgue measure of the unit ball of Rn, prove
that

vn = 2vn−1

∫ 1

0

(1− t2)
n−1
2 dt.

(ii) Set Jn =
∫ 1

0
(1 − t2)

n−1
2 dt for n ≥ 0 and prove the inductive formula

Jn = n−1
n Jn−2, n ≥ 2.

(iii) Prove that the gamma-function (defined in Exercise 7.9.38) satisfies
the inductive formula

Γ(z + 1) = zΓ(z)

for every z ∈ H+, and that Γ(1) = 1, Γ( 1
2 ) =

√
π.

(iii) Prove that

vn =
π
n
2

Γ(n2 + 1)
, σn−1(Sn−1) =

2π
n
2

Γ(n2 )
.
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8. The integral of Gauss and the measures of Bn and of Sn−1.

Define

In =

∫
Rn

e−
|x|2
2 dx.

(i) Prove that In = In1 for every n ∈ N.
(ii) Use integration by polar coordinates to prove that I2 = 2π and, hence,
that ∫

Rn

e−
|x|2
2 dx = (2π)

n
2 .

(iii) Use integration by polar coordinates to prove that

(2π)
n
2 = σn−1(Sn−1)

∫ +∞

0

e−
r2

2 rn−1 dr

and, hence,

σn−1(Sn−1) =
2π

n
2

Γ(n2 )
, vn = mn(Bn) =

π
n
2

Γ(n2 + 1)
.

9. From
∫ n
0

sin x
x dx =

∫ n
0

( ∫ +∞
0

e−xt dt
)

sinx dx, prove that∫ →+∞

0

sinx

x
dx =

π

2
.

10. Convolution.

Let f, g : Rn → R or C be Ln-measurable.

(i) Prove that the function H : Rn ×Rn → R or C, which is defined by
the formula

H(x, y) = f(x− y)g(y),

is L2n-measurable.

Now, let f and g be integrable with respect to mn.

(ii) Prove that H is integrable with respect to m2n and∫
R2n

|H| dm2n ≤
∫
Rn

|f | dmn

∫
Rn

|g| dmn.

(iii) Prove that for mn-a.e. x ∈ Rn the function f(x− ·)g(·) is integrable
with respect to mn.

The a.e. defined function f ∗ g : Rn → R or C by the formula

(f ∗ g)(x) =

∫
Rn

f(x− y)g(y) dmn(y)

is called the convolution of f and g.
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(iv) Prove that f ∗ g is integrable with respect to mn, that∫
Rn

(f ∗ g) dmn =

∫
Rn

f dmn

∫
Rn

g dmn

and ∫
Rn

|f ∗ g| dmn ≤
∫
Rn

|f | dmn

∫
Rn

|g| dmn.

(v) Prove that, for every f, g, h, f1, f2 which are Lebesgue integrable, we
havemn-a.e. on Rn that f∗g = g∗f , (f∗g)∗h = f∗(g∗h), (λf)∗g = λ(f∗g)
and (f1 + f2) ∗ g = f1 ∗ g + f2 ∗ g.

11. The Fourier transforms of Lebesgue integrable functions.

Let f : Rn → R or C be Lebesgue integrable over Rn. We define the
function f̂ : Rn → R or C by the formula

f̂(ξ) =

∫
Rn

e−2πix·ξf(x) dmn(x),

where x · ξ = x1ξ1 + · · ·xnξn is the euclidean inner-product. The function
f̂ is called the Fourier transform of f .

(i) Prove that ̂f1 + f2 = f̂1 + f̂2 and λ̂f = λf̂ .

(ii) Prove that f̂ ∗ g = f̂ ĝ, where f∗g is the convolution defined in Exercise
8.5.10.
(iii) If g(x) = f(x− a) for a.e. x ∈ Rn, prove that ĝ(ξ) = e−2πia·ξ f̂(ξ) for
all ξ ∈ Rn.
(iv) If g(x) = e−2πia·xf(x) for a.e. x ∈ Rn, prove that ĝ(ξ) = f̂(ξ+ a) for
all ξ ∈ Rn.

(v) If g(x) = f(x) for a.e. x ∈ Rn, prove that ĝ(ξ) = f̂(−ξ) for all
ξ ∈ Rn.
(vi) If T : Rn → Rn is a linear transformation with det(T ) 6= 0 and

g(x) = f(Tx) for a.e. x ∈ Rn, prove that ĝ(ξ) = 1
det(T ) f̂

(
(T ∗)−1(ξ)

)
for

all ξ ∈ Rn, where T ∗ is the adjoint of T .
(vii) Prove that f̂ is continuous on Rn.

(viii) Prove that |f̂(ξ)| ≤
∫
Rn |f(x)| dmn(x) for every ξ ∈ Rn.

12. Let K be a Cantor-type set in [0, 1] of the type considered in Exercise
4.6.16 with m1(K) > 0. Prove that {(x, y) ∈ [0, 1]× [0, 1] |x− y ∈ K} is a
compact subset of R2 with positive m2-measure, which does not contain
any measurable interval of positive m2-measure.

13. Uniqueness of Lebesgue measure.

Let µ and ν be two locally finite Borel measures on Rn, which are trans-
lation invariant. Namely: µ(A+x) = µ(A) and ν(A+x) = ν(A) for every
x ∈ Rn and every A ∈ BRn .

Working with
∫
Rn×Rn χA(x)χB(x + y) d(µ ⊗ ν)(x, y), prove that either

µ = λν or ν = λµ for some λ ∈ [0,+∞).
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Conclude that the only locally finite Borel measure on Rn which has value
1 at the unit cube [0, 1]n is the Lebesgue measure mn.

14. Let E ⊆ [0, 1] × [0, 1] have the property that every horizontal section Ey
is countable and every vertical section Ex has countable complementary
set [0, 1] \ Ey. Prove that E is not Lebesgue measurable.

15. Let (X,Σ, µ) be a measure space and (Y,Σ′) be a measurable space. Sup-
pose that for every x ∈ X there exists a measure νx on (Y,Σ′) so that for
every B ∈ Σ′ the function x 7→ νx(B) is Σ-measurable.

We define ν(B) =
∫
X
νx(B) dµ(x) for every B ∈ Σ′.

(i) Prove that ν is a measure on (Y,Σ′).
(ii) If g : Y → [0,+∞] is Σ′-measurable and if f(x) =

∫
Y
g dνx for every

x ∈ X, prove that f is Σ-measurable and
∫
X
f dµ =

∫
Y
g dν.

16. Interchange of successive summations.

If I1, I2 are two sets of indices with their counting measures, prove that
the product measure on I1 × I2 is its counting measure.

Applying the theorems of Tonelli and Fubini, derive results about the
validity of ∑

i1∈I1,i2∈I2

ci1,i2 =
∑
i1∈I1

( ∑
i2∈I2

ci1,i2
)

=
∑
i2∈I2

( ∑
i1∈I1

ci1,i2
)
.

17. Consider, for every p ∈ (0,+∞), the function f : Rn → [0,+∞], defined
by f(x) = 1

|x|p .

(i) Prove that f is not Lebesgue integrable over Rn.
(ii) Prove that f is integrable over the set Aδ = {x ∈ Rn | 0 < δ ≤ |x|} if
and only if p > 1.
(iii) Prove that f is integrable over the set BR = {x ∈ Rn | |x| ≤ R < +∞}
if and only if p < 1.

18. Suppose that (Y,Σ) and (Xi,Σi) are measurable spaces for all i ∈ I and
that g : Xi0 → Y is (Σi0 ,Σ)-measurable. If we define f :

∏
i∈I Xi → Y by

f
(
(xi)i∈I

)
= g(xi0), prove that f is (⊗i∈IΣi,Σ)-measurable.

19. Integration by parts.

Consider the interval R̃ = (a, b] × (a, b] and partition it into the two
sets ∆1 = {(t, s) ∈ R̃ | t ≤ s} and ∆2 = {(t, s) ∈ R̃ | s < t}. Writing
(µG⊗µF )(R̃) = (µG⊗µF )(∆1) + (µG⊗µF )(∆2), prove Proposition 7.11.

165



166



Chapter 9

Convergence of functions

9.1 a.e. convergence and uniformly a.e. conver-
gence.

The two types of convergence of sequences of functions which are usually stud-
ied in elementary courses are the pointwise convergence and the uniform con-
vergence. We, briefly, recall their definitions and simple properties.

Suppose A is an arbitrary set and f, fn : A→ R or C for every n ∈ N. We
say that (fn) converges to f pointwise on A if fn(x) → f(x) for every x ∈ A.
In case f(x) is finite, this means that for every ε > 0 there is an n0 = n0(ε, x)
so that: |fn(x)− f(x)| ≤ ε for every n ≥ n0.

Suppose A is an arbitrary set and f, fn : A → C for every n ∈ N. We say
that (fn) converges to f uniformly on A if for every ε > 0 there is an n0 = n0(ε)
so that: |fn(x) − f(x)| ≤ ε for every x ∈ A and every n ≥ n0 or, equivalently,
supx∈A |fn(x)− f(x)| ≤ ε for every n ≥ n0. In other words, (fn) converges to f
uniformly on A if and only if supx∈A |fn(x)− f(x)| → 0 as n→ +∞.

It is obvious that uniform convergence on A of (fn) to f implies pointwise
convergence on A. The converse is not true in general. As a counter-example,
if fn = χ(0, 1n ) for every n, then (fn) converges to f = 0 pointwise on (0, 1) but

not uniformly on (0, 1).
Let us describe some easy properties.
The pointwise limit (if it exists) of a sequence of functions is unique and,

hence, the same is true for the uniform limit.
Assume that f, g, fn, gn : A → C for all n. If (fn) converges to f and

(gn) converges to g pointwise on A, then (fn + gn) converges to f + g and
(fngn) converges to fg pointwise on A. The same is true for uniform conver-
gence, provided that in the case of the product we also assume that the two
sequences are uniformly bounded: this means that there is an M < +∞ so that
|fn(x)|, |gn(x)| ≤M for every x ∈ A and every n ∈ N.

Another well-known fact is that, if fn : A→ C for all n and (fn) is Cauchy
uniformly on A, then there is an f : A → C so that (fn) converges to f
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uniformly on A. Indeed, suppose that for every ε > 0 there is an n0 = n0(ε) so
that: |fn(x) − fm(x)| ≤ ε for every x ∈ A and every n,m ≥ n0. This implies
that, for every x, the sequence (fn(x)) is a Cauchy sequence of complex numbers
and, hence, it converges to some complex number. If we define f : A → C by
f(x) = limn→+∞ fn(x) and if in the above inequality |fn(x) − fm(x)| ≤ ε we
let m→ +∞, we get that |fn(x)− f(x)| ≤ ε for every x ∈ A and every n ≥ n0.
Hence, (fn) converges to f uniformly on A.

It is almost straightforward to extend these two notions of convergence to
measure spaces.

Suppose that (X,Σ, µ) is an arbitrary measure space.

We have already seen the notion of a.e. convergence. If f, fn : X → R or
C for every n, we say that (fn) converges to f (pointwise) a.e. on A ∈ Σ
if there is a set B ∈ Σ, B ⊆ A, so that µ(A \ B) = 0 and (fn) converges to f
pointwise on B.

If f, fn : X → R or C for every n, we say that (fn) converges to f uniformly
a.e. on A ∈ Σ if there is a set B ∈ Σ, B ⊆ A, so that µ(A \B) = 0, f and fn
are finite on B for all n and (fn) converges to f uniformly on B.

It is clear that uniform convergence a.e. on A implies convergence a.e. on
A. The converse is not true in general and the counter-example is the same as
above.

If (fn) converges to both f and f ′ a.e. on A, then f = f ′ a.e. on A. Indeed,
there are B,B′ ∈ Σ with B,B′ ⊆ A so that µ(A \ B) = µ(A \ B′) = 0 and
(fn) converges to f pointwise on B and to f ′ pointwise on B′. Therefore, (fn)
converges to both f and f ′ pointwise on B ∩B′ and, hence, f = f ′ on B ∩B′.
Since µ(A \ (B ∩ B′)) = 0, we get that f = f ′ a.e. on A. This is a common
feature of almost any notion of convergence in the framework of measure spaces:
the limits may be considered unique only if we agree to identify functions which
are equal a.e. on A. This can be made precise by using the tool of equivalence
classes in an appropriate manner, but we postpone this discussion for later.

We can, similarly, prove that if (fn) converges to both f and f ′ uniformly
a.e. on A, then f = f ′ a.e. on A.

Moreover, if f, g, fn, gn : A → C a.e. on A for every n and (fn) converges
to f and (gn) converges to g a.e. on A, then (fn + gn) converges to f + g and
(fngn) converges to fg a.e. on A. The same is true for uniform convergence
a.e., provided that in the case of the product we also assume that the two
sequences are uniformly bounded a.e.: namely, that there is an M < +∞ so
that |fn|, |gn| ≤M a.e. on A for every n ∈ N.

9.2 Convergence in the mean.

Assume that (X,Σ, µ) is a measure space.

Definition 9.1 Let f, fn : X → R or C be measurable for all n. We say that
(fn) converges to f in the mean on A ∈ Σ if f and fn are finite a.e. on A

168



for all n and ∫
A

|fn − f | dµ→ 0

as n→ +∞.
We say that (fn) is Cauchy in the mean on A ∈ Σ if fn is finite a.e. on

A for all n and ∫
A

|fn − fm| dµ→ 0

as m,n→ +∞.

It is necessary to make a comment regarding the definition. The functions
|fn−f | and |fn−fm| are defined only a.e. on A. In fact, if all f, fn are finite on
B ∈ Σ with B ⊆ A and µ(A\B) = 0, then |fn−f | and |fn−fm| are all defined
on B and are ΣeB-measurable. Therefore, only the integrals

∫
B
|fn− f | dµ and∫

B
|fn − fm| dµ are well-defined. If we want to be able to write the integrals∫

A
|fn − f | dµ and

∫
A
|fn − fm| dµ, we must extend the functions |fn − f | and

|fn − fm| on X so that they are Σ-measurable and, after that, the integrals∫
A
|fn − f | dµ and

∫
A
|fn − fm| dµ will be defined and equal to

∫
B
|fn − f | dµ

and
∫
B
|fn − fm| dµ, respectively. Since the values of the extensions outside B

do not affect the resulting values of the integrals over A, it is simple and enough
to extend all f, fn as 0 on X \B.

Thus, the replacement of all f, fn by 0 on X \ B makes all functions finite
everywhere on A without affecting the fact that (fn) converges to f in the mean
on A or that (fn) is Cauchy in the mean on A.

Proposition 9.1 If (fn) converges to both f and f ′ in the mean on A, then
f = f ′ a.e. on A.

Proof: By the comment of the previous paragraph, we may assume that all f, f ′

and fn are finite on A. This does not affect either the hypothesis or the result
of the statement.

We write
∫
A
|f − f ′| dµ ≤

∫
A
|fn − f | dµ+

∫
A
|fn − f ′| dµ→ 0 as n→ +∞.

Hence,
∫
A
|f − f ′| dµ = 0, implying that f = f ′ a.e. on A.

Proposition 9.2 Suppose (fn) converges to f and (gn) converges to g in the
mean on A and λ ∈ C. Then
(i) (fn + gn) converges to f + g in the mean on A.
(ii) (λfn) converges to λf in the mean on A.

Proof: We may assume that all f, g, fn, gn are finite on A.
Then,

∫
A
|(fn + gn) − (f + g)| dµ ≤

∫
A
|fn − f | dµ +

∫
A
|gn − g| dµ → 0 as

n→ +∞, and
∫
A
|λfn − λf | dµ = |λ|

∫
A
|fn − f | dµ→ 0 as n→ +∞.

It is trivial to prove that, if (fn) converges to f in the mean on A, then
(fn) is Cauchy in the mean on A. Indeed, assuming all f, fn are finite on A,∫
A
|fn − fm| dµ ≤

∫
A
|fn − f | dµ +

∫
A
|fm − f | dµ → 0 as n,m → +∞. The

following basic theorem expresses the converse.
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Theorem 9.1 If (fn) is Cauchy in the mean on A, then there is f : X → C
so that (fn) converges to f in the mean on A. Moreover, there is a subsequence
(fnk) which converges to f a.e. on A.

As a corollary: if (fn) converges to f in the mean on A, there is a subse-
quence (fnk) which converges to f a.e. on A.

Proof: As usual, we assume that all f, fn are finite on A.
We have that, for every k, there is nk so that

∫
A
|fn − fm| dµ < 1

2k
for

every n,m ≥ nk. Since we may assume that each nk is as large as we like,
we inductively take (nk) so that nk < nk+1 for every k. Therefore, (fnk) is a
subsequence of (fn).

From the construction of nk and from nk < nk+1, we get that∫
A

|fnk+1
− fnk | dµ <

1

2k

for every k. Then, the measurable function G : X → [0,+∞] defined by

G =

{∑+∞
k=1 |fnk+1

− fnk |, on A
0, on Ac

satisfies
∫
X
Gdµ =

∑+∞
k=1

∫
A
|fnk+1

− fnk | dµ = 1 < +∞. Thus, G < +∞
a.e. on A and, hence, the series

∑+∞
k=1(fnk+1

(x) − fnk(x)) converges for a.e.
x ∈ A. Therefore, there is a B ∈ Σ, B ⊆ A so that µ(A \ B) = 0 and∑+∞
k=1(fnk+1

(x)− fnk(x)) converges for every x ∈ B. We define the measurable
f : X → C by

f =

{
fn1

+
∑+∞
k=1(fnk+1

− fnk), on B
0, on Bc.

On B we have that f = fn1 +limK→+∞
∑K−1
k=1 (fnk+1

−fnk) = limK→+∞ fnK
and, hence, (fnk) converges to f a.e. on A.

We, also, have on B that |fnK − f | = |fnK − fn1
−
∑+∞
k=1(fnk+1

− fnk)| =

|
∑K−1
k=1 (fnk+1

− fnk) −
∑+∞
k=1(fnk+1

− fnk)| ≤
∑+∞
k=K |fnk+1

− fnk | for all K.
Hence,∫

A

|fnK − f | dµ ≤
+∞∑
k=K

∫
A

|fnk+1
− fnk | dµ <

+∞∑
k=K

1

2k
=

1

2K−1
→ 0

as K → +∞.
From nk → +∞, we get

∫
A
|fk−f | dµ ≤

∫
A
|fk−fnk | dµ+

∫
A
|fnk−f | dµ→ 0

as k → +∞ and we conclude that (fn) converges to f in the mean on A.

Example
Consider the sequence f1 = χ(0,1), f2 = χ(0, 12 )

, f3 = χ( 1
2 ,1)

, f4 = χ(0, 13 )
, f5 =

χ( 1
3 ,

2
3 )
, f6 = χ( 2

3 ,1)
, f7 = χ(0, 14 )

, f8 = χ( 1
4 ,

2
4 )
, f9 = χ( 2

4 ,
3
4 )
, f10 = χ( 3

4 ,1)
and so on.

It is clear that
∫
(0,1)
|fn(x)| dm1(x) → 0 as n → +∞ (the sequence of inte-

grals is 1, 12 ,
1
2 ,

1
3 ,

1
3 ,

1
3 ,

1
4 ,

1
4 ,

1
4 ,

1
4 , . . .) and, hence, (fn) converges to 0 in the mean
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on (0, 1). By Theorem 9.1, there exists a subsequence converging to 0 a.e. on
(0, 1) and it is easy to find many such subsequences: indeed, f1 = χ(0,1), f2 =
χ(0, 12 )

, f4 = χ(0, 13 )
, f7 = χ(0, 14 )

and so on, is one such subsequence.

But, it is not true that (fn) itself converges to 0 a.e. on (0, 1). In fact, if
x is any irrational number in (0, 1), then x belongs to infinitely many intervals
of the form (k−1m , km ) (for each value of m there is exactly one such value of k)
and, thus, (fn(x)) does not converge to 0. It easy to see that fn(x) → 0 only
for every rational x ∈ (0, 1).

We may now complete Proposition 9.2 as follows.

Proposition 9.3 Suppose (fn) converges to f and (gn) converges to g in the
mean on A.
(i) If there is M < +∞ so that |fn| ≤M a.e. on A, then |f | ≤M a.e. on A.
(ii) If there is an M < +∞ so that |fn|, |gn| ≤ M a.e. on A, then (fngn)
converges to fg in the mean on A.

Proof: (i) Theorem 9.1 implies that there is a subsequence (fnk) which converges
to f a.e. on A. Therefore, |fnk | → |f | a.e. on A and, hence, |f | ≤M a.e. on A.
(ii) Assuming that all f, g, fn, gn are finite on A and using the result of (i),∫
A
|fngn − fg| dµ ≤

∫
A
|fngn − fgn| dµ+

∫
A
|fgn − fg| dµ ≤M

∫
A
|fn − f | dµ+

M
∫
A
|gn − g| dµ→ 0 as n→ +∞.

9.3 Convergence in measure.

Assume that (X,Σ, µ) is a measure space.

Definition 9.2 Let f, fn : X → R or C be measurable for all n. We say that
(fn) converges to f in (µ-)measure on A ∈ Σ if all f, fn are finite a.e. on
A and if for every ε > 0 we have

µ({x ∈ A | |fn(x)− f(x)| ≥ ε})→ 0

as n→ +∞.
We say that (fn) is Cauchy in (µ-)measure on A ∈ Σ if all fn are finite

a.e. on A and if for every ε > 0 we have

µ({x ∈ A | |fn(x)− fm(x)| ≥ ε})→ 0

as n,m→ +∞.

We make a comment similar to the comment following Definition 9.1. If
we want to be able to write the values µ({x ∈ A | |fn(x) − f(x)| ≥ ε}) and
µ({x ∈ A | |fn(x) − f(x)| ≥ ε}), we first extend the functions |fn − f | and
|fn − fm| outside the set B ⊆ A, where all f, fn are finite, as functions defined
on X and measurable. Then, since µ(A \B) = 0, we get that the above values
are equal to the values µ({x ∈ B | |fn(x)− f(x)| ≥ ε}) and, respectively, µ({x ∈
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B | |fn(x) − f(x)| ≥ ε}). Therefore, the actual extensions play no role and,
hence, we may for simplicity extend all f, fn as 0 on X \B.

Thus the replacement of all f, fn by 0 on X \ B makes all functions finite
everywhere on A and does not affect the fact that (fn) converges to f in measure
on A or that (fn) is Cauchy in measure on A.

A useful trick is the inequality

µ({x ∈ A | |f(x) + g(x)| ≥ a+ b}) ≤ µ({x ∈ A | |f(x)| ≥ a})
+ µ({x ∈ A | |g(x)| ≥ b}),

which is true for every a, b > 0. This is due to the set-inclusion

{x ∈ A | |f(x) + g(x)| ≥ a+ b} ⊆ {x ∈ A | |f(x)| ≥ a} ∪ {x ∈ A | |g(x)| ≥ b}.

Proposition 9.4 If (fn) converges to both f and f ′ in measure on A, then
f = f ′ a.e. on A.

Proof: We may assume that all f, f ′, fn are finite on A.
Applying the above trick we find that µ({x ∈ A | |f(x) − f ′(x)| ≥ ε}) ≤

µ({x ∈ A | |fn(x) − f(x)| ≥ ε
2}) + µ({x ∈ A | |fn(x) − f ′(x)| ≥ ε

2}) → 0 as
n→ +∞. This implies µ({x ∈ A | |f(x)− f ′(x)| ≥ ε}) = 0 for every ε > 0.

We, now, write {x ∈ A | f(x) 6= f ′(x)} =
⋃+∞
k=1{x ∈ A | |f(x)− f ′(x)| ≥ 1

k}.
Since all terms in the union are null sets, we get µ({x ∈ A | f(x) 6= f ′(x)}) = 0
and conclude that f = f ′ a.e. on A.

Proposition 9.5 Suppose (fn) converges to f and (gn) converges to g in mea-
sure on A and λ ∈ C. Then
(i) (fn + gn) converges to f + g in measure on A.
(ii) (λfn) converges to λf in measure on A.
(iii) If there is M < +∞ so that |fn| ≤M a.e. on A, then |f | ≤M a.e. on A.
(iv) If there is M < +∞ so that |fn|, |gn| ≤M a.e. on A, then (fngn) converges
to fg in measure on A.

Proof: We may assume that all f, fn are finite on A, since all hypotheses and all
results to be proved are not affected by any change of the functions on a subset
of A of zero measure.
(i) We apply the usual trick and µ({x ∈ A | |(fn + gn)(x)− (f + g)(x)| ≥ ε}) ≤
µ({x ∈ A | |fn(x) − f(x)| ≥ ε

2}) + µ({x ∈ A | |gn(x) − g(x)| ≥ ε
2}) → 0 as

n→ +∞.
(ii) Also µ({x ∈ A | |λfn(x)−λf(x)| ≥ ε}) = µ({x ∈ A | |fn(x)−f(x)| ≥ ε

|λ|})→
0 as n→ +∞.
(iii) We write µ({x ∈ A | |f(x)| ≥ M + ε}) ≤ µ({x ∈ A | |fn(x)| ≥ M + ε

2}) +
µ({x ∈ A | |fn(x) − f(x)| ≥ ε

2}) = µ({x ∈ A | |fn(x) − f(x)| ≥ ε
2}) → 0 as

n→ +∞. Hence, µ({x ∈ A | |f(x)| ≥M + ε}) = 0 for every ε > 0.
We have {x ∈ A | |f(x)| > M} ⊆

⋃+∞
k=1{x ∈ A | |f(x)| ≥ M + 1

k} and, since
all sets of the union are null, we find that µ({x ∈ A | |f(x)| > M}) = 0. Hence,
|f | ≤M a.e. on A.
(iv) Applying the result of (iii), µ({x ∈ A | |fn(x)gn(x) − f(x)g(x)| ≥ ε}) ≤
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µ({x ∈ A | |fn(x)gn(x)−fn(x)g(x)| ≥ ε
2})+µ({x ∈ A | |fn(x)g(x)−f(x)g(x)| ≥

ε
2}) ≤ µ({x ∈ A | |gn(x)− g(x)| ≥ ε

2M }) +µ({x ∈ A | |fn(x)− f(x)| ≥ ε
2M })→ 0

as n→ +∞.

If (fn) converges to f in measure on A, then (fn) is Cauchy in measure on A.
Indeed, taking all f, fn finite on A, µ({x ∈ A | |fn(x) − fm(x)| ≥ ε}) ≤ µ({x ∈
A | |fn(x)− f(x)| ≥ ε

2}) + µ({x ∈ A | |fm(x)− f(x)| ≥ ε
2})→ 0 as n,m→ +∞.

Theorem 9.2 If (fn) is Cauchy in measure on A, then there is f : X → C
so that (fn) converges to f in measure on A. Moreover, there is a subsequence
(fnk) which converges to f a.e. on A.

As a corollary: if (fn) converges to f in measure on A, there is a subsequence
(fnk) which converges to f a.e. on A.

Proof: As usual, we assume that all fn are finite on A.
We have, for all k, µ({x ∈ A | |fn(x) − fm(x)| ≥ 1

2k
}) → 0 as n,m → +∞.

Therefore, there is nk so that µ({x ∈ A | |fn(x) − fm(x)| ≥ 1
2k
}) < 1

2k
for

every n,m ≥ nk. Since we may assume that each nk is as large as we like, we
may inductively take (nk) so that nk < nk+1 for every k. Hence, (fnk) is a
subsequence of (fn) and, from the construction of nk and from nk < nk+1, we
get that

µ
({
x ∈ A | |fnk+1

(x)− fnk(x)| ≥ 1

2k

})
<

1

2k

for every k. For simplicity, we write

Ek =
{
x ∈ A | |fnk+1

(x)− fnk(x)| ≥ 1

2k

}
and, hence, µ(Ek) < 1

2k
for all k. We also define the subsets of A:

Fm = ∪+∞k=mEk , F = ∩+∞m=1Fm = lim supEk .

Now, µ(Fm) ≤
∑+∞
k=m µ(Ek) <

∑+∞
k=m

1
2k

= 1
2m−1 and, hence, µ(F ) ≤

µ(Fm) < 1
2m−1 for every m. This implies

µ(F ) = 0.

If x ∈ A\F , then there is m so that x ∈ A\Fm, which implies that x ∈ A\Ek
for all k ≥ m. Therefore, |fnk+1

(x) − fnk(x)| < 1
2k

for all k ≥ m, so that∑+∞
k=m |fnk+1

(x) − fnk(x)| < 1
2m−1 . Thus, the series

∑+∞
k=m(fnk+1

(x) − fnk(x))
converges and we may define f : X → C by

f =

{
fn1(x) +

∑+∞
k=1(fnk+1

− fnk), on A \ F
0, on Ac ∪ F .

By f(x) = fn1
(x)+limK→+∞

∑K−1
k=1 (fnk+1

(x)−fnk(x)) = limK→+∞ fnK (x)
for every x ∈ A \ F and, from µ(F ) = 0, we get that (fnk) converges to f a.e.
on A.
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Now, on A \ Fm we have |fnm − f | = |fnm − fn1 −
∑+∞
k=1(fnk+1

− fnk)| =

|
∑m−1
k=1 (fnk+1

− fnk) −
∑+∞
k=1(fnk+1

− fnk)| ≤
∑+∞
k=m |fnk+1

− fnk | < 1
2m−1 .

Therefore, {x ∈ A | |fnm(x)− f(x)| ≥ 1
2m−1 } ⊆ Fm and, hence,

µ
({
x ∈ A | |fnm(x)− f(x)| ≥ 1

2m−1

})
≤ µ(Fm) <

1

2m−1
.

Take an arbitrary ε > 0 and m0 large enough so that 1
2m0−1 ≤ ε. If m ≥ m0,

{x ∈ A | |fnm(x)− f(x)| ≥ ε} ⊆ {x ∈ A | |fnm(x)− f(x)| ≥ 1
2m−1 } and, hence,

µ({x ∈ A | |fnm(x)− f(x)| ≥ ε}) < 1

2m−1
→ 0

as m→ +∞. This means that (fnk) converges to f in measure on A.
Since nk → +∞ as k → +∞, we get µ({x ∈ A | |fk(x) − f(x)| ≥ ε}) ≤

µ({x ∈ A | |fk(x) − fnk(x)| ≥ ε
2}) + µ({x ∈ A | |fnk(x) − f(x)| ≥ ε

2}) → 0 as
k → +∞ and we conclude that (fn) converges to f in measure on A.

Example
We consider the example just after Theorem 9.1. If 0 < ε ≤ 1, the sequence
of the values m1({x ∈ (0, 1) | |fn(x)| ≥ ε}) is 1, 12 ,

1
2 ,

1
3 ,

1
3 ,

1
3 ,

1
4 ,

1
4 ,

1
4 ,

1
4 , . . . and,

hence, converges to 0. Therefore, (fn) converges to 0 in measure on (0, 1). But,
as we have seen, it is not true that (fn) converges to 0 a.e. on (0, 1).

9.4 Almost uniform convergence.

Assume that (X,Σ, µ) is a measure space.

Definition 9.3 Let f, fn : X → R or C be measurable for all n ∈ N. We say
that (fn) converges to f (µ-)almost uniformly on A ∈ Σ if for every δ > 0
there is B ∈ Σ, B ⊆ A, so that µ(A \B) < δ and (fn) converges to f uniformly
on B.

We say that (fn) is Cauchy (µ-)almost uniformly on A ∈ Σ if for every
δ > 0 there is B ∈ Σ, B ⊆ A, so that µ(A\B) < δ and (fn) is Cauchy uniformly
on B.

Suppose that some g : X → R or C is measurable and that, for every k,
there is a Bk ∈ Σ, Bk ⊆ A, with µ(A\Bk) < 1

k so that g is finite on Bk. Now, it

is clear that g is finite on the set F = ∪+∞k=1Bk and that µ(A\F ) ≤ µ(A\Bk) < 1
k

for all k. This implies that µ(A \ F ) = 0 and, hence, g is finite a.e. on A.
From the statement of Definition 9.3. it is implied by the uniform conver-

gence that all functions f, fn are finite on sets B ∈ Σ, B ⊆ A with µ(A\B) < δ.
Since δ is arbitrary, by the discussion in the previous paragraph, we conclude
that, if (fn) converges to f almost uniformly on A or if it is Cauchy almost
uniformly on A, then all f, fn are finite a.e. on A. Now, if F ∈ Σ, F ⊆ A with
µ(A\F ) = 0 is the set where all f, fn are finite, then, if we replace all f, fn by 0
on X \F , the resulting functions f, fn are all finite on A and the fact that (fn)
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converges to f almost uniformly on A or that it is Cauchy almost uniformly on
A is not affected.

Proposition 9.6 If (fn) converges to both f and f ′ almost uniformly on A,
then f = f ′ a.e. on A.

Proof: Suppose that µ({x ∈ A | f(x) 6= f ′(x)}) > 0. For simplicity, we set
E = {x ∈ A | f(x) 6= f ′(x)}.

We find B ∈ Σ, B ⊆ A, with µ(A \ B) < µ(E)
2 so that (fn) converges to f

uniformly on B. We, also, find B′ ∈ Σ, B′ ⊆ A, with µ(A \B′) < µ(E)
2 so that

(fn) converges to f ′ uniformly on B′. We, then, set D = B ∩B′ and have that
µ(A \D) < µ(E) and (fn) converges to both f and f ′ uniformly on D. This, of
course, implies that f = f ′ on D and, hence, that D ∩ E = ∅.

But, then, E ⊆ A \D and, hence, µ(E) ≤ µ(A \D) < µ(E) and we arrive
at a contradiction.

Proposition 9.7 Suppose (fn) converges to f and (gn) converges to g almost
uniformly on A. Then
(i) (fn + gn) converges to f + g almost uniformly on A.
(ii) (λfn) converges to λf almost uniformly on A.
(iii) If there is M < +∞ so that |fn| ≤M a.e. on A, then |f | ≤M a.e. on A.
(iv) If there is M < +∞ so that |fn|, |gn| ≤M a.e. on A, then (fngn) converges
to fg almost uniformly on A.

Proof: We may assume that all f, fn are finite on A.
(i) For arbitrary δ > 0, there is B′ ∈ Σ, B′ ⊆ A, with µ(A\B′) < δ

2 so that (fn)

converges to f uniformly on B′ and there is B′′ ∈ Σ, B′′ ⊆ A, with µ(A\B′′) < δ
2

so that (gn) converges to g uniformly on B′′. We take B = B′ ∩ B′′ and have
that µ(A \ B) < δ and that (fn) and (gn) converge to f and, respectively, g
uniformly on B. Then (fn + gn) converges to f + g uniformly on B and, since
δ is arbitrary, we conclude that (fn + gn) converges to f + g almost uniformly
on A.
(ii) This is easier, since, if (fn) converges to f uniformly on B, then (λfn)
converges to λf uniformly on B.
(iii) Suppose µ({x ∈ A | |f(x)| > M}) > 0 and set E = {x ∈ A | |f(x)| > M}.

We find B ∈ Σ, B ⊆ A, with µ(A \ B) < µ(E) so that (fn) converges to f
uniformly on B. Then we have |f | ≤ M a.e. on B and, hence, µ(B ∩ E) = 0.
Now, µ(E) = µ(E \B) ≤ µ(A \B) < µ(E) and we arrive at a contradiction.
(iv) Exactly as in the proof of (i), for every δ > 0 we find B1 ∈ Σ, B1 ⊆ A,
with µ(A \ B1) < δ so that (fn) and (gn) converge to f and, respectively, g
uniformly on B1. By the result of (iii), |f | ≤ M a.e. on A and, hence, there is
a B2 ∈ Σ, B2 ⊆ A with µ(A \ B2) = 0 so that |fn|, |gn|, |f | ≤ M on B2. We
set B = B1 ∩ B2, so that µ(A \ B) = µ(A \ B1) < δ. Now, on B we have that
|fngn − fg| ≤ |fngn − fgn| + |fgn − fg| ≤ M |fn − f | + M |gn − g| and, thus,
(fngn) converges to fg uniformly on B. We conclude that (fngn) converges to
fg almost uniformly on A.
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One should notice the difference between the next result and the correspond-
ing Theorems 9.1 and 9.2 for the other two types of convergence: if a sequence
converges in the mean or in measure, then a.e. convergence holds for some sub-
sequence, while, if it converges almost uniformly, then a.e. convergence holds
for the whole sequence (and, hence, for every subsequence).

Before the next result, let us consider a simple general fact.
Assume that there is a collection of functions gi : Bi → C, indexed by the

set I of indices, where Bi ⊆ X for every i ∈ I, and that (fn) converges to gi
pointwise on Bi, for every i ∈ I. If x ∈ Bi ∩ Bj for any i, j ∈ I, then, by the
uniqueness of pointwise limits, we have that gi(x) = gj(x). Therefore, all limit
functions have the same value at each point of the union B = ∪i∈IBi of the
domains of definition. Hence, we can define a single function f : B → C by

f(x) = gi(x),

where i ∈ I is any index for which x ∈ Bi, and it is clear that (fn) converges to
f pointwise on B.

Theorem 9.3 If (fn) is Cauchy almost uniformly on A, then there is an f :
X → C so that (fn) converges to f almost uniformly on A. Moreover, (fn)
converges to f a.e. on A.

As a corollary: if (fn) converges to f almost uniformly on A, then (fn)
converges to f a.e. on A.

Proof: For each k, there exists Bk ∈ Σ, Bk ⊆ A, with µ(A \ Bk) < 1
k so that

(fn) is Cauchy uniformly on Bk. Therefore, there is a function gk : Bk → C so
that (fn) converges to gk uniformly and, hence, pointwise on Bk.

By the general result of the paragraph just before this theorem, there is an
f : B → C, where B = ∪+∞k=1Bk, so that (fn) converges to f pointwise on B.
But, µ(A \ B) ≤ µ(A \ Bk) < 1

k for every k and, thus, µ(A \ B) = 0. If we
extend f : X → C, by defining f = 0 on Bc, we conclude that (fn) converges
to f a.e. on A.

By the general construction of f , we have that gk = f on Bk and, hence,
(fn) converges to f uniformly on Bk. If δ > 0 is arbitrary, we just take k large
enough so that 1

k ≤ δ and we have that µ(A \ Bk) < δ. Hence, (fn) converges
to f almost uniformly on A.

9.5 Relations between types of convergence.

In this section we shall see three results describing some relations between the
four types of convergence: a.e. convergence, convergence in the mean, con-
vergence in measure and almost uniform convergence. Many other results are
consequences of these.

Let (X,Σ, µ) be a measure space.

Theorem 9.4 If (fn) converges to f almost uniformly on A, then (fn) con-
verges to f a.e. on A.
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The converse is true under the additional assumption that either
(i) (Egoroff) all f, fn are finite a.e. on A and µ(A) < +∞
or
(ii) there is a g : A → [0,+∞] with

∫
A
g dµ < +∞ and |fn| ≤ g a.e. on A for

every n.

Proof: The first statement is inluded in Theorem 9.3.
(i) Assume (fn) converges to f a.e. on A, all f, fn are finite a.e. on A and
µ(A) < +∞. We may assume that all f, fn are finite on A and, for each k, n,
we define

En(k) = ∪+∞m=n

{
x ∈ A | |fm(x)− f(x)| > 1

k

}
.

If C = {x ∈ A | fn(x)→ f(x)}, then it is easy to see that ∩+∞n=1En(k) ⊆ A \ C.
Since µ(A \ C) = 0, we get µ(∩+∞n=1En(k)) = 0 for every k. From En(k) ↓
∩+∞n=1En(k), from µ(A) < +∞ and from the continuity of µ from above, we find
that µ(En(k)) → 0 as n → +∞. Hence, for an arbitrary δ > 0, there is nk so
that

µ(Enk(k)) <
δ

2k
.

We define
E = ∪+∞k=1Enk(k), B = A \ E

and have µ(E) ≤
∑+∞
k=1 µ(Enk(k)) < δ. Also, for every x ∈ B we have that, for

every k ≥ 1, |fm(x)− f(x)| ≤ 1
k for all m ≥ nk. Equivalently, for every k ≥ 1,

sup
x∈B
|fm(x)− f(x)| ≤ 1

k

for every m ≥ nk. This implies, of course, that (fn) converges to f uniformly
on B. Since µ(A \B) = µ(E) < δ, we conclude that (fn) converges to f almost
uniformly on A.
(ii) If |fn| ≤ g a.e. on A for all n, then also |f | ≤ g a.e. on A and, since∫
A
g dµ < +∞, all f, fn are finite a.e. on A. Assuming, as we may, that all

f, fn are finite on A, we get |fn − f | ≤ 2g a.e. on A for all n. Using the same
notation as in the proof of (i), this implies that En(k) ⊆ {x ∈ A | g(x) > 1

2k}
except for a null set. Therefore

µ(En(k)) ≤ µ
({
x ∈ A | g(x) >

1

2k

})
for every n, k. It is clear that the assumption

∫
A
g dµ < +∞ implies

µ
({
x ∈ A | g(x) >

1

2k

})
< +∞.

Therefore, we may, again, apply the continuity of µ from above to find that
µ(En(k))→ 0 as n→ +∞. From this point, we repeat the proof of (i) word for
word.
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Example
If fn = χ(n,n+1) for every n ≥ 1, then (fn) converges to 0 everywhere on R, but
(fn) does not converge to 0 almost uniformly on R. In fact, if 0 < δ ≤ 1, then
every Lebesgue measurable B ⊆ R with m1(R \ B) < δ must have non-empty
intersection with every interval (n, n + 1) and, hence, supx∈B |fn(x)| ≥ 1 for
every n.

In this example, of course, m1(R) = +∞ and it is easy to see that there is
no g : R→ [0,+∞] with

∫
R
g(x) dm1(x) < +∞ satisfying fn ≤ g a.e. on R for

every n. Otherwise, g ≥ 1 a.e. on (1,+∞).

Theorem 9.5 If (fn) converges to f almost uniformly on A, then (fn) con-
verges to f in measure on A.

Conversely, if (fn) converges to f in measure on A, then there is a subse-
quence (fnk) which converges to f almost uniformly on A.

Proof: Suppose that (fn) converges to f almost uniformly on A and take an
arbitrary ε > 0. For every δ > 0 there is a B ∈ Σ, B ⊆ A, with µ(A \B) < δ so
that (fn) converges to f uniformly on B.

Now, there exists an n0 so that |fn(x) − f(x)| < ε for all n ≥ n0 and
every x ∈ B. Therefore, {x ∈ A | |fn(x) − f(x)| ≥ ε} ⊆ A \ B and, thus,
µ({x ∈ A | |fn(x)− f(x)| ≥ ε}) < δ for all n ≥ n0.

This implies that µ({x ∈ A | |fn(x)− f(x)| ≥ ε})→ 0 as n→ +∞ and (fn)
converges to f in measure on A.

The idea for the converse is already in the proof of Theorem 9.2.
We assume that (fn) converges to f in measure on A and, without loss of

generality, that all f, fn are finite on A. Then µ({x ∈ A | |fn(x)−f(x)| ≥ 1
2k
})→

0 as n→ +∞ and there is nk so that µ({x ∈ A | |fn(x)− f(x)| ≥ 1
2k
}) < 1

2k
for

all n ≥ nk. We may, inductively, assume that nk < nk+1 for all k and, hence,
that (fnk) is a subsequence of (fn) for which

µ
({
x ∈ A | |fnk(x)− f(x)| ≥ 1

2k

})
<

1

2k

for every k ≥ 1. We set

Ek =
{
x ∈ A | |fn(x)− f(x)| ≥ 1

2k

}
, Fm = ∪+∞k=mEk.

Then µ(Fm) <
∑+∞
k=m

1
2k

= 1
2m−1 for every m.

If x ∈ A \Fm, then x ∈ A \Ek for every k ≥ m so that |fnk(x)− f(x)| < 1
2k

for every k ≥ m. This implies that

sup
x∈A\Fm

|fnk(x)− f(x)| ≤ 1

2k

for all k ≥ m and hence supx∈A\Fm |fnk(x)− f(x)| → 0 as k → +∞. Therefore,
(fnk) converges to f uniformly on A \Fm and we conclude that (fnk) converges
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to f almost uniformly on A.

Example
We consider the example just after Theorem 9.1. The sequence (fn) converges to
0 in measure on (0, 1) but it does not converge to 0 almost uniformly on (0, 1). In
fact, if we take any δ with 0 < δ ≤ 1, then every B ⊆ (0, 1) with m1((0, 1)\B) <
δ must have non-empty intersection with infinitely many intervals of the form
(k−1m , km ) (at least one for every value of m) and, hence, supx∈B |fn(x)| ≥ 1 for
infinitely many n.

The converse in Theorem 9.6 is a variant of the Dominated Convergence
Theorem.

Theorem 9.6 If (fn) converges to f in the mean on A, then (fn) converges to
f in measure on A.

The converse is true under the additional assumption that there exists a
g : X → [0,+∞] so that

∫
A
g dµ < +∞ and |fn| ≤ g a.e. on A.

Proof: It is clear that we may assume all f, fn are finite on A.
Suppose that (fn) converges to f in the mean on A. Then, for every ε > 0

we have

µ({x ∈ A | |fn(x)− f(x)| ≥ ε}) ≤ 1

ε

∫
A

|fn − f | dµ→ 0

as n→ +∞. Therefore, (fn) converges to f in measure on A.
Assume that the converse is not true. Then there is some ε0 > 0 and a

subsequence (fnk) of (fn) so that∫
A

|fnk − f | dµ ≥ ε0

for every k ≥ 1. Since (fnk) converges to f in measure, Theorem 9.2 implies that
there is a subsequence (fnkl ) which converges to f a.e. on A. From |fnkl | ≤ g
a.e. on A, we find that |f | ≤ g a.e. on A. Now, the Dominated Convergence
Theorem implies that ∫

A

|fnkl − f | dµ→ 0

as l→ +∞ and we arrive at a contradiction.

Example
Let fn = nχ(0, 1n ) for every n. If 0 < ε ≤ 1, then µ({x ∈ (0, 1) | |fn(x)| ≥ ε}) =
1
n → 0 as n → +∞ and, hence, (fn) converges to 0 in measure on (0, 1). But∫ 1

0
|fn(x)| dm1(x) = 1 and (fn) does not converge to 0 in the mean on (0, 1).
If g : (0, 1)→ [0,+∞] is such that |fn| ≤ g a.e. on (0, 1) for every n, then g ≥

n a.e. in each interval [ 1
n+1 ,

1
n ). Hence,

∫ 1

0
g(x) dm1(x) ≥

∑+∞
n=1

∫ 1
n
1

n+1

ndm1(x) =∑+∞
n=1 n( 1

n −
1

n+1 ) =
∑+∞
n=1

1
n+1 = +∞.
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9.6 Exercises.

Except if specified otherwise, all exercises refer to a measure space (X,Σ, µ), all
sets belong to Σ and all functions are Σ-measurable.

1. Let φ : C→ C.
(i) If φ is continuous and (fn) converges to f a.e. on A, prove that (φ◦fn)
converges to φ ◦ f a.e. on A.
(ii) If φ is uniformly continuous and (fn) converges to f in measure or
almost uniformly on A, prove that (φ ◦ fn) converges to φ ◦ f in measure
or, respectively, almost uniformly on A.

2. (i) If (fn) converges to f with respect to any of the four types of conver-
gence (a.e. or in the mean or in measure or almost uniformly) on A and
(fn) converges, also, to f ′ with respect to any other of the same four types
of convergence, prove that f = f ′ a.e. on A.

(ii) If (fn) converges to f with respect to any of the four types of conver-
gence on A and |fn| ≤ g a.e. on A for all n, prove that |f | ≤ g a.e. on
A.

3. If En ⊆ A for every n and (χEn) converges to f in the mean or in measure
or almost uniformly or a.e. on A, prove that there exists E ⊆ A so that
f = χE a.e. on A.

4. Suppose that En ⊆ A for every n. Prove that (χEn) is Cauchy in measure
or in the mean or almost uniformly on A if and only if µ(En4Em) → 0
as n,m→ +∞.

5. Let ] be the counting measure on (N,P(N)). Prove that (fn) converges
to f uniformly on N if and only if (fn) converges to f in measure on N.

6. A variant of the Lemma of Fatou.

If fn ≥ 0 a.e. on A and (fn) converges to f in measure on A, prove that∫
A
f dµ ≤ lim infn→+∞

∫
A
fn dµ.

7. The Dominated Convergence Theorem.

Prove the Dominated Convergence Theorem in two ways, using either the
first converse or the second converse of Theorem 9.4.

8. A variant of the Dominated Convergence Theorem.

Suppose that |fn| ≤ g a.e. on A, that
∫
A
g dµ < +∞ and that (fn)

converges to f in measure on A. Prove that
∫
A
fn dµ→

∫
A
f dµ.

One can follow three paths. One is to use the result of Exercise 9.6.2.
Another is to reduce to the case of a.e. convergence and use the original
version of the theorem. The third path is to use almost uniform conver-
gence.
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9. Suppose that A is of σ-finite measure and (fn) converges to f a.e. on A.
Prove that, for each k, there exists Ek ⊆ A so that (fn) converges to f
uniformly on Ek and µ(A \ ∪+∞k=1Ek) = 0.

10. Suppose that Ek(ε) = {x ∈ A | |fk(x)− f(x)| ≥ ε} for every k and ε > 0.
If µ(A) < +∞, prove that (fn) converges to f a.e. on A if and only if, for
every ε > 0, µ(∪+∞k=nEk(ε))→ 0 as n→ +∞.

11. (i) Let (hn) satisfy supn∈N |hn(x)| < ∞ for a.e. x ∈ A. If µ(A) < +∞,
prove that for every δ > 0 there is a B ⊆ A with µ(A \ B) < δ so that
supx∈B,n∈N |hn(x)| < +∞.
(ii) Let (fn) converge to f in measure on A and (gn) converge to g in
measure on A. If µ(A) < +∞, prove that (fngn) converges to fg in
measure on A.

12. Suppose that µ(A) < +∞ and every fn is finite a.e. on A.
(i) Prove that there is a sequence (λn) of positive numbers so that (λnfn)
converges to 0 a.e. on A.
(ii) Prove that there exists g : A→ [0,+∞] and a sequence (rn) in R+ so
that |fn| ≤ rng a.e. on A for every n.

13. Suppose that µ(A) < +∞ and (fn) converges to 0 a.e. on A.
(i) Prove that there exists a sequence (λn) in R+ with λn ↑ +∞ so that
(λnfn) converges to 0 a.e. on A.
(ii) Prove that there exists g : A → [0,+∞] and a sequence (εn) in R+

with εn → 0 so that |fn| ≤ εng a.e. on A for every n.

14. A characterisation of convergence in measure.

If µ(A) < +∞, prove that (fn) converges to f in measure on A if and only

if
∫
A
|fn−f |

1+|fn−f | dµ→ 0 as n→ +∞.

In general, prove that (fn) converges to f in measure on A if and only if

inf
ε>0

ε+ µ({x ∈ A | |fn(x)− f(x)| ≥ ε})
1 + ε+ µ({x ∈ A | |fn(x)− f(x)| ≥ ε})

→ 0

as n→ +∞.

15. A variant of Egoroff’s Theorem for continuous parameter.

Let µ(X) < +∞ and f : X × [0, 1]→ C has the properties:
(a) f(·, y) : X → C is measurable for every y ∈ [0, 1]
(b) f(x, ·) : [0, 1]→ C is continuous for every x ∈ X.

(i) If ε, η > 0, prove that {x ∈ X | |f(x, y) − f(x, 0)| ≤ ε for all y < η}
belongs to Σ.
(ii) Prove that for every δ > 0 there is B ⊆ X with µ(X \ B) < δ and
f(·, y)→ f(·, 0) uniformly on B as y → 0+.

16. Let (fn) converge to f in measure on A. Prove that λfn(t) → λf (t) for
every t ∈ [0,+∞) which is a point of continuity of λf .
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17. Prove the converse part of Theorem 9.6 using the converse part of Theorem
9.5.

18. The complete relation between convergence in the mean and convergence
in measure: the Theorem of Vitali.

We say that the indefinite integrals of (fn) are uniformly abso-
lutely continuous over A if for every ε > 0 there exists δ > 0 so that
|
∫
E
fn dµ| < ε for all n ≥ 1 and all E ⊆ A with µ(E) < δ.

We say that the indefinite integrals of (fn) are equicontinuous from
above at ∅ over A if for every sequence (Ek) of subsets of A with Ek ↓ ∅
and for every ε > 0 there exists k0 so that |

∫
Ek
fn dµ| < ε for all k ≥ k0

and all n ≥ 1.

Prove that (fn) converges to f in the mean on A if and only if (fn)
converges to f in measure on A and the indefinite integrals of (fn) are
uniformly absolutely continuous on A and equicontinuous from above at
∅ on A.

How is Theorem 9.6 related to this result?

19. The Theorem of Lusin.

If f is Lebesgue measurable and finite a.e. on Rn, then for every δ > 0
there is a Lebesgue set B ⊆ Rn and a g, continuous on Rn, so that
mn(Bc) < δ and f = g on B.

(i) Use Theorem 7.16 to find a sequence (φn) of functions continuous on
Rn so that

∫
Rn |f − φn| dmn → 0 as n→ +∞. Theorem 9.1 implies that

there is a subsequence (φnk) which converges to f a.e. on Rn.
(ii) Consider the qubes Qm1,...,mn = [m1,m1 + 1)× · · · × [mn,mn + 1) for
every choice of m1, . . . ,mn ∈ Z and enumerate them as Q1, Q2, . . .. Then,
these qubes are pairwise disjoint and they cover Rn. Apply Egoroff’s
Theorem to prove that for each Qk there is a closed set Bk ⊆ Qk with
mn(Qk\Bk) < δ

2k
so that (φnk) converges to f uniformly on Bk. Conclude

that the restriction feBk of f on Bk is continuous on Bk.
(iii) Take B = ∪+∞k=1Bk and prove that mn(Bc) < δ, that B is closed and
that the restriction feB of f on B is continuous on B.
(iv) Use the Extension Theorem of Tietze to prove that there is a g,
continuous on Rn, so that g = feB on B.

20. If f : Rn → C is continuous in each variable separately, prove that f is
Lebesgue measurable.
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Chapter 10

Signed measures and
complex measures

10.1 Signed measures.

Let (X,Σ) be a measurable space.

Definition 10.1 A function ν : Σ→ R is called a signed measure on (X,Σ)
if
(i) either ν(A) 6= −∞ for all A ∈ Σ or ν(A) 6= +∞ for all A ∈ Σ,
(ii) ν(∅) = 0,
(iii) ν(∪+∞j=1Aj) =

∑+∞
j=1 ν(Aj) for all pairwise disjoint A1, A2, . . . ∈ Σ.

If ν is a signed measure on (X,Σ) and ν(A) ∈ R for every A ∈ Σ, then
ν is called a real measure. It is obvious that ν is a non-negative signed
measure (i.e. with ν(A) ≥ 0 for every A ∈ Σ) if and only if ν is a measure. If
ν(A) ≤ 0 for every A ∈ Σ, then ν is called a non-positive signed measure.

It is clear that, if ν is a non-negative signed measure, then −ν is a non-
positive signed measure and conversely. Also, if ν and ν′ are signed measures
on (X,Σ) with either ν(A), ν′(A) 6= −∞ for all A ∈ Σ or ν(A), ν′(A) 6= +∞
for all A ∈ Σ, then ν + ν′, well-defined by (ν + ν′)(A) = ν(A) + ν′(A) for all
A ∈ Σ, is a signed measure. Similarly, the κν, defined by (κν)(A) = κν(A) for
all A ∈ Σ, is a signed measure for every κ ∈ R.

Examples
1. Let µ1, µ2 be two measures on (X,Σ). If µ2(X) < +∞, then µ2(A) ≤
µ2(X) < +∞ for every A ∈ Σ. Then, ν = µ1 − µ2 is well-defined and it is a
signed measure on (X,Σ), because ν(A) = µ1(A)− µ2(A) ≥ −µ2(A) > −∞ for
all A ∈ Σ. Similarly, if µ1(X) < +∞, then ν = µ1 − µ2 is a signed measure on
(X,Σ) with ν(A) < +∞ for all A ∈ Σ.

Hence, the difference of two measures, at least one of which is finite, is a
signed measure.
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2. Let µ be a measure on (X,Σ) and f : X → R be a measurable function such
that the

∫
X
f dµ is defined. Lemma 7.10 says that the

∫
A
f dµ is defined for

every A ∈ Σ. If we consider the function λ : Σ→ R defined by

λ(A) =

∫
A

f dµ

for all A ∈ Σ, then Proposition 7.6 and Theorem 7.13 imply that λ is a signed
measure on (X,Σ).

Definition 10.2 The signed measure λ which is defined in the previous para-
graph is called the indefinite integral of f with respect to µ and it is
denoted by fµ. Thus, the defining relation for fµ is

(fµ)(A) =

∫
A

f dµ, A ∈ Σ.

In case f ≥ 0 a.e. on X, the signed measure fµ is a measure, since (fµ)(A) =∫
A
f dµ ≥ 0 for every A ∈ Σ. Similarly, if f ≤ 0 a.e. on X, the fµ is a non-

positive signed measure.
Continuing the study of this example, we shall make a few remarks. That

the
∫
X
f dµ is defined means either

∫
X
f+ dµ < +∞ or

∫
X
f− dµ < +∞.

Let us consider the case
∫
X
f+ dµ < +∞ first. Then the signed measure f+µ

is a finite measure (because (f+µ)(X) =
∫
X
f+ dµ < +∞) and the signed mea-

sure f−µ is a measure. Also, for every A ∈ Σ we have (f+µ)(A)− (f−µ)(A) =∫
A
f+ dµ −

∫
A
f− dµ =

∫
A
f dµ = (fµ)(A). Therefore, in the case

∫
X
f+ dµ <

+∞, the signed measure fµ is the difference of the measures f+µ and f−dµ, of
which the first is finite:

fµ = f+µ− f−µ.

Similarly, in the case
∫
X
f− dµ < +∞, the signed measure fµ is the dif-

ference of the measures f+µ and f−µ, of which the second is finite, since
(f−µ)(X) =

∫
X
f− dµ < +∞.

Property (iii) in the definition of a signed measure ν is called the σ-additivity
of ν. It is trivial to see that a signed measure is also finitely additive.

A signed measure is not, in general, monotone: if A,B ∈ Σ and A ⊆ B, then
B = A∪ (B \A) and, hence, ν(B) = ν(A) + ν(B \A), but ν(B \A) may not be
≥ 0!

Theorem 10.1 Let ν be a signed measure on (X,Σ).
(i) Let A,B ∈ Σ and A ⊆ B. If ν(B) < +∞, then ν(A) < +∞ and, if
ν(B) > −∞, then ν(A) > −∞. In particular, if ν(B) ∈ R, then ν(A) ∈ R.
(ii) If A,B ∈ Σ, A ⊆ B and ν(A) ∈ R, then ν(B \A) = ν(B)− ν(A).
(iii) (Continuity from below) If A1, A2, . . . ∈ Σ and An ⊆ An+1 for all n, then
ν(∪+∞n=1An) = limn→+∞ ν(An).
(iv) (Continuity from above) If A1, A2, . . . ∈ Σ, ν(A1) ∈ R and An ⊇ An+1 for
all n, then ν(∩+∞n=1An) = limn→+∞ ν(An).
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Proof: (i) We have ν(B) = ν(A) + ν(B \A).
If ν(A) = +∞, then ν(B \ A) > −∞ and, thus, ν(B) = +∞. Similarly, if

ν(A) = −∞, then ν(B \A) < +∞ and, thus, ν(B) = −∞.
The proofs of (ii), (iii) and (iv) are the same as the proofs of the correspond-

ing parts of Theorem 2.1.

10.2 The Hahn and Jordan decompositions, I.

Let (X,Σ) be a measurable space.

Definition 10.3 Let ν be a signed measure on (X,Σ).
(i) P ∈ Σ is called a positive set for ν if ν(A) ≥ 0 for every A ∈ Σ, A ⊆ P .
(ii) N ∈ Σ is called a negative set for ν if ν(A) ≤ 0 for every A ∈ Σ, A ⊆ N .
(iii) Q ∈ Σ is called a null set for ν if ν(A) = 0 for every A ∈ Σ, A ⊆ Q.

It is obvious that an element of Σ which is both a positive and a negative
set for ν is a null set for ν. It is also obvious that, if µ is a measure, then every
A ∈ Σ is a positive set for µ.

Proposition 10.1 Let ν be a signed measure on (X,Σ).
(i) If P is a positive set for ν, P ′ ∈ Σ, P ′ ⊆ P , then P ′ is a positive set for ν.
(ii) If P1, P2, . . . are positive sets for ν, then ∪+∞k=1Pk is a positive set for ν.

The same results are, also, true for negative sets and for null sets for ν.

Proof: (i) For every A ∈ Σ, A ⊆ P ′ we have A ⊆ P and, hence, ν(A) ≥ 0.
(ii) Take arbitrary A ∈ Σ, A ⊆ ∪+∞k=1Pk. We can write A = ∪+∞k=1Ak, where
A1, A2, . . . ∈ Σ are pairwise disjoint and Ak ⊆ Pk for every k. Indeed, we may
set A1 = A ∩ P1 and Ak = A ∩

(
Pk \ (P1 ∪ · · · ∪ Pk−1)

)
for all k ≥ 2. By the

result of (i), we then have ν(A) =
∑+∞
k=1 ν(Ak) ≥ 0.

Theorem 10.2 Let ν be a signed measure on (X,Σ).
(i) There exist a positive set P and a negative set N for ν so that P ∪N = X
and P ∩N = ∅.
(ii) ν(N) ≤ ν(A) ≤ ν(P ) for every A ∈ Σ.
(iii) If ν(A) < +∞ for every A ∈ Σ, then ν is bounded from above, while if
−∞ < ν(A) for every A ∈ Σ, then ν is bounded from below.
(iv) If P ′ is a positive set for ν and N ′ is a negative set for ν with P ′ ∪N ′ = X
and P ′ ∩N ′ = ∅, then P4P ′ = N4N ′ is a null set for ν.

Proof: (i) We consider the case when ν(A) < +∞ for every A ∈ Σ.
We define the quantity

κ = sup{ν(P ) |P is a positive set for ν}.

This set is non-empty since ν(∅) = 0 is one of its elements. Thus, 0 ≤ κ. We
consider a sequence (Pk) of positive sets for ν so that ν(Pk)→ κ and form the
set P = ∪+∞k=1Pk which, by Proposition 10.1, is a positive set for ν. This implies
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that ν(P \Pk) ≥ 0 for every k and, hence, ν(Pk) ≤ ν(P ) ≤ κ for every k. Taking
the limit, we find that

κ = ν(P ) < +∞.

This P is a positive set for ν of maximal ν-measure and we shall prove that the
set N = X \ P is a negative set for ν.

Suppose that N is not a negative set for ν. Then there is A0 ∈ Σ, A0 ⊆ N ,
with 0 < ν(A0) < +∞. The set A0 is not a positive set or, otherwise, the
set P ∪ A0 would be a positive set with ν(P ∪ A0) = ν(P ) + ν(A0) > ν(P ),
contradicting the maximality of P . Hence, there is at least one subset of A0 in
Σ having negative ν-measure. This means that

τ0 = inf{ν(B) |B ∈ Σ, B ⊆ A0} < 0.

If τ0 < −1, there is B1 ∈ Σ, B1 ⊆ A0 with ν(B1) < −1. If −1 ≤ τ0 < 0,
there is a B1 ∈ Σ, B1 ⊆ A0 with ν(B1) < τ0

2 . We set A1 = A0 \ B1 and have
ν(A0) = ν(A1) + ν(B1) < ν(A1) < +∞. Observe that we are using Theorem
10.1 to imply ν(A1), ν(B1) ∈ R from ν(A0) ∈ R.

Suppose that we have constructed sets A0, A1, . . . , An ∈ Σ and B1, . . . , Bn ∈
Σ so that

� An ⊆ An−1 ⊆ · · · ⊆ A1 ⊆ A0 ⊆ N, Bn = An−1 \An, . . . , B1 = A0 \A1,

� τk−1 = inf{ν(B) |B ∈ Σ, B ⊆ Ak−1} < 0,

� ν(Bk) <

{
−1, if τk−1 < −1
τk−1

2 , if −1 ≤ τk−1 < 0
for all k = 1, . . . , n,

� 0 < ν(A0) < ν(A1) < · · · < ν(An−1) < ν(An) < +∞.

Now, An is not a positive set for ν for the same reason that A0 is not a
positive set for ν. Hence, there is at least one subset of An in Σ having negative
ν-measure. This means that

τn = inf{ν(B) |B ∈ Σ, B ⊆ An} < 0.

If τn < −1, there is Bn+1 ∈ Σ, Bn+1 ⊆ An with ν(Bn+1) < −1. If −1 ≤ τn < 0,
there is a Bn+1 ∈ Σ, Bn+1 ⊆ An with ν(Bn+1) < τn

2 . We set An+1 = An \Bn+1

and have ν(An) = ν(An+1) + ν(Bn+1) < ν(An+1) < +∞. This means that
we have, inductively, constructed two sequences (An), (Bn) satisfying all the
properties � .

Now, the sets B1, B2, . . . and ∩+∞n=1An are pairwise disjoint and we have

A0 = (∩+∞n=1An) ∪ (∪+∞n=1Bn). Therefore, ν(A0) = ν(∩+∞n=1An) +
∑+∞
n=1 ν(Bn),

from which we find
+∞∑
n=1

ν(Bn) > −∞.

This implies that ν(Bn)→ 0 as n→ +∞ and, by the third property �,

τn−1 → 0
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as n→ +∞. Now the set A = ∩+∞n=1An ∈ Σ, by continuity from above of ν, has

ν(A) = lim
n→+∞

ν(An) > 0.

Moreover, A is not a positive set for ν for the same reason that A0 is not a
positive set for ν. Hence, there is some B ∈ Σ, B ⊆ A with ν(B) < 0. But then
B ⊆ An−1 for all n and, hence, τn−1 ≤ ν(B) < 0 for all n. We, thus, arrive at
a contradiction with the limit τn−1 → 0.

In the same way, we can prove that, if −∞ < ν(A) for every A ∈ Σ, then
there is a negative set N for ν of minimal ν-measure so that the set P = X \N
is a positive set for ν.

Thus, in any case we have a positive set P and a negative set N for ν so
that P ∪N = X and P ∩N = ∅.
(ii) If A ∈ Σ, then ν(P \ A) ≥ 0, because P \ A ⊆ P . This implies ν(P ) =
ν(P ∩ A) + ν(P \ A) ≥ ν(P ∩ A) and, similarly, ν(N) ≤ ν(N ∩ A). Therefore,
ν(A) = ν(P∩A)+ν(N∩A) ≤ ν(P∩A) ≤ ν(P ) and ν(A) = ν(P∩A)+ν(N∩A) ≥
ν(N ∩A) ≥ ν(N).
(iii) This a consequence of the result of (ii).
(iv) Now, let P ′ be a positive set and N ′ be a negative set for ν with P ′∪N ′ = X
and P ′∩N ′ = ∅. Then, since P \P ′ = N ′ \N ⊆ P ∩N ′, the set P \P ′ = N ′ \N
is both a positive set and a negative set for ν and, hence, a null set for ν.
Similarly, P ′ \ P = N \N ′ is a null set for ν and we conclude that their union
P4P ′ = N4N ′ is a null set for ν.

Definition 10.4 Let ν be a signed measure on (X,Σ). Every partition of X
into a positive and a negative set for ν is called a Hahn decomposition of X
for ν.

It is clear from Theorem 10.2 that if P,N is a Hahn decomposition of X for
ν, then

ν(P ) = max{ν(A) |A ∈ Σ}, ν(N) = min{ν(A) |A ∈ Σ}.

Definition 10.5 Let ν1, ν2 be two signed measures on (X,Σ). We say that they
are mutually singular (or that ν1 is singular to ν2 or that ν2 is singular to
ν1) if there exist A1 ∈ Σ which is null for ν2 and A2 ∈ Σ which is null for ν1
so that A1 ∪A2 = X and A1 ∩A2 = ∅.

We use the symbol ν1⊥ν2 to denote that ν1, ν2 are mutually singular.

In other words, two signed measures are mutually singular if there is a set
in Σ which is null for one of them and its complement is null for the other.

If ν1, ν2 are mutually singular and A1, A2 are as in the Definition 10.5, then
it is clear that

ν1(A) = ν1(A ∩A1), ν2(A) = ν2(A ∩A2)

for every A ∈ Σ. Thus, in a free language, we may say that ν1 is concentrated
on A1 and ν2 is concentrated on A2.
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Proposition 10.2 Let ν, ν1, ν2 be signed measures on (X,Σ). If ν1, ν2⊥ν and
ν1 + ν2 is defined, then ν1 + ν2⊥ν.

Proof: Take A1, B1, A2, B2 ∈ Σ so that A1 ∪ B1 = X = A2 ∪ B2, A1 ∩ B1 =
∅ = A2 ∩B2, A1 is null for ν1, A2 is null for ν2 and B1, B2 are both null for ν.
Then B1 ∪ B2 is null for ν and A1 ∩ A2 is null for both ν1 and ν2 and, hence,
for ν1 + ν2. Since (A1 ∩ A2) ∪ (B1 ∪ B2) = X and (A1 ∩ A2) ∩ (B1 ∪ B2) = ∅,
we have that ν1 + ν2⊥ν.

Theorem 10.3 Let ν be a signed measure on (X,Σ). There exist two non-
negative signed measures (i.e. measures) ν+ and ν−, at least one of which is
finite, so that

ν = ν+ − ν− , ν+⊥ν− .
If µ1, µ2 are two measures on (X,Σ), at least one of which is finite, so that

ν = µ1 − µ2 and µ1⊥µ2, then µ1 = ν+ and µ2 = ν−.

Proof: We consider any Hahn decomposition of X for ν: P is a positive set and
N a negative set for ν so that P ∪N = X and P ∩N = ∅.

We define ν+, ν− : Σ→ [0,+∞] by

ν+(A) = ν(A ∩ P ), ν−(A) = −ν(A ∩N)

for every A ∈ Σ. It is trivial to see that ν+, ν− are non-negative signed measures
on (X,Σ). If ν(A) < +∞ for every A ∈ Σ, then ν+(X) = ν(P ) < +∞ and,
hence, ν+ is a finite measure. Similarly, if −∞ < ν(A) for every A ∈ Σ, then
ν−(X) = −ν(N) < +∞ and, hence, ν− is a finite measure.

Also, ν(A) = ν(A∩P )+ν(A∩N) = ν+(A)−ν−(A) for all A ∈ Σ and, thus,
ν = ν+ − ν−.

If A ∈ Σ and A ⊆ N , then ν+(A) = ν(A∩P ) = ν(∅) = 0. Therefore, N is a
null set for ν+. Similarly, P is a null set for ν− and, hence, ν+⊥ν−.

Now, let µ1, µ2 be two measures on (X,Σ), at least one of which is finite,
so that ν = µ1 − µ2 and µ1⊥µ2. Consider A1, A2 ∈ Σ, with A1 ∪ A2 = X and
A1 ∩A2 = ∅, so that A2 is a null set for µ1 and A1 is a null set for µ2.

If A ∈ Σ, A ⊆ A2, then ν(A) = µ1(A) − µ2(A) = −µ2(A) ≤ 0 and, if
A ⊆ A1, then ν(A) = µ1(A) − µ2(A) = µ1(A) ≥ 0. Hence, A1, A2 is a Hahn
decomposition of X for ν. Theorem 10.2 implies that A14P = A24N is a null
set for ν. Therefore, for every A ∈ Σ, we have µ1(A) = µ1(A∩A1)+µ1(A∩A2) =
µ1(A ∩ A1) = µ1(A ∩ A1)− µ2(A ∩ A1) = ν(A ∩ A1) = ν(A ∩ A1 ∩ P ) + ν(A ∩
A1 ∩ N) = ν(A ∩ A1 ∩ P ), since A ∩ A1 ∩ N ⊆ A14P . On the other hand,
ν+(A) = ν(A ∩ P ) = ν(A ∩ A1 ∩ P ) + ν(A ∩ A2 ∩ P ) = ν(A ∩ A1 ∩ P ), since
A ∩A2 ∩ P ⊆ A24N . From the two equalities we get µ1(A) = ν+(A) for every
A ∈ Σ and, thus, µ1 = ν+. We, similarly, prove µ2 = ν−.

Definition 10.6 Let ν be a signed measure on (X,Σ). We say that the pair of
mutually singular measures ν+, ν−, whose existence and uniqueness is proved in
Theorem 10.3, constitute the Jordan decomposition of ν.

ν+ is called the positive variation of ν and ν− is called the negative
variation of ν.
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The measure |ν| = ν+ + ν− is called the absolute variation of ν, while
the quantity |ν|(X) is called the total variation of ν.

Observe that the total variation of ν is equal to

|ν|(X) = ν+(X) + ν−(X) = ν(P )− ν(N),

where the sets P,N constitute a Hahn decomposition of X for ν. Hence, the
total variation of ν is equal to the difference between the largest and the smallest
values of ν.

Moreover, the total variation is finite if and only if the absolute variation is
a finite measure if and only if both the positive and the negative variations are
finite measures if and only if the signed measure takes only finite values.

Proposition 10.3 Suppose µ is a measure on (X,Σ), f : X → R is measurable
and

∫
X
f dµ is defined. Then the sets P = {x ∈ X | f(x) ≥ 0} and N = {x ∈

X | f(x) < 0} constitute a Hahn decomposition of X for the signed measure fµ.
Also,

(fµ)+ = f+µ, (fµ)− = f−µ

constitute the Jordan decomposition of fµ and

|fµ| = |f |µ.

Proof: If A ∈ Σ and A ⊆ P , then (fµ)(A) =
∫
A
f dµ ≥ 0, while, if A ⊆ N ,

then (fµ)(A) =
∫
A
f dµ ≤ 0. Therefore, P is a positive set for fµ and N is a

negative set for fµ. Since P ∪N = X and P ∩N = ∅, we conclude that P,N
constitute a Hahn decomposition of X for fµ.

Now, (fµ)+(A) = (fµ)(A ∩ P ) =
∫
A∩P f dµ =

∫
A
fχP dµ =

∫
A
f+ dµ =

(f+µ)(A) and, similarly, (fµ)−(A) = (fµ)(A∩N) =
∫
A∩N f dµ =

∫
A
fχN dµ =∫

A
f− dµ = (f−µ)(A) for every A ∈ Σ.
Therefore, (fµ)+ = f+µ and (fµ)− = f−µ.
Now, |fµ| = (fµ)+ + (fµ)− = f+µ+ f−µ = |f |µ.

It is easy to see that another Hahn decomposition of X for fµ consists of
the sets P ′ = {x ∈ X | f(x) > 0} and N ′ = {x ∈ X | f(x) ≤ 0}.

Proposition 10.4 Suppose µ is a measure on (X,Σ), f : X → R is measurable
and

∫
X
f dµ is defined. Let E ∈ Σ.

(i) E is a positive set for fµ if and only if f ≥ 0 a.e. on E.
(ii) E is a negative set for fµ if and only if f ≤ 0 a.e. on E.
(iii) E is a null set for fµ if and only if f = 0 a.e. on E.

Proof: (i) Let f ≥ 0 a.e. on E and take any A ∈ Σ, A ⊆ E. Then f ≥ 0
a.e. on A and, hence, (fµ)(A) =

∫
A
f dµ ≥ 0. Thus, E is a positive set

for fµ. Suppose, conversely, that E is a positive set for fµ. If n ∈ N and
An = {x ∈ E | f(x) ≤ − 1

n}, then 0 ≤ (fµ)(An) =
∫
An

f dµ ≤ − 1
nµ(An). This

implies that µ(An) = 0 and, since {x ∈ E | f(x) < 0} = ∪+∞n=1An, we conclude
that µ({x ∈ E | f(x) < 0}) = 0. This means that f ≥ 0 a.e. on E.
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The proof of (ii) is identical to the proof of (i), and (iii) is a consequence of
the results of (i) and (ii).

We recall that, for every a ∈ R, the positive part of a and the negative part
of a are defined as

a+ = max{a, 0}, a− = −min{a, 0}

and, hence,
a = a+ − a−, |a| = a+ + a−.

It is trivial to prove that

(a+ b)+ ≤ a+ + b+, (a+ b)− ≤ a− + b−

for every a, b ∈ R for which a+ b is defined.

Definition 10.7 Let A ∈ Σ. If A1, . . . , An ∈ Σ are pairwise disjoint and A =
∪nk=1Ak, then {A1, . . . , An} is called a (finite) measurable partition of A.

Theorem 10.4 Let ν be a signed measure on (X,Σ) and let |ν|, ν+ and ν− be
the absolute, the positive and the negative variation of ν, respectively. Then, for
every A ∈ Σ,

|ν|(A) = sup
{ n∑
k=1

|ν(Ak)| |n ∈ N, {A1, . . . , An} measurable partition of A
}
,

ν+(A) = sup
{ n∑
k=1

ν(Ak)+ |n ∈ N, {A1, . . . , An} measurable partition of A
}
,

ν−(A) = sup
{ n∑
k=1

ν(Ak)− |n ∈ N, {A1, . . . , An} measurable partition of A
}
.

Proof: We let P,N be a Hahn decomposition of X for ν. For every pairwise
disjoint A1, . . . , An ∈ Σ with ∪nk=1Ak = A we have that

n∑
k=1

|ν(Ak)| =
n∑
k=1

|ν+(Ak)− ν−(Ak)| ≤
n∑
k=1

ν+(Ak) +

n∑
k=1

ν−(Ak)

= ν+(A) + ν−(A) = |ν|(A).

Therefore, the supremum of the left side is ≤ |ν|(A). On the other hand,
{A∩P,A∩N} is a particular measurable partition of A for which |ν(A∩P )|+
|ν(A ∩N)| = ν(A ∩ P )− ν(A ∩N) = ν+(A) + ν−(A) = |ν|(A) and, hence, the
supremum is equal to |ν|(A).

The proofs of the other two equalities are identical.

Lemma 10.1 Let ν be a signed measure on (X,Σ) and A ∈ Σ. Then, A is a
null set for ν if and only if it is a null set for both ν+, ν− if and only if it is a
null set for |ν|.
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Proof Since |ν| = ν+ + ν−, the second equivalence is trivial.
Let A be null for |ν|. For every B ∈ Σ, B ⊆ A, we have that |ν(B)| =

|ν+(B) − ν−(B)| ≤ ν+(B) + ν−(B) = |ν|(B) = 0. Hence, ν(B) = 0 and A is
null for ν.

Let A be null for ν. If {A1, . . . , An} is any measurable partition of A, then
ν(Ak) = 0 for all k and, hence,

∑n
k=1 |ν(Ak)| = 0. Taking the supremum of the

left side, Theorem 10.4 implies that |ν|(A) = 0 and, thus, A is null for |ν|.

Proposition 10.5 Let ν1 and ν2 be two signed measures on (X,Σ). Then ν1
and ν2 are mutually singular if and only if each of ν+1 , ν

−
1 and each of ν+2 , ν

−
2

are mutually singular if and only if |ν1| and |ν2| are mutually singular.

Proof: The proof is a trivial consequence of Lemma 10.1.

Proposition 10.6 Let ν, ν1, ν2 be signed measures on (X,Σ) and κ ∈ R. If
ν1 + ν2 is defined, we have

|ν1 + ν2| ≤ |ν1|+ |ν2|, |κν| = |κ||ν|.

Proof: We take an arbitrary measurable partition {A1, . . . , An} of A ∈ Σ and we
have

∑n
k=1 |(ν1+ν2)(Ak)| ≤

∑n
k=1 |ν1(Ak)|+

∑n
k=1 |ν2(Ak)| ≤ |ν1|(A)+|ν2|(A).

Taking the supremum of the left side, we find |ν1 + ν2|(A) ≤ |ν1|(A) + |ν2|(A).
In the same manner,

∑n
k=1 |(κν)(Ak)| = |κ|

∑n
k=1 |ν(Ak)|. This equality

implies
∑n
k=1 |(κν)(Ak)| ≤ |κ||ν|(A) and, taking supremum of the left side,

|κν|(A) ≤ |κ||ν|(A). The same equality, also, implies |κν|(A) ≥ |κ|
∑n
k=1 |ν(Ak)|

and, taking supremum of the right side, |κν|(A) ≥ |κ||ν|(A).

10.3 The Hahn and Jordan decompositions, II.

In this section we shall describe another method of constructing the Hahn and
Jordan decompositions of a signed measure. In the previous section we derived
the Hahn decomposition first and, based on it, we derived the Jordan decom-
position. We shall, now, follow the reverse procedure.

Let (X,Σ) be a measurable space.

Definition 10.8 Let ν be a signed measure on (X,Σ). For every A ∈ Σ we
define

|ν|(A) = sup
{ n∑
k=1

|ν(Ak)| |n ∈ N, {A1, . . . , An} measurable partition of A
}
,

ν+(A) = sup
{ n∑
k=1

ν(Ak)+ |n ∈ N, {A1, . . . , An} measurable partition of A
}
,

ν−(A) = sup
{ n∑
k=1

ν(Ak)− |n ∈ N, {A1, . . . , An} measurable partition of A
}
.
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Lemma 10.2 Let ν be a signed measure on (X,Σ). Then,

ν+(A) + ν−(A) = |ν|(A)

and

ν+(A) = sup{ν(B) |B ∈ Σ, B ⊆ A}, ν−(A) = − inf{ν(B) |B ∈ Σ, B ⊆ A}

for every A ∈ Σ.

Proof: (a) Take any A ∈ Σ and any measurable partition {A1, . . . , An} of A.
Then,

n∑
k=1

|ν(Ak)| =
n∑
k=1

ν(Ak)+ +

n∑
k=1

ν(Ak)− ≤ ν+(A) + ν−(A).

Taking the supremum of the left side, we get |ν|(A) ≤ ν+(A) + ν−(A).
Now take arbitrary partitions {A1, . . . , An} and {A′1, . . . , A′n′} of A. Then

n∑
k=1

ν(Ak)+ ≤
n∑
k=1

( n′∑
k′=1

ν(Ak ∩A′k′)+
)
,

n′∑
k′=1

ν(A′k′)
− ≤

n′∑
k′=1

( n∑
k=1

ν(Ak ∩A′k′)−
)

and, adding,

n∑
k=1

ν(Ak)+ +

n′∑
k′=1

ν(A′k′)
− ≤

∑
1≤k≤n,1≤k′≤n′

|ν(Ak ∩A′k′)|.

Since {Ak ∩A′k′ | 1 ≤ k ≤ n, 1 ≤ k′ ≤ n′} is a measurable partition of A, we get

n∑
k=1

ν(Ak)+ +

n′∑
k′=1

ν(A′k′)
− ≤ |ν|(A).

Finally, taking the supremum of the left side, we find ν+(A) + ν−(A) ≤ |ν|(A).
(b) If B ∈ Σ and B ⊆ A, then {B,A \ B} is a measurable partition of A
and, hence, ν(B) ≤ ν(B)+ ≤ ν(B)+ + ν(A \ B)+ ≤ ν+(A). This proves that
sup{ν(B) |B ∈ Σ, B ⊆ A} ≤ ν+(A).

Let {A1, . . . , An} be any measurable partition of A. If Ai1 , . . . , Aim are ex-
actly the sets with non-negative ν-measure and if B0 = ∪ml=1Ail ⊆ A, then∑n
k=1 ν(Ak)+ =

∑m
l=1 ν(Ail) = ν(B0). This implies that

∑n
k=1 ν(Ak)+ ≤

sup{ν(B) |B ∈ Σ, B ⊆ A} and, hence, ν+(A) ≤ sup{ν(B) |B ∈ Σ, B ⊆ A}.
We conclude that ν+(A) = sup{ν(B) |B ∈ Σ, B ⊆ A} and a similar argu-

ment proves the last equality.
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Theorem 10.5 Let ν be a signed measure on (X,Σ). Then, the functions
|ν|, ν+, ν− : Σ → [0,+∞], which were defined in Definition 10.8, are measures
on (X,Σ).

At least one of ν+, ν− is finite and

ν+ − ν− = ν, ν+ + ν− = |ν|, ν+⊥ν−.

Proof: (a) We shall first prove that |ν| is a measure.
It is obvious that |ν|(∅) = 0 and take arbitrary pairwise disjoint A1, A2, . . . ∈

Σ and A = ∪+∞j=1A
j .

If {A1, . . . , An} is an arbitrary measurable partition of A, then, for every
j, {A1 ∩ Aj , . . . , An ∩ Aj} is a measurable partition of Aj . This implies,∑n
k=1 |ν(Ak)| =

∑n
k=1 |

∑+∞
j=1 ν(Ak ∩ Aj)| ≤

∑n
k=1

(∑+∞
j=1 |ν(Ak ∩ Aj)|

)
=∑+∞

j=1

(∑n
k=1 |ν(Ak ∩ Aj)|

)
≤
∑+∞
j=1 |ν|(Aj) and, taking the supremum of the

left side, |ν|(A) ≤
∑+∞
j=1 |ν|(Aj).

Fix arbitrary N ∈ N and for every j = 1, . . . , N take any measurable par-
tition {Aj1, . . . , Ajnj} of Aj . Then {A1

1, . . . , A
1
n1
, . . . , AN1 , . . . , A

N
nN ,∪

+∞
j=N+1A

j}
is a measurable partition of A and, hence, |ν|(A) ≥

∑N
j=1

(∑nj
k=1 |ν(Ajk)|

)
+

|ν(∪+∞j=N+1A
j)| ≥

∑N
j=1

(∑nj
k=1 |ν(Ajk)|

)
. Taking the supremum of the right

side, we get |ν|(A) ≥
∑N
j=1 |ν|(Aj) and, taking the limit as N → +∞, we find

|ν|(A) ≥
∑+∞
j=1 |ν|(Aj).

Hence, |ν|(A) =
∑+∞
j=1 |ν|(Aj).

The proofs that ν+ and ν− are measures are identical to the proof we have
just seen.
(b) In case ν(A) < +∞ for every A ∈ Σ, we shall prove that ν+(X) < +∞.

We claim that for every A ∈ Σ with ν+(A) = +∞ and every M > 0, there
exists B ∈ Σ, B ⊆ A, so that ν+(B) = +∞ and ν(B) ≥M .

Suppose that the claim is not true. Then, there is A ∈ Σ with ν+(A) = +∞
and an M > 0 so that, if B ∈ Σ, B ⊆ A, has ν(B) ≥ M , then ν+(B) <
+∞. Now, by Lemma 10.2, there is B1 ∈ Σ, B1 ⊆ A with ν(B1) ≥ M and,
hence, ν+(B1) < +∞. Suppose that we have constructed pairwise disjoint
B1, . . . , Bm ∈ Σ subsets of A with ν(Bj) ≥ M and ν+(Bj) < +∞ for every
j = 1, . . . ,m. Since ν+ is a measure, we have

∑m
j=1 ν

+(Bj)+ν+(A\∪mj=1Bj) =

ν+(A) = +∞ and, thus, ν+(A \ ∪mj=1Bj) = +∞. Lemma 10.2 implies that
there is Bm+1 ∈ Σ, Bm+1 ⊆ A \ ∪mj=1Bj with ν(Bm+1) ≥ M and, hence,
ν+(Bm+1) < +∞.

We, thus, inductively construct a sequence (Bm) in Σ of pairwise disjoint
subsets of A with ν(Bm) ≥M . But, then, ν(∪+∞m=1Bm) =

∑+∞
m=1 ν(Bm) = +∞

and we arrive at a contradiction.
Using the claimed result and assuming that ν+(X) = +∞, we find B1 ∈ Σ

with ν(B1) ≥ 1 and ν+(B1) = +∞. We, similarly, find B2 ∈ Σ, B2 ⊆ B1, with
ν(B2) ≥ 2 and ν+(B2) = +∞. Continuing inductively, a decreasing sequence
(Bm) is constructed in Σ with ν(Bm) ≥ m for every m. Then, ν(∩+∞l=1B

l) =
limm→+∞ ν(Bm) = +∞ and we arrive at a contradiction.
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Therefore, ν+(X) < +∞.

If −∞ < ν(A) for every A ∈ Σ, we prove in the same way that ν−(X) < +∞.
(c) Suppose that ν(A) < +∞ for every A ∈ Σ and, hence, ν+(X) < +∞, by
the result of (b).

We take any A ∈ Σ and any B ∈ Σ, B ⊆ A. Then ν(A \ B) ≤ ν+(A)
and, hence, ν(A) ≤ ν+(A) + ν(B). Taking the infimum over B and using the
ν+(A) < +∞, we get ν(A) ≤ ν+(A)− ν−(A).

To prove the opposite inequality, we first assume ν−(A) < +∞. For every
B ∈ Σ, B ⊆ A, we have −ν−(A) ≤ ν(A \B) and, hence, ν(B)− ν−(A) ≤ ν(A).
Taking the supremum over B we find ν+(A)− ν−(A) ≤ ν(A). If ν−(A) = +∞,
then, since ν+(A) < +∞, the ν+(A)− ν−(A) ≤ ν(A) is clearly true.

We conclude that ν(A) = ν+(A)− ν−(A) for every A ∈ Σ and the same can
be proved if we assume that −∞ < ν(A) for every A ∈ Σ.

Therefore, ν = ν+ − ν−.
(d) The equality |ν| = ν+ + ν− is contained in Lemma 10.2.
(e) We, again, assume ν(A) < +∞ for every A ∈ Σ and, hence, ν+(X) < +∞.

Using Lemma 10.2, we take a sequence (Bn) in Σ so that ν(Bn)→ ν+(X) as
n→ +∞. Since ν(Bn) ≤ ν+(Bn) ≤ ν+(X), we have that ν+(Bn)→ ν+(X) as
n→ +∞. From ν(Bn) = ν+(Bn)− ν−(Bn), we get ν−(Bn)→ 0 as n→ +∞.

We find a strictly increasing (nk) so that ν−(Bnk) < 1
2k

for all k. If we set

Fk = ∪+∞l=kBnl , then ν−(Fk) ≤
∑+∞
l=k ν

−(Bnl) <
1

2k−1 for every k and (Fk) is

decreasing. Therefore, the set F = ∩+∞k=1Fk has ν−(F ) = 0. We, also, have
that ν+(Bnk) ≤ ν+(Fk) ≤ ν+(X) and, hence, ν+(Fk) → ν+(X) as k → +∞.
Therefore, ν+(F ) = ν+(X).

We have constructed a set F ∈ Σ so that ν−(F ) = 0 and ν+(F ) = ν+(X).
Since ν+(X) < +∞, we find ν+(X \ F ) = 0 and we conclude that ν+⊥ν−.

The decomposition ν = ν+−ν− of the signed measure ν on (X,Σ), which is
given in Theorem 10.5, is the same as the Jordan decomposition of ν, which was
defined in the previous section 10.2. This is justified both by the uniqueness
of the Jordan decomposition of a signed measure and by the result of Theo-
rem 10.4. Using, now, the Jordan decomposition, we shall produce the Hahn
decomposition of a signed measure.

Theorem 10.6 Let ν be a signed measure on (X,Σ) and ν+, ν− be the measures
of Definition 10.8. Then, there exist P,N ∈ Σ so that P ∪N = X, P ∩N = ∅,
P is a positive set for ν, N is a negative set for ν and ν+(N) = 0, ν−(P ) = 0.

Proof: Theorem 10.5 implies that ν+⊥ν− and, hence, there are P,N ∈ Σ so
that P ∪N = X, P ∩N = ∅ and ν+(N) = 0 = ν−(P ).

If A ∈ Σ, A ⊆ P , then ν(A) = ν+(A) − ν−(A) = ν+(A) ≥ 0. Similarly, if
A ∈ Σ, A ⊆ N , then ν(A) = ν+(A) − ν−(A) = −ν−(A) ≤ 0. Hence, P is a
positive set for ν and N is a negative set for ν.
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10.4 Complex measures.

Let (X,Σ) be a measurable space.

Definition 10.9 A function ν : Σ → C is called a complex measure on
(X,Σ) if
(i) ν(∅) = 0,
(ii) ν(∪+∞j=1Aj) =

∑+∞
j=1 ν(Aj) for every pairwise disjoint A1, A2, . . . ∈ Σ.

It is trivial to prove, taking real and imaginary parts, that the functions
<(ν),=(ν) : Σ → R, which are defined by <(ν)(A) = <(ν(A)) and =(ν)(A) =
=(ν(A)) for every A ∈ Σ, are real measures on (X,Σ) and, hence, they are
bounded. That is, there is an M < +∞ so that |<(ν)(A)|, |=(ν)(A)| ≤ M for
every A ∈ Σ. This implies that |ν(A)| ≤ 2M for every A ∈ Σ and we have
proved the

Proposition 10.7 Let ν be a complex measure on (X,Σ). Then ν is bounded,
i.e. there is an M < +∞ so that |ν(A)| ≤M for every A ∈ Σ.

If ν1 and ν2 are complex measures on (X,Σ) and κ1, κ2 ∈ C, then κ1ν1+κ2ν2,
defined by (κ1ν1 + κ2ν2)(A) = κ1ν1(A) + κ2ν2(A) for all A ∈ Σ, is a complex
measure on (X,Σ).

The following are straightforward extensions of Definitions 10.3 and 10.5.

Definition 10.10 Let ν be a complex measure on (X,Σ) and A ∈ Σ. We say
that A is a null set for ν if ν(B) = 0 for every B ∈ Σ, B ⊆ A.

Definition 10.11 Let ν1 and ν2 be complex or signed measures on (X,Σ). We
say that ν1 and ν2 are mutually singular, and denote this by ν1⊥ν2, if there
are A1, A2 ∈ Σ so that A2 is null for ν1, A1 is null for ν2 and A1 ∪ A2 = X,
A1 ∩A2 = ∅.

Proposition 10.8 Let ν be a complex measure on (X,Σ). If for every A ∈ Σ
we define

|ν|(A) = sup
{ n∑
k=1

|ν(Ak)| |n ∈ N, {A1, . . . , An} measurable partition of A
}
,

then the function |ν| : Σ→ [0,+∞] is a finite measure on (X,Σ).

Proof: The proof that |ν| is a measure is exactly the same as in part (a) of the
proof of Theorem 10.5.

We take an arbitrary measurable partition {A1, . . . , An} of X and have∑n
k=1 |ν(Ak)| ≤

∑n
k=1 |<(ν)(Ak)|+

∑n
k=1 |=(ν)(Ak)| ≤ |<(ν)|(X) + |=(ν)|(X).

Taking the supremum of the left side, |ν|(X) ≤ |<(ν)|(X) + |=(ν)|(X) < +∞,
because the signed measures <(ν) and =(ν) have finite values.

Definition 10.12 Let ν be a complex measure on (X,Σ). The measure |ν|
defined in Proposition 10.8 is called the absolute variation of ν and the
number |ν|(X) is called the total variation of ν.
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Proposition 10.9 Let ν, ν1, ν2 be complex measures on (X,Σ) and κ ∈ C.
Then
(i) |ν1 + ν2| ≤ |ν1|+ |ν2| and |κν| = |κ||ν|
(ii) |<(ν)|, |=(ν)| ≤ |ν| ≤ |<(ν)|+ |=(ν)|.

Proof: (i) The proof is identical to the proof of Proposition 10.6.
(ii) In the same manner, if {A1, . . . , An} is any measurable partition of A ∈ Σ,
we have

∑n
k=1 |<(ν)(Ak)| ≤

∑n
k=1 |ν(Ak)| ≤ |ν|(A) and also

∑n
k=1 |=(ν)(Ak)| ≤∑n

k=1 |ν(Ak)| ≤ |ν|(A). Taking supremum of the left sides of these two inequal-
ities, we find |<(ν)|(A), |=(ν)|(A) ≤ |ν|(A).

The last inequality is a consequence of the result of (i).

Lemma 10.3 Let ν be a complex measure on (X,Σ) and A ∈ Σ. Then A is
null for ν if and only if A is null for both <(ν) and =(ν) if and only if A is null
for |ν|.

Proof: The first equivalence is trivial. The proof that A is null for ν if and only
if A is null for |ν| is a repetition of the proof of the same result for a signed
measure ν. See Lemma 10.1.

Proposition 10.10 Let ν1 and ν2 be complex or signed measures on (X,Σ).
Then, ν1⊥ν2 if and only if each of <(ν1),=(ν1) and each of <(ν2),=(ν2) are
mutually singular if and only if |ν1|⊥|ν2|.

Proof: Trivial after Lemma 10.3.

Example
We take a measure µ on (X,Σ) and a measurable function f : X → C which
is integrable over X. Then,

∫
A
f dµ is, by Lemma 7.10, a complex number for

every A ∈ Σ, and Theorem 7.13 implies that the function λ : Σ → C, which is
defined by

λ(A) =

∫
A

f dµ

for every A ∈ Σ, is a complex measure on (X,Σ).

Definition 10.13 Let µ be a measure on (X,Σ) and f : X → C be integrable.
The complex measure λ defined in the previous paragraph is called the indefi-
nite integral of f with respect to µ and it is denoted by fµ. Thus,

(fµ)(A) =

∫
A

f dµ, A ∈ Σ.

The next result is the analogue of Proposition 10.3.

Proposition 10.11 Let µ be a measure on (X,Σ) and f : X → C be integrable
with respect to µ. Then

|fµ|(A) =

∫
A

|f | dµ

for every A ∈ Σ. Hence,
|fµ| = |f |µ.

196



Proof: If {A1, . . . , An} is an arbitrary measurable partition of A ∈ Σ, then∑n
k=1 |(fµ)(Ak)| =

∑n
k=1 |

∫
Ak
f dµ| ≤

∑n
k=1

∫
Ak
|f | dµ =

∫
A
|f | dµ. Therefore,

taking the supremum of the left side, |fµ|(A) ≤
∫
A
|f | dµ.

Since f is integrable, it is finite a.e. on X. If N = {x ∈ X | f(x) 6= ∞},
then µ(N c) = 0 and Theorem 6.1 implies that there is a sequence (φm) of
measurable simple functions with φm → sign(f) on N and |φm| ↑ |sign(f)| ≤ 1
on N . Defining each φm as 0 on N c, we have that all these properties hold a.e.
on X.

If φm =
∑nm
k=1 κ

m
k χEmk is the standard representation of φm, then |κmk | ≤ 1

for all k = 1, . . . , nm and, hence, |
∫
A
fφm dµ| = |

∑nm
k=1 κ

m
k

∫
A∩Em

k
f dµ| ≤∑nm

k=1 |(fµ)(A ∩ Emk )| ≤ |fµ|(A), where the last inequality is true because
{A ∩ Em1 , . . . , A ∩ Emnm} is a measurable partition of A. By the Dominated

Convergence Theorem, we get that
∫
A
|f | dµ =

∫
A
fsign(f) dµ ≤ |fµ|(A).

We conclude that |fµ|(A) =
∫
A
|f | dµ for every A ∈ Σ.

10.5 Integration.

Let (X,Σ) be a measurable space.
The next definition covers only the case when both f and ν have their values

in R.

Definition 10.14 Let ν be a signed measure on (X,Σ). If f : X → R is
measurable, we say that the integral

∫
X
f dν of f over X (with respect to

ν) is defined if both
∫
X
f dν+ and

∫
X
f dν− are defined and they are neither

both +∞ nor both −∞. In such a case we write∫
X

f dν =

∫
X

f dν+ −
∫
X

f dν−.

We say that f is integrable over X (with respect to ν) if the
∫
X
f dν

is finite.

Proposition 10.12 Let ν be a signed measure on (X,Σ) and f : X → R be
measurable. Then f is integrable with respect to ν if and only if f is integrable
with respect to both ν+ and ν− if and only if f is integrable with respect to |ν|.

Proof:
∫
X
f dν is finite if and only if both

∫
X
f dν+ and

∫
X
f dν− are finite

or, equivalently,
∫
X
|f | dν+ < +∞ and

∫
X
|f | dν− < +∞ or, equivalently,∫

X
|f | d|ν| < +∞ if and only if f is integrable with respect to |ν|.

Lemma 10.4 Let µ1, µ2 be two measures on (X,Σ) with µ1 ≤ µ2. Then∫
X
f dµ1 ≤

∫
X
f dµ2 for every measurable f : X → [0,+∞].

Proof: If φ =
∑m
j=1 κjχEj is a measurable non-negative simple function with its

standard representation, then
∫
X
φdµ1 =

∑m
j=1 κjµ1(Ej) ≤

∑m
j=1 κjµ2(Ej) =∫

X
φdµ2. For the general f we take a sequence (φn) of measurable non-negative
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simple functions with φn ↑ f on X. We write the inequality for each φn and
the Monotone Convergence Theorem implies

∫
X
f dµ1 ≤

∫
X
f dµ2.

Now, suppose that ν is a signed measure or a complex measure on (X,Σ)
and the function f : X → R or C is measurable. If

∫
X
|f | d|ν| < +∞, then

f is finite |ν|-a.e. on X and the |ν|-a.e. defined functions <(f) and =(f)
satisfy

∫
X
|<(f)| d|ν| < +∞ and

∫
X
|=(f)| d|ν| < +∞. Since, by Proposi-

tion 10.9, |<(ν)| ≤ |ν| and |=(ν)| ≤ |ν|, Lemma 10.4 implies that all integrals∫
X
|<(f)| d|<(ν)|,

∫
X
|<(f)| d|=(ν)|,

∫
X
|=(f)| d|<(ν)| and

∫
X
|=(f)| d|=(ν)| are

finite. Proposition 10.12 implies that all integrals
∫
X
<(f) d<(ν),

∫
X
<(f) d=(ν),∫

X
=(f) d<(ν) and

∫
X
=(f) d=(ν) are defined and they all are real numbers.

Therefore, the following definition is valid.

Definition 10.15 Let ν be a signed measure or a complex measure on (X,Σ)
and f : X → R or C be measurable. We say that f is integrable over X
(with respect to ν) if f is integrable with respect to |ν|. In such a case we say
that the integral

∫
X
f dν of f over X (with respect to ν) is defined and

it is given by∫
X

f dν =

∫
X

<(f) d<(ν)−
∫
X

=(f) d=(ν) + i

∫
X

<(f) d=(ν) + i

∫
X

=(f) d<(ν).

Of course, when f : X → C and ν is signed, we have∫
X

f dν =

∫
X

<(f) dν + i

∫
X

=(f) dν,

and when f : X → R and ν is complex, we have∫
X

f dν =

∫
X

f d<(ν) + i

∫
X

f d=(ν),

all under the assumption that
∫
X
|f | d|ν| < +∞.

We shall not bother to extend all properties of integrals with respect to
measures to properties of integrals with respect to signed measures or complex
measures. The safe thing to do is to reduce everything to positive and negative
variations or to real and imaginary parts.

For completeness, we shall only see a few most necessary properties, like the
linearity properties and the appropriate version of the Dominated Convergence
Theorem.

Proposition 10.13 Let ν, ν1, ν2 be signed or complex measures on (X,Σ) and
f, f1, f2 : X → R or C be all integrable with respect to these measures. For
every κ1, κ2 ∈ C,∫

X

(κ1f1 + κ2f2) dν = κ1

∫
X

f1 dν + κ2

∫
X

f2 dν ,∫
X

f d(κ1ν1 + κ2ν2) = κ1

∫
X

f dν1 + κ2

∫
X

f dν2 .
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Proof: The proof is straightforward when we reduce everything to real functions
and signed measures.

Theorem 10.7 (Dominated Convergence Theorem) Let ν be a signed or
complex measure on (X,Σ), f, fn : X → R or C and g : X → [0,+∞] be
measurable. If fn → f and |fn| ≤ g on X except on a set which is null for ν
and if

∫
X
g d|ν| < +∞, then ∫

X

fn dν →
∫
X

f dν.

Proof: A set which is null for ν is, also, null for ν+ and ν−, if ν is signed,
and null for <(ν) and =(ν), if ν is complex. Moreover, by Lemma 10.4,∫
X
g dν+,

∫
X
g dν− < +∞, if ν is signed, and

∫
X
g d|<(ν)|,

∫
X
g d|=(ν)| < +∞,

if ν is complex.
Therefore, the proof reduces to the usual Dominated Convergence Theorem

for measures.

Theorem 10.8 Let ν be a signed or complex measure on (X,Σ) and f : X → R
or C be such that the

∫
X
f dν is defined. Then∣∣∣ ∫

X

f dν
∣∣∣ ≤ ∫

X

|f | d|ν|.

Proof: We may assume that
∫
X
|f | d|ν| < +∞, or else the inequality is obvious.

If ν is a signed measure, |
∫
X
f dν| = |

∫
X
f dν+ −

∫
X
f dν−| ≤ |

∫
X
f dν+|+

|
∫
X
f dν−| ≤

∫
X
|f | dν+ +

∫
X
|f | dν− =

∫
X
|f | d|ν|.

If ν is complex, we shall see a proof which is valid in all cases anyway.
Let φ : X → C be a measurable simple function with its standard repre-

sentation φ =
∑n
k=1 κkχEk and so that |ν|(Ek) < +∞ for all k. Then, we

have |
∫
X
φdν| = |

∑n
k=1 κkν(Ek)| ≤

∑n
k=1 |κk||ν(Ek)| ≤

∑n
k=1 |κk||ν|(Ek) =∫

X
|φ| d|ν|.
Consider a sequence (φn) of measurable simple functions so that φn → f

on X and |φn| ↑ |f | on X. The Monotone Convergence Theorem implies∫
X
|φn| d|ν| →

∫
X
|f | d|ν| and Theorem 10.7, together with

∫
X
|f | d|ν| < +∞,

implies that
∫
X
φn dν →

∫
X
f dν. Taking the limit in |

∫
X
φn dν| ≤

∫
X
|φn| d|ν|

we prove the
∣∣∣ ∫X f dν∣∣∣ ≤ ∫X |f | d|ν|.

A companion to the previous theorem is

Theorem 10.9 Let ν be a signed or complex measure on (X,Σ). Then

|ν|(A) = sup
{∣∣∣ ∫

A

f dν
∣∣∣ ∣∣ f is measurable, |f | ≤ 1 on A

}
,

for every A ∈ Σ, where the functions f have real values, if ν is signed, and
complex values, if ν is complex.
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Proof: If f is measurable and |f | ≤ 1 on A, then |fχA| ≤ χA on X and Theorem
10.8 implies |

∫
A
f dν| = |

∫
X
fχA dν| ≤

∫
X
|fχA| d|ν| ≤

∫
X
χA d|ν| = |ν|(A).

Therefore the supremum of the left side is ≤ |ν|(A).
If ν is signed, we take a Hahn decomposition of X for ν. There are P,N ∈ Σ

so that P ∪N = X, P ∩N = ∅, P is a positive set and N a negative set for ν.
We consider the function f with values f = 1 on P and f = −1 on N . Then
|
∫
A
f dν| = |ν(A∩ P )− ν(A∩N)| = ν(A∩ P )− ν(A∩N) = ν+(A) + ν−(A) =

|ν|(A). Therefore, the supremum is equal to |ν|(A).
If ν is complex, we find a measurable partition {A1, . . . , An} of A so that

|ν|(A) − ε ≤
∑n
k=1 |ν(Ak)|. We, then, define the function f =

∑n
k=1 κkχAk ,

where κk = sign(ν(Ak)) for all k. Then, |f | ≤ 1 on A and |
∫
A
f dν| =

|
∑n
k=1 κkν(Ak)| =

∑n
k=1 |ν(Ak)| ≥ |ν|(A)− ε. This proves that the supremum

is equal to |ν|(A).

Finally, we prove a result about integration with respect to an indefinite
integral. This is important because, as we shall see in the next section, indefinite
integrals are special measures which play an important role among signed or
complex measures.

Theorem 10.10 Let µ be a measure on (X,Σ) and f : X → R or C be measur-
able so that

∫
X
f dµ is defined. Consider the signed measure or complex measure

fµ, the indefinite integral of f with respect to µ.
A measurable function g : X → R or C is integrable over X with respect to

fµ if and only if gf is integrable over X with respect to µ. In such a case,∫
X

g d(fµ) =

∫
X

gf dµ.

This equality is true, without any restriction, if f, g : X → [0,+∞] are
measurable.

Proof: We consider first the case when g, f : X → [0,+∞].
If g = χA for some A ∈ Σ, then

∫
X
χA d(fµ) = (fµ)(A) =

∫
A
f dµ =∫

X
χAf dµ. Hence, the equality

∫
X
g d(fµ) =

∫
X
gf dµ is true for character-

istic functions. This extends, by linearity, to measurable non-negative simple
functions g = φ and, by the Monotone Convergence Theorem, to the general g.

This implies that, in general,
∫
X
|g| d(|f |µ) =

∫
X
|gf | dµ. From this we see

that g is integrable over X with respect to fµ if and only if, by definition, g is
integrable over X with respect to |fµ| = |f |µ if and only if, by the equality we
just proved, gf is integrable over X with respect to µ.

The equality
∫
X
g d(fµ) =

∫
X
gf dµ can, now, be established by reducing all

functions to non-negative functions and using the special case we proved.

10.6 Lebesgue decomposition, Radon-Nikodym
derivative.

Let (X,Σ) be a measurable space.
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Definition 10.16 Let µ be a measure and ν a signed or complex measure on
(X,Σ). We say that ν is absolutely continuous with respect to µ when
ν(A) = 0 for every A ∈ Σ with µ(A) = 0 and we denote by

ν � µ.

Example
Let f : X → R or C be measurable so that the

∫
X
f dµ is defined (recall that,

in the case of C, this means that f is integrable). Then the indefinite integral
fµ is absolutely continuous with respect to µ.

This is obvious: if A ∈ Σ has µ(A) = 0, then (fµ)(A) =
∫
A
f dµ = 0.

Proposition 10.14 Let µ be a measure and ν, ν1, ν2 be signed or complex mea-
sures on (X,Σ).
(i) If ν is complex, then ν � µ if and only if <(ν) � µ and =(ν) � µ if and
only if |ν| � µ.
(ii) If ν is signed, then ν � µ if and only if ν+ � µ and ν− � µ if and only if
|ν| � µ.
(iii) If ν � µ and ν⊥µ, then ν = 0.
(iv) If ν1, ν2 � µ and ν1 + ν2 is defined, then ν1 + ν2 � µ.

Proof: (i) Since ν(A) = 0 is equivalent to <(ν)(A) = =(ν)(A) = 0, the first
equivalence is obvious.

Let ν � µ and take any A ∈ Σ with µ(A) = 0. If {A1, . . . , An} is any
measurable partition of A, then µ(Ak) = 0 for all k and, thus,

∑n
k=1 |ν(Ak)| = 0.

Taking the supremum of the left side we get |ν|(A) = 0. Hence, |ν| � µ.
If |ν| � µ and we take any A ∈ Σ with µ(A) = 0, then |ν(A)| ≤ |ν|(A) = 0.

Therefore, ν(A) = 0 and ν � µ.
(ii) The argument of part (i) applies without change to prove that ν � µ if and
only if |ν| � µ. Since |ν| = ν+ + ν−, it is obvious that ν+ � µ and ν− � µ if
and only if |ν| � µ.
(iii) Take sets M,N ∈ Σ so that M ∪N = X, M ∩N = ∅, M is a null set for
ν and N is a null set for µ. Then, µ(N) = 0 and ν � µ imply that N is a null
set for ν. But, then, X = M ∪N is a null set for ν and, hence, ν = 0.
(iv) If A ∈ Σ has µ(A) = 0, then ν1(A) = ν2(A) = 0 and, hence, (ν1+ν2)(A) = 0.

The next result justifies the term absolutely continuous at least in the special
case of a finite ν.

Proposition 10.15 Let µ be a measure and ν a real or a complex measure on
(X,Σ). Then ν � µ if and only if for every ε > 0 there is a δ > 0 so that
|ν(A)| < ε for every A ∈ Σ with µ(A) < δ.

Proof: Suppose that for every ε > 0 there is a δ > 0 so that |ν(A)| < ε for every
A ∈ Σ with µ(A) < δ. If µ(A) = 0, then µ(A) < δ for every δ > 0 and, hence,
|ν(A)| < ε for every ε > 0. Therefore, ν(A) = 0 and ν � µ.

Suppose that ν � µ but there is some ε0 > 0 so that, for every δ > 0, there
is A ∈ Σ with µ(A) < δ and |ν(A)| ≥ ε0. Then, for every k, there is Ak ∈ Σ with
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µ(Ak) < 1
2k

and |ν|(Ak) ≥ |ν(Ak)| ≥ ε0. We define Bk = ∪+∞l=kAl and, then,

µ(Bk) < 1
2k−1 and |ν|(Bk) ≥ |ν|(Ak) ≥ ε0 for every k. If we set B = ∩+∞k=1Bk,

then Bk ↓ B and, by the continuity of |ν| from above, we get µ(B) = 0 and
|ν|(B) ≥ ε0. This says that |ν| is not absolutely continuous with respect to µ
and, by Proposition 10.14, we arrive at a contradiction.

Theorem 10.11 Let µ be a measure on (X,Σ).
(i) If λ, λ′, ρ, ρ′ are signed or complex measures on (X,Σ) so that λ, λ′ � µ and
ρ, ρ′⊥µ and λ+ ρ = λ′ + ρ′, then λ = λ′ and ρ = ρ′.
(ii) If f, f ′ : X → R or C are integrable over X with respect to µ and fµ = f ′µ,
then f = f ′ µ-a.e. on X.
(iii) If f, f ′ : X → R are measurable and

∫
X
f dµ,

∫
X
f ′ dµ are defined and

fµ = f ′µ, then f = f ′ µ-a.e. on X, provided that µ, restricted to the set
{x ∈ X | f(x) 6= f ′(x)}, is semifinite.

Proof: (i) There exist sets M,M ′, N,N ′ ∈ Σ with M ∪ N = X = M ′ ∪ N ′,
M ∩N = ∅ = M ′ ∩N ′ so that N,N ′ are null for µ, M is null for ρ and M ′ is
null for ρ′. If we set K = N ∪N ′, then K is null for µ and Kc = M ∩M ′ is null
for both ρ and ρ′. Since λ, λ′ � µ, we have that K is null for both λ and λ′.

If A ∈ Σ, A ⊆ K, then ρ(A) = ρ(A) + λ(A) = ρ′(A) + λ′(A) = ρ′(A). If
A ∈ Σ, A ⊆ Kc, then ρ(A) = 0 = ρ′(A). Therefore, for every A ∈ Σ we have
ρ(A) = ρ(A ∩K) + ρ(A ∩Kc) = ρ′(A ∩K) + ρ′(A ∩Kc) = ρ′(A) and, hence,
ρ = ρ′.

A symmetric argument implies that λ = λ′.
(ii) We have

∫
A

(f − f ′) dµ =
∫
A
f dµ −

∫
A
f ′ dµ = (fµ)(A) − (f ′µ)(A) = 0 for

all A ∈ Σ. Theorem 7.5 implies f = f ′ µ-a.e. on X.
(iii) Let t, s ∈ R with t < s and At,s = {x ∈ X | f(x) ≤ t, s ≤ f ′(x)}. If
0 < µ(At,s) < +∞, we define B = At,s. If µ(At,s) = +∞, we take B ∈ Σ so
that B ⊆ At,s and 0 < µ(B) < +∞. In any case, (fµ)(B) =

∫
B
f dµ ≤ tµ(B)

and (f ′µ)(B) =
∫
B
f ′ dµ ≥ sµ(B) and, thus, sµ(B) ≤ tµ(B). This implies

µ(B) = 0, which is false. The only remaining case is µ(At,s) = 0.
Now, we observe that {x ∈ X | f(x) < f ′(x)} = ∪t,s∈Q,t<sAt,s, which implies

µ({x ∈ X | f(x) < f ′(x)}) = 0. Similarly, µ({x ∈ X | f(x) > f ′(x)}) = 0 and
we conclude that f = f ′ µ-a.e. on X.

Lemma 10.5 Let µ, ν be finite measures on (X,Σ). If µ and ν are not mutually
singular, then there exists an ε0 > 0 and an A0 ∈ Σ with µ(A0) > 0 so that

ν(A)

µ(A)
≥ ε0

for every A ∈ Σ, A ⊆ A0 with µ(A) > 0.

Proof: We consider, for every n, a Hahn decomposition of the signed measure
ν − 1

nµ. There are sets Pn, Nn ∈ Σ so that Pn ∪Nn = X, Pn ∩Nn = ∅ and Pn
is a positive set and Nn is a negative set for ν − 1

nµ.

We set N = ∩+∞n=1Nn and, since N ⊆ Nn for all n, we get (ν − 1
nµ)(N) ≤ 0

for all n. Then ν(N) ≤ 1
nµ(N) for all n and, since µ(N) < +∞, ν(N) = 0. We
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set P = ∪+∞n=1Pn and have P ∪N = X and P ∩N = ∅. If µ(P ) = 0, then µ and
ν are mutually singular. Therefore, µ(P ) > 0 and this implies that µ(PN ) > 0
for at least one N . We define A0 = PN for such an N and we set ε0 = 1

N for
the same N .

Now, µ(A0) > 0 and, if A ∈ Σ, A ⊆ A0, then, since A0 is a positive set for

ν − ε0µ, we get ν(A)− ε0µ(A) ≥ 0. If also µ(A) > 0, then ν(A)
µ(A) ≥ ε0.

Theorem 10.12 (Lebesgue-Radon-Nikodym Theorem. Signed case.)
Let ν be a σ-finite signed measure and µ be a σ-finite measure on (X,Σ). Then
there exist unique σ-finite signed measures λ and ρ on (X,Σ) so that

ν = λ+ ρ, λ� µ, ρ⊥µ.

Moreover, there exists a measurable f : X → R so that the
∫
X
f dµ is defined

and
λ = fµ.

If f ′ is another such function, then f ′ = f µ-a.e. on X.
If ν is non-negative, then λ and ρ are non-negative and f ≥ 0 µ-a.e. on X.

If ν is real, then λ and ρ are real and f is integrable over X with respect to µ.

Proof: The uniqueness part of the statement is a consequence of Theorem 10.11.
Observe that µ is σ-finite and, hence, semifinite.

Therefore, we need to prove the existence of λ, ρ and f .
A. We first consider the special case when both µ, ν are finite measures on
(X,Σ).

We define C to be the collection of all measurable f : X → [0,+∞] with the
property ∫

A

f dµ ≤ ν(A), A ∈ Σ.

The function 0, obviously, belongs to C and, if f1, f2 belong to C, then the
function f = max{f1, f2} also belongs to C. Indeed, if A ∈ Σ we consider
A1 = {x ∈ A | f2(x) ≤ f1(x)} and A2 = {x ∈ A | f1(x) < f2(x)} and we have∫
A
f dµ =

∫
A1
f dµ+

∫
A2
f dµ =

∫
A1
f1 dµ+

∫
A2
f2 dµ ≤ ν(A1) + ν(A2) = ν(A).

We define

κ = sup
{∫

X

f dµ | f ∈ C
}
.

Since 0 ∈ C and
∫
X
f dµ ≤ ν(X) for all f ∈ C, we have 0 ≤ κ ≤ ν(X) < +∞.

We take a sequence (fn) in C so that
∫
X
fn dµ→ κ and define g1 = f1 and,

inductively, gn = max{gn−1, fn} for all n ≥ 2. Then all gn belong to C. If we
set f = limn→+∞ gn, then gn ↑ f and, by the Monotone Convergence Theorem,∫

A

f dµ ≤ ν(A), A ∈ Σ

and ∫
X

f dµ = κ < +∞.
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Since (ν − fµ)(A) = ν(A) −
∫
A
f dµ ≥ 0 for all A ∈ Σ, the signed measure

ν − fµ is a finite measure. If ν − fµ and µ are not mutually singular, then, by
Lemma 10.5, there is A0 ∈ Σ and ε0 > 0 so that

ν(A)

µ(A)
− 1

µ(A)

∫
A

f dµ =
(ν − fµ)(A)

µ(A)
≥ ε0

for all A ∈ Σ, A ⊆ A0 with µ(A) > 0. From this we get
∫
A

(f+ε0χA0) dµ ≤ ν(A)
for all A ∈ Σ, A ⊆ A0. Now for any A ∈ Σ we have

∫
A

(f + ε0χA0) dµ =∫
A∩A0

(f+ε0χA0
) dµ+

∫
A\A0

(f+ε0χA0
) dµ ≤ ν(A∩A0)+

∫
A\A0

(f+ε0χA0
) dµ =

ν(A ∩ A0) +
∫
A\A0

f dµ ≤ ν(A ∩ A0) + ν(A \ A0) = ν(A). This implies that

f + ε0χA0
belongs to C and hence κ+ ε0µ(A0) =

∫
X

(f + ε0χA0
) dµ ≤ κ. This is

false and we arrived at a contradiction. Therefore, ν − fµ⊥µ.
We set ρ = ν − fµ and λ = fµ and we have the decomposition ν = λ + ρ

with λ � µ, ρ⊥µ. Both λ and ρ are finite measures and f : X → [0,+∞] is
integrable with respect to µ, because λ(X) =

∫
X
f dµ = κ < +∞ and ρ(X) =

ν(X)−
∫
X
f dµ = ν(X)− κ < +∞.

B. We, now, suppose that both µ, ν are σ-finite measures on (X,Σ).
Then, there are pairwise disjoint F1, F2, . . . ∈ Σ so that X = ∪+∞k=1Fk and

µ(Fk) < +∞ for all k and pairwise disjoint G1, G2, . . . ∈ Σ so that X = ∪+∞l=1Gl
and ν(Gl) < +∞ for all l. The sets Fk ∩Gl are pairwise disjoint, they cover X
and µ(Fk ∩Gl), ν(Fk ∩Gl) < +∞ for all k, l. We enumerate them as E1, E2, . . .
and have X = ∪+∞n=1En and µ(En), ν(En) < +∞ for all n.

We define µn and νn by

µn(A) = µ(A ∩ En), νn(A) = ν(A ∩ En)

for all A ∈ Σ and all n and we see that all µn, νn are finite measures on (X,Σ).
We also have

µ(A) =

+∞∑
n=1

µn(A), ν(A) =

+∞∑
n=1

νn(A)

for all A ∈ Σ.
Applying the results of part A, we see that there exist finite measures λn, ρn

on (X,Σ) and fn : X → [0,+∞] integrable with respect to µn so that

νn = λn + ρn, λn � µn, ρn⊥µn, λn(A) =

∫
A

fn dµn

for all n and all A ∈ Σ. From νn(Ecn) = 0 we get that λn(Ecn) = ρn(Ecn) = 0.
Now, since µn(A) = λn(A) = 0 for every A ∈ Σ, A ⊆ Ecn, the relation λn(A) =∫
A
fn dµn remains true for all A ∈ Σ if we change fn and make it 0 on Ecn. We,

therefore, assume that

fn = 0 on Ecn, λn(A) =

∫
A∩En

fn dµn

for all n and all A ∈ Σ.
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We define λ, ρ : Σ→ [0,+∞] and f : X → [0,+∞] by

λ(A) =

+∞∑
n=1

λn(A), ρ(A) =

+∞∑
n=1

ρn(A), f(x) =

+∞∑
n=1

fn(x)

for every A ∈ Σ and every x ∈ X. It is trivial to see that λ and ρ are measures
on (X,Σ) and that f is measurable.

The equality ν = λ+ ρ is obvious.
If A ∈ Σ has µ(A) = 0, then µn(A) = µ(A∩En) = 0 and, hence, λn(A) = 0

for all n. Thus, λ(A) = 0 and, thus, λ� µ.
Since ρn⊥µn, there is Rn ∈ Σ so that Rn is null for µn and Rcn is null for

ρn. But, then R′n = Rn ∩ En is also null for µn and R′cn = Rcn ∪ Ecn is null for
ρn. Since R′n is obviously null for all µm, m 6= n, we have that R′n is null for µ.
Then R = ∪+∞n=1R

′
n is null for µ and Rc = ∩+∞n=1R

′c
n is null for all ρn and, hence,

for ρ. We conclude that ρ⊥µ.
The λ and ρ are σ-finite, because λ(En) = λn(En) < +∞ and ρ(En) =

ρn(En) < +∞ for all n.
Finally, for every A ∈ Σ, λ(A) =

∑+∞
n=1 λn(A) =

∑+∞
n=1

∫
A∩En fn dµn =∑+∞

n=1

∫
A∩En f dµn =

∑+∞
n=1

∫
A∩En f dµ =

∫
A
f dµ. The fourth equality is true

because
∫
En
f dµn =

∫
En
f dµ for all measurable f : X → [0,+∞]. This is

justified as follows: if f = χA, then the equality becomes µn(A∩En) = µ(A∩En)
which is true. Then the equality holds, by linearity, for non-negative measurable
simple functions and, by the Monotone Convergence Theorem, it holds for all
measurable f : X → [0,+∞]. Now, from λ(A) =

∫
A
f dµ, we conclude that

λ = fµ and that λ� µ.
C. In the general case we write ν = ν+ − ν− and both ν+, ν− are σ-finite
measures on (X,Σ). We apply the result of part B and get σ-finite measures
λ1, λ2, ρ1, ρ2 so that ν+ = λ1 + ρ1, ν− = λ2 + ρ2 and λ1, λ2 � µ, ρ1, ρ2⊥µ.
Since either ν+ or ν− is a finite measure, we have that either λ1, ρ1 are finite
or λ2, ρ2 are finite. We then write λ = λ1 − λ2 and ρ = ρ1 − ρ2 and have that
ν = λ+ ρ and λ� µ, ρ⊥µ.

We also have measurable f1, f2 : X → [0,+∞] so that λ1 = f1µ and λ2 =
f2µ. Then, either

∫
X
f1 dµ = λ1(X) < +∞ or

∫
X
f2 dµ = λ2(X) < +∞ and,

hence, either f1 < +∞ µ-a.e. on X or f2 < +∞ µ-a.e. on X. The function
f = f1−f2 is defined µ-a.e. on X and the

∫
X
f dµ =

∫
X
f1 dµ−

∫
X
f2 dµ exists.

Now, λ(A) = λ1(A)− λ2(A) =
∫
A
f1 dµ−

∫
A
f2 dµ =

∫
A
f dµ for all A ∈ Σ and,

thus, λ = fµ.

Theorem 10.13 (Lebesgue-Radon-Nikodym Theorem. Complex case.)
Let ν be a complex measure and µ be a σ-finite measure on (X,Σ). Then there
exist unique complex measures λ and ρ on (X,Σ) so that

ν = λ+ ρ, λ� µ, ρ⊥µ.

Moreover, there exists a measurable f : X → C so that f is integrable over X
with respect to µ and

λ = fµ.
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If f ′ is another such function, then f ′ = f µ-a.e. on X.
If ν is non-negative, then λ and ρ are non-negative and f ≥ 0 µ-a.e. on X.

If ν is real, then λ and ρ are real and f is extended-real valued.

Proof: The measures <(ν) and =(ν) are real measures and, by Theorem 10.12,
there exist real measures λ1, λ2, ρ1, ρ2 on (X,Σ) so that <(ν) = λ1 +ρ1, =(ν) =
λ2 +ρ2 and λ1, λ2 � µ and ρ1, ρ2⊥µ. We set λ = λ1 + iλ2 and ρ = ρ1 + iρ2 and,
then, ν = λ+ ρ and, clearly, λ� µ and ρ⊥µ. There are, also, f1, f2 : X → R,
which are integrable over X with respect to µ, so that λ1 = f1µ and λ2 = f2µ.
The function f = f1 + if2 : X → C is µ-a.e. defined, it is integrable over X
with respect to µ and we have (fµ)(A) =

∫
A
f dµ =

∫
A
f1 dµ + i

∫
A
f2 dµ =

λ1(A) + iλ2(A) = λ(A) for all A ∈ Σ. Hence, λ = fµ.
The uniqueness is an easy consequence of Theorem 10.11.

Definition 10.17 Let ν be a signed measure or a complex measure and µ a
measure on (X,Σ). If there exist, necessarily unique, signed or complex mea-
sures λ and ρ, so that

ν = λ+ ρ, λ� µ, ρ⊥µ,

we say that λ and ρ constitute the Lebesgue decomposition of ν with
respect to µ.

λ is called the absolutely continuous part and ρ is called the singular
part of ν with respect to µ.

Let ν be a signed or complex measure and µ a measure on (X,Σ) so that
ν � µ. If there exists a measurable f : X → R or C so that

∫
X
f dµ is defined

and

ν = fµ,

then f is called a Radon-Nikodym derivative of ν with respect to µ. Any
Radon-Nikodym derivative of ν with respect to µ is denoted by dν

dµ .

Theorems 10.12 and 10.13 say that, if ν and µ are σ-finite, then ν has a
unique Lebesgue decomposition with respect to µ. Moreover, if ν and µ are σ-
finite and ν � µ, then there exists a Radon-Nikodym derivative of ν with respect
to µ, which is unique if we disregard µ-null sets. This is true because ν = ν + 0
is, necessarily, the Lebesgue decomposition of ν with respect to µ.

We should make some remarks about Radon-Nikodym derivatives.
1. The symbol dνdµ appears as a fraction of two quantities but it is not. It is like

the well known symbol dy
dx of the derivative in elementary calculus.

2. Definition 10.17 allows all Radon-Nikodym derivatives of ν with respect to µ
to be denoted by the same symbol dνdµ . This is not absolutely strict and it would

be more correct to say that dν
dµ is the collection (or class) of all Radon-Nikodym

derivatives of ν with respect to µ. It is simpler to follow the tradition and use
the same symbol for all derivatives. Actually, there is no danger for confusion
in doing this, because the equality f = dν

dµ , or its equivalent ν = fµ, acquires
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its real meaning through the ν(A) =
∫
A
f dµ, A ∈ Σ.

3. As we just observed, the real meaning of the symbol dν
dµ is through

ν(A) =

∫
A

fracdνdµ dµ, A ∈ Σ,

which, after formally simplifying the fraction (!), changes into the true equality
ν(A) =

∫
A
dν.

4. Theorem 10.11 implies that the Radon-Nikodym of ν � µ with respect to
µ, if it exists, is unique when µ is a semifinite measure, provided we disregard
sets of zero µ-measure.

The following propositions give some properties of Radon-Nikodym deriva-
tives of calculus type.

Proposition 10.16 Let ν1, ν2 be complex or σ-finite signed measures and µ a
σ-finite measure on (X,Σ). If ν1, ν2 � µ and ν1+ν2 is defined, then ν1+ν2 � µ
and

d(ν1 + ν2)

dµ
=
dν1
dµ

+
dν2
dµ

, µ-a.e. on X.

Proof: We have (ν1 + ν2)(A) =
∫
A
dν1
dµ dµ+

∫
A
dν2
dµ dµ =

∫
A

(
dν1
dµ + dν2

dµ

)
dµ for all

A ∈ Σ and, hence, d(ν1+ν2)dµ = dν1
dµ + dν2

dµ µ-a.e. on X.

Proposition 10.17 Let ν be a complex or a σ-finite signed measure and µ a
σ-finite measure on (X,Σ). If ν � µ and κ ∈ C or R, then κν � µ and

d(κν)

dµ
= κ

dν

dµ
, µ-a.e. on X.

Proof: We have (κν)(A) = κ
∫
A
dν
dµ dµ =

∫
A

(
κ dνdµ

)
dµ for all A ∈ Σ and, hence,

d(κν)
dµ = κ dνdµ µ-a.e. on X.

Proposition 10.18 (Chain rule.) Let ν be a complex or σ-finite signed measure
and µ′, µ be σ-finite measures on (X,Σ). If ν � µ′ and µ′ � µ, then ν � µ
and

dν

dµ
=

dν

dµ′
dµ′

dµ
, µ-a.e. on X.

Proof: If A ∈ Σ has µ(A) = 0, then µ′(A) = 0 and, hence, ν(A) = 0. Therefore,
ν � µ.

Theorem 10.10 implies that ν(A) =
∫
A

dν
dµ′ dµ

′ =
∫
A

dν
dµ′

dµ′

dµ dµ for every

A ∈ Σ and, hence, dν
dµ = dν

dµ′
dµ′

dµ µ-a.e. on X.

Proposition 10.19 Let µ and µ′ be two σ-finite measures on (X,Σ). If µ′ � µ
and µ� µ′, then

dµ

dµ′
dµ′

dµ
= 1 , µ-a.e. on X.
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Proof: We have µ(A) =
∫
A
dµ for every A ∈ Σ and, hence, dµdµ = 1 µ-a.e. on X.

The result of this proposition is a trivial consequence of Proposition 10.18.

Proposition 10.20 Let ν be a σ-finite measure on (X,Σ). Then ν � |ν| and∣∣∣ dν
d|ν|

∣∣∣ = 1 , ν-a.e. on X.

Proof: Proposition 10.11 implies that
∣∣∣ dνd|ν| ∣∣∣|ν| =

∣∣∣ dνd|ν| |ν|∣∣∣ = |ν| and, hence,∣∣∣ dνd|ν| ∣∣∣ = 1 |ν| -a.e. on X.

10.7 Differentiation of indefinite integrals in Rn.

Let f : [a, b]→ R be a Riemann integrable function. The Fundamental Theorem
of Calculus says that, for every x ∈ [a, b] which is a continuity point of f , we
have d

dx

∫ x
a
f(y) dy = f(x). This, of course, means that

lim
r→0+

∫ x+r
a

f(y) dy −
∫ x
a
f(y) dy

r
= lim
r→0+

∫ x−r
a

f(y) dy −
∫ x
a
f(y) dy

−r
= f(x).

Adding the two limits, we find

lim
r→0+

∫ x+r
x−r f(y) dy

2r
= f(x).

In this (and the next) section we shall prove a far reaching generalisation of
this result: a fundamental theorem of calculus for indefinite Lebesgue integrals
and, more generally, for locally finite Borel measures in Rn.

Lemma 10.6 (N. Wiener) Let B1, . . . , Bm be open balls in Rn. There exist
pairwise disjoint B11 , . . . , Bik so that

mn(Bi1) + · · ·+mn(Bik) ≥ 1

3n
mn(B1 ∪ · · · ∪Bm).

Proof: From B1, . . . , Bm we choose a ball Bi1 with largest radius. (There may
be more than one balls with the same largest radius and we choose any one of
them.) Together with Bi1 we collect all other balls, its satellites, which intersect
it and call their union (Bi1 included) C1. Since each of these balls has radius
not larger than the radius of Bi1 , we see that C1 ⊆ B∗i1 , where B∗i1 is the ball
with the same center as Bi1 and radius three times the radius of Bi1 . Therefore,

mn(C1) ≤ mn(B∗i1) = 3nmn(Bi1).

The remaining balls have empty intersection with Bi1 and from them we
choose a ball Bi2 with largest radius. Of course, Bi2 does not intersect Bi1 .
Together with Bi2 we collect all other balls (from the remaining ones), its satel-
lites, which intersect it and call their union (Bi2 included) C2. Since each of
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these balls has radius not larger than the radius of Bi2 , we have C2 ⊆ B∗i2 , where
B∗i2 is the ball with the same center as Bi2 and radius three times the radius of
Bi2 . Therefore, we hav

mn(C2) ≤ mn(B∗i2) = 3nmn(Bi2).

We continue this procedure and, since at every step at least one ball is
collected (Bi1 at the first step, Bi2 at the second step and so on), after at most
m steps, say at the kth step, the procedure will stop. Namely, after the first
k−1 steps, the remaining balls have empty intersection with Bi1 , . . . , Bik−1

and
from them we choose a ball Bik with largest radius. This Bik does not intersect
Bi1 , . . . , Bik−1

. All remaining balls intersect Bik , they are its satellites, (since
this is the step where the procedure stops) and form their union (Bik included)
Ck. Since each of these balls has radius not larger than the radius of Bik , we
have Ck ⊆ B∗ik , where B∗ik is the ball with the same center as Bik and radius
three times the radius of Bik . Therefore,

mn(Ck) ≤ mn(B∗ik) = 3nmn(Bik).

It is clear that each of the original balls B1, . . . , Bm is either chosen as one
of Bi1 , . . . , Bik or is a satellite of one of Bi1 , . . . , Bik . Therefore, B1∪· · ·∪Bm =
C1 ∪ · · · ∪ Ck and, hence,

mn(B1 ∪ · · · ∪Bm) = mn(C1 ∪ · · · ∪ Ck) ≤ mn(C1) + · · ·+mn(Ck)

≤ 3n
(
mn(Bi1) + · · ·+mn(Bik)

)
.

Definition 10.18 Let f : Rn → R or C be Lebesgue measurable. We say
that f is locally Lebesgue integrable if for every x ∈ Rn there is an open
neighborhood Ux of x so that

∫
Ux
|f(y)| dmn(y) < +∞.

Lemma 10.7 Let f : Rn → R or C be Lebesgue measurable. Then f is locally
Lebesgue integrable if and only if

∫
M
|f(y)| dmn(y) < +∞ for every bounded set

M ∈ Ln.

Proof: Let f be locally Lebesgue integrable and M ⊆ Rn be bounded. We
consider a compact set K ⊇ M . (Such a K is the closure of M or just
a closed ball or a closed cube including M .) For each x ∈ K we take an
open neighborhood Ux of x so that

∫
Ux
|f(y)| dmn(y) < +∞. We, then, take

finitely many x1, . . . , xm so that M ⊆ K ⊆ Ux1
∪ · · · ∪ Uxm . This implies∫

M
|f(y)| dmn(y) ≤

∫
Ux1
|f(y)| dmn(y) + · · ·+

∫
Uxm
|f(y)| dmn(y) < +∞.

If, conversely,
∫
M
|f(y)| dmn(y) < +∞ for every bounded set M ∈ Ln,

then
∫
B(x;1)

|f(y)| dmn(y) < +∞ for every x and, hence, f is locally Lebesgue

integrable.

Proposition 10.21 Let f, f1, f2 : Rn → R or C be locally Lebesgue integrable
and κ ∈ C. Then
(i) f is finite a.e. on Rn,
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(ii) f1 + f2 is defined a.e. on Rn and any Lebesgue measurable definition of
f1 + f2 is locally Lebesgue integrable,
(iii) κf is locally Lebesgue integrable.

Proof: (i) Lemma 10.7 implies
∫
B(0;k)

|f(y)| dmn(y) < +∞ and, hence, f is

finite a.e. in B(0; k) for every k. Since Rn = ∪+∞k=1B(0; k), we find that f is
finite a.e. in Rn.
(ii) By (i), both f1, f2 are finite and, hence, f1 + f2 is defined a.e. on Rn. We
have

∫
M
|f1(y) + f2(y)| dmn(y) ≤

∫
M
|f1(y)| dmn(y) +

∫
M
|f2(y)| dmn(y) < +∞

for every bounded M ⊆ Rn and, by Lemma 10.7, f1 + f2 is locally Lebesgue
integrable.
(iii) Similarly,

∫
M
|κf(y)| dmn(y) = |κ|

∫
M
|f(y)| dmn(y) < +∞ for all bounded

M ⊆ Rn and, hence, κf is locally Lebesgue integrable.

The need for local Lebesgue integrability (or for local finiteness of measures)
is for definitions like the following one to make sense. Of course, we may restrict
to Lebesgue integrability if we like.

Definition 10.19 Let f : Rn → R or C be locally Lebesgue integrable. The
function M(f) : Rn → [0,+∞], defined by

M(f)(x) = sup
B open ball, B3x

1

mn(B)

∫
B

|f(y)| dmn(y)

for all x ∈ Rn, is called the Hardy-Littlewood maximal function of f .

Proposition 10.22 Let f, f1, f2 : Rn → R or C be locally Lebesgue integrable
and κ ∈ C. Then
(i) M(f1 + f2) ≤M(f1) +M(f2),
(ii) M(κf) = |κ|M(f).

Proof: (i) For all x and all open balls B 3 x, 1
mn(B)

∫
B
|f1(y) + f2(y)| dmn(y) ≤

1
mn(B)

∫
B
|f1(y)| dmn(y)+ 1

mn(B)

∫
B
|f2(y)| dmn(y) ≤M(f1)(x)+M(f2)(x). Tak-

ing supremum of the left side, we get M(f1 + f2)(x) ≤M(f1)(x) +M(f2)(x).
(ii) Also, 1

mn(B)

∫
B
|κf(y)| dmn(y) = |κ| 1

mn(B)

∫
B
|f(y)| dmn(y) ≤ |κ|M(f)(x)

and, taking the supremum of the left side, M(κf)(x) ≤ |κ|M(f)(x). Conversely,
M(κf)(x) ≥ 1

mn(B)

∫
B
|κf(y)| dmn(y) = |κ| 1

mn(B)

∫
B
|f(y)| dmn(y) and, taking

the supremum of the right side, M(κf)(x) ≥ |κ|M(f)(x).

Lemma 10.8 Let f : Rn → R or C be locally Lebesgue integrable. Then, for
every t > 0, the set {x ∈ Rn | t < M(f)(x)} is open in Rn.

Proof: Let U = {x ∈ Rn | t < M(f)(x)} and x ∈ U . Then t < M(f)(x) and,
hence, there exists an open ball B 3 x so that t < 1

mn(B)

∫
B
|f(y)| dmn(y). If we

take an arbitrary x′ ∈ B, then 1
mn(B)

∫
B
|f(y)| dmn(y) ≤ M(f)(x′) and, thus,

t < M(f)(x′). Therefore, B ⊆ U and U is open in Rn.

Since {x ∈ Rn | t < M(f)(x)} is open, it is also a Lebesgue set.
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Theorem 10.14 (Hardy, Littlewood) Let f : Rn → R or C be Lebesgue inte-
grable. Then, for every t > 0, we have

mn({x ∈ Rn | t < M(f)(x)}) ≤ 3n

t

∫
Rn

|f(y)| dmn(y).

Proof: We take arbitrary compact K ⊆ U = {x ∈ Rn | t < M(f)(x)} and for
each x ∈ K we find an open ball Bx 3 x with t < 1

mn(Bx)

∫
Bx
|f(y)| dmn(y).

Since K is compact, there exist x1, . . . , xm so that K ⊆ Bx1
∪ · · · ∪ Bxm . By

Lemma 10.6, there exist pairwise disjoint Bxi1 , . . . , Bxik so that

mn(Bx1 ∪ · · · ∪Bxm) ≤ 3n
(
mn(Bxi1 ) + · · ·+mn(Bxik )

)
.

Then

mn(K) ≤ mn(Bx1
∪ · · · ∪Bxm)

≤ 3n

t

(∫
Bxi1

|f(y)| dmn(y) + · · ·+
∫
Bxik

|f(y)| dmn(y)
)

≤ 3n

t

∫
Rn

|f(y)| dmn(y).

By the regularity of mn, mn(U) = sup{mn(K) |K is compact ⊆ U} and
we conclude that mn(U) ≤ 3n

t

∫
Rn |f(y)| dmn(y).

Observe that the quantity mn({x ∈ Rn | t < M(f)(x)}) is nothing but the
value at t of the distribution function λM(f) of M(f). Therefore, another way
to state the result of Theorem 10.14 is

λM(f)(t) ≤
3n

t

∫
Rn

|f(y)| dmn(y).

Definition 10.20 Let (X,Σ, µ) be a measure space and g : X → R or C be
measurable. We say that g is weakly integrable over X (with respect to
µ) if there is a c < +∞ so that λ|g|(t) ≤ c

t for every t > 0.

Another way to state Theorem 10.14 is: if f is Lebesgue integrable, then
M(f) is weakly Lebesgue integrable.

Proposition 10.23 Let (X,Σ, µ) be a measure space, g, g1, g2 : X → R or C
be weakly integrable over X and κ ∈ C. Then
(i) g is finite a.e. on X,
(ii) g1 + g2 is defined a.e. on X and any measurable definition of g1 + g2 is
weakly integrable over X,
(iii) κg is weakly integrable over X.

Proof: (i) λ|g|(t) ≤ c
t for all t > 0 implies that µ({x ∈ X | g(x) is infinite}) ≤

µ({x ∈ X |n < |g(x)|}) ≤ c
n for all n and, thus, µ({x ∈ X | g(x) is infinite}) = 0.

(ii) By (i) both g1 and g2 are finite a.e. on X and, hence, g1 + g2 is defined a.e.
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on X. If µ({x ∈ X | t < |g1(x)|}) ≤ c1
t and µ({x ∈ X | t < |g2(x)|}) ≤ c2

t for all
t > 0, then any measurable definition of g1 + g2 satisfies, for every t > 0, the
estimate: µ({x ∈ X | t < |g1(x) + g2(x)|}) ≤ µ({x ∈ X | t2 < |g1(x)|}) + µ({x ∈
X | t2 < |g2(x)|}) ≤ 2c1+2c2

t .
(iii) If µ({x ∈ X | t < |g(x)|}) ≤ c

t for all t > 0, then µ({x ∈ X | t < |κg(x)|}) =

µ({x ∈ X | t|κ| < |g(x)|}) ≤ c|κ|
t for all t > 0.

Proposition 10.24 Let (X,Σ, µ) be a measure space and g : X → R or C be
integrable over X. Then g is also weakly integrable over X.

Proof: We have λ|g|(t) = µ({x ∈ X | t < |g(x)|}) ≤ 1
t

∫
{x∈X | t<|g(x)|} |g| dµ ≤

1
t

∫
X
|g| dµ for all t > 0. Therefore, λ|g|(t) ≤ c

t for all t > 0, where c =
∫
X
|g| dµ.

Example
The converse of Proposition 10.24 is not true. Consider, for example, the func-
tion g(x) = 1

|x|n , x ∈ Rn.

By Proposition 8.12,
∫
Rn |g(x)| dmn(x) = σn−1(Sn−1)

∫ +∞
0

1
rn r

n−1 dr =

σn−1(Sn−1)
∫ +∞
0

1
r dr = +∞. But, {x ∈ Rn | t < |g(x)|} = B(0; t−

1
n ) and,

hence, λ|g|(t) = vn · (t−
1
n )n = vn

t for every t > 0, where vn = mn(B(0; 1)).

The next result says that the Hardy-Littlewood maximal function is never
(except if the function is zero) Lebesgue integrable.

Proposition 10.25 Let f : Rn → R or C be Lebesgue integrable. Then M(f)
is locally Lebesgue integrable. If M(f) is Lebesgue integrable, then f = 0 a.e.
on Rn.

Proof: Let A = {x ∈ Rn | f(x) 6= 0} and assume that mn(A) > 0. Since
A = ∪+∞k=1(A∩B(0; k)), we get that mn(A∩B(0; k)) > 0 for at least one k ≥ 1.
We set M = A∩B(0; k) and we have got a bounded set M so that mn(M) > 0
and |x| ≤ k for every x ∈ M . Since f(x) 6= 0 for every x ∈ M , we have that∫
M
|f(y)| dmn(y) > 0.
We take any x with |x| ≥ k and observe that there is an open ball B of

diameter |x| + k + 1 containing x and including M . If vn = mn(B(0; 1)), then
M(f)(x) ≥ 1

mn(B)

∫
B
|f(y)| dmn(y) ≥ 2n

vn·(|x|+k+1)n

∫
M
|f(y)| dmn(y) ≥ c

|x|n ,

with c = 2n

vn3n

∫
M
|f(y)| dmn(y) > 0. This implies

∫
Rn |M(f)(x)| dmn(x) ≥

c
∫
{x∈Rn | |x|≥k}

1
|x|n dmn(x) = cσn−1(Sn−1)

∫ +∞
k

1
rn r

n−1 dr = +∞.

The next result is a direct generalization of the fundamental theorem of
calculus and the proofs are identical.

Lemma 10.9 Let g : Rn → C be continuous on Rn. Then

lim
r→0+

1

mn(B(x; r))

∫
B(x;r)

|g(y)− g(x)| dmn(y) = 0

for every x ∈ Rn.
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Proof: Let ε > 0 and take δ > 0 so that |g(y)− g(x)| ≤ ε for every y ∈ Rn with
|y − x| < δ. Then, for every r < δ, 1

mn(B(x;r))

∫
B(x;r)

|g(y) − g(x)| dmn(y) ≤
1

mn(B(x;r))

∫
B(x;r)

ε dmn(y) = ε.

Theorem 10.15 (Lebesgue) Let f : Rn → R or C be locally Lebesgue inte-
grable. Then,

lim
r→0+

1

mn(B(x; r))

∫
B(x;r)

|f(y)− f(x)| dmn(y) = 0

for a.e. x ∈ Rn.

Proof: We first assume that f is integrable.
We take an arbitrary ε > 0 and, through Theorem 7.16, we find g : Rn → C,

continuous on Rn, so that
∫
Rn |g−f | dmn < ε. For all x ∈ Rn and r > 0 we get

1
mn(B(x;r))

∫
B(x;r)

|f(y)−f(x)| dmn(y) ≤ 1
mn(B(x;r))

∫
B(x;r)

|f(y)−g(y)| dmn(y)+
1

mn(B(x;r))

∫
B(x;r)

|g(y)−g(x)| dmn(y)+ 1
mn(B(x;r))

∫
B(x;r)

|g(x)−f(x)| dmn(y) ≤
M(f − g)(x) + 1

mn(B(x;r))

∫
B(x;r)

|g(y)− g(x)| dmn(y) + |g(x)− f(x)|.
We set A(f)(x; r) = 1

mn(B(x;r))

∫
B(x;r)

|f(y) − f(x)| dmn(y) and the last in-

equality, together with Lemma 10.9, implies

lim sup
r→0+

A(f)(x; r) ≤M(f − g)(x) + 0 + |g(x)− f(x)|.

Now, for every t > 0, we get m∗n({x ∈ Rn | t < lim supr→0+A(f)(x; r)}) ≤
mn({x ∈ Rn | t2 < M(f − g)(x)}) + mn({x ∈ Rn | t2 < |g(x) − f(x)|}) ≤
2·3n
t

∫
Rn |f−g| dmn+ 2

t

∫
Rn |f−g| dmn ≤ 2·3n+2

t ε, where the second inequality
is a consequence of Theorem 10.14. Since ε is arbitrary, we find, for all t > 0,

m∗n({x ∈ Rn | t < lim sup
r→0+

A(f)(x; r)}) = 0.

By the subadditivity of m∗n, m∗n({x ∈ Rn | lim supr→0+A(f)(x; r) 6= 0}) ≤∑+∞
k=1m

∗
n({x ∈ Rn | 1k < lim supr→0+A(f)(x; r)}) = 0 and, hence,

m∗n({x ∈ Rn | lim sup
r→0+

A(f)(x; r) 6= 0}) = 0.

This implies that lim supr→0+A(f)(x; r) = 0 for a.e. x ∈ Rn and, since
lim infr→0+A(f)(x; r) ≥ 0 for every x ∈ Rn, we conclude that

lim
r→0+

A(f)(x; r) = 0

for a.e. x ∈ Rn.
Now, let f be locally Lebesgue integrable. We fix an arbitrary k ≥ 2 and

consider the function h = fχB(0;k). Then h is Lebesgue integrable and, for
every x ∈ B(0; k − 1) and every r ≤ 1, we have A(f)(x; r) = A(h)(x; r). By
what we have already proved, this implies that limr→0+A(f)(x; r) = 0 for a.e.
x ∈ B(0; k − 1). Since k is arbitrary, we conclude that limr→0+A(f)(x; r) = 0
for a.e. x ∈ Rn.
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Definition 10.21 Let f : Rn → R or C be locally Lebesgue integrable. The set
Lf of all x ∈ Rn for which limr→0+

1
mn(B(x;r))

∫
B(x;r)

|f(y)− f(x)| dmn(y) = 0

is called the Lebesgue set of f .

Example
If x is a continuity point of f , then x belongs to the Lebesgue set of f . The
proof of this fact is, actually, the proof of Lemma 10.9.

Theorem 10.16 Let f : Rn → R or C be locally Lebesgue integrable. Then,
for every x in the Lebesgue set of f , we have

lim
r→0+

1

mn(B(x; r))

∫
B(x;r)

f(y) dmn(y) = f(x).

Proof: Indeed, for all x ∈ Lf we have
∣∣ 1
mn(B(x;r))

∫
B(x;r)

f(y) dmn(y)− f(x)
∣∣ ≤

1
mn(B(x;r))

∫
B(x;r)

|f(y)− f(x)| dmn(y)→ 0.

Definition 10.22 Let x ∈ Rn and E be a collection of sets in Ln with the
property that there is a c > 0 so that for every E ∈ E there is a ball B(x; r)
with E ⊆ B(x; r) and mn(E) ≥ cmn(B(x; r)). Then the collection E is called a
thick family of sets at x.

Examples
1. Any collection of qubes containing x and any collection of balls containing x
is a thick family of sets at x.
2. Consider any collection E all elements of which are intervals S containing x.
Let AS be the length of the largest side and aS be the length of the smallest
side of S. If there is a constant c > 0 so that aS

AS
≥ c for every S ∈ E , then E is

a thick family of sets at x.

Theorem 10.17 Let f : Rn → R or C be locally Lebesgue integrable. Then,
for every x in the Lebesgue set of f and for every thick family E of sets at x,
we have

lim
E∈E,mn(E)→0+

1

mn(E)

∫
E

|f(y)− f(x)| dmn(y) = 0

lim
E∈E,mn(E)→0+

1

mn(E)

∫
E

f(y) dmn(y) = f(x).

Proof: There is a c > 0 so that for every E ∈ E there is a ball B(x; rE) with
E ⊆ B(x; rE) and mn(E) ≥ cmn(B(x; rE)). If x ∈ Lf , then for every ε > 0
there is a δ > 0 so that r < δ implies 1

mn(B(x;r))

∫
B(x;r)

|f(y)−f(x)| dmn(y) < cε.

If mn(E) < cvnδ
n, where vn = mn(B(0; 1)), then rE < δ and, hence,

1
mn(E)

∫
E
|f(y)− f(x)| dmn(y) ≤ 1

cmn(B(x;rE))

∫
B(x;rE)

|f(y)− f(x)| dmn(y) < ε.

This means that limE∈E,mn(E)→0+
1

mn(E)

∫
E
|f(y)− f(x)| dmn(y) = 0.

By
∣∣ 1
mn(E)

∫
E
f(y) dmn(y) − f(x)

∣∣ ≤ 1
mn(E)

∫
E
|f(y) − f(x)| dmn(y) and by

the first limit, we prove the second.
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10.8 Differentiation of Borel measures in Rn.

Definition 10.23 Any signed or complex measure on (Rn,BRn) is called a
Borel signed or complex measure on Rn.

Definition 10.24 Let ν be a Borel signed measure in Rn. We say that ν is
locally finite if for every x ∈ Rn there is an open neighborhood Ux of x so that
ν(Ux) is finite.

This definition is indifferent for complex measures, since complex measures
take only finite values.

Proposition 10.26 Let ν be a Borel signed measure in Rn. Then, ν is locally
finite if and only if ν+ and ν− are both locally finite if and only if |ν| is locally
finite.

Proof: Since |ν| = ν+ + ν−, the second equivalence is trivial to prove. It is also
trivial to prove that ν is locally finite if |ν| is locally finite.

Let ν be locally finite. For an arbitrary x ∈ Rn we take an open neigh-
borhood Ux of x so that ν(Ux) is finite. Since ν(Ux) = ν+(Ux)− ν−(Ux), both
ν+(Ux) and ν−(Ux) and, hence, |ν|(Ux) are finite. Therefore, |ν| is locally finite.

Proposition 10.27 Let ν be a Borel signed measure in Rn. Then, ν is locally
finite if and only if ν(M) is finite for all bounded Borel sets M ⊆ Rn.

Proof: One direction is easy, since every open ball is a bounded set. For the
other direction, we suppose that ν is locally finite and, by Proposition 10.26,
that |ν| is also locally finite. Lemma 5.7 implies that |ν(M)| ≤ |ν|(M) < +∞
for all bounded Borel sets M ⊆ Rn.

Theorem 10.18 Let ρ be a locally finite Borel signed measure or a complex
measure on Rn with ρ⊥mn. Then,

lim
r→0+

ρ(B(x; r))

mn(B(x; r))
= 0

for mn-a.e. x ∈ Rn.

Proof: If ρ is complex, then |ρ| is a finite Borel measure on Rn. Proposition
10.26 implies that, if ρ is signed, then |ρ| is a locally finite Borel measure on
Rn. Moreover, Proposition 10.10 implies that |ρ|⊥mn. Hence, there exist sets
R,M ∈ BRn with M ∪ R = Rn, M ∩ R = ∅ so that R is null for mn and M is
null for |ρ|.

We define A(|ρ|)(x; r) = |ρ|(B(x;r))
mn(B(x;r)) , take an arbitrary t > 0 and consider the

set Mt = {x ∈M | t < lim supr→0+A(|ρ|)(x; r)}.
Since |ρ| is a regular measure and |ρ|(M) = 0, there is an open set U so that

Mt ⊆ M ⊆ U and |ρ|(U) < ε. For each x ∈ Mt, there is a small enough rx > 0

so that t < A(|ρ|)(x; rx) = |ρ|(B(x;rx))
mn(B(x;rx))

and B(x; rx) ⊆ U .
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We form the open set V = ∪x∈MtB(x; rx) and take an arbitrary compact
set K ⊆ V . Now, there exist finitely many x1, . . . , xm ∈ Mt so that K ⊆
B(x1; rx1

) ∪ · · · ∪ B(xm; rxm). Lemma 10.6 implies that there exist pairwise
disjoint B(xi1 ; rxi1 ), . . . , B(xik ; rxik ) so that mn(B(x1; rx1

)∪· · ·∪B(xm; rxm)) ≤
3n
(
mn(B(xi1 ; rxi1 )) + · · ·+mn(B(xik ; rxik ))

)
. All these imply that

mn(K) ≤ 3n

t

(
|ρ|(B(xi1 ; rxi1 )) + · · ·+ |ρ|(B(xik ; rxik ))

)
≤ 3n

t
|ρ|(U) <

3n

t
ε.

By the regularity of mn and since K is an arbitrary compact subset of
V , we find that mn(V ) ≤ 3n

t ε. Since Mt ⊆ V , we have that m∗n(Mt) ≤
3n

t ε and, since ε is arbitrary, we conclude that Mt is a Lebesgue set and

mn(Mt) = 0. Finally, since {x ∈M | lim supr→0+A(|ρ|)(x; r) 6= 0} = ∪+∞k=1M 1
k

,

we get that lim supr→0+A(|ρ|)(x; r) = 0 for mn-a.e. x ∈ Rn. Now, from
0 ≤ lim infr→0+A(|ρ|)(x; r), we conclude that limr→0+A(|ρ|)(x; r) = 0 for mn-
a.e. x ∈ Rn.

Lemma 10.10 Let ν be a locally finite Borel signed measure on Rn. Then ν
is σ-finite and let ν = λ + ρ be the Lebesgue decomposition of ν with respect
to mn, where λ � mn and ρ⊥mn. Then both λ and ρ are locally finite Borel
signed measures.

Moreover, if f is any Radon-Nikodym derivative of λ with respect to mn,
then f is locally Lebesgue integrable.

Proof: Since Rn = ∪+∞k=1B(0; k) and ν(B(0; k)) is finite for every k, we find
that ν is σ-finite and Theorem 10.12 implies the existence of the Lebesgue
decomposition of ν.

Since ρ⊥mn, there exist Borel sets R,N with R ∪ N = X, R ∩ N = ∅ so
that R is null for mn and N is null for ρ. From λ� mn, we see that R is null
for λ, as well.

Now, take any bounded Borel set M . Since ν(M) is finite, Theorem 10.1
implies that ν(M ∩N) is finite. Now, we have λ(M) = λ(M ∩R) +λ(M ∩N) =
λ(M ∩ N) = λ(M ∩ N) + ρ(M ∩ N) = ν(M ∩ N) and, hence, λ(M) is finite.
From ν(M) = λ(M) + ρ(M) we get that ρ(M) is also finite. We conclude that
λ and ρ are locally finite.

Take, again, any bounded Borel set M . Then
∫
M
f(x) dmn(x) = λ(M)

is finite and, hence,
∫
X
|f(x)| dmn(x) < +∞. This implies that f is locally

Lebesgue integrable.

Theorem 10.19 Let ν be a locally finite Borel signed measure or a Borel com-
plex measure on Rn. If f is any Radon-Nikodym derivative of the absolutely
continuous part of ν with respect to mn, then

lim
r→0+

ν(B(x; r))

mn(B(x; r))
= f(x)

for mn-a.e. x ∈ Rn.
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Proof: Let ν = λ + ρ be the Lebesgue decomposition of ν with respect to mn,
where λ� mn, ρ⊥mn and λ = fmn. If ν is signed, Lemma 10.10 implies that
ρ is a locally finite Borel signed measure and f is locally Lebesgue integrable. If
ν is complex, then ρ is complex and f is Lebesgue integrable. Theorems 10.16
and 10.18 imply

lim
r→0+

ν(B(x; r))

mn(B(x; r))
= lim

r→0+

1

mn(B(x; r))

∫
B(x;r)

f(y) dmn(y)

+ lim
r→0+

ρ(B(x; r))

mn(B(x; r))
= f(x) + 0

= f(x)

for mn-a.e. x ∈ Rn.

Theorem 10.20 Let ν be a locally finite Borel signed measure or a Borel com-
plex measure on Rn. If f is any Radon-Nikodym derivative of the absolutely
continuous part of ν with respect to mn, then, for mn-a.e. x ∈ Rn,

lim
E∈E,mn(E)→0+

ν(E)

mn(E)
= f(x)

for every thick family E of sets at x.

Proof: If ρ is the singular part of ν with respect to mn, then |ρ|⊥mn and, by

Theorem 10.18, limr→0+
|ρ|(B(x;r))
mn(B(x;r)) = 0 for mn-a.e. x ∈ Rn.

We, now, take any x for which limr→0+
|ρ|(B(x;r))
mn(B(x;r)) = 0 and any thick family

E of sets at x. This means that there is a c > 0 so that for every E ∈ E there
is a ball B(x; rE) with E ⊆ B(x; rE) and mn(E) ≥ cmn(B(x; rE)). For every

ε > 0 there is a δ > 0 so that r < δ implies |ρ|(B(x;r))
mn(B(x;r)) < cε. Therefore, if

mn(E) < cvnδ
n, where vn = mn(B(0; 1)), then rE < δ and, hence,

∣∣ ρ(E)
mn(E)

∣∣ ≤
|ρ|(E)
mn(E) ≤

1
c
|ρ|(B(x;rE))
mn(B(x;rE)) < ε. This means that, for mn-a.e. x ∈ Rn,

lim
E∈E,mn(E)→0+

ρ(E)

mn(E)
= 0

for every thick family E of sets at x.
We combine this with Theorem 10.17 to complete the proof.

10.9 Exercises.

1. Let ν be a signed measure on (X,Σ) and let µ1, µ2 be two measures on
(X,Σ) at least one of which is finite. If ν = µ1 − µ2, prove that ν+ ≤ µ1

and ν− ≤ µ2.

2. Let ] be the counting measure on (N,P(N)) and µ be the point-mass
distribution on N induced by the function an = 1

2n , n ∈ N. Prove that
there is an ε0 > 0 and a sequence (Ek) of subsets of N, so that µ(Ek)→ 0
and ](Ek) ≥ ε0 for all k. On the other hand, prove that ]� µ.
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3. Let ν1, µ1 be σ-finite measures on (X1,Σ1) and ν2, µ2 be σ-finite measures
on (X2,Σ2). If ν1 � µ1 and ν2 � µ2, prove that ν1 ⊗ ν2 � µ1 ⊗ µ2 and
that

d(ν1 ⊗ ν2)

d(µ1 ⊗ µ2)
(x1, x2) =

dν1
dµ1

(x1)
dν2
dµ2

(x2)

for (µ1 ⊗ µ2)-a.e. (x1, x2) ∈ X1 ×X2.

4. Let ] be the counting measure on (R,BR).
(i) Prove that m1 � ]. Is there any f so that m1 = f] ?
(ii) Is there any Lebesgue decomposition of ] with respect to m1 ?

5. Generalization of the Radon-Nikodym Theorem.

Let ν be a signed measure and µ be a σ-finite measure on (X,Σ) so that
ν � µ. Prove that there is a measurable f : X → R, so that

∫
X
f dµ

exists and ν = fµ.

6. Generalization of the Lebesgue Decomposition Theorem.

Let ν be a σ-finite signed measure and µ a measure on (X,Σ). Prove that
there are unique σ-finite signed measures λ, ρ on (X,Σ) so that λ � µ,
ρ⊥µ and ν = λ+ ρ.

7. Let ν, µ be two measures on (X,Σ) with ν � µ. If λ = µ + ν, prove
that ν � λ. If f : X → [0,+∞] is measurable and ν = fλ, prove that
0 ≤ f < 1 µ-a.e. on X and ν = f

1−f µ.

8. Conditional Expectation.

Let µ be a σ-finite measure on (X,Σ), Σ0 be a σ-algebra with Σ0 ⊆ Σ and
µ be the restriction of the measure on (X,Σ0).
(i) If f : X → R or C is Σ-measurable and

∫
X
f dµ exists, prove that

there is a Σ0-measurable f0 : X → R or, respectively, C so that
∫
X
f0 dµ

exists and ∫
A

f0 dµ =

∫
A

f dµ , A ∈ Σ0.

If f ′0 has the same properties as f0, prove that f ′0 = f0 µ-a.e. on X.

Any f0 with the above properies is called a conditional expectation of
f with respect to Σ0 and it is denoted by

E(f |Σ0).

(ii) Prove that

(a) E(f |Σ) = f µ-a.e. on X,

(b) E(f + g|Σ0) = E(f |Σ0) + E(g|Σ0) µ-a.e. on X,

(c) E(κf |Σ0) = κE(f |Σ0) µ-a.e. on X,

(d) if g is Σ0-measurable, then E(gf |Σ0) = gE(f |Σ0) µ-a.e. on X,
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(e) if Σ1 ⊆ Σ0 ⊆ Σ, then E(f |Σ1) = E(E(f |Σ0)|Σ1) µ-a.e. on X.

9. Let ν be a real or complex measure on (X,Σ). If ν(X) = |ν|(X), prove
that ν = |ν|.

10. Let ν be a signed or complex measure on (X,Σ). We say that {A1, A2, . . .}
is a (countable) measurable partition of A ∈ Σ, if Ak ∈ Σ for all k,
the sets A1, A2, . . . are pairwise disjoint and A = A1 ∪ A2 ∪ · · · . Prove
that

|ν|(A) = sup
{ +∞∑
k=1

|ν(Ak)| | {A1, A2, . . .} is a measurable partition of A
}

for every A ∈ Σ.

11. A variant of the Hardy-Littlewood maximal function.

Let f : Rn → R or C be locally Lebesgue integrable. We define

H(f)(x) = sup
r>0

1

mn(B(x; r))

∫
B(x;r)

|f(y)| dmn(y)

for every x ∈ Rn.
(i) Prove that the set {x ∈ Rn | t < H(f)(x)} is open for every t > 0.
(ii) Prove that 1

2n M(f)(x) ≤ H(f)(x) ≤M(f)(x) for every x ∈ Rn.

One may define other variants of the Hardy-Littlewood maximal function
by taking the supremum of the mean values of |f | over open cubes con-
taining the point x or open cubes centered at the point x. The results are
similar.

12. The Vitali Covering Theorem.

Let E ⊆ Rn and let C be a collection of open balls with the property that
for every x ∈ E and every ε > 0 there is a B ∈ C so that x ∈ B and
mn(B) < ε. Prove that there are pairwise disjoint B1, B2, . . . ∈ C so that
m∗n(E \ ∪+∞k=1Bk) = 0.

13. Points of density.

Let E ∈ Ln. If x ∈ Rn, we set

DE(x) = lim
r→0+

mn(E ∩B(x; r))

mn(B(x; r))

whenever the limit exists. If DE(x) = 1, we say that x is a density point
of E.
(i) If x is an interior point of E, prove that it is a density point of E.
(ii) Prove that a.e. x ∈ E is a density point of E.
(iii) For any α ∈ (0, 1) find x ∈ R and E ∈ L1 so that DE(x) = α. Also,
find x ∈ R and E ∈ L1 so that DE(x) does not exist.
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14. Let f be the Cantor function on [0, 1] (see Exercise 4.6.10) extended as
0 on (−∞, 0) and as 1 on (1,+∞) and let µf be the Lebesgue-Stieltjes
measure on (R,BR) induced by f . Prove that µf⊥m1.

15. Let ν be a signed measure on (X,Σ). Prove that ν+, ν− � |ν| and find

formulas for Radon-Nikodym derivatives dν+

d|ν| and dν−

d|ν| .

16. Let µ be a finite measure on (X,Σ). We define

d(A,B) = µ(A4B), A,B ∈ Σ.

(i) Prove that (Σ, d) is a complete metric space.
(ii) If ν is a real or a complex measure on (X,Σ), prove that ν is continuous
on Σ (with respect to d) if and only if ν is continuous at ∅ (with respect
to d) if and only if ν � µ.
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Chapter 11

The classical Banach spaces

11.1 Normed spaces.

Definition 11.1 Let Z be a linear space over the field F = R or over the field
F = C and let ‖ · ‖ : Z → R have the properties:
(i) ‖u+ v‖ ≤ ‖u‖+ ‖v‖, for all u, v ∈ Z,
(ii) ‖κu‖ = |κ|‖u‖, for all u ∈ Z and κ ∈ F ,
(iii) ‖u‖ = 0 implies u = o, where o is the zero element of Z.

Then, ‖ · ‖ is called a norm on Z and (Z, ‖ · ‖) is called a normed space.

If it is obvious from the context which ‖ · ‖ we are talking about, we shall
say that Z is a normed space.

Proposition 11.1 If ‖ · ‖ is a norm on the linear space Z, then
(i) ‖o‖ = 0, where o is the zero element of Z,
(ii) ‖ − u‖ = ‖u‖, for all u ∈ Z,
(iii) ‖u‖ ≥ 0, for all u ∈ Z.

Proof: (i) ‖o‖ = ‖0 · o‖ = |0|‖o‖ = 0.
(ii) ‖ − u‖ = ‖(−1)u‖ = | − 1|‖u‖ = ‖u‖.
(iii) 0 = ‖o‖ = ‖u+ (−u)‖ ≤ ‖u‖+ ‖ − u‖ = 2‖u‖ and, hence, 0 ≤ ‖u‖.

Proposition 11.2 Let (Z, ‖ · ‖) be a normed space. If we define d : Z×Z → R
by

d(u, v) = ‖u− v‖

for all u, v ∈ Z, then d is a metric on Z.

Proof: Using Proposition 11.1, we have
a. d(u, v) = ‖u − v‖ ≥ 0 for all u, v ∈ Z and, if d(u, v) = 0, then ‖u − v‖ = 0
and, hence, u− v = o or, equivalently, u = v.
b. d(u, v) = ‖u− v‖ = ‖ − (v − u)‖ = ‖v − u‖ = d(v, u).
c. d(u, v) = ‖u−v‖ = ‖(u−w)+(w−v)‖ ≤ ‖u−w‖+‖w−v‖ = d(u,w)+d(w, v).

221



Definition 11.2 Let (Z, ‖ · ‖) be a normed space. If d is the metric defined in
Proposition 11.2, then d is called the metric induced on Z by ‖ · ‖.

Therefore, if (Z, ‖ ·‖) is a normed space, then (Z, d) is a metric space and we
can study all notions related to the notion of a metric space, like convergence
of sequences, open and closed sets and so on.

Open balls have the form B(u; r) = {v ∈ Z | ‖v − u‖ < r}.
A sequence (un) in Z converges to u ∈ Z if ‖un − u‖ → 0 as n→ +∞. We

denote this by: un → u in Z or limn→+∞ un = u in Z.
A set U ⊆ Z is open in Z if for every u ∈ U there is an r > 0 so that

B(u; r) ⊆ U . Any union of open sets in Z is open in Z and any finite intersection
of open sets in Z is open in Z. The sets ∅ and Z are open in Z.

A set K ⊆ Z is closed in Z if its complement Z \ K is open in Z or,
equivalently, if the limit of every sequence in K (which has a limit) belongs to
K. Any intersection of closed sets in Z is closed in Z and any finite union of
closed sets in Z is closed in Z. The sets ∅ and Z are closed in Z.

A set K ⊆ Z is compact if every open cover of K has a finite subcover of K.
Equivalently, K is compact if every sequence in K has a convergent subsequence
with limit in K.

A sequence (un) in Z is a Cauchy sequence if ‖un − um‖ → 0 as n,m →
+∞. Every convergent sequence is Cauchy. If every Cauchy sequence in Z is
convergent, then Z is a complete metric space.

Definition 11.3 If the normed space (Z, ‖ · ‖) is complete as a metric space
(with the metric induced by the norm), then it is called a Banach space.

If there is no danger of confusion, we say that Z is a Banach space.
There are some special results based on the combination of the linear and

the metric structure of a normed space. We first define, as in any linear space,

u+A = {u+ v | v ∈ A}, κA = {κv | v ∈ A}

for all A ⊆ Z, u ∈ Z and κ ∈ F . We also define, for every u ∈ Z and every
κ > 0, the translation τu : Z → Z and the dilation lκ : Z → Z, by

τu(v) = v + u, lκ(v) = κv

for all v ∈ Z. It is trivial to prove that translations and dilations are one-to-one
transformations of Z onto Z and that τ−1u = τ−u and l−1κ = l 1

κ
. It is obvious

that u+A = τu(A) and κA = lκ(A).

Proposition 11.3 Let (Z, ‖ · ‖) be a normed space.
(i) u+B(v; r) = B(u+ v; r) for all u, v ∈ Z and r > 0.
(ii) κB(v; r) = B(κv; |κ|r) for all v ∈ Z, κ ∈ F \ {0} and r > 0.
(iii) If un → u and vn → v in Z, then un + vn → u+ v in Z.
(iv) If κn → κ in F and un → u in Z, then κnun → κu in Z.
(v) Translations and dilations are homeomorphisms. This means that they,
together with their inverses, are continuous on Z.
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(vi) If A is open or closed in Z and u ∈ Z, then u+A is open or, respectively,
closed in Z.
(vii) If A is open or closed in Z and κ ∈ F \{0}, then κA is open or, respectively,
closed in Z.

Proof: (i) w ∈ u+B(v; r) if and only if w−u ∈ B(v; r) if and only if ‖w−u−v‖ <
r if and only if w ∈ B(u+ v; r).
(ii) w ∈ κB(v; r) if and only if 1

κ w ∈ B(v; r) if and only if ‖ 1κ w− v‖ < r if and
only if ‖w − κv‖ < |κ|r if and only if w ∈ B(κv; |κ|r).
(iii) ‖(un + vn)− (u+ v)‖ ≤ ‖un − u‖+ ‖vn − v‖ → 0 as n→ +∞.
(iv) ‖κnun − κu‖ ≤ |κn|‖un − u‖+ |κn − κ|‖u‖ → 0 as n→ +∞, because (κn)
is bounded in F .
(v) If vn → v in Z, then τu(vn) = u + vn → u + v = τu(v), by (iii). Also,
lκ(vn) = κvn → κv = lκ(v), by (iv). Therefore, τu and lκ are continuous on Z.
Their inverses are also continuous, because they are also a translation, τ−u, and
a dilation, l 1

κ
, respectively.

(vi) u+A = τ−1−u(A) is the inverse image of A under the continuous τ−u.

(vii) κA = l−11
κ

(A) is the inverse image of A under the continuous l 1
κ

.

As in any linear space, we define a linear functional on Z to be a function
l : Z → F which satisfies

l(u+ v) = l(u) + l(v), l(κu) = κl(u)

for every u, v ∈ Z and κ ∈ F . If l is a linear functional on Z, then l(o) = l(0o) =
0l(o) = 0 and l(−u) = l((−1)u) = (−1)l(u) = −l(u) for all u ∈ Z. We define
the sum l1 + l2 : Z → F of two linear functionals l1, l2 on Z by

(l1 + l2)(u) = l1(u) + l2(u), u ∈ Z

and the product κl : Z → F of a linear functional l on Z and a κ ∈ F by

(κl)(u) = κl(u), u ∈ Z.

It is trivial to prove that l1 + l2 and κl are linear functionals on Z and that
the set Z ′ whose elements are all the linear functionals on Z,

Z ′ = {l | l is a linear functional on Z},

becomes a linear space under this sum and product. Z ′ is called the algebraic
dual of Z. The zero element of Z ′ is the linear functional o : Z → F with
o(u) = 0 for every u ∈ Z and the opposite of a linear functional l on Z is the
linear functional −l : Z → F with (−l)(u) = −l(u) for every u ∈ Z.

Definition 11.4 Let (Z, ‖ · ‖) be a normed space and l ∈ Z ′ a linear functional
on Z. Then l is called a bounded linear functional on Z if there is an
M < +∞ so that

|l(u)| ≤M‖u‖
for every u ∈ Z.

223



Theorem 11.1 Let (Z, ‖ · ‖) be a normed space and l ∈ Z ′. The following are
equivalent.
(i) l is bounded.
(ii) l : Z → F is continuous on Z.
(iii) l : Z → F is continuous at o ∈ Z.

Proof: Suppose that l is bounded and, hence, there is an M < +∞ so that
|l(u)| ≤M‖u‖ for every u ∈ Z. If un → u in Z, then |l(un)−l(u)| = |l(un−u)| ≤
M‖un − u‖ → 0 as n → +∞ and, thus, l(un) → l(u) in F as n → +∞. This
says that l is continuous on Z.

If l is continuous on Z, then it is certainly continuous at o ∈ Z.
Suppose that l is continuous at o ∈ Z. Then, for ε = 1 there exists a δ > 0 so

that |l(u)| = |l(u)− l(o)| < 1 for every u ∈ Z with ‖u‖ = ‖u− o‖ < δ. We take
an arbitrary u ∈ Z \{o} and an arbitrary t > 1 and have that

∥∥ δ
t‖u‖ u

∥∥ = δ
t < δ.

Therefore,
∣∣l( δ

t‖u‖ u
)∣∣ < 1, implying that |l(u)| ≤ t

δ ‖u‖. This is trivially true

also for u = o and we conclude that |l(u)| ≤ t
δ ‖u‖ for every u ∈ Z. For the

arbitrary u ∈ Z, letting t → 1+, we get |l(u)| ≤ M‖u‖, where M = 1
δ . This

says that l is bounded.

Definition 11.5 Let (Z, ‖ · ‖) be a normed space. The set of all bounded linear
functionals on Z or, equivalently, of all continuous linear functionals on Z,

Z∗ = {l | l is a bounded linear functional on Z},

is called the topological dual of Z or the norm-dual of Z.

Proposition 11.4 Let (Z, ‖ · ‖) be a normed space and l a bounded linear func-
tional on Z. Then there is a smallest M with the property: |l(u)| ≤ M‖u‖ for
every u ∈ Z. This M0 is characterized by the two properties:
(i) |l(u)| ≤M0‖u‖ for every u ∈ Z,
(ii) for every m < M0 there is a u ∈ Z so that |l(u)| > m‖u‖.

Proof: We consider

M0 = inf{M | |l(u)| ≤M‖u‖ for every u ∈ Z}.

The set L = {M | |l(u)| ≤M‖u‖ for every u ∈ Z} is non-empty by assump-
tion and included in [0,+∞). Therefore M0 exists and M0 ≥ 0. We take a
sequence (Mn) in L so that Mn → M0 and, from |l(u)| ≤ Mn‖u‖ for every
u ∈ Z, we find |l(u)| ≤M0‖u‖ for every u ∈ Z.

If m < M0, then m /∈ L and, hence, there is a u ∈ Z so that |l(u)| > m‖u‖.

Definition 11.6 Let (Z, ‖ · ‖) be a normed space and l a bounded linear func-
tional on Z. The smallest M with the property that |l(u)| ≤ M‖u‖ for every
u ∈ Z is called the norm of l and it is denoted by ‖l‖∗.

Proposition 11.4, which proves the existence of ‖l‖∗, states also its charac-
terizing properties:
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1. |l(u)| ≤ ‖l‖∗‖u‖ for every u ∈ Z,

2. for every m < ‖l‖∗ there is a u ∈ Z so that |l(u)| > m‖u‖.

The zero linear functional o : Z → F is bounded and, since |o(u)| = 0 ≤ 0‖u‖
for every u ∈ Z, we have that

‖o‖∗ = 0.

On the other hand, if l ∈ Z∗ has ‖l‖∗ = 0, then |l(u)| ≤ 0‖u‖ = 0 for every
u ∈ Z and, hence, l = o is the zero linear functional on Z.

Proposition 11.5 Let (Z, ‖ · ‖) be a normed space and l ∈ Z∗. Then

‖l‖∗ = sup
u∈Z,u 6=o

|l(u)|
‖u‖

= sup
u∈Z,‖u‖=1

|l(u)| = sup
u∈Z,‖u‖≤1

|l(u)| .

Proof: Every u with ‖u‖ = 1 satisfies ‖u‖ ≤ 1. Therefore, supu∈Z,‖u‖=1 |l(u)| ≤
supu∈Z,‖u‖≤1 |l(u)|.

Writing v = u
‖u‖ for every u ∈ Z \ {o}, we have that ‖v‖ = 1. Therefore,

supu∈Z,u 6=o
|l(u)|
‖u‖ = supu∈Z,u6=o

∣∣l( u
‖u‖
)∣∣ ≤ supu∈Z,‖u‖=1 |l(u)|.

For every u with ‖u‖ ≤ 1, we have |l(u)| ≤ ‖l‖∗‖u‖ ≤ ‖l‖∗ and, thus,
supu∈Z,‖u‖≤1 |l(u)| ≤ ‖l‖∗.

If we set M = supu∈Z,u6=o
|l(u)|
‖u‖ , then |l(u)|‖u‖ ≤ M and, hence, |l(u)| ≤ M‖u‖

for all u 6= o. Since this is obviously true for u = o, we have that ‖l‖∗ ≤M and
this finishes the proof.

Proposition 11.6 Let (Z, ‖ · ‖) be a normed space, l, l1, l2 be bounded linear
functionals on Z and κ ∈ F . Then l1 + l2 and κl are bounded linear functionals
on Z and

‖l1 + l2‖∗ ≤ ‖l1‖∗ + ‖l2‖∗ , ‖κl‖∗ = |κ|‖l‖∗ .

Proof: We have that |(l1 + l2)(u)| ≤ |l1(u)| + |l2(u)| ≤ ‖l1‖∗‖u‖ + ‖l2‖∗‖u‖ =
(‖l1‖∗ + ‖l2‖∗)‖u‖ for every u ∈ Z. This implies that l1 + l2 is bounded and
that ‖l1 + l2‖∗ ≤ ‖l1‖∗ + ‖l2‖∗.

Similarly, |(κl)(u)| = |κ||l(u)| ≤ |κ|‖l‖∗‖u‖ for every u ∈ Z. This implies
that κl is bounded and that ‖κl‖∗ ≤ |κ|‖l‖∗. If κ = 0, then the equality is
obvious. If κ 6= 0, to get the opposite inequality, we write |κ||l(u)| = |(κl)(u)| ≤
‖κl‖∗‖u‖. This implies that |l(u)| ≤ ‖κl‖∗|κ| ‖u‖ for every u ∈ Z and, hence, that

‖l‖∗ ≤ ‖κl‖∗|κ| .

Proposition 11.6 together with the remarks about the norm of the zero func-
tional imply that Z∗ is a linear subspace of Z ′ and that ‖ · ‖∗ : Z∗ → R is a
norm on Z∗.

Theorem 11.2 If (Z, ‖ · ‖) is a normed space, then (Z∗, ‖ · ‖∗) is a Banach
space.
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Proof: Let (ln) be a Cauchy sequence in Z∗. For all u ∈ Z, |ln(u) − lm(u)| =
|(ln − lm)(u)| ≤ ‖ln − lm‖∗‖u‖ → 0 as n,m → +∞. Thus, (ln(u)) is a Cauchy
sequence in F and, hence, converges to some element of F . We define l : Z → F
by

l(u) = lim
n→+∞

ln(u)

for every u ∈ Z.
For every u, v ∈ Z and κ ∈ F we have l(u + v) = limn→+∞ ln(u + v) =

limn→+∞ ln(u) + limn→+∞ ln(v) = l(u) + l(v) and l(κu) = limn→+∞ ln(κu) =
κ limn→+∞ ln(u) = κl(u). Therefore, l ∈ Z ′.

There is N so that ‖ln − lm‖∗ ≤ 1 for all n,m ≥ N . This implies that
|ln(u) − lm(u)| ≤ ‖ln − lm‖∗‖u‖ ≤ ‖u‖ for all u ∈ Z and all n,m ≥ N and,
taking the limit as n → +∞ and, taking m = N , we find |l(u) − lN (u)| ≤ ‖u‖
for all u ∈ Z. Therefore, |l(u)| ≤ |lN (u)|+‖u‖ ≤ (‖lN‖∗+1)‖u‖ for every u ∈ Z
and, hence, l ∈ Z∗.

For an arbitrary ε > 0 there is N so that ‖ln − lm‖∗ ≤ ε for all n,m ≥ N .
This implies |ln(u) − lm(u)| ≤ ‖ln − lm‖∗‖u‖ ≤ ε‖u‖ for all u ∈ Z and all
n,m ≥ N and, taking the limit as m → +∞, we find |ln(u) − l(u)| ≤ ε‖u‖ for
all u ∈ Z and all n ≥ N . Therefore, ‖ln − l‖∗ ≤ ε for all n ≥ N and, hence,
ln → l in Z∗.

Definition 11.7 Let Z and W be two linear spaces over the same F and a
function T : Z → W . T is called a linear transformation or a linear
operator from Z to W if

T (u+ v) = T (u) + T (v), T (κu) = κT (u)

for all u, v ∈ Z and all κ ∈ F .

The following are familiar from elementary linear algebra. Let T : Z → W
be a linear transformation. T is one-to-one if and only if T (u) = o (the zero
element of W ) implies u = o (the zero element of Z). The subset N(T ) = {u ∈
Z |T (u) = o} of Z, called the kernel of T , is a linear subspace of Z. Similarly,
the subset R(T ) = {T (u) |u ∈ Z} of W , called the range of T , is a linear
subspace of W .

The linear transformation T : Z →W is one-to-one if and only ifN(T ) = {o}
and T is onto if and only if R(T ) = W .

If the linear transformation T : Z → W is one-to-one and onto, then the
inverse function T−1 : W → Z is also a linear transformation. In this case we
say that the linear spaces Z and W are identified. By this we mean that we
may view the two spaces as a single space whose elements have two ((names)):
we view the elements u of Z and T (u) of W as a single element with the two
names u and T (u). In fact the linear relations between elements are unaffected
by changing their ((names)): z = u + v if and only if T (z) = T (u) + T (v) and
z = κu if and only if T (z) = κT (u).

If the linear transformation T : Z → W is one-to-one but not onto, then
we may consider the restriction T : Z → R(T ). This is a linear transformation
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which is one-to-one and onto and, thus, we may say that the linear spaces Z
and R(T ) are identified and that Z is identified with a linear subspace of W or
that R(T ) is a ((copy)) of Z inside W .

Definition 11.8 Let (Z, ‖ · ‖Z) and (W, ‖ · ‖W ) be two normed spaces and a
linear transformation T : Z →W . We say that T is a bounded linear trans-
formation from Z to W if there exists an M < +∞ so that

‖T (u)‖W ≤M‖u‖Z

for all u ∈ Z.

Theorem 11.3 Let (Z, ‖·‖Z) and (W, ‖·‖W ) be two normed spaces and a linear
transformation T : Z →W . The following are equivalent.
(i) T is bounded.
(ii) T : Z →W is continuous on Z.
(iii) T : Z →W is continuous at o ∈ Z.

Proof: Suppose that T is bounded and, hence, there is an M < +∞ so that
‖T (u)‖W ≤M‖u‖Z for every u ∈ Z. If un → u in Z, then ‖T (un)− T (u)‖W =
‖T (un − u)‖W ≤M‖un − u‖Z → 0 as n→ +∞ and, thus, T (un)→ T (u) in W
as n→ +∞. This says that T is continuous on Z.

If T is continuous on Z, then it is certainly continuous at o ∈ Z.
Suppose that T is continuous at o ∈ Z. Then, for ε = 1 there exists a

δ > 0 so that ‖T (u)‖W = ‖T (u) − T (o)‖W < 1 for every u ∈ Z with ‖u‖Z =
‖u − o‖Z < δ. We take an arbitrary u ∈ Z \ {o} and an arbitrary t > 1
and have that

∥∥ δ
t‖u‖Z u

∥∥
Z

= δ
t < δ. Therefore,

∥∥T ( δ
t‖u‖Z u

)∥∥
W
< 1, implying

that ‖T (u)‖W ≤ t
δ ‖u‖Z . This is trivially true also for u = o and, hence,

‖T (u)‖W ≤ t
δ ‖u‖Z for all u ∈ Z. Letting t→ 1+, we find ‖T (u)‖W ≤M‖u‖Z ,

where M = 1
δ . This says that T is bounded.

Proposition 11.7 Let (Z, ‖ · ‖Z) and (W, ‖ · ‖W ) be two normed spaces and a
bounded linear transformation T : Z → W . Then there is a smallest M with
the property: ‖T (u)‖W ≤M‖u‖Z for every u ∈ Z. This M0 is characterized by
the two properties:
(i) ‖T (u)‖W ≤M0‖u‖Z for every u ∈ Z,
(ii) for every m < M0 there is a u ∈ Z so that ‖T (u)‖W > m‖u‖Z .

Proof: We consider

M0 = inf{M | ‖T (u)‖W ≤M‖u‖Z for every u ∈ Z}.

The set L = {M | ‖T (u)‖W ≤ M‖u‖Z for every u ∈ Z} is non-empty by
assumption and included in [0,+∞). Therefore M0 exists and M0 ≥ 0. We take
a sequence (Mn) in L so that Mn → M0 and, from ‖T (u)‖W ≤ Mn‖u‖Z for
every u ∈ Z, we find ‖T (u)‖W ≤M0‖u‖Z for every u ∈ Z.

If m < M0, then m /∈ L and, hence, there is a u ∈ Z so that ‖T (u)‖W >
m‖u‖Z .
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Definition 11.9 Let (Z, ‖ · ‖Z) and (W, ‖ · ‖W ) be two normed spaces and a
bounded linear transformation T : Z → W . The smallest M with the property
that ‖T (u)‖W ≤ M‖u‖Z for every u ∈ Z is called the norm of T and it is
denoted by ‖T‖.

By Proposition 11.7, which proves the existence of ‖T‖, we have:

1. ‖T (u)‖W ≤ ‖T‖‖u‖Z for every u ∈ Z,

2. for every m < ‖T‖ there is a u ∈ Z so that ‖T (u)‖W > m‖u‖Z .

The zero linear transformation o : Z →W is bounded and, since ‖o(u)‖W =
0 ≤ 0‖u‖Z for every u ∈ Z, we have that

‖o‖ = 0.

On the other hand, if T is a bounded linear transformation with ‖T‖ = 0,
then ‖T (u)‖W ≤ 0‖u‖Z = 0 for every u ∈ Z and, hence, T = o is the zero linear
transformation.

Proposition 11.8 Let (Z, ‖ · ‖Z) and (W, ‖ · ‖W ) be two normed spaces and a
bounded linear transformation T : Z →W . Then

‖T‖ = sup
u∈Z,u 6=o

‖T (u)‖W
‖u‖Z

= sup
u∈Z,‖u‖Z=1

‖T (u)‖W = sup
u∈Z,‖u‖Z≤1

‖T (u)‖W .

Proof: Every u with ‖u‖Z = 1 satisfies ‖u‖Z ≤ 1. This, clearly, implies that
supu∈Z,‖u‖Z=1 ‖T (u)‖W ≤ supu∈Z,‖u‖Z≤1 ‖T (u)‖W .

Writing v = u
‖u‖Z for every u ∈ Z \ {o}, we have that ‖v‖Z = 1. Therefore,

supu∈Z,u6=o
‖T (u)‖W
‖u‖Z = supu∈Z,u6=o

∥∥T ( u
‖u‖Z

)∥∥
W
≤ supu∈Z,‖u‖Z=1 ‖T (u)‖W .

For every u with ‖u‖Z ≤ 1, we have ‖T (u)‖W ≤ ‖T‖‖u‖Z ≤ ‖T‖ and, thus,
supu∈Z,‖u‖Z≤1 ‖T (u)‖W ≤ ‖T‖.

If we set M = supu∈Z,u 6=o
‖T (u)‖W
‖u‖Z , then ‖T (u)‖W

‖u‖Z ≤ M and this implies

‖T (u)‖W ≤M‖u‖Z for all u 6= o. Since this is obviously true for u = o, we have
that ‖T‖ ≤M and this finishes the proof.

Definition 11.10 Let (Z, ‖ · ‖Z) and (W, ‖ · ‖W ) be two normed spaces and a
bounded linear transformation T : Z →W .

If T is onto W and ‖T (u)‖W = ‖u‖Z for every u ∈ Z, then we say that T
is an isometry from Z onto W or an isometry between Z and W .

If ‖T (u)‖W = ‖u‖Z for every u ∈ Z (but T is not necessarily onto W ), we
say that T is an isometry from Z into W .

Proposition 11.9 Let (Z, ‖ · ‖Z) and (W, ‖ · ‖W ) be two normed spaces.
(i) If T is an isometry from Z into W , then T is one-to-one.
(ii) If T is an isometry from Z onto W , then T−1 is also an isometry from W
onto Z.
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Proof: (i) If T (u) = T (v), then 0 = ‖T (u)−T (v)‖W = ‖T (u−v)‖W = ‖u−v‖Z
and, hence, u = v.
(ii) From (i) we have that T is one-to-one and, thus, the inverse mapping T−1 :
W → Z exists. If w,w1, w2 ∈W and κ ∈ F , we take the (unique) u, u1, u2 ∈ Z
so that T (u) = w, T (u1) = w1 and T (u2) = w2. Then T (u1 + u2) = T (u1) +
T (u2) = w1 + w2 and, hence, T−1(w1 + w2) = u1 + u2 = T−1(w1) + T−1(w2).
Also, T (κu) = κT (u) = κw and, hence, T−1(κw) = κu = κT−1(w). These
imply that T−1 : W → Z is a linear transformation.

Moreover, ‖T−1(w)‖Z = ‖u‖Z = ‖T (u)‖W = ‖w‖W . Therefore, T−1 is an
isometry from W onto Z.

If T is an isometry from Z onto W , then it is not only that we may identify Z
and W as linear spaces (see the discussion after Definition 11.7) but we may also
identify them as metric spaces: the distances between elements are unaffected
by changing their ((names)): ‖T (u)− T (v)‖W = ‖T (u− v)‖W = ‖u− v‖Z .

If T is an isometry from Z into W , then, clearly, T is an isometry from Z
onto R(T ) and now we may identify Z with the subspace R(T ) of W or we may
view R(T ) as a ((copy)) of Z inside W .

11.2 The spaces Lp(X,Σ, µ).

In this whole section and the next, (X,Σ, µ) will be a fixed measure space.

Definition 11.11 If 0 < p < +∞, we define the space Lp(X,Σ, µ) to be the
set of all measurable functions f : X → F , where F = R or F = C, with∫

X

|f |p dµ < +∞.

Observe that the space L1(X,Σ, µ) is the set of all functions which are
integrable over X with respect to µ.

Whenever any of X, Σ, µ is uniquelly determined by the context of discus-
sion, we may omit it from the symbol of the space. Therefore, we may simply
write Lp or Lp(X) or Lp(µ) etc.

Proposition 11.10 Lp is a linear space over F .

Proof: We shall use the trivial inequality

(a+ b)p ≤ 2p(ap + bp), 0 ≤ a, b.

This can be proved by (a+b)p ≤ (2 max{a, b})p = 2p max{ap, bp} ≤ 2p(ap+bp).
Suppose that f1, f2 ∈ Lp. Then both f1 and f2 are finite a.e. on X and,

hence, f1+f2 is defined a.e. on X. If f1+f2 is any measurable definition of f1+
f2, then, using the above elementary inequality, |(f1 + f2)(x)|p ≤ 2p(|f1(x)|p +
|f2(x)|p) for a.e. x ∈ X and, hence,∫

X

|f1 + f2|p dµ ≤ 2p
∫
X

|f1|p dµ+ 2p
∫
X

|f2|p dµ < +∞.
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Therefore f1 + f2 ∈ Lp.
If f ∈ Lp and κ ∈ F , then∫

X

|κf |p dµ = |κ|p
∫
X

|f |p dµ < +∞.

Therefore, κf ∈ Lp.

Definition 11.12 Let f : X → F be measurable. We say that f is essentially
bounded over X (with respect to µ) if there is M < +∞ so that |f | ≤ M
a.e. on X.

Proposition 11.11 Let f : X → F be measurable. If f is essentially bounded
over X, then there is a smallest M with the property: |f | ≤M a.e. on X. This
smallest M0 is characterized by:
(i) |f | ≤M0 a.e. on X,
(ii) µ({x ∈ X | |f(x)| > m}) > 0 for every m < M0.

Proof: We consider the set A = {M | |f | ≤M a.e. on X} and the

M0 = inf{M | |f | ≤M a.e. on X}.

The set A is non-empty by assumption and is included in [0,+∞) and, hence,
M0 exists.

We take a sequence (Mn) in A with Mn → M0. From Mn ∈ A, we find
µ({x ∈ X | |f(x)| > Mn}) = 0 for every n and, since {x ∈ X | |f(x)| > M0} =
∪+∞n=1{x ∈ X | |f(x)| > Mn}, we conclude that µ({x ∈ X | |f(x)| > M0}) = 0.
Therefore, |f | ≤M0 a.e. on X.

If m < M0, then m /∈ A and, hence, µ({x ∈ X | |f(x)| > m}) > 0.

Definition 11.13 Let f : X → F be measurable. If f is essentially bounded,
then the smallest M with the property that |f | ≤ M a.e. on X is called the
essential supremum of f over X (with respect to µ) and it is denoted by
ess-supX,µ(f).

Again, we may simply write ess-sup(f) instead of ess-supX,µ(f).
The ess-sup(f) is characterized by the properties:

1. |f | ≤ ess-sup(f) a.e. on X,

2. for every m < ess-sup(f), we have µ({x ∈ X | |f(x)| > m}) > 0.

Definition 11.14 We define L∞(X,Σ, µ) to be the set of all measurable func-
tions f : X → F which are essentially bounded over X.

Proposition 11.12 L∞ is a linear space over F .

Proof: If f1, f2 ∈ L∞, then there are sets A1, A2 ∈ Σ so that µ(Ac1) = µ(Ac2) = 0
and |f1| ≤ ess-sup(f1) on A1 and |f2| ≤ ess-sup(f2) on A2. If we set A = A1∩A2,
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then we have µ(Ac) = 0 and |f1 + f2| ≤ |f1|+ |f2| ≤ ess-sup(f1)+ess-sup(f2) on
A. Hence f1 + f2 is essentially bounded over X and

ess-sup(f1 + f2) ≤ ess-sup(f1) + ess-sup(f2).

If f ∈ L∞ and κ ∈ F , then there is A ∈ Σ with µ(Ac) = 0 so that |f | ≤ ess-
sup(f) on A. We, now, have |κf | ≤ |κ|ess-sup(f) on A. Hence κf is essentially
bounded over X and ess-sup(κf) ≤ |κ|ess-sup(f). If κ = 0, this inequality,
obviously, becomes equality. If κ 6= 0, we apply the same inequality to 1

κ and
κf and get ess-sup(f) = ess-sup( 1

κ (κf)) ≤ 1
|κ| ess-sup(κf). Therefore

ess-sup(κf) = |κ|ess-sup(f).

Definition 11.15 Let 1 ≤ p ≤ +∞. We define

p′ =


p
p−1 , if 1 < p < +∞
+∞ , if p = 1
1 , if p = +∞.

We say that p′ is the conjugate of p or the dual of p.

The definition in the cases p = 1 and p = +∞ is justified by limp→1+
p
p−1 =

+∞ and by limp→+∞
p
p−1 = 1.

It is easy to see that, if p′ is the conjugate of p, then 1 ≤ p′ ≤ +∞ and p is
the conjugate of p′. Moreover, p, p′ are related by the symmetric equality

1

p
+

1

p′
= 1.

Lemma 11.1 Let 0 < t < 1. For every a, b ≥ 0 we have

atb1−t ≤ ta+ (1− t)b.

Proof: If b = 0 the inequality is obviously true: 0 ≤ ta.
If b > 0, the inequality is equivalent to (ab )t ≤ tab + 1− t and, setting x = a

b ,
it is equivalent to xt ≤ tx + 1 − t, 0 ≤ x. To prove it we form the function
f(x) = xt − tx on [0,+∞) and we easily see that it is increasing in [0, 1] and
decreasing in [1,+∞). Therefore, f(x) ≤ f(1) = 1− t for all x ∈ [0,+∞).

Theorem 11.4 (Hölder’s inequalities) Let 1 ≤ p, p′ ≤ +∞ and p, p′ be
conjugate to each other. If f ∈ Lp and g ∈ Lp′ , then fg ∈ L1 and∫

X

|fg| dµ ≤
(∫

X

|f |p dµ
) 1
p
(∫

X

|g|p
′
dµ
) 1
p′
, 1 < p, p′ < +∞,

∫
X

|fg| dµ ≤
∫
X

|f | dµ · ess-sup(g) , p = 1, p′ = +∞,∫
X

|fg| dµ ≤ ess-sup(f)

∫
X

|g| dµ , p = +∞, p′ = 1.
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Proof: (a) We start with the case 1 < p, p′ < +∞.
If
∫
X
|f |p dµ = 0 or if

∫
X
|g|p′ dµ = 0, then either f = 0 a.e. on X or g = 0

a.e. on X and the inequality is trivially true. It becomes equality: 0 = 0.
So we assume that A =

∫
X
|f |p dµ > 0 and B =

∫
X
|g|p′ dµ > 0. Applying

Lemma 11.1 with t = 1
p , 1− t = 1− 1

p = 1
p′ and a = |f(x)|p

A , b = |g(x)|p
′

B , we have
that

|fg|
A

1
pB

1
p′
≤ 1

p

|f |p

A
+

1

p′
|g|p′

B

a.e. on X. Integrating, we find

1

A
1
pB

1
p′

∫
X

|fg| dµ ≤ 1

p
+

1

p′
= 1

and this implies the inequality we wanted to prove.
(b) Now, let p = 1, p′ = +∞. Since |g| ≤ ess-sup(g) a.e. on X, we have that
|fg| ≤ |f | ess-sup(g) a.e. on X. Integrating, we find the inequality we want to
prove.
(c) The proof in the case p = +∞, p′ = 1 is the same as in (b).

Theorem 11.5 (Minkowski’s inequalities) Let 1 ≤ p ≤ +∞. If f1, f2 ∈ Lp,
then(∫

X

|f1 + f2|p dµ
) 1
p ≤

(∫
X

|f1|p dµ
) 1
p

+
(∫

X

|f2|p dµ
) 1
p

, 1 ≤ p < +∞,

ess-sup(f1 + f2) ≤ ess-sup(f1) + ess-sup(f2) , p = +∞.

Proof: The case p = +∞ is included in the proof of Proposition 11.12. Also,
the case p = 1 is trivial and the result is already known. Hence, we assume
1 < p < +∞.

We write

|f1 + f2|p ≤ (|f1|+ |f2|)|f1 + f2|p−1 = |f1||f1 + f2|p−1 + |f2||f1 + f2|p−1

a.e. on X and, applying Hölder’s inequality, we find∫
X

|f1 + f2|p dµ ≤
(∫

X

|f1|p dµ
) 1
p
(∫

X

|f1 + f2|(p−1)p
′
dµ
) 1
p′

+
(∫

X

|f2|p dµ
) 1
p
(∫

X

|f1 + f2|(p−1)p
′
dµ
) 1
p′

=
(∫

X

|f1|p dµ
) 1
p
(∫

X

|f1 + f2|p dµ
) 1
p′

+
(∫

X

|f2|p dµ
) 1
p
(∫

X

|f1 + f2|p dµ
) 1
p′
.

Simplifying, we get the inequality we want to prove.
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Definition 11.16 Let 1 ≤ p ≤ +∞ and (fn) be a sequence in Lp and f ∈ Lp.
We say that (fn) converges to f in the p-mean if∫

X

|fn − f |p dµ→ 0, 1 ≤ p < +∞,

ess-sup(fn − f)→ 0, p = +∞

as n→ +∞. We say that (fn) is Cauchy in the p-mean if∫
X

|fn − fm|p dµ→ 0, 1 ≤ p < +∞,

ess-sup(fn − fm)→ 0, p = +∞

as n,m→ +∞.

It is easy to see that, if (fn) converges to f in the p-mean, then (fn) is Cauchy
in the p-mean. Indeed, if 1 ≤ p < +∞, then, by Minkowski’s inequalities,( ∫

X
|fn− fm|p dµ

) 1
p ≤

( ∫
X
|fn− f |p dµ

) 1
p +

( ∫
X
|fm− f |p dµ

) 1
p → 0 as m,n→

+∞. The proof is identical if p = +∞.
The notion of convergence in the 1-mean coincides with the notion of con-

vergence in the mean on X. Theorem 11.6 is an extension of Theorem 9.1.

Theorem 11.6 If (fn) is Cauchy in the p-mean, then there is f ∈ Lp so that
(fn) converges to f in the p-mean. Moreover, there is a subsequence (fnk) which
converges to f a.e. on X.

As a corollary: if (fn) converges to f in the p-mean, there is a subsequence
(fnk) which converges to f a.e. on X.

Proof: (a) We consider first the case 1 ≤ p < +∞.
First proof. Since each fn is finite a.e. on X, there is A ∈ Σ so that µ(Ac) = 0
and all fn are finite on A.

We have that, for every k, there is nk so that
∫
X
|fn − fm|p dµ < 1

2kp
for

every n,m ≥ nk. Since we may assume that each nk is as large as we like,
we inductively take (nk) so that nk < nk+1 for every k. Therefore, (fnk) is a
subsequence of (fn).

From the construction of nk and from nk < nk+1, we get that∫
X

|fnk+1
− fnk |p dµ <

1

2kp

for every k. We define the measurable function G : X → [0,+∞] by

G =

{∑+∞
k=1 |fnk+1

− fnk |, on A
0, on Ac

.

If

GK =

{∑K−1
k=1 |fnk+1

− fnk |, on A
0, on Ac

,
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then
( ∫

X
GpK dµ

) 1
p ≤

∑K−1
k=1

( ∫
X
|fnk+1

− fnk |p dµ
) 1
p < 1, by Minkowski’s in-

equality. Since GK ↑ G on X, we find that
∫
X
Gp dµ ≤ 1 and, thus, G < +∞

a.e. on X. This implies that the series
∑+∞
k=1(fnk+1

(x)− fnk(x)) converges for
a.e. x ∈ A. Therefore, there is a B ∈ Σ, B ⊆ A so that µ(A \ B) = 0 and∑+∞
k=1(fnk+1

(x)− fnk(x)) converges for every x ∈ B. We define the measurable
f : X → F by

f =

{
fn1 +

∑+∞
k=1(fnk+1

− fnk), on B
0, on Bc.

On B we have that f = fn1 +limK→+∞
∑K−1
k=1 (fnk+1

−fnk) = limK→+∞ fnK
and, hence, (fnk) converges to f a.e. on X.

We, also, have on B that |fnK − f | = |fnK − fn1 −
∑+∞
k=1(fnk+1

− fnk)| =

|
∑K−1
k=1 (fnk+1

− fnk) −
∑+∞
k=1(fnk+1

− fnk)| ≤
∑+∞
k=K |fnk+1

− fnk | ≤ G for
every K and, hence, |fnK − f |p ≤ Gp a.e. on X for every K. Since we have∫
X
Gp dµ < +∞ and that |fnK − f | → 0 a.e. on X, we apply the Dominated

Convergence Theorem and we find that∫
X

|fnK − f |p dµ→ 0

as K → +∞.

From nk → +∞, we get
( ∫

X
|fk − f |p dµ)

1
p ≤

( ∫
X
|fk − fnk |p dµ

) 1
p +( ∫

X
|fnk − f |p dµ

) 1
p → 0 as k → +∞ and we conclude that (fn) converges

to f in the p-mean.
Second proof. For every ε > 0 we have that µ({x ∈ X | |fn(x)− fm(x)| ≥ ε}) ≤
1
ε

( ∫
X
|fn − fm|p dµ

) 1
p and, hence, (fn) is Cauchy in measure on X. Theorem

9.2 implies that there is a subsequence (fnk) which converges to some f a.e. on
X.

Now, for every ε > 0 there is an N so that
∫
X
|fn − fm|p dµ ≤ ε for all

n,m ≥ N . Since nk → +∞ as k → +∞, we use m = nk for large k and apply
the Lemma of Fatou to get∫

X

|fn − f |p dµ ≤ lim inf
k→+∞

∫
X

|fn − fnk |p dµ ≤ ε

for all n ≥ N . This, of course, says that (fn) converges to f in the p-mean.
(b) Now, let p = +∞.

For each n,m we have a set An,m ∈ Σ with µ(Acn,m) = 0 and |fn − fm| ≤
ess-sup(fn − fm) on An,m. We form the set A = ∩1≤n,mAn,m and have that
µ(Ac) = 0 and |fn−fm| ≤ ess-sup(fn−fm) on A for every n,m. This says that
(fn) is Cauchy uniformly on A and, hence, there is an f so that (fn) converges
to f uniformly on A. Now,

ess-sup(fn − f) ≤ sup
x∈A
|fn(x)− f(x)| → 0

as n→ +∞.
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If, for every f ∈ Lp, we set

Np(f) =

{( ∫
X
|f |p dµ

) 1
p , if 1 ≤ p < +∞

ess-sup(f) , if p = +∞,

then, Propositions 11.10 and 11.12 and Theorem 11.5 imply that the function
Np : Lp → R satisfies

1. Np(f1 + f2) ≤ Np(f1) +Np(f2),

2. Np(κf) = |κ|Np(f)

for every f, f1, f2 ∈ Lp and κ ∈ F .
The function Np has the two properties of a norm but not the third. Indeed,

Np(f) = 0 if and only if f = 0 a.e. on X. The usual practice is to identify
every two functions which are equal a.e. on X so that Np becomes, informally,
a norm. The precise way to do this is the following.

Definition 11.17 We define the relation ∼ on Lp as follows: we write f1 ∼ f2
if f1 = f2 a.e. on X.

Proposition 11.13 The relation ∼ on Lp is an equivalence relation.

Proof: It is obvious that f ∼ f and that, if f1 ∼ f2, then f2 ∼ f1. Now, if
f1 ∼ f2 and f2 ∼ f3, then there are A,B ∈ Σ with µ(Ac) = µ(Bc) = 0 so that
f1 = f2 on A and f2 = f3 on B. This implies that µ((A∩B)c) = 0 and f1 = f3
on A ∩B and, hence, f1 ∼ f3.

As with any equivalence relation, the relation ∼ defines equivalence classes.
The equivalence class [f ] of any f ∈ Lp is the set of all f ′ ∈ Lp which are
equivalent to f :

[f ] = {f ′ ∈ Lp | f ′ ∼ f}.

Proposition 11.14 Let f1, f2 ∈ Lp. Then
(i) [f1] = [f2] if and only if f1 ∼ f2 if and only if f1 = f2 a.e. on X.
(ii) If [f1] ∩ [f2] 6= ∅, then [f1] = [f2].

Moreover, Lp =
⋃
f∈Lp [f ].

Proof: (i) Assume f1 ∼ f2. If f ∈ [f1], then f ∼ f1. Therefore, f ∼ f2 and,
hence, f ∈ [f2]. Symmetrically, if f ∈ [f2], then f ∈ [f1] and, thus, [f1] = [f2].

If [f1] = [f2], then f1 ∈ [f1] and, hence, f1 ∈ [f2]. Therefore, f1 ∼ f2.
(ii) If f ∈ [f1] and f ∈ [f2], then f ∼ f1 and f ∼ f2 and, hence, f1 ∼ f2. This,
by the result of (i), implies [f1] = [f2].

For the last statement, we observe that every f ∈ Lp belongs to [f ].

Proposition 11.14 says that any two different equivalence classes have empty
intersection and that Lp is the union of all equivalence classes. In other words,
the collection of all equivalence classes is a partition of Lp.
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Definition 11.18 We define

Lp(X,Σ, µ) = Lp(X,Σ, µ)/∼ = {[f ] | f ∈ Lp(X,Σ, µ)}.

Again, we may write Lp or Lp(X) or Lp(µ) etc.
The first task is to carry addition and multiplication from Lp over to Lp.

Proposition 11.15 Let f, f1, f2, f
′, f ′1, f

′
2 ∈ Lp and κ ∈ F .

(i) If f1 ∼ f ′1 and f2 ∼ f ′2, then f1 + f2 ∼ f ′1 + f ′2.
(ii) If f ∼ f ′, then κf ∼ κf ′.

Proof: (i) There are A1, A2 ∈ Σ with µ(Ac1) = µ(Ac2) = 0 so that f1 = f ′1 on
A1 and both f1, f

′
1 are finite on A1 and, also, f2 = f ′2 on A2 and both f2, f

′
2 are

finite on A2. Then µ((A1 ∩A2)c) = 0 and f1 + f2 = f ′1 + f ′2 on A1 ∩A2. Hence,
f1 + f2 ∼ f ′1 + f ′2.
(ii) There is A ∈ Σ with µ(Ac) = 0 so that f = f ′ on A. Then, κf = κf ′ on A
and, hence κf ∼ κf ′.

Because of Proposition 11.14, another way to state the results of Proposition
11.15 is:

1. [f1] = [f ′1] and [f2] = [f ′2] imply [f1 + f ′1] = [f2 + f ′2],

2. [f ] = [f ′] implies [κf ] = [κf ′].

These allow the following definition.

Definition 11.19 We define addition and multiplication in Lp as follows:

[f1] + [f2] = [f1 + f2], κ[f ] = [κf ].

It is a matter of routine to prove, now, that the set Lp becomes a linear
space under this addition and multiplication. Then Lp is a linear space over F .

The zero element of Lp is the equivalence class [o] of the function o which is
identically 0 on X. The opposite of an [f ] is the equivalence class [−f ].

The next task is to define a norm on Lp.

Proposition 11.16 Let f1, f2 ∈ Lp. If f1 ∼ f2, then Np(f1) = Np(f2) or
equivalently ∫

X

|f1|p dµ =

∫
X

|f2|p dµ , 1 ≤ p < +∞,

ess-sup(f1) = ess-sup(f2) , p = +∞.

Proof: It is well known that f1 = f2 a.e. on X implies the first equality. Re-
garding the second equality, we have sets B,A1, A2 ∈ Σ with µ(Bc) = µ(Ac1) =
µ(Ac2) = 0 so that f1 = f2 on B, |f1| ≤ ess-sup(f1) on A1 and |f2| ≤ ess-sup(f2)
on A2. Then, the set A = B ∩ A1 ∩ A2 has µ(Ac) = 0. Moreover, |f1| = |f2| ≤
ess-sup(f2) on A and, hence, ess-sup(f1) ≤ ess-sup(f2). Also, |f2| = |f1| ≤
ess-sup(f1) on A and, hence, ess-sup(f2) ≤ ess-sup(f1).

An equivalent way to state the result of Proposition 11.16 is

236



1. [f1] = [f2] implies
∫
X
|f1|p dµ =

∫
X
|f2|p dµ, if 1 ≤ p < +∞,

2. [f1] = [f2] implies ess-sup(f1) = ess-sup(f2), if p = +∞.

These allow the

Definition 11.20 We define, for every [f ] ∈ Lp,

‖[f ]‖p = Np(f) =

{( ∫
X
|f |p dµ

) 1
p , if 1 ≤ p < +∞

ess-sup(f) , if p = +∞.

Proposition 11.17 The function ‖ · ‖p is a norm on Lp.

Proof: We have ‖[f1]+ [f2]‖p = ‖[f1 +f2]‖p = Np(f1 +f2) ≤ Np(f1)+Np(f2) =
‖[f1]‖p + ‖[f2]‖p. Also ‖κ[f ]‖p = ‖[κf ]‖p = Np(κf) = |κ|Np(f) = |κ|‖[f ]‖p.

If ‖[f ]‖p = 0, then Np(f) = 0. This implies f = 0 a.e. on X and, hence,
f ∼ o or, equivalently, [f ] is the zero element of Lp.

In order to simplify things and not have to carry the bracket-notation [f ] for
the elements of Lp, we shall follow the traditional practice and write f instead
of [f ]. When we do this we must have in mind that the element f of Lp (and
not the element f of Lp) is not the single function f , but the whole collection
of functions each of which is equal to f a.e. on X.

For example:
1. when we write f1 = f2 for the elements f1, f2 of Lp, we mean the more
correct [f1] = [f2] or, equivalently, that f1 = f2 a.e. on X,
2. when we write

∫
X
fg dµ for the element f ∈ Lp, we mean the integral∫

X
fg dµ for the element-function f ∈ Lp and, at the same time, all integrals∫

X
f ′g dµ (equal to each other) for all functions f ′ ∈ Lp such that f ′ = f a.e.

on X,
3. when we write ‖f‖p for the element f ∈ Lp we mean the more correct ‖[f ]‖p
or, equivalently, the expression

( ∫
X
|f |p dµ

) 1
p , when 1 ≤ p < +∞, and ess-

sup(f), when p = +∞, for the element-function f ∈ Lp and at the same time
all similar expressions (equal to each other) for all functions f ′ ∈ Lp such that
f ′ = f a.e. on X.

The inequality of Minkowski takes the form

‖f1 + f2‖p ≤ ‖f1‖p + ‖f2‖p

for every f1, f2 ∈ Lp.
Hölder’s inequality takes the form

‖fg‖1 ≤ ‖f‖p‖g‖p′

for every f ∈ Lp and g ∈ Lp′ .

Theorem 11.7 All Lp are Banach spaces.

237



Proof: Let (fn) be a Cauchy sequence in Lp. Then ‖fn − fm‖p → 0 and,
hence,

∫
X
|fn − fm|p dµ → 0, if 1 ≤ p < +∞, and ess-sup(fn − fm) → 0, if

p = +∞. Theorem 11.6 implies that the sequence (fn) in Lp converges to some
f ∈ Lp in the p-mean. Therefore,

∫
X
|fn − f |p dµ → 0, if 1 ≤ p < +∞, and

ess-sup(fn − f) → 0, if p = +∞. This means that ‖fn − f‖p → 0 and (fn)
converges to the element f of Lp.

Definition 11.21 Let I be an index set and ] be the counting measure on
(I,P(I)). We denote

lp(I) = Lp(I,P(I), ]).

In particular, if I = N, we denote lp = lp(N).

If 1 ≤ p < +∞, then, the function b = {bi}i∈I : I → F belongs to lp(I) if,
by definition,

∫
I
|b|p d] < +∞ or, equivalently,∑

i∈I
|bi|p < +∞.

If |bi| = +∞ for at least one i ∈ I, then
∑
i∈I |bi|p = +∞.

Definition 11.22 Let I be an index set and b : I → F . If 1 ≤ p < +∞, we say
that b = {bi}i∈I is p-summable if

∑
i∈I |bi|p < +∞.

Hence, b = {bi}i∈I is p-summable if and only if it belongs to lp(I). We also
have

‖b‖p =
(∑
i∈I
|bi|p

) 1
p .

When 1 ≤ p < +∞, Minkowski’s inequality becomes(∑
i∈I
|b(1)i + b

(2)
i |

p
) 1
p ≤

(∑
i∈I
|b(1)i |

p
) 1
p +

(∑
i∈I
|b(2)i |

p
) 1
p

for all b1 = {b(1)i }i∈I and b2 = {b(2)i }i∈I which are p-summable. Similarly, when
1 < p, p′ < +∞ and p, p′ are conjugate, Hölder’s inequality becomes∑

i∈I
|bici| ≤

(∑
i∈I
|bi|p

) 1
p
(∑
i∈I
|ci|p

′) 1
p′

for all p-summable b = {bi}i∈I and all p′-summable c = {ci}i∈I .
Since the only subset of I with zero ]-measure is the ∅, we easily see that

b = {bi}i∈I is essentially bounded over I with respect to ] if and only if there
is an M < +∞ so that |bi| ≤M for all i ∈ I. It is obvious that the smallest M
with the property that |bi| ≤M for all i ∈ I is the M0 = supi∈I |bi|.

Definition 11.23 Let I be an index set and b : I → F . We say that b = {bi}i∈I
is bounded if supi∈I |bi| < +∞.
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Therefore, b is essentially bounded over I with respect to ] or, equivalently,
b ∈ l∞(I) if and only if b is bounded. Also,

‖b‖∞ = ess-sup(b) = sup
i∈I
|bi|.

The inequality of Minkowski takes the form

sup
i∈I
|b(1)i + b

(2)
i | ≤ sup

i∈I
|b(1)i |+ sup

i∈I
|b(2)i |

for all b1 = {b(1)i }i∈I and b2 = {b(2)i }i∈I which are bounded. When p = 1 and
p′ = +∞, Hölder’s inequality takes the form∑

i∈I
|bici| ≤

∑
i∈I
|bi| · sup

i∈I
|ci|

for all summable b = {bi}i∈I and all bounded c = {ci}i∈I .
The spaces lp(I) are all Banach spaces.

As we have already mentioned, a particular case is when I = N. Then

lp =
{
x = (x1, x2, . . .) |

+∞∑
k=1

|xk|p < +∞
}
, 1 ≤ p < +∞,

l∞ =
{
x = (x1, x2, . . .) | sup

k≥1
|xk| < +∞

}
, p = +∞.

The corresponding norms are

‖x‖p =
( +∞∑
k=1

|xk|p
) 1
p , 1 ≤ p < +∞,

‖x‖∞ = sup
k≥1
|xk|, p = +∞,

for every x = (x1, x2, . . .) ∈ lp.
Another very special case is when I = {1, . . . , n}. In this case we have

lp(I) = Fn. The norms are

‖x‖p =
( n∑
k=1

|xk|p
) 1
p

, 1 ≤ p < +∞,

‖x‖∞ = max
1≤k≤n

|xk|, p = +∞,

for every x = (x1, . . . , xn) ∈ Fn.
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11.3 The dual of Lp(X,Σ, µ).

In this section p, p′ ∈ [1,+∞] are meant to be conjugate.

Theorem 11.8 Let g ∈ Lp′ . If 1 < p ≤ +∞, then

‖g‖p′ = sup
{∣∣∣ ∫

X

fg dµ
∣∣∣ | f ∈ Lp, ‖f‖p ≤ 1

}
.

If µ is semifinite, the same is true when p = 1.

Proof: (a) Let 1 < p ≤ +∞ and, hence, 1 ≤ p′ < +∞.
For any f ∈ Lp with ‖f‖p ≤ 1, we have, by Hölder’s inequality, that

|
∫
X
fg dµ| ≤ ‖f‖p‖g‖p′ ≤ ‖g‖p′ . Therefore,

sup
{∣∣∣ ∫

X

fg dµ
∣∣∣ | f ∈ Lp, ‖f‖p ≤ 1

}
≤ ‖g‖p′ .

If ‖g‖p′ = 0, then the inequality between the sup and the ‖g‖p′ , obviously,

becomes equality. Anyway, we have
∫
X
|g|p′ dµ = 0 and, hence, g = 0 a.e. on

X. This implies that
∫
X
fg dµ = 0 for every f ∈ Lp.

Now, let ‖g‖p′ > 0. We consider the function f0 defined by

f0(x) =

 |g(x)|
p′−1sign(g(x))

‖g‖p
′−1

p′
, if g(x) is finite and g(x) 6= 0,

0 , if g(x) is infinite or g(x) = 0.

Then,

f0(x)g(x) =

 |g(x)|p
′

‖g‖p
′−1

p′
, if g(x) is finite,

0 , if g(x) is infinite

and, hence,
∫
X
f0g dµ = 1

‖g‖p
′−1

p′

∫
X
|g|p′ dµ = ‖g‖p′ .

If 1 < p, p′ < +∞, then, since p(p′ − 1) = p′,

|f0(x)|p =

 |g(x)|
p′

‖g‖p
′
p′

, if g(x) is finite,

0 , if g(x) is infinite

and, hence, ‖f0‖p =
( ∫

X
|f0|p dµ

) 1
p = 1.

If p = +∞, p′ = 1, then

|f0(x)| =
{

1 , if g(x) is finite and 6= 0,
0 , if g(x) is infinite or = 0

and, hence, ‖f0‖∞ = ess-sup(f0) = 1.
We conclude that

‖g‖p′ = max
{∣∣∣ ∫

X

fg dµ
∣∣∣ | f ∈ Lp, ‖f‖p ≤ 1

}
.
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(b) Let p = 1, p′ = +∞.

For any f ∈ L1 with ‖f‖1 ≤ 1, we have |
∫
X
fg dµ| ≤ ‖f‖1‖g‖∞ ≤ ‖g‖∞.

Therefore,

sup
{∣∣∣ ∫

X

fg dµ
∣∣∣ | f ∈ L1, ‖f‖1 ≤ 1

}
≤ ‖g‖∞.

If ‖g‖∞ = 0, then g = 0 a.e. on X. This implies that
∫
X
fg dµ = 0 for

every f ∈ Lp and, thus, the inequality between the sup and the ‖g‖∞ becomes
equality.

Let ‖g‖∞ > 0. We consider an arbitrary ε with 0 < ε < ‖g‖∞ and, then
µ({x ∈ X | ‖g‖∞ − ε < |g(x)| ≤ ‖g‖∞}) > 0. If µ is semifinite, there exists a
B ∈ Σ so that B ⊆ {x ∈ X | ‖g‖∞ − ε < |g(x)| ≤ ‖g‖∞} and 0 < µ(B) < +∞.
We define the function f0 by

f0(x) =

{
sign(g(x))χB(x)

µ(B) , if g(x) is finite,

0 , if g(x) is infinite.

Then,

f0(x)g(x) =

{ |g(x)|χB(x)
µ(B) , if g(x) is finite,

0 , if g(x) is infinite

and, hence,
∫
X
f0g dµ = 1

µ(B)

∫
B
|g| dµ ≥ ‖g‖∞ − ε.

Also,

|f0(x)| =
{
χB(x)
µ(B) , if g(x) is finite,

0 , if g(x) is infinite

and, hence, ‖f0‖1 =
∫
X
|f0| dµ = 1

µ(B)

∫
B
dµ = 1.

These imply

sup
{∣∣∣ ∫

X

fg dµ
∣∣∣ | f ∈ L1, ‖f‖1 ≤ 1

}
≥ ‖g‖∞ − ε

for every ε with 0 < ε < ‖g‖∞ and, taking the limit as ε → 0+, we conclude
that

‖g‖∞ = sup
{∣∣∣ ∫

X

fg dµ
∣∣∣ | f ∈ L1, ‖f‖1 ≤ 1

}
.

Definition 11.24 Let 1 ≤ p ≤ +∞. For every g ∈ Lp′ we define lg : Lp → F
by

lg(f) =

∫
X

fg dµ , f ∈ Lp.

Proposition 11.18 Let 1 ≤ p ≤ +∞. For every g ∈ Lp′ , the function lg of
Definition 11.24 belongs to (Lp)∗.

Moreover, if 1 < p ≤ +∞, then ‖lg‖∗ = ‖g‖p′ and, if p = 1, then ‖lg‖∗ ≤
‖g‖∞. If p = 1 and µ is semifinite, then ‖lg‖∗ = ‖g‖∞.
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Proof: We have lg(f1 + f2) =
∫
X

(f1 + f2)g dµ =
∫
X
f1g dµ +

∫
X
f2g dµ =

lg(f1) + lg(f2). Also, lg(κf) =
∫
X

(κf)g dµ = κ
∫
X
fg dµ = κlg(f). These imply

that lg is a linear functional.
Theorem 11.8 together with Proposition 11.5 imply that, if 1 < p ≤ +∞,

then ‖lg‖∗ = ‖g‖p′ . If µ is semifinite, the same is true, also, for p = 1.
If p = 1, for every f ∈ L1 we have |lg(f)| =

∣∣ ∫
X
fg dµ

∣∣ ≤ ‖g‖∞‖f‖1.
Therefore, ‖lg‖∗ ≤ ‖g‖∞.

Definition 11.25 Let 1 ≤ p ≤ +∞. We define the mapping J : Lp
′ → (Lp)∗

by
J(g) = lg

for all g ∈ Lp′ .

Proposition 11.19 The function J of Definition 11.25 is a bounded linear
transformation. If 1 < p ≤ +∞, J is an isometry from Lp

′
into (Lp)∗. This is

true, also, when p = 1, if µ is semifinite.

Proof: For every f ∈ Lp we have lg1+g2(f) =
∫
X
f(g1 + g2) dµ =

∫
X
fg1 dµ +∫

X
fg2 dµ = lg1(f) + lg2(f) = (lg1 + lg2)(f) and, hence, J(g1 + g2) = lg1+g2 =

lg1 + lg2 = J(g1) + J(g2).
Moreover, lκg(f) =

∫
X
f(κg) dµ = κ

∫
X
fg dµ = κlg(f) = (κlg)(f) and,

hence, J(κg) = lκg = κlg = κJ(g).
Now, ‖J(g)‖∗ = ‖lg‖∗ ≤ ‖g‖p′ and J is bounded. That J is an isometry is

a consequence of Proposition 11.18.

Lemma 11.2 Let l ∈ (Lp(X,Σ, µ))∗. If E ∈ Σ, ΣeE = {A ∈ Σ |A ⊆ E} is the
restriction of Σ on E and µeE is the restricted measure on (E,ΣeE), we define
leE by

(leE)(h) = l(h̃), h ∈ Lp(E,ΣeE,µeE),

where h̃ is the extension of h as 0 on X \ E.
Then, leE ∈ (Lp(E,ΣeE,µeE))∗ and ‖leE‖∗ ≤ ‖l‖∗. Moreover,

l(fχE) = (leE)(feE), f ∈ Lp(X,Σ, µ),

where feE is the restriction of f on E.

Proof: For all h, h1, h2 ∈ Lp(E,ΣeE,µeE) we consider the corresponding exten-

sions h̃, h̃1, h̃2 ∈ Lp(X,Σ, µ). Since h̃1 + h̃2 and κh̃ are the extensions of h1 +h2
and κh, respectively, we have (leE)(h1 + h2) = l(h̃1 + h̃2) = l(h̃1) + l(h̃2) =

(leE)(h1) + (leE)(h2) and (leE)(κh) = l(κh̃) = κl(h̃) = κ(leE)(h). This proves

that leE is linear and |(leE)(h)| = |l(h̃)| ≤ ‖l‖∗‖h̃‖p = ‖l‖∗‖h‖p proves that
leE is bounded and that ‖leE‖∗ ≤ ‖l‖∗.

If f ∈ Lp(X,Σ, µ), then f̃eE = fχE on X and, hence, (leE)(feE) =

l(f̃eE) = l(fχE).

Definition 11.26 The leE defined in Lemma 11.2 is called the restriction
of l ∈ (Lp(X,Σ, µ))∗ on Lp(E,ΣeE,µeE).
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Theorem 11.9 Let 1 < p < +∞.
(i) For every l ∈ (Lp)∗ there exists a unique g ∈ Lp′ so that

l(f) =

∫
X

fg dµ

for every f ∈ Lp.
(ii) The function J of Definition 11.25 is an isometry from Lp

′
onto (Lp)∗.

If µ is σ-finite, then (i) and (ii) are true also when p = 1.

Proof: A. We consider first the case when µ is a finite measure: µ(X) < +∞.
Let l ∈ (Lp)∗ and 1 ≤ p < +∞.
Since

∫
A
|χA|p dµ = µ(A) < +∞, we have that χA ∈ Lp for every A ∈ Σ.

We define the function ν : Σ→ F by

ν(A) = l(χA), A ∈ Σ.

We have ν(∅) = l(χ∅) = l(o) = 0. If A1, A2, . . . ∈ Σ are pairwise disjoint
and A = ∪+∞j=1Aj , then χA =

∑+∞
j=1 χAj . Therefore, ‖

∑n
j=1 χAj − χA‖pp =∫

X
|
∑+∞
j=n+1 χAj |p dµ =

∫
X
|χ∪+∞

j=n+1
Aj
|p dµ = µ(∪+∞j=n+1Aj)→ µ(∅) = 0, by the

continuity of µ from above. The linearity and the continuity of l imply, now, that∑n
j=1 ν(Aj) =

∑n
j=1 l(χAj ) = l(

∑n
j=1 χAj ) → l(χA) = ν(A) or, equivalently,

that
∑+∞
j=1 ν(Aj) = ν(A).

Hence, ν is a real or complex measure (depending on whether F = R or
F = C) on (X,Σ).

We observe that, if A ∈ Σ has µ(A) = 0, then ν(A) = l(χA) = l(o) = 0,
because the function χA is the zero element o of Lp. Therefore, ν � µ and, by
Theorems 10.12 and 10.13, there exists a function g : X → F which is integrable
over X with respect to µ, so that

l(χA) = ν(A) =

∫
A

g dµ =

∫
X

χAg dµ

for every A ∈ Σ. By the linearity of l and of the integral, this, clearly, implies

l(φ) =

∫
X

φg dµ

for every measurable simple function φ on X.
This extends to all measurable functions which are bounded on X. Indeed,

let f ∈ Lp be such that |f | ≤M on X for some M < +∞. We take any sequence
(φn) of measurable simple functions with φn → f and |φn| ↑ |f | on X. Then,
φng → fg and |φng| ≤ |fg| ≤M |g| onX. Since

∫
X
|g| dµ < +∞, the Dominated

Convergence Theorem implies that
∫
X
φng dµ→

∫
X
fg dµ. On the other hand,

|φn−f |p → 0 on X and |φn−f |p ≤ (|φn|+ |f |)p ≤ 2p|f |p on X. The Dominated
Convergence Theorem, again, implies that

∫
X
|φn−f |p dµ→ 0 as n→ +∞ and,

hence, φn → f in Lp. By the continuity of l, we get
∫
X
φng dµ = l(φn) → l(f)

and, hence,

� l(f) =

∫
X

fg dµ
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for every f ∈ Lp which is bounded on X.
Our first task, now, is to prove that g ∈ Lp′ .
If 1 < p, p′ < +∞, we consider a sequence (ψn) of measurable non-negative

simple functions on X so that ψn ↑ |g|p
′−1 on X. We define

φn(x) =

{
ψn(x)sign(g(x)), if g(x) is finite
0, if g(x) is infinite.

Then, 0 ≤ φng = ψn|g| ↑ |g|p
′

a.e. on X and each φn is bounded on X.
Hence, ‖ψn‖pp =

∫
X
ψpn dµ ≤

∫
X
ψn|g| dµ =

∫
X
φng dµ = l(φn) ≤ ‖l‖∗‖φn‖p ≤

‖l‖∗‖ψn‖p, where the last equality is justified by � . This implies
∫
X
ψpn dµ =

‖ψn‖pp ≤ ‖l‖
p′

∗ and, by the Monotone Convergence Theorem, we get
∫
X
|g|p′ dµ =

limn→+∞
∫
X
ψpn dµ ≤ ‖l‖

p′

∗ . Therefore, g ∈ Lp′ and

‖g‖p′ ≤ ‖l‖∗.

If p = 1 and p′ = +∞, we consider any possible t > 0 such that the set
A = {x ∈ X | t < |g(x)|} has µ(A) > 0. We define the function

f(x) =

{
χA(x)sign(g(x)), if g(x) is finite
0, if g(x) is infinite.

Then tµ(A) ≤
∫
A
|g| dµ =

∫
X
fg dµ = l(f) ≤ ‖l‖∗‖f‖1 ≤ ‖l‖∗µ(A), where the

last equality is justified by � . This implies that t ≤ ‖l‖∗ and, hence, |g| ≤ ‖l‖∗
a.e. on X. Therefore, g is essentially bounded on X with respect to µ and

‖g‖∞ ≤ ‖l‖∗.

We have proved that, in all cases, g ∈ Lp′ and ‖g‖p′ ≤ ‖l‖∗.
Now, consider an arbitrary f ∈ Lp and take a sequence (φn) of measurable

simple functions on X so that φn → f and |φn| ↑ |f | on X. We have already
shown, by the Dominated Convergence Theorem, that φn → f in Lp and,
hence, l(φn) → l(f). Moreover, |

∫
X
φng dµ −

∫
X
fg dµ| ≤

∫
X
|φn − f ||g| dµ ≤

‖φn − f‖p‖g‖p′ → 0, since ‖g‖p′ < +∞. From l(φn) =
∫
X
φng dµ, we conclude

that

l(f) =

∫
X

fg dµ, f ∈ Lp.

This implies, of course, that l(f) = lg(f) for every f ∈ Lp and, hence,

l = lg = J(g).

Therefore, J is an isometry from Lp
′

onto (Lp)∗.
Now let g′ ∈ Lp′ also satisfies l = lg′ . Then J(g′) = l = J(g) and, since J is

an isometry (and, hence, one-to-one) we get that g′ = g a.e. on X.
B. We suppose, now, that µ is σ-finite and consider an increasing sequence (Ek)
in Σ so that Ek ↑ X and µ(Ek) < +∞ for all k.

Let l ∈ (Lp(X,Σ, µ))∗.
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For each k, we consider the restriction leEk of l on Lp(Ek,ΣeEk, µeEk),
which is defined in Lemma 11.2. Since leEk ∈ (Lp(Ek,ΣeEk, µeEk))∗ and
‖leEk‖∗ ≤ ‖l‖∗ and since (µeEk)(Ek) = µ(Ek) < +∞, part A implies that
there is a unique gk ∈ Lp

′
(Ek,ΣeEk, µeEk) so that ‖gk‖p′ ≤ ‖leEk‖∗ ≤ ‖l‖∗

and

(leEk)(h) =

∫
Ek

hgk d(µeEk)

for every h ∈ Lp(Ek,ΣeEk, µeEk). In particular,

l(fχEk) = (leEk)(feEk) =

∫
Ek

(feEk)gk d(µeEk)

for every f ∈ Lp(X,Σ, µ).
For h ∈ Lp(Ek,ΣeEk, µeEk), take its extension h′ on Ek+1 as 0 on Ek+1\Ek.

Since h̃ = h̃′ on X, we get∫
Ek

hgk d(µeEk) = (leEk)(h) = l(h̃) = l(h̃′) = (leEk+1)(h′)

=

∫
Ek+1

h′gk+1 d(µeEk+1) =

∫
X

˜h′gk+1 dµ

=

∫
Ek

( ˜h′gk+1)eEk d(µeEk)

=

∫
Ek

h(gk+1eEk) d(µeEk).

By the uniqueness result of part A, we have that gk+1eEk = gk a.e. on Ek.
We may clearly suppose that gk+1eEk = gk on Ek for every k, by inductively
changing gk+1 on a subset of Ek of zero measure.

Define the measurable function g on X as equal to gk on each Ek. I.e.
geEk = gk on Ek for every k. Therefore, l(fχEk) =

∫
Ek

(feEk)(geEk) d(µeEk)
and, thus,

l(fχEk) =

∫
Ek

fg dµ , f ∈ Lp(X,Σ, µ).

If 1 < p′ < +∞, then, since |g̃k| ↑ |g| on X, by the Monotone Convergence
Theorem,

∫
X
|g|p′ dµ = limk→+∞

∫
X
|g̃k|p

′
dµ = limk→+∞

∫
Ek
|gk|p

′
d(µeEk) ≤

lim supk→+∞ ‖leEk‖
p′

∗ ≤ ‖l‖p
′

∗ < +∞. Hence, g ∈ Lp
′
(X,Σ, µ) and ‖g‖p′ ≤

‖l‖∗.
If p′ = +∞, we have that, for every k, |g| = |gk| ≤ ‖gk‖∞ ≤ ‖leEk‖∗ ≤ ‖l‖∗

a.e. on Ek. This implies that |g| ≤ ‖l‖∗ a.e. on X and, thus, g ∈ L∞(X,Σ, µ)
and ‖g‖∞ ≤ ‖l‖∗.

Hence, in all cases, g ∈ Lp′(X,Σ, µ) and ‖g‖p′ ≤ ‖l‖∗.
For an arbitrary f ∈ Lp(X,Σ, µ), we have ‖fχEk−f‖pp =

∫
X
|fχEk−f |p dµ =∫

Ec
k
|f |p dµ =

∫
X
χEc

k
|f |p dµ→ 0, by the Dominated Convergence Theorem. By

the continuity of l, we get l(f) = limk→+∞ l(fχEk) = limk→+∞
∫
Ek
fg dµ =
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∫
X
fg dµ. The last equality holds since |

∫
Ek
fg dµ−

∫
X
fg dµ| = |

∫
Ec
k
fg dµ| ≤( ∫

Ec
k
|f |p dµ

) 1
p ‖g‖p′ → 0. We have proved that

l(f) =

∫
X

fg dµ, f ∈ Lp(X,Σ, µ)

and, hence, l = lg = J(g). Therefore, just as in part A, J is an isometry from

Lp
′
(X,Σ, µ) onto (Lp(X,Σ, µ))∗.
Again, if g′ ∈ Lp′(X,Σ, µ) also satisfies l = lg′ , then J(g′) = l = J(g) and,

since J is an isometry, we get that g′ = g a.e. on X.
C. Now, let 1 < p, p′ < +∞ and µ be arbitrary.

Let l ∈ (Lp(X,Σ, µ))∗.
We consider any E ∈ Σ of σ-finite measure and the restriction leE of l on

Lp(E,ΣeE,µeE), defined in Lemma 11.2. Since leE ∈ (Lp(E,ΣeE,µeE))∗ and
‖leE‖∗ ≤ ‖l‖∗, part B implies that there is a unique gE ∈ Lp

′
(E,ΣeE,µeE) so

that ‖gE‖p′ ≤ ‖leE‖∗ ≤ ‖l‖∗ and

(leE)(h) =

∫
E

hgE d(µeE)

for every h ∈ Lp(E,ΣeE,µeE). In particular,

l(fχE) = (leE)(feE) =

∫
E

(feE)gE d(µeE)

for every f ∈ Lp(X,Σ, µ).
Now, let E,F be two sets of σ-finite measure with E ⊆ F . Repeating the

argument in the proof of part B, with which we showed that gk+1eEk = gk
a.e. on Ek, we may easily show (just replace Ek by E and Ek+1 by F ) that
gF eE = gE a.e. on E.

We define

M = sup
{∫

E

|gE |p
′
d(µeE) |E of σ-finite measure

}
and, obviously, M ≤ ‖l‖p

′

∗ < +∞. We take a sequence (En) in Σ, where each En
has σ-finite measure, so that

∫
En
|gEn |p

′
d(µeEn)→M . We define E = ∪+∞n=1En

and observe that E has σ-finite measure and, hence,
∫
E
|gE |p

′
d(µeE) ≤ M .

Since En ⊆ E, by the result of the previous paragraph, gEeEn = gEn a.e. on
En and, thus,

∫
En
|gEn |p

′
d(µeEn) ≤

∫
E
|gE |p

′
d(µeE) ≤M . Taking the limit as

n→ +∞, this implies that ∫
E

|gE |p
′
d(µeE) = M.

We set g = g̃E and have that∫
X

|g|p
′
dµ =

∫
E

|gE |p
′
d(µeE) = M ≤ ‖l‖p

′

∗ .
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Now consider an arbitrary f ∈ Lp(X,Σ, µ). The set

F = E ∪ {x ∈ X | f(x) 6= 0}

has σ-finite measure. By gF eE = gE a.e. on E, we get M =
∫
E
|gE |p

′
d(µeE) =∫

E
|gF |p

′
d(µeF ) ≤

∫
E
|gF |p

′
d(µeF ) +

∫
F\E |gF |

p′ d(µeF ) =
∫
F
|gF |p

′
d(µeF ) ≤

M . Therefore,
∫
F\E |gF |

p′ d(µeF ) = 0 and, hence, gF = 0 a.e. on F \ E. Now,

l(f) = l(fχF ) =

∫
F

(feF )gF d(µeF ) =

∫
E

(feF )gF d(µeF )

=

∫
E

(feF )gE d(µeF ) =

∫
E

(feE)gE d(µeE)

=

∫
X

fg dµ.

Thus, l = lg = J(g) and, just as in parts A and B, J is an isometry from

Lp
′
(X,Σ, µ) onto (Lp(X,Σ, µ))∗.
Finally, if g′ ∈ Lp′(X,Σ, µ) also satisfies l = lg′ , then J(g′) = l = J(g) and,

since J is an isometry, we get that g′ = g a.e. on X.

11.4 The space M(X,Σ).

Just as in the previous two sections, (X,Σ) will be a fixed measure space.

Definition 11.27 Let (X,Σ) be a measurable space. The set of all real or
complex (depending on whether F = R or F = C) measures on (X,Σ) is
denoted by M(X,Σ).

If there is no danger of confusion, we shall use the symbol M instead of
M(X,Σ).

We recall addition and multiplication on these spaces. If ν1, ν2 ∈ M , we
define ν1 + ν2 ∈ M by (ν1 + ν2)(A) = ν1(A) + ν2(A) for all A ∈ Σ. We, also,
define κν ∈M by (κν)(A) = κν(A) for all A ∈ Σ and κ ∈ F .

It is easy to show that M is a linear space over F . The zero element is the
measure o defined by o(A) = 0 for all A ∈ Σ. The opposite to ν is −ν defined
by (−ν)(A) = −ν(A) for all A ∈ Σ.

Definition 11.28 For every ν ∈M we define

‖ν‖ = |ν|(X).

Thus, ‖ν‖ is just the total variation of ν.

Proposition 11.20 ‖ · ‖ is a norm on M .

Proof: Proposition 10.9 implies that ‖ν1 + ν2‖ = |ν1 + ν2|(X) ≤ |ν1|(X) +
|ν2|(X) = ‖ν1‖+ ‖ν2‖ and ‖κν‖ = |κν|(X) = |κ||ν|(X) = |κ|‖ν‖.

If ‖ν‖ = 0, then |ν|(X) = 0. This implies that |ν(A)| ≤ |ν|(A) = 0 for all
A ∈ Σ and, hence, ν = o is the zero measure.
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Theorem 11.10 M is a Banach space.

Proof: Let (νn) be a Cauchy sequence in M . This means |νn − νm|(X) =
‖νn− νm‖ → 0 as n,m→ +∞ and, hence, |νn(A)− νm(A)| = |(νn− νm)(A)| ≤
|νn − νm|(A) ≤ |νn − νm|(X) → 0 as n,m → +∞. This implies that the
sequence (νn(A)) of numbers is a Cauchy sequence for every A ∈ Σ. Therefore,
it converges to a finite number and we define

ν(A) = lim
n→+∞

νn(A)

for all A ∈ Σ.
It is clear that ν(∅) = limn→+∞ νn(∅) = 0.
Now, let A1, A2, . . . ∈ Σ be pairwise disjoint and A = ∪+∞j=1Aj . We take an

arbitrary ε > 0 and find N so that ‖νn − νm‖ ≤ ε for all n,m ≥ N . Since∑+∞
j=1 |νN |(Aj) = |νN |(A) < +∞, there is some J so that

+∞∑
j=J+1

|νN |(Aj) ≤ ε.

From |νn| ≤ |νn − νN |+ |νN | we get that, for every n ≥ N ,

+∞∑
j=J+1

|νn|(Aj) ≤
+∞∑

j=J+1

|νn − νN |(Aj) +

+∞∑
j=J+1

|νN |(Aj)

≤ |νn − νN |(∪+∞j=J+1Aj) + ε

≤ |νn − νN |(X) + ε = ‖νn − νN‖+ ε

≤ 2ε.

This implies that, for arbitrary K ≥ J + 1 and every n ≥ N , we have∑K
j=J+1 |νn(Aj)| ≤

∑K
j=J+1 |νn|(Aj) ≤ 2ε and, taking the limit as n → +∞,∑K

j=J+1 |ν(Aj)| ≤ 2ε. Finally, taking the limit as K → +∞, we find

+∞∑
j=J+1

|ν(Aj)| ≤ 2ε.

We have |νn(A) −
∑J
j=1 νn(Aj)| = |

∑+∞
j=J+1 νn(Aj)| ≤

∑+∞
j=J+1 |νn(Aj)| ≤∑+∞

j=J+1 |νn|(Aj) ≤ 2ε for all n ≥ N and, taking the limit as n→ +∞,

|ν(A)−
J∑
j=1

ν(Aj)| ≤ 2ε.

Altogether, we have

|ν(A)−
+∞∑
j=1

ν(Aj)| ≤ |ν(A)−
J∑
j=1

ν(Aj)|+
+∞∑

j=J+1

|ν(Aj)| ≤ 4ε.
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Since ε is arbitrary, we get ν(A) =
∑+∞
j=1 ν(Aj) and we conclude that ν ∈M .

Consider an arbitrary measurable partition {A1, . . . , Ap} of X. We have
that

∑p
k=1 |(νn − νm)(Ak)| ≤ ‖νn − νm‖ ≤ ε for every n,m ≥ N . Taking the

limit as m→ +∞, we find
∑p
k=1 |(νn−ν)(Ak)| ≤ ε for every n ≥ N and, taking

the supremum of the left side, we get

‖νn − ν‖ = |νn − ν|(X) ≤ ε.

This means that ‖νn − ν‖ → 0 as n→ +∞.

11.5 The space C0(X) and its dual.

Definition 11.29 Let X be any non-empty set and B(X) be the space of all
bounded functions f : X → F .

If there is no danger of confusion we shall use the notation B for B(X).
The sum of two bounded functions and the product of a bounded function

with a number are bounded functions. Therefore, the space B is a linear space
over F .

Definition 11.30 We define

‖f‖u = sup
x∈X
|f(x)|

for every f ∈ B.

It is easy to see that ‖ · ‖u is a norm on B. In fact, ‖o‖u = supx∈X 0 = 0. If
‖f‖u = 0, then supx∈X |f(x)| = 0 and, hence, f(x) = 0 for all x ∈ X. Moreover,
‖κf‖u = supx∈X |κf(x)| = |κ| supu∈X |f(x)| = |κ|‖f‖u. Finally, |f(x) + g(x)| ≤
|f(x)|+ |g(x)| ≤ ‖f‖u+ ‖g‖u for all x ∈ X and, hence, ‖f + g‖u ≤ ‖f‖u+ ‖g‖u.

We call ‖ · ‖u the uniform norm on B.

Theorem 11.11 B is a Banach space.

Proof: Let (fn) be a Cauchy sequence in B. Then, for any x ∈ X we have
|fn(x)− fm(x)| ≤ ‖fn − fm‖u → 0 as m,n→ +∞. This means that (fn(x)) is
a Cauchy sequence in F and, therefore, it converges. We denote

f(x) = lim
n→+∞

fn(x)

and, in this way, a function f : X → F is defined.
For ε = 1, there is some N so that ‖fn − fm‖u ≤ 1 for all n,m ≥ N . In

particular, ‖fn−fN‖u ≤ 1 for all n ≥ N which implies that |fn(x)−fN (x)| ≤ 1
for all x ∈ X and n ≥ N . Letting n → +∞, we find |f(x) − fN (x)| ≤ 1 and,
hence, |f(x)| ≤ |fN (x)|+1 ≤ ‖fN‖u+1 < +∞ for all x ∈ X. Therefore, f ∈ B.

Now, for any ε > 0, there is some N so that ‖fn−fm‖u ≤ ε for all n,m ≥ N .
This implies |fn(x)−fm(x)| ≤ ε for all x ∈ X and n,m ≥ N . Letting m→ +∞,
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we find |fn(x)− f(x)| ≤ ε for all x ∈ X and n ≥ N . Therefore, ‖fn − f‖u ≤ ε
for all n ≥ N and (fn) converges to f in B.

From now on we shall assume that X is a topological space. This is natural,
since our main objects of consideration will be continuous functions and Borel
measures on X.

Definition 11.31 The space C(X) consists of all continuous functions f : X →
F .

We write C instead of C(X) if there is no danger of confusion
Since the sum of two continuous functions and the product of a continuous

function with a number are continuous functions, the space C is a linear space
over F .

Definition 11.32 BC(X) = B(X) ∩ C(X).

We may, again, write BC for BC(X).
BC is also a linear space and, as a subspace of B, we may (and do) use as

norm the restriction of ‖ · ‖u on it. In other words, we write

‖f‖u = sup
x∈X
|f(x)|

for every f ∈ BC.

Theorem 11.12 BC is a Banach space.

Proof: It is enough to prove that BC is a closed subset of B.
Let (fn) in BC converge to some f in B. Take any x ∈ X and any ε > 0.

Then there is some N so that ‖fn − f‖u ≤ ε
3 for all n ≥ N and, in particular,

‖fN − f‖u ≤ ε
3 . By continuity of fN , there is some open neighborhood U

of x so that |fN (x′) − fN (x)| ≤ ε
3 for all x′ ∈ U . Now, for all x′ ∈ U we

have |f(x′) − f(x)| ≤ |f(x′) − fN (x′)| + |fN (x′) − fN (x)| + |fN (x) − f(x)| ≤
‖f − fN‖u + ε

3 + ‖fN − f‖u ≤ ε. Therefore f is continuous at x and, since x is
arbitrary, f is continuous on X. Thus f ∈ BC.

We know that, if X is compact, then every continuous function f : X → F
is also bounded on X. Therefore, if X is compact, then C = BC.

Lemma 11.3 Let µ be a real or complex (depending on whether F = R or
F = C) Borel measure on X. For every f ∈ BC we have∣∣∣ ∫

X

f dµ
∣∣∣ ≤ ∫

X

|f | d|µ| ≤ ‖f‖u‖µ‖.

Proof: A consequence of Theorem 10.8.

Let µ be a Borel measure on X. We recall that µ is called regular if for
every Borel set E we have (i) µ(E) = inf{µ(U)|Uopen ⊇ E} and (ii) µ(E) =
sup{µ(K)|Kcompact ⊆ E}.
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Definition 11.33 If µ is a real Borel measure on X, then µ is called regular if
µ+ and µ− are regular.
If µ is a complex Borel measure on X, then µ is called regular if <(µ) and =(µ)
are regular.
The space of all regular real or complex measures on X is denoted by

MR(X,BX).

We write MR instead of MR(X,BX) if there is no danger of confusion.
It is clear that, if µ is a Borel measure and µ(E) < +∞, then (i) and (ii) in

the definition of regularity are equivalent to the following: for every ε > 0 there
is an open U ⊇ E and a compact K ⊆ E so that µ(U \K) < ε.

Proposition 11.21 Let µ be a real or complex Borel measure on X. Then µ
is regular if and only if |µ| is regular.

Proof: Let µ be real. If µ is regular, then µ+ and µ− are regular and, thus,
for every Borel set E and ε > 0 there are open U+, U− ⊇ E and compact
K+,K− ⊆ E so that µ+(U+ \ K+) < ε and µ−(U− \ K−) < ε. We set
K = K+ ∪ K− ⊆ A and U = U+ ∩ U− ⊇ A and then µ+(U \ K) < ε and
µ−(U \K) < ε. We add and find |µ|(U \K) < 2ε and, hence, |µ| is regular.

Now let |µ| be regular. Then for every Borel set E and ε > 0 there is an
open U ⊇ E and a compact K ⊆ E with |µ|(U \K) < ε and, since µ+, µ− ≤ |µ|,
we get the same inequalities for µ+ and µ−. Therefore, µ+ and µ− are regular
and so µ is regular.

If µ is complex, the proof is similar and uses the inequalities |<(µ)|, |=(µ)| ≤
|µ| and |µ| ≤ |<(µ)|+ |=(µ)|.

Theorem 11.13 MR is a closed linear subspace of M and, hence, a Banach
space.

Proof: If µ1 and µ2 are regular Borel measures on X, then |µ1| and |µ2| are
regular. Therefore, for every Borel set E and ε > 0 there are open U1, U2 ⊇ E
and compact K1,K2 ⊆ E so that |µ1|(U1 \ K1) < ε and |µ2|(U2 \ K2) < ε.
We set K = K1 ∪K2 ⊆ E and U = U1 ∩ U2 ⊇ E, and thus we find the same
inequalities for K and O. We add, using |µ1 + µ2| ≤ |µ1| + |µ2|, and we find
|µ1 + µ2|(U \K) < 2ε. Hence, |µ1 + µ2| is regular and so µ1 + µ2 is regular.

It is even simpler to prove that, if µ is regular and κ ∈ F , then κµ is regular.
Therefore MR is a linear subspace of M .
Now, let (µn) be a sequence in MR converging to µ in M . We consider any

Borel set E and ε > 0 and find N so that ‖µN − µ‖ < ε and then, since |µN | is
regular, we find an open U ⊇ E and a compact K ⊆ E so that |µN |(U \K) < ε.
Then |µ|(U \K) ≤ |µN |(U \K) + ‖µN − µ‖ < 2ε and, thus, µ is regular. This
means that MR is closed in M .

We recall Theorem 5.7 which says that, if for every open subset O of X there
is an increasing sequence of compact sets whose interiors cover O, then every
locally finite Borel measure is regular and, hence, MR = M .
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Definition 11.34 A topological space X is called locally compact if for every
x ∈ X there is an open V ⊆ X such that x ∈ V and V is compact.

Lemma 11.4 Let X be locally compact Hausdorff. For every x ∈ X and every
open U ⊆ X with x ∈ U there is an open W ⊆ X such that x ∈W , W ⊆ U and
W is compact.

Proof: There is an open V ⊆ X such that x ∈ V and V is compact. Let
V ′ = V ∩ U . Then x ∈ V ′ ⊆ U and V ′ is compact. If ∂(V ′) is the boundary
of V ′, then ∂(V ′) is compact. For every y ∈ ∂(V ′) there are open Wy and Yy
so that x ∈ Wy, y ∈ Yy and Wy ∩ Yy = ∅. The open sets Yy cover ∂(V ′) and
hence there are y1, . . . , yn ∈ ∂(V ′) so that ∂(V ′) ⊆ Yy1 ∪ · · · ∪ Yyn . Now let
W = V ′ ∩Wy1 ∩ · · · ∩Wyn . Then x ∈ W and W ∩ (Yy1 ∪ · · · ∪ Yyn) = ∅. Since
Yy1 ∪ · · · ∪ Yyn is open, W ∩ (Yy1 ∪ · · · ∪ Yyn) = ∅. Therefore W ∩ ∂(V ′) = ∅ and
since W ⊆ V ′ we get W ⊆ V ′. Thus W ⊆ U and W is compact.

Lemma 11.5 Let X be locally compact Hausdorff. If K ⊆ X is compact and
U ⊆ X is open and K ⊆ U , then there is an open W ⊆ X such that K ⊆W ⊆
W ⊆ U and W is compact.

Proof: By Lemma 11.4, for every x ∈ K there is an open Wx ⊆ X such that
x ∈ Wx, Wx ⊆ U and Wx is compact. The open sets Wx cover K so there are
x1, . . . , xn ∈ K such that K ⊆Wx1

∪ · · · ∪Wxn . Denote W = Wx1
∪ · · · ∪Wxn .

Then W = Wx1 ∪ · · · ∪Wxn . Thus W is open, W is compact and K ⊆ W ⊆
W ⊆ U .

The next result is a special case of a well-known more general Lemma of
Urysohn.

Theorem 11.14 Let X be locally compact Hausdorff. If K ⊆ X is compact
and U ⊆ X is open and K ⊆ U , then there is a continuous f : X → [0, 1] so
that f = 1 on K and supp(f) is a compact subset of U .

Proof: By Lemma 11.5, there is an open B1 such that B1 is compact and
K ⊆ B1 ⊆ B1 ⊆ U .

Denote A0 = K.
Then there is some open B 1

2
such that B 1

2
is compact and

A0 ⊆ B 1
2
⊆ B 1

2
⊆ B1.

Similarly, there exist open B 1
4

and B 3
4

so that B 1
4

and B 3
4

are compact and

B0 ⊆ B 1
4
⊆ B 1

4
⊆ B 1

2
⊆ B 1

2
⊆ B 3

4
⊆ B 3

4
⊆ B1.

Continuing inductively, to every rational of the form r = k
2n with 0 < k ≤ 2n

corresponds an open set Br such that Br is compact and

A0 ⊆ Br ⊆ Br ⊆ Bs
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for every two such rationals r, s with r < s. Let Qd be the set of all these
rational numbers.

We define g(x) = inf{r ∈ Qd|x ∈ Br} if x ∈ B1 and g(x) = 1 if x ∈ X \B1.
We see that g = 0 on K and that g : X → [0, 1] and we shall prove that g is

continuous on X.
Let x ∈ X and ε > 0. If 0 < g(x) < 1, there are r, r′, s ∈ Qd so that

g(x)− ε < r < r′ < g(x) < s < g(x) + ε. If y ∈ Bs, then g(y) ≤ s < g(x) + ε. If
y ∈ X \Br, then y /∈ Br, hence g(y) ≥ r > g(x)− ε. Also, x ∈ Bs and x /∈ Br′ ,
therefore x ∈ X \ Br. Thus, the open set V = Bs ∩ (X \ Br) contains x and
g(x)− ε < g(y) < g(x) + ε for every y ∈ V . Therefore, g is continuous at x.

If g(x) = 1, we take, like before, r, r′ ∈ Qd so that 1 − ε < r < r′ < 1 and
we see that the open set V = X \ Br contains x and 1 − ε < g(y) ≤ 1 < 1 + ε
for every y ∈ V . Similarly, if g(x) = 0, we take s ∈ Qd so that 0 < s < ε and
we get that the open set V = Bs contains x and −ε < 0 ≤ g(y) < ε for every
y ∈ V . Hence, in all cases g is continuous at x.

At last, we define f = 1 − g. Then f : X → [0, 1] is continuous on X and
f = 1 on K. Also, f = 0 outside the closed set B1. Hence, the supp(f) is
contained in B1 which is a compact subset of U .

Lemma 11.6 (Partition of unity.) Let X be locally compact Hausdorff. If
K ⊆ X is compact and U1, . . . , Un ⊆ X are open so that K ⊆ U1 ∪ · · · ∪ Un,
then there exist f1, . . . , fn : X → [0, 1] continuous on X so that supp(fj) is a
compact subset of Uj for all j and f1 + · · ·+ fn = 1 on K.

Proof: From the hypothesis, K \ (U2 ∪ · · · ∪ Un) ⊆ U1 so there is an open
V1 so that V1 is compact and K \ (U2 ∪ · · · ∪ Un) ⊆ V1 ⊆ V1 ⊆ U1. Then
K ⊆ V1 ∪ U2 ∪ · · · ∪ Un and, hence, K \ (V1 ∪ U3 ∪ · · · ∪ Un) ⊆ U2. So there is
an open V2 so that V2 is compact and K \ (V1 ∪U3 ∪ · · · ∪Un) ⊆ V2 ⊆ V2 ⊆ U2.
Then K ⊆ V1 ∪ V2 ∪U3 ∪ · · · ∪Un. Continuing inductively, we replace one after
the other the U1, . . . , Un with open V1, . . . , Vn so that V1, . . . , Vn are compact
and K ⊆ V1 ∪ · · · ∪ Vn and Vj ⊆ Uj for all j.

By Theorem 11.14, there are g1, . . . , gn : X → [0, 1] so that gj = 1 on Vj and
supp(gj) is a compact subset of Uj for all j. Also, there exists g0 : X → [0, 1] so
that g0 = 0 on K and g0 = 1 out of V1 ∪ · · · ∪ Vn. We define fj =

gj
g0+g1+···+gn

for every j = 1, . . . , n.
If for any x ∈ X the g0(x) = 1 is not true, then x ∈ V1 ∪ · · · ∪ Vn and then

gj(x) = 1 for some j = 1, . . . , n. Therefore, g0 + g1 + · · · + gn ≥ 1 on X, and
the f1, . . . , fn : X → [0, 1] are continuous on X.

It is obvious that supp(fj) is contained in supp(gj) and thus supp(fj) is a
compact subset of Uj for all j. Also, f1 + · · · + fn = g1+···+gn

g0+g1+···+gn = 1 on K,
because g0 = 0 on K.

Definition 11.35 Let K be compact and U1, . . . , Un be open subsets of the lo-
cally compact X and K ⊆ U1∪· · ·∪Un. If the f1, . . . , fn : X → [0, 1] are continu-
ous on X so that supp(fj) is a compact subset of Uj for all j and f1+· · ·+fn = 1
on K, then the collection {f1, . . . , fn} is called a partition of unity for K
relative to its open cover {U1, . . . , Un}.
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Definition 11.36 Let f ∈ C(X). We say that f vanishes at infinity if for
every ε > 0 there is a compact K ⊆ X so that |f | < ε outside K.

We define

C0(X) = {f ∈ C(X) | f vanishes at infinity }.

Again, we may simplify to C0.

It is clear that

C0 ⊆ BC

and, in fact, that C0 is a linear subspace of BC. We also take the restriction on
C0 of the uniform norm on BC, that is

‖f‖u = sup
x∈X
|f(x)|

for all f ∈ C0.

If X is compact, then C0 = C = BC.

Theorem 11.15 C0 is a Banach space.

Proof: It is enough to prove that C0 is a closed subset of BC.

Let (fn) in C0 converge to some f in BC. Take any ε > 0. Then there is
some N so that ‖fn− f‖u ≤ ε

2 for all n ≥ N and, in particular, ‖fN − f‖u ≤ ε
2 .

Since fN ∈ C0, there is some compact K ⊆ X so that |fN | < ε
2 outside K.

Therefore, |f | ≤ |fN |+ |f − fN | < ε
2 + ε

2 = ε outside K and thus f ∈ C0.

Theorem 11.16 Let X be locally compact Hausdorff and µ ∈MR. Then

‖µ‖ = sup
{∣∣∣ ∫

X

f dµ
∣∣∣ | f ∈ C0, ‖f‖u ≤ 1

}
.

Proof: For all f ∈ C0 with ‖f‖u ≤ 1, Lemma 11.3 implies that |
∫
X
f dµ| ≤

‖f‖u‖µ‖ ≤ ‖µ‖. Therefore,

sup
{∣∣∣ ∫

X

f dµ
∣∣∣ | f ∈ C0, ‖f‖u ≤ 1

}
≤ ‖µ‖.

By the definition of ‖µ‖, there are pairwise disjoint Borel sets A1, . . . , An ⊆
X so that ‖µ‖ − ε < |µ(A1)| + · · · + |µ(An)|. Since µ is regular, for every j
there is a compact Kj ⊆ Aj so that |µ|(Aj \Kj) <

1
n ε. Therefore, ‖µ‖ − 2ε <

|µ(K1)| + · · · + |µ(Kn)|. Since K1, . . . ,Kn are pairwise disjoint, it is easy to
prove that there are pairwise disjoint open U1, . . . , Un so that Kj ⊆ Uj for all j
and, taking them smaller if we need to, |µ|(Uj \Kj) <

1
n ε for all j. Then, for

all j there are fj : X → [0, 1] continuous on X so that fj = 1 on Kj and fj = 0

out of Uj . Finally, we define κj = sign
( ∫

Uj
fj dµ) and f = κ1f1 + · · ·+ κnfn.
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It is easy to see that ‖f‖u ≤ 1. Therefore,

∣∣∣ ∫
X

f dµ
∣∣∣ =

∣∣∣ n∑
j=1

κj

∫
Uj

fj dµ
∣∣∣ =

n∑
j=1

∣∣∣ ∫
Uj

fj dµ
∣∣∣

≥
n∑
j=1

|µ(Kj)| −
n∑
j=1

∣∣∣ ∫
Uj\Kj

fj dµ
∣∣∣

> ‖µ‖ − 2ε−
n∑
j=1

|µ|(Uj \Kj) > ‖µ‖ − 3ε.

Since ε > 0 is arbitrary, we conclude that

sup
{∣∣∣ ∫

X

f dµ
∣∣∣ | f ∈ C0, ‖f‖u ≤ 1

}
≥ ‖µ‖.

Definition 11.37 Let X be locally compact Hausdorff. For every µ ∈ MR we
define lµ : C0 → F by

lµ(f) =

∫
X

f dµ, f ∈ C0.

Proposition 11.22 Let X be locally compact Hausdorff. For every µ ∈ MR,
the function lµ of Definition 11.37 belongs to (C0)∗.

Moreover, ‖lµ‖∗ = ‖µ‖.

Proof: We have lµ(f1 + f2) =
∫
X

(f1 + f2) dµ =
∫
X
f1 dµ+

∫
X
f2 dµ = lµ(f1) +

lµ(f2). Also, lµ(κf) =
∫
X

(κf) dµ = κ
∫
X
f dµ = κlµ(f). These imply that lµ is

a linear functional.

Theorem 11.16 together with Proposition 11.5 imply that ‖lµ‖∗ = ‖µ‖.

Definition 11.38 Let X be locally compact Hausdorff. We define the mapping
J : MR → (C0)∗ by

J(µ) = lµ

for all µ ∈MR.

Proposition 11.23 The function J of Definition 11.38 is an isometry from
MR into (C0)∗

Proof: For every f ∈ C0 we have lµ1+µ2(f) =
∫
X
f d(µ1 + µ2) =

∫
X
f dµ1 +∫

X
f dµ2 = lµ1(f) + lµ2(f) = (lµ1 + lµ2)(f) and, hence, J(µ1 + µ2) = lµ1+µ2 =

lµ1
+ lµ2

= J(µ1) + J(µ2).

Moreover, lκµ(f) =
∫
X
f d(κµ) = κ

∫
X
f dµ = κlµ(f) = (κlµ)(f) and, hence,

J(κµ) = lκµ = κlµ = κJ(µ).

Now, ‖J(µ)‖∗ = ‖lµ‖∗ = ‖µ‖ and J is an isometry.
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Theorem 11.17 (F. Riesz, Radon, Banach, Kakutani.) Let X be locally com-
pact Hausdorff.
(i) For every l ∈ (C0)∗ there exists a unique regular (real or complex) Borel
measure µ on X so that

l(f) =

∫
X

f dµ

for every f ∈ C0.
If l is non-negative (in other words if l(f) ≥ 0 for every non-negative f ∈ C0),
then µ is non-negative.
If l is real (in other words l(f) ∈ R for every real f ∈ C0), then µ is real.
(ii) The function J of Definition 11.38 is an isometry from MR onto (C0)∗.

Proof: (A) Let l ∈ (C0)∗ be non-negative.
For each open O ⊆ X and f ∈ C0 we denote f ≺ O whenever f : X → [0, 1]

and supp(f) ⊆ O is compact.
For each open O we define

µ(O) = sup{l(f) | f ≺ O}

and, then, for each E ⊆ X we define

µ∗(E) = inf{µ(O) |O open ⊇ E}.

If O,O′ are open and O ⊆ O′, then f ≺ O implies f ≺ O′ and, thus,
µ(O) ≤ µ(O′). Hence, µ∗(O) = µ(O) for each open O.

If f ≺ O, then l(f) ≤ ‖l‖∗‖f‖u ≤ ‖l‖∗. Hence, µ(O) ≤ ‖l‖∗ and µ∗(E) ≤
‖l‖∗ for every E ⊆ X.

It is obvious that µ∗(∅) = µ(∅) = 0 and also that µ∗(E) ≤ µ∗(E′) for all
E,E′ with E ⊆ E′. Let now E = E1 ∪ E2 ∪ · · ·. For each j we take an
open Oj ⊇ Ej so that µ(Oj) < µ∗(Ej) + ε

2j and set O = O1 ∪ O2 ∪ · · ·. Let
f ≺ O, and then set K = supp(f) ⊆ O. There is, then, N so that K ⊆
O1∪· · ·∪ON and we consider a partition of unity {f1, . . . , fN} for K relative to
{O1, . . . , ON}. Then f = ff1 + · · ·+ ffN and ffj ≺ Oj for each j and, hence,
l(f) = l(ff1)+ · · ·+ l(ffN ) ≤ µ(O1)+ · · ·+µ(ON ) ≤ µ(O1)+µ(ON )+ · · ·. This
implies that µ(O) ≤ µ(O1) +µ(ON ) + · · · ≤ µ∗(E1) +µ∗(E2) + · · ·+ ε and, since
E ⊆ O, we get µ∗(E) ≤ µ∗(E1) + µ∗(E2) + · · ·+ ε. Since ε > 0 is arbitrary, we
get µ∗(E) ≤ µ∗(E1) + µ∗(E2) + · · ·. We conclude that µ∗ is an outer measure
on X.

By the Caratheodory process, we define the σ-algebra of µ∗-measurable sub-
sets of X on which the restriction of µ∗ is a measure.

Consider any open O and any E. We take an open O′ ⊇ E with µ(O′) <
µ∗(E) + ε and f ≺ O′ ∩ O so that l(f) > µ(O′ ∩ O) − ε. The O′ \ supp(f)
is open and we take g ≺ O′ \ supp(f) so that l(g) > µ(O′ \ supp(f)) − ε. We
observe that f + g ≺ O′, whence µ∗(E) + ε > µ(O′) ≥ l(f + g) = l(f) + l(g) >
µ(O′ ∩ O) + µ(O′ \ supp(f)) − 2ε ≥ µ∗(E ∩ O) + µ∗(E \ O) − 2ε. Hence,
µ∗(E) ≥ µ∗(E ∩ O) + µ∗(E \ O) and this means that O is µ∗-measurable.
Therefore, the σ-algebra of µ∗-measurable sets contains all open sets and, thus,
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includes BX . We define µ to be the restriction of µ∗ on BX . So µ is a non-
negative Borel measure on X. Observe that µ is identical to the already defined
µ on the open sets, since we proved that µ∗(O) = µ(O) for each open O.

We shall now prove that

(]) µ(K) = inf{l(f) | f ∈ C0 and χK ≤ f on X}

for all compact K ⊆ X.
We take any f ∈ C0 with f ≥ χK (e.g. f ≥ 0 on X and, in particular,

f ≥ 1 on K) and consider the open set O = {x ∈ X| f(x) > 1 − ε} ⊇ K. If
g ≺ O, then g ≤ 1

1−ε f on X and then l(g) ≤ 1
1−ε l(f), since l is non-negative.

Therefore, µ(O) ≤ 1
1−ε l(f), whence µ(K) ≤ 1

1−ε l(f). Since ε > 0 is arbitrary,
this implies that µ(K) ≤ l(f) and, thus, µ(K) ≤ inf{l(f) | f ∈ C0 and χK ≤
f on X}. We now take an open O ⊇ K with µ(O) < µ(K) + ε and, then, an
f : X → [0, 1] continuous on X with f = 1 on K and supp(f) ⊆ O is compact.
Then f ≥ χK and f ≺ O and, hence, l(f) ≤ µ(O) < µ(K) + ε. Since ε is
arbitrary, inf{l(f) | f ∈ C0 and χK ≤ f on X} ≤ µ(K).

We shall next prove the regularity of µ.
For each Borel set E we have µ(E) = µ∗(E) = inf{µ(O) |O open ⊇ E}

and this is the first regularity condition. We take any Borel set E and find
an open O ⊇ E so that µ(O) < µ(E) + ε. We then find g ≺ O so that
l(g) > µ(O) − ε and set K = supp(g) ⊆ O. For each f ∈ C0 with f ≥ χK ,
we get that f ≥ g and then l(f) ≥ l(g). From (]) it is implied that µ(K) ≥
l(g). Therefore, we have a compact K ⊆ O with µ(K) > µ(O) − ε. Since
µ(O \ E) = µ(O)− µ(E) < ε, there is an open O′ ⊇ O \ E so that µ(O′) < 2ε.
We now define L = K \O′ and observe that L is a compact subset of E and that
E \L ⊆ (O \K)∪O′. Thus, µ(E)− µ(L) ≤ µ(O \K) + µ(O′) < 3ε and, hence,
µ(E) = sup{µ(L)|L compact ⊆ E}. This is the second regularity condition.

Finally, we shall prove that l(f) =
∫
X
f dµ for every f ∈ C0 and, by linearity,

it is enough to prove it for real f . (Of course, if F = R, then all functions are
real anyway.) If f is real, we write f+ = 1

2 (|f |+f) ≥ 0 and f− = 1
2 (|f |−f) ≥ 0,

whence f = f+−f−. Therefore, it is enough to consider f ≥ 0 and, multiplying
with an appropriate positive constant, we may assume that f ∈ C0 and 0 ≤ f ≤
1 on X.

We take arbitrary N and define Kk = {x ∈ X| f(x) ≥ k
N } for 0 ≤ k ≤ N .

Every Kk, 1 ≤ k ≤ N , is compact and, obviously, K0 = X. Also, for each
j = 0, . . . , N − 1 we define

fj = min
{

max
{
f,

j

N

}
,
j + 1

N

}
− j

N
.

We have that fj ∈ C0 and

1

N
χKj+1

≤ fj ≤
1

N
χKj

for each j = 0, . . . , N − 1 and also

f = f0 + f1 + · · ·+ fN−1.
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Adding the last inequalities and integrating, we find

1

N
(µ(K1) + · · ·+ µ(KN )) ≤

∫
X

f dµ ≤ 1

N
(µ(K0) + · · ·+ µ(KN−1)).

From χKj+1 ≤ Nfj and (]) it is implied that µ(Kj+1) ≤ l(Nfj) = Nl(fj).
From Nfj ≤ χKj it is implied that Nfj ≺ O and, thus, Nl(fj) ≤ µ(O) for
every open O ⊇ Kj . Hence, from the definition of µ(Kj) = µ∗(Kj), we get that
Nl(fj) ≤ µ(Kj). Therefore,

1

N
µ(Kj+1) ≤ l(fj) ≤

1

N
µ(Kj)

and, adding,

1

N
(µ(K1) + · · ·+ µ(KN )) ≤ l(f) ≤ 1

N
(µ(K0) + · · ·+ µ(KN−1)).

Thus,
∣∣ ∫
X
f dµ − l(f)

∣∣ ≤ 1
N (µ(K0) + · · · + µ(KN−1)) − 1

N (µ(K1) + · · · +
µ(KN )) = 1

N µ(K0 \KN ) ≤ 1
N µ(X) ≤ 1

N ‖l‖∗ and, since N is arbitrary,

l(f) =

∫
X

f dµ

and the case of non-negative l is finished.
(B) Let now l be real. For each non-negative f ∈ C0 we define

l+(f) = sup{l(g) | g ∈ C0, 0 ≤ g ≤ f on X}.

Obviously, l+(f) ≥ l(0) = 0 and l+(f) ≥ l(f). Also, if 0 ≤ g ≤ f , then
|l(g)| ≤ ‖l‖∗‖g‖u ≤ ‖l‖∗‖f‖u and, thus, l+(f) = |l+(f)| ≤ ‖l‖∗‖f‖u < +∞.

For every κ > 0 and non-negative f ∈ C0 we have l+(κf) = sup{l(g) | g ∈
C0, 0 ≤ g ≤ κf on X} = sup{l(κh) |h ∈ C0, 0 ≤ h ≤ f on X} = κ sup{l(h) |h ∈
C0, 0 ≤ h ≤ f on X} = κl+(f).

If f1, f2 ∈ C0 are non-negative, 0 ≤ g1 ≤ f1 and 0 ≤ g2 ≤ f2, then l(g1) +
l(g2) = l(g1+g2) and, since 0 ≤ g1+g2 ≤ f1+f2, it is implied that l(g1)+l(g2) ≤
l+(f1 +f2). Taking supremum over g1 and g2, we find l+(f1)+ l+(f2) ≤ l+(f1 +
f2). Now, let 0 ≤ g ≤ f1 + f2. We set g1 = min(f1, g), from which 0 ≤ g1 ≤ f1
and g1 ≤ g. If we set g2 = g− g1, then it is easy to see that 0 ≤ g2 ≤ f2 and, of
course, g = g1 + g2. Hence, l(g) = l(g1) + l(g2) ≤ l+(f1) + l+(f2), from which
l+(f1 + f2) ≤ l+(f1) + l+(f2). We conclude that l+(f1 + f2) = l+(f1) + l+(f2).

Until now, l+(f) is defined only for non-negative f ∈ C0. For an arbitrary
real f ∈ C0 we write f+ = 1

2 (|f | + f) ≥ 0 and f− = 1
2 (|f | − f) ≥ 0, whence

f = f+ − f−. We, then, define for each real f ∈ C0

l+(f) = l+(f+)− l+(f−).

Observe that, if f = g − h for any non-negative g, h ∈ C0, then f+ + h =
f− + g, whence l+(f+) + l+(h) = l+(f+ + h) = l+(f− + g) = l+(f−) + l+(g).
Hence, l+(f) = l+(g)− l+(h).
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If f1, f2 ∈ C0 are real, then from the last identity we get f1 + f2 = (f+1 +
f+2 )−(f−1 +f−2 ), whence l(f1 +f2) = l(f+1 +f+2 )− l(f−1 +f−2 ) = l(f+1 )+ l(f+2 )−
l(f−1 )− l(f−2 ) = l(f1) + l(f2).

If f ∈ C0 is real and κ ≥ 0, then l+(κf) = l+(κf+)− l+(κf−) = κl+(f+)−
κl+(f−) = κl+(f), while if κ < 0, then l+(κf) = l+(|κ|f−) − l+(|κ|f+) =
|κ|l+(f−)− |κ|l+(f+) = κl+(f).

If F = R, we have already proved that l+ : C0 → R is a linear functional.

If F = C, for each complex f ∈ C0 we define

l+(f) = l+(<f) + il+(=f)

and it is easy to see that l+ : C0 → C is linear. If f ∈ C0 is real, then |l+(f)| =
|l+(f+) − l+(f−)| ≤ max{l+(f+), l+(f−)} ≤ max{‖l‖∗‖f+‖u, ‖l‖∗‖f−‖u} =
‖l‖∗‖f‖u. While, if f is complex, then, with an appropriate κ ∈ C with
|κ| = 1 we have |l+(f)| = κl+(f) = l+(κf) = <

(
l+(κf)

)
= l+(<(κf)) ≤

‖l‖∗‖<(κf)‖u ≤ ‖l‖∗‖f‖u. Therefore, l+ is a non-negative bounded linear func-
tional of C0 with ‖l+‖∗ ≤ ‖l‖∗.

We also define l− = l+ − l : C0 → F . Clearly, this is a bounded linear
functional of C0 and it is non-negative, since for every non-negative f ∈ C0 we
have l−(f) = l+(f)− l(f) ≥ 0.

By part (A), there are two non-negative regular Borel measures µ1 and µ2 on
X so that l+(f) =

∫
X
f dµ1 and l−(f) =

∫
X
f dµ2 for every f ∈ C0. Therefore,

for the real regular Borel measure µ = µ1 − µ2 we have l(f) = l+(f)− l−(f) =∫
X
f dµ1 −

∫
X
f dµ2 =

∫
X
f dµ for every f ∈ C0.

At this point the proof is finished, if F = C and l is real or if F = R (whence
l is automatically real).
(C) If F = C and l is complex, then <(l) and =(l) are bounded real R-linear
functionals of C0 and, hence, they are bounded R-linear functionals of (C0)r,
the R-linear space of real functions in C0. By the result of (B), there are
two real regular Borel measures µ1 and µ2, so that <(l(f)) =

∫
X
f dµ1 and

=(l(f)) =
∫
X
f dµ2 for every real f ∈ C0. Therefore, if we define µ = µ1 + iµ2,

then µ is a complex regular Borel measure on X and for every real f ∈ C0 we
have l(f) = <(l(f))+i=(l(f)) =

∫
X
f dµ1+i

∫
X
f dµ2 =

∫
X
f dµ. Therefore, for

every f ∈ C0, l(f) = l(<(f)) + il(=(f)) =
∫
X
<(f) dµ+ i

∫
X
=(f) dµ =

∫
X
f dµ.

11.6 Exercises.

1. Approximation

(i) Let f ∈ Lp(X,Σ, µ) and ε > 0. Using Theorem 6.1, prove that there
exists a measurable simple function φ on X so that ‖f − φ‖p < ε. If
p < +∞, then φ = 0 outside a set of finite measure.
(ii) Let f ∈ Lp(Rn,Ln,mn) and ε > 0. If p < +∞, prove that there exists
a function g continuous on Rn and equal to 0 outside some bounded set
so that ‖f − g‖p < ε.
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2. Let I be any index set and 0 < p < q ≤ +∞. Prove that lp(I) ⊆ lq(I)
and that

‖b‖q ≤ ‖b‖p
for every b ∈ lp(I).

3. Let µ(X) < +∞ and 0 < p < q ≤ +∞. Prove that Lq(X,Σ, µ) ⊆
Lp(X,Σ, µ) and that

‖f‖p ≤ µ(X)
1
p−

1
q ‖f‖q

for every f ∈ Lq(X,Σ, µ).

4. Let 0 < p < q < r ≤ +∞ and f ∈ Lp(X,Σ, µ) ∩ Lr(X,Σ, µ). Prove that
f ∈ Lq(X,Σ, µ) and, if 1

q = t
p + 1−t

r , then

‖f‖q ≤ ‖f‖tp‖f‖1−tr .

5. Let 1 ≤ p < r ≤ +∞. We set Z = Lp(X,Σ, µ)∩Lr(X,Σ, µ) and we define
‖f‖ = ‖f‖p + ‖f‖r for every f ∈ Z.
(i) Prove that ‖ · ‖ is a norm on Z and that (Z, ‖ · ‖) is a Banach space.
(ii) If p < q < r, consider the linear transformation T : Z → Lq(X,Σ, µ)
with T (f) = f for every f ∈ Z (see Exercise 11.6.4). Prove that T is
bounded.

6. Let 0 < p < q < r ≤ +∞ and f ∈ Lq(X,Σ, µ). If t > 0 is arbitrary,
consider the functions

g(x) =

{
f(x), if |f(x)| > t
0, if |f(x)| ≤ t h(x) =

{
0, if |f(x)| > t
f(x), if |f(x)| ≤ t .

Prove that g ∈ Lp(X,Σ, µ) and h ∈ Lr(X,Σ, µ) and that f = g+h on X.

7. Let 1 ≤ p < r ≤ +∞. We define W = Lp(X,Σ, µ) + Lr(X,Σ, µ) =
{g + h | g ∈ Lp(X,Σ, µ), h ∈ Lr(X,Σ, µ)} and

‖f‖ = inf
{
‖g‖p + ‖h‖r | g ∈ Lp(X,Σ, µ), h ∈ Lr(X,Σ, µ), f = g + h

}
for every f ∈W .
(i) Prove that ‖ · ‖ is a norm on W and that (W, ‖ · ‖) is a Banach space.
(ii) If p < q < r, consider the linear transformation T : Lq(X,Σ, µ)→ W
with T (f) = f for every f ∈ Lq(X,Σ, µ) (see Exercise 11.6.6). Prove that
T is bounded.

8. Let 0 < p < q < +∞. Prove that Lp(X,Σ, µ) 6⊆ Lq(X,Σ, µ) if and
only if X includes sets of arbitrarily small positive measure and that
Lq(X,Σ, µ) 6⊆ Lp(X,Σ, µ) if and only if X includes sets of arbitrarily
large finite measure.

9. Let 1 ≤ p < +∞ and (fn) be a sequence in Lp(X,Σ, µ) so that |fn| ≤ g
a.e. on X for every n for some g ∈ Lp(X,Σ, µ). If (fn) converges to f a.e.
on X or in measure, prove that ‖fn − f‖p → 0.
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10. Let 1 ≤ p < +∞ and f, fn ∈ Lp(X,Σ, µ) for all n. If fn → f a.e. on X,
prove that ‖fn − f‖p → 0 if and only if ‖fn‖p → ‖f‖p.

11. Let 1 ≤ p ≤ +∞ and g ∈ L∞(X,Σ, µ). We define the linear trans-
formation T : Lp(X,Σ, µ) → Lp(X,Σ, µ) with T (f) = gf for every
f ∈ Lp(X,Σ, µ). Prove that T is bounded, that ‖T‖ ≤ ‖g‖∞ and that
‖T‖ = ‖g‖∞ if µ is semifinite.

12. The inequality of Chebychev.

If 0 < p < +∞ and f ∈ Lp(X,Σ, µ), prove that

λ|f |(t) ≤
‖f‖pp
tp

, 0 < t < +∞.

13. The general Minkowski’s Inequality.

Let (X1,Σ1, µ1) and (X2,Σ2, µ2) be two σ-finite measure spaces and 1 ≤
p < +∞.
(i) If f : X1 ×X2 → [0,+∞] is Σ1 ⊗ Σ2−measurable, prove that(∫

X1

(∫
X2

f(·, ·) dµ2

)p
dµ1

) 1
p ≤

∫
X2

(∫
X1

f(·, ·)p dµ1

) 1
p

dµ2.

(ii) If f(·, x2) ∈ Lp(X1,Σ1, µ1) for µ2-a.e. x2 ∈ X2 and the function x2 7→
‖f(·, x2)‖p is in L1(X2,Σ2, µ2), prove that f(x1, ·) ∈ L1(X2,Σ2, µ2) for µ1-
a.e. x1 ∈ X1, that the function x1 7→

∫
X2
f(x1, ·) dµ2 is in Lp(X1,Σ1, µ1)

and (∫
X1

∣∣∣ ∫
X2

f(·, ·) dµ2

∣∣∣p dµ1

) 1
p ≤

∫
X2

(∫
X1

|f(·, ·)|p dµ1

) 1
p

dµ2.
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